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ABSTRACT  

 

The aim of this thesis is the study of the effects of the diameter on large scale monopiles, characterized 

by its rigid behaviour, used as foundations for offshore wind turbines in clay. The study involves a 

numerical investigation of the soil-pile interaction followed by an interpretation and validation of the 

results with the existing theoretical principles of soil mechanics on this area of expertise. 

After a brief overview of the current state-of-the-art of the wind energy industry and a description about 

the relevance of monopiles on offshore wind industry, the specificities of their geotechical design, 

namely the lateral-load design of these piles, is addressed. The soil-pile interaction is usually 

characterized by a load-displacement curve, the so called p-y curves, to which several theories were 

developed over the years and is the basis of current lateral-load design of offshore monopiles 

foundations. 

In order to obtain the reaction of the soil, p, as a response to a displacement, y, the hypothesis of using 

a differential equation that expresses the soil reaction as a function of the fourth derivative of the 

displacement was explored. It was concluded that this methodology will be reliable when the 

deformations are not too large as to introduce plasticity to the  mobilized soil – as it can be the case of 

flexible piles, with high slenderness – but it was concluded inefficient for rigid piles as there is no way 

of taking into account the plastification of the soil. 

Maintaining, however, the possibility of integrating the stresses around the pile, a model in PLAXIS® 

3D was built in a way to represent in the more realistic manner possible the soil-pile interaction.  

By analysing the results of the data exported from the finite element program, a methodology was 

developed for the calculation of the p-y curves taking into consideration the extensive data obtained by 

a significant number of complex numerical calculations, which was later programmed in MatLab®.  

After exploring some other options, a hyperbolic curve was concluded to be the best fitting to 

characterize the shape of the obtained results for generation of the p-y curves. The obtained results were 

compared with the ones obtain using the suggested method of the American Petroleum Institute (API) 

regarding, not only the actual p-y curves, but also the results for the ultimate bearing capacity and the 

initial stiffness of the soil.  

The formulation of the API p-y curves was concluded to not be very accurate as the shape of its curves 

underestimates the capacity of the soil and its evolution on depth and does not take into account the 

initial subgrade reaction of the soil. The diameter of the monopile was concluded to have a great 

influence on the initial subgrade reaction of the soil and a nonlinear one. It was concluded that there is 

no influence of the diameter when it comes to the resistance of the p-y curves. 

Finally, the most relevant conclusions are highlighted in the end of this work and further developments 

are suggested on this research topic for future studies. 

 

 

KEYWORDS: Offshore, monopiles, p-y curves, diameter effects, PLAXIS 3D, soil-pile interaction 
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RESUMO  

 

O objetivo desta tese é o estudo dos efeitos do diâmetro em monoestacas de grande escala - caracterizada 

pelo seu comportamento rígido - usado como fundações em argila para turbinas eólicas offshore. O 

estudo envolve uma investigação numérica sobre a interacção solo-estaca seguida de uma interpretação 

e consequente validação dos resultados baseados nos princípios teóricos da mecânica dos solos aplicados 

nesta área de especialização. 

Após uma breve introdução sobre a actual situação da indústria da energia eólica e uma descrição da 

relevância das monoestacas na indústria eólica offshore, as especificações do seu dimensionamento 

geotécnico, nomeadamente o dimensionamento ao carregamento lateral destas estacas, é referenciado. 

A interacção solo- estaca é geralmente caracterizada por uma curva de carga-deslocamento, as chamadas 

curvas p-y, para as quais diversas teorias foram desenvolvidas ao longo dos anos e são a base do 

dimensionamento do carregamento lateral das fundações de monoestacas instaladas em offshore. 

De modo a obter a reacção do solo, p, em resposta a um deslocamento, Y, foi explorada a hipótese de 

uso de uma equação diferencial que expressa a reacção do solo em função da derivada de quarto grau 

do deslocamento. Foi concluído que esta metodologia será fiável caso as deformações não sejam 

demasiado elevadas ao ponto de introduzir plasticidade no solo mobilizado – como pode ser o caso de 

estacas flexíveis, com grande esbelteza - mas revelou-se ineficaz para estacas rígidas uma vez que não 

existe forma de ter em consideração a plasticidade do solo. 

Mantendo, contudo, a possibilidade de integrar de tensões em torno da estaca, foi desenvolvido um 

modelo em PLAXIS® 3D de forma a representar, da forma mais realista possível, as interacções entre 

solo-estaca. Ao analisar os resultados dos dados exportados a partir do programa de elementos finitos, 

foi desenvolvida uma metodologia para o cálculo das curvas p-y, tendo em consideração a vasta 

informação obtida através de um significativo número de complexos cálculos numéricos, que mais tarde 

foi programado em MatLab®. 

Depois de terem sido exploradas outras opções, a hipótese de uma curva hiperbólica foi considerada 

como sendo a mais apropriada para caracterizar o perfil dos resultados obtidos para as curvas p-y. Estes 

foram comparados com os resultados obtidos utilizando a metodologia proposta pelo American 

Petroleum Institute (API ) tendo em conta , não só as curvas p-y reais , mas também os resultados para 

a capacidade de carga última e a rigidez inicial do solo. 

Concluiu-se que a metodologia para a definição das curvas p-y usadas pelo API não é muito exacta já 

que subestima a capacidade do solo e a sua evolução em profundidade e não tem em consideração a 

rigidez inicial do mesmo. Concluiu-se também que o diâmetro das monoestacas tem grande influência 

na rigidez inicial do solo, sendo esta uma relação não-linear, ao contrário do que se verifica na resistencia 

das curvas em que não há dependencia nenhuma do diametro. 

Finalmente, as conclusões mais relevantes são realçadas no final deste trabalho e posteriores 

desenvolvimentos são sugeridos neste tópico de investigação para estudos futuros. 

 

 

PALAVRAS-CHAVES: Offshore, monoestacas, curvas p-y- efeitos de diâmetro, PLAXIS 3D, interação 

solo-estaca 
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1 
INTRODUCTION 

 

 

1.1. FOREWORD 

Energy is the main ‘fuel’ for a social and economic development, and technology has become over the 

last two decades the main driver of this development. The rapid advancement of Information 

Technology (IT) all over the world has transformed not only the way we think, but also our daily 

behaviour, and all aspects of human life have been affected by IT and the internet, in particular. 

Saying this, new ways of producing energy needed to be explored in order for its production could keep 

up with the development of society and the huge population growth of the last twenty five years (27% 

between 1993 and 2011).  

Energy is the amount of force or power that when applied can move one object from one position to 

another or Energy defines the capacity of a system to do work and electricity way of energy. Although 

energy has been known since ancient times, it was never really given a second thought and the first 

experiments on electricity only appeared 250 years ago (1752) with Benjamin Franklin and his research. 

The discovery by Faraday of electromagnetic induction occurred almost 80 years later (1831) and it is 

still somehow used in modern power production – although on much larger scale.  

Applications for electricity started to increase since then. It began with the telegraph, light bulb and 

telephone and continued with radio, television and many other house appliances. This situation led to 

the searching of new ways of producing energy explaining the increasing use of fuels like coal, gas and 

oil in power generation. According to the International Energy Agency (2014 Key World Energy 

Statistics), in 2012 the transports consumed 27.9% and the industry 28.3% of the worlds total produced 

energy. 

The big use of non-renewable energy (energy sources that have a finite quantity and are not able to be 

replenished) started with the Industrial Revolution. The invention of the internal combustion engine in 

the 19th century transformed the Western world and led to eventual dependence on fossil fuels. Today, 

it is almost impossible to own an item that has been produced without the use of the energy generated 

by a fossil fuel, nuclear power plants or hydric sources – although nuclear energy is often though as a 

renewable energy, the uranium deposit on earth is finite and it produces radioactive waste. 

Most of non-renewable energy resources have consequences upon the environment. The big emissions 

of carbon dioxide and other greenhouse gases created what we all know as the increase of the greenhouse 

effect that is leading to a global warming. The burning of these products also poison waterways and 

leach harmful toxins into the ground and water. 
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As these problems began to have a significant impact on the living conditions of our planet, mainly the 

changes on the weather of the seasons, people and the governments started to take action and try to 

prevent a catastrophe. The solution is renewable energies. 

Figure 1.1 shows a comparison between the production of electricity using non-renewable resources and 

some renewable resources, through the years. 

 

 

Fig. 1.1 – Comparison between the use of non-renewable and renewable resources to produce electricity, U.S. 

Energy Information Administration 

 

A renewable energy is defined as an energy that comes from resources which are naturally replenished 

on a human timescale. Wind is one of these resources, together with sunlight, rain, tides, waves and 

geothermal heat. It is a source of clean, non-polluting, energy and it is becoming very popular in the last 

years and lots of investments are being made. The focus of this work is in the wind energy produced 

offshore. The offshore wind speed average is, more or less, 90% greater than on land.  

As the market of offshore wind energy is increasing, many companies seek a more exact and reliable 

method for the design of the foundations of the wind turbines. When it comes to the lateral-load design, 

the current methods are based on experiments made on flexible piles while offshore foundations have a 

more rigid behaviour. This is leading to a lot of investigation by many experts on the field in order to 

find a more accurate way of describing the lateral load-response behaviour for the soil-pile interaction 

design. The common way of characterizing this load-response behaviour is through what is usually 

called as p-y curves. 

In the present work, a numerical and theoretical investigation of the soil pile interaction response is 

made and an analytical solution for the characterization of these p-y curves is suggested as a more 

accurate method of design for rigid piles that takes into account the diameter of the pile. 
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1.2. PERSONAL MOTIVATION 

Regarding the personal motivation for this work many factors had an important role on it but the one 

that had the biggest impact was definitely the opportunity of going through such an important stage of 

my academic career in a recognized and internationalized company like COWI A/S. 

The work that will be here presented is the thesis developed as part of the final project of the postgraduate 

academic master’s degree at the Faculty of Engineering of the University of Porto (FEUP) in the 

specialization field of Geotechnical Engineering. 

An agreement between Prof. Viana da Fonseca, from FEUP, and Ole Hededal, former professor at 

Danmarks Tekniske Unisersitet – DTU and current Technical Director of the Marine and Foundation 

Engineering Department of COWI A/S in Lyngby, Denmark, allowed me to move to Denmark and 

develop my Master’s thesis within an international business environment.  

COWI A/S is an engineering, economics and environmental science consulting group with offices all 

over the world involved in more than 17,000 projects at any given moment anywhere in the planet. It is 

one of the leading companies when it concerns transportation engineering like tunnels (Abu Hamour 

surface & groundwater drainage tunnel and the Doha Metro Red Line North Underground, both in 

Qatar), bridges (Izmit Bay Bridge in Turkey and Puente Nigale in Venezuela) and ports (Al Faw Grand 

Port in Iraq and Värtahamnen in Sweden) but it also participates in other huge projects (Sonaref 

Refinery, Angola). When it comes to offshore wind farms COWI also took part of very big projects like 

the London Array in the UK, the Thornton Bank in Belgium, the Horns Rev in Denmark and the 

Wikinger in Germany. 

The chance of also contributing scientifically with new progresses on the methodology of the design of 

offshore wind turbine foundations was also a big motivational factor. Working with people who are seen 

as an international reference on the field of Geotechnical Engineering and contributed for the 

development and understanding of many unknown soil mechanics and behaviour through published 

paper on international magazines and conferences was greatly satisfactory.  

 

1.3. OBJECTIVES 

The following investigation is focused on a theoretical and numerical investigation of the soil-pile 

interaction. The purpose is to understand whether the p-y curves used for the design of monopiles 

foundations should depend on the diameter of these structures or if the current linear relation assumed 

between the diameter and the resistance of the soil is a correct postulation.  

Saying this, the following objectives were established for this work: 

 Become familiar with geotechnical design approaches for monopile foundation of offshore wind 

turbines; 

 Perform literature review of state-of-art on behaviour of monopiles; 

 Establish a 3D finite element method model (in PLAXIS 3D) of a monopile in uniform soil and 

simulate its response when loaded; 

 Use MatLab to process the data obtained from the FEM model and calculate the soil-pile 

interaction to and applied load or imposed displacement; 

 Identify the critical parameters based on sensitivity studies; 

 Propose a new methodology for the characterization of the p-y curves used for the design of 

monopiles foundations  
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1.4. STRUCTURE OF THE DOCUMENT 

In order to achieve a better organization for the presentation of the previously described objectives, this 

work was divided into 9 chapters, being this one the first in which a general idea about the thesis scope 

is given. 

The first half of the 2nd Chapter is dedicated to a presentation of the wind energy industry. It is a chapter 

explaining how this energy resource was first used, how its technology evolved over the years and its 

pioneers, its nowadays role on the production of energy to supply the needs of our society and who are 

the current world leaders on the production of wind energy. A background on how offshore wind farms 

evolved over the last decades is also presented and, finally, a short introduction on its types of 

foundations is made. 

Second part of Chapter 2 is where a more detailed description of monopiles, one of the types of 

foundation of offshore wind turbines, is presented. It covers general features like its mechanical 

characteristics – mostly by comparing rigid piles with flexible piles – but also more detailed aspects like 

its physical structure and pile testing for lateral loads. 

The theoretical background comes in the 3rd Chapter. It starts with an introduction of how the Winkler 

method of using springs as a representation of the soil attached to a beam was first used as a method of 

design for laterally loaded piles and its progress over the years in terms of numerical and analytical 

solutions. After this, there is an explanation of what p-y curves are followed by a presentation of the 

suggested methods of characterization of p-y curves developed over the years for cohesive and 

cohesionless soil. 

The 4th Chapter is the description of the 3D FEM model, developed in PLAXIS 3D, that represents a 

monopile foundation. This is a very important chapter in a way that every properties of the soil and 

geometry of the model is presented (and its choice justified) so that, in case of a continuation of the 

current work by another person, it would be possible to rebuild the models and then intervene on the 

aspects that wish to be studied (e.g. sensitive studies that were not carried out). 

The 5th Chapter is where the forth order differential equation developed by Hetenyi (1947) is explored 

as a hypothesis of getting to the subgrade reaction of the soil, p, from the displacement of the pile, y. 

This equation describes a relationship between the soil reaction and its displacement and it was applied 

to the results obtain from PLAXIS 3D and complemented with a structural analysis on SAP2000. 

After labeling the hypothesis explored on the 5th Chapter as unsuitable for the case being here studied, 

the 6th Chapter describes how the results obtained from PLAXIS 3D were processed on MatLab and 

used to integrate the stresses around the pile in order to find the subgrade reaction of the soil in response 

to the applied displacement. It is also in this chapter that the resulting p-y curves from the FEM model 

are presented and the analytical solution for the curve that best fits the obtained outcome is shown. It is 

also in this chapter that the first comparison between the obtained results and the API method is made. 

Chapter 7 is dedicated to sensitivity studies on the PLAXIS 3D model and a suggestion for a new method 

of characterization of the p-y curves. After having defined on the previous chapter that an hyperbola 

was the type of curve that best fits the results from PLAXIS 3D, some models were run changing some 

parameters in order to find which ones affect the most the results of the p-y curves. Also, different 

diameters were tested for the foundations of the monopiles and its effects were explored, which is in 

fact the main propose of this thesis. Having compared all these sensitivity studies and found consistency 

of the results, a comparison with the p-y curves from the API is carried out and suggestions to its method 

are made. 
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Finally, Chapter 8 summarizes the main conclusions of this thesis and some perspectives of future 

research are pointed out as important complements for the work that was here developed.  
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2 
WIND ENERGY INDUSTRY 

 

 

2.1. BACKGROUND AND EVOLUTION 

Wind power has been used for human benefits since man started to explore the sea using sailboats. 

Although sailors didn’t have the physics to help them understanding the mechanics of wind, their 

empirical achievements were very important for the later development of windmills. 

Windmills were the first big progress regarding wind-powered machines and they were used to grind 

the grains and to pump water. There is few information about this subject from the ancient years so the 

first known windmills go back to the time of the Persians (500-900 B.C.) and they were used for water 

pumping. The design was of the vertical axis system – vertical sails attached to a central vertical shaft 

by horizontal struts (Figure 2.1). These systems were also used in China. They claim that China was the 

birthplace of windmills and that they were first used more than 2000 years ago but there is no 

documentation to prove that. 

In Europe the first illustrations date back to 1270 A.C. and the design is based in a horizontal axis system 

with four blades mounted on a central post, much more efficient than the vertical ones. 120 years later 

the Dutch attached these 'postmills' to a tower (towermill) that used the different floors to different tasks 

(grinding grain, removing chaff, storing grain, etc). In Greece, in the island of Crete, windmills are still 

used to pump water for crops and livestock (Figure 2.2). 

   

    Fig. 2.1 – Windmills with vertical axis system     Fig. 2.2 – Windmills in Crete, Greece 

Over the years the windmill sail was improved in many ways and modern designers recognize that after 

500 years this process was already completed and all the major features crucial to the performance of 

modern wind turbine blades were present on these structures. Windmills were very important on the pre-

industrial Europe as they were used to several applications like waterwell, irrigation and drainage 

pumping, grain pumping, saw-milling of timber, and processing of many spices as cocoa, paints and 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.greecewanderer.com/top-10-unique-things-in-crete/&ei=MC0pVYHQFomfsAG67IKIAw&psig=AFQjCNEzoILsza_1XpxbuxFqigPF0oVZgw&ust=1428848280006277
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dyes, and tobacco. During the 19th century, due to the appearance of the steam engines, the use of tower 

mills declined. 

It was only in 1888 that Charles F. Brush first used wind power to produce electrical energy. He 

incorporated a step-up gearbox in order to turn a direct current generator at its required operational speed 

but it was still very limited in terms of low-speed and high-solidity rotor for electricity production 

applications. In 1891, an electrical output wind machine was developed with aerodynamic design 

principles (resulting in low-solidity rotors) but cheaper and larger fossil-fuel steam plants soon put these 

machines out of business. In Denmark there were about 2500 windmills by the end of the century and 

by 1908 there were more than 70 wind-driven electric generators from 5kW to 25kW. 

By 1920, the two dominant rotor configurations were labelled as inadequate for generating enough 

amount of electricity. Yet, small electrical-output wind generators (1 to 3 kilowatts) found a lot of use 

in the rural areas of the US in some small applications like lighting farms and charge batteries used to 

power crystal radio sets and later they were extended to refrigerators, freezers, washing machines and 

power tools. However, due to the increase of the demand of farms for even larger amounts of power and 

also because the government extended the electrical grid to those areas (because of the New Deal), these 

systems felt into disuse again. In Australia small hundreds of small wind generators were also produced 

to provide power at isolated postal service stations and farms. 

The world's first megawatt-size wind turbine (1.25MW) was connected to the local electrical distribution 

system in 1941 (Vermont, USA) and it was only on 1978 that a multi-megawatt wind turbine was created 

(2MW). 

During the Second World War, small wind generators were used to recharge submarine batteries as a 

fuel-conserving measure. In Europe, after the World War II, the developments on wind energy continue 

when temporary shortage of fossil fuels led to higher energy costs particularly the post war activity in 

Denmark and Germany, which was largely important for the future of horizontal axis design of wind 

turbine.  

During the 70s, many people begun to search and rebuilt farm wind generators from the 1930s, as they 

desired a self-sufficient life-style and solar cells were too expensive for small-scale electrical generation. 

From 1974 through the mid-1980s the US government worked with industry to advance the technology 

and enable large commercial wind turbines. Research and developments programs pioneered many of 

the multi-megawatt turbine technologies in use today. When oil prices declined by a factor of three from 

1980 through the early 1990s many turbine manufactures, both large and small, left the business. 

Energy security, global warming and possible fossil fuel exhaustion led to an expansion of interest in 

renewable energy at the beginning of the 21st century. Each year more and more investments are made 

on the wind energy and it is nowadays the fastest developing renewable energy in the world, with the 

US leading the way. This energy source is considered by many experts as the only renewable energy 

source which can compete in price with coal and other fossil fuels, and the price of wind power 

technologies is expected to continue to decline in years to come. 

During the year of 2014, 11.791 MW of wind power was installed across the European Union from 

which 10.308 MW were onshore and 1.483 MW were offshore. The biggest investor country of 2014 

was Germany (with more than 5.000 MW), followed by UK (with more than 1.700 MW of which almost 

50% were offshore) and then Poland and Sweden both with a little bit more than 1.000 MW.  

Overall, during 2014, 26,9 GW of new power generating capacity was installed - 21,3 GW of renewable 

energy - in EU in which 43,7% were from wind power and 29,7% from Solar Photovoltaic System (8 
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GW). Since 2000, 412,7 GW of new power capacity has been installed in the EU and of this, 29,4% is 

from wind power and 56,2% is renewable energy. 

Figure 2.3 shows the evolution over the 21th century of the investment of the United States of America 

on wind energy and Figure 2.4 compares, also in the US, the investment made between the onshore and 

the offshore wind energy. 

  

Fig. 2.3 – Annual wind power installations in the EU Fig. 2.4 – Annual wind power installations onshore vs offshore 

 

On a global level, 51.477 MW of wind power capacity were installed in 2014. China leads the top 3 

with 23.351 MW installed wind power capacity, followed by Germany in second and the USA comes 

in third place with 4.854 MW. The world total installed wind power capacity is 369,6 GW with China 

again leading the top 3 with 114,8 GW, followed by the USA with 65,9 GW and then Germany with 

39,2 GW. 

Denmark, who was once a pioneer in the field of wind energy, is not a world leader anymore. However, 

its wind turbines delivered in 2014 an equivalent to 39,1% of Danish energy consumption which is a 

‘world record’. 

In Portugal (Madeira and Azores included), in 2013, the wind power capacity was of 4,731 MW a total 

share of electricity consumption of 23%, saving nearly 8,182,900 tons of carbon dioxide emissions. 

 

Fig. 2.5 – Global Wind Energy Statistics 
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2.2. OFFSHORE WIND ENERGY FARMS 

The first wind farm – group of wind turbine at one only location which are interconnected and are used 

for production of energy – was built in 1980 in New Hampshire. It consisted on 20 wind turbines with 

a capacity of 30kW each (600kW total) but it is not working anymore. Today, the biggest wind farm in 

the world is the Gansu Wind Farm in the Gobi desert, China, with a capacity of over 6000 MW of power 

in 2012 and a goal of 20000 MW by 2020. The largest offshore wind farm in the world is the London 

Array wind farm in England with a capacity of 630 MW.  

In Portugal, the first offshore wind farm near Póvoa de Varzim (the Windfloat farm) is planned to be 

finished by 2018 and should be able to produce enough energy to provide energy to the whole city of 

Castelo Branco (40 thousand families). 

Wind farms are not an economically viable renewable solution in all parts of the world as they depend 

a lot on the frequency and speed of the wind. This is the main reason why experts believe that the future 

of the wind energy lies offshore where winds blow 40 percent more often than on land. Yet, due to 

extreme weather conditions, offshore wind turbines have much higher construction costs than onshore. 

Offshore wind farms have significantly smaller negative impact on aesthetics of the landscape compared 

to wind farms onshore because most offshore wind farms are not visible from shore. When constructing 

an offshore wind farm it is important to consider whether the nearby ecosystems will be disturbed or 

not. The interference with shipping lanes or fishing areas must also be taken into account. 

Europe has already started huge offshore wind power expansion with the United Kingdom leading the 

way followed by Germany and Denmark. China is also starting some big investments and the US is 

seriously considering this clean energy as an option. 

Siemens (German multinational conglomerate company and the biggest engineering company in 

Europe) and Vestas (Danish company and the largest in the world manufacturer, seller, installer and 

servicer of wind turbines) are the leading turbine suppliers for offshore wind power and DONG Energy 

(Denmark largest energy company), Vattenfall (a Swedish government’s company) and E.ON 

(European holding company) are the leading operators. 

Figure 2.6 shows the biggest producers (countries) of offshore wind energy worldwide and its evolution 

between the years of 2013 and 2014. 

 

Fig. 2.6 – Global Offshore Wind Energy Statistics 
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2.3. OFFSHORE WIND TURBINES FOUNDATIONS 

Offshore wind turbines need to be fixed to the seabed with a permanent or semi-permanent support 

structure. For deep waters a floating structure is used but the most common ones are the fixed 

foundations used to shallow depths (up to 50 meters). The foundation at the bottom of the turbine 

transfers loads into the soil so its design is of extreme importance for the good performance of the 

structure. There are five types of foundations: Jackets; Gravity foundations; Tripods; Tripiles; and 

Monopiles. Figure 2.7 shows different types of foundations for wind turbines depending on the depth of 

the water. 

 

 

Fig. 2.7 – Different types of foundations for offshore wind turbines according to the depth of the water 

 

2.3.1. MONOPILES 

Monopiles are large diameter (4 to 6 meters), thick walled, steel tubular structures. They are currently 

the most common foundation in shallow water (< 30 meter) and will be the scope of this thesis. 

 

2.3.2. JACKETS 

A jacket (Figure 2.8 (a)) is a three or four-legged steel structure with corner piles interconnected with 

bracing with diameters up to 2 meters to provide the required stiffness. These structures can be used for 

deep water (100 meters) but, according to the DNV, they should be used between depths of 20 to 50 

meters. 

 

2.3.3. GRAVITY FOUNDATIONS 

Gravity foundations (Figure 2.8 (b)) are concrete structures that use their weight to resist wind and wave 

loading. They require a ballast to anchor the foundation and are typically used at sites where installation 

of piles in the seabed is difficult, such as hard rock or competent soils in shallow depths. Concrete is 

much cheaper and is more durable in the marine environment than steel so these structures are cost-

effective when the environmental loads are low or when additional ballast can be provided at a 

reasonable cost.  
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2.3.4. TRIPODS 

A tripod (Figure 2.8 (c)) is a relatively lightweight three-legged steel jacket connected to a central pipe 

foundation that absorbs the wind energy turbine. These structures have good stability and overall 

stiffness and are suitable for 20 to 80 meters 

 

2.3.5. TRIPILE 

The tripile structure (Figure 2.8 (d)) is a three-legged jacked structure in the lower section, connected to 

a monopile in the upper part of the water column, all made of steel tubes.  

 

 

Fig. 2.8 – Different types of foundations for offshore wind turbines: jacket (a), gravity base (b), tripod (c) and tripile (d) 

 

2.4. MONOPILES 

In up to 30 meters of water with a firm seabed, monopiles are the most commonly form of foundation 

used nowadays for offshore wind turbines. These giant steel hollow cylindrical tubes range usually from 

2,5 to 6 meters in diameter, are 50-60 meters long and weight around 500t (although on deeper sites 

they can weight more than 800t). It is filled with soil or concrete if a greater resistance is required. 

Its shape lends itself to simple calculations, straightforward fabrication and tight packing on transport 

vessels. It is also easier to install at shallow to medium water depths and relatively cheap compared to 

the other types of foundations.  

Figure 2.9 (a) shows an installed monopile foundation (dark part under water), with the transition piece 

already slided in on the top (yellow part), to which the turbine's tower and the rest of the required 

equipment (access ladders, J-tubes, crane) can be bolted – the description of each of these components 

will be further given. Figure 2.9 (b) illustrates the transportation of a monopile using trucks and gives 

an idea of the size of these structures. 
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Fig. 2.9 – Monopile installed (a) and its transportation (b) 

 

This single pile is driven into the seabed by impact driving (using a hammer blowing system – hydraulic 

or pneumatic – striking on the protected head of the pile) or by vibratory driving (vibrating pile drivers 

are fixed at the head of the tube). These equipment operate from a platform that has to be able to keep 

its correct vertical position. A wind turbine must be designed to resist to its self-weight load – essentially 

associated to its vertical capacity – and the environmental loads like wind and waves – mostly 

transversal, therefore conditioning the lateral capacity. The focus of this thesis is directly related to the 

design of this lateral capacity. 

Because of their large diameters, the length/diameter ratio of these monopiles is usually very small. 

Therefore, these structures tend to behave like short and rigid piles instead of long and flexible ones. 

There some significant differences of behaviour between these two types of piles: 1) the failure 

mechanism (Figure 2.10)  for the rigid piles is due to the yielding (“fatigue”)  of the soil while for the 

flexible the ultimate load capacity is conditioned by the structural failure of the cross section; 2) while 

on the toe of the rigid pile there is a “kick” (a small reverse movement), on the flexible pile usually there 

is no movement on the lower part; 3) the rigid pile has a rotation point, mobilizing active and passive 

soil pressures over the total length of the pile, whereas the slender pile will deflect around several points 

(depending mostly on the geomechanical characteristics of the soil layering) leading to soil pressures 

mostly concentrated  in the upper layers, as systematically depicted in Figure 2.11. 

 

 

       Fig. 2.10 – Failure Mechanisms and ‘toe kick’    Fig. 2.11 – Soil pressures 

https://www.google.com/search?q=vibrating+pile+driver&newwindow=1&sa=X&biw=1125&bih=566&tbm=isch&tbo=u&source=univ&ei=5AAnVdTEG4rtsAWwz4CYBA&ved=0CDoQsAQ
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The design of rigid piles has been largely discussed over the last years. According to most of the 

researchers, for the design of flexible piles the best approach is the use of p-y curves. Notwithstanding, 

for the monopiles of offshore wind turbines – rigid piles systems – although this methodology is not 

adequate, being less accurate, it has been used frequently with unreliable results.  This p-y- method is 

actually the Winkler model applied on a beam with non-linear springs that represent the soil behaviour 

for discrete intervals, that is, corresponding to distinct soil layers in depth (which does not mean different 

types of soils, but different soil behaviour layers, as conditioned by the evolution of the stress state in 

depth). Finite element method became recently more popular, as it tends to be more representative of 

the involved factors. Moreover, the codes are becoming more friendly, slowly resolving the trend to use 

the Winkler method, popular for its simplicity, its ease application and the small required time for the 

calculation (finite element models are still not very popular for engineering design due to their time-

demanding calculations). 

 

2.5. COMPONENTS OF A MONOPILE 

2.5.1. TRANSITION PIECE 

The transition piece has three different functions: to add a perfect flange on top, to level the transition 

tower and to provide the whole structure with a boat landing, stairs and a working platform. The process 

of pile driving (usually hammering) always leads to some tilt of the monopile so the transition piece 

keeps it perfectly vertical. 

It consists of a sleeve, usually with a larger diameter than the monopile (the opposite is possible but 

impractical for mounting external equipment), placed around it. The overlap length is of 1.5 times the 

diameter with a gap between the tubes that allows the transition piece to be vertical. The lower and 

bigger part of it is grouted up to the monopile. This steel cylinder extends between 4 up to 12 meters 

above sea level. 

 

2.5.2. GROUTED CONNECTION 

To fix the transition piece in place, grout (high-strength, fast-curing cement) is injected into the annular 

gap between the transition piece and the monopile. 

The grouted joint (see Figure 2.12) between the transition piece and the monopile must be capable of 

supporting the weight above it (the transition piece itself, the turbine’s tower and other components) and 

to resist the compression induced by the bending moments and shear induce by torsion in order for them 

to be transmitted to the monopile. 

The union between the grout and the steel cannot exclusively depend on grout’s adherence to steel. 

Connectors must be used to assure that the steel and grout work together and they transmit each other 

the longitudinal shear forces. The quantity and distribution of connectors depend on the resistance 

capacity of them so a structural analysis must be conducted. 

These connectors can be either key connectors or shear connectors, although the first ones lead to stress 

concentrations around the welded zones and consequently critical areas when considering lifetime 

estimation of the structure. 
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2.5.3. EMBEDMENT 

The soil in which the monopile is embedded has to be treated as a flexible medium that allows lateral 

movement and flexure of the pile below seabed. This consideration, which is very realistic, may have 

big impact on the natural frequency of the structure because its effective fixed level is lower the seabed 

level. 

Monopiles do not need any preparation of the seabed for their installation but are not suited for locations 

with many boulders in the soil. Still, in the case of encountering a boulder while piling, it is possible to 

drill it out and blast it with explosives. 

The interaction between the pile and the soil is usually modelled using nonlinear lateral springs, known 

as the p-y curves. 

 

2.5.4. SCOUR 

Scour occurs when floodwater passes around an obstruction in the water flow. As the water flows around 

the object, it must change direction and accelerate. Soil can be loosened and suspended by this process 

and be carried away. 

In the case of monopiles, currents and water motion due to waves will cause significant seabed erosion 

around it if the seabed is formed of sand or another granular material. This phenomenon would certainly 

have implications for the stability of the foundations and natural frequency of the support structure. Yet, 

some projects have been design to accommodate scouring with appropriate allowance in the design for 

the resulting reductions in the overturning resistance and support structure natural frequency. The 

occurrence of scour might lead to two problems: damages on the transition piece coating, secondary 

structures or subsea cables; and the need for occasional replenishment and possible increased 

environmental impact due to increased volumes of material imported to site.  

A design aid for scour whole depth prediction and scour protection design, known as Opti-Pile Design 

Tool, has been developed and calibrated using model test results and data from existing wind farms. 

This calculates the size of rock that is stable under maximum current conditions and the required radial 

extent of the protection. 

 

2.5.5. CORROSION PROTECTION 

The approach for corrosion protection is different for the three different zones in which the structure is 

divided: atmospheric zone, splash zone and submerged zone, which includes the embedded portion.  

DNV-OS-J101 (design of submarine pipeline systems) requires the steel monopile to be protected by a 

high quality multi-layered surface coating in the atmospheric zone. In the splash zone, in addition to the 

surface coating, it requires an extra plate thickness to be provided as a corrosion allowance. Cathodic 

protection must be provided to the submerged zone together with a 2 mm corrosion allowance in the 

scour. 

 

2.5.6. CABLE DUCTS 

The wind turbine power cables are routed through steel protective tubes known as J tubes, which may 

be located either inside or outside the transition piece/monopile. The J tubes are so called because they 

incorporate a 90º bend ate seabed level to enable the cable to exit horizontally. 
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2.6. MONOPILE DESIGN 

The sizing of the monopile is governed by three key factors: resistance to extreme loads, resistance to 

fatigue loads and tuning of support structure natural frequency to avoid excitation by cyclic loading. 

Wave and wind fatigue loads depend on the support structure mode shape which in turn depends on the 

stiffness distribution so the design of monopile against fatigue loads is inevitably an iterative process. It 

is simpler to develop an initial design based on resistance to extreme wave and wind loads which can 

then be used to obtain an initial mode shape and set of fatigue loads.  

The other key design factor is the restriction on support structure natural frequency and it is often best 

to take it into account early on in the process of design iteration. 

 

2.7. LATERALLY LOADED PILE TESTING 

A horizontal load test on slender piles is carried out to determine the lateral bearing capacity of the soil 

and the best way to evaluate it is by measuring the bending moment of the pile and then obtain the soil 

reaction using the second derivative of the bending moment.  

For a short and rigid pile the horizontal load test is carried out to determine bearing capacity of the soil, 

as the failure occurs due to ultimate capacity of the soil. So, if the pile shaft is properly instrumented, it 

allows the determination of the transfer curves of the side pressure (the so called p-y curves), which best 

represent the behaviour and failure of the soil. 

The most common test procedure is the incremental load test in which the load is applied by steps and 

in each step the load is kept constant for a certain time, enough to stabilize the associated displacement 

and measure a reliable value.  

The application of the load is made by means of a hydraulic jack and a support to hold the jack 

horizontally is to be arranged (something heavy enough to stand still). The reaction of the jack is usually 

provided by another pile or by another set of piles (more commonly two piles connected by a beam). 

The usual way to measure the displacement along the pile shaft is to install an inclinometer tube along 

the axis of the pile or to fit strain gauges on various depths of the pile on two opposite peripheral fibres 

to measure the strains. In both cases the curvature of the pile is obtained, allowing the determination of 

the bending moments, shear forces and soil pressure by derivation. It is also imperious to measure the 

absolute value of the displacement of the pile-head, which can be done by topographic means. 

The degree of constraint at the pile head must be taken into proper account. During the test, the head of 

the pile is free to rotate while in real cases the pile cap or a load applied at a higher level (not the ground 

level) introduces moments at the head. 
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Fig. 2.12 – Typical arrangement of Monopile and Transition Piece 
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2.8. FINAL COMMENTS 

The relevance of monopiles in nowadays offshore wind structures is, as stated before, very large and it 

is critical that its design is not oversized as it might lead to extremely high costs. For this reason, many 

researchers focus on the investigation of the interaction between these pile with large diameters and the 

surrounding soil in order to better understand this relation and improve its methods of design and achieve 

better performances. 

Big investments are predicted in the industry of offshore wind energy, as this is one of the most clean 

and cheap renewable energy, so it is essential that this field of engineering is deep explored so that the 

companies and the governments feel confident to participate in these big projects. 
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3 
THE WINKLER METHOD 

AND THE P-Y CURVES 

 

 

3.1. OVERVIEW 

Offshore wind turbines are always subjected to very significant lateral load induced by the waves and 

by the wind. Therefore, the foundations of these structures are likely to suffer horizontal displacements. 

A precise prediction of these displacements on these rigid foundations is being investigated by many 

researchers from all over the world since the second half of the 20th century. For this, two types of 

models were developed over the years - discrete models and continuum models – and both have their 

advantages and disadvantages. 

In a discrete model the pile is divided into layers, corresponding to soil layers with prospectively distinct 

soil-structure interaction response, and in each layer there is a spring (primarily elastic or, more 

correctly, inelastic) representing the soil interacting with the pile and independent from all the others. 

This means that the displacement of one point of the pile is not affected by the displacements of the 

other points. The most famous discrete model is the Winkler model and, nowadays, this methodology 

has been used by most engineers in design of monopiles foundations, although quite demanding in 

calculation. 

A continuum model takes into account the continuity of the soil so the displacement at any point is 

influenced by and influences all the other points. The two more common applications of this model is 

the finite element approach and the elastic continuum approach. Therefore, this type of model is much 

more realistic, when compared to the Winkler method.  

 

3.2. WINKLER MODEL 

Winkler (1867) suggested that the resistance that the ground offers against an external force is 

proportional to its deflection. He formulated his hypotheses as a beam interacting with a linear elastic 

support which was later adapted to a pile foundation with a lateral load as these two cases can be 

perfectly compared (Figure 3.1). 

While there are no loads acting on the pile, the surrounding soil remains in at rest stresses state. The 

idea is that, as the load starts to increase, the structure tends to deviate more and more from its initial 

position and that introduces additional stresses on the soil. The higher the load, the higher reaction 

offered by the soil. 
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This theory was first calibrated for slender (long) piles, although nowadays it has been indiscriminately 

used for the design of rigid (short) piles with diameters of more than 4 meters, in which their soli-

structure interaction differs due to the high rigidity condition. 

 

 

Fig. 3.1 – a) beam on an elastic support; b) pile foundation with subjected to lateral load 

 

The springs represent the soil, so its deformation and consequently its force should be proportional. This 

method is also called subgrade reaction method because the constant of the spring can be assumed as 

the subgrade reaction modulus of the soil [FL-2] (usually denoted by ‘k’). This subgrade reaction 

modulus is described as the soil reaction (the force acting in each support point, distanced by one meter), 

p [FL-1], per unit of displacement, y, (3.1). One other way of representing is by using the coefficient of 

subgrade reaction, K [FL-3], which relates the pressure induced by the pile, P[FL-2], with the 

displacement (3.2). The diameter of the pile, D, allows an interaction between these two formulations 

(3.3). The negative sign on the equation indicates that the soil reaction as an opposite direction to the 

displacement of the pile. 

 

𝑝 = −𝑘. 𝑦                                                                (3.1) 

 

𝑃 = −𝐾. 𝑦                                                                (3.2) 

 

𝑘 = 𝐾. 𝐷                                                                  (3.3) 

 

Because of its simplicity the Winkler method does not represent accurately the behaviour of the soil for 

this kind of problems. The lack of connection and dependency between the springs creates displacement 

discontinuities between the loaded and the unloaded part of the structure which does not represent the 

reality (Figure 3.2). This difficulty was later overcome by introducing some interaction between the 

springs and making the displacements of one spring dependent on the others surrounding it. The problem 

can be solved analytically or numerically. Yet the analytical solution has much more limitations than 

the numerical one, although it is easier to apply. 
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Fig. 3.2 – a) lack of connection between springs; b) interaction between springs – reality 

 

 

3.2.1. ANALYTICAL SOLUTION 

Hetenyi (1946) developed a wave equation (3.4a) – affected by attenuation using the sine and cosine 

function – that represents the beam-on-foundation concept for the most generic case, which is an infinite 

beam.  

The constants of the equation (C1, C2, C3 and C4) are dependent of the boundary conditions imposed 

to the problem. Therefore, in order to adapt it to the current problem, it is necessary to consider specific 

boundary conditions like ‘y=0 for x=∞’ (for this condition C1=C2=0). λ is given by the equation (3.4b) 

and it is equal to the inverse of the elastic length, Le and k is the subgrade reaction modulus of the soil. 

 

𝑦 = 𝑒𝜆𝑧(𝐶1 cos 𝜆𝑧 + 𝐶2 sin 𝜆𝑧) + 𝑒−𝜆𝑧(𝐶3 cos 𝜆𝑧 + 𝐶4 sin 𝜆𝑧)                    (3.4a) 

 

𝜆 = √
𝑘

4𝐸𝐼

4
=

1

𝐿𝑒
                                                             (3.4b) 

 

According to Broms (1964), for a pile with a free head, if the length of the pile, L, divided by β (equation 

(3.5)) is higher than 3.5 the pile is considered long or slender, if it is lower than 2 the pile is short or 

rigid.  

 

𝛽 = (
𝐸𝐼

𝑘
)

1
4⁄
                                                               (3.5) 

 

Equation (3.6) is the solution for a semi-infinite beam and Figure 3.3 shows the curves which strictly 

represent a slender pile. It is possible to obtain the shear force and the bending moment along the beam 

by triple and double derivation, respectively, of the deflection y (w in the figure). In equation (3.6), P is 

the applied force, E is the Young’s modulus of the beam and I is the rotational inertia of the beam. 

 

𝑦 =
𝑃

2𝜆3𝐸𝐼
𝑒−𝜆𝑧 cos 𝜆𝑧                                                       (3.6) 
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Fig. 3.3 – deflection, slope, bending moment and shear force curves for a semi-infinite beam using equation (3.6) 

 

For slender and long piles, this type of solution is reasonable and very useful, since it gives the exact 

curves of deflection, bending moment and shear force. For a rigid and short pile this analytical solution 

is far from being accurate so other options must be found. This method is very limited because it does 

not allow, for example, the variation of the subgrade reaction modulus with depth, neither the 

consideration of non-linear behaviour of the soil. 

 

3.2.2. NUMERICAL SOLUTION 

The governing equation for the beam-on-foundation Winkler method is a forth order differential 

equation (3.7) that was developed by Hetenyi (1946). Knowing that the vertical load (N) is very small 

when compared to its critical buckling load this part of the equation is always despised so it’s possible 

to get a more simplified equation that is actually used for the calculations. Equation (3.8) is obtained 

from equation (3.7) and equation (3.1). 

 

𝐸. 𝐼.
𝑑4𝑦

𝑑𝑧4 + 𝑁.
𝑑2𝑦

𝑑𝑧2 = 𝑝(𝑧, 𝑦)                                                  (3.7) 

 

𝐸. 𝐼.
𝑑4𝑦

𝑑𝑧4 + 𝑘. 𝑦 = 0                                                         (3.8) 

 

By using this forth order differential equation it is possible to obtain significant information about the 

problem. By solving of this equation, the curve of the soil pressure surrounding the pile can be obtained 

by integration, being also possible to get the curves of the shear forces, bending moments and the 

deflection along the pile. The critical design issue for pile foundations is generally the maximum bending 

moment installed on the pile, rather than its deflection, so this integration is really important. The 

relation between these curves is explained in Figure 3.4 and the following equations. 
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Fig. 3.4 – Relation between curves of deflection, slope, curvature, bending moment, shear force and soil reaction 

 

Equation (3.9) represents the soil reaction, equation (3.10) the shear force installed one the pile, equation 

(3.11) the bending moment installed on the pile and equation (3.12) the slope of the pile. 

 

𝑝 = 𝐸. 𝐼.
𝑑4𝑦

𝑑𝑧4           (3.9) 

 

𝑉 = 𝐸. 𝐼.
𝑑3𝑦

𝑑𝑧3        (3.10) 

 

𝑀 = 𝐸. 𝐼.
𝑑2𝑦

𝑑𝑧2         (3.11) 

 

𝛷 =
𝑑2𝑦

𝑑𝑧2 =
𝑀

𝐸.𝐼
          (3.12) 

 

The best way to solve the differential equation (3.8) presented before is by using a method based on 

finite differences. By dividing the pile into several points (Figure 3.5) and discretizing the differential 

equation, it is possible to apply compatibility equations to almost all the points (points 0 to n in Figure 

3.5) and boundary conditions to the others (points -2, -1, n+1 and n+2). Equations (3.13) to (3.16) 

represent the discretization of the differential equation and equation (3.17) gives the compatibility 

condition between displacements. 
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(
𝑑𝑦

𝑑𝑧
)

𝑖
=

𝑦𝑖−1−𝑦𝑖+1

2ℎ
                                                               (3.13) 

 

(
𝑑2𝑦

𝑑𝑧2)
𝑖

=
𝑦𝑖−1−2𝑦𝑖+𝑦𝑖+1

(2ℎ)2                                                           (3.14) 

 

(
𝑑3𝑦

𝑑𝑧3)
𝑖

=
−𝑦𝑖−2+2𝑦𝑖−1−2𝑦𝑖+1+𝑦𝑖+2

(4ℎ)3                                                  (3.15) 

 

(
𝑑4𝑦

𝑑𝑧4)
𝑖

=
𝑦𝑖−2−4𝑦𝑖−1+6𝑦𝑖−4𝑦𝑖+1+𝑦𝑖+2

(4ℎ)4                                               (3.16) 

 

𝐸𝑖𝐼𝑖 [
𝑦𝑖−2−4𝑦𝑖−1+6𝑦𝑖−4𝑦𝑖+1+𝑦𝑖+2

(4ℎ)4 ] + 𝑘𝑖𝑦𝑖 = 0                                    (3.17) 

 

 

 

 

       Fig. 3.5 – Discretized pile 

 

The distance between each node is represented by h and there are n+5 nodes, and consequently unknown 

variables, in which n is equal to L/h (being L the length of the pile). There are n+1 real nodes, for which 

the compatibility equation is applicable (from 0 to n in Figure 3.5), and 4 fictional nodes. These 4 nodes 

demand the introduction of 4 more equations into the system which will correspond to the boundary 

conditions regarding the shear forces and the bending moment for both the top and the toe of the pile. 

Therefore, the number of equations is the same as the number of unknown variables, which are the 

displacements of each node yi. 

One other way of solving this type of problems is to apply the compatibility equation on the top and toe 

nodes of the pile and, instead, to add two equilibrium equations, one for the shear force and another for 

the bending moment. 

This numerical method is much better than the analytical one since it allows for changes on the boundary 

conditions in almost every situations and it is also possible to change the stiffness of the soil with its 

depth and also the cross section of the pile. Because of this, the finite differences method is frequently 

used nowadays by engineers and it is very easily programmed on software codes like MatLab. 
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3.3. P-Y CURVES 

On the beginning of the second half of the 20th century several researchers decided to reformulate the 

Winkler method in order to take into account the nonlinear behaviour of the soil (McClelland and Focht 

(1956) were the pioneers). The previous linear springs were replaced by nonlinear ones and so the 

solution became much more realistic. The idea is that the value of the spring constant – the subgrade 

reaction modulus of the soil – changes with the deflection of the pile.  

This was how the first p-y curves appeared in order to represent the nonlinear relation between the soil 

reaction, p, and the pile deflection, y. Figure 3.6 shows a typical shape of one of these curves. The ratio 

p/y represents the secant soil stiffness (secant modulus) and the slope of the curve represents the tangent 

soil stiffness (tangent modulus). These two parameters of the curves are usually used to define the 

nonlinear behaviour of the springs that represent the soil – e.g. in a finite differences program – by using 

progressive fitting/adjusting techniques in increment stress-strain variation, based on equilibrium 

(secant) and iteration (tangent). The curve always tends to an ultimate value of soil resistance, pu, in 

which the soil will not bear additional load (ultimate or limit). 

 

    

       Fig. 3.6 – p-y curve               Fig. 3.7 – Variation of the stiffness of the soil 

 

As the stiffness of the soil varies in depth (usually increasing) the p-y curves will be different along the 

pile length. This is represented as shown in Figure 3.8, with different p-y curves for different depths. 

The ultimate soil resistance is higher for deeper levels and, for the same deflection, both the secant and 

the tangent modulus are also higher in depth. Notice that, the bearing capacity of the soil increases with 

the depth due to the confining weight of the overlying material. 

The problem with this method, and with any method that aims to reproduce an interaction along 

interfaces between distinct materials and largely dependent of several factors (installation processes and 

geometry, etc), is the determination of the curves that can represent the real behaviour.  Because the soil 

stress-strain processes surrounding the pile evolve in a very complex and nonlinear way – taking into 

account the evolution of stiffness, the active lateral soil resistance by one side and the passive lateral 

soil resistance, by other, both related to friction and cohesive components (Figure 3.9), - many empirical 

solutions have arisen. Each of these solutions was developed by different researchers basing their work 

on very few full-scale lateral load on slender piles of diameters ranging from 0.30 to 0.40 meters: 

Matlock (1970) for soft clay, Reese et al. (1974) for sand, Reese and Welch (1975) for stiff clay above 

and below water table. The API (American Petroleum Institute) developed a design method for stiff 

clay, soft clay and sand based on some of these previous works and that is now the most popular method 

by geotechnical engineer. 

 



Diameter effects of Large Scale Monopiles – a Theoretical and Numerical Investigation of the soil-pile interaction response 

26 

         

   Fig. 3.8 – p-y curves along the length of the pile        Fig. 3.9 – Development of stresses around the pile 

 

 

3.4. RECOMMENDATIONS FOR P-Y CURVES IN COHESIVE SOILS 

3.4.1. RESPONSE OF SOFT CLAY BELOW WATER TABLE 

This method was developed by Matlock (1970). This author performed a few lateral load-tests with a 

slender steel-pipe pile (324 mm of diameter and 12.8 m long) in a lake in Texas, US. He used an 

extremely precise device to take the readings of the strain gauges so the soil resistance was found, 

through bending moment readings, by numerical differentiation. He also performed cyclic loading with 

a number of cycles at which there was no changing at all, or only a very small amount, in the deflection 

of the pile so he assumed that an equilibrium system was reached. 

Steps a), b) and c) describe the procedure to obtain the p-y curves for short-term static loading and d) 

and e) for cyclic loading. 

a) Obtain the best estimation of the variation of undrained shear strength, Su, of the submerged unit 

weight, γ’, and of the strain at one-half of the maximum principal stress difference (maximum deviator 

stress) in an undrained triaxial test, ε50. 

b) Compute the ultimate soil resistance per unit of length of pile, using the smaller of the values given 

by the equations (3.18) and (3.19). J is an empirical constant determined to be 0.5 for soft clays and 0.25 

for medium clays. D is the diameter of the pile. 

 

𝑝𝑢 = [3 +
𝛾′

𝑆𝑢
+

𝐽

𝐷
𝑧] 𝑆𝑢 ∗ 𝐷             (3.18) 

 

𝑝𝑢 = 9 ∗ 𝑆𝑢 ∗ 𝐷      (3.19) 
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c) From equation (3.20) it is possible to calculate the deflection at one-half of the ultimate soil resistance. 

Equation (3.21) defines the relationship necessary to compute the p-y curves. The value p remains 

constant when y is larger than 8*y50. 

 

𝑦50 = 2.5 ∗ 𝜀50 ∗ 𝐷     (3.20) 

 

𝑝

𝑝𝑢
= 0.5 (

𝑦

𝑦50
)

1

3
              (3.21) 

 

d) For the cyclic p-y curve the value of p is the same as for the static loading for values of p/pu up to 

0.72pu. Solve equations (3.18) and (3.19) simultaneously, taking into account the variation of Su and γ’ 

to find the depth zr where the transition occurs. 

e) If the depth to the p-y curve is greater than or equal to zr. Select p as 0.72pu for all values of y greater 

than 3y50. If the depth of the p-y curve is less than zr, note that the value of p decreases to 0.72pu at 

y=3y50 and to the value given by equation (3.22) at y=15y50 and remains constant beyond that. 

 

𝑝 = 0.72𝑝𝑢 (
𝑧

𝑧𝑟
)             (3.22) 

 

 

Fig. 3.10 – p-y curve for soft clay in the presence of free water: (a) static loading; (b) cyclic loading 

 

3.4.2. RESPONSE OF STIFF CLAY BELOW WATER TABLE 

Reese and Welch (1975) performed lateral-load with steel-pipe piles that were 641 mm in diameter and 

15.2 m long. The loading of the pile was carried out in a similar manner as described for Matlock’s tests. 

a) Obtain the best estimation of the variation of undrained shear strength, Su, the submerged unit weight, 

γ’, and pile diameter D. 

b) Compute the ultimate soil resistance per unit length of the pile using the smaller of the values given 

by equations (3.23) and (3.24). 

 

𝑝𝑐𝑡 = 2𝑆𝑢𝐷 + 𝛾′𝐷𝑧 + 2.83𝑆𝑢𝑧          (3.23) 
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𝑝𝑐𝑑 = 11𝑆𝑢𝐷           (3.24) 

 

c) Choose the appropriate value of As from Figure 3.11 for shaping the p-y curve. 

d) Compute equation (3.25). Use an appropriate value of ε50 from results of laboratory tests or, in the 

absence of laboratory tests, from Table 3.1. 

e) Establish the initial straight-line portion of the p-y curve using equation (3.25). Use an appropriate 

value of Kpy from Table 3.1. 

f) Establish the first parabolic portion of the p-y curve, using equation (3.27) in which pc is the lowest 

value of equations (3.23) and (3.24). Equation (3.27) should define the portion of the p-y curve from the 

point of the intersection with equation (3.26) to a point where y is equal to Asy50. 

g) Establish the second parabolic portion of the p-y curve. Equation (3.28) should define the portion of 

the p-y curve from the point where y is equal to Asy50 to a point where y is equal to 6Asy50. 

h) Establish the next straight-line portion of the p-y curve. Equation (3.29) should define the portion of 

the p-y curve from the point where y is equal to 6Asy50 to a point where y is equal to 18Asy50. 

i) Establish the final straight-line portion of the p-y curve. Equation (3.30) should define the portion of 

the p-y curve from the point where y is equal to 18Asy50 and it remains constant beyond that. 

Note: Figure 3.13 (a) is drawn as if there is an intersection between equations (3.26) and (3.27). 

However, there may be no intersection of equation (3.26) with any of the other equations defining the 

p-y curve. Equation (3.26) defines the p-y curve until it intersects with one of the other equations and if 

no intersection occurs it defines the complete p-y curve. 

 

𝑦50 = 𝜀50𝐷           (3.25) 

 

𝑝 = (𝐾𝑝𝑦𝑧)𝑦           (3.26) 

 

𝑝 = 0.5𝑝𝑐 (
𝑦

𝑦50
)

0.5
           (3.27) 

 

𝑝 = 0.5𝑝𝑐 (
𝑦

𝑦50
)

0.5
− 0.055𝑝𝑐 (

𝑦−𝐴𝑠𝑦50

𝐴𝑠𝑦50
)

1.25
    (3.28) 

 

𝑝 = 0.5𝑝𝑐(6𝐴𝑠)0.5 − 0.411𝑝𝑐 −
0.0625

𝑦50
𝑝𝑐(𝑦 − 6𝐴𝑠𝑦50)             (3.29) 

 

𝑝 = 𝑝𝑐(1.225(𝐴𝑆)0.5 − 0.75𝐴𝑠 − 0.411)                    (3.30) 
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Fig. 3.11 – As and Ac; b is diameter 

 

Table 3.1 – ε50 and Kpy 

 

 

A similar method is used for cyclic loading. Figure 3.12 shows a typical p-y curve under this type of 

loading and the following equations show how to draw it. 

 

𝑦𝑝 = 4.1𝐴𝑐𝑦50              (3.31) 

 

𝑝 = 𝐴𝑐𝑝𝑐 (1 − |
𝑦−0.45𝑦𝑝

0.45𝑦𝑝
|

2.5

)          (3.32) 

 

𝑝 = 0.936𝐴𝑐𝑝𝑐 −
0.085

𝑦50
𝑝𝑐(𝑦 − 0.6𝑦𝑝)                (3.33) 

 

𝑝 = 0.936𝐴𝑐𝑝𝑐 −
0.102

𝑦50
𝑝𝑐𝑦𝑝        (3.34) 
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Fig. 3.12 – p-y curve for stiff clay in the presence of free water: (a) static loading; (b) cyclic loading 

 

 

 

3.4.3. RESPONSE OF STIFF CLAY ABOVE WATER TABLE 

The case here described is not related to the one explored in this work as the water level is below the 

area of study. Yet, it was chosen to include it here in order to have a more complete work about this 

topic. 

Also in 1975, Reese and Welch performed a lateral-load test at a site in Houston with a bored pile 915 

mm in diameter and an embedded length of 12.8 m. A pipe with a diameter of 254 mm, instrumented 

along its length with electrical-resistance-strain gauges, was positioned along the axis of the pile before 

concrete was placed.  

The same experiment was used to develop both static and cyclic p-y curves and the load was applied in 

only one direction. The load was applied and maintained until the strain gauges were read with a high-

speed data acquisition system. The same load was then cycled several times and held constant while the 

strain gauges were read at specific number of cycles. The load was then increased and the procedure 

repeated. 

a) Obtain the best estimation of the variation of undrained shear strength, Su, the submerged unit weight, 

γ’, and pile diameter D. Also obtain the values of ε50 from stress-strain curves and if no stress-strain 

curves are available use a value from the table of Figure 3.13. 

b) Compute the ultimate soil resistance per unit length of the pile using the smaller of the values given 

by equations (3.18) and (3.19). From equation (3.20) is possible to calculate the deflection at one-half 

of the ultimate soil resistance. 

c) Compute points describing the p-y curve from equation (3.35). 

d) Beyond y=18y50, p is equal to pu for all values of y. 

 

𝑝

𝑝𝑢
= 0.5 (

𝑦

𝑦50
)

0.25
          (3.35) 
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e) Determine the p-y curve for the short-term static loading by the procedure previously given. 

f) Determine the number of times the lateral load will be applied to the pile. 

g) Obtain the value of C for several values of p/pu, where C is the parameter describing the effect of 

repeated loading on deformation. The value of C is found from a relationship develop by laboratory tests 

or, in absence of tests, from equation (3.36).  

h) Equation (3.36) gives the values of y for cyclic loading. 

 

𝐶 = 9.6 (
𝑝

𝑝𝑢
)

4
                      (3.35) 

 

𝑦𝑐 = 𝑦𝑠 + 𝑦50𝐶 ∗ 𝑙𝑜𝑔𝑁                             (3.36) 

 

 

 

Fig. 3.13 – p-y curve for stiff clay in the presence of free water: (a) static loading; (b) cyclic loading 

 

3.4.4. API CLAY MODEL 

For static lateral loads the ultimate bearing capacity pu of stiff clay (Su > 1 Tsf or 96 KPa) as for soft 

clay would vary between 8Su and 12Su except at shallow depths where failure occurs in a different mode 

due to minimum overburden pressure. Due to rapid deterioration under cyclic loadings the ultimate 

resistance will be reduced to something considerably less and should be so considered in cyclic design. 

The ultimate soil resistance is the smaller of the values given by equations (3.37) and (3.38). These 

equations differentiate a wedge failure mechanism at shallow depths – with the ultimate bearing capacity 

increasing with depth and defined by equation (3.37) – and a flow mechanism of the soil around the pile 

in the horizontal plane for deep depths – constant over depth and defined by equation (3.38). zcr is the 

depth at which the two equations intersect and there is a change of failure mechanisms.  

The p-y curves for the short-term static load case may be generated from equation (3.39). For the cyclic 

loading the equation (3.39) stops at the value of p/pu=0.72. Beyond that, it remains constant for z≥zcr or, 

for z≤zcr, decreases to a value of 0.72*z/zcr (between the values of ratio deflection y/y50 of 3 and 8) and 

remains constant. y50 is also usually denoted as yc. 
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𝑝𝑢
𝑠ℎ𝑎𝑙𝑙𝑜𝑤 = 3𝑆𝑢 + 𝛾′𝑧 + 𝐽

𝑆𝑢𝑧

𝐷
         (3.37) 

 

𝑝𝑢
𝑑𝑒𝑒𝑝

= 9𝑆𝑢           (3.38) 

 

𝑝

𝑝𝑢
= 0.5 (

𝑦

𝑦50
)

1

3
            (3.39) 

 

 

Fig. 3.14 – p-y curve for soft and stiff clay given by API code for (a) static loading (b) cyclic loading 

 

 

3.5. RECOMMENDATION FOR P-Y CURVES IN COHESIONLESS SOILS 

3.5.1. RESPONSE OF SAND ABOVE AND BELOW THE WATER TABLE 

Reese et al. (1974) developed a characteristic shape for p-y curves for static and for cyclic loading in 

sand based on two different experiments - steel-pipe piles with 610 mm of diameter and an embedded 

length of 21 m -, one for short-term loading and another for repeated loading. 

The assessment of the p-y curves can be summarized as follows. 

a) Obtain values for the friction angle Φ, the soil unit weight γ, and the pile diameter D (note: use buoyant 

unit weight for sand below the water table and total unit weight for sand above the water table). 

b) Compute the soil resistance per unit length of pile using the smaller of the values given by equations 

(3.37) and (3.38). α=Φ/2, β=45º+ α and KA=tan2(45º- α). 

 

𝑝𝑠𝑡 = 𝛾𝑧 [
𝐾0 tan 𝛷 tan 𝛽

tan(𝛽−𝛷) cos 𝛼
+

tan 𝛽

tan(𝛽−𝛷)
(𝐷 + 𝑧 tan 𝛽 tan 𝛼) + 𝐾0𝑧 tan 𝛽 (tan 𝛷 tan 𝛽 − tan 𝛼) − 𝐾𝐴𝐷]          (3.37) 

 

𝑝𝑠𝑡 = 𝐾𝐴𝐷𝛾𝑧(tan8 𝛽 − 1) + 𝐾0𝐷𝛾𝑧 tan 𝛷 tan4 𝛽         (3.38) 
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c) Select a depth at which a p-y curve is desired 

d) Establish yu as 3D/80 and compute pu by equation (3.39). Use the appropriate value of  𝐴𝑠 and 𝐴𝑐 

from Figure 3.15 for the particular nondimensional depth and for either the static or cyclic case. In this 

figure x is the coordinate axis along the pile measured from the pile head and b the diameter of the pile.  

e) Establish ym as D/60 and compute equation (3.40). Use the appropriate value of Bs and Bc from figure 

3.16 for the particular nondimensional depth and for either the static or cyclic case. 

f) These last two points define the two final straight-line portions of the p-y curve. Use the appropriate 

value of Kpy from the Table 3.2 to establish the initial straight-line portion of the p-y curve through 

equation (3.41). 

 

𝑝𝑢 = 𝐴𝑠𝑝𝑠    or      𝑝𝑢 = 𝐴𝑐𝑝𝑠           (3.39) 

 

𝑝𝑚 = 𝐵𝑠𝑝𝑠    or      𝑝𝑢 = 𝐵𝑐𝑝𝑠           (3.40) 

 

𝑝 = (𝐾𝑝𝑦𝑧)𝑦           (3.41) 

 

g) Use equations (3.42), (3.43), (3.44) and (3.45) to establish the parabolic section through equation 

(3.46) between points k (yk ; pk) and m (yu ; pu). 

 

𝑚 =
𝑝𝑢−𝑝𝑚

𝑦𝑢−𝑦𝑚
         (3.42) 

 

𝑛 =
𝑝𝑚

𝑚 𝑦𝑚
       (3.43) 

 

𝐶̅ =
𝑝𝑚

𝑦𝑚
1 𝑛⁄   

𝑥

𝑏
       (3.44) 

 

𝑦𝑘 = (
𝐶̅

𝐾𝑝𝑦𝑧
)         (3.45) 

 

𝑝 = 𝐶̅𝑦1 𝑛⁄         (3.46) 

 

Note: Figure 3.16 is draw as if there is an intersection between the initial straight-line portion of the p-

y curve and the parabolic portion of the curve at point k. Equation (3.41) defines the p-y curve until 

there is an intersection with another branch of the p-y curve and, if there is no intersection, it defines the 

complete p-y curve. 
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Fig. 3.15 – (a) value of  𝐴𝑠 and 𝐴𝑐; (b) value of Bs and Bc 

 

Table 3.2 – Value of Kpy 

 

 

 

Fig. 3.16 – p-y curve for static and cyclic loading in sand 
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3.5.2. API SAND MODEL 

The API p-y curves for sand are characterized only by a hyperbolic equation (defined by equation 

(3.47)). The ultimate bearing capacity for sand has been found to vary from a value at shallow depths 

determined by equation (3.48) to a value at deep depths determined by equation (3.49). At a given depth 

the equation giving the smallest value of pu should be used as the ultimate soil resistance. 

The coefficients C1, C2 and C3 can be determined from Figure 3.18 or through equations (3.50). k is the 

initial modulus of subgrade reaction that can be determined from Figure 3.19 or through equations (3.51) 

and (3.52). γ is the total unit weight of the soil and A has a constant value of 0,9 for cyclic loading and 

can be determined by equation (3.53) for static loading. 

As the units of Figure 3.18 and equations (3.50) are not the same, equations (3.54) and (3.55) are here 

presented. 

 

𝑝 = 𝐴 𝑝𝑢  tanh [
𝑘 𝑧

𝐴 𝑝𝑢
𝑦]     (3.47) 

 

𝑝𝑢𝑠 = (𝐶1 𝑧 + 𝐶2 𝐷) 𝛾 𝑧     (3.48) 

 

𝑝𝑢𝑑 = 𝐶3 𝐷 𝛾 𝑧            (3.49) 

 

𝐶1 = 0.115 ∗ 100.0405𝛷  ,    𝐶2 = 0.571 ∗ 100.022𝛷  ,    𝐶3 = 0.646 ∗ 100.0555𝛷         (3.50) 

 

𝑘𝑠𝑎𝑛𝑑 = (0.008085𝛷2.45 − 26.09) ∗ 103      [kPa/m]      (3.51) 

 

𝑘𝑠𝑎𝑛𝑑 ∗ 𝑧 = 50000 (
𝑧

𝑧𝑟𝑒𝑓
)

0.6

(
𝐷

𝐷𝑟𝑒𝑓
)

0.5

𝛷3.6      (3.52) 

 

𝐴 = (3.0 − 0.8 𝑧 𝐷⁄ ) ≥ 0.9       (3.53) 

 

1 𝑙𝑏 𝑖𝑛3 = 27680 𝐾𝑔 𝑚3⁄⁄        (3.54) 

 

1 𝐾𝑔 𝑚3⁄ = 9.80665 ∗ 10−3  𝑘𝑃𝑎 𝑚⁄               (3.55) 
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 Fig. 3.18 – coefficients as function of Φ          Fig. 3.19 – k as function of Φ 

 

3.6. FINAL COMMENTS 

The exclusive use of finite element analyses to solve an engineering problem is not feasible on the 

present days. It takes too much time because of the complexity of these interface systems and the number 

of degrees of freedom of the models due to its tridimensionality. The precision of the model and its 

representativeness requires a big amount of data and it is very time consuming, therefore expensive. 

However, FEM has become very popular on the research groups working in foundation engineering in 

order to validate the p-y curves used on the Winkler spring models employed in practice. 

Using the relations between the deflection and the soil resistance (deriving them by back-analyses of 

well monitored pile load tests) it is possible to obtain p-y curves with high accuracy, as long as the 

constitutive models are realistic enough and the model is well built. 
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4 
DEFINITION OF A NUMERICAL 

MODEL FOR THE MONOPILE 

 

 

4.1. OVERVIEW 

The main propose of this thesis is to compare the p-y curves obtained from the results of a finite element 

program with the ones used for current engineering design. Therefore, the definition of all the 

characteristics of the model is a key step of this. 

The number of variables that contribute for the definition of the model is very vast. It is important to 

define all the variables in the most precise way but it is also important to take into account that the high 

rigor of some variables might increase too much the time of the calculations. 

This chapter consists on a detailed description of the model regarding its variables. Every parameter of 

the materials, the different geometries, dimensions of the model and all the other aspects will be 

presented, being its choice justified.  

The information presented in this chapter is believed to be essential to understand the results of the 

calculations. An engineer must be able to tell if the response presented by the model to a certain imposed 

displacement or load is realistic or not. That is only possible if all the information about that model is 

available to check and it makes it conceivable to reproduce the models here built and work on the 

parameters for, e.g., sensitivity studies. 

 

4.2. GEOMETRY 

4.2.1. SYMMETRY AND BOUNDARY CONDITIONS 

For this problem, a symmetry behaviour is assumed for the model, allowing it to have its size reduced 

to half and so the calculation timing is much lower due to a lower number of degrees of freedom of the 

system. 

In order for this to be true, there must be symmetry along an axis regarding geometry, loading, material 

properties and boundary conditions. 

For this model, as there is a cylindrical steel structure surrounded by a homogenous soil, it is possible 

to say that, concerning the geometry and the material properties, there is symmetry of the model along 

any vertical plane. 
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Considering a horizontal load applied on the pile with a radial direction, along the vertical plane that 

contains the vector of that load there will only exist displacements on the direction of the plane (no 

movement of the points on the perpendicular direction to the plane). 

To sum up, the model can be reduced to half its size by considering symmetry along a vertical plane 

with a tangential direction equal to the direction of the horizontal load or imposed displacement. Fixed 

displacements on a perpendicular direction to this plane is the boundary condition imposed to the model, 

which is automatically defined in PLAXIS 3D. 

  

4.2.2. SIZE OF THE MODEL 

In order to get to the final size of the model, several tests had to be run. The procedure consisted on 

trying different lengths on the three directions and analyse whether the displacements and stresses of the 

model were affected by its limits and, even if they were, decide whether it would be indispensable to 

increase it or not. 

The aim was to get a model with the smallest size possible in order have less elements and, consequently, 

less computational effort. On the other hand, it could not be too small to a point of it interfering with the 

deformations and stresses of the soil and structures. 

To facilitate a standard construction of a model for different piles, all the lengths in the different direction 

are expressed in terms of number of diameters of the pile for the corresponding model. This way all the 

models were built in the same proportion of size and they were affected by the same effects, mainly 

when it comes to deformations and stresses. Figure 4.1 show the dimensions used for the model, 

normalized by the diameter of the pile. Notice that, these dimensions are applied to a case here being 

studied which is a length of the pile 5 times bigger its diameter. 

 

 

Fig. 4.1 – Dimensions of the model 

 

On the direction perpendicular to the movement of the pile (chosen as the Y direction in PLAXIS 3D) 

the critical displacements of the soil to take into account were the horizontal ones but these didn’t spread 

far beyond the pile. Therefore, 5 diameters of the pile was considered a sufficient length of the model 
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in this direction. The stresses on the soil near this boundary after the movement of the pile were the 

same as the resting stresses. 

On the direction of the movement of the pile (chosen as the X direction in PLAXIS 3D) the critical 

displacements of the soil to take into account were the vertical. This occurs because at relatively shallow 

depths the failure of the soil involves an uplift of a wedge of soil in front of the pile and a gap forming 

behind the pile that leads to settlement of the soil and the results of the calculations showed that these 

effects are felt at very far distances. Yet, the interference of these vertical movements of the soil close 

to the borders of the model is irrelevant for what is being studied in this work. Also, the distance of the 

boundary is considered to be enough if a plane strain state is verified. In this case, the horizontal 

extension (εxx) was checked and its highest value was less than 0.2% which proves that a distance 8 

diameters for the pile to each side of the X direction is sufficient. 

On the vertical direction, one diameter was added to the 5 diameters length of the pile in order to 

represent the soil below the pile that introduces a couple system in the toe of the pile that produces 

moment. This leads to a total of 6 diameters in the vertical direction (chosen as the Z direction in 

PLAXIS 3D). 

 

4.3. CONSTITUTIVE MODELLING - HARDENING SOIL MODEL 

4.3.1 INTRODUCTION 

The Hardening soil model is an advanced model for simulating the behaviour of different types of soil, 

both soft and stiff soils. When subjected to primary deviatoric loading (σ1 – σ3), soil shows a decreasing 

stiffness and simultaneously irreversible plastic strains develop. This is usually represented as in the 

case of a drained triaxial test in a normally consolidated soil where the observed relationship between 

the axial strain (ε1) and the deviatoric stress can be well approximated by a hyperbola (Figure 4.2 (b)).  

Such relationship is very well-known by the hyperbolic model formulated by Duncan and Chang (1970). 

Instead of using a combination of a linear elastic behaviour (Hooke’s single stiffness) with perfect 

plasticity (Figure 4.2 (a)), the hyperbolic model uses a double-stiffness model for elasticity with 

combination with isotropic strain hardening.  

 

 

Fig. 4.2 – linear elastic perfectly plastic model (a) versus Hardening Soil model (b) 
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The major inconsistency of this model developed by Duncan and Chang is that a hypo-elastic model 

(almost hyper-elastic/almost fully recovers its deformations when unloaded/pseudo-elastic) cannot 

consistently distinguish between loading and unloading. The hardening soil model, however, supersedes 

the hyperbolic model by far: firstly by using the theory of plasticity rather than the theory of elasticity; 

secondly by including soil dilatancy; and thirdly by introducing a yield cap. 

 

4.3.2 DILATANCY 

After extensive shearing, dilating materials arrive in a state of critical density where dilatancy has come 

to an end as shown in Figure 4.3. This phenomenon of soil behaviour can be included in the Hardening 

Soil model by means of a dilatancy cut-off. 

 

 

Fig. 4.3 – Dilatancy cut-off 

 

 

4.3.3 YIELD CAP 

In contrast to an elastic perfectly plastic model, the yield surface of a hardening plasticity model is not 

fixed in principal stress space, but it can expand due to plastic hardening. Distinction can be made 

between two main types of hardening, namely shear hardening and compression hardening and both of 

them are contained in the present model. 

The Hardening Soil model in PLAXIS 3D defines the shape of the yield surface (Figure 4.4 on the left) 

depending on an exponent parameter m that ranges between 0.5 for sands and 1.0 for clays. For m=1.0, 

straight lines are obtained but slightly curved yield surface correspond to lower values of the exponent. 

This exponent is used to calculate the stiffness modulus and the unloading-reloading modulus. 

Shear hardening yield surfaces as indicated on the left of Figure 4.4 do not fully explain the plastic strain 

that is measured in isotropic compression so a second type of yield surface (Figure 4.4 on the right) must 

be introduced to close the elastic region for compressive (compaction hardening) stress paths. 
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Fig. 4.4 – Yield surface of a hardening plasticity model 

 

4.3.4 SOIL TESTS 

The SoilTest tool available in PLAXIS (both 2D and 3D) offers a quick and convenient way of 

simulating soil lab tests on the basis of a single point algorithm. It uses the same soil models and 

calculation methods as the PLAXIS finite element calculation Kernel (computer program responsible 

for the interaction of hardware and software and translates input and output into data processing 

instructions). 

SoilTest offers the possibility of performing five kinds of tests: Triaxial test, Oedometer test, CRS test, 

DSS test and a general test where stress and strain condition can be defined at will. This allows to quickly 

test whether the behaviour of soil materials in PLAXIS matches existing measurements and 

expectations.  

Figure 4.5 shows a graphic of differential stress (difference between the greatest and the least 

compressive stress, |σ1 – σ3|) in function of the strain in the principal direction (ε1). It compares the two 

cases of using different Secant Modulus, E50
ref, (and consequently Unloading-Reloading Modulus, Eur

ref, 

and Oedometer (or constrained) Modulus, Eoed
ref), one of 10MPa and the other of 50MPa.  

 

 

Fig. 4.5 – Stress-Strain relationship for a Secant Modulus of 10 MPa (a) and 50 MPa (b) 

 

From looking at the previous figure it is possible to see what to expect from the p-y curves with respect 

to the different cases. The ultimate bearing capacity should be the same whereas the initial stiffness is 

much higher for the higher Secant Modulus.  
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4.4. MATERIALS 

4.4.1 SOIL 

The type of soil adopted for this work was clay. This option was for two main reasons: first, there is 

much less information and studied cases regarding cohesive soils than granular soils; and secondly, both 

the North Sea and the Baltic Sea, located mainly close to the UK, Scandinavia and Germany, have a 

seabed composed of cohesive soils. For this reason, it is of big interest for COWI to study this particular 

condtions as they have there a very strong market in this areas. 

A Zomergem Clay was considered to best suit the purpose of this work. It is classified as high plasticity 

clay according to BSCS (Biological Sciences Curriculum Study) and its characteristic stiffness 

parameters are presented in Table 4.1. 

 

Table 4.1 – Characteristic stiffness parameters for a Zomergem Clay according to the BSCS 

Geotechnical 

Identification 

Geotechnical 

Unit 

Eoed,ref 

[MPa] 

E50,ref 

[MPa] 

ε50      

[%] 

G0,ref 

[MPa] 

m           

[-] 

CLAY Zomergem 4 10 1 35 0.8 

 

In order to not complicate the achievement of the objective of this thesis a homogeneous soil for the 

whole seabed was implemented at a depth of 30 meters below the water level. Some of the assumed 

parameters used in PLAXIS 3D for the soil are presented the in Table 4.2  

Undrained model of type B is an undrained or short-term material behaviour option in PLAXIS 3D in 

which stiffness is defined in terms of effective properties and strength is defined as undrained shear 

strength. A large bulk stiffness for water is automatically applied to make the soil as a completely 

incompressible and (excess) pore pressures are calculated, even above the phreatic surface.  

Using an Undrained model of type B provides the option of increasing the undrained shear strength with 

depth, which is of great interest for comparison of results with and without this variation of Su. It is very 

common to see clays or tills in the North and Baltic Seas with an undrained strength of around 100-200 

kPa. 

 

Table 4.2 – Input parameters in PLAXIS 3D for the soil material 

Parameters Value Unit 

Unit weight (γsat) 19 kN/m3 

Secant Modulus (E50
ref) 10.00E3 kN/m2 

Oedometer (or constrained) Modulus (Eoed
ref) 4.00E3 kN/m2 

Unloading-Reloading Modulus (Eur
ref) 30.00E3 kN/m2 

Undrained Shear Strength (Su,ref) 100 kN/m2 

Unloading-Reloading Poisson Coefficient (ν'
ur) 0.200 - 
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The definition of the soil is made through the creation of one single borehole. This layer goes from 0 to 

6 diameters depth (negative distance) and a head water at 30 meters height.  

The volume of the soil will be divided into vertical layers parallel to the pile (Figure 4.6). The purpose 

of this is to allow the user to assign different coarseness factors to the different volumes to ensure more 

accuracy in the calculation of the stresses in the areas closer to the pile. The mesh should be finer in the 

volumes closer to the foundation and less finer as it moves away from the foundation.  

In order to do it, semi-circular polycurves were drawn and, with the "extrude" option, a new layer was 

created (Figure 4.7). The diameters of these polycurves were normalized for the following dimensions: 

1D (for the polycurve of the plate of the pile), 2D, 4D and 8D (these last 3 are the polycurves to divide 

the different areas). 

 

Fig. 4.6 – Representation of the surfaces defining the different volumes of soil 

 

 

  

Fig. 4.7 – Creation of a Polycurve (on the left) and "extrude" (on the right) to define a layer 
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4.4.2. MONOPILE 

As the monopile is a steel hollow cylindrical tube, the best way to model it in PLAXIS 3D is by using a 

plate. This plate is composed by steel with properties as indicated in Table 4.3. The length of the pile 

was normalized by its diameter, as it happened with the size of the model, so it should always be 5 times 

the diameter. The same occurs to the thickness of the wall of the pile, which is 90 times smaller than the 

diameter of the pile and constant over depth. 

Another plate is closing the top of the plate whereas the bottom remains opened in order to allow the 

interaction between soil on the inside and the outside of the monopile. The same material was used for 

the soil surrounding the pile and the soil inside the pile. 

Lastly, a beam with 60 meters of length was added at the top of the pile, attached to the plate closing it 

(Figure 4.8). The function of this beam is to allow the user to apply the load at different heights and 

study the effect of a bending moment on the deflection of the pile. The properties of this beam are not 

important, as the transmission of the moment and load do not depend on these. However, if a bending 

moment is being applied, the plate closing the top should be very rigid so that the pile receives all the 

moment. If a different scenario is being tested (e.g. horizontal translation of the whole pile), the same 

properties as the pile can be attributed to this plate and the beam should be deleted. 

 

Table 4.3 – Input parameters in PLAXIS 3D for the plate material 

Parameters Value Unit 

Unit weight (γ) 78.50 kN/m3 

Young's Modulus (E) 210.00 GPa 

Poisson Coefficient (ν) 0.30 - 

Shear Modulus (G) 80.77 GPa 

 

 

Fig. 4.8 – Representation of the plates and beams 
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4.4.3. INTERFACES 

An interface simulates the interaction between a structure and soil. This permits relative displacements 

between soil and structure not allowing them to stay tied together – no slipping and no gapping is 

possible. 

When an interface is used two nodes are created at the interface, one belonging to the soil and the other 

to the structure (Figure 4.9 – the spacing between the nodes doesn't really exist, the nodes have the same 

coordinates). The interaction between these nodes consists of two elastic-perfectly plastic springs: one 

on the normal direction to model the gap and the other on the tangential direction to model the slip 

displacement. 

 

 

Fig. 4.9 – Plate without interface (left) and with interface (right) (PLAXIS, 2015) 

 

When creating a soil material, in the “interfaces” label, there is a parameter Rinter. This parameter relates 

the strength of the interface to the strength of the soil: it gives a reduced interface friction and interface 

cohesion (adhesion) compared to the friction angle and the cohesion in the adjacent soil. Table 4.4 shows 

the usual used values for this parameter and for this work a Rinter of 0.5 was considered. 

 

Table 4.4 – Values of Rinter for different types of interactions of soil-structure 

Interaction sand/steel Rinter ≈ 0.6 – 0.7 

Interaction clay/steel Rinter ≈ 0.5 

Interaction sand/concrete Rinter ≈ 1.0 – 0.8 

Interaction clay/concrete Rinter ≈ 1.0 – 0.7 

Interaction soil/geogrid (interface may not be required) Rinter ≈ 1.0 

Interaction soil/geotextil (foil, textile) Rinter ≈ 0.9 – 0.5 
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4.4.4. AT REST STRESS RATIO 

The initial stress state of a soil is still very difficult to predict nowadays and it is usually represented by 

the lateral stress coefficient (or at rest earth pressure coefficient), K0=σ’h/ σ’v.  

For the Mohr-Coulomb failure criterion the default value used by PLAXIS for K0 is based on equation 

(4.1) (Jaky’s formula). For more complex models like the Hardening soil the default value is based on 

the K0
nc parameter and is also influenced by the overconsolidation ratio (OCR) or the pre-overburden 

pressure (POP), as shown in equation (4.2). These formulas were developed based on instrumented 

Oedometer tests, triaxial stress-path tests and other laboratory devices. 

For this work, equation (4.2) was used to calculate the K0 and K0
nc was estimated using Figure 4.10 with 

an OCR=1 and POP=0 (data compiled by Lunne et al. 1990). A value of 0.67 was used for K0,x and K0,y. 

 

𝐾0 = 1 − sin 𝜑               (4.1) 

 

𝐾0,𝑥 = 𝐾0,𝑦 = 𝐾0
𝑛𝑐 . 𝑂𝐶𝑅 −

𝜈𝑢𝑟

1−𝜈𝑢𝑟
(𝑂𝐶𝑅 − 1) +

𝐾0
𝑛𝑐.𝑃𝑂𝑃−

𝜈𝑢𝑟
1−𝜈𝑢𝑟

𝑃𝑂𝑃

|𝜎𝑧𝑧
0 |

  (4.2) 

 

 

Fig. 4.10 – Field data from K0 measurements in clays (Mayne, P. W., 2001) 

 

4.5. MESH 

The next phase after the definition of all materials and structures of the model is the definition of a mesh, 

essential to perform finite element calculations. This consists on dividing each geometry into elements 

in order to compose a finite element mesh.  

The mesh should be sufficiently fine to obtain accurate numerical results but, on the other hand, a too 

fine mesh should be avoided since this will lead to excessive calculation time. In the case of this work, 
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as MatLab will be used to process all the exported data from PLAXIS 3D, it is also important to take 

into account the capacity of MatLab and its own calculation time.  

A medium mesh with a moderate number of elements was used during the exploration of the results and 

a definition of a procedure to obtain the p-y curves as this leads to obtain good results in relatively short 

times and lots of calculations need to be run. However, to obtain the final results, a much more refined 

mesh was used in order to get more accurate results.  

Figure 4.11 shows a typical mesh of a model of this thesis, where it is clear the previous discussed option 

to use a more refined mesh in a volume close to the pile. In Figure 4.12 it is possible to see the soil with 

different colors each one representing a different coarseness factor - small coarseness factors for the 

volumes closer to the pile and higher coarseness factors for the volumes furthest away from the pile.  

 

 

Fig. 4.11 – Example of the mesh of the PLAXIS 3D model 

 

 

Fig. 4.12 – Colors for the different soil volumes representing different coarseness factors 
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4.6. STAGED CONSTRUCTION 

Before proceeding to the imposition of displacements it is necessary to establish the at rest state. Three 

stages are needed in order to do this: firstly, a stage in which only the soil is present; secondly, a stage 

in which the structures are installed; finally, as the second stage introduces changes in the state of the 

stresses and the structures are affected by gravity, a third stage, in which the previous displacements are 

reset, is introduced. This allows the next stages to take into account only the imposed horizontal 

displacements. 

 

4.7. FINAL COMMENTS 

Having defined a model in PLAXIS 3D, it is now time to proceed to the calculations and two different 

type of analysis will be run. 

The first analysis consist on a reproduction of a real case scenario with a point load applied at the top of 

the monopile simulating the loads of the wind and the waves. In this case, there will be a deflection of 

the pile and, using the data of the deflection over the depth, a procedure to obtain the soil reaction and 

the p-y curves will be explored and studied. 

The second case, which was chosen to be analyzed due to the problems associated with the first one, 

consists on the application of a horizontal translation of the whole structure through the application of a 

displacement along the whole length of the pile. Although this is an unrealistic scenario, it gives a 

response of the soil throughout the whole depth of the pile whereas in the first case, a great part of the 

pile does not have significant displacements. 

While in the first analysis the soil reaction is achieved using the differential equation developed by 

Hetenyi (1946), the second analysis involves much more numerical calculations and data processing as 

the exported information from PLAXIS 3D is much larger than in the first case. The use of MatLab is 

essential to process the numerical data and to define an analytical procedure for the optimization of these 

results.  
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5 
DIFFERENTIAL EQUATION 

APPROACH TO OBTAIN THE 
SUBGRADE REACTION OF THE 

SOIL 

 

 

5.1. OVERVIEW 

In this chapter all the different analyses regarding an attempt to obtain the subgrade reaction of the soil 

through the derivation of the deflection is presented. The idea is to find the deflection of the pile along 

all its length and use the previously presented equation (3.7) developed by Hetenyi to calculate the 

respective reaction of the soil. 

The analysis requires the use of several computer programs. The main one was PLAXIS 3D from which 

all the information of the deflection of the pile when subjected to a horizontal lateral load was extracted. 

Excel, MatLab and even the structural program SAP2000 were then used in order to perform different 

analysis and compare results. 

 

5.2. PROCEDURE 

According to the previously presented equation (3.7) developed by Hetenyi (1946) the subgrade reaction 

modulus is obtain from the 4th derivative of the pile deflection, being, therefore, the first step of this 

procedure.  

The workshop provided by PLAXIS bv (Hamburg, Germany, 28-29 September 2014) on “Introduction 

to PLAXIS 3D & Offshore Applications” suggests the use of a very slender beam element with low 

stiffness in the centre of the pile (e.g. Ebeam=Epile/1000) that will move together with the soil inside the 

pile (Figure 5.1 (a)). As a result of this, the slender beam will have the same deflection as the pile which 

allows the extraction of the horizontal displacement along the pile. The reason for this beam to be so 

slender is that will have no interference on any deformations of either the soil or the pile. 

The problem with this slender beam is that the movement between the soil inside the pile and the soil 

surrounding influences its behaviour giving it a different deflection from the pile at the bottom of it 

(Figure 5.1 (b)). It’s the existence of a relative movement between the soil inside the pile and the pile 

itself  that causes this problem so in order to overcome this obstacle it would be necessary to introduce 

a plate at the bottom of the pile to prevent this interaction between the inside and the outside of the pile.  
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Fig. 5.1 – (a) Deflection of the pile and the slender beam; (b) Graph of the deflection of the slender beam  

 

The other option was to intercept a vertical plane with the central fibre of the monopile and assume the 

movement of the fibre as representative of the movement of the monopile (Figure 5.2). This way, no 

extra elements needed to be added to the model and the deflection of the pile could be easily obtained. 

 

 

Fig. 5.2 – (a) Resulted deflection of the pile; (b) Diagram of horizontal displacements on the central fiber 

 

Having exported from PLAXIS 3D the data of the horizontal movement of the points along the pile two 

options remain to obtain the 4th derivative: a numerical derivative (Figure 5.3 and equation (5.1)) applied 

successively directly to the exported data from PLAXIS; or, an analytical derivative deduced from an 

approximated curve exported from PLAXIS. 
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𝑓′(𝑥𝑛) =
𝑥𝑛−1−𝑥𝑛+1

ℎ𝑛+ℎ𝑛+1
                                       (5.1) 

 

 

 

      Fig. 5.3 – Numerical derivative 

 

Both options were deeply explored and more than one approach carried out. The results will be presented 

in what follows and compared to each other. 

 

5.3. ANALYTICAL DERIVATIVE 

The first and simplest approach was the approximation of the data exported from PLAXIS 3D to a 

polynomial curve using Microsoft Excel. The data was plotted in a graph and a trendline was calculated 

as a 6th degree polynomial (this is the highest degree possible to calculate using Microsoft Excel) in a 

coefficient of determination (or, Goodness of fit), R2, of 1.0. 

The outcome of the soil reaction would be a 2nd degree polynomial curve, as a consequence of the 4th 

derivative of a 6th degree polynomial. It might be a very low degree for the accuracy expected but it 

should provide a first impression of what to expect using this methodology. Figure 5.4 shows the result 

of this analysis. The bending moment was also added to the figure for later comparison.  

 

Fig. 5.4 – Curve fitting using Microsoft Excel for the Deflection of the pile (a), Bending Moment (b) and Soil Reaction (c) 
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By observing the previous figure, it is possible to conclude that this first approach is incorrect. The soil 

reaction should occur on ‘the same side’ of the graph as the deflection. That is, if the pile deforms in 

one direction the reaction of the soil is expected to be opposite, while from this process the derived 

reaction has, in some depths, the same direction of the pile, which is paradox. 

Considering the possibility of the 2nd order polynomial curve for the soil reaction might be the problem 

due to the very small degree, a second analysis was made using MatLab. The polyfit function was used 

as polyfit(x,y,n) and the coefficients of a polynomial p(x) of a degree n were calculated to fit the y data 

by minimizing the sum of the squares of the deviations of the data from the model (least-squares fit).  

After defining the best deflection fitting curve with a degree of 10, a 6th order polynomial curve was 

calculated for the soil reaction, from the 4th derivative of the first. Figure 5.5 shows the result of this 

analysis performed using MatLab.  

 

 

 

Fig. 5.5 – Curve fitting using MatLab for the Deflection of the pile (a), Bending Moment (b) and Soil Reaction (c) 

 

 

There are almost no differences between the obtained curves for the deflection and the bending moment 

using Microsoft Excel or MatLab. Still, the results for the soil reaction, although looking very different 

in the two cases, have a fitting curve that has essentially the same trend. 

The analytical derivative of the deflection of the pile was concluded to be inefficient for the deduction 

of the soil reaction. 
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5.4. NUMERICAL DERIVATIVE 

Believing that a polynomial curve might not be the ideal fitting process for this case or that this analytical 

approached is essentially wrong, a second type of analysis was explored, using a numerical process to 

calculate the derivative.  

The idea is to apply equation (5.1) to the points exported from PLAXIS 3D to calculate the first 

derivative. The second derivative is then obtained by applying the same equation to the results obtained 

one the first derivative. Then the process proceeds repeating itself, until the forth derivative, which 

corresponds to the soil reaction, is reached. Figure 5.6 shows the first results of this method.   

 

 

Fig. 5.6 – Numerical derivative for the bending moment (b) using the data of the deflection (a) 

 

As it is possible to see from the previous figure, the results are very inaccurate and unreliable and this 

is only for the 2nd derivative (bending moment) which leads to the conclusion that the results for the soil 

reaction will be of even lower quality.  

This happens because the points associated to the deflection are too distanced and also because they 

already have some very small numerical errors (which is acceptable for such a complex program as 

PLAXIS 3D) that will increase and have a larger impact in each derivative. 
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A simple procedure was developed in order to solve this problem. A polynomial curve was approximated 

to the deflection of the pile and, using the equation of that fitting curve, very small spaced points were 

calculated for the deflection of the pile. Figure 5.7 shows the result of the “transformation” of the data 

exported from PLAXIS 3D into a more reliable data obtained using the fitting curve.  

As these points were obtained using the polynomial curve, they barely have any error. Therefore, the 

first numerical derivative (the slope of the pile) was calculated with sufficiently high precision. The 

second, the third and the forth numerical derivatives were then obtained using the data of, respectively, 

the first, the second and the third numerical derivative and are equally precise as the first numerical 

derivative because the initially calculated points are already very accurate. 

 

 

Fig. 5.7 – Processing of the data exported from PLAXIS 3D 

 

Figure 5.8 shows the results of the previously described analysis. A comparison between the deflection, 

the bending moment (2nd derivative) and the soil reaction (4th derivative) was chosen in order to shown 

the presence (or not) of errors as the degree of derivation increases.  

As stated before, the soil reaction must be in accordance with the deflection of the pile meaning that if 

the pile deflects in one direction the soil reaction should have an opposite direction as if the pile deflects 

in the other direction. By observing figure 5.8 it is possible to see that this doesn’t occur. 

The conclusion for the numerical derivative approach was the same as the previous ones: inefficient for 

the extraction of the reaction of the soil in response to its respective displacement.  
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Fig. 5.8 – Numerical derivative for the bending moment (b) and soil reaction (c) using the data of the deflection (a) 

 

 

5.5. STRUCTURAL ANALYSIS OF THE MONOPILE 

A structural analysis of the pile was carried out in order to compare its results with the ones obtained 

from the previous analyses. This comparison is important to understand whether the derivative of the 

deflection of the pile is providing realistic results or not, assuming that the structural analysis is correct. 

The program used was SAP2000. 

As SAP2000 is a structural program, the only useful information provided, for the work here by 

developed, is the bending moment and the shear force along pile. These results will be then compared 

with, respectively the third and the second derivative. 

The first step of this analysis consisted on the structuring of the monopile as a beam and applying a 

support restrained only on the direction perpendicular to the direction of the development of the beam. 

Figure 5.9 shows a portion of the beam and the supports represented in SAP2000. 

 

 

 

Fig. 5.9 – Pile represented in SAP2000 

 

The supports were equally spaced at intervals of 20 centimeters with a total of 151. The idea was to 

apply displacements to the supports with the value of the deflection of the pile corresponding to its 

position. The displacements of the supports were calculated using a polynomial curve fitting the 

deflection of the pile, as performed before, and then importing to SAP2000 using Microsoft Excel. 

Figure 5.10 shows the deflection of the beam after applying the displacements to the supports and Figure 

5.11 shows the result of the bending moment along the length of the beam/pile. 
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Fig. 5.10 – Deflection of the beam 

 

 

Fig. 5.11– Bending moment along the length of the beam/pile 

 

Using SAP2000 the results of the bending moment along the pile should be the most precise way. By 

observing Figure 5.11 it is possible to conclude that the results obtained from the previous analyses are 

not very different from these most realistic values. Yet, a comparison between all the analyses will be 

shown in Figure 5.12 with respect to the bending moment and the shear force. It is clear from the 

observation of the following figure that all the analyses made so far lead more or less to the same results. 

 

 

Fig. 5.12– Different results for bending moment (a) and shear force (b) 
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5.6. CONCLUSIONS 

After all the different approaches for obtaining the soil reaction from the deflection of the pile have been 

explored it is concluded that this method is not suitable for the purpose of the work being developed in 

this thesis.  

To strengthen this statement one final analysis will be made in this chapter. Figure 5.13 illustrates the 

outcome of some p-y curves achieved using one of the previous methods, revealing a quasi-elastic-linear 

behaviour of the material.  

On the other hand, a qualitative analysis of the kind of response that would be expected for the reaction 

of the soil under this loading is presented in Figure 5.14. This was obtained by plotting the stress on an 

element of the soil on the direction parallel to the loading direction and repeating this to different depths.  

Figure 5.13 illustrates p-y curves with no plastification of the soil (linear-elastic behaviour) while, in 

contrast, Figure 5.14 demonstrates that there is an increasing plastification of soil, whit more emphasis 

to the zone nearby the pile. It should be highlighted each curve of Figure 5.14 represents only the stress 

of one single point at a certain depth, so its shape is necessarily the p-y curve for that depth. 

This leads to one conclusion: the application of the differential equation developed by Hetenyi can only 

be used for the first, second and third derivative (respectively, slope, curvature/bending moment and 

shear force), as these are characteristics of the pile, and not to the forth derivative since it refers to the 

reaction of the soil. 

By analyzing equation (3.7), it is possible to perceive that the input parameters concern only the 

properties of the pile (Young’s modulus, E) and the size of it (Inertia, I), do not take into account any 

properties of the soil. It is therefore understandable why the given relationship between the deflection 

of the pile and its forth derivative (previously believed to be the reaction of the soil) was inexplicably 

perfectly linear-elastic. 

 

 

Fig. 5.13– p-y curves using the differential equation approach 
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Fig. 5.14– Stress on the soil on the direction parallel to the loading direction 
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6 
ANALYTICAL PROCEDURE FOR 

OPTIMIZATION OF THE NUMERICAL 
RESULTS 

 

 

6.1. OVERVIEW 

Having put away the hypotheses of using the differential equation (3.7) developed by Hetenyi to obtain 

the soil reaction, the only remaining option to calculate it is to integrate the generated stresses around 

the pile.  

After building and perfecting a robust and realistic model, several calculations were carried out in order 

to find the best estimation for the distribution of the stresses around the pile. This estimation will be an 

analytical law that best suits the verified distributions using the data exported from PLAXIS 3D.  

Finally, a methodology will be developed with the purpose of calculating hyperbolic p-y curves, using 

MatLab to find the best fitting curve for the determined points of the p-y curves. 

 

 

Fig. 6.1 – (a) Distribution of front earth pressure and side shear around the pile subjected to lateral load (Zhang et 

al., 2005); (b) Distribution of stresses around the pile before and after loading (Tuna, 2006) 
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6.2. EXTRACTION OF DATA FROM PLAXIS 3D 

In order to obtain a good load-response development (or, in this case, displacement-response 

development) different levels of load have to be applied and this will lead to different levels of responses. 

In PLAXIS this is controlled by means of phases. By increasing the load/displacement amplitude in each 

phase, different responses will be generated by the model. 

Once the calculation in PLAXIS has finished it is necessary to proceed with the extraction of results and 

each phase has its own results. For the work being here developed the extracted data was the resulting 

stresses corresponding to each applied displacement. 

All the data would be lately processed using MatLab so the extraction from PLAXIS 3D needed to be 

done in a way that could be afterwards imported and used in MatLab. There were two options: Microsoft 

Excel or a Text Document. Microsoft Excel would have the advantage of a better consulting and 

manipulation of the data but the files were extremely heavy which would lead to very time-consuming 

calculations in MatLab. On the other hand, exporting the data into a Text Document saves a lot time on 

the calculations and the data import is very simple. The use of a script in MatLab to import the data in 

the Text Document is the best option (and probably the only one) and, if the user is experienced enough 

and able of understanding the used commands, it is possible to manipulate it and change it in a way to 

save even more time. Notice that, even though these implemented measures lead to a lot of time saving, 

these calculations might still last a few hours due to the amount of extracted data from each phase. 

 

6.3. METHOD FOR INTEGRATION OF THE STRESSES AROUND THE PILE 

After taking in possession the response, in terms of stresses, to the applied displacement, it is time to 

integrate these stresses around the pile in order to obtain the subgrade reaction modulus of the soil. There 

are two ways of doing so: using the stresses on interface or using the stresses on the soil surrounding 

the pile.  

Whatever the case may be used, there are always numerical errors in these type of calculations so, instead 

of finding for each phase the stresses around the pile and then integrate it, a few tests will be run and 

analysed and, using those results, an analytical curve for the shape of these stresses may be empirically 

determined. By assuming this analytical curve as the shape of the stresses around the pile for all the 

calculations, it is possible to avoid errors and each calculation uses the same ‘assumption’ as the others. 

The stresses on both the interface and the soil surrounding the pile will the analysed and a comparison 

between the two will be made with the aim of finding the best solution possible. 

 

6.3.1. STRESSES ON THE INTERFACE 

Using the interface to integrate the stresses around the pile would be the ideal solution but these elements 

sometimes are not very reliable. If the interface is very fine the calculation will take too long but if it is 

not fine enough there will be huge concentrations of stresses on the elements of the interface and the 

model will fail due to the interface (not realistic). However, even if the model doesn’t fail due to the 

interface, there might still be high concentration of stresses on some of the elements of the interface that 

will lead to errors on the calculations. Having said that, the assumed value of the stress on a specific 

point will not be the value of the closest point to it but an average of all the points in its surrounding 

area.  
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First of all, it is important to highlight that only the stresses in the direction of the displacement will be 

accounted (in this case, the xx direction). This is a very fair assumption as the stresses on the 

perpendicular direction to the one of the displacement (yy direction) on one side of the pile cancel the 

ones of the other side of it proving that only the direction of the displacement is relevant. 

The output of PLAXIS 3D provides, for interfaces, the normal and the shear stresses on it (among 

others). By knowing the coordinates of the element of the interface it is possible to find the xx component 

of the normal and shear stresses acting on it (for this work, only the shear stress in the horizontal 

direction is needed). Figure 6.2 (a) shows the normal and shear stresses acting on the interface and 

Figure 6.2 (b) shows the expected shape of the integrated stresses around the pile. 

Figure 6.3 shows the distribution of the shear stress, the pore pressure and the total normal stress around 

the pile. As expected, there is a bigger concentration of shear stress in the center (from the perspective 

of this image) of the pile while on the two zones closer to the boundary and specially on the bottom, the 

concentration of pore pressure and total normal stresses are much bigger. It is also possible to notice in 

Figure 6.3 (c) that the distribution on for the high values is not very uniform. This is due to what was 

referred previously as the errors associated to the high concentration of stresses on some of the elements 

of the interface. 

 

 

Fig. 6.2 – (a) normal and shear stresses; (b) resulting stresses around the pile 

 

 

 

Fig. 6.3 – Interface shear stresses (a), pore pressures (b) and total normal stresses (c) 
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By using MatLab to interpolate the value for the total stresses acting on the interface on the xx direction, 

it was possible to obtain the results shown in Figure 6.4. This figure shows the results like in Figure 6.2 

(b) but only in the xx direction. The different curves of each graph represent the different responses 

obtained from the different levels of applied displacements. It is now possible to see, on the less stressed 

part of the pile (top of the graphs), that these calculations are vulnerable to errors - there were even some 

cases in which the curves were much more irregular (although this figure is very representative of the 

common results obtained). 

 

 

Fig. 6.4 – Obtained results for xx stresses around the pile using the Interface 

 

6.3.2. STRESSES ON THE SOIL 

Using the soil to integrate the stresses around the pile has one big disadvantage compared to the 

interface: the amount of exported data from PLAXIS is much bigger (Text Document files almost 50 

times heavier) as the soil represents the all volume of the model and the interface is just a surface.  The 

results are more precise than the ones from the interface (much smaller elements) but also not entirely 

reliable due to numerical errors in the area close to the interface. In addition, when asked the stresses at 

a specific point, PLAXIS does a very simple interpolation between other known points that might lead 

to very significant errors. 

Figure 6.5 shows the variation of the total stresses in the soil at rest on the xx direction where it is 

possible to see that the soil inside the pile and the soil on the zone surrounding it has an overall increase 

of horizontal stress due to the driving of the monopile (confinement of the soil on that area). 

Figure 6.6 shows the variation of the total stresses in the soil but now it is due to an applied displacement 

to the pile. There is clearly an increase of stresses on the loaded side of the pile (right) and a decrease of 

stresses on the unloaded side of the pile (left). It is also possible to see that, by allowing an interaction 

between the inside and the outside soil of the pile, there is a change on the stress state at the toe of the 

monopile that will lead to high concentration of stresses and will make it more difficult to find a good 

law for the p-y curve at these high depths. 

Finally, by comparing Figures 6.6, 6.7 and 6.8, it is clear that there is a big volume of liquefied soil on 

the unloaded side of the model. Two types of liquefaction happen in this model: on the volume closer 

to the surface of the pile not only the effective stresses are zero but the total stresses and the pore 

pressures are also zero; on the same side of the model but further from the pile the effective stresses are 

still zero (liquefaction) whether the total stresses and the pore pressures are not zero and have the same 

value, as it should. 
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Fig. 6.5 – Total stresses in the soil at rest on the xx direction 

 

 

Fig. 6.6 – Total stresses in the soil with applied displacement on the xx direction 

 

 

Fig. 6.7 – Effective stresses in the soil with applied displacement on the xx direction 
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Fig. 6.8 – Pore pressures on the soil with applied displacement 

 

The exported data from PLAXIS 3D was the information shown in Figure 6.6 with the value for the 

total stresses on the soil on the xx direction for every phase of the calculation. MatLab was then used to 

process all this information in a fast way. 

The griddata command of MatLab interpolates a surface at some requested points using data points 

previously defined. Having this interpolated surface, the surf command creates a three-dimensional 

shaded surface.  

 

Fig. 6.9 – Three- dimensional representation of the stresses on the xx direction at a certain depth 

 

 

Fig. 6.10 – Upper view of the three- dimensional representation of the stresses on the xx direction at a certain depth 
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Figure 6.9 shows a surface that represents a horizontal plane crossing a model, at a certain depth, 

showing the stresses on the xx direction on the soil, like Figure 6.6, and plotting it in a 3D graph (the 

colors of the scale are opposite as one is taken from PLAXIS and the other from MatLab). Figure 6.10 

shows the upper view of the three-dimensional surface.  

By crossing a surface like the one of Figure 6.9 with a vertical plane parallel to the boundary that defines 

the symmetry of the model, a development of the horizontal stresses along the model is observed: on 

the unloading side the stresses tend to decrease when closer to the pile and tend to the at rest stress state 

the further it gets from the pile; on the loading side the stresses tend to increase when closer to the pile 

and also tend to the at rest stress state the further it gets from the pile (Figure 6.11). 

 

 

Fig. 6.11 – Two-dimensional development of the horizontal stresses on the xx direction along the model 

 

By approximating these points of values of stresses to a curve (for this case, a 6th degree polynomial 

curve was concluded as the best fit), it is easier to obtain the stresses on the soil surrounding the pile by 

doing this for several vertical planes. This method also avoids numerical errors.  

The result for this analysis is shown in Figure 6.12. 

 

 

Fig. 6.12 – Obtained results for xx stresses around the pile using the Soil 
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6.3.3. COMPARISON BETWEEN METHODS AND FINAL SOLUTION 

Having analyzed how the stresses around the pile develop using the interface and the soil, it is now time 

to define the curve that will be used. 

As stated before, the interface was noticed as one of the big problems of PLAXIS 3D still unsolved: 

there are points with a large concentration of stresses and the factor of coarseness of this structure must 

be very well chosen in order to avoid failure of the interface instead of failure of the soil.  

On the other hand, although there are also some numerical errors when using the stresses in the soil, 

these problems were easier solved using the interpolation of MatLab and the approximation of the 

development of the stresses along the length of the model to a polynomial curve.  

That being said, the results from the interface work as a confirmation of the shape of the stresses around 

the pile but the results from the soil will be the ones that will be taken into account as they were 

considered more accurate and reliable. Figure 6.13 shows a comparison between a common shape of the 

stresses around the pile using the interface and the soil.  

 

 

Fig. 6.13 – Comparison between the stresses around the pile using the interface and the soil 

 

For the characterization of the curve defining the shape of the stresses around the pile several options 

were explored. The first try was with a hyperbola but it was soon concluded that this wasn’t a good fit 

for this case. The second try was an exponential curve (equation (6.1)) that had a similar development 

to the one that was being searched for but it overestimated in a significant value the expected stresses. 
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The constant K on equation (6.1) is the value of the stress on the soil on the xx direction right on the 

border of the model (around 320 for the case shown in the figure) and b is a constant calculated in order 

for the value of the stress at the furthest point of the border of the model (y/(D/2)=1.00) being zero 

(ln(K)/2). In fact, the value at this point is not zero: although there is no stress on the xx direction, this 

point is the one with the highest shear stress. Yet, it was notice that, when it concerns the area inside the 

curve defining the shape of the stresses, it doesn’t have any influence as the value of the shear stresses 

are very small when compared to the stresses on the xx direction. 

 

𝜎𝑥𝑥 = (𝐾 − 𝑒𝑏∗𝑦)                 (6.1) 

 

In order to adapt this exponential curve to the obtained results, the cosine of the angle of the between 

the center of the pile and a point on the circumference (Figure 6.14) of it was used and equation (6.2) 

was at last reached as a final solution for the shape of the stresses around the pile. 

 

Fig. 6.14 – Angle used in the empirical curve for the shape of the stresses around the pile 

 

𝜎𝑥𝑥 = (𝐾 − 𝑒𝑏∗𝑦) ∗ (cos 𝜃)cos2 𝜃            (6.2) 

 

Figure 6.15 sums up the result of the process described so far. The integration of the curve defined as 

the shape of the stresses around the pile (equation (6.3)) is what will lead to the subgrade reaction 

modulus for the p-y curve. Equation (6.3) is the same as equation (6.2) but it is expressed only in terms 

of y (R is the radius of the pile).  

 

Fig. 6.15 – Curve fitting the shape of the stresses around the pile 

 

𝜎𝑥𝑥 = (𝐾 − 𝑒𝑏𝑦) ∗ 𝑐os (𝑡𝑎𝑛−1 (
𝑦

√(𝑅2−𝑦2)
))

cos(𝑡𝑎𝑛−1(
𝑦

√(𝑅2−𝑦2)

))

2

          (6.3) 
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Fig. 6.16 – Curve defining the shape of the stresses around the pile fitting the data from PLAXIS 3D 

 

6.4. NUMERICAL RESULTS FOR P-Y CURVES 

Each applied displacement will lead to different values of stresses generated around the pile – although 

its shape is always the same and the one determined it 6.3.3. will be the used one. After integrating the 

area of the curve used to define the shape of the stresses around the pile, the subgrade reaction modulus 

of the soil to a specific load/displacement can be obtained in two ways: subtracting the value of the 

unloaded side of the pile to the value of the loaded side; or by subtracting the values of both sides to the 

values at the resting state of the model and then sum these two values. In this work it is of interest to 

analyse the soil reaction, p, per meter of length of the pile so its value is the same as the subgrade reaction 

modulus. 

Appling this procedure, for a specific displacement and at a certain depth, one point of a p-y curve is 

obtained. Figure 6.17 shows a typical result for one of the p-y curves and Figure 6.18 the different p-y 

curves obtained for different depths – the red dots refer to a deeper depth that the blue dots. 

 

Fig. 6.17 – Typical result for a p-y curve with the different points represented 
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Fig. 6.18 – p-y curves for different depths 

 

Both figures show a very satisfactory development of the p-y curves with a very well defined ultimate 

bearing capacity for the soil and a constant increase of initial stiffness over the length of the pile. Yet, 

as it is possible to observe in Figure 6.18, the pu does not present a stable behaviour. The curves start to 

get unsystematic as the imposed displacements start to increase and p-y curves of lower depths present 

ultimate bearing capacities higher than the ones of p-y curves of deeper depths.  

Because of this problem, an analytical solution for the numerical results obtained from PLAXIS 3D will 

be developed in order to regulate the curves and find a way to better understand the parameters that 

influence the most the shape of the curves. 

 

6.5. ANALYTICAL SOLUTION FOR P-Y CURVES 

Here an analytical solution that best suits the obtained results of the p-y curves will be searched in order 

to normalize the results and eventually identify the critical parameters. 

Two different hypotheses will be tested: the first one is Matlock’s p-y curve, which is the one suggested 

by the API, with equation (6.4); the second one is equation (6.5) which was proposed by Georgiadis et 

al. (1992). The parameter ks in equation (6.5) is the initial stiffness of the p-y curve to which Vesic 

(1961) expressed as in equation (6.6). 

 

𝑝 = 0.5 ∗ 𝑝𝑢 (
𝑦

𝑦𝑐
)

1

3
     (6.4) 

 

𝑝 =
𝑦

1

𝑘𝑠
+

𝑦

𝑝𝑢

             (6.5) 
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𝑘𝑠 =
0.65

𝐷
√

𝐸𝑠𝐷4

𝐸𝐼

12 𝐸𝑠

1−𝜇2             (6.6) 

 

MatLab has a command lsqcurvefit that solves nonlinear curve-fitting (data-fitting) problems in least 

squares sense. Given the input data, displacements (y), and the observed output data, soil reaction (p), 

this command finds the coefficients for the unknown variables in order to get an equation that best fits 

the data. For Matlock’s p-y curve the unknown variables are the pu and yc and for Georgiadis’ p-y curve 

the unknown variables are the pu and ks. 

Figure 6.19 shows the best fit of equation (6.4) for the given data of a p-y curve and Figure 6.20 the best 

fit of equation (6.5). By looking at both figures it is obvious that the hyperbolic equation proposed by 

Georgiadis has a perfect fitting for the results obtained from PLAXIS 3D and that Matlock’s method for 

the definition of the p-y curves underestimates a lot the capacity of the soil.  

To finalize, the hyperbola of equation (6.4) is the one that will be used from hereafter in order to evaluate 

how the p-y are influenced by the diameter of the pile and its critical parameters that influence its shape 

over the length of the pile. 

The blue dots represent the numerical results obtained from PLAXIS 3D and the red lines represent the 

p-y curve of the referred methods that best fit the numerical results. 

 

 

Fig. 6.19 – Fitting of the p-y curve proposed by Matlock for the given data 
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Fig. 6.20 – Fitting of the p-y curve proposed by Georgiadis for the given data 

 

 

6.6. FINAL COMMENTS 

At this point, all the data exported from PLAXIS 3D has been processed using MatLab and the equation 

of the hyperbola that is going to be used to describe the obtained p-y curves is defined. The integration 

of the stresses on the soil surrounding the pile was performed and the procedure to obtain the numerical 

results was optimized and programmed in MatLab. 

The next step is to study the different p-y curves obtained from the different sensitivity studies performed 

and define a law that characterizes the parameters used in the equation of Georgiadis. These sensitivity 

studies consisted on the variation over the depth of the undrained shear strength of the soil and the 

Young’s modulus of the soil and on the variation of the diameter of the pile. 

The proposal for the characterization of the p-y curves is then compared to the method suggested by the 

API, which is the one used nowadays by most engineers for the design of the foundations of monopiles. 
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7 
PROPOSED METHOD FOR THE 

CHARACTERIZATION OF p-y 
CURVES FOR THE DESIGN OF 

MONOPILES FOUNDATIONS 

 

 

7.1. OVERVIEW 

The aim of this chapter is to develop and present a proposal for the definition of the p-y curves that 

characterize the interaction between the soil and the pile subjected to lateral loading in clay. 

On the previous chapter, an analytical solution for the p-y curves was defined. For this solution, the 

ultimate bearing capacity of the soil, pu, and the initial stiffness of the p-y curve, ks, are the critical 

parameters, in others words, the parameters that define the p-y curves. By calculating both these 

parameters for the different p-y curves over the length of the pile it is possible to obtain their evolution 

over the depth. Creating graphs representing the evolution of these parameters allows the 

characterization and regularization of these critical parameters through equations, as it is already used 

in the method suggested by the API. 

For this, it is necessary to perform sensitivity studies on the model in order to find out which aspects 

have an impact on the critical parameters of equation (6.5). E.g., in subchapter 3.4.4., equations (3.37) 

and (3.38) define the ultimate bearing capacity – a critical parameter for the p-y curves suggested by 

API – as a function of the depth, the submerged unit weight, the diameter of the pile and the undrained 

shear strength.  

The sensitivity studies performed in this work were the following ones: 

 Undrained shear strength; 

 Diameter of the pile; 

 Young’s Modulus (Secant Modulus, E50
ref, in the Hardening Soil model of PLAXIS 3D). 

Firstly, an analysis for the results of the behaviour of the ultimate bearing capacity of the soil will be 

performed and then the same will be done for the initial stiffness. 

A law for the definition of the ultimate bearing capacity and the initial stiffness of the p-y curves will 

be suggested at the end of the chapter and it will be put side by side with the one of API. Also, a 

comparison between the p-y curves suggested by API – currently used for engineering purposes – and 

the ones obtained in this work will be carried out and some conclusions and suggestions will be 

presented. 

 



Diameter effects of Large Scale Monopiles – a Theoretical and Numerical Investigation of the soil-pile interaction response 

74 

7.2. ULTIMATE BEARING CAPACITY, PU 

7.2.1. API 

As in the case of the hyperbola used to define the p-y curves obtained from PLAXIS 3D, the API method 

also uses two parameters to define its curves: the ultimate bearing capacity, pu; and a parameter yc (or 

y50 as used in 3.4.4.). Figure 7.1 shows the influence of the pu on the p-y curves of the API. 

 

 

Fig. 7.1 – API p-y curves for different values of ultimate bearing capacity 

 

As it is possible to observe in Figure 7.1, the API p-y curves are characterized for having a hyperbolic 

development in its initial phase until it reaches a constant value for the ultimate bearing capacity of the 

soil. This value for the ultimate bearing capacity increases with the depth and the objective of this section 

is to investigate the way this capacity evolves over the depth and weather the method suggested by API 

is correct or not. 

API takes into account two types of failure of the soil: a wedge failure mechanism at shallow depths – 

with the ultimate bearing capacity increasing with depth and defined by equation (3.37) – and a flow 

failure mechanism of the soil around the pile in the horizontal plane for deep depths – constant over 

depth and defined by equation (3.38). The J parameter on equation (3.37) assumes a value of 0.5 for soft 

clays and 0.25 for medium clays. 

A typical evolution of the ultimate bearing capacity of the soil suggested by the API is shown in Figure 

7.2. 
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Fig. 7.2 – Typical evolution of the ultimate bearing capacity of the soil suggested by the API 

 

Point A represents the ultimate bearing capacity at surface of the soil and its value is of three times the 

value of the undrained shear strength (3Su). From point A to point B the failure mechanism is a wedge 

with an increasing bearing capacity of the soil over the depth and from B to C the failure mechanism is 

a flow of the soil with an ultimate bearing capacity of the soil constant over the depth. 

Therefore, three aspects will be analyzed: 

 The value for the ultimate bearing capacity of the soil at the surface (Point A); 

 The value at which there is a change of failure mechanisms (Point B); 

 The equation defining the ultimate bearing capacity of the soil for shallow depths (from point 

A to B). 

The results obtained from PLAXIS 3D show an evolution of the ultimate bearing capacity of the soil 

over the depth just like the one presented by the API. Yet, by comparing the results obtained using the 

method suggested by API with the ones from the models run in PLAXIS 3D, it is possible to see that 

the influence of the different parameters are taken into account in different ways. This is what is going 

to be analyzed next. 
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7.2.2. CONSTANT UNDRAINED SHEAR STRENGTH OVER DEPTH  

Knowing that the undrained shear strength would be the most influent parameter of the soil on its 

ultimate lateral bearing capacity for an undrained loading case, several tests were run using different 

values for this parameter. 

The value for the undrained shear strength assumed initially in the model was a constant value over the 

depth of 100 KPa. In order to have significant and reliable results (enough results to formulate a law) 

the following models were run: the initial value of 100 KPa; one model with half of the initially assumed 

value - 50 KPa; another model with the double of the initially assumed value - 200 KPa. 

The results for the ultimate bearing capacity of the soil obtained from the different values of a constant 

undrained shear strength over the depth are shown in Figure 7.3 for the case of a pile with a diameter of 

6 meters. On the xx axis is the pu in KN/m2 and on the yy axis is the normalized length of the pile (z/D). 

This was chosen in this way, and that’s how it is going to be from here on, so that it would be easier to 

compare all the results and to analyze them in terms of diameter of the pile.  

 

 

Fig. 7.3 – Ultimate bearing capacity of the soil over the depth for different values of undrained shear strength 

using PLAXIS 3D (D=6m) 
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It is important to notice that by imposing a constant value of undrained shear strength over the depth of 

the model some unrealistic and inaccurate results will appear at the shallow depths of the soil. This 

happens because on one hand the OCR is imposed as 1 (normally consolidated) but on the other hand, 

in order to have high values of undrained shear strength, this over consolidation ratio needs to be higher 

than 1 (maybe higher than 5 for the case of 200 KPa).  

Also, at the both tips of the pile, the behaviour of the soil is not very representative of a laterally loaded 

pile which lead to some unreliable results at these depths of the soil. 

By observing the results depicted on Figure 7.3, it is possible to approximate them to the lines shown in 

the same figure (these lines and the following conclusions were based on many other results, not only 

these ones). There are three important things to conclude from these results: 1) the value of 3Su for the 

ultimate bearing capacity of the soil at the surface (point A) seems to be accurate, although better cases 

will be presented further that support better this statement; 2) the depth at which the ultimate bearing 

capacity of the soil remains constant over the depth (point B) seems to be independent from the 

undrained shear strength of the soil and to always assume a value of 1.50 times the diameter of the pile, 

on the contrary of what happens with the API method shown in Figure 7.4; 3) the value for the constant 

ultimate bearing capacity of the soil (from point B on) appears to be 9Su, as suggested by the API. 

 

 

Fig. 7.4 – Comparison between the ultimate bearing capacity of the soil over the depth using the API method and PLAXIS 3D 

for three different values of constant undrained shear strength over the depth of the soil 
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7.2.3. INCREASING UNDRAINED SHEAR STRENGTH OVER DEPTH  

For the case of an increasing undrained shear strength over the depth two different cases were tested: 

one with an increase of 3 KPa of the undrained shear strength over the depth and one with an increase 

of 4 KPa. These values of 3 and 4 KPa for the evolution of the Su over the depth is based on a constant 

ratio of Su and σ’v0 of around 0.3 and 0.4. 

The results for the ultimate bearing capacity of the soil over the depth obtained for the two cases of an 

increasing undrained strength over the depth are presented in Figure 7.5. 

 

 

Fig. 7.5 – Ultimate bearing capacity of the soil over the depth for a variation of the undrained shear 

strength over the depth of 3 kPa and 4 kPa 

 

The blue and the red lines presented in Figure 7.5 show that, imposing a change of failure mechanisms 

at a relative depth of 1.50 but still using the value of 3 times the Su for the pu at the surface and 9 times 

the Su for the pu at deep depths, the approximation of the API method to results obtained from PLAXIS 

3D is very accurate. 
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7.2.4. DIAMETER  

To test whether the diameter of the pile has any influence on the p-y curves three different models, each 

one with a different size of diameter, were run and analysed. The diameters used on the three models 

were of 6, 4 and 2 meters. The results for the ultimate bearing capacity of the soil obtained for the 

different diameters are shown in Figure 7.6.  

Figure 7.7 shows a comparison between the results for the pu of the soil of PLAXIS 3D (dots) and the 

results of the suggest method of API (lines). Notice that the values obtained from PLAXIS can only go 

until a relative depth of 5.0 as this is the depth at the toe of the foundation of the monopile. 

 

 

Fig. 7.6 – Ultimate bearing capacity of the soil for different diameters of the pile 

 

The results presented in Figure 7.7 seem to be very similar between each other and it looks like they 

have a well-defined law comparable to the one of API. However, the relative depth, z/D, at which a 

wedge failure mechanism changes into a flow mechanism is very different. From the obtained results of 

PLAXIS 3D this change of failure mechanism always occurs at a normalized depth of about 1.50 

diameters. According to the API, this point of change of failure mechanism, not only occurs at a much 

deeper depth, but it varies when the diameter of the pile is different. 

Figure 7.8 shows the results of the ultimate bearing capacity of the soil for the different diameters using 

the variation of undrained shear strength over the depth of 3 kPa. 
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Fig. 7.7 – Comparison between the results obtained from PLAXIS 3D and the results of the suggested method of API  

 

 

Fig. 7.8 – Ultimate bearing capacity of the soil for different diameters of the pile for an increase of 3 kPa of 

undrained shear strength over the depth 
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There are two aspects to take into account in Figure 7.8. The first one is the confirmation that the point 

of change of failure mechanisms is of 1.50 time the diameter of the pile and the value of 3 times the Su 

for the pu at the surface and 9 times the Su for the pu at deep depths (the lines represent these conditions). 

The second one is that what was previously verified in Figure 7.6 – the diameter of the pile does not 

have any influence on the ultimate bearing capacity of the soil (in terms of stresses) – does not seem to 

be valid for this case as the pu for the different diameters increase with the increase to the diameter. This 

is not true because, as the undrained shear strength of the soil increases with the depth and pile have 

different lengths, the pu of the soil for the relative depths will be different. This is verified by Figure 7.9 

where, instead of representing the relative depths, the yy axis represents the real depth in meters. 

 

 

Fig. 7.9 – Results obtained from PLAXIS 3D for different diameters with an increase of undrained shear strength 

over the depth  
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7.2.5. YOUNG’S MODULUS 

API does not take into account the soil deformation modulus (or soil elastic Young’s modulus) on its 

method for the calculation of the p-y curves (it uses the yc parameter to define the deformation of the 

soil). Yet, as it is a parameter that effects a lot the behaviour of the soil, a sensitivity study on this 

property of the soil was carried out and its results are presented in Figure 7.10. The Hardening Soil 

model of PLAXIS 3D characterizes the deformation of the soil through a Secant Modulus (E50
ref) and 

the cases studied were of values of 10 MPa, 20 MPa and 50 MPa for this parameter (always with a Su of 

100 kPa). 

 

 

Fig. 7.10– Results obtained from PLAXIS 3D for different values of Young’s Modulus 

 

By observing Figure 7.10 is it possible to conclude that the soil Young’s modulus has no impact on the 

ultimate bearing capacity of the soil. 

 



Diameter effects of Large Scale Monopiles – a Theoretical and Numerical Investigation of the soil-pile interaction response 

83 

7.2.6. CONCLUSIONS AND DEFINITION OF A LAW 

Three main statements can be concluded from the previous results concerning the ultimate bearing 

capacity of the soil: 

 The value for the ultimate bearing capacity of the soil at the surface is of 3Su; 

 The constant value for the ultimate bearing capacity of the soil at deep depths is 9Su; 

 The depth at which there is a change of failure mechanisms is always 1.5 diameters. 

That being said, the method proposed for the definition of the ultimate bearing capacity of the soil 

consists on using equations (7.1) and (7.2). 

 

𝑝𝑢
𝑠ℎ𝑎𝑙𝑙𝑜𝑤 = 3𝑆𝑢 +

4𝑆𝑢

𝐷
𝑧        (7.1) 

 

𝑝𝑢
𝑑𝑒𝑒𝑝

= 9𝑆𝑢              (7.2) 

 

The application of the equations is the same as in the method suggested by API: the ultimate soil 

resistance at a certain depth, z, is the smaller of the values given by the two equations. Again, equation 

(7.1) corresponds to a wedge failure mechanism at shallow depths – with the ultimate bearing capacity 

increasing with depth – and equation (7.2) to a flow failure mechanism of the soil around the pile in the 

horizontal plane for deep depths – constant over depth.  

In terms of pu, there is one big difference between the method proposed in this work and the one 

suggested by the API: The flow failure mechanism of the soil of the API occurs at very deep depths 

compared to the depth of 1.5 diameters here suggested which leads to a big underestimation of the 

ultimate bearing capacity of the soil by the API. The reason of this might be because of the API method 

being based on tests on slender piles where the failure of soil is difficult to identify as the cross section 

of the pile is what fails first. Figure 7.11 shows a typical development of the ultimate bearing capacity 

of the soil over the depth using this new proposed method.  

 

Fig. 7.11– Ultimate bearing capacity of the soil over the depth using this new proposed method 
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7.3. INITIAL STIFFNESS OF THE P-Y CURVE, KS 

7.3.1. API 

The parameter yc used in the API method defines the stiffness of the p-y and the shape of the hyperbola. 

Figure 7.12 shows how a different value of this parameter interferes on the p-y curves. 

 

 

Fig. 7.12 – API p-y curves for different values of yc  

 

By observing Figure 7.12 it is possible to conclude that it is this parameter that defines the point at which 

the hyperbola intersects the constant line of ultimate bearing capacity of the soil: a lower value of yc 

defines a much stiffer curve as it reaches its ultimate bearing capacity at lower displacements. Yet, the 

biggest concern of nowadays researchers is with the initial stiffness of the p-y curve, which is the 

reaction of the soil for small displacements.  

Unlike what happens with the ultimate bearing capacity of the soil, the API method does not take into 

consideration the initial stiffness of the curve and its p-y curves do not look as if it varies with the depth 

or any other property of the soil. Whereas the ultimate bearing capacity of the soil might have different 

values for different depths, the yc parameter is the same for every depth. 

The lack of a law by the API for the definition of the initial stiffness of the p-y curve – like the one for 

the ultimate bearing capacity (Figure 7.2) – makes it more difficult to identify its real behaviour and 

development over the depth as there is no reference or starting point. 
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7.3.2. UNDRAINED SHEAR STRENGTH  

Obtained from the same models as the results for the ultimate bearing capacity of the soil, Figure 7.13 

shows the results for the initial stiffness, ks, for different values of undrained shear strength over the 

depth. Based on the results obtained, no distinction was made between a constant and an increasing 

undrained shear strength over the depth. 

 

 

Fig. 7.13 – Initial stiffness of the p-y curves obtained from PLAXIS 3D for different values of undrained shear strength 

 

A few conclusions are possible to point out by observing Figure 7.13 and the first one is that the 

undrained shear strength of the soil does not have any impact on the initial stiffness as the results for 

every case present, more or less, the same outcome. 

It is possible to identify two important resemblances between the development over the depth of the 

results here presented and the ones of the ultimate bearing capacity of the soil: first, there are to different 

lines which might be for the same reason as in the ultimate bearing capacity: two different failure 

mechanisms of the soil that change at a certain depth; and secondly, the point at which one line changes 

into the other seems to be the same as the one observed in the cases of the ultimate bearing capacity – 

1.50 times the diameter of the pile. 
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7.3.3. DIAMETER  

The influence of the diameter of the pile on the evolution of the initial stiffness of the curves over the 

depth is shown in Figure 7.14. 

 

 

Fig. 7.14 – Initial stiffness of the p-y curves obtained from PLAXIS 3D for different diameters of the pile 

 

The effect of the diameter of the pile on the initial stiffness of the p-y curves is clear in Figure 7.14: the 

smaller the diameter of the pile is, the stiffer the curve is for very small deformations. Yet, the relation 

between the diameter of the pile and the initial stiffness is not easy to identify: the difference between 

the initial stiffness for the diameter of 6 meters and the one for 4 meters is much smaller than the 

difference between the initial stiffness for the diameter of 4 meters and the one for 2 meters although 

the difference between diameters is always 2 meters. 

Besides that, the same trends for the development of the initial stiffness of the p-y curves over the depth 

seem to appear as in the case of the undrained shear strength. 

As it is possible to conclude by looking at equation (3.20), the API takes into account diameter of the 

pile when it comes to the stiffness of the p-y curves. 
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7.3.4. YOUNG’S MODULUS 

Finally, the results for the initial stiffness the p-y curves obtained from the different values of the 

Young’s modulus are presented in Figure 7.15.  

 

 

Fig. 7.15 – Initial stiffness of the p-y curves obtained from PLAXIS 3D for different values of Young’s modulus 

 

Again, notice that the values presented here for the Young’s modulus is the value used for the Secant 

Modulus (E50
ref) requested by the Hardening soil model in PLAXIS 3D. 

By looking at Figure 7.15 it is possible to see that the influence of the soil deformation modulus on the 

initial stiffness of the p-y curves is large and, the higher this value is, the stiffer the curve is. Once more, 

the relation between the increase of the Young’s modulus and the increase of the initial stiffness of the 

curves is not linear. 
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7.3.5. CONCLUSIONS AND DEFINITION OF A LAW 

As observed on the preceding sections, the initial stiffness of the of the p-y curves depends on both the 

diameter of the pile and the soil deformation modulus. Therefore, to define a law for the evolution of ks 

over the depth it is necessary to find out how these parameters affect the initial stiffness of the curves. 

In order to do so, it was chosen to dimensionless the previous results, starting with the Young’s modulus 

(Figure 7.16). 

 

 

Fig. 7.16 – Initial stiffness of the p-y curves normalized by the Young’s modulus 

 

In order to obtain the results of Figure 7.16, it was chosen to normalize the initial stiffness by the 

Young’s modulus. Figure 7.16 shows a perfect correlation when this procedure is applied which allows 

the statement that the relation between the initial stiffness of the p-y curves and the deformation modulus 

of the soil is linear and in the same direction – higher values of deformation modulus leads to higher 

initial stiffness. 
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For the results obtained for the different diameters of the pile – shown in Figure (7.17) – a different 

procedure was used.  

 

 

Fig. 7.17 – Initial stiffness of the p-y curves normalized by the diameter of the pile 

 

On the contrary of what happened with the Young’s modulus, the relation between the diameters of the 

pile is not linear and the Young’s modulus grows with the decrease of the diameter. The fact that is not 

the same direction is obvious from Figure (7.14) where the initial stiffness increases as the diameter of 

the pile is lower. As for the linear relation, the different results were not matching when this was applied 

so a new relation was searched and the final outcome was the one shown in equation (7.3).  

 

𝐷
(1+

1

𝐷2)
          (7.3) 

 

Table 7.1 – Relation between diameters 

D (m) 1 2 4 6 8 

Equation (7.3) 1 2.378 4.362 6.306 8.264 
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By observing the results and Figures 7.16 and 7.17 equations (7.4) and (7.5) were deducted and 

presented as the solution for the evolution over the depth of initial stiffness of the p-y curves (E50 in 

MPa and D in meters). 

 

𝑘𝑠ℎ𝑎𝑙𝑙𝑜𝑤 = 3000
𝐸50

𝐷
(1+

1

𝐷2)
        (7.4) 

 

𝑘𝑑𝑒𝑒𝑝 = 600(
𝑧

𝐷
+ 3.5)

𝐸50

𝐷
(1+

1

𝐷2)
             (7.5) 

 

In the same way as the ultimate bearing capacity, the initial stiffness of the p-y curves has one equation 

for shallow depths concerning a wedge failure mechanism and one other equation for deep depths due 

to a flow failure mechanism of the soil and, at the certain depth, the higher k from the two equations 

should be the one assumed. 

The typical evolution over the depth of the initial stiffness is very similar to the one of the ultimate 

bearing capacity of the soil, as shown in Figure 7.18. 

 

 

Fig. 7.18 – Initial stiffness of the p-y curves over the depth using this new proposed method 

 

 



Diameter effects of Large Scale Monopiles – a Theoretical and Numerical Investigation of the soil-pile interaction response 

91 

7.4. P-Y CURVES 

Having defined the new proposed method for the characterization of the p-y curves, a comparison 

between this method and the one suggested by the API will be now performed. The comparison will be 

made for the case of the Zomergen clay mentioned in chapter 4 of which the parameters used in both 

methods are known (4.4.1. – Table 4.1).  

The biggest difference between the two methods is in the definition of the failure mechanisms of the 

soil which controls the evolution of the ultimate bearing capacity of the soil over the depth. Figure 7.19 

compares the pu over the depth of the two methods. 

 

 

Fig. 7.19 – Evolution of the ultimate bearing capacity of the soil over the depth 

 

By observing Figure 7.19 it is clear that, as stated before, the API method underestimates a lot the 

ultimate bearing capacity of the soil for the shallow depths. This underestimation leads to an oversizing 

of the piles on the design of these monopiles foundations which, consequently, implicates much more 

expenses on these structures. 

 Figures 7.20 and 7.21 show, for a case of a pile with 6 meter of diameter and 30 of length, the p-y 

curves using the two different methods (curves presented from 0 to 30 meters, each 3 meters) increasing 

the depth from the bottom to the top of the graphs. 
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Fig. 7.20 – p-y curves of the new proposed method 

 

 

Fig. 7.21 – p-y curves suggested by the API 

 

The first aspect to notice when looking at these figures is that, while the new proposed method reaches 

the ultimate soil reaction of 9Su (900 kPa in this case) very early, the API never actually reaches this 

value which means that it considers that along the all length of the pile there is a wedge failure 

mechanism, which is very unrealistic. 

The same thing happens for small displacements, which are the ones of real interest for engineering 

design, with the soil reaction being much lower in the API method. 

One other thing to notice is that, in the API once the depth of the soil flow failure mechanism is reached, 

the p-y curves are always the some below that depth as the ultimate bearing capacity is always the same 

and the yc never changes. On the contrary, in the new proposed method once the ultimate bearing 

capacity of 9Su is reached the pu will the same for the depths below this one but the ks is still different 

and increasing over the depth. This is in better accordance with the reality as, although the capcity of 
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the soil might not increase more, its confinement should always increase with the depth as both the 

vertical and the horizontal stresses are increasing. 

The effect of the undrained shear strength on both methods is shown in Figure 7.22 and is as expected: 

a stretch of the curves on the soil reaction’s axis (yy axis). 

 

 

Fig. 7.22 – Effect of the undrained shear strength of the soil on the p-y curves of the two methods 

 

The effect of the parameter yc and the soil deformation modulus on, respectively, the API and the new 

proposed method p-y curves is shown in Figure 7.23. The effect on the curves is the same, which is 

higher stiffness for the curve. Yet, the yc parameter is a parameter of the soil difficult to evaluate and 

much less used to characterize a soil when compared to the Young’s modulus which leads to the 

conclusion that a method using a parameter as the E instead of the yc is greatly more appreciated by the 

general engineer.  

 

 

Fig. 7.23 – Effect of the parameters of deformation of the soil on the p-y curves of the two methods 
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7.5. DIAMETER EFFECTS ON THE P-Y CURVES 

Figure 7.24 shows a case of the p-y curves of the method suggested by API and the method proposed in 

this work for the diameters of 2, 4 and 6 meters. Figure 7.25 shows the same case but with the 

displacements normalized by the relation from equation (7.3). 

As stated before, the p-y curves shown throughout this work are expressed in term of soil reaction, 

kN/m, and displacement, m, but, as what it is being here analysed is the soil reaction per unit of length 

of the pile, the subgrade reaction modulus, kN/m2, assumes the same value as the soil reaction. 

 

 

Fig. 7.24 –p-y curves of the two methods for different diameters 

 

 

Fig. 7.25 –p-y curves of the two methods for different diameters with the displacement, y, normalized 
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By observing the two figures one main aspect is possible to stress: the API method assumes that the 

resistance of the curves depends on the diameter but its stiffness does not. On the other hand, the new 

proposed method assumes that the diameter of the pile as no influence on the resistance of the p-y curves 

whereas its stiffness does depend on it.  
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8 
CONCLUSIONS AND FUTURE 

DEVELOPMENTS 

 

 

8.1. CONCLUSIONS 

In this work a finite element numerical model was developed in PLAXIS 3D to simulate a rigid (short) 

pile subject to a static lateral load. The purpose was to study the interaction between the soil and the pile 

and to investigate whether the diameter of the piles influence this relationship. The soil-pile interaction 

in usually characterized by the so called p-y curves – curves relating, at a certain depth, the reaction of 

the soil, p, and the displacement, y. 

Some differences were observed between the design method suggested by the American Petroleum 

Institute (API) to calculate the p-y curves and the results obtain from the FEM model. 

The soil here used was a Zomergen Clay, a clay characteristic of the seas around the United Kingdom 

and Scandinavia – North Sea and Baltic Sea. A Hardening Soil model with an undrained behaviour was 

used to emulate the soil behaviour in all the performed analyses. The description of the properties of the 

soil, the constitutive model and the geometry of the model is made in Chapter 4. 

From the two different analyses performed, the first one, described in Chapter 5, is a simulation of a 

typical real case scenario of a monopile laterally loaded. The numerical simulations showed a 

deformation of the pile and the soil similar to the reality and, using the differential equation developed 

by Hetenyi (1946), the obtaining of the soil reaction was tried to be done through the deflection of the 

pile. However, no results were obtained concerning the p-y curves as the differential equation does not 

take into account the properties of the soil and its nonlinear behaviour.  

The second analysis consisted on applying a translation of the pile. The advantage of this scenario, 

described in Chapter 6, is that the same displacement is applied along the whole depth of the pile, unlike 

the previous case where there were some parts of the pile with almost no displacement (mainly, in the 

rotation area). The method used to obtain the soil reaction was the integration of the stresses around the 

pile, which was only possible using MatLab to process the whole amount of exported data from the 

FEM model. 

After having defined and optimized a procedure to calculate the soil reaction using the integration of the 

stresses around the pile, the equation suggested by Georgiadis in 1992 was concluded to be the best 

fitting curve for the obtained p-y curves. The input parameters of this equation are the ultimate bearing 

capacity of the soil, pu, also an input parameter on the API suggested method, and the initial stiffness of 

the p-y curves, ks, as in opposite to the parameter yc used in the API method that, indirectly, defines the 

initial stiffness of the curves.  
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Using MatLab, again, it was possible to evaluate how the parameters of the equation of Georgiadis 

develop over the depth and formulate a law based on these results. But first, in order to have a reliable 

and credible law, some sensitivity studies were perform on parameters that were believed to have an 

influence on the pu and the ks. These parameters were the undrained shear strength of the soil, Su, the 

Young’s modulus of the soil (Secant modulus in the Hardening Soil model of PLAXIS 3D), E50, and the 

diameter of the pile, D. 

The evolution of the ultimate bearing capacity of the soil over the depth using the API suggested method 

is not very different from the one observe in the results of PLAXIS 3D. There is an equation defining pu 

for shallow depths that increases over the depth – characteristic of a wedge failure mechanism – and one 

other equation for deep depths that remains constant over the depth – soil flow failure mechanism. 

However, while the API supports the idea that the evolution of this parameter over the depth is a function 

of the diameter of the pile, the undrained shear strength and the vertical effective stress, on the results 

of PLAXIS 3D the ultimate bearing capacity of the soil only depends on the undrained shear strength. 

Also, the point at which there is a change of one failure mechanism into another was observed to be 

always the same (1.5 diameters in depth) in PLAXIS 3D while in the API method it varies with the 

different parameters that affect the pu. Although no sensitivity studies were performed on the unit weight 

of the soil, , this parameter is believed to have a small or even a null influence on the results of the 

FEM model. 

For the initial stiffness of the p-y curves, ks, a similar law to the one of the ultimate bearing capacity was 

deduced. However, the constant value of ks was observed to happen at shallow depths (where the pu was 

increasing) and increasing from that point on (where the pu was constant). There is no possible 

comparison with the API method as it defines the stiffness of the p-y curve using the yc parameter with 

the same value over the whole depth. 

Having defined the equation for the p-y curves and the equation to define the evolution of the parameters 

pu and ks over the depth, a comparison with the p-y curves of the API suggested method was performed. 

As concluded for the evolution of the ultimate bearing capacity of the soil over the depth, the p-y curves 

of the API method underestimates the bearing capacity of the soil for shallow depths. The reason of this 

is because it overestimates the depth at which the wedge failure mechanism changes into a soil flow 

failure mechanism which affects the capacity of the soil. 

As for the stiffness of the p-y curves, while the API method uses a constant value for the yc over the 

depth, the proposed method takes into account the increase of the confinement state of the soil over the 

depth through the increase of the initial stiffness of the curves, ks, over the depth. 

The diameter of the pile was concluded to have an important influence on the initial stiffness of the p-y 

curves but no influence on the resistance while on the API suggested method it is the opposite that 

occurs.  

Finally, the method proposed in this thesis is considered by the author considerably more coherent with 

the reality as in both the resistance and the stiffness of the p-y curves. Also, as it uses the Young’s 

modulus to define the stiffness, as in opposite to the yc parameter of the API method, it is possible to say 

that it is a much more friendly method to use by an engineer for the current design of the monopoles 

foundations 
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8.2. FUTURE DEVELOPMENTS 

The results that were obtained suggest that the new proposed method is reliable in its assumptions and 

conclusions. However, some improvements should be incorporated in order to support even more the 

results here obtained such as improvements in the FEM model, validations of results and sensitivity 

studies. Future studies are now suggested: 

 Evaluate the effect the mesh on the results provided by PLAXIS 3D. The coarseness of the mesh 

of both the soil and the plate representing the pile was found to be very influent not only on the 

calculation time (as expected) but also on the results obtained. To accomplish this goal it is 

important to increase the knowledge on the behaviour of the interfaces of PLAXIS 3D, as these 

usually are the source of many problems. 

 Sensitivity studies on the unit weight of the soil, , in order to evaluate whether this property of 

the soil is irrelevant for the definition of the p-y curves or if it actually influences them in any 

aspect; 

 Sensitivity studies on the relationship between the length and the diameter of the pile. In fact, 

throughout this work, all the calculations were performed with the same L/D of 5 and it is 

important to know if a different relationship between the length and the diameter of the pile, 

always keeping the pile rigid, leads to different results; 

 Sensitivity studies on more diameters of the pile. The relation assumed for the initial stiffness 

of the p-y curves and the diameter (equation (7.3)) has a perfect fitting for the cases here studied 

but there is not certain that it works for bigger and smaller diameters. 

Performing these suggested developments should fully complete the work develop in this thesis. Having 

more sensitivity studies to confirm the verified results and add new results to this investigation should 

strengthen the proposed method and make it very reliable. 

At the end, the author of this thesis thanks COWI A/S for having proposed this research work and hopes 

that the work here developed and the obtained conclusions can be helpful of the activities of this 

company. 
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