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Abstract 

In the last decades, several research projects have been devoted to the understanding 

and analysis the sit-to-stand (STS) movement, its characteristics and impact in our daily lives. 

Despite the efforts, there isn’t currently a standard method to analyse its normality. Most of 

the developed methods use markers in order to collect data from points of interest. The 

Kinect is a new technology which enables the acquisition of three dimensional depth images 

in real time and body-joint tracking without markers. In this dissertation a new STS 

movement analysis system using the Kinect platform is presented.  

The STS movement was divided into 5 phases: “Sitting”, “Phase 1”, “Phase 2”, “Phase 3” 

and “Standing”. An initial segmentation of the acquired movements was performed, obtaining 

time windows of interest. From this initial segmentation a manual evaluation of the data was 

performed, creating an initial dataset. Each sample of the dataset corresponds to a 13-

dimensional feature vector, collected from a single frame of the movement. In order to 

balance the classes the Synthetic Minority Over-sampling Technique (SMOTE) was used, 

obtaining a new dataset. 

Hidden Markov Models (HMMs) classifiers, trained with the datasets were employed to 

classify the samples.  In the training phase two different training algorithms - Baum-Welch 

algorithm and Segmental K-means algorithm - were used for training. A precision of 83% and 

recall of 87% were obtained for classifier used in the final application. Angles and angular 

velocities of the trunk, knees and ankles were extracted and analysed. An interface to display 

real time information of the movement was developed in order to give feedback to the user. 
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Resumo 

Nas últimas décadas, diversos projetos de pesquisa têm-se dedicado a compreender e 

analisar o movimento Sentar-Levantar, as suas características e impacto em nossas vidas 

diárias. Apesar dos esforços, não existe atualmente nenhum método padrão para analisar a 

sua normalidade. A maioria dos métodos desenvolvidos requer o uso de marcadores para 

recolher dados de pontos de interesse. A Kinect é uma nova tecnologia que permite a 

aquisição de imagens de profundidade tridimensionais em tempo real e seguimento do corpo 

humano sem marcadores. Nesta dissertação é apresentado um novo sistema de análise de 

movimento Sentar-Levantar usando a plataforma Kinect. 

 O movimento Sentar-Levantar foi dividido em cinco fases: “Sitting”, “Phase 1”, “Phase 

2”, “Phase 3” e “Standing”. Foi efetuada uma segmentação inicial dos movimentos, obtendo-

se janelas de tempo de interesse. Depois da segmentação inicial foi realizada uma avaliação 

manual dos dados adquiridos, tendo sido criado um conjunto de dados inicial. As amostras 

recolhidas são vetores de 13 dimensões, recolhidos a partir de uma única frame do 

movimento. Com objetivo de equilibrar as classes a técnica Synthetic Minority Over-sampling 

(SMOTE) foi usada, obtendo-se um novo conjunto de dados. 

Classificadores baseados em Hidden Markov Models (HMMs) foram treinados com os 

conjuntos de dados. Na fase de treino foram usados dois algoritmos – Baum-Welch algorithm e 

Segmental K-means algorithm – para treinar os classificadores. Obteve-se precisão de 83% e 

recall de 87% para o classificador utilizado na aplicação final. Ângulos e velocidades angulares 

do tronco, joelhos e tornozelos foram extraídos e analisados. Um interface com a informação 

do movimento em tempo real foi desenvolvido de forma a fornecer feedback ao utilizador. 
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Chapter 1  

Introduction 

1.1 -  Context, Motivation and Objectives 

Rising from a chair is one of the basic daily functions required for independent living. This 

is even more noticeable when a good mobility is required to perform daily tasks, such as using 

the bathroom, cooking or even going to the working site. The sit-to-stand (STS) movement is a 

particularly difficult task for elderly individuals, especially if any musculoskeletal or 

neurological disorders are present [1, 2]. Although it is just one of the many daily activities, 

it is performed in average 60 times a day by community-dwelling adults and young individuals 

[3]. The correct assessment of the STS movement is helpful in the determination of the 

functional level of a person [1-8]. 

Depending on the scope of the study, several evaluation methods can be used to classify 

and analyse aspects of the STS movement. These methods can vary from motion analysis 

systems [8, 9], force plates and goniometry [7] to electromyography analysis [10-12] and 

accelerometry [13]. Due to the high variety of factors that influence the STS movement, 

there isn’t currently a standard method to characterise its normality and performance. Also, 

these methods are usually expensive, requiring specialised equipment and the help of health 

professionals in order to be performed, being highly time consuming activities. 

The Kinect from Microsoft is a new accessible, affordable and programmable technology 

which enables real-time three-dimensional (3D) body-joint tracking [14, 15], along with 

localization and tracking of objects with good accuracy and resolution [14, 16]. Although the 

initial applications of the Kinect were mainly for videogames, several works are in 

development in other fields [17-22]. Some of the most promising fields of application are the 

human gesture recognition [20-22] and the rehabilitation [17-19] fields, where the Kinect can 

bring an interactive and dynamic environment to our homes, which used to be inaccessible. 

The aim of this dissertation is to develop an approach for a computer aided analysis of the 

STS movement using the 3D body-joint tracking data acquired with the Kinect platform. The 
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developed system should be as automatic as possible, giving feedback to the user about the 

movement and enabling the acquisition, and posterior consultation and analysis of the data. 

Since no specific equipment besides the Kinect platform is required, this system shall be 

accessible to everyone with a Kinect, leaving open the possibility of its adaptation to the 

rehabilitation field as a home system to help with the patients’ physiotherapy. 

1.2 -  System Overview 

In order to analyse the STS movement, a system using the Kinect potentialities was 

idealized. The system starts by obtaining the 20 body-joint coordinates generated by the 

Kinect sensor in real time, during the performance of the STS movement for each captured 

frame. These movements were performed in a specific and controlled room setup. 

An initial filtering was performed in order to remove noise and jittering from the samples. 

The movements were then manually segmented and analysed, frame-by-frame, labelling each 

frame accordingly. The objective of this manual segmentation and labelling is to have a 

ground truth and enable the training of a Hidden Markov Model (HMM) sequence classifier to 

recognize different classes. The main objective of the classification step is to divide the 

movement into different phases, in order to better analyse the characteristics of each phase.  

A set of features was used to train the HMM sequence classifier. These features were 

obtained by processing the 3D body-joint data previously collected. This data consisted of 

successive space coordinates (x, y, z) of the 20 body-joints collected while performing the 

STS movement. A good set of features is important to reach good results in the classification 

step. While processing the acquired data, information about the movement can be obtained. 

This information can range from trajectory of the joints and centre of mass (COM), joint angle 

variations, angle variations between body segment to the duration of the movement and 

phases. The last step of the system is to give visual feedback to the user, showing this 

information and being able to save it for later usage and analysis. 

 

1.3 -  Contributions 

In the following list are summarized the main contributions of this dissertation: 

 It is presented a new system for the analysis of the STS movement. This system uses 

the Kinect platform to acquire data, providing a low-cost and accessible tool for home 

rehabilitation purposes. 
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 A new automatic segmentation of the STS movement based on HMMs is presented.  A 

total of 5 main phases detected are “Sitting”, “Phase 1”, “Phase 2”, “Phase 3” and 

“Standing”. 

 
 An assessment and analysis of the acquired angles and angular velocities is 

performed, providing an idea of the applicability of the system. 

 

 A final application that allows the users to analyse the STS movement, review them 

and save the acquired for other applications. 

1.4 -  Document Outline 

Chapter 2 (Literature Review) addresses several topics found in the literature that are 

relevant for presented work: different ways to analyse and subdivide the STS movement over 

the years, main characteristics that can be extracted from the STS movement, an overview of 

the Kinect platform main characteristics, along with the viability of the acquired data, some 

considerations about the features acquired with the Kinect and their limitations due to the 

factors that affect the STS movement, and finally classification methodologies with focus on 

the HMMs.  

In Chapter 3 we explore the methodologies, the decisions taken and reasoning behind 

these decisions. In this chapter a detailed description of the proposed system is presented 

The next chapter (Chapter 4) describes the developed interface for the system. The 

libraries and software used in this work are also mentioned in this chapter. The experimental 

results are reported, analysed and discussed in Chapter 5. Lastly, conclusions are drawn and 

future work is proposed in Chapter 6. 



 

 

 

 

 

 

Chapter 2  

Literature Review 

In the last decades, many researchers have developed and proposed several methods to 

analyse and evaluate the STS movement. Depending on the aim of the study the STS 

movement can be defined and analysed from different scopes. Kinematics, kinetics, muscle 

contraction and patients’ functional evaluation are the most usual analysis methods [1, 2]. 

The Kinect brought to everybody’s home an interactive and programmable system, which 

enables the collection of 3D depth images and body-joint tracking. Several researches of its 

applicability in the rehabilitation field are on development, showing promising results [17-19, 

23-26]. 

In this chapter, we will organise the literature review by identifying the main 

contributions in the main phases of the STS movement analysis, namely for phases definition, 

movement segmentation, feature measurement and classification. 

2.1 -  STS Movement 

To begin with, it is important to understand the basics of the STS movement, and how it 

has been described over the years, along with the major factors that impact its analysis. 

Rising from a chair is a basic daily function required for independent living. The inability 

to perform such a task, depending on the degree of limitation, may lead to 

institutionalization, impaired functioning and reduced mobility in daily living activities. In the 

worst case scenario it may lead to death [1]. 

In order to successfully perform the STS movement, a shifting of weight from the 

buttocks and posterior thighs to the feet is required. This process requires an anterior 

followed by a vertical movement of the body’s centre of mass (COM) [2]. This is executed 

primarily by a flexion of the hips and anterior movement of the head-arms-trunk segment, 

immediately followed by the extension of the hips, knees and ankles [2, 8, 27]. 
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Depending on the scope of study, the way that the STS movement is defined varies and 

different definitions of phases are possible.  

 

2.1.1 -  STS movement subdivision into phases 

Back in 1986, Nuzik et al. [7] developed a visual model of the STS movement pattern 

from film data collected of 38 women and 17 men. Using body landmarks as data points, 

angles of interest were defined and angle variations were recorded during the STS movement. 

In order to compare the movement between subjects, the movement time was divided into 

5% increments, providing points of comparison. For each interval the mean and standard 

deviation of each angle were calculated across all subjects, along with the mean horizontal 

and vertical coordinates of the data points, creating a schematic of the entire movement 

cycle, as shown in Figure 2.1. 

 
Figure 2.1 - (A) Diagram of a representative movement pattern; the data points were joined by lines to 
form stick lines; (B) Diagram of the trajectories of the data points at tragus, acromion, midiliac crest, 
hip and knee (image from [7]). 

 

In the study the authors concluded that the STS movement could be subdivided into two 

main phases, the flexion phase which occurred during the first 35% of the movement cycle, 

and the extension phase, denoted by a reversal movement of the head and rapid extension of 

the knee. As seen on Figure 2.1, in this kinematic study the body landmarks used are the 

ankle, knee, hip, pelvis, trunk and the head. These points coincide with the some of the 

(A) (B) 
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body-joint detected by the Kinect [28, 29]. In this work they were used in order to obtain a 

representative diagram of their trajectories during the STS movement, characterising the 

variation of the angles between body segments. 

Later, Schenkman et al. [8] described the STS movement using kinematic and kinetic 

variables, defining 4 main phases for the movement. The first phase is the flexion-momentum 

phase. It starts with the initiation of the movement and ends just before the buttocks are 

lifted from the seat. The second phase is the momentum-transfer phase. This phase begins as 

the buttocks are lifted and ends when maximal ankle dorsiflexion is achieved. The third phase 

is the extension phase which is initiated just after maximum dorsiflexion and ends when the 

hips first cease to extend (including leg and trunk extension). The last one is the stabilization 

phase. It starts after hip extension is reached and ends when all motion associated with 

stabilization is completed [8]. 

 

 

Figure 2.2 - Four phases of the STS movement marked by four key events (image from [8]). 

 

The variables analysed in this study were joint angles, velocities and torques of specific 

upper and lower segments of the body, examining the maximum values achieved and the 

timing of this events. In order to be able to analyse these variables, multiple LEDs were 

embedded in fixed arrays and anchored to 11 body segments. These worked as markers in 

order to obtain the desired data. In this study, instead of marking and analysing specific body 

landmarks of the human body (like in [7]), the body segments that connect these landmarks 

were tracked and analysed. 

In the previously described studies, markers were used in order to be able to obtain the 

data. These methods are not suitable to be used but in laboratory controlled environments,  

being expensive and in some cases uncomfortable, as it is possible to see from the setup of 

these studies ([7, 8, 30]).  
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Since the objective of the developed work was to develop a markless system to analyse 

the STS movement using the Kinect, the approaches described before were not completely 

suitable for our system.  

In 2010, Goffredo et al. [9] explored a markless computer vision technique used to track 

natural elements on the human body surface. Translation, rotation and scaling were 

estimated by means of a maximum likelihood approach in the Gauss-Laguerre transform 

domain [9]. The technique was applied to the analysis of the STS movement in young and 

elderly people. The movements were subdivided into three phases defined by kinematics, and 

data, such as duration of the phases, trunk, knees and ankle angles, minimum trunk and ankle 

angles angle, and maximum trunk and ankle angular velocities, was extracted [9]. The first 

phase starts with the trunk flexion and ends at the beginning of knee extension. The second 

phase ends when the trunk reverses to extension. Finally, the third phase corresponds to the 

extension of the body to the standing position [9]. The representation of the 3 phases can be 

seen on Figure 2.3. 

 

 
Figure 2.3 - STS motor task with phases defined by kinematic data (image from [9]). 

 

When inspecting this subdivision of the movement, the first phase ends when the ankle 

angle decreases at 95% of its maximal value. The second phase ends when the trunk angle 

decreases to its minimum value. The movement ends when the trunk angle returns to 90º 

(upright stance) [9]. 
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A subdivision into phases resulting from the combination of the aforementioned 

information was used in this work. The detailed description of this methodology is presented 

on Chapter 3. 

2.2 -  Kinect characteristics brief overview 

The Kinect is a device developed by Microsoft which can either be used with the Xbox 

360 gaming console, or with a computer. A detailed description of the Kinect characteristics 

and respective SDK can be found in [28], [29], [31]. 

By means of 3D depth images, RGB images and audio devices, the Kinect allows the 

control of games using the player’s body instead of a remote controller. This is possible due 

to the identification of the user’s joints and consequent movement tracking in a three-

dimensional space by means of sensor data analysis [28, 29]. Understanding the limitations 

and errors associated with the Kinect measurements is important when defining the 

limitations of the platform. 

 

2.2.1 - 3D depth data 

The 3D depth sensor is composed by an infrared (IR) projector and an IR camera, which 

together enable the acquisition of the depth images. The IR projector emits a single beam 

which is split into multiple beams. This is done by a diffraction grating which creates a 

constant pattern of speckles. The pattern is then captured and correlated against a reference 

pattern, which was obtained by capturing a plane at a known distance [14]. The system has a 

limited field of view, as shown on Figure 2.4. 

 

Figure 2.4 - Kinect field of view (adapted from [28]). 

 

Also, the RGB camera allows the acquisition of two-dimensional colour video and is 

usually used for facial recognition and for displaying images on the screen during a game [28, 

29]. 
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Table 2.1 - Kinect characteristics discriminated, including ranges, resolutions, frames per 

second counts and fields of view (information taken from [28, 29]). 

Depth Image Capture Range Standard use: 0.8m to 4m 

Depth Image Stream Up to 640x480 16-bit, 30 fps 

Colour Image Stream Up to 1280x960 8-bit, 12 fps 

Audio Stream 16-bit, 16 kHz 

Field of view 
Horizontal: 57º 

Vertical: 43º 

Motor Tilt Range ±27º 

 

In Table 2.1 additional specifications of the Kinect can be seen. Although it is stated that 

the range of the depth sensors varies from 0.8m to 4m, in reality the recommended range is 

from 0.9m to 3.7m, since the reliability of the depth data degrades near the edges of the 

field of view [28]. 

With the new versions, 1.5 and further, of the Kinect for Windows, there is a new tool – 

Kinect Studio - that enables the possibility of recording, playing back and debugging clips. 

Also, it is now possible to capture depth data beyond the 3.7m mark and with the near mode 

in a closer range than it used to, maintaining the reliability of the depth data acquired [29]. 

The primary function of the Kinect is to obtain 3D data. Figure 2.5 shows an example of a 

grayscale image obtained with the Kinect depth sensor. 

 

 

Figure 2.5 - Example of a raw depth image obtained using the Kinect (image from [28]). 

 

The values of each pixel in the image range from 0 to 255, which correspond to their 

depth value. The depth value zero (black) means that the Kinect was unable to determinate 

the depth of the pixel. This usually happens due to the presence of shadows, low reflectivity 
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and high reflectivity [28]. These values are obtained according to the coordinate system 

presented on Figure 2.6. 

 

Figure 2.6 – Kinect’s coordinate system (image from [29]). 

 

This system of axis is projected on the subject and as a consequence the X and Y values 

can have negative or positive values, while the Z coordinate will always be positive. Figure 

2.7 shows how this coordinate system is projected on a point. 

 

Figure 2.7 – Representation of the Kinect’s coordinate system projection on a point. 

The point immediately in front of the 3D depth system of the Kinect will have the X and Y 

coordinates equal to zero and the depth value Z. The zero value of the depth coordinate is on 

the Kinect.   

Also, for each pixel a player index is attributed, referring the pixel as being part of the 

silhouette of a player or not. This enables the possibility of differentiation between multiple 

players and between the players and the background [28]. 
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2.2.2 - Skeleton Tracking 

The depth data acquired with the Kinect by itself is limited. In order to create useful 

applications with the Kinect, more information beyond the depth data for each pixel is 

required. The Kinect allows the processing of the depth data in order to establish the 

positions of 20 human skeleton joints, allowing the collection of the X, Y and Z values for 

each of the points seen on Figure 2.8 [28]. 

The algorithm for body-joint tracking starts by making a joint guess for each pixel of the 

depth image along with its confidence level. Based on several recordings, in which the joint 

positions were marked by hand later or markers are used, data was acquired. Analysing many 

depth frames with the joints correctly labelled and using machine learning techniques, the 

algorithm was trained to recognize the joints from depth images. Finally, taking this joint 

guesses and confidence levels into consideration, a skeleton is chosen [32]. 

This kind of approach for the skeleton tracking has the advantage of not requiring any 

kind of calibration in order to start the process, since an initial estimation of the skeleton is 

made and then adapted to the actual body [28, 29, 31]. 

 

Figure 2.8 – Joint points detected by the Kinect algorithm (image from [31]). 
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2.2.3 - Viability of the acquired data 

Khoshelham et al. [14] described some of the error sources and imperfections of the 

Kinect data. The three main sources of error described are the sensor, measurement setup 

and properties of the object surface.  

The sensor errors usually refer to inadequate calibration and less accurate measurements 

of the disparities. An inadequate calibration will lead to systematic errors in the object 

coordinates of the points. Errors measuring the disparities will also influence the accuracy of 

individual points. 

The setup where the Kinect is used is also important for the accuracy of the obtained 

data. For example lighting conditions will influence the correlation and the measurement of 

the disparities. Strong light will lead to low contrast of the IR image, leading to depth values 

of 0 (unknown). Also, depending on the geometry of the objects in analysis, some parts may 

be obstructed or shadowed leading to inaccurate results. 

Finally, the properties of the object surface will also affect the measurements. Smooth 

and shiny surfaces may hinder the measurement of disparities, once again leading to 

inaccurate results. 

K. LaBelle [33] tried to find answers to some interesting and crucial questions about the 

data acquired using the Kinect, specifically when using the Kinect SDK [31] and the OpenNI 

SDK [34] to acquire the data. Those questions were [33]: 

 

- Is it possible to identify phases of movement from joint position data gathered during a 

therapy exercise? 

- How consistent and stable are the joint positions during activities typically performed 

during a therapy session? 

 

In this case, phases of movement were defined as: “sitting”, “moving” and “standing”. All 

the tests performed to validate the data were based on a STS exercise. The author described 

that the STS movement was frequently employed in stroke therapy and diagnostics. The data 

was collected at varying distances, from 1.5m to 3.5m [33]. 

The author reported that the data acquired was well-suited for identifying phases of the 

movement, being able to distinguish between the previously mentioned phases during the STS 

movement. 

When investigating the joint position consistency the author analysed the standard 

deviations of joint positions obtained during “sitting” and “standing” phases. The author 

reported that in general, the consistency of the data was very high. Some of the results can 

be seen on Table 2.2. 
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Table 2.2 – Standard deviations of joint readings. 

Joint Kinect SDK [cm] 

Head 1.8 

Hip 1.2 

Knee 1.5 

Although, the author used one of the first versions of the Kinect SDK and did not use any 

kind of data smoothing or filtering in order to improve the results. The newer versions of the 

Kinect SDK offers a group of filtering and data smoothing options, that can remove jittering 

and improve the consistency and viability of the acquired data [29]. 

More recently, Clark et al. [35] verified the validity of the Microsoft Kinect for assessment 

of postural control. In the study the authors compared the joint positions obtained using the 

Kinect (collecting data using the Kinect SDK) and using the VICON Nexus V1.5.2 acquiring 

image data from 12 camera VICON MX motion analyses system (VICON, UK). The data acquired 

with the VICON system was deemed benchmark reference kinematic data. This system 

included the placement of markers on the head, arms, wrists, hands, trunk, pelvis, legs and 

feet [35, 36]. 

The relative and absolute reliability of the trials measurements for the Kinect  and 3D 

camera methods were evaluated using intraclass correlation coefficient (ICC2,1), and ratio 

coefficient of variation (CV), respectively [35]. 

The results of this study suggest that the Kinect provides anatomical landmark 

displacement (joint movement) and trunk angle data with great concurrent validity when 

compared to the commercially available 3D camera-based motion analysis system. It is also 

suggested that the Kinect has the potential to be used in clinical screening programs [35]. 

 

Even though an old version of the Kinect SDK was used in the primarily described study 

[33], the results are important and should be taken into consideration when designing our 

system. The information aforementioned ([33, 35]) encouraged the development of the 

system. But some considerations about the significance of the data acquired must be 

performed. This will be further discussed in Chapter 3. 

2.3 -  Feature Measurement 

In order to obtain good results using a classifier, a good set of features is mandatory. 

Previous works using the Kinect sensors in body recognition applications have shown promising 

results. For example, Patsadu et al. [22] used some data mining classification methods in 
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order to recognize three gestures: stand, sit down and lie down, obtaining and average 

accuracy of all classification methods of 93.72%. The authors used 1200 input vectors for each 

of the classes in study, making a total of 3600 input vectors (x, y, z) of 20 body-joint positions 

for the classifiers. These features had to be normalized to be comparable, since they had 

different units and were represented in different scales. 

In Lai et al. [21] the authors focused their work on hand gesture recognition. In this case, 

the authors recognized 8 different hand gestures in real time achieving correct classification 

rates of over 99%. In this study a smaller set of features was used, since the main goal was 

the recognition of hand gestures. 

Depending on the type of work and final application of the system, different features 

must be extracted and used. In our work the basic features extracted are the 20 body-joint 

positions. From these features, more relevant features are obtained. But it should also be 

taken into consideration that these features are affected by the environment in which they 

are acquired. It is important to understand the constraints implied in the analysis of the STS 

movement. 

 
 

2.3.1 - Parameters that affect STS movement 

Understanding the factors that can influence the STS movement is important for the 

development of this work. Although the final application of the system is accessible to 

everyone with a Kinect, a controlled environment helps acquiring understandable, consistent 

and comparable data.  

From several studies it is possible to conclude that there are some major determinants 

affecting the STS movement – age, rising strategy and chair variables such as height, foot 

positioning, armrests, backrests [1, 2, 4, 27, 37-40]. Lower chair seats will require more 

generation of momentum or new repositioning of the feet in order to lower the momentum 

required [2, 11, 38-40]. The usage of armrests lowers the moments needed at knee, without 

influencing the range of motion of the joints [2, 40]. Also, repositioning of the feet may 

enable lower peak moments at the hip and knee [2, 38]. 

One of the simplest ways to characterize the STS movement would be to address the 

independence of the subject to perform the movement. The patient could be labelled as able 

or unable to perform the movement. From this point onwards, more conditions could be 

applied, defining different levels of functionality. For example, the use or armrests has a 

major influence in the performance of the STS movement, as described previously. Position of 

the feet, height of the chair, use of backrest and other conditions can be applied, in order to 

obtain different analysis of the STS movement. 

After accessing if the subject is able to perform the STS without assistance or the use of 

armrests, the time taken to perform this movement could be another evaluation factor. This 

type of STS analysis usually requires more than one repetition of the test. It can be either 
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defined by the number of repetitions performed in a certain time, or by defining the number 

of repetitions to be performed [2]. 

When analysing the STS movement, the affecting variables should be well defined and 

considered in order to obtain consistent results [1, 2]. The specifications of the movements 

captured in this work along with the room setup are further described in Chapter 3. 

2.4 -  Classification methods 

The main objective of the classification step is to correctly label a new sample 

introduced in the system, taking into consideration the data used to train the classifier. Also, 

discarding as many false positives as possible, without losing too many true positives, is an 

important objective. In the context of this work, understanding the state-of-art of human 

activity recognition methodologies is important, since it is the main subject we are dealing 

with. 

 

2.4.1 - Human Activity Recognition Methodologies 

Aggarwal et al. [41] reviewed the state-of-art of the human activity recognition 

methodologies. The authors described the ability to recognize complex human activities as 

the key to the construction of several important applications. These applications could range 

from automated surveillance systems for public places to real-time monitoring of patients, 

children, and elderly persons [41]. The authors categorized human activities into four levels, 

depending on their complexity: gestures, actions, interactions and group activities. Gestures 

were described as the basic movements of a person´s body part, the components that 

describe the meaningful motion of a person. Research works using the Kinect for human 

gesture recognition are being developed, where several hand gestures and basic motions of 

the human body are recognized [20-22]. Actions were described as single-person activities 

composed of multiple gestures organized in time. “Walking”, “standing”, “laying down” and 

“sitting” are some examples of actions. 

Aggarwal et al. [41] also described a classification system for activity recognition 

methodologies, dividing them into two categories: single-layered approaches and hierarchical 

approaches. Single-layered approaches are based on sequences of images representing and 

recognizing gestures and actions with sequential characteristics [41]. On the other hand, 

hierarchical approaches describe high-level human activities based on simpler activities 

(subevents) [41]. 
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The single layered approaches were further divided into two classes: space-time 

approaches and sequential approaches, depending on the type of information used for the 

analysis. Space-time approaches use 3D (x, y, t) volume or a set of features extracted from 

the volume in order to create a model of a certain human activity. The video volumes are 

constructed by concatenation of image frames along the time axis, performing a comparison, 

in order to measure their similarities [41]. 

 

 
Figure 2.9 - Example of XYT volumes constructed by concatenating; A - entire images; B -  foreground 
blob images obtained from a punching sequence (image from [41]). 

 

Sequential approaches represent a human activity as a sequence of feature vectors 

extracted from images. The activities are recognized by searching for similar sequences [41]. 

In human gesture recognition tasks, a classification step is required in order to 

differentiate and segment the movements. Different classification methods such as 

Backpropagation Neural Network (BPNN) classifier ([22, 42, 43]), K-nearest-neighbour (KNN) 

classifier ([21, 42, 43]), Support Vector Machines (SVM) ([20-22, 42, 43]), decision tree (DT) 

([22, 42, 43]), naïve Bayes (NB) ([22, 42, 43])  and Hidden Markov Models (HMMs) classifiers 

([44-46]) can be used in order to perform the task. These tasks consisted mainly in the 

identification of certain basic movement patterns, such as “standing up”, “sitting down” and 

laying “down”, hand gesture recognition, and “going upstairs”, “going downstairs”, 

“walking”, “running” and “fighting”. 

 

The STS movement could be analysed as an action or a sequence of gestures. The 

analysis of the movements could be done using a single-layered approach. The movement will 

have to undergo time segmentation, in order to obtain the time window of the actual 

movement. From this time window, the 20 body-joint positions along with the time frame can 

be extracted in order to analyse the movement. This would consist of four-dimensional (x, y, 

z, t) information for each body-joint acquired with the Kinect platform. This data would be 

used in order to analyse the movement and classify each frame, using data mining methods. 

 

(A) (B) 
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HMMs are a statistical tool used for modelling generative sequences characterized by a 

set of observable sequences. They are especially applied in temporal pattern recognition 

tasks [47-49]. The STS movement can be analysed as a sequence of smaller portions of the 

movement, especially if a full movement is analysed frame-by-frame. Also, the STS 

movement is composed by a set of phase-cycles. These phase-cycles correspond to the 

different phases, described in section 2.1.1, which can vary, depending on the undertaken 

approach.  

 

2.4.2 - Hidden Markov Model brief overview 

A detailed description of HMMs and applications to human gesture analysis can be found in 

[45], [44], [46], [48], [49]. 

HMM is a particular stochastic process with an underlying stochastic process that is not 

observable (hidden). This hidden process can observed through another set of stochastic 

processes, which produce a sequence of observed symbols [48]. HMM attempts to 

approximate or mimic the behaviour of a system in a succinct and manageable way. It is 

usually easier to work with an approximate model then deal with a real process. Also, being a 

probabilistic model, it attempts to capture the behaviour of a system with probabilities 

rather than with sure concrete rules, allowing some flexibility and adaptability. In this case a 

system can be something as simple as tossing a coin or something as complex as a speech 

recognition system [48, 49]. 

There are a finite number of states, N, in the model. Depending on the problem, the 

number and definition of states is bond to change. HMM assumes that in any sequence the 

current observation will only dependent on the immediate previous sequence. This property is 

called the Markov property [47-49]. If we consider a sequence of observations O = O1, O2, …, 

OT and the corresponding sequence of states   =   ,   , …,   , the probability of any sequence 

O occurring when following a given sequence of states   can be stated as 

   (   )  ∏ (  |    )  (  |  )

 

   

                                                                                                                       (2.1) 

where  (  |    ) can be understood as the probability of being currently in the state It given 

that the previous state in the instant t-1 is     ,  (  |  ) is the probability of observing Ot at 

the instant t, given that the current state is   , T is the length of O, and t is the current time. 

O can be diversified, from sequences of point coordinates in 3D space to sequence of bitmap 

images, depending on the application.   is a sequence of integer labels, corresponding to the 

states [47-49]. 
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To compute these probabilities two matrices A and B are required. The matrix A 

corresponds to matrix of state probabilities – the probabilities  (  |    ) of changing from one 

state to another. The matrix B Is the matrix of observation probabilities – the distribution 

density  (  |  ) associated to a given state   . The compact notation   (     ) can be used 

to represent a HMM, where A represents the transition probabilities matrix, B represent the 

observation probabilities matrix (in the discrete case) or the probability distribution vector 

(in the general case) and   represents the initial state distribution vector.   determines the 

probability of starting in each  of the possible states [48, 49]. 

There are three key problems associated with HMMs. The answers to these problems allow 

the use of HMMs in real world applications. These problems are [48]: 

 
Problem 1 -  Given a sequence of observations O = O1, O2, …, OT and the model   

(     ), how do we compute the probability of the observations sequence  ( | ). 

Problem 2 -  Given a sequence of observations O = O1, O2, …, OT and the model   

(     ), how do we compute the optimal state sequence I = I1, I2, …, IT. 

Problem 3 -  Given a sequence of observations O = O1, O2, …, OT, how can we adjust the 

parameters of the model   (     ) to maximize the probability   ( | ). 

The first problem can be seen as an evaluation problem. Given a certain model and a 

sequence of observations, how can we compute the probability that the sequence was 

produced by the model. This can also be viewed as way to evaluate the model. This view is 

interesting if we consider a scenario where several models are competing. If we can solve the 

first problem, we will find which model is the best match for a certain observation sequence 

[48]. 

In the second problem we attempt to undercover the hidden part of the model. This 

process is usually a typical estimation, where the definition of an optimality criterion to solve 

the problem is required. There are several optimality criteria that can be used depending of 

the intended use for the uncovered state sequence. One of the most classic uses of the 

uncovered state sequence is to learn about the structure of the model, and to get average 

statistics, behaviour amongst other characteristics within individual states [48]. 

The third and final problem is an attempt to optimize the model parameters to best fit 

the observed sequence. This is a training problem, which is crucial in most HMM’s 

applications, since it allows to adapt our model parameters to the observed training data. A 

good training phase will allow the creation of good models for real applications [48]. 

Thus, in a real application we will have to start by training the HMMs. A specific training 

sequence should be used for each different real thing we want to model. The solution to the 

third problem is used to get the optimal parameters for each model. In order to understand 

the physical meaning of the model states we used the solution to the second problem. This 

may lead to further improvements in the model. Finally, using the solution to the first 

problem we can score each model upon a given test observation sequence and select the 
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model with the highest score, enabling the labelling of a new sequence fed to the system 

[48]. Understanding how these problems can be solved is necessary in order to efficiently 

apply HMMs. 

In order to solve Problem 1 we want to calculate the probability of a sequence 

observation O, given the model  . The probability of any sequence O occurring when 

following a given sequence of states I was previously described by equation 2.1. The most 

obvious solution is enumerating every possible state sequence of length T (number of 

observations) and then for every fixed state sequence    calculate the probability  (    ). In 

other words we marginalize the joint probability over   by summing over all possible 

variations of  :  

    ( )  ∑ (   )

 

 ∑∏ (  |    )  (  |  )

 

    

                                                                                       (2.2)   

where  ( ) is the probability of the sequence O given the model  . In order to efficiently 

solve this problem, the forward-backward procedure is usually used [47-49].  

There are a great variety of ways of solving Problem 2. Depending on the optimality 

criteria selected, the method of finding the optimal state sequence associated with a given 

observation sequence will change. One possible criterion is to choose the states,   , which are 

most likely for each observation of the observation sequence. This will maximize the 

expected number of correct individual states 

     ( )   (      |    )                                                                                                                                     (2.3)   

where   ( ) is the probability of being in state    at the time t, given an observations 

sequence O  and the model  . Using   ( ), the most likely state,    , at the time t is 

            [  ( )]                                                                                                                                  (2.3) 

                    

There is a formal technique for finding the single best state sequence. This technique is 

called the Viterbi decoding algorithm [47-49]. A detailed description of the forward-backward 

procedure and Viterbi decoding algorithm can be found in [48]. 

By solving Problem 3 we want to adjust the model   parameters (     ) to maximize the 

probability of the observation sequence being produced by the model. This problem will be a 

maximum likelihood problem, which usually are solved using iterative procedure, such as the 

Baum-Welch method, Segmental K-Means algorithm, or gradient techniques [48]. 
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The Baum-Welch algorithm (BWa) is basically an expectation-maximization algorithm. It is 

guaranteed to converge to at least a local maximum. Its complexity increases as the length of 

the data and the number of training samples increases since it requires two passes over the 

data at each step. Although by using this method a full conditional likelihood for the hidden 

parameters is obtained [50]. 

The BWa has some interesting properties [50]: 

 When working with discrete HMMs, it does not require any model initialization. It only 

requires some non-zero random values verifying the stochastic constraints; 

 When working with continuous HMMs, several options of model initialization are 

available (i.e. means and variations of the data acquired by vector quantization); 

 The algorithm uses all the available data to produce a robust estimate of the 

parameters. 

The Segmental K-Means algorithm (SKMa), also known as Viterbi training algorithm, 

approximates the solution to the maximum likelihood problem by maximizing the probability 

of the best HMM state sequence for each training sample [50]. It segments the data and 

applies the Viterbi algorithm to find the most likely state sequence for each segment 

(solution to Problem 2). Then it uses the most likely state sequence to re-estimate the 

hidden parameter. This involves much less computational effort then the BWa, but the results 

tend to be slightly worse [50]. Some of the main issues of using this algorithm are its 

dependency on the amount of available data and the fact that it doesn’t give the full 

conditional likelihood of the hidden parameters [50]. 



 

 

 

 

 

Chapter 3  

Methodology 

From the previous literature review (Chapter 2) it is possible to idealize the design of our 

system. In this chapter we describe the methodologies used in our work, from the system 

requirements and overview to the extracted information, classification methods and 

evaluation of the system. 

3.1 -  System Requirements and Overview 

As mentioned in Chapter 1, the aim of this dissertation is to develop an approach for a 

computer aided analysis of the STS movement using the 3D body-joint tracking data acquired 

with the Kinect platform. This system should be as automatic as possible, giving feedback to 

the user about the movement and enabling the acquisition, posterior consultation and 

analysis of the data. The use of the Kinect platform was one of the base requirements of our 

work, due to its novelty and accessibility. These characteristics leave open the possibility of 

adaptation of the system to the home rehabilitation field, helping with patients’ 

physiotherapy. 

In order to materialize our system, the requirements of the system must be defined 

beforehand. Since no databases with STS movement depth images compatible with the Kinect 

exist until the present data, we will need to start by collecting data for tests. When 

performing this data acquisition it is important to bear in mind the range limitations of Kinect 

and the parameters affecting the STS movement (section 2.3.1), which will influence the final 

results. These facts lead to the necessity of establishing a room setup in order to acquire data 

in a controlled environment. 

A subdivision of the movement into smaller portions (phases) is also required in order to 

properly analyse each movement and compare between captured movements and compare 

with the results previously described in the literature. So, a formal description of the division 

into phases is required in order to develop the system. This division into phases along with 
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the nonexistence of any useful movement databases lead to the necessity of a pre-

segmentation and manual analysis of the movements. This is required not only to implement 

the system but also to have a ground truth to validate the system. 

We want to develop an automatic system that analyses the STS movement. For this, a 

simple state machine could be used but this would mean that rigid thresholds would constrain 

our system. Having a flexible system that can be adapted to a certain situation is much more 

useful than a rigid system. This leads to the idea of using machine learning techniques such as 

a classifier. A classifier can be trained with a specific dataset and then applied to a new 

sample, producing an understandable output. Obviously this output could be wrong. An 

evaluation of the system is required in order to understand its limitations. 

Another important requirement of our system is to be able to give feedback to the user 

and enable the acquisition, analysis, and posterior consultation of the data. This leads to the 

need of developing an interface in order to give information, preferably in real time, to the 

user.  

 

Figure 3.1 - Block diagram of the system. 

The block diagram of our system is presented on Figure 3.1. We will start by acquiring 

depth data. From that depth data, the skeleton data is extracted. This skeleton data will 

then undergo a processing step, where the data will be filtered and normalized. From here a 
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set of features is selected to train our classifier in a separate step. In the processing step, 

information is also acquired to be given back to the user by means of an interface. 

In the following sections we will discuss each of the previously mentioned steps and the 

thought process behind the performed decisions. 

3.2 -  Experimental Setup 

In the developed system a sample of 7 young subjects (age: 23 ± 1 years old, height: 166 

± 13 cm, weight: 64 ± 11 kg) without any impairing pathology were asked to perform 5 STS 

movements each at their normal pace. In order to obtain understandable and comparable 

data a specific room setup was designed. In our setup the Kinect was placed at a height of 

0.80m and approximately 2.90m from the chair with the image plane parallel to the subject’s 

coronal plane, as shown on Figure 3.2. 

 

Figure 3.2 – A - Representation of the used setup for the tests; B – Upper view of the used setup. 

As described in Chapter 2 most methods for analysis of the STS movement use images of 

the sagittal plane, which hinders the possibility of creating an interactive application where 

the user can be performing some activity and at the same time seeing how it progresses on 

the output display screen.  

In order to have a similar setup for all the tests, the subjects were asked to start in a 

standing position, with both feet in a parallel position (Figure 3.2 - B) to give time for the 

Kinect algorithm to fully track the body. From this point on, the subjects were asked to sit in 

a comfortable position maintaining the feet position, using the backrest of the chair. After 

waiting a few seconds the subjects start performing the STS movement at their normal pace, 

A 

B 

y 

z 

x 
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reaching the standing position (initial position of the test) and waiting again a few seconds. 

The subjects were asked to perform this cycle 5 times, in order to obtain 5 movements from 

each subject, at their normal movement pace.   

Armrests were not used in any of the tests due to the fact that the data acquired from 

the elbow, wrists and hand joints (Figure 2.7) was unstable. This was particularly noticeable 

when observing the behaviour of the hand joints, which were most of the times inferred, 

instead of tracked. By inferred we mean that the algorithm’s confidence in estimating the 

position of the joint did not meet a minimum required threshold. This may happen when the 

joint is being hidden from the view (for example by another body part) or is outside the 

camera’s field of view. Sometimes it may also result from a high level of ambiguity in the 

depth data, which leads to inability of the algorithm to choose between two or more possible 

joint positions [15]. On the other hand, when a body joint is tracked it means that the 

estimation of the joint position is properly done. For more information on how the 

estimations are performed [15] can be consulted. 

Since the subjects did not use armrests, the force moment needed at the knees will 

increase. This does not influence the motion range of the joints [2, 40]. Although, this 

increase in the moment at the knees shall not have a great impact on our study, since all the 

subjects were young and healthy. This increase in the moment becomes a factor with greater 

influence as the age of the subjects increases [2, 40]. 

The subjects were asked to keep the same feet positioning over all the tests, according 

to the setup seen on Figure 3.2. This was required in order to be able to acquire consistent 

results for subject to subject comparisons and for comparisons between the 5 movements of a 

specific subject. Also, by avoiding the repositioning of the feet we avoid the use of a rising 

strategy that facilitates the performance of the STS movement, conditioning the obtained 

results [2, 11, 38-40]. 

The same chair was used for all the tests. This chair was fixed at a distance of 

approximately 2.90m in front of the Kinect. The height of the chair was fixed at 50cm. The 

height of the chair will mainly influence the need to generate momentum – lower chair seats 

will require more generation of momentum [2, 11, 38-40]. Once again this factor should not 

influence our results, since the population of our study is young, diminishing the impact of 

needing to generate more momentum. 
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3.3 -  Phases Definition 

With our experimental setup well defined, we can proceed to the definition of what we 

are going to analyse. From the literature review (Chapter 2) we can see that depending on 

the scope of the study different definitions of the movement phases can be used. 

First of all, we should consider that with an increased number of defined phases an 

increase in the complexity of the system will be noticed. Also, defining a great number of 

phases will lead to stricter and shorter phases, which will be harder to correctly identify and 

segment.  

Ideally we want to define a number of phases that allows us to get as much information 

about the movement as possible without losing any important events of the STS movement. 

By events we consider moments that give us important information to characterize the 

movement, such as the ones defined by Schenkman et al. [8] – lift off, maximum dorsiflexion, 

end of hip extension – or the ones defined by Goffredo et al. [9] – trunk flexion, knee 

extension and trunk extension. Besides these moments, the most important ones are the start 

and the end of the movement. Without these our work could not be completed. 

A good segmentation of the movement will lead to a better characterization, and to a 

certain extent, to a better evaluation of its performance. Also, having ground truth to 

compare our results with is important to validate our system. In order to obtain results 

comparable with the ones described in the literature, a similar approach to the phase 

definitions can be performed. Of course some adaptations are in order to be done, since the 

data acquisition methods vary from work to work. 

As mentioned in Chapter 2, a subdivision into phases resulting from the combination of 

the definitions of Schenkman et al. [8] and Goffredo et al. [9] was used in this work. Figure 

3.3 shows a representation of the phases defined for our work. 

 
Figure 3.3 – Sagittal representation of the STS movement division into phases defined in the scope of 
this work. 
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We defined that phase 1 starts with trunk flexion, as described in [8, 9]. This means that 

the movement will start when the upper body joints, especially the shoulder and head joints, 

start moving forward (in the direction of the Kinect). Phase 1 ends when the buttocks are 

lifted and so phase 2 starts. This is the same as described by Schenkman et al. [8], but 

different from what Goffredo et al. [9]. 

In [9] the authors described phase 1 ending at the beginning of the knee extension, 

detecting this transition when the ankle angle decreased at 95% of its maximum value. This 

was unviable to implement in our system since the foot joints are just as unstable as the hand 

joints (previously discussed in section 3.2). Also, a decrease of 5% from the maximum value, 

which by default should be approximately 90º (considering a simplification used in [9]), 

corresponds to a decrease of 4.5º. Relying on the detection of this kind of value variation, 

considering the limitations of the data acquired with the Kinect (section 2.2.3), was not the 

best option.  

Phase 2 ends just when the maximum dorsiflexion is reached, starting phase 3. This is 

defined as the temporal location of the minimum trunk angle with the ground. This phase 

transition is similar to the one defined in both [8, 9].  

Finally, the movement is deemed completed when the body reaches its full extension 

and all the joints are stable (present constant values). Schenkman et al. [8] included an 

additional phase for the stabilization of the body. As a matter of simplicity we decided to use 

three phases besides the standing and sitting phases, including the stabilization of the body in 

our last phase. The sitting phase comes before phase 1 and the standing phase comes after 

phase 3. These phases correspond to the moments when the joint data is constant over a 

certain period of time. 

3.4 -  Movement Segmentation 

3.4.1 -  Initial Segmentation 

After defining how we will subdivide our movement for analysis, an initial segmentation of 

the movement was performed. The objective of this segmentation is to have a preliminary 

division. This will give us an idea of the size of the data we will be working with, the duration 

of each phase when using a real application and which phases are harder to detect. Also, if 

we correctly segment at least the beginning and end of the movement, we will be able to 

obtain initial data and from this point manually segment it. 

For this we decided to do an automatic segmentation of the movement using simple 

thresholds. This led to some sort of a “state machine” with 5 states: sitting, phase 1, phase 2, 

phase 3 and standing. The phases were segmented and detected according to what was 

defined in section 3.3. Phase 1 started when a continuous forward (in the direction of the 

Kinect) movement of the trunk was detected. Phase 2 started when an elevation of the hips 
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was detected. Finally phase 3 was detected when, after the minimum value of the trunk 

angle with the ground was detected, a continuous increase of this angle was detected. 

On the other hand, the sitting and standing positions were detected by means of the 

system receiving constant values, with height verification and a sequence check. By height 

verification we mean that the system required the user to introduce and approximate height 

of the test subject in order to estimate if the subject was sitting or standing. Also, by 

sequence check we mean that the whole system depended on the previous states in order to 

properly work. For example, phase 2 could never be detected if phase 1 was not previously 

detected. The same applied to the relation between phase 3 and phase 2. For the sitting and 

standing states, the only required verifications were the relation between the measured 

height and the height inputted into the system. The standing state could only be detected if a 

sitting state happened previously (not the immediately previous state, but in the current 

movement in analysis). The same applied to the sitting state, but in this case the sitting state 

will always follow the standing state, marking the beginning of a new analysis. 

It is noticeable that this kind of segmentation has flaws. For example, if one phase wasn’t 

detected, the following phases until the standing position wouldn’t be detected either. Also, 

if a subject started a movement and stopped in the middle, reverting to the sitting position, 

the system would fail to correctly detect the phase until the last correctly detected phase 

was resumed. Another problem was that this kind of system was implemented using rigid 

thresholds. The STS movement characteristics vary from subject to subject. The only phases 

that could always be detected were the sitting and standing phases. 

Even with the mentioned flaws, this initial segmentation was useful in order to at least 

segment the movements, detecting when subject was sitting or standing, correctly detecting 

some of the intermediate phases. With the acquired information from this segmentation, the 

work of manual segmentation and validation of the phases was easier. 

 

3.4.2 -  Manual segmentation 

After the initial segmentation, a manual segmentation of the movements was performed. 

The objective of this segmentation was to create the ground truth dataset, in order to train 

and test our classifier. This was necessary since there wasn’t any usable database available 

with the movements we wanted. 

As mentioned before, 5 movements per subject were collected, to a total of 35 

movements. These movements were pre-segmented using the methodology described in 

section 3.4.1 in order to obtain an initial rough estimation of the phases. After this, a manual 

evaluation and analysis of the movements was performed, verifying each movement frame-
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by-frame, detecting the beginning of each phase. In the first tests, a webcam was used to 

capture the movement in the sagittal plane in order to verify the segmentation method. 

The key moments searched for the segmentation were the beginning of the trunk flexion 

for phase 1, the elevation to the buttocks for the beginning of phase 2 and the minimum 

trunk angle with the ground, followed by the inversion of the trunk movement for phase 3. All 

the frames between the beginning of phase 1 and phase 2 were labelled as part of phase 1. 

The ones between the beginning of phase 2 and phase 3 were labelled as part of phase 2 and 

the ones between the beginning of phase 3 and the standing position (until stabilization of the 

joints was completed) were labelled as part of phase 3. Some frames preceding the phase 1 

frames were labelled as part of the sitting phase and some frames after the end of phase 3 

were labelled as part of the standing phase. 

After the manual segmentation and definition of the features to extract from the 

movements, a re-evaluation of the segmentation was performed. This re-evaluation had the 

objective of confirming that the previously defined phases were correct. We took into 

consideration the most important information that defined each phase transition in order to 

perform this process. The features used in this process will be further discussed in section 

3.5. 

Summing up, the movements were manually analysed and segmented into phases, frame-

by-frame, to a total of 3283 analysed and labelled frames. The manually labelled frames were 

later used as ground truth in order to evaluate the system. 

3.5 -  Features 

Once we got the definition of our phases we are ready to start thinking about the data we 

want to collect and process, in order to train our classifier and extract information from the 

movements. In our work we collected the data frame-by-frame, each frame corresponding to 

a certain phase of the movement (sitting, phase 1, phase 2, phase 3 or standing). 

This stage of the work aims to obtain a set of suitable features which best portraits the 

characteristics of each phase in order to provide the classifier with useful and meaningful 

information. But, first, some considerations about the data acquired with the Kinect should 

be done. These considerations, along with the feature selection, will be made in the 

following subsections. 
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3.5.1 -  Filtering process 

As described in Chapter 2, it is noticeable that there are some limitations to the data 

acquired with the Kinect. One of the biggest limitations is the instability shown by the 

skeleton detection system. As an example we can consider the hand and foot joints. These 

joints show high instability, being inferred great part of the detection time. Also, some 

jittering and noise could be noticed from time to time when detecting the joints. 

In order to help solving these problems the Kinect SDK offers a group of joint filtering 

mechanisms. These filters allow the skeletal tracking joint information to be adjusted across 

different frames in order to minimize jittering and stabilize the joint positions over time [29, 

31, 51]. The smoothing filter provided with Kinect SDK is based on the Hold Double 

Exponential Smoothing method. This method is usually used for statistical analysis of 

economic data, providing smoothing with less latency than other filtering algorithms [51].  

The filter can be controlled via five smoothing parameters: Smoothing, Correction, 

Prediction, JitterRadius and MaxDeviationRadius [51]:  

 The Smoothing parameter controls responsiveness to the raw data. Increasing this 

parameter will lead the system returning more highly smoothed skeleton position 

values but this will also lead to an increase of the latency of the system. 

 The Correction parameter controls how the data will be smoothed. This parameter is 

related to the speed of the smoothing process. 

 The Prediction parameter controls the number of frames to predict into the future. 

High values will lead to overshooting when moving quickly. 

 The JitterRadius parameter controls the radius (in meters) of the jitter reduction. 

Any jitter beyond that value will be clamped to the radius.  

 The MaxDeviationRadius parameter controls the maximum radius (in meters) that the 

filtered positions are allowed to deviate from the raw data. Once again, values that 

exceed this limit are clamped at this distance, in the direction of the filtered value. 

In order to properly use this filter a balance between these parameters has to be found. 

Detailed information about this and other filtering methods used with Kinect applications can 

be found in the Skeletal Joint Smoothing White Paper [51]. 

In our work we decided to use one of the preconfigured set of parameters which is 

described in the literature to do some smoothing with little latency, only filtering our small 

jitters, being ideal for gesture recognition tasks [31, 51].  
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The parameters of the filter were: 

 Smoothing = 0.5; 

 Correction = 0.5; 

 Prediction = 0.5; 

 JitterRadius = 0.05; 

 MaxDeviationRadius = 0.04; 

This filter has a medium smoothing, correction and prediction values. Any jittering with a 

radius bigger then 5cm will be clamped to 5cm and the filtered positions are allowed to 

distance a maximum of 4cm (radius) from the raw data. What is really important is to have a 

low latency while being able to remove some of the jittering. This has high relevance since 

we want our final application to work in real time.  

Also in order to reduce the effect of small value variations on our system we decided to 

only consider variations of the joint positions bigger or equal to 1cm, even though the 

variations acquired with the Kinect can be in the magnitude of millimetres. From preliminary 

data acquisition and taking into consideration the study of K. LaBelle [33] it was concluded 

that the acquired values tended to vary even in a steady position. By using a measurement 

magnitude ten times bigger than the smallest value captured we try to remove some of the 

value variations, acquiring more significant data for our work.  

 

3.5.2 -  Feature selection 

As mentioned before, this stage of the work aims to obtain a set of suitable features 

which best portraits each phase characteristics in order to provide the classifier with useful 

and meaningful information. A good set of features will lead to a good classification step. 

In our work we want to distinguish between 5 different classes: sitting, phase 1, phase 2, 

phase 3 and standing. The transition between phases is one of the most important aspects of 

our work. A good subdivision of the movement will lead to good results that can be compared 

to what is described in the literature using different analysis methods. 

We decided to use features that derive directly from the data acquired with the Kinect, 

which was previously filtered, as described in section 3.5.1. By using the most basic acquired 

data, we will reduce the errors originated from value approximations and estimation (like 

integrations and derivatives). This could also be a limiting factor, but usually keeping a 

system simple is more beneficial than increasing its complexity and increasing the sources of 

error. 

All the extracted features are based on the relative position of the joints. We decided to 

follow this approach since the definition of the phases (section 3.3) can be interpreted as an 

evolution of the joint positions over time. Although the whole body is involved in the 

movement, some joints give us more information than others. For example, the shoulder 
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joints play a major role in the whole movement. While analysing the shoulder joints positions 

over time we can know if the subject is bending the trunk forward, or if he is standing still. 

The extracted features follow the same kind of rationale.  

The Kinect collects the 3D (X, Y and Z) coordinates of the 20 joints at 30 frames/s. 

Although, only some of these joints will give useful information: head (h), centre of the 

shoulder (cs), left shoulder (ls), right shoulder (rs), spine (s), hip centre (hp), left hip (lh),  

right hip (rh), left knee (lk), right (rk), left ankle (la), right ankle(ra), left foot (lf) and right 

foot (rf). We regard the positions of the hand joints as less important since these joints tend 

to be unstable. We also don’t consider the wrists and elbow positions have less relevance in 

the scope of this work, since we want to characterize the movement without using armrests, 

so the arms in general won’t play a major role. The features we want to extract must give us 

information that can separate the different classes used in this work: sitting, phase 1, phase 

2, phase 3 and standing. 

From the group of 14 selected joints we define a 13-dimensional feature vector (for each 

frame) based on skeleton presented on Figure 3.4. 

 
Figure 3.4 – Skeleton model with 20 joints; 
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The sitting phase is characterized by constant values of all the features over time. Also, 

the upper body depth values should be higher than lower body ones. This can be verified by 

comparing the depth of the shoulder, hip and knee joints. Also, if we are in stable position, 

the depth distance between the knee joints and the ankle joints should be constant. 

The standing phase has some characteristics similar to the sitting phase. It can also be 

characterized by constant values. But in this case, all the joints should be aligned in the 

vertical plane orthogonal to the Z axis (in theory). When comparing the shoulder, hip and 

knee joints depth values, they should all be similar.  

Also, we can introduce a feature that estimates the height of the subject. These features 

will have a lower value when the subject is sitting and will have a higher value when the 

subject is standing. 

In order to detect phase 1 we need a feature that tells us when the trunk is moving, and 

in which direction. This can be obtained comparing the variation of centre of shoulders height 

value with the relation between the spine and centre of shoulders joints depth. If we have 

decrease of the cs joint height value, this means that we are leaning forwards. Also, an 

increase of this value can be used to define the beginning of phase 3, since it starts when the 

trunk angle with the ground reaches its minimum value and inverts the direction of the 

movement, starting the extension period. If the depth value of the spine join is increasingly 

bigger than the cs joint depth, it means that the trunk flexion has started. Phase 2 starts 

when we lift of the buttocks. This can be studied by analysing the variation of the height 

value of the hip joints over time. Table 3.1 contains the mathematical definition of the 

relations previously described. We also decided to consider a feature that compares the 

position of the shoulders. When performing the STS movement the shoulders should always be 

in the same plane (have similar depth values). 

Note that the skeleton model will vary from person to person depending on the person’s 

height, legs length, distance and initial position of the Kinect. Each variation will have a 

different impact on our measurements. Therefore we need a way to minimize these impacts. 

A normalization method will be described in the next subsection. 
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Table 3.1 – Mathematical definition of the features used in our work. 

Feature Definiton 

Shoulder Relative depth position       
          

Left hip height variation                 

Right hip height variation                 

Hip centre height variation                 

Relative depth distance between rs and rk       
          

Relative depth distance between ls and lk       
          

Relative depth distance between rh and rk       
          

Relative depth distance between lh and lk       
          

Relative depth distance between rk and ra       
          

Relative depth distance between lk and la       
          

Height estimation           (
       

 
) 

Shoulder centre height variation                 

Relative depth between cs and s             

These features are all organized in a feature vector as follows: 

   [      
                            

         
         

         
         

         
                    ] 

 

 

3.5.3 - Feature normalization 

Data mining is the process of finding patterns and valid unrecognized associations 

between data. Processes of data transformation, such as normalization may improve the 

accuracy and efficiency of classification algorithms. Normalization is particularly useful since 

it helps preventing features with initial larger ranges from outweighing features with smaller 

ranges [42, 52]. This is of particular importance in our work since the data directly acquired 

with the Kinect has a big range of values [28, 29, 31]. There are some data normalization 

methods such as Min-Max normalization, Z-score normalization and normalization by decimal 

scaling [42, 52]. 
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Min-Max normalization is a linear transformation of the data, according to 

        
      ( )

   ( )      ( )
 (       ( )        ( ))         ( )                                            (3.1) 

where   is the original value,    is the normalized value,     ( ) and     ( ) are the minimum 

and maximum values of  ,        ( ) and       ( ) are the new range of values. The Min-

Max normalization will map the value   in the range [   ( )     ( )] to    in the range 

[       ( )       ( )].  

In this work we decided to use the Min-Max normalization in order to obtain comparable 

results between subjects. Values of depth and height that could vary from subject to subject 

are mapped to a [-1,1] interval. For example a variation of the hip, shoulder or head joints 

height, that for a taller subject would be much greater than for a shorter subject, are 

rescaled.  

This normalization is of higher importance when we consider the difference in the scales 

of the acquired values. Depending on the type of coordinates we acquire (X, Y or Z) a 

different scale is used. Depending on the relative position between the Kinect and the 

subject, the range of acquired values will change. This fact was already mentioned in section 

2.2.1, but it is important to remember. A single reposition of the Kinect 1cm to the left or to 

the right, 1cm higher or lower, or rotated 1º to the left of the right from one test to another 

will cause the range of acquired values to change. Also, while the range of values of X and Y 

can go from negative to positive values, the values of Z (depth) will always be positive. This 

would cause instability of the data when used in a classification process. 

 With the normalization we balance the values considering the maximum and minimum 

values acquired. This is performed for each axis independently. This means that we 

performed the Min-Max normalization for the X, Y and Z values separately, considering 

different maximum and minimum values. 

 

3.5.4 -  Synthetic Minority Over-sampling Technique (SMOTE) 

Sometimes when dealing with datasets we see that some classes are much more 

represented than others. Using an imbalanced dataset may have a negative impact on the 

performance of a classifier. The over-represented classes tend to overwhelm the under-

represented classes, leading to incorrect classifications. Ideally we want to work with a 

dataset where all classes are equally represented [53].  

This issue is usually addressed in one of two ways. One is to assign distinct costs to the 

training examples [53, 54]. The other way is to re-sample the original dataset, either by 

oversampling the least represented classes and/or undersampling the most represented 

classes [53, 55]. 
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When working with HMMs, controlling the costs of the training examples will be impossible 

to apply, due to the limitations of the library used in this work, which will be discussed in 

Chapter 4. This leaves us with the approach of re-sampling the least represented class. 

For this approach, there are some possible ways to re-sample our dataset. We can simply 

over-sample the least represented class by creating copies of the samples that already exist. 

At the same time these new samples will replace samples from the most represented class, 

doing an under-sampling of that class. Although, this kind of approach doesn’t significantly 

improve the recognition of the least represented class [56]. This is probably due to the fact 

that we are over-sampling by increasing amounts. This will lead to a similar identification of 

the class but in a more specific way, since the characteristics of the class become much 

stricter. We have more samples, but with similar characteristics, since they are copies of the 

original ones [53]. 

The idea behind the Synthetic Minority Over-sampling Technique (SMOTE) is to perform 

and over-sampling of the least represented class by creating “synthetic examples”, rather 

than by over-sampling and replacing [53]. 

In the SMOTE technique the least represented class is over-sampled by taking each sample 

of this class and introducing new synthetic examples along the line segments joining all of the 

k least represented nearest neighbours. Depending on the amount of over-sampling required, 

we randomly chose neighbours from these k nearest neighbours. The synthetic samples are 

generated by taking into consideration the difference between the feature vector (sample) 

and its nearest neighbour. This difference is multiplied by a random number between 0 and 1 

and added to the used feature vector. This will cause the selection of a random point along 

the line segment between two specific features, forcing the decision region of the least 

represented class to become more general, while increasing the number of samples in this 

class. A detailed description of this method can be found in [53]. 

In our work, the least represented classes were the classes corresponding to phase 1 with 

399 and to phase 2 with 108 samples in a total of 3283 acquired samples. Ideally we want to 

have each class representing approximately 20% of the dataset (approximately 657 samples of 

each class) since we have 5 classes. In order to balance the dataset we used the SMOTE 

technique to oversample these classes. A new dataset with 4176 samples was obtained. Phase 

1 and phase 2 classes were represented by 700 samples each. 
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3.6 -  Information Extraction 

As mentioned previously in Chapter 2 there are several different approaches to the 

analysis of the STS movement. Depending on the selected approach and methodology used, 

different information can be extracted from the movements. The basic information we can 

acquire with the Kinect are the coordinates (X, Y and Z) of the 20 joints and the timestamp of 

the acquired frames. With this basic information we can compute some kinematic data. 

Angles, angular velocities and velocities are some examples of the data we can obtain when 

processing the basic data. The duration of each phase and the total duration of the 

movement are also important to the characterization of the movement.  

Goffredo et al. [9] compared the angles information they obtained at the lift-off moment 

(our phase 2 beginning) to some results described in the bibliography. So, obtaining the joint 

angles at the lift-off time will give us an opportunity to compare our results with the ones 

described in the literature. This will be further explored in Chapter 5 when discussing the 

results. 

In order to calculate the previously mentioned angles we used the scalar product of two 

vectors. These vectors were created by 3 joints, having one joint in common. For example, 

we can calculate the left knee angle by creating 2 vectors. The first vector, a,  is created by 

the connection of the left hip joint and the left knee joint and the second vector, b, is 

created by the connection of the left knee joint and the left ankle angle. This is represented 

in Figure 3.5. 

 
Figure 3.5 – Representation of the vectors used to calculate the angle of the left knee. 

In red we can see the vector a and in green we can see the vector b. Since we are 

collecting the data with the Kinect, we automatically have access to the coordinates of the 

extremities of the vectors, corresponding to the joints (represented in blue). 

Then, we multiply the components of both vector along the 3 axes (X, Y and Z). We add 

the three multiplication products together obtaining the scalar product of the two vectors. In 

order to calculate the angle we just need to obtain the magnitude of the vectors, since 

y 

x 
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        ( )  
   

‖ ‖  ‖ ‖
                                                                                                                                          (3.2) 

where   is the angle formed by the two vectors a  and b, ‖ ‖ is the magnitude of the vector a 

and ‖ ‖ is the magnitude of the vector b. Once we have the scalar product and the 

magnitude of the vectors, we only need to calculate the inverse cosine of the result obtained 

from equation 3.2 to obtain the desired angle. 

The trunk angle with the ground and the ankle angle with the ground are simplifications 

where instead of using a second vector constructed with the joints, we consider a fixed 

predefined vector. 

 
Figure 3.6 – Representation of the trunk and ankle angles with the ground.  

On Figure 3.6 we can see that instead of considering a third joint to create the second 

vector, we used fixed vectors that are in a plane parallel to the ground plane. Another 

characteristic of these vectors is that they are contained in a plane orthogonal to the x-axis. 

Once we have calculated the angles at each frame, the angular velocity can be calculated 

dividing the variation of the angle between frames (            ) by the time between 

frames (around 33ms). The same principle can be applied to calculate the velocity of the 

COM, but instead of considering the angle variation between frames, we consider the 

coordinates variation between frames ( (     )     (     )     (     )). In our work we 

consider that the COM is coincident with the spine joint, which will simplify the process of 
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computing its velocity. According to [28], the COM is roughly in the same position as the spine 

joint. The spine joint is usually used as a fast way to determine the user’s position, having an 

application very similar to the COM, due to its stability and location over time.  

Interesting information that can also be extracted from the movements is the sagittal 

plane view of the movement, using the information acquired with the Kinect. With this kind 

of information we can compare the evolution of our movement with the literature, which 

usually analyses the movement using information extracted from the sagittal plane [1, 6, 8, 

9]. 

Table 3.2 summarizes the information acquired in this work. 

 
Table 3.2 – Summary of the information acquired during the movements. 

Kinematic information 

Trunk angle with the ground 

Knee angles (left and right knees) 

Ankle angles (left and right ankles) 

Ankle angles with the ground (left and right ankles) 

Trunk angular velocity 

Knee angular velocity (left and right knees) 

Ankle angular velocity (left and right ankles) 

Simplified ankle angular velocity (left and right ankles) 

COM velocity (x, y and z components and magnitude) 

Joint angles at lift-off (knee, ankle and ankle with the ground angles) 

Other information 

Duration of phases 1, 2 and 3 

Duration of the movement 

Sagittal view of the movement 

3.7 -  Classification Method 

In Chapter 2 we described what a HMM is, what it does and how it can be created and 

adjusted to solve a certain problem. The problem that arises now is what happens if we have 

many kinds of sequences, and we would like to differentiate between them. In our work we 

want to differentiate between 5 different phases of the movement. We want to be able to 

introduce a new sequence “unknown” to the system and obtain the respective class which 

best models the behaviour of the new sequence. 

This can be performed by creating a system where we have several models, each one 

representing a different kind of sequence (a different class). The idea is to have at least 5 

models (one for each phase: sitting, phase 1, phase 2, phase 3 and standing) able to give us 

the different likelihoods for the sequences that we want to label. 
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The likelihoods can be compared among them. For example if we choose the model with 

the higher likelihood to be our labelling model for a certain sequence, we will have a 

maximum likelihood (ML) classifier. 

However, the likelihood of an observation given a class model is different from the 

likelihood of the class being of the sequence given. This is of particular importance when 

considering cases of unbalanced proportion of classes or when we have few training 

observations. These problems were already solved by oversampling the least represented 

classes, balancing the classes. 

In our work we will take the likelihood of the introduced sequence as if it was the 

probability of the class given the sequence. The ML rule can be stated as: 

                    [ (    )]                                                                                                                 (3.2) 

         

meaning that the class   , from the universe of possible classes  , is chosen as the estimated 

label (        ) for the sequence if it the class which results in the maximum probability 

output considering equation 3.2. We have to take into consideration that there are as many 

trained HMMs as classes    since we train each model solely with sequences from the class   . 

In Figure 3.7 we can see a schematic representation of the previously described process. 

Each inner model represented in Figure 3.7 will have one hidden state, since we are 

training each inner model individually for a specific class. This will work as a state machine 

that is trained with a certain dataset. We introduce a new observation vector and the system 

will give us the estimated class by comparing the obtained likelihoods. This system can be 

generally seen as a 5 hidden state model. This approach is different from what we would use 

if we wanted to train different models with full movements to compete with each other for 

the identification of the movement (i.e. to train models to distinguish between a fast 

movement and a slow movement, or to distinguish between a movement using armrests or 

not). In that case we could use a single model with several hidden states and find the hidden 

sequence obtained when feeding the system with a new full movement.  
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Figure 3.7 – Schematic representation of the decision rule used in our system to decide the class of a 
new sequence. 

Similarly to the work of Lin et al. [44] where human motion was analysed, we will use a 

multivariate Gaussian distribution as our initial distribution. This type of distribution is 

suitable to describe several types of human behaviours [44]. In our case we will use a 

generalization of the one-dimensional normal distribution to 13 dimensions, corresponding to 

the number of features we are using. Our distribution is created based on our training dataset 

to be suitable to our data.  

In order to train our classifier a new balanced dataset was created (section 3.5.4). Two 

different learning algorithms were used in this work in order to compare the results. The 

algorithms used were the Baum-Welch algorithm (BWa) and the Segmental K-Means algorithm 

(SKMa). 

 

3.7.1 - Validation 

In order to verify the effect of the class balancing process, 2 different training and testing 

phases were performed.  

In the first one we used the original dataset with 3283 samples, each sample containing a 

13-dimension vector with our features of interest. This dataset was divided into 5 groups, 
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each one containing 7 movements (one from each test subject). In order to train the classifier 

4 of the 5 groups from the original dataset were used each time. The classifier was tested on 

the remaining group. This was performed 5 times in order to obtain classification results for 

all the samples. 

On another training phase, we used the oversampled dataset (4176 balanced samples) and 

the original dataset. Both datasets were divided into 5 groups, each containing 7 movements, 

one from each subject. In order to train the classifier 4 of the 5 groups from the training 

dataset were used each time.  After training, instead of testing the classifier with the 

remaining group from the oversampled dataset, which contained synthetic samples, we 

decided to train the classifier with the equivalent group of the original dataset. This group 

contained the movements that weren’t used for training before using the SMOTE method. We 

opted for this approach to avoid the classifiers with the synthetic data, since we had no 

temporal information for these samples. Using the synthetic data for testing would not let us 

properly observe the behaviour of the classifier on the phase transitions, making its 

evaluation difficult. This was also performed a total of 5 times, training with 5 different 

combinations of groups and tested on the group from the original dataset that was left out.  

Both methods were similar to a 5-fold cross-validation process, but in our case we 

controlled the training and testing groups so we would always have 7 movements “never 

seen” by the system for testing, while using the rest for training. 

The results obtained with the classifier were then compared to the original labels, using 

these as ground truth. The results from the different methods were also compared. 

3.8 -  Evaluation of the System 

Machine learning divides classification into binary, multi-class, multi-labelled and 

hierarchical tasks [57]. After the development of the system, performance measures are 

required in order to evaluate the system. Depending on the problem in hands different 

evaluation metrics should be used [57]. In this case we will be dealing with a multi-class task.  

This system was evaluated in terms of precision and recall. Precision is the fraction of 

detections that are relevant. It is calculated dividing the number of correctly classified 

positive examples by the number of examples labelled by the system as positive [57] 

                 
  

     
      (3.3) 

Recall measures how often an algorithm reports the STS movement as correctly 

performed in the instances where it actually is correctly done. It is obtained dividing the 
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number of correctly classified positive examples by the number of positive examples in the 

data [57] 

              
  

     
      (3.4) 

In this context, 

 TP denotes the number of true positives. TP is the number of correctly recognized 

class samples; 

 TN denotes the number of true negatives. TN is the number correctly recognized 

samples that do not belong to a class; 

 FP denotes the number of false positives. FP is the number of samples incorrectly 

assigned to a class; 

 FN denotes the number of false negatives. FN is the number of samples that were not 

recognized as class examples; 

In this work we are working with a multi-class classifier. So each evaluation metric has to 

be computed for individually for each class (equations 3.3 and 3.4). The final performance 

measures are obtained by computing the average of the individual results [57]. 

3.9 -  Concluding Remarks 

The characteristics of each of the movement phases were defined and the rationale 

behind the definitions was explained. Our definition resulted from the combination of the 

definitions explored by Schenkman et al, [8] and Goffredo et al, [9]. 

Once the phases were defined an initial segmentation was performed in order to get the 

initial movement segmentation, even if crude. A manual analysis of each movement was then 

performed in order to re-evaluate the initial segmentation. This analysis was performed by 

frame-by-frame verification, including an initial verification using a webcam to film the 

sagittal view, while the Kinect filmed the coronal view. Finally a last re-evaluation of the 

labelling was performed using data acquired with the Kinect, acquiring our ground truth for 

the system. 

 A total of 3283 frames were acquired with the Kinect. This was performed in a controlled 

environment, with a specific setup. For each frame a total of 13 features were computed 

being listed in Table 3.3. 

These features from the original dataset were normalized and the classes were balanced, 

reaching a training dataset of 4176 samples (feature vectors). Both the original and training 

datasets were divided into 5 groups, each one each containing 7 movements, one from each 

subject. Then 4 of the 5 groups were used to train the classifier, and the classifier was tested 

on the remaining 7 movements from the original dataset that weren’t used for training. This 

was performed a total of 10 times (5 for the original dataset and 5 for the training dataset), 
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training with 10 different combinations of groups and testing on the group from the original 

dataset that was left out. This method was similar to a 5-fold cross-validation process. We 

used a HMM classifier in which we trained 5 inner models with each of the phases features, 

each one with one hidden state. These inner models were trained to mimic the 

characteristics of each of the phases of the movement. When a new vector of features 

(obtained from the analysis of a new frame) is given to the system, its likelihood is calculated 

for each of the inner models, and the label corresponding to the highest score is the final 

label of the new vector and corresponding frame. 

 
Table 3.3 – Summary of the features computed for each frame. 

Features 

Shoulder Relative depth position (      
 ) 

Left hip height variation (    ) 

Right hip height variation (    ) 

Hip centre height variation (    ) 

Relative depth distance between rs and rk (      
 ) 

Relative depth distance between ls and lk (      
 ) 

Relative depth distance between rh and rk (      
 ) 

Relative depth distance between lh and lk (      
 ) 

Relative depth distance between rk and ra (      
 ) 

Relative depth distance between lk and la (      
 ) 

Height estimation (      ) 

Shoulder centre height variation (    ) 

Relative depth between cs and s (    ) 

 

During the performance of the movements, kinematic information about the movement is 

extracted: trunk and ankle angles with the ground, and knee and ankle angles were 

extracted. The respective angular velocities and COM velocity were also extracted, along with 

the total duration of the movement and the duration of each phase. 

 



 

 

 

 

 

 

Chapter 4  

Implementation 

4.1 -  Libraries and Software 

In this work we used Visual Studio 2012 to develop a Windows Presentation Foundation 

(WPF) application in C#. The WPF application is the final product of this project. Several 

libraries and frameworks had to be used in order to develop the system: 

 Kinect Software Development Kit (SDK) [29, 31] was used in order to obtain data from 

the Kinect; 

 WPF: Webcam Control [58] was used in the initial segmentation to obtain a sagittal 

view of the movements; 

 Accord.NET Framework [47] was used in order to implement the necessary operations 

using HMMs in C#; 

 Dynamic Data Display software [59] was used in order to create the plots in the 

interface; 

The SMOTE was implemented in Matlab® (7.13, R2011 b) [60]. 

4.2 -   Interface 

In order to give visual feedback about the movements to the user, an interface was 

developed. In Figure 4.1 we can see an overview of the developed interface. The most 

important sections of the interface are highlighted and labelled.  
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Figure 4.1 – Overview of the designed interface; A – RGB output with the detected skeleton; B – real-
time angles and angular velocity data display; C – Plot section; D – Sagittal view of the detected 
skeleton; E – Kinect’s tilt controller. 

The interface gives us the possibility of watching the RGB display (part A) at the same 

time as the skeleton is fit to the subject’s body. In Figure 4.2 we can see an example of this 

display. The blue dots represent the tracked joints and the yellow dots represent the inferred 

joints. If both joints are tracked, the segment linking them will be green. Otherwise the 

segment will be yellow. 

 
Figure 4.2 – Example of an image captured with the system with the skeleton fit to the user’s body. 

The trunk, ankles, ankle with the ground and knee angles, along with angular velocities 

are displayed in real-time as the movement is being performed (part B).  
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Figure 4.3 – Zoom in of the data display section. The radio buttons alloying the selection of the data to 
be plotted are highlighted. 

The acquired angles and angular velocities can be plotted in order to observe the 

characteristics and evolution of the movement over time (part C). Several plots can be 

performed at the same time in order to compare the results. We can select the desired plots 

using the radio buttons highlighted in Figure 4.3. 

The 2 buttons under the plotting area are used to update and clean the plotting area if 

the user wants to create a new plot. An example of a plot obtained with the system can be 

seen in Figure 4.4. 

 
Figure 4.4 – Example of the plotting area after the user deciding to plot the trunk and left ankle angles. 

It is also possible to observe the sagittal view of the movement (part D) as the movement 

is performed. Figure 4.5 shows an example of the sagittal view and correspondent coronal 

view. 

       
Figure 4.5 – Example of a sagittal view skeleton (on the left) and the correspondent coronal view (on 
the right). 

B
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By clicking on the button beneath part B (Figure 4.1), the user can save all the data 

acquired during the performance of the movement to a spreadsheet.  

In part E (Figure 4.1) a slide bar was implemented in order to control the tilt of the 

Kinect. This is important since the Kinect’s tilt is controlled by motors, which should not be 

forced in any kind of way. The tilt should be controlled via software in order to preserve the 

Kinect. Also, controlling the tilt with the interface gives a lot of flexibility to the system. 

With this we are able to set the system in different environments. Furthermore, when any of 

the joints of the user is outside of the field of view of the Kinect, a red box will appear 

warning the user about this fact. This will help the user to correctly setup the system. 

  



 

 

 

 

 

 

Chapter 5  

Experimental Results Analysis and 
Discussion 

In this chapter, the results of the segmentation, information extraction and classification 

stages are reported and analysed. Finally the overall performance of the system is analysed 

and discussed. 

5.1 -  Movement Segmentation and Datasets 

5.1.1 - Initial Segmentation 

We started solving the problem by performing an initial segmentation of the movement 

with fixed thresholds. This initial segmentation was very crude, with the objective of simply 

acquiring data to have an idea of the difficulty of the segmentation problem.  

The system detected the “Sitting” and “Standing” phases easily. This means that the 

transition from “Standing” to “Sitting”, marking the moment when the system should be 

prepared to receive a new movement, and from “Phase 3” to “Standing”, marking the end of 

a full movement, were correctly detected. Based on this, an initial segmentation was 

performed, acquiring the timestamps of the beginning of these phases. 

On the other hand, the transition from “Sitting” to “Phase 1” was hard to detect. The 

system usually detected the beginning of “Phase 1” later than expected. Although this phase 

was always detected, it was only correctly detected 4 out of 5 times per subject (each 

subject performed 5 movements). The main issue detecting the beginning of “Phase 1” is 

connected to the detection of the beginning of the trunk movement. Since only joint position 

variations bigger than 1cm were detected by the developed system, small variations due to 

slower movements were troublesome.  

As described in Chapter 3, during the initial segmentation, the detection of one phase 

depended on the detection of the previous one. Even if detected late, “Phase 1” did not 
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create problems for the detection of “Phase 2”, since “Phase 1” is one of the longest phases 

of the movement.  

The main problems of the initial segmentation were in the detection of “Phase 2” and by 

consequence in the detection of “Phase 3”. “Phase 2” lasts from 2 to 8 frames, depending on 

how fast the movement is performed. This is a time window of 66ms to 264ms considering a 

frame rate of 30 frames per second. Detecting a continuous variation of the hips’ height in 

such a small time window proved difficult in the initial segmentation. We had to guarantee 

that it was actually the beginning of “Phase 2” and not just a variation due to unstable data 

or jittering. In some extreme cases “Phase 2” was not detected during any of the 5 

movements performed by subject. At best “Phase 2” was detected 3 out 5 times. 

Consequently the detection of “Phase 3” was hindered in some cases, due to the imposed 

necessity of detecting the previous phase in order to correctly detect the new one. Every 

time “Phase 2” was correctly detected, “Phase 3” was also correctly detected. 

 

5.1.2 - Datasets 

A manual segmentation was performed using the initial segmentation as a starting point. 

All movements were analysed frame-by-frame in order to confirm and/or correct the results 

of the initial segmentation. After establishing the features to be acquired, another re-

evaluation of the segmentation was performed using these features. With this procedure we 

created the ground truth of the system, consisting of a dataset of 3283 samples, divided into 

5 classes: “Sitting”, “Phase 1”, “Phase 2”, “Phase 3” and “Standing”. This dataset was 

unbalanced presenting some classes with very few samples. “Phase 2” class was most evident 

example, having only 108 samples in a total of 3283 (less than 4% of the dataset). In order to 

balance the dataset SMOTE was applied obtaining a new dataset with a total of 4176 samples, 

divided into the same 5 classes. The datasets are summarized in Figure 5.1. 

   
Figure 5.1 – Distribution of the classes in the datasets; A – Original dataset with 3283 samples; B – 
Dataset after SMOTE. 
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Figure 5.1 shows the distribution of the classes in both datasets (before oversampling and 

after oversampling). Just from observation of the Figure we can see that the classes are much 

more balanced in the oversampled dataset (Figure 5.1 –B) when comparing with the original 

dataset. In the new dataset we have 700 samples in classes “Phase 1” and “Phase 2” instead 

of 399 and 108 samples respectively. As mentioned in Chapter 3 we would want to have each 

class representing the same portion of the dataset (20%). This was not fully achieved, but a 

much more uniform distribution was obtained for the new dataset. The impact of the SMOTE 

and the use of the new dataset to train the classifier will be discussed in the following 

sections. 

5.2 -  Classification Results 

5.2.1 -  Training algorithms comparison 

The first step before deciding which of the training algorithms to use in the final 

application, was to analyse the classification results and select the one with the best results. 

We can see the results obtained for the classifier trained using the Baum-Welch algorithm 

(BWa) and the original dataset on Table 5.1 and for the classifier trained using the Segmental 

K-Means algorithm (SKMa) and the original dataset on Table 5.2. It is possible to observe that 

for the classes “Sitting”, “Phase 2”and “Standing” the number of TPs was lower for the SKMa 

case. This means that the number of correct detections of these classes using the classifier 

trained with the SKMa was lower. This is important since we want to be able to delimit and 

segment the phases as correctly as possible. Having a high number of correct detections is 

essential for the system. 

Also, for the same 3 classes, the number of FNs is higher when using the SKMa for 

training. This means that, for these 3 classes, the classifier misses the identification of more 

samples as being part of these classes than the BW algorithm. 

Table 5.1 – Confusion matrix obtained using the Baum-Welch training algorithm and the 
original dataset. 

Classifier decision 

  Sitting Phase 1 Phase 2 Phase 3 Standing Total 

T
ru

e
 C

la
ss

 

Sitting 1022 52 4 3 0 1081 

Phase 1 40 313 36 10 0 399 

Phase 2 0 14 89 5 0 108 

Phase 3 0 2 32 492 67 593 

Standing 0 0 0 83 1019 1102 

 Total 1062 381 161 593 1086 3283 
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Table 5.2 – Confusion matrix obtained using the Segmental K-Means algorithm and the 
original dataset. 

Classifier decision 

  Sitting Phase 1 Phase 2 Phase 3 Standing Total 
T

ru
e
 C

la
ss

 

Sitting 977 73 0 31 0 1081 

Phase 1 28 313 58 0 0 399 

Phase 2 0 21 77 10 0 108 

Phase 3 0 11 47 500 35 593 

Standing 0 0 0 118 984 1102 

 Total 1005 418 182 659 1019 3283 

  

 

 
Table 5.3 – Precision and recall results for all the classes and average value obtained using 
the Baum-Welch training algorithm and the original dataset. 

 Sitting Phase 1 Phase 2 Phase 3 Standing Average 

Precision 0.96 0.82 0.55 0.83 0.94 0.82 

Recall 0.95 0.78 0.82 0.83 0.92 0.86 

 

 
Table 5.4 - Precision and recall results for all the classes and average value obtained using 
the Segmental K-Means algorithm and the original dataset. 

 Sitting Phase 1 Phase 2 Phase 3 Standing Average 

Precision 0.97 0.76 0.42 0.76 0.89 0.76 

Recall 0.90 0.78 0.71 0.84 0.96 0.84 

 

On the other hand, the results for the “Phase 1” and “Phase 3” classes are very similar 

when comparing classifiers. The differences are almost unnoticeable. 

From the analysis of Tables 5.3 and 5.4 we conclude that the classifier trained with the 

BW algorithm performs better overall. When comparing the results for each class, it is 

interesting to see that even with a lower number of correct detections (TPs) the precision of 

the classifier trained with the SKMa is slightly higher for the “Standing” phase. This is due to 

the fact that, even with a lower number of TPs, the number of FPs is also lower, increasing 

the precision for this class. Even though this classifier produces a lower number of correct 

detections, it also produces a lower number of samples incorrectly assigned to this class. 

When observing the average values of precision and recall, we can see that overall the 

classifier performs better when trained with the BWa (and using the original dataset). Even 



 

52  Experimental Results Analysis and Discussion 

52 

when using the oversampled dataset for training, the classifier trained with the BWa 

performed better than that trained with SKMa. This led to the conclusion that the best 

training algorithm for the final application is the BWa. 

  

5.2.2 -  Training Datasets comparison 

Once we have excluded one of the training algorithms, it is important to see the effect of 

the SMOTE in the classification process. Table 5.5 shows the confusion matrix obtained for 

the classifier trained with the BWa using the oversampled dataset. 

Table 5.5 - Confusion matrix obtained using the Baum-Welch training algorithm and the 
oversampled dataset. 

Classifier decision 

  Sitting Phase 1 Phase 2 Phase 3 Standing Total 

T
ru

e
 C

la
ss

 

Sitting 1035 42 0 3 1 1081 

Phase 1 58 289 50 2 0 399 

Phase 2 0 12 92 4 0 108 

Phase 3 0 0 29 507 57 593 

Standing 0 0 0 46 1056 1102 

 Total 1093 343 171 562 1114 3283 

We can see that for the classes “Sitting”, “Phase 2”, “Phase 3” and “Standing” the 

number of TPs detected was slightly higher, and the number of FNs was slightly lower when 

using the oversampled dataset. For these cases the oversampling process increased the 

number of correctly identified samples and decreased the number of samples that were not 

recognized as part of these classes. These results are expected for the “Phase 2” class, since 

one of the characteristics of SMOTE is to make the class more general by introducing new 

synthetic samples. With this, we expect the classifier to be able to correctly recognize more 

samples than before. On the other hand, the classes “Sitting”, “Phase 3” and “Standing” 

presented a higher number of FPs when using the oversampled dataset for training. This 

means that more samples were incorrectly assigned to these classes. 

When observing the results of the “Phase 1” classification we can see that the number of 

TPs decreased and the number of FNs increased. This was one of the classes that was 

oversampled using SMOTE, along with “Phase 2”. Taking into considerations what was 

previously described for “Phase 2”, we expected the opposite results. We expected an 

increase of the number of TPs and a decrease of the number of FNs.  

These results could be related to the fact of having 2 classes being oversampled using 

SMOTE. When performing a movement, phase 2 will always come immediately after phase 1. 

Some characteristics of these phases are similar, like the flexion of the trunk. The main 

differentiating feature is the lift of the buttocks, represented by the movement of the hips. 
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By making both classes more general with SMOTE, we could have overlapped some of the 

features which previously distinguished the classes. 

 

Table 5.6 - Precision and recall results for all the classes and average value obtained using 
the Baum-Welch training algorithm and the oversampled dataset. 

 Sitting Phase 1 Phase 2 Phase 3 Standing Average 

Precision 0.95 0.82 0.54 0.90 0.95 0.83 

Recall 0.96 0.72 0.85 0.85 0.96 0.87 

 

In Table 5.6 we can see the performance measures for the classifier trained with the BWa 

using the oversampled dataset. As expected, the “Phase 1” recall decreased, due to an 

increase of the number of FNs and a decrease of the number of TPs when compared the 

results using the original dataset. Across all classes the results were slightly better, which is 

can be observed by a really slight increase of the average results. Still, the difference 

between the results is very small. For a better understanding of the effects of the 

oversampling in the results we would probably need a bigger test dataset, with more samples 

of the least represented classes. With a bigger test dataset we could probably obtain 

conclusive results, being able to decide if the effect of the oversampling using the SMOTE is 

useful for the final application. 

Overall, we conclude that the transition from phase 1 to phase 2 is difficult to detect. 

The classifier underperforms in the detection of this transition when compared to the rest of 

the phases even when using the oversampled dataset for training. Since the overall 

performance of the classifier is slightly better when using the oversampled dataset for 

training, we will be using the classifier trained with the BWa and the oversampled dataset in 

the final application. 

5.3 -  Extracted Information 

After defining the characteristics of the classifier to use in the final application, 

information about the movements can be extracted using the developed system. 

Considering an example of a full cycle of movement (starting in the standing position, sit 

down and then perform the STS movement) we can analyse some interesting aspects of the 

system. 
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Figure 5.2 – Trunk, left knee and left ankle angles acquired for a full movement with important 
moments marked; 1 – sitting down; 2 – stabilization (sitting position); 3 – Beginning of the movement 
(phase 1); 4 – phase 2; 5 – phase 3; 6 – end of movement (standing position). 

Figure 5.2 represents the trunk, left knee and left ankle angles acquired during a 

complete STS movement. Important moments of the movement are marked in the figure. 

With the information of these 3 angles we can delimit the phases of the movement. 

The subject starts in the standing position. It is expected that the trunk angle is close to 

90º. On the other hand, the ankle angle should be bigger than 90º, since we aren’t 

considering the angle with the ground, but the angle with the foot articulation. Finally the 

left knee angle should be close to 180º. We verify that the trunk and knee angles are 

correctly acquired, while the ankle angle is probably bigger than expected (134º). These 

values are stable until marker 1. Marker 1 represented the moment when the subject starts to 

sit down. The information acquired between the markers 1 and 2 is not relevant for the work 

because if corresponds to the sitting down movement. 

The stabilization in the sitting position can be observed when all acquired angles stabilize 

(marker 2). At this time the trunk and knee angles should be close to 90º, while the ankle 

angle should go back to the initial value. We can see that the trunk angle is the one closest to 

expected value. The knee angle is above the expected value and the ankle angle stabilized in 

a value lower than the initial one. These differences of the knee and ankle angles are 

expected due to the problems related with the skeleton detection. In Figure 5.3 we can see 

the sagittal and coronal views of the movement between markers 2 and 3. 
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Figure 5.3 – On the left: Sagittal view of skeleton between markers 2 and 3; On the right: coronal of the 
same moment. 

We can see that even when the subject is sitting, the skeleton won’t perfectly fit the 

body of the subject. The ankle and knee angles are always bigger than 90º. This is a problem 

that is inherent to the Kinects skeleton tracking [28]. 

Marker 3 represents the beginning of the phase 1 of the movement. In Figure 5.2 we can 

see that the trunk angle will start to decrease from 90º to a minimum of 51º (mark 4). We can 

also detect a small variation of the ankle and knee angles a short period after phase 1 

starting. When the knee angle starts to increase again, it means that the hips are moving. 

This means that phase 2 is starting, corresponding to the marker 4. The coronal and sagittal 

view of the beginning of phase 2 can be seen on Figure 5.4. It is possible to note that the 

ankle and trunk angles present lower values than expected. 

As expected, phase 2 is the shortest phase of the movement, ending when the trunk angle 

reaches its minimum value (marker 5). This marks the beginning of phase 3, the extension 

phase. By simple observation of Figure 5.4 we can see that the trunk and ankle angles have 

decreased when comparing with Figure 5.3. 

 Phase 3 goes from marker 5 to marker 6, and it is defined by the full extension of the 

body. All the angles will increase until the standing position is reached. At marker 6, the 

trunk angle should be around 90º and the knee angle should be around 180º. 
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Figure 5.4 – On the left: sagittal view of the beginning of phase 2; On the right: coronal view of the 
beginning of phase 2.  

Figure 5.5 shows the end of the movement, when the full extension of the body is 

achieved. It is possible to see that despite the subject being in the standing position, the 

joints aren’t all vertically aligned. This happened in all the tests, leading to the conclusion 

that even when working in the normal conditions for the Kinect (standing position), the joints 

won’t have the same depth value when the body is fully extended. 

 
Figure 5.5 - On the left: sagittal view of the end of the movement; On the right: coronal view of the 
end of the movement. 

When this work was developed the skeleton tracking algorithm was not fully prepared to 

analyse the whole body in the sitting position. Although, we can see that the system is still 

able to detect variations of the angles, being useful even if the values don’t completely 

correspond to the expected ones. The variation of values is still consistent with the what is  

expected for this kind of movement. 
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Figure 5.6 – Graphical representation of the left and right knee angles acquired for the movement 
previously analysed.  

In Figure 5.6 we can see the data acquired during the previous movement for both knees. 

It is interesting to see that the data is very similar, and the plots overlap almost completely. 

This means that the acquired data for the knees is consistent, since we will get similar values 

when measuring the right and the left knee angles.  

 
Figure 5.7 - Graphical representation of the left and right ankle angles acquired for the movement 
previously analysed. 

The same affirmation cannot be made for the ankle angles. In Figure 5.7 we can see that 

the values of the left and right ankle angles vary a lot. This is due to the fact that the foot 

joints are unstable when compared to the rest of the joints used to compute these angles. 

The foot joints tend to be inferred a lot, and even when they aren’t inferred, they tend to be 

unstable, even in a steady position. This led to the necessity of computing these angles 

differently. The results of this method (section 3.6) can be seen on Figure 5.8. 
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Figure 5.8 - Graphical representation of the left and right ankle angles with the ground acquired for the 
movement previously analysed. 

We can see that, even if not perfect, the results are better with the simplification. The 

angle of both ankles will overlap almost all the time. Also, when comparing the max value of 

the angles, with and without the simplification, we can see that the maximum values are 

lower when using the simplification. With the simplification we will a obtain maximum angle 

close to 90º. Without the simplification the angles are around the 130º degrees. Detecting a 

90º angle in the ankles is much more intuitive than a 130º angle. In a standing position, if we 

consider the ground as the reference, 90º is a much more realistic and understandable value 

than 130º. 

The angles at lift off obtained with the system are presented in Table 5.7. These results 

can be compared with the ones obtained in [9] and [61], shown in Figure 5.9. The symbol γ 

represents the ankle angle with the ground described in section 3.6. We should only compare 

the results with the results obtained using a young population performing movements at 

normal pace, since those were the restrictions to this system.  

By comparison of the values in Table 5.7 and Figure 5.9 we can see that the knee and 

ankle angles obtained with the Kinect are approximate to the ones obtained with the marker-

based system ([61]). The results obtained for the γ are slightly different from the ones 

reported by other authors [9]. In both works ([9] and [61]) the authors reported γ of 

approximately 50º. On the other hand, with this system we obtained a γ of approximately 80º 

at lift off. This difference is probably due to the depth data acquired with the Kinect. When 

the subject is sitting, the skeleton is not entirely fit to the body, leading to discrepancies in 

the obtained values when compared to the literature. 

Gross et al. [61] also reported a trunk angle at lift off of 55.1±12.8 degrees. In this work 

we obtained a trunk angle at lift off of 62±9 degrees. The difference between the results is 

minimal. Also, we can see that with this system we obtained a slightly lower standard 

deviation. But we should also consider that all the angles acquired were rounded up, so lower 

variations of the angle won’t be detected.  
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Table 5.7 – Knee, ankle and ankle with the ground angles at lift off during the STS movement. 

 Angles 

 Left Knee Right Knee Left Ankle Right Ankle Left γ Right γ Trunk 

μ (º) 119 116 129 130 82 81 62 

±σ (º) 11 9 17 17 7 9 9 

 

 
Figure 5.9 - Hip, knee, ankle, and γ angles at lift off during STS movement. The results obtained by 
Goffredo et al. [9] with the markerless system are compared with the results obtained by Gross et al. 
[61] with a marker-based system (image adapted from [9]). 

 

In this work, angular velocity data was also acquired. The results are shown in Figure 

5.10. Using the same rationale used to analyse Figure 5.2, we can draw some conclusions 

from the acquired data. 

We can start by analysing the behaviour of the data over time. It is possible to see that 

the acquired that has sudden variations. For example, the data before marker 1 should be 

always 0, since the subject is standing up and no movements are being performed. From this 

observation we can say that a filtering process, like a median filter, should have been applied 

to the angular velocity values, in order to remove the spikes of the data. 

By analyses of the trunk angular velocity, we can see that it is easy to distinguish the 

moment when the subject starts sitting. This can be detected by the variation of the trunk 

angular velocity, which will become negative. In this case a negative angular velocity means 

that the angle is diminishing over time. This is consistent with bending the trunk forward in 

order to sit down. Also, even with positive spike of the left knee’s angular velocity, both the 

knee’s angular velocity and the ankle’s angular velocity will take negative values, indicating 

that the subject is flexing knees and ankles in order to sit down. 

After these variations we can see a stabilization phase between markers 2 and 3, where 

angular velocities tend to 0º/s. This will correspond to the sitting phase, before the 

movement is initiated. 

Goffredo et al. (2009) 

Gross et al. (1998) 
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Figure 5.10 - Trunk, left knee and left ankle angular velocities acquired for a full movement with 
important moments marked; 1 – sitting down; 2 – stabilization (sitting position); 3 – Beginning of the 
movement (phase 1); 4 – phase 2; 5 – phase 3; 6 – end of movement (standing position). 

As mentioned before, marker 3 will correspond to the beginning of phase 1. We can see 

that the once again the angular velocity of the trunk becomes negative, which indicates the 

bending of the upper body. This trend is followed by the knees and ankles after a few 

milliseconds. Before the initiation of phase 2, the angle of the knees and ankles has to 

decrease in order to be able to lift the buttocks. In general the whole body starts moving 

towards (in the direction of the Kinect considering the setup explained in section 3.2) in order 

to lift the buttocks. This moment corresponds to marker 4, the beginning of phase 2. During 

phase 2 (between markers 4 and 5) we will see the trunk angle reaching a minimum value 

until it finally starts extending. This is followed by the extension of the knees and ankles, 

which is represented by the change in the corresponding angular velocities. These go from 

negative to positive. The moment when the trunk’s angular velocity is 0º/s marks the 

beginning of phase 3. During this phase, the whole body is extending, which means the angles 

of trunk, knees and ankles will increase, until the stabilization (marker 6) marking the 

standing position and end of the movement. 

Important information extracted from the movements is the duration of each phase 

(phase 1, phase 2 and phase 3). The results are presented in Table 5.8. 

 
Table 5.8 – Duration of movement phases and total duration of the movement. 

 Phase 1 Phase 2 Phase 3 Total 

μ (s) 0.31 0.16 0.31 1.06 

±σ (s) 0.07 0.06 0.07 0.14 
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As mentioned previously, phase 2 was the most problematic phase overall. Its duration is 

shorter than the other phases, making it hard to identify. We can see that phase 1 and phase 

3 have similar durations. According to the number of true classes, phase 1 should last in 

average approximately 0.37 seconds (399 samples divided equally by 35 movements and 

multiplied by time between frames ~33ms) if all the movements were performed exactly the 

same way. Of course in a real situation this is not true, but this gives us a comparison of 

results. The duration of phase 1 will tend to be shorter than the expected value due to errors. 

If the system fails to detect the first sample that corresponds to phase 1, the obtained 

duration will be shorter than expected. The same logic applies to phase 3. If the classifier 

fails to correctly identify the beginning of the phase (which is what happens), the duration of 

the phase will be shorter than expected. For phase 3, this is even more noticeable. Ideally 

phase 3 would last approximately 0.56 seconds (593 samples divided equally by 35 movements 

and multiplied by the 33ms). 

5.4 -  Concluding Remarks 

Considering the initial segmentation, the results were not good enough considering the 

final objective of the work. The initial segmentation was useful to gather information about 

the problem in hands, getting an initial estimation of the phases. 

Using the initial segmentation as a base, a manual segmentation was performed and then 

re-evaluated, obtaining a dataset to use as ground truth. This dataset has 3283 samples, 

divided into 5 classes: “Sitting” with 1081 samples, “Phase 1” with 399 samples, “Phase 2” 

with 108 samples, “Phase 3” with 593 samples and “Standing” with 1102 samples. 

Due to the classes being unbalanced, SMOTE was used for classes “Phase 1” and “Phase 

2”, obtaining a new dataset with 4176 samples. The new dataset was more balanced than the 

original one. 

Four HMM classifiers were trained with different 2 different algorithms and 2 datasets. 

The training algorithms used were the Baum-Welch algorithm (BWa) and the Segmental K-

means algorithm (SKMa). With each training algorithm, both dataset (original and 

oversampled) were used. The results from the 4 classifiers were obtained and compared. The 

validation methodology used here was similar to 5-fold cross-validation, dividing both the 

original and oversampled datasets. Both datasets were split over 5 sets each, containing 1 full 

movement per subject, to a total of 7 movements per set. One set from the original dataset 

was then classified with two of the classifiers. One of these classifiers was previously trained 

on the remaining four sets of the original dataset and the other on the equivalent remaining 

four sets of the oversampled dataset. This was repeated five times to classify all the samples 

from the original dataset. For each classifier the results from the classification of the 5 sets 
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were combined. With this, 4 different final classification results, one for each classifier, were 

obtained. 

The classifier that had the best overall performance was the classifier trained with the 

BWa using the oversampled dataset. A precision of 0.83 and recall of 0.87 were obtained for 

this classifier. This classifier was used in our final application, in order to automatically 

segment the movements and to enable a better data acquisition. 

Lastly, information about the movements was extracted, analysed and compared to 

previous works [9, 61]. Angle and angular velocity data were analysed. The results of the 

acquired data were good enough to be able to perform a segmentation of the movement 

based solely on these results. Along with the analysis of the data, an analysis of the sagittal 

and coronal views during the performance of the movement was performed, with the 

objective of performing a better analysis of the acquired data. Overall, the angles acquired 

with the system seem consistent with the results described in the literature ([9, 61]). 

On the other hand, the angular velocity results were less consistent. Some instability was 

noted in the acquired data. A solution to this problem could be the use of a median filter, to 

remove the noticed spikes of the data. 

Finally, the duration of the phases detected by the system was analysed. A tendency to 

obtain shorter durations than the expected was noticed, probably due to the results from the 

classification step. Each misclassification will lead to a shorter phase, especially the miss 

classifications in the phase transitions. 



 

 

 

 

 

 

Chapter 6  

Conclusion and Future work 

6.1 -  Conclusion 

A new STS movement analysis system using the Kinect platform has been presented. The 

system performs an automatic segmentation of the movement using HMMs classifiers. As the 

movement is being segmented, information (angles and angular velocity of the main joints) is 

acquired. The segmentation and data acquisition are performed in real time and the acquired 

data can be saved for future consultation. 

An interface was developed in order to give some insight about the work and feedback 

about the movements to the user. Based on the results reported in the previous chapters, we 

believe that this system offers a basis for future research and improvement in the home 

rehabilitation field. 

6.2 -  Future Research 

In future research, a possible strategy to improve the performance of the system can be 

defined. For instance, a bigger dataset with balanced classes could be used to train the 

classifier. By improving the performance of the system we would improving the overall 

results. Also, the study could be extended to the elderly, in order to make the system more 

general. 

Furthermore, new models could be trained in order to identify certain patterns of the 

movements. The main objective would be to categorize the movement as normal or 

abnormal. Other movement patterns could also be modelled in order to identify specific rising 

strategies or incorrect movement patterns. 



 

 

 

 

 

References 

[1] Janssen, W.G.M., H.B.J. Bussmann, and H.J. Stam, Determinants of the sit-to-stand 

movement: A review. Physical Therapy, 2002. 82(9): p. 866-879. 

[2] Bohannon, R.W., Measurement of sit-to-stand among older adults. Topics in Geriatric 

Rehabilitation, 2012. 28(1): p. 11-16. 

[3] Dall, P.M. and A. Kerr, Frequency of the sit to stand task: An observational study of free-

living adults. Applied Ergonomics, 2010. 41(1): p. 58-61. 

[4] Chen, S.H., Lee, Y. H., Chiou, W. K., Chen, Y. L., A pilot study examining seat heights 

and subjective ratings during rising and sitting. International Journal of Industrial 

Ergonomics, 2010. 40(1): p. 41-46. 

[5] Inkster, L.M. and J.J. Eng, Postural control during a sit-to-stand task in individuals with 

mild Parkinson's disease. Experimental Brain Research, 2004. 154(1): p. 33-38. 

[6] Kerr, A., B. Durward, and K.M. Kerr, Defining phases for the sit-to-walk movement. 

Clinical Biomechanics, 2004. 19(4): p. 385-390. 

[7] Nuzik, S.,Lamb, R., VanSant, A., Hirt, S., Sit-to-stand movement pattern. A kinematic 

study. Physical Therapy, 1986. 66(11): p. 1708-1713. 

[8] Schenkman, M., Berger, R. A., Riley, P. O., Mann, R. W., Hodge, W. A., Whole-body 

movements during rising to standing from sitting. Physical Therapy, 1990. 70(10): p. 

638-651. 

[9] Goffredo, M., Schmid, M., Conforto, S., Carli, M.,  Neri, A., D'Alessio, T., Markerless 

human motion analysis in Gauss-Laguerre transform domain: An application to sit-to-

stand in young and elderly people. IEEE Transactions on Information Technology in 

Biomedicine, 2009. 13(2): p. 207-216. 

[10] Dehail, P., Bestaven, E., Muller, F., Mallet, A., Robert, B., Bourdel-Marchasson, I., Petit, 

J., Kinematic and electromyographic analysis of rising from a chair during a "Sit-to-

Walk" task in elderly subjects: Role of strength. Clinical Biomechanics, 2007. 22(10): 

p. 1096-1103. 

[11] Munton, J.S., M.I. Ellis, and V. Wright, Use of electromyography to study leg muscle 

activity in patients wth arthritis and in normal subjects during rising from a chair. 

Annals of the Rheumatic Diseases, 1984. 43(1): p. 63-65. 

[12] Rodrigues-De-Paula Goulart, F. and J. Valls-Solé, Patterned electromyographic activity in 

the sit-to-stand movement. Clinical Neurophysiology, 1999. 110(9): p. 1634-1640. 

[13] Mathie, M.J., Coster, A. C. F., Lovell, N. H., Celler, B. G., Accelerometry: Providing an 

integrated, practical method for long-term, ambulatory monitoring of human 

movement. Physiological Measurement, 2004. 25(2): p. R1-R20. 

[14] Khoshelham, K. and S.O. Elberink, Accuracy and resolution of kinect depth data for 

indoor mapping applications. Sensors, 2012. 12(2): p. 1437-1454. 



 

65 

65 

 

[15] Shotton, J., Sharp, T., Fitzgibbon, A., Blake, A., Cook, M., Kipman, A., Finocchio, M., 

Moore, R., Real-Time human pose recognition in parts from single depth images. 

Communications of the ACM, 2013. 56(1): p. 116-124. 

[16] Nirjon, S. and J.A. Stankovic, Kinsight: Localizing and tracking household objects using 

depth-camera sensors, in 8th IEEE International Conference on Distributed Computing 

in Sensor Systems, 2012. p. 67-74. 

[17] Chang, Y.J., S.F. Chen, and J.D. Huang, A Kinect-based system for physical 

rehabilitation: A pilot study for young adults with motor disabilities. Research in 

Developmental Disabilities, 2011. 32(6): p. 2566-2570. 

[18] Lange, B., Chang, C. Y., Suma, E., Newman, B., Rizzo, A. S., Bolas, M., Development and 

evaluation of low cost game-based balance rehabilitation tool using the Microsoft 

Kinect sensor, in Conference proceedings : ... Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and 

Biology Society. Conference2011. p. 1831-1834. 

[19] Pedro, L.M. and G.A. De Paula Caurin, Kinect evaluation for human body movement 

analysis, in 2012 4th IEEE RAS and EMBS International Conference on Biomedical 

Robotics and Biomechatronics, 2012. p. 1856-1861. 

[20] Biswas, K.K. and S.K. Basu, Gesture recognition using Microsoft Kinect, in 5th 

International Conference on Automation, Robotics and Applications, ICARA 2011, 

2011. p. 100-103. 

[21] Lai, K., J. Konrad, and P. Ishwar, A gesture-driven computer interface using Kinect, in 

2012 IEEE Southwest Symposium on Image Analysis and Interpretation, SSIAI 2012, 

2012. p. 185-188. 

[22] Patsadu, O., C. Nukoolkit, and B. Watanapa, Human gesture recognition using Kinect 

camera, in JCSSE 2012 - 9th International Joint Conference on Computer Science and 

Software Engineering, 2012. p. 28-32. 

[23] Chang, C.Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A. 

A., Rizzo, A. A., Towards pervasive physical rehabilitation using microsoft kinect, in 

2012 6th International Conference on Pervasive Computing Technologies for 

Healthcare and Workshops, PervasiveHealth 2012, 2012. p. 159-162. 

[24] Gama, A.D., Chaves, T., Figueiredo, L., Teichrieb, V., Guidance and Movement 

Correction Based on Therapeutics Movements for Motor Rehabilitation Support 

Systems, in Proceedings of the 2012 14th Symposium on Virtual and Augmented 

Reality, 2012, IEEE Computer Society. p. 191-200. 

[25] Harms, M., Advancing technology in rehabilitation. Physiotherapy (United Kingdom), 

2012. 98(3): p. 181-182. 

[26] Yeh, S.C., Hwang, W. Y., Huang, T. C., Liu, W. K., Chen, Y. T., Hung, Y. P., A study for 

the application of body sensing in assisted rehabilitation training, in 2012 



 

66   

66 

International Symposium on Computer, Consumer and Control, IS3C 2012, 2012. p. 

922-925. 

[27] Papa, E. and A. Cappozzo, Sit-to-stand motor strategies investigated in able-bodied 

young and elderly subjects. Journal of Biomechanics, 2000. 33(9): p. 1113-1122. 

[28] Webb, J. and J. Ashley, Beginning Kinect Programming with the Microsoft Kinect SDK. 1 

ed., 2012: Apress. 321. 

[29] Microsoft Corporation, “Kinect for Windows”.  [Accessed on: October 12, 2012]; 

Available from: http://www.microsoft.com/en-us/kinectforwindows/. 

[30] Fujimoto, M. and L.S. Chou, Dynamic balance control during sit-to-stand movement: An 

examination with the center of mass acceleration. Journal of Biomechanics, 2012. 

45(3): p. 543-548. 

[31] Microsoft Corporation,  MSDN Library - Kinect for windows SDK.  [Accessed on: January 

10, 2013]; Available from: http://msdn.microsoft.com/en-us/library/hh855347.aspx. 

[32] Duffy, J. Exclusive: Inside Project Natal's Brain. 2010  [Accessed on: January 10, 2013]; 

Available from: http://www.popsci.com/gadgets/article/2010-01/exclusive-inside-

microsofts-project-natal. 

[33] LaBelle, K., Evaluation of Kinect joint tracking for clinical and in-home stroke 

rehabilitation tools, in Computer Science, 2011: Notre Dame, Indiana. p. 67. 

[34] OpenNI. OpenNI - The standard framework for 3D sensing. [Accessed on: October 12, 

2012]; Available from: http://www.openni.org/. 

[35] Clark, R.A., Pua, Y. H., Fortin, K., Ritchie, C., Webster, K. E., Denehy, L., Bryant, A. L., 

Validity of the Microsoft Kinect for assessment of postural control. Gait and Posture, 

2012. 36(3): p. 372-377. 

[36] Orendurff, M.S., Segal, A. D., Klute, G. K., Berge, J. S., Rohr, E. S., Kadel, N. J., The 

effect of walking speed on center of mass displacement. Journal of Rehabilitation 

Research and Development, 2004. 41(6 A): p. 829-834. 

[37] Hahn, M.E. and L.S. Chou, Age-related reduction in sagittal plane center of mass motion 

during obstacle crossing. Journal of Biomechanics, 2004. 37(6): p. 837-844. 

[38] Hughes, M.A., Weiner, D. K., Schenkman, M. L., Long, R. M., Studenski, S. A., Chair rise 

strategies in the elderly. Clinical Biomechanics, 1994. 9(3): p. 187-192. 

[39] Schenkman, M., P.O. O'Riley, and C. Pieper, Sit to stand from progressively lower seat 

heights: Alterations in angular velocity. Clinical Biomechanics, 1996. 11(3): p. 153-

158. 

[40] Etnyre, B. and D.Q. Thomas, Event standardization of sit-to-stand movements. Physical 

Therapy, 2007. 87(12): p. 1651-1666. 

[41] Aggarwal, J.K. and M.S. Ryoo, Human activity analysis: A review. ACM Computing 

Surveys, 2011. 43(3). 

[42] Han, J. and M. Kamber, Data Mining: Concepts and Techniques. Second Edition ed, ed. 

M.R. Jim Gray, 2006, Morgan Kaufmann Publishers, p. 772-780. 



 

67 

67 

 

[43] Shalabi, L.A., Z. Shaaban, and B. Kasasbeh, Data Mining: A Preprocessing Engine. Journal 

of Computer Science. 2(9): p. 735-739. 

[44] Feng-Shun Lin, J. and D. Kulic. Segmenting human motion for automated rehabilitation 

exercise analysis, 2012. 

[45] Panahandeh, G., Mohammadiha, N., Leijon, A., Handel, P., Continuous hidden markov 

model for pedestrian activity classification and gait analysis. IEEE Transactions on 

Instrumentation and Measurement, 2013. 62(5): p. 1073-1083. 

[46] Liu, D., Wu, J., Wang, Y., Wang, J., Gong, Z., Fight detection based on hidden markov 

model,  2012. 

[47] Souza, C.d., The Accord.NET Framework [Accessed on: 13 January, 2013]; Available 

from: http://code.google.com/p/accord/. 

[48] Rabiner, L.R. and B.-H. Juang, Introduction to Hidden Markov Models. IEEE ASSP 

magazine, 1986. 3(1): p. 4-16. 

[49] Rabiner, L.R., Tutorial on hidden Markov models and selected applications in speech 

recognition. Proceedings of the IEEE, 1989. 77(2): p. 257-286. 

[50] Rodríguez, L. and I. Torres, Comparative Study of the Baum-Welch and Viterbi Training 

Algorithms Applied to Read and Spontaneous Speech Recognition, in Pattern 

Recognition and Image Analysis, F. Perales, et al., Editors. 2003, Springer Berlin 

Heidelberg. p. 847-857. 

[51] Microsoft Corporation, Skeletal Joint Smoothing White Paper [Accessed on:January 10, 

2013]; Available from: http://msdn.microsoft.com/en-us/library/jj131429.aspx. 

[52] Al Shalabi, L. and Z. Shaaban. Normalization as a Preprocessing Engine for Data Mining 

and the Approach of Preference Matrix,  2007. 

[53] Chawla, N.V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P., SMOTE: Synthetic minority 

over-sampling technique. Journal of Artificial Intelligence Research, 2002. 16: p. 321-

357. 

[54] Pazzani, M.J., Merz, C. J., Murphy, P. M., Ali, K., Hume, T., Brunk, C., Reducing 

Misclassification Costs, in International Conference on Machine Learning, 1994. p. 

217-225. 

[55] Kubat, M. and S. Matwin. Addressing the curse of imbalanced training sets: one-sided 

selection,  1997. Morgan Kaufmann. 

[56] Ling, C. and C. Li. Data Mining for Direct Marketing: Problems and Solutions. in 

Knowledge Discovery and Data Mining,  1998. 

[57] Sokolova, M. and G. Lapalme, A systematic analysis of performance measures for 

classification tasks. Information Processing & Management, 2009. 45(4): p. 427-437. 

[58] Musundi, M. WPF: Webcam Control [Accessed on: January 13, 2013]; Available from: 

http://www.codeproject.com/Articles/285964/WPF-Webcam-Control. 

[59] Microsoft Corporation, D3 - Dynamic Data Display [Accessed on: May 12, 2013]; Available 

from: http://dynamicdatadisplay.codeplex.com/. 



 

68   

68 

[60] Manohar. SMOTE (Synthetic Minority Over-Sampling Technique) [Accessed on:January 10, 

2013]; Available from: http://www.mathworks.com/matlabcentral/fileexchange/ 

38830-smote-synthetic-minority-over-sampling-technique. 

[61] Gross, M.M., Stevenson, P. J., Charette, S. L., Pyka, G., Marcus, R., Effect of muscle 

strength and movement speed on the biomechanics of rising from a chair in healthy 

elderly and young women. Gait & Posture, 1998. 8(3): p. 175-185. 

 

 

  



 

69 

69 

 

Appendix A 

User’s Manual 

A manual for an easy usage of the system is presented here. 

A.1 – How to start capturing movements? 

Step 1 - In order to use the presented application the user must have previously set up 

the Kinect for Windows SDK and the Kinect for Windows Developer Toolkit. The instructions 

and installation files are available at: http://www.microsoft.com/en-

us/kinectforwindows/develop/developer-downloads.aspx. 

 

Step 2 – Connect the Kinect to the computer. 

 

Step 3 - After having the necessary software installed and making sure the Kinect is 

connected the run the application “STS Movement Analyser” and wait until it loads. A window 

similar to the one presented should pop up. 

 

Step 4 – Run the Kinect Studio application.  

Two windows like the ones presented above should pop-up. 

 

http://www.microsoft.com/en-us/kinectforwindows/develop/developer-downloads.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/developer-downloads.aspx
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Step 5 - Press the “Connect” bottom on the second window to connect the Kinect studio to 

your application. 

 

 

 

The Kinect studio status should now show that the application is connected. 

 

Step 6 – In order to start a new data acquisition press the record button. 
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Once you press that button, the application will start saving the RGB, Depth and skeletal data 

being acquired by the “STS Movement Analyser” application. 

 

The previous window should look like this: 

 

 

On the upper right corner a timer will start (black arrow), corresponding to the time 

elapsed since the beginning of the data acquisition. 

Now the user can go perform the movements and once finished just press the stop button 

(red button). 

Step 7 – To save the acquired data, the user just has to go to File -> Save. 

 

 

A window asking for the location where the user wants to save the data will pop up. 

A.2 - How to review saved data? 

In order to review a saved movement, the user just has to go to File -> Open and select 

the desired saved file. 

 

 

Once the file is open the user can just hit the play button to start reviewing the 

movement, angles and angular velocities on the “STS Movement Analyser” window. 
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