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Resumo 

Palavras Chave: Fiabilidade, manutenção, Monte Carlo, taxa de avarias; 

 

Nesta tese é apresentada uma nova aplicação das simulações de Monte Carlo no âmbito da 

avaliação da fiabilidade de sistemas elétricos de energia. A técnica desenvolvida pertence aos 

métodos de simulação que, hoje em dia, são extremamente utilizados. Para além disso, vários 

novos aspetos vão ser introduzidos no processo de simulação típico, a fim de alcançar uma 

abordagem realista para a análise da fiabilidade de sistemas elétricos de energia.  

Geralmente, na avaliação da fiabilidade de sistemas elétricos de energia, é necessário 

construir o ciclo de vida de cada um dos componentes que compõem os sistemas. Deste 

modo, um processo cronológico tem de ser desenvolvido. Grande parte dos estudos seguem 

uma distribuição exponencial para gerar esses ciclos de vida, através do uso de uma taxa de 

avarias   constante. Contudo, a taxa de avarias   de um componente elétrico não é 

constante. Ela varia com o passar do tempo. A taxa de avarias   de um componente elétrico é 

caracterizada por diferentes regiões. O início de vida destes componentes é caracterizado por 

uma taxa de avarias decrescente, graças à correção de alguns problemas de fabrico. Depois, 

os componentes entram na sua fase de vida útil, a qual se caracteriza por uma taxa de avarias 

constante. Finalmente, com o natural processo de degradação, a taxa de avarias começa a 

aumentar. Portanto, o uso de uma taxa de avarias   constante não ilustra uma situação real. 

Assim, nesta tese, um método de simulação baseado no típico método sequencial de Monte 

Carlo é desenvolvido, a fim de se incorporar esta nova particularidade: taxa de avarias 

variável. Para alcançar este objetivo, várias mudanças são produzidas no algoritmo típico de 

um Monte Carlo sequencial.  

Ao introduzir-se, nesta tese, a existência de uma taxa de avarias variável, passou-se 

também, a incluir o processo de degradação que os componentes de um sistema elétrico 

sofrem. Por conseguinte, outro aspeto muito importante na avaliação da fiabilidade de 

sistemas elétricos de energia é tratado: as políticas de manutenção. Esta tese apresenta três 

diferentes aplicações de Monte Carlo que correspondem a três diferentes políticas de 

manutenção: manutenção reativa, manutenção preventiva e manutenção preditiva. A inclusão 

deste novo aspeto tem um objetivo: a melhoria dos índices de fiabilidade, através da 

extensão do período de vida útil dos componentes. 

Os resultados obtidos com as três diferentes aplicações de Monte Carlo vão ser 

comparados e, uma análise de custo-eficiência vai ser realizada, a fim de descobrir qual o 

melhor processo de manutenção.  



 

 

 

 

 

 

 

 

 

 

  



Abstract 

Index Terms: Failure Rate, maintenance, Monte Carlo, reliability; 

 

This thesis presents a new application of the Monte Carlo simulations in power systems 

reliability evaluation. The developed technique belongs to the simulation methods that are, 

nowadays, widely used. Moreover, several new aspects will be introduced in the typical 

simulation process in order to achieve a realistic approach in the power systems reliability 

analysis.  

Usually, in the assessment of power systems reliability, the development of the life cycle 

of the components that compose the power systems is necessary. Therefore, a chronological 

process needs to be developed. Most of studies follows an exponential distribution to 

generate the life cycle of the components of a power system, by using a constant failure rate 

 . However, the failure rate   of an electrical component isn’t constant. It varies with the 

elapse of time. The failure rate   of an electrical component is characterized for three 

different regions. The beginning of an electrical component life is characterized for a 

decreasing failure rate, thanks to the rectification of some debugging problems. Then, the 

electrical components enter on the useful life period, which is characterized for a constant 

failure rate. Finally, with the natural degradation process, the failure rate starts to increase. 

Therefore, the use of a non constant failure rate   doesn’t illustrate the real situation. So, in 

this thesis, a sequential Monte Carlo based method is developed in order to incorporate this 

new particularity: the variable failure rate. To reach this goal, several changes are produced 

in the typical Monte Carlo algorithm. 

By introducing, in this thesis, the existence of a variable failure rate, the process of 

degradation of the components of a power system is also included. Therefore, another very 

important aspect in the power systems reliability evaluation is treated: the maintenance 

policies. This thesis presents three different Monte Carlo applications that correspond to 

three different maintenance policies: reactive maintenance, preventive maintenance and 

predictive maintenance. The inclusion of this new aspect has one goal: the improvement of 

the reliability indices through the extension of the useful life period of the components.  

The results obtained with the three different Monte Carlo applications will be compared 

and, a cost-efficiency analysis will be made in order to find the best maintenance procedure. 
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Chapter 1 

Introduction 
 

 

 

In this Chapter, a brief overview about the addressed problem will be presented. First, 

the general guidelines about the importance of the maintenance policies for the power 

systems will be given. Then, the purpose of this thesis will be explained. Finally, the 

organization of this thesis will be presented. 

 

 

1.1 The Importance of Maintenance Policies for Power Systems 
Reliability 
 
 

One of the major goals for producers and distributors of electric power is to reach the 

maximum asset performance. In order to reach this objective, it’s necessary to find the 

optimal balance between the maintenance policies and power systems reliability.  In the one 

hand, the suppliers must meet the demands from customers and regulators. Therefore, the 

suppliers need to ensure a certain level of reliability in order to give a proper quality of 

supply to the clients. In the other hand, the suppliers intend to minimize the life cycle cost of 

the components. One way to reach this goal is by minimizing the maintenance actions. So, 

the decision maker has to find the best trade-off between the cost and the benefits of 

maintenance policies. So, it’s our goal, in this thesis, the study the impacts of maintenance 

policies in the power systems reliability and in the overall budget of the suppliers. 

There are different maintenance policies and, each one of them, have their own 

advantages and disadvantages. However, the main goal of these maintenance plans is exactly 

the same: the extension of the useful life period of the components. By extending the useful 

life of the components, the degradation process of the components is delayed. In other 

words, the components suffer the consequences of the elapse of time in a later stage of their 

lives. Obviously, the decrease of the reliability indices through the implementation of 

maintenance activities is the illustration of this consequence. So, a well constructed and 

performed maintenance plan will bring important improvements for the power systems 

reliability.  

Until now, the positive effects of maintenance upon the power systems reliability were 

the only object of study. However, some maintenance activities can bring some problems. 

Sometimes, deficient maintenance procedures can occur. Thanks to these deficient 
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procedures, some components fail before return to their useful life periods. Therefore, some 

deficient maintenance actions can be the reason for premature failures. This aspect will be 

also studied in the following Chapters. 

To sum up, a better the maintenance plan will have as consequence greater benefits for 

the power systems reliability. Therefore, the problem lies on the maintenance costs and on 

the budget of the supplier. In this thesis, this problem will be studied and solutions will be 

developed. 

 

 

1.2 The purpose of this thesis 

 
 

Most of reliability studies consider that the components of a power system have a 

constant failure rate  . This approximation is used for many studies because of its simplicity. 

However, this assumption doesn’t translate the real evolution of the failure rate of an 

electrical component. The failure rate   of an electrical component can be described for the 

well known “bathtub curve”. Therefore, one of the purposes of this thesis is to measure the 

impact of the implementation of a variable failure rate  . Using this new approach, we will 

understand how far, most of reliability studies, are from reality. In order to achieve this goal, 

a new sequential Monte Carlo approach will be developed. This new approach will be based 

on a typical sequential Monte Carlo algorithm [1], but some changes will be produced on it 

[2]. By considering a non constant failure rate, the exponential distribution won’t be valid 

any longer. In order to surpass this problem, the cumulative distribution function      will be 

developed. Through this curve, the generation of the operation times of the components will 

be possible.  

Maximum asset performance is one of the major goals for electric power system 

managers. One of the most important aspects to achieve this goal is the maintenance 

optimization. In truth, the inclusion of maintenance policies in a power system is an area that 

requires the development of new optimization models. The identification of the right 

moments to perform the maintenance actions, as well as, the identification of the 

components, in which the maintenance actions should occur, can lead to significant 

improvements on the reliability indices. In a perfect world, the maintenance policies would 

lead to a significant decrease of the customers interruptions and, in the other hand, wouldn’t 

have any impact on the budget of the suppliers. Unfortunately, this world doesn’t exist. 

Actually, the improvements of the reliability indices through the implementation of 

maintenance plans have as consequence the increase of the maintenance costs. Therefore, 

another purpose of this thesis is to study the inclusion of different maintenance policies and 

try to find the perfect balance between the customers interruptions and the maintenance 

costs. Most of studies [3], [4] and [5] try to find the optimal level of maintenance, but 

respecting only one objective, as for example the minimization of the expected energy not 

supplied (EENS). 

In order to achieve this second purpose, two more Monte Carlo applications will be 

developed. One of them will include the well known preventive maintenance policy. In the 

other hand, the predictive maintenance will be implemented in the other Monte Carlo 

application. The implementation of a preventive plan will depend on the definition of a 
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schedule for the maintenance procedures. The predictive maintenance actions will be 

performed according to the degradation state of the components. 

The proposed methodologies will be tested in the evaluation of the reliability of a world-

wide benchmark power system in order to have a basis of comparison with the results of a 

typical Monte Carlo process. 

 

 

1.3 Organization of this thesis 

 
 
In Chapter 2, the traditional methods of reliability adequacy evaluation will be presented. 

First, the analytical methods will be distinguished from the probabilistic methods. Among the 

probabilistic methods, the focus will be on the simulation approach, since this thesis will be 

based on a typical simulation process. Finally, an overview of the most widely known 

maintenance procedures will be performed. The main advantages and disadvantages of each 

one of these maintenance processes will be presented.  

In Chapter 3, the typical sequential Monte Carlo algorithm will be described. Then, new 

aspects will be added to the typical methodology in order to reach a more realistic approach. 

Therefore, the constant failure rate   will be replaced for the well known “bathtub curve”. 

After this, the explanation about how the times of operation of each component will be 

generated will be made. Subsequently, a brief overview about the reliability indices of the 

problem addressed in this thesis will be performed. Next, the introduction of the 

maintenance policies will be carried out. The implementation of the maintenance policies 

will bring several changes for the Monte Carlo algorithm. 

In Chapter 4, the results of the proposed methodologies will be presented and analyzed. 

This Chapter will allow to verify if the practice matches with the theory.  

Finally, in Chapter 5, the main conclusions of this work will be withdrawn and some 

suggestions for future work will be described.                  
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Chapter 2 

State of the art 
 

 

 

In this Chapter, a review about the state of the art of power systems reliability 

assessment techniques will be presented. This type of analysis requires a certain level of 

knowledge about power systems, reliability concepts and probability distributions. More 

information about these aspects can be found in [2]. Nevertheless, these studies will guide us 

to the main goal of evaluating the power systems reliability.  

Several methods to solve reliability problems are described in the literature of this area. 

In this Chapter, a quick journey through each one of them will be made in order to find out 

their advantages and disadvantages.  

Firstly, an analysis of two different approaches that allows the evaluation of the adequacy 

of the generating capacity will be made: the deterministic approach and the probabilistic 

approach. Moreover, the probabilistic approach will be divided into two different methods: 

the enumeration and the simulation methods. Finally, three different maintenance 

techniques will be presented: reactive, preventive and predictive maintenance. The inclusion 

of maintenance in the evaluation of the reliability of power systems is one of the main focus 

of this thesis and, for that reason, the aspects related to the maintenance techniques will be 

deeply studied. 

 

 

2.1 - The deterministic approach 
 

Several techniques were developed in order to evaluate the power systems reliability. As 

mentioned before, the two approaches to be analyzed are: the deterministic approach and 

the probabilistic approach.  

It is now known that the systems behavior is stochastic and, for that reason, the 

evaluation of such systems should be made by probabilistic techniques. But, until the 30’s, 

this knowledge was unknown. Therefore, during decades, the deterministic approach [6] was 

the main technique for the assessment of power systems reliability.  
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The deterministic approach is a very simple method that allows the measure of the 

reliability of a power system. Basically, this approach uses information about the past 

experience of the systems to set a pre-specified rule that will allow assessing the electrical 

power system reliability. So, it is easy to understand that this approach is very subjective 

because different systems will have different criteria depending on its internal organization.  

A well-known example is Planning Generating Capacity [7]. Another criterion that is 

widely used by the companies is the calculation of the static reserve. The static reserve is the 

difference between the generating capacity and the expected maximum demand, using as 

reference the capacity of the largest generating unit. 

      Although still used, this approach is not compatible with the present. The problem is that 

deterministic risk criteria such as “percentage reserve” or “loss of largest unit” don’t define 

the true risk in the system consistently.  A detailed analysis of a power system will show that 

the variation in true risk depends on the forced outage rate, the number of units and the load 

demand. The deterministic approach cannot take into account these factors. The fact that 

the deterministic approach does not take into account how systems work, how components 

fail and the existence of a variable load leads to often unnecessary spending of money and 

resources. Moreover, this approach can also lead to the existence of under-investments. This 

may have as a consequence a high number of interruptions. Since the deterministic approach 

has as its main concern the security of the supply, robustness is its major advantage.  

In spite of these disadvantages, a significant part of the present planning, design, and 

operational criteria are based on deterministic approaches.  

 

 

2.2 - The probabilistic approach 

 
The probabilistic approach [7] is the most solid mode to evaluate power systems 

reliability. If we want to consider uncertainties that, usually, are related with these types of 

systems, it´s necessary to use a probabilistic approach. Stochastic models allow to 

incorporate these uncertainties. Uncertainties as the components state, the weather state, 

the hydrological resources state and the load state can be modeled by this type of processes.  

Markov processes are the well-known reference, in which the conditional probability of 

failure or repair, during any fixed interval of time, is constant. This implies that the failure 

and repair rates of components are associated with exponential distributions [8].  

In the following Chapters, a new particularity will be shown: the use of non constant 

transition rates between states. Obviously, the exponential distribution will be replaced by a 

different approach. 

The use of an exponential distribution to represent the duration of the system events 

gives to the Markov models a certain level of mathematical elegance. It allows the inclusion 

of different system states. The Markov approach can be used for a wide range of reliability 

problems, including systems that are either non-repairable or repairable and are either series 

connected, parallel redundant or standby redundant.  
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As said before, the exponential or strictly the negative exponential distribution is 

probably the most widely known and used distribution in reliability evaluation of power 

systems. However, the use of this type of distribution to model the duration of components 

repairs isn´t consensual. The lognormal distribution that is related to the normal distribution 

can, for example, be a good fit to model components repair times and, consequently, is 

becoming an important distribution in the assessment of reparable systems. There are other 

non exponential distributions, like the Weibull or the Rayleigh that can represent, as well, 

good models. The implementation of these distributions is well described in [2]. Furthermore, 

in [9] and [10], the inclusion of non exponential distribution in the Markov models is studied. 

Analytical and simulation are the two different methods that compose the probabilistic 

approach. Both methods have the goal of calculate the system reliability indices. As 

expected, the analytical methods appeal to a mathematical model in order to calculate the 

mean value of these indices. In spite of the low computational effort that these methods 

require, with the development of computer technology, these began to be used less and less. 

Moreover, the application of this approach to complex systems isn’t feasible. Several 

simplifications had to be made in order to apply analytical methods to this type of systems. 

Unfortunately, these assumptions and simplifications lead to some unrealistic results.  

The simulation processes are all frequently and loosely referred as Monte Carlo 

Simulations (MCS). Strictly, this is incorrect, since MCS really relates to a process that is 

completely random in all respects. However, many processes are related to time and, 

therefore, do not possess all the random characteristics needed to use a true Monte Carlo. 

The process, however, is stochastic and can be analyzed using stochastic simulations. Despite 

the stated previously, the term MCS is used widely for all types of simulation processes. 

Unlike the analytical methods, MCS estimates the reliability indices using a random sampling 

of scenarios. For this reason, MCS constitutes a solid method to evaluate the reliability in 

more complex power systems. One of its main advantages is that is able to incorporate 

electrical and non electrical characteristics and a few system dependencies.  

 

 

 

 

 

 

Figure 2.1 – Markov model composed by two states, where ʎ is he expected 

failure rate and   is the expected repair rate. 
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2.2.1 -  The analytical methods  

 

In order to assess the reliability of a power system through the evaluation of the system 

reliability indices, two different approaches can be clearly defined: the basic probability 

methods and the frequency and duration methods (F&D) [7].  

Basic probability methods use the concept of unavailability, which is the probability of 

finding the unit on forced outage at some distant time in the future. This probability is 

historically known as the unit forced outage rate (FOR). Usually, FOR is computed, assuming a 

two state homogeneous Markov model (O-Operating State; F-Failure State). This model is 

characterized by its simplicity and is directly applicable to a base load generating unit which 

is either operating or forced out of service. The construction of the well-known Capacity 

Outage Probability Table is related to the concept of unavailability. This table is no more no 

less than a simple array of capacity levels and the associated probabilities of existence. To 

each one of these capacity levels, we associate different system states with their own 

probability. The calculation of the table is basically the enumeration of all capacity levels 

that represent different system configurations and their probability of occurrence. The result 

is the discrete probability distribution of an interruption occurrence. As a curiosity, if all the 

units in a system were identical, the constructed table could be easily obtained using the 

binomial distribution [2].  

In fact, the use of this method for very large systems can become very demanding in 

terms of the time spent. Fortunately, it is possible to decrease the computational effort by 

omitting all capacity outages for which the cumulative probability is less than a specified 

amount.  Therefore, the Capacity Outage Probability Table can be truncated. Another method 

used to decrease the computational effort is to reduce the number of discrete capacity 

outage levels by grouping the units into identical capacity groups prior to combining or by 

rounding the table to discrete levels after combining.   

The next step in this analytical approach is a discrete convolution between all the 

entrances of the constructed table and the system load curve. For that, first, it is necessary 

to build the cumulative load model. This can be done by the arrangement, in a descending 

order, of the individual peak loads. Then, with the Capacity Outage Probability Table and the 

load diagram, it is possible to calculate known indices as LOLP and LOLE. Therefore, the 

technique to calculate the loss of load risk can be summarized as: 

 

1. Successively simulate the loss of capacity for each row of the Capacity Outage 

Probability Table; 

2. Check, on the load diagram, the number of hours, days or weeks (depending 

on the base of the load diagram) for which it is expected that the load peak 

exceeds the available capacity of the system; 

3. Weigh each number of hours, days or weeks for the loss of capacity 

probability associated with them; 

4. Add the individual values of the loss of load probability to achieve the system 

loss of load probability; 

 

Furthermore, if the calculation is made in days, there is a risk () in days per year. If the 

calculation is made in terms of percentage, the obtained value (dividing by 100%) is the LOLP.  
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The mathematical formula that can summarize the described method is: 

 

     ∑                                                              

 

   

 

 

where      is the Loss of Load Probability, one of the most important reliability indices, 

      is the probability of the capacity loss being   (MW),      is the total installed capacity 

(MW),              is the probability that the peak load   exceeds the available capacity 

of the state   and   is the number of states or, in other words, the dimension of the Capacity 

Outage Probability Table. 

So, this is the basic analysis that can be made in order to calculate reliability indices. But, 

other characteristics can be introduced in this method such as: the FOR uncertainty, the 

effect of scheduled maintenance and the uncertainty in the load forecast [7]. Moreover, 

through this method it is possible to calculate energy indices. Actually, the total energy 

consumed in the studied period can be obtained through the area bellow the load curve. 

The basic indices calculated by the previous method are the expected number of days (or 

hours) in a given period in which the load exceeded the available capacity y and the expected 

value of energy not supplied in the period due to the lack of installed capacity. However, 

these indices don´t give information about the frequency of occurrence of an insufficient 

capacity condition and about the expected duration of these outages. The F&D methods are 

able to provide indices that indicate these specificities. Therefore, this is the major 

advantage of this method. The disadvantage lies on the most advanced and complicated 

mathematics that this method involves.  

The F&D method requires additional system data and knowledge about some concepts. 

First of all, it is very important to have deeply knowledge about frequency and state 

transition concepts. Moreover, this method needs data about the transition rates between the 

states that compose the homogeneous Markov model. This data is added to the information 

that is used in the basic probability methods, particularly, the concepts of availability and 

unavailability. Like the basic probability methods, through a discrete convolution between 

the system load curve and the recursive constructed generation model, the calculation of the 

reliability indices can be done. Another important specification is that this technique also 

allows to incorporate the uncertainty on the load forecast [6][7].  

The adequacy of the generating capacity in a power system is normally improved by 

interconnecting the system to another power system. The increasing of the interconnected 

systems must be taken into account due to the effect of adjacent areas in the reliability 

analysis. The probability array method and the equivalent assisting method are to different 

approaches to calculate the LOLE indices in interconnected systems. [7] 

 

2.2.2 -  The simulation methods – Monte Carlo 

 

Simulation methods are based on Monte Carlo simulations [1][6]. As previously stated, the 

simulation techniques, often known as Monte Carlo simulation, estimate the reliability indices 

using a random sampling of scenarios. The Monte Carlo simulation can take basically two 

major types: chronological/sequential simulation and not chronological simulation.  
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The non chronological approach simulates the basic intervals of the system lifetime by 

choosing intervals randomly. On the other hand, the sequential approach simulates the basic 

intervals in chronological order. 

In the non chronological simulation, the evaluation of systems reliability matches the 

accounting of photos or snapshots that result from the observation system. These photos or 

snapshots will find the system in several states. There is no place, therefore, to consider 

operating and failure times, but only probabilities to find the equipments in failure mode.   

Chronological simulation is meant to represent the course of life of the electrical system. 

Therefore, not only it simulates the times until each equipment fail but also the times of 

their repair. In chronological models, the simulation follows the line of temporal development 

and therefore we can use the metaphor of the film in opposition to a collection of photos. 

Therefore, the life cycle of a power system can be obtained through the combination of the 

life cycles of each component [11]. In order to develop a chronological simulation is not 

enough to know the unavailability (probability of failure) of the components of the system, 

the so called F.O.R. It’s necessary, for each of them, to know the failure density function. 

This function is associated with the operating and failure (repair) times. The exponential 

function is the most used to model these times. In this thesis, another approach to calculate 

the operating times will be used [2]. 

The most appropriate of these two approaches depends on system effects and the goals of 

the analyses. There are some system problems for which one basic interval has a significant 

effect on the next interval, and this can have a consequential significant impact on the 

reliability indices being evaluated. One example is the effect of hydrogeneration: the ability 

to use water in one interval of time can be greatly affected by how the water was used in 

previous intervals and the amount of rainfall and water infeed in these previous intervals.   

It follows from this discussion that the sequential approach will always work and the 

random approach is more restrictive. However, it is generally, but not universally, found that 

the random approach is less time consuming.  

The computational effort, in number of draws, to be held is not affected by the size of 

the system under examination or its complexity. For this reason, the Monte Carlo method is 

appropriate to the study of complex cases, such as correlated loads, common cause failures 

and operating strategies. The variance of the variable under estimation influences the 

number of needed samples for a certain level of accuracy.  

The Monte Carlo simulations remain the most common method used for reliability 

assessment. This statistical method, although much older, began to gain importance with the 

increasing of the computational power in the early 80s. The adoption of new and efficient 

techniques for convergence acceleration also contributed to the widespread use of this 

method. These techniques are related to the development of variance reduction processes.  

Nevertheless, the computational effort is considerably affected by the desired degree of 

confidence. For example, to calculate a LOLP around 0.001, with a precision of 30%, the 

number of samples needed is about 10 000. On the other hand, to calculate the same value of 

LOLP, but with a precision of 3%, the number of samples required increases to a million. Note 

that, in general, the number of iterations needed to obtain the desired accuracy is different 

according to the variable in observation. Each variable has its own variance. For this reason, 

it is perfectly possible to reach a desired accuracy for a certain reliability index and be 

necessary to extend the simulation to achieve convergence of other reliability index.  
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Furthermore, the computational effort is affected by the magnitude of the value to be 

calculated and by the system reliability [6]. In relation to the first aspect, the number of 

samples required to estimate a small value of p (indices of reliability), for the same level of 

confidence, is bigger than for estimating a higher p value. Regarding the system reliability, 

the number of samples necessary to assure that a certain indices, for very reliable systems, 

has the desired degree of confidence can be very large.  

Monte Carlo methods can be divided according to how system states are sampled. If the 

sample of a certain system state takes into account the previous state, the method is called 

sequential. Therefore, in this Monte Carlo method, the chronology of the events must be 

taken into account. Instead, if the sampling is independent from the previous system state, 

the MCS method is called non-chronological. In other words, in this type of method, a state 

space representation is used for the sampling. 

Considering the above points, the great advantage of the sequential Monte Carlo is the 

possibility to include chronological issues. For instance, if the probability distributions of 

state duration and frequency are required, these can only be evaluated explicitly if the 

chronology of the process is simulated. The representation of renewable resources is other 

example of the importance of chronological Monte Carlo processes [12]. As it is known, 

renewable resources have the particularity of having production levels quite variable. Wind 

power and hydrogeneration are two examples of that. In both cases, there are two different 

types of series that can represent the resources behavior: synthetic and historical series. 

Therefore, the sequential Monte Carlo approach is designed to, for each year of the 

simulation, choose a series. Usually, the process is base on a uniform distribution.  

It´s now time to analyze two different techniques that explain how to develop a Monte 

Carlo simulation. The State Duration Sampling Method and the State Sampling Method [7][10] 

are two different approaches related to the chronological Monte Carlo simulation and to the 

non-chronological Monte Carlo simulation, respectively. 

 

 

2.2.2.1 -  State Duration Sampling Method 

 

The first step to take in this method is to simulate the cycle of operation-failure of each 

component. So, in order to develop the lifetime line of each component, it´s necessary to 

sample their times to fail and times to repair, according to the probability distribution that 

rules these phenomena. Therefore, considering the above mentions, it’s been assumed that 

the components operation is constituted by two states. Nevertheless, this approach can be 

extended to a multiple state model. If this case was considered, it would be necessary the 

sampling of the time for all possible transitions from the current state. Thus, after calculating 

the time of operation of all components of the system (the initial state), it´s time to find the 

lowest of these values, which corresponds to the 1st component to fail. For this component is 

generated a new repair time (represents state 2). This process is repeated until the desired 

accuracy is reached. Having drawn the lifetime line for each component, it’s possible to 

follow her and go-checking, at each time, if the capacity of the system is sufficient to supply 

the load. At the end of each sampling, the variance of the desired reliability indices is 

updated. 
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As stated before, the sequential simulation stops when the desired accuracy is reached. It 

is, therefore, traditional, to establish a stopping criterion or convergence of a Monte Carlo 

simulation [7].  Thus, it is defined a relative uncertainty, based on a variation coefficient  , 

such that: 

 

   
    

    
                                                                 

 

or, according to the standard deviation     : 

 

  
    

    
                                                                  

 

where   is the index under estimation,      is the estimated expectation of the index,       

and       are the variance and the standard deviation of the estimated expectation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The major advantages of this method are as follows: 

 

1. Frequency indices can be calculated in a easy way; 

2. Non-exponential distributions can model the unit state durations; 

3. Peaking unit operating cycle can be modeled; 

 

2.2.2.2 -  State Sampling method 

 

In the State Sampling method, the availability of a system element (line, generator, 

transformer) is modeled as a random variable that can reside in two states. The system 

element can be found in failure mode with an associated probability of P or in operating 

Figure 2.2 – Example of the evolution of the estimative of EENS, a reliability index, using 

Monte Carlo methods              
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mode with an associated probability of 1-P. P represents the unavailability of the element. 

This probability is known as FOR. The traditional way to fix, during the state sampling, the 

state of operation or failure of the components is from a pseudo-random number generator 

that provides an uniformly distributed number in a [0,1] range. Thereafter, the generated 

number is compared with the unit FOR. If the random number is inferior to the unit FOR, the 

unit is considered unavailable otherwise it is considered available. Therefore, the system 

state would be obtained by repeating this operation for each component.  This principle can 

be extended to any number of states. So, it´s possible to apply this principle to a multiple 

state unit model or to a derated state unit model [7].  

In a non chronological approach, the evaluation of the reliability indices has a different 

treatment. As matter of fact, superimposition of the load curve is no longer possible. So, the 

first idea that comes to mind to evaluate the reliability indices is the comparison between the 

sample and all periods of time of the chronological load curve. This constitutes a huge 

problem in terms of computation effort. The most straightforward method for the evaluation 

of the reliability indices is based on the sampling of load states according to a multistep 

model. To use this method is necessary to numerate the load levels, in descending order, to 

form a cumulative load model. 

 

Other approaches can be used in order to decrease the computational effort. The 

following two are examples of that: 

 

 Sample load states according to the load cumulative distribution function; 

 Implementation of cluster techniques in order to create a multistep model of 

the annual load curve. 

 

These approaches are described in detail in [7]. Comparatively to what happens in the 

state duration method, the calculation of frequency indices isn´t so simple. Moreover, the 

use of non-exponential distributions to model unit state durations is very complicated. 

However, it has the following advantages: 

 

1. It requires less computing time and memory storage than the state duration 

sampling method, particularly for large-scale systems 

2. It doesn´t require data regarding to transition rates between different states 

 

The major concern in Monte Carlo methods is the excessive time that the simulations 

need to achieve the specified level of convergence. Especially in very reliable systems, the 

convergence of the simulation can last for long periods. This is due to the large number of 

sample that has to be drawn in order to achieve the condition of convergence. Therefore, the 

methodologies to reduce the computational effort and the number of draws, keeping the 

same precision β, are based on the variance reduction of the estimated expectation. These 

methodologies are known as “Variance Reduction techniques”.  

Control Variates, Importance Sampling, Stratified Sampling, Antithetic Variates and 

Dagger Sampling are five of these techniques. In [1], these techniques are explained in detail. 
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2.2.2.3 -  The Control Variates technique 

 

The Control Variates technique [1][6] assumes that it is possible, through an analytical 

method that is independent of the Monte Carlo process, to calculate an approximation for the 

value that is to be determined.   

This Variance Reduction technique can be used to assess system indices of a composite 

generation and transmission system. Therefore, Monte Carlo simulation is only used to 

calculate the difference between the solution of the problem and the approximated value. As 

it is possible to observe in equation 2.4, the achievement of a high convergence “speed” 

depends on the correlation between the variable that is intended to estimate and calculated 

analytical value. As matter of fact, the most important step in this technique is the choice of 

a correct control variable, which is the calculated approximation.  

 

             
 

  
 

 

    
                                                    

 

where   is the initial number of draws, and    represents the number of necessary draws 

after the application of these process.   is the correlation coefficient. 

Thus, the higher the correlation, the greater the acceleration introduced by the Control 

Variates technique.  

 

2.2.2.4 -  The Importance Sampling technique 

 

Importance sampling is a procedure for changing the probability density function of 

sampling in such a way that the events which make greater contributions to the simulations 

results have greater occurrence probability [1][6]. Therefore, by deforming the density 

function, it is possible to increase the probability of important events and reduce it for those 

which are irrelevant. As an example, for the evaluation of power systems reliability, the 

important events are those which are the cause of load curtailment.  

The use of a previous known auxiliary probability density function, obtained by an 

analytical method, is an extremely important step of this process. The success of this method 

rests on the approximation between the original probability density function and the auxiliary 

probability function. It is as if the analytical model “explains" much of the variance found, 

and, therefore, the focus should be on the assessment of the unexplained part. Thus, this 

process can reduce the variance without altering the mean value. 

It is, therefore, easy to understand that the use of the combination of the previously 

described methods and Monte Carlo methods can bring great benefits in accelerating the 

convergence of the process. 
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2.3 - The Maintenance Programs 
 

Maintenance practices are an essential step of the planning, construction and operation of 

a power system. Looking at the maintenance policies that, currently, are presented by the 

companies, it´s possible to say that most of them see these procedures as actions associated 

with the failure of equipment. The definition of maintenance in the dictionary is: “the work 

of keeping something in proper condition; upkeep.” This would imply that the aim of 

maintenance activities should be the continuously prevention of components state. In other 

words, these practices should be taken in order to prevent a component from failing or to 

repair normal equipment degradation. Unfortunately, data obtained in many studies prove 

that the main concern of companies is their economic requirements, while also adhering to 

the constraints set by system and customer requirements.  This fact means that companies 

prefer to wait until a component failure and, only after this, they take the necessary 

measures to replace the normal operation.  

Ideally, maintenance is designed to maintain equipment and systems in efficiently 

conditions of operation. Therefore, the operation should run without problems for at least 

designed life of the components. As such, the operation of a component is a time based-

function. The shape of the hazard rate curve is often referred as a bathtub curve. This can be 

divided into three different regions: infant mortality, useful life and wear-out periods.  

Region 1 is characterized by the decrease of the hazard rate as function of time or age. 

The high failure rate associated with this region is linked to manufacturing errors or improper 

design. This region is followed by a nearly constant failure rate and is known as the useful life 

period or normal operating phase. In this region failures occur purely by chance and this is 

the only region in which the exponential distribution is valid. There are other studies that 

relate the failures in this region to a deficient plan of operations and maintenance [13]. It is 

also agreed that the development of a correct plan of maintenance encompassing preventive 

or predictive technologies can extend this period [13][14]. The third region represents the 

wear-out or fatigue phase and it is characterized by a rapidly increasing of the hazard rate 

with time. These three regions can also be identified in figure 2.3, which shows the evolution 

of the failure rate with time and in figure 2.4, which illustrates an example of the failure 

density function. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.3 – Typical electronic component failure rate   as a 
function of age 
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The necessary data to construct these two functions was obtained from [2]. As can be 

seen in figure 2.4, region two follows a good approximation to a negative exponential curve 

which can be extrapolated in both directions. Region one shows values significantly greater 

than those that would be obtained if the exponential curve has applied form zero. In the third 

region, the failures density function increases and finally decreases towards zero. The failure 

density function that represents, in this example, the third region can often be approximated 

to a normal distribution. The gamma and Weibull distributions are other distributions that 

normally represent this region. More details about this and other distributions and their 

shaping parameters can be seen in [2]. 

 Many components and systems, including power systems components can extend their 

useful life period. To achieve this goal, the companies need to expend some of their budget 

in the correct maintenance actions.  

Belts need adjustment, alignment needs to be maintained, proper lubrication on 

rotating equipment is required, and so on. For these specific reasons, maintenance is an 

indispensable part in the life cycle of a system. 

In the next sections, different maintenance techniques will be analyzed. Thus, we will 

realize that companies should expend the necessary resources to maintenance activities. 

 

2.3.1 - Reactive maintenance 

 

Reactive Maintenance procedure is basically a mode in which maintenance action is not 

taken. In this method, there are no concerns to keep or to extend the originally designed 

lifetime of the components. Some studies indicate that this type of maintenance is still 

predominant [13].  

Figure 2.4 – Illustration of a failure density function for a typical 
electronic component failure rate 
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It is difficult to find advantages in this kind of maintenance. It can be seen as double-edge 

sword. On the one hand, the main thought in the companies plan of strategy is: “if we set 

apart the maintenance program, we are saving money until some component has a failure. 

Furthermore, we increase the budget that can be spent in other fields.” That can be seen has 

an advantage, but the problem lies on the other edge of the sword. When the companies set 

apart the maintenance, they forget that they are shortening the life of the equipment. This, 

actually, implies more frequent replacements. Obviously, this means that the systems would 

become less reliable. Moreover, the failure of a certain device can cause a failure of a second 

one. Therefore, the lack of a proactive maintenance program can lead to unexpected costs.  

The disadvantages of this type of maintenance do not end here. For example, if a failure 

occurs in a critical device of the system, the operation needs to be replaced in a quick way. 

The result is an increase of the costs caused by the maintenance overtime cost. Furthermore, 

the stock of materials required for the reparations will be much larger.  

Summarizing, the labor cost associated with repair will probably be higher than 

implementing a different maintenance program. A multi-objective approach that tries to find 

the perfect balance between reactive maintenances and preventive maintenance can be 

found in [15]. 

 

2.3.2 - Preventive maintenance 

 

The main goal of preventive maintenance is to control the degradation of the components 

in a power system. As result of this, the useful life of these components can be sustained or 

extended. In order to achieve this, this type of maintenance is based on time schedules. This 

means that will be pre-defined moments, in which maintenance actions will occur. Therefore, 

if the companies have a look to the bigger picture, they will see that in exchange of the 

necessary resources for a proper preventive maintenance program, they will get reliable 

systems by extending the useful life of the components. In addition, as stated before, the 

application of a proactive plan of maintenance will allow to save money. This type of 

maintenance is fully described in [13]. Moreover, a methodology to optimize the maintenance 

schedules can be found in [16]. 

Estimates indicate that, with this type of policies, these savings can reach 12 to 18% on 

average, comparatively, with a purely reactive maintenance.  

The real implementation of preventive maintenance can take different forms. Some 

programs are extremely limited and consist of only lubrication and minor adjustments. More 

exhaustive programs encompass repairs, lubrication, adjustments, and machine rebuilds for 

all critical plant machinery. The common denominator for all of these preventive 

maintenance programs is the scheduling guideline—time. 

Despite the advantages mentioned above, preventive maintenance isn´t an optimal 

maintenance plan. In order to happen, it would imply that the correct components were 

maintained, at the correct time and with the correct maintenance activities.  

The mean-time-to-failure (MTTF) or bathtub curve indicates the probability of failure of 

the components. In preventive maintenance management, machine repairs or rebuildings are 

scheduled based on MTTF static. The normal result of using MTTF statistics to schedule 

maintenance is either unnecessary repairs or catastrophic failures. It’s true that components 

require some periodical maintenance actions (lubrification; filter change; etc), but 
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sometimes this kind of actions can take place, although they can become unnecessary. This is 

due to the fact that this type of maintenance depends on a schedule and not on the state of 

degradation of the components. Independently of this, this type of policies will usually result 

in less components failures. It´s possible to make a translation of this fact into cost savings.  

Other interesting studies about preventive maintenance can be found on the literature. In 

[17] the implementation of a minimal preventive maintenance is studied and, in [18], the 

introduction of a more complete procedure of preventive maintenance is analyzed.  

 

2.3.3 - Predictive Maintenance 

 

Unlike the preventive maintenance, predictive maintenance isn’t a time-driven program 

[13][14]. Instead, it can be considered as a condition-driven preventive maintenance 

program.  Actually, the MTTF or loss of efficiency for each machine and system is determined 

by the following indicators: direct monitoring of the mechanical condition, system efficiency 

and vibration monitoring. Thus, the condition that leads to predictive maintenance actions is 

related to the state of degradation of the components.  

The main goals of this type of maintenance are, on the one hand, to take maintenance 

actions only when necessary and, on the other hand, to prevent the degradation state of a 

certain component from becoming irreversible.  

The predictive maintenance can assume many forms: may be linked to the analysis of the 

vibration of rotating machinery, or to the monitoring of the infrared image of electrical 

equipments, or the analysis of oil lubrication. All these aspects are analyzed in [14]. The 

common premise of predictive maintenance is that regular monitoring of the actual 

mechanical condition, operating efficiency, and other indicators of the operating condition of 

the system will provide the data required to ensure the maximum interval between repairs 

and minimize the number and cost of unscheduled outages. Predictive maintenance is much 

more, however. It uses the actual operating condition of plant equipment and systems to 

optimize total plant operation. 

In most cases, time-driven maintenance programs, do not allow a thorough analysis of the 

current condition and performance of the plant equipment. These programs are based on 

scheduled maintenances. The final decision in preventive or reactive programs must be made 

on the basis of intuition and the personal experience of the maintenance manager. The most 

quoted and well-known case is the change of oil in vehicles. The oil is changed according to 

the number of years of the vehicle or according to the number of miles made. So, there is not 

any concern about the real state of the oil. If the followed methodology led to a serious 

evaluation of the components state, the lifetime of these would be extended, without the 

existence of unnecessary maintenance actions. This is the fundamental difference between 

predictive maintenance and preventive maintenance, whereby predictive maintenance is used 

to define needed maintenance task based on quantified material/equipment condition. 

Therefore, predictive maintenance makes use of diagnostic equipment and specialized staff in 

order to evaluate the systems performance. It is also important to notice that the goal of this 

equipment is to provide factual data on the actual mechanical condition of each component 

and the operating efficiency of each system process. With this kind of data, the maintenance 

manager is able to schedule maintenance activities at the right time. 

The advantages of this kind of maintenance comparatively with preventive policies are of 

particular interest.  First of all, the implementation of predictive policies allows to minimize 
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or delete overtime cost and to minimize inventory and order parts. Moreover, it allows to 

optimize the operation of the equipment, saving energy cost and increasing plant reliability. 

It is estimated that the application of this policy over the preventive management can 

provide savings between 8 to 12%. Comparatively to a reactive program, this type of 

maintenance can reach between 30 to 40% in savings.  

In table 2.1, it’s possible to observe, in terms of percentage, some important characteristics 

that indicate industrial average savings resultant from the implementation of a proactive, 

correct and functional predictive maintenance program. 

 

Table 2.1 – Comparison between predictive maintenance and the others maintenance plans. 

  

Savings Type Savings Percentage 

Return on investment 10 times 
Elimination of breakdowns 70 to 75% 
Reduction in maintenance costs 25 to 30% 

Reduction in downtime 35 to 45% 

Increase in production 20 to 25% 

  

 

The data used to construct this table can be found in [13]. Despite all these advantages, it 

is to predict the existence of some problems associated with this type of maintenance. The 

main one is, undoubtedly, the initial investment that needs to be done. Program development 

will require some resources that have a significant influence in the global budget. These 

resources are related to well-trained staff and to diagnoses equipment.  

There are five different techniques that encompass a normal process of predictive 

maintenance: 

 

 Vibration Monitoring 

 Process Parameter Monitoring 

 Thermography 

 Tribology 

 Visual Inspection 

 

The sets of data that help the maintenance manager to find the correct moments to apply 

a certain maintenance action can be obtained through the use of these techniques. Vibration 

monitoring is the most common technique because of the mechanical pieces that compose a 

major part of the equipment of a power system. However, this process doesn´t allow to 

identify all the possible problems that may exist in these systems So, it´s crucial in a 

predictive maintenance plan to have equipment able to provide all the five different 

techniques. Each one of these techniques is explained in greater detail as well as the 

different types of maintenance in [14]. In [19] a predictive maintenance plan is applied to a 

deteriorating system. 

In addition to the maintenance policies presented here, there are plenty of others, but 

that will not be the focus of this thesis. The Total Productive Maintenance [14] and the 
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Reliability Centered Maintenance [20] are examples of other important maintenance 

processes.  

 

 

 

 

2.4 - Conclusions 
 
In this Chapter it was carried out an overview of the power systems reliability evaluation 

nowadays. Thus, it was presented an important study of the actual state of the art. As it was 

seen, the use of a deterministic or probabilistic approach is completely different. The main 

conclusion to retain on this topic is the stochastic nature of the power systems. Therefore, 

the implementation of a deterministic approach doesn't consider the existence of the cycle of 

operation in the system components. Despite the robustness presented by this method, it can 

lead to waste financial resources. On the other hand, the probabilistic methods are capable 

to consider this behavior and, thanks to increased computational capabilities, they are also 

able to analyze very large systems. As the probabilistic methods, it was possible to distinguish 

two different approaches: the enumeration and the simulation methods. The first one led to a 

purely mathematical model and, as it was seen, allows calculating the exact value of the 

reliability indices. The main reason because this approach is much less used is related to the 

analysis of very large systems. As an analytical method, the analysis of such systems becomes 

much more complicated. Therefore, the simulation methods are the most widely used. These 

provide the mean values of the reliability indices through a sampling process. Another 

important conclusion to retain is the fact that, usually, these methods consider a constant 

failure rate and, therefore, the exponential distribution is used to the draw of the operating 

and repair times. In the following chapters, we will realize that this thesis will follow a 

different approach. The large number of samples needed to achieve the specified level of 

convergence ( ) can be decreased through the use of the presented variance reduction 

techniques. 

The issue of maintenance was then introduced. This will be one of the main themes of 

this thesis. Three different types of maintenance policies were presented: reactive, 

preventive and predictive maintenance. It was concluded that the application of an elaborate 

and proactive maintenance plan can lead to significant savings, in a long term. Theoretically, 

predictive maintenance proves more advantageous. Nevertheless, the initial investment 

associated with it is very high. 

In this thesis, these questions will be explored using a Sequential Monte Carlo as method 

of reference. It is also important to refer that the failure rate of the components will be 

considered not constant and that the different maintenance policies will be subject of study.  
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Chapter 3  

 

Modeling the problem with sequential 
Monte Carlo 

In this Chapter, a Sequential Monte Carlo algorithm, which allows to calculate some 

important reliability indices and, therefore, allows to evaluate power systems reliability will 

be presented.  

As it was seen, Monte Carlo methods are based on a probabilistic approach. Thus, they are 

capable of translating the stochastic nature, which the components of a power system 

present. Therefore, Monte Carlo methods appeals to the use of a sampling process, being the 

main goal to translate the global behavior of a system, through a significant set of samples. 

Through this, this approach avoids the use of analytical methods in very large systems, which 

would be very problematic. It also should be noticed that the use of a sequential approach 

allows the construction of the life cycle of the components. Throughout this study will be 

shown that the addressed problem requires the use of a chronological method that 

implements this feature. 

First, a typical sequential Monte Carlo algorithm will be analyzed, showing the main 

differences from a non-chronological approach. Following this, the proposed sequential Monte 

Carlo algorithm will be described. This part is particularly important because it will show a 

different approach when compared to a traditional Monte Carlo. Last, but not least, the 

inclusion of different maintenance techniques in the algorithm will be described.  

3.1 - Formal description of sequential Monte Carlo 

In the previous Chapter, the guidelines of a Monte Carlo method were introduced. Two 

different simulation types were presented: the chronological one and the non-chronological. 

In fact, these two types of simulation have an identical base structure, despite their 

differences. Thus, the reliability evaluation process of a power system, through a Monte Carlo 

method, can be schematized as follows: 
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Monte Carlo Procedure method 

 

Initialize system data: MTTF, MTTR, pre-specified  , etc 

 

Do 

 

NS:=0; 

 

Repeat 

 

 Simulate a new state      using      distribution; NS=NS+1; 

 Calculate the test function       for the state   ; 

 Estimate the expected value     ; 

Evaluate the uncertainty of the estimator, (    )   

 

 Until the coefficient of variation   is reached: 

 

 End Monte Carlo method 

 

 

where NS is the number of samples that are evaluated,    is a simulated system state that 

belongs to the system possible states vector  ,       is the associated probability distribution 

and      is the test function that allows to evaluate power systems performances.      can 

represent, for example, ENS.  

However, a comparison between these two approaches was made. In the non 

chronological simulation, the evaluation of systems reliability was compared to the 

accounting of photos, while the chronological simulation was compared to a film that explains 

the life of the system. These are different approaches with differences in their algorithms, 

too. State sampling method and state duration sampling are two techniques that were 

previously presented and that explain these differences [7]. The perception of the differences 

between these two approaches is very important in this thesis. Therefore, it will be possible 

to understand the reason why the constructed algorithm follows a chronological Monte Carlo. 

In a non-chronological process, each sample is independent of the other. Contrary to what 

happens in the chronological process, this approach only needs the F.O.R of each component 

to find the actual components state. On the other hand, the chronological approach simulates 

the cycle of operation-failure of each component and, therefore, each component state has a 

direct relation with the previous one. Obviously, this algorithm is a bit more complex since 

more data are needed. In this approach, it is necessary the knowledge about the probability 

distribution that will allow to find the operating and the repair times of each component.  

There are two particular features which special attention should be given in this thesis. 

First, the failure rate of the components will not be considered constant. Therefore, it is 

intended to simulate the existence of the three phases of the life of a component that were 

already mentioned. These three different stages occur sequentially according to the elapse of 

the components life time. Thus, it is necessary to take into account the chronology of the 
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events. Another important goal of this thesis is the implementation of different types of 

maintenance to a power system. It is known that the maintenance of a given component 

occurs in specific periods of its life. If the maintenance policy is based on preventive 

processes, these periods are pre-specified. If the maintenance policy is based on predictive 

processes, these periods depend on the actual state of components. Regardless of the 

mentioned above, to apply a maintenance plan, it is essential to be aware of the temporal 

chronology. Therefore, the reasons presented above explain why the Monte Carlo method 

developed was based on a chronological simulation. 

The general scheme of a typical chronological Monte Carlo process will now be presented: 

 

1. Simulate the operating times for each component of the system, according to the 

probability distribution used. This constitutes the initial state of the system. 

 

2. Identify the lowest simulated time. The corresponding component will be called 

F. 

 

3. Update the system load for this particular moment.  

 

4. State evaluation. According to the current state of each component, the load 

curtailment is calculated. 

 

5. Update the reliability indices accumulators 

 

6. Simulate a new operating or repair time to the component F. The type of 

simulated time depends on the previous state of the component F. Therefore, if 

component F was in operational mode, this means that this component is the next 

to fail. Thus, a repair time will be generated. 

 

7. Update the components F state and its lifetime. 

 

8. Evaluate the lifetime of the system. Tests if the system has already completed 

one year and make the necessary updates, including the update of the coefficient 

of variation  .   

 

9. Evaluate the coefficient of variation  . If convergence has not been reached, 

return to step 2. Otherwise, proceed to calculate the expected values and 

distributions of reliability indices and finish the process.  

 

 

In sequential Monte Carlo, a life cycle is simulated for each component of the system, as 

figure 3.1 shows. Having this step done, it is possible to check, at each time, if there is load 

curtailment or not. Then, the reliability indices can be calculated. 
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Figure 3.1 – Typical up/down sequence (life cycle) for a given electrical component, where O is 
Operational mode and R is Repair mode. 

As it was seen in the previous algorithm, the simulation the operation and repair times 

are dependent on the probability distribution associated to them. To analyze this topic, it is 

important to review some general reliability functions. In reliability terminology, the 

cumulative distribution function      is known as the cumulative failure distribution. In 

reliability assessment, many problems don´t use this distribution. Instead, they use the 

probability of surviving in a given period of time,     . Obviously, these two functions are 

complementary. So,      also known as the survivor function is equal to: 

 

                                                                           
 

In reliability evaluation, the probability density function is called failure density function, 

    , and results from the derivative of     : 

 

      
     

  
   

     

  
                                                       

 

Furthermore, it is known that: 

 

      
    

    
                                                                 

 

Which, from equations 3.2 and 3.3: 
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Finally, from the integration of equation 3.4: 

 

∫
 

    
        ∫                                                    

 

 

    

 

       

 

        ∫        
 

 

                                                           

 

           ∫                                                                   
 

 

 

 

Equation 3.5 c) is the general equation to calculate the survivor function through the 

components failure rates. In typical Monte Carlo processes, the hazard rate is considered 

constant. Therefore, it is assumed that the system components remain in the useful life 

period throughout their lives. So, the infant mortality and wear-out periods are not 

considered. Later in this thesis, we will realize that this fact can lead to considerable 

variations on the reliability indices. Considering a constant and time independent failure rate, 

the survivor function simplifies to: 

 

                                                                       

 

This special case is known as the exponential distribution and it is the most widely used 

probability distribution in reliability evaluation problems. Due to this distribution, the Monte 

Carlo simulation becomes much simpler. By using the exponential distribution inverse, the 

operation and repair times can be obtained as follows: 

 

     
 

 
                                                                  

 

where    means time to fail, which is the same that the time while the component worked in 

operational mode.    is the constant failure rate (failures/year) and   is an uniformly 

distributed number in a [0,1].  

 

     
 

 
                                                                  

 

where    means time to fail, which is the same that the time while the component worked in 

operational mode.    is the constant repair rate (      ) and   is an uniformly distributed 

number in a [0,1].  

There are other distributions that can be used in a reliability problem [2]. The gamma or 

the Weibull distributions are examples of that. 

In the next sections, the use of a non constant failure rate will transform this problem 

into something more complex. 
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This is, therefore, a very important part of a Monte Carlo process, but not the only one as 

it’s possible to observe in the previous algorithm. The state evaluation is other important 

part. In this phase, the influence of the different system states in the load loss is analyzed. 

Furthermore, the Monte Carlo process only ends when the coefficient of variation   is 

reached. The coefficient choice is one of the most important steps in the process. Actually, a 

small  , such as 1% can lead to a very long simulation, since the number of samples will be 

very large. On the other hand, the reliability index will be obtained with an excellent 

precision level.  

In a Monte Carlo process, a confidence interval is established. If a 95% confidence interval 

is established, in 95% of cases, the established interval will contain the true value. The width 

of the confidence interval is a measure of the accuracy of our estimate.   This is a particular 

advantage of the Monte Carlo processes. For example, evolutionary algorithms aren’t yet 

capable of establishing a confidence interval.  

3.2 - The sequential Monte Carlo reliability algorithm 

In this thesis, several sequential Monte Carlo algorithms were developed. The main 

differences between them are: the failures rates that can be constant or not and the 

implementation or not of maintenance programs. Each one of these algorithms has their own 

particularities. Therefore, one of the goals of this section is to clarify those specifications. 

First, the proposed algorithm for a typical sequential Monte Carlo process will be 

presented. In these types of processes, it is common to use a two-state homogeneous Markov 

model. Moreover, it’s usual to assume that all units are base load units. Furthermore, usually, 

the failure and repair rates are considered constant. As it was seen in the previous Chapter, 

the use of a constant and independent of time   led to a special case known as the 

exponential distribution. Considering these facts, the state transitions in this Markov model 

will follow an exponential distribution. 

The “story of life” of each specific unit is as a source of information. Statistical data can 

be obtained from it, allowing us to compute the failure and repair rates. Therefore, according 

to the exponential distribution:  

 

  
 

    
                                                                

 

  
 

    
                                                                

 

where   is the expected failure rate,      is the Mean Time To Failure,   is the expected 

repair rate and      is the Mean Time To Repair. 

Taking into account these facts, the probability of finding the unit up can be defined as 

follows: 
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Moreover, the F.O.R or the probability of finding the unit down can be obtained from the 

following expression: 

 

      
    

         
                                                  

 

Most of the times, Monte Carlo processes require considerable computational effort. For 

this reason, it is important to develop some methods that allow to decrease the 

computational effort. Usually, in the presented Markov model, some generating units have 

the same characteristics. The expected failure and repair rates and the generating capacity 

are examples of those characteristics. Therefore, these units can be treated together, instead 

of separately. In this thesis, this particularity is used in the generating system that will be 

presented in the next Chapter. This system that is composed for 32 generators was arranged 

in 9 different groups of equal generators. 

It’s now time to analyze a different sequential Monte Carlo algorithm. Most reliability 

studies consider that the components of a power system have a constant failure rate. In this 

new approach, a non constant failure rate will be used. Therefore, some of the 

characteristics that were presented previously, for a typical Monte Carlo process, must be 

forgotten. For example, all the simplifications that were introduced by the exponential 

distribution will no longer take place.  

In power systems reliability literature, some other distributions are presented and each 

one of them has their own advantages [2]. The Weibull distribution is an example. This 

distribution, as well as the gamma and the lognormal, has an interesting property. These 

distributions have no specific characteristic shape. This means that they can be shaped to 

represent many distributions or to fit sets of experimental data.  It can be achieved by 

varying its shaping parameters.  

In [2], other approach to implement a non constant failure rate is presented. This 

approach is based on the construction of the cumulative failure distribution,     . As it was 

seen before, through the use of the exponential distribution,      can be easily defined as:  

 

                                                                             
 

where   is the failure rate and   is the time variable. The problem is that the exponential 

distribution uses a constant failure rate. So, in order to develop the cumulative distribution 

according to a non constant failure rate, the following integral needs to be calculated:  

 

          ∫        
 
                                                            

 

Furthermore, data about the failure rate variation and about the time intervals will be 

necessary.  This kind of information can be obtained by analyzing statistical data of other 

similar components. Therefore, through the equation 3.16, it is possible to construct a 

cumulative failure distribution.  

After the construction of     , through the use of a non constant failure rate, it is 

possible to generate the time of operation, of each unit. In the previous section, it was 

explained how to generate these times using an exponential distribution. In this new 
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approach, the procedure is totally different. So, in order to generate the life cycle of each 

generating unit, the following steps are crucial: 

 

1. Use a pseudo-random number generator to provide an uniformly distributed 

number in a [0,1] range. 

 

2. The uniformly distributed number is used to intersect the constructed      curve. 

So,                                    . 

 

3. The time interval     that will result from this intersection will be the new time 

to failure of a specific component. 

 

4. Repeat the process until all the generating units have their own time to failure. 

 

Another consideration needs to be made about point number 2.      is a discrete curve. So, a 

problem must be faced: how it is possible to match a uniformly distributed number with a 

discrete curve? To overcome this problem, an interpolation process was included in the Monte 

Carlo simulation.  

Concluding, this is an approach that allows the introduction of a variable failure rate. This 

means that the infant mortality and the wear-out regions are included in this method. 

 

 

The   data used to construct       was obtained in [2]. Furthermore, all the figures 

presented, in this Chapter, that are related to a variable failure rate λ were based on data 

presented in [2]. In figure 3.2, important information can be withdrawn. Two curves are 

presented:       according to a constant failure rate and       according to a non constant 

failure rate. The procedure for the construction of these curves was presented before. It is 

crucial to understand why these two curves diverge from     . The reason behind this fact 

is the inclusion of the wear-out period in  . From     , the probability of occur a failure in 

a certain component is higher, when   is non constant. The inclusion of this idea in the Monte 

Figure 3.2 –       represents a cumulative distribution function developed according to a constant 
failure rate and,       represents the same curve, but developed according to a variable failure rate.  
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Carlo algorithm will have consequences on the reliability indices. Figure 3.2 will also have 

interest for the inclusion of maintenance policies.  

It’s is possible to make an analogy between the use of a constant   and an ideal 

maintenance case. If an ideal maintenance case could exist, the components would not get 

old. This means that the wear-out region would not exist. The use of a constant   reflects this 

behavior. Thus, the use a constant failure rate can be compared to an ideal maintenance 

case. Unfortunately, perfection doesn´t exist in the maintenance field. On the other hand, 

the use of a non constant failure rate represents a real situation, in which the components 

get old with time. The implementation of an effective maintenance plan to this situation 

would have as consequence the approximation of       to      . In other words, an efficient 

maintenance procedure can approximate a real situation to a hypothetical situation, in which 

the components stay forever in their useful life periods. The maintenance topic will be deeply 

studied in section 3.6. 

Until now, the failure rate   was the main focus of this section. It is also important to 

analyze the treatment that will be given to the repair rate. This rate will be treated as in a 

typical Monte Carlo process. So, the repair rate will be considered constant and, therefore, 

the exponential distribution will continue to be used.  

3.3 - Assessing the reliability indices 

For several times, in this thesis, the term “reliability indices” was mentioned. Ultimately, 

will be these indices that will measure the impact of the produced changes on the typical 

Monte Carlo process. The basic indices in a generating system adequacy assessment are: 

 

 Loss of Load Expectation (LOLE);  

 Loss of Energy Expectation (LOEE). 

 Loss of Load Frequency (LOLF); 

 Loss of Load Duration (LOLD);  

 

In [1], the methodology to calculate these indices using Monte Carlo methods is presented. 

The most widely used reliability index in generating capacity planning studies is the LOLE. 

This index is the average number of hours, days or weeks (it depends on the basis of the load 

model), in a given period (usually, one year), in which the hourly, daily or weekly load is 

expected to exceed the available generating capacity. Therefore, the LOLE index can be 

represented in different units: hours/year, days/year and weeks/year. Mathematically 

speaking, LOLE can be defined as follows: 

 

  

      ∑   
   

                                                                   

 

where    is the probability of system state  ,   is the set of all system states associated with 

the loss of load and   is the given period. The LOLE index isn´t capable of indicating some 

characteristics related with the interruptions on supply. The severity, the frequency and the 

duration of the loss of load aren´t explained by this index. 
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Another well-known index is the loss of load probability (LOLP). This index can be 

obtained as follows: 

 

     
    

 
                                                                    

 

It’s common practice, in reliability studies, the preference of the LOLE index, instead of 

LOLP. LOLP is an index that has no units, because it results from a sum of probabilities. For 

this reason, LOLE is a more understandable index.  

The LOEE index is the expected energy not supplied by the generating system due to the 

lack of generating capacity to support the load demand. This index is able to provide 

information about the severity of this lack. Therefore, it is capable to analyze the impact of 

energy shortfalls. This kind of information isn´t provided by the other indices that were 

mentioned. In order to evaluate LOEE, it is necessary to know the area below the load curve. 

This area represents the annual energy that is required by the system. The next step is to 

compute, for each system state, the power not supplied (PNS). Finally, each PNS value is 

added in order to achieve the annual LOEE (MWh/year) index. Therefore, LOEE can be 

defined as follows: 

 

     ∑           
   

                                                        

 

where    is the probability of system state   and   is the set of failure states.    represents 

the loss of load for system state  . 

There is, still, another interesting index that can be defined: the energy index of 

reliability (EIR). This is a normalized index that results from a division between the energy 

that is actually supplied and the total energy demanded. It is an important index because it 

gives a measure about the capability of a power system to meet its annual demand energy.  

 

      
    

 
                                                                  

 

where   (MWh/year) is the total energy demanded by a specifc power system.   

The Frequency & Duration indices are an extension of LOLE and identify the expected 

frequency, during the evaluation period, of load curtailment occurrences and their expected 

durations. Therefore, these indices contain additional physical information, which makes 

them sensitive to additional generation system parameters. Although these indices are widely 

documented, they aren’t much used in practice. 

The concepts of frequency and duration are more important for the assessment of 

reliability in transmission or composite system. So, these two indices can be defined as 

follows: 

 

     ∑                                                                  
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where,    is the total frequency of system state   and    is the part of    , which represents 

the frequency of system state  , when in this state there is no load curtailment. LOLF is 

calculated in occurrences/year.  

The LOLD (hour/occurrence; day/occurrence; week/occurrence) index can be easily 

calculated through the knowledge of LOLF and LOLE indices.  

 

      
    

    
                                                                

 

Using Monte Carlo methods, the assessment of this type of indices becomes very simple. 

This is one of the advantages of Monte Carlo simulations over the enumeration or the 

population based methods (PB). However, this task is now easier to incorporate in these two 

methods (enumeration and PB) because of the F&D methods. The PB methods aren’t object of 

study in this thesis, but more information about this subject can be found in [21], [22], [23] 

and [24]. 

3.4 - The generation and the load models in Monte Carlo 

methods 

The general concepts that were, until now, presented in this thesis will be applied to a 

generating system. Beyond the state of the generating units, it is also necessary to know the 

state of the system load, in order to assess the reliability indices of generating system. 

Therefore, the data about the generation model isn´t enough to evaluate the reliability of a 

power system. The basic approach to evaluate the adequacy of a particular generation system 

is based on the three different models that are shown in figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3 – Conceptual tasks in generating capacity reliability evaluation 
 

Therefore, the generation and load models are combined to form the appropriate risk 

model. Thus, the evaluation of the reliability indices depends both on the generating units 

state as the system load state.  

In the sequential approach, the load levels are enumerated in chronological order, in 

which they occur or are expected to occur. This can be on an annual basis or on any other 

continuous period. This load model can be used to represent the hourly, daily or weekly 

Generation 

Model 

Load Model 

Risk  Model 
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peaks. In the developed Monte Carlo process, the load model represents the hourly peak, 

giving 8760 individual peaks. 

To sum up, the evaluation of the reliability of a generating system depends on the 

verification, for each state of the generating system, if the available capacity is enough or 

not to ensure the load model requirements. 

3.5 - Stopping Criteria 

The Monte Carlo simulations are statistical based methods. Therefore, it is possible to 

establish a certain degree of confidence. This means that the correct value of the index being 

estimated can be found in the correspondent interval of confidence. In the literature, one 

may find the use of degrees of confidence equal or higher than 95%. In this thesis, the degree 

of confidence used in the Monte Carlo simulation will be equal to 95%. 

In the Monte Carlo processes, the value of the index estimate takes some time to get into 

the interval of confidence. Moreover, the index value doesn’t have a steady growth. This fact 

can be observed in figure 3.4. 
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Figure 3.4 - Illustration of the formation of an estimate of a reliability index according to a Monte 
Carlo Process 
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In this figure, the increase of the number of generations doesn’t have as consequence the 

growth of the reliability index estimate. This is a characteristic of Monte Carlo simulations. In 

PB methods, the reliability indices estimate has a different process of formation [25]. 

In this particular problem, the coefficient of variation   is updated at each simulated 

year. The convergence of the process depends on a pre-specified  . This predetermined 

threshold is, in this thesis, equal to 5%. 

 

                                                                            
 

                                                                            
 

                                                                            
 

Therefore, the addressed simulations will only stop when the convergence is reached for all 

these reliability indices.  

3.6 -  Inclusion of the maintenance techniques in the algorithm 

In section 3.2 of this thesis, the first maintenance technique was presented: the reactive 

maintenance. Although the reactive policy is associated with the term “maintenance”, there 

are no maintenance actions in this type of program. In other words, the repairs of the 

generating units only occur after they fail. For this reason, to add this kind of maintenance on 

the typical Monte Carlo process, no changes are needed.  

As it was studied before, although the reactive maintenance is widely used, it has many 

disadvantages in a long term. On the other hand, the other two types of maintenance that 

will be discussed are based on active measures. These actions are taken during the operation 

of the generating units. As a consequence, new code parcels need to be developed, in order 

to introduce this new behavior on a typical Monte Carlo process. The inclusion of these two 

methods pretends to compare the time-driven programs with the condition-driven programs. 

In a first phase, the main goal is to evaluate and analyze the positive effects of these 

maintenance programs. Therefore, the units won’t be removed from service when 

maintenance actions are taken. So, the maintenance actions will not affect the capacity 

available for service. This task will be the object of study in section 3.7.   

 

3.6.1 - Preventive maintenance inclusion 

 

The inclusion of different maintenance policies is one of the main goals in this thesis. A 

well-structured maintenance plan, in which the goals are clearly defined, can lead to major 

improvements in the reliability of power systems. Furthermore, to achieve this goal, the 

collaboration with specialized staff is necessary. The developed Monte Carlo simulations will 

prove that these improvements are real.  

The preventive maintenance can be defined as a time-driven process. So, this type of 

process is based on time schedules. The actual state of the generating units doesn’t have any 

importance in the preventive policies.  

In the theoretical plan, the maintenance actions have the main goal of extend the useful 

life period of the generating units. In other words, these policies pretend to delay the entry 
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of these units in the wear-out period. It is important to remember that this period is 

characterized by an increasing failure rate.  

  

In the simulation plan, some changes needs to be incorporated, in order to add the 

maintenance policies. First, in the preventive maintenance, it is necessary to establish the 

maintenance schedule. As it was already discussed, this type of maintenance is known for the 

periodic maintenance actions. Actually, is important to remind that some of these actions 

would be dispensable, if the state of the components were analyzed. This particularity needs 

to be implemented in the Monte Carlo simulation.  

In order to understand the process of implementing this maintenance policy, it is 

necessary to examine the algorithm presented in Section 3.2 from the beginning. Through 

that algorithm, it is easy to realize that the whole process of simulation depends on the 

failure rate  . The construction of the cumulative function      and the generation of the 

time of operation of each component, depend on  . It is, therefore, by manipulating the 

failure rates, that the expected effect of maintenance can be incorporated. Thus, whenever 

a new operation time is generated (as explained in section 3.2), it is necessary to check the 

maintenance schedule. If the lifetime of a given component is equal to one of the scheduled 

maintenances, maintenance actions will take place. This will involve changes in the failure 

rate of this component. 

 

The way these changes occur is another important question. The fact that a given component 

receives periodic maintenance actions, will lead to an extension of his useful life period. In 

figure 3.6, a comparison between the failure rates of two components is made: one of them 

has periodical maintenance actions and the other one follows the reactive maintenance 

methodology.   

 

 

Figure 3.5 – Expected effect of preventive maintenance in       curve: the preventive maintenance can 
approach a real situation (     ) to an ideal maintenance case (     ). 
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In figure 3.6, it is possible to clearly verify the effect of maintenance actions upon the   of 

the generating units. 

Considering the algorithm presented in section 3.2, it is easy to realize that the changes 

produced on    have as consequence the recalculation of the      curve. Only through this 

new curve, the generation of the times of operation of each unit will include the effect of 

maintenance. 

 

Figure 3.6 - Effect of preventive maintenance actions upon the failure rate  : the 
extension of the useful life period. 

Figure 3.7 - Effect of preventive maintenance actions upon Q(t) curve:       diverge from       in a 
later stage of the generating unit life. 
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where       represents the situation of an ideal maintenance case and       represents a 

situation, in which a preventive maintenance plan is applied. This figure allows to observe 

something very important. The periodical maintenance actions had the expected effect on 

the cumulative curve:       is now closer to      . In other words, a real situation (variable 

 ) is now closer to a hypothetical situation (constant  ) known for the ideal maintenance 

case. Therefore, the generating units enter on the wear-out period, in a later stage of their 

lives       . Obviously, this fact will have clear effects on the reliability indices. The 

extension of the useful life periods of the generating units, will lead to less failures during 

their lives. Therefore, the variations on the reliability indices will correspond to this effect.   

It is, still, important to mention one more aspect. The magnitude of the extension of the 

useful life periods gives a measure of the effectiveness of these maintenance plans. As it was 

seen before, the preventive maintenance isn’t the more effective maintenance policy, since 

it does not evaluate the current state of components. For this reason, the increase of the 

useful life period, in this type of maintenance, will correspond to only one period of time, at 

each scheduled maintenance. In figure 3.6, this effect is presented. 

After introducing the preventive maintenance basic ideas, now the steps of this methodology 

are explained in detail. This algorithm is based on a set of different approaches that were 

studied during this thesis. The most important can be found in [2] and [6]. 

 

1. Initialize the reliability characteristics of the generating units: 

 

o   - failure rates; 

o     ; 

o Number of units; 

o Capacity of each unit. 

 

2. Initialize the power system load curve. 

 

3. Initialize the random number generator and other variables as: 

 

o Maximum number of years of the simulation process; 

o   threshold:        . 

 

4. For each generating unit, generate a time of operation according to the algorithm 

presented in section 3.2. 

 

DO 

 

5. Identify the lowest simulated time. The corresponding component will be called F. 

 

6. Update the system load for this particular moment. 

 

7. State evaluation. According to the current state of each component, the load 

curtailment is calculated. 
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8. Update the reliability indices accumulators. 

 

9. Simulate a new operating or repair time to the component F. The type of simulated 

time depends on the previous state of the component F. 

 

9.1. If component F was in operational mode, a repair time will be generated. As 

it was studied before, the generation of a repair time will follow an 

exponential distribution. 

 

9.2. If component F was in repair mode, an operation time will be generated, 

according to the algorithm presented in section 3.2. 

 

9.2.1. If the lifetime of component F is equal to one of the pre-defined moments of the 

scheduled maintenances, λ must be updated. 

 

9.2.2. Update the      curve. 

 

10. Update the components F state and its lifetime. 

 

11. Evaluate the lifetime of the system. Tests if the system has already completed one year 

and make the necessary updates, including the update of the coefficient of variation  .   

 

Until the maximum generation criteria.          

 

12. Compute the following reliability indices: 

 

o LOLP; 

o EPNS; 

o LOLD. 

 

13. Compute the probability distributions of LOLE, EENS and LOLF. 

 

In the next Chapter, the effects of the preventive maintenance will be clearly observable. 

In the next section, a different maintenance plan will be studied: the predictive 

maintenance. 

 

3.6.2 - Predictive maintenance inclusion 

 

Unlike the preventive policies, predictive maintenance isn’t a time-driven program. 

Instead, this type of maintenance program depends on the actual state of the generating 

units. Therefore, the analysis of the degradation state of these units is a crucial stage of this 

type of maintenance. By performing these tests, it is possible to avoid the existence of 

unnecessary maintenance actions. 

Predictive and preventive maintenance programs have the same main goal: to extend the 

useful life period of the generating units. The difference between them lies on the moments 

in which the maintenance actions occur. On the one hand, preventive maintenance actions 
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are performed according to a maintenance schedule. On the other hand, predictive 

maintenance operations are performed, when a given component enters its last stage of life: 

the wear-out period. Furthermore, a predictive maintenance program requires a higher 

investment. For example, sensors are needed to check the degradation state of the 

generating units and a specialized team is necessary to deal with this type of maintenance. 

The implementation of the predictive maintenance will also lead to some changes on the 

Monte Carlo algorithm. In first place, instead of defining the maintenance schedule, it is 

necessary to define the moment when the failure rate  , of each generating unit, starts to 

increase (wear-out period). Therefore, whenever a new time of operation is generated for a 

given unit, it is necessary to check its lifetime. In other words, it is necessary to verify if this 

unit already entered in its wear-out period. Maintenance actions will be the consequence to a 

positive answer to this question. Thanks to these maintenance actions, the useful life of the 

generating units will be extended. Therefore, the main goal of the predictive maintenance 

can be defined as follows: whenever the failure rate  , of a given unit starts to increase, 

bring this  , through the maintenance actions, to its useful life period.  

 

Figure 3.8 shows an example of a curve Q(t), for a given generating unit, that was 

constructed according to the algorithm presented in section 3.2. This figure shows, clearly, 

the moment when this unit starts to enter on its wear-out period (    ). Therefore, 

maintenance operations should be performed when     .  

The consequences of the predictive maintenance for the failure rate   can be observed in 

the following figure.  

 

 

 

 

 

 

Figure 3.8 – Illustration of the moment, in which the generating unit enters on the wear-out period 

and, therefore, of the moment, in which the predictive maintenance actions start to occur. 
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As it was discussed before, whenever   increases, maintenance actions are taken in order to 

bring   to its useful life period.  The following step is the recalculation of the      curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 establishes a comparison between the two types of maintenance that were 

studied. The main idea to withdraw is the following one: with a predictive maintenance 

process, the generating units enter on their wear-out periods in a later stage of their lives. 

Once more, this type of maintenance also had the expected effect on     : a real situation, 

in which the    is variable, is now closer to a hypothetical situation, in which   isn’t constant. 

Considering the above points, is expected that the predictive maintenance will lead to better 

reliability indices than the preventive maintenance. 

Figure 3.9 - Effect of predictive maintenance actions upon the failure rate  : the 
extension of the useful life period. 

 Figure 3.10 - Effect of predictive maintenance actions upon the Q(t) curve:       
diverge from       in a later stage of the generating unit life. 
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It is still important to discuss the subject of the magnitude of the useful life period 

extension. It was possible to realize, in this Chapter, that the predictive maintenance 

constitutes a more effective plan. For this reason, the increase of the useful life period, in 

this type of maintenance, will correspond to two periods of time, at each maintenance 

procedure. 

It is now time to clarify, in terms of algorithm, the differences between the two types of 

maintenance. The algorithm presented in section 3.6.1 for the preventive maintenance is 

very similar to the algorithm that will include the predictive policies. The only difference 

between these two algorithms is related to the maintenance moments. Therefore, the step 

9.2.1 of the algorithm presented in section 3.6.1 can be defined as follows:  

 

9.2.1. If the lifetime of component F is equal or superior to the moment, in which   starts to 

increase, maintenance actions will be performed. λ is updated. 

 

After the introduction of these two different maintenance policies and their algorithms, it 

is now time to study other approach. This approach will consider the case, in which the 

generating units are removed from service for maintenance actions. This new particularity 

will have interesting consequences in the reliability indices. 

3.7 - Maintenance policies : a new approach 

In this new approach, an important particularity is added: the generation units will be 

removed from service for the maintenance actions. Therefore, during the maintenance 

periods, the available generating capacity will decrease. As it is possible to observe in figure 

3.11, the generating units will assume a new state during the maintenance actions.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11 – New state model of the generating units: the maintenance state is, now, 
included. 

 

In figure 3.11, the new state model of a power system is presented. The maintenance state is 

now included. This diagram is valid for the two maintenance programs that were studied. 

Now, some explanations about this diagram will be presented: 

Operation  Repair  

Maintenance  
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1. When a given generating unit is in repair mode (R), it will be repaired and, then, starts a 

new operation period (Operation Mode-O). Therefore, the maintenance actions will occur 

only, after, an operation period.   

 

2. A generating unit, after a maintenance period, return to its childhood period. Most of the 

units surpass this period without any problems and, therefore, they evolve to the useful 

life period. The problem is that, sometimes, deficient procedures can occur. In this case, 

the generating units will return to their childhood periods, but, before entering in the 

useful life period, they will fail. So, in order to simplify this approach, it was decided that 

after a maintenance procedure, the generating units will evolve to one of the following 

two states: operation mode or repair mode. The major part of the generating units will 

evolve to the operation mode, representing the generating units that won’t have 

problems during the childhood period. A small part of the generating units will evolve to 

the repair mode, representing the generating units that will fail before the useful life 

period.  

 

 

In order to implement the analyzed situation in 2, a new probabilistic concept needs to be 

established. Thus, after a maintenance period, it is necessary to generate an uniformly 

distributed number in a [0,1] range (rand()). If           , the generating unit will start a 

new repair period. If           , the generating unit will start a new operation period. With 

this methodology, the small amount of cases, in which deficient maintenance procedures 

occur, are included. 

Considering the above points, it is easy to conclude that the transitions for the 

maintenance state are based on deterministic criteria. All the other transitions are based on 

probabilistic criteria. This new approach will have as consequence an increase on the 

reliability indices.   

The main question, now, is to realize how this new particularity will affect the different 

types of maintenance. This question will be answered through the comparison between the 

durations of each type of maintenance. On the one hand, the degradation state of the 

generating units in the preventive maintenances isn´t always severe. Therefore, this type of 

maintenance is usually faster. On the other hand, predictive maintenance actions are 

performed when the degradation state of the generating units is already in an advanced 

stage. Thus, predictive maintenance takes longer and is more careful.  

Considering the above points, it´s obvious that, in the predictive maintenance, the 

generating units will be removed from service for longer periods of time. Therefore, this new 

approach will have higher influence in the predictive maintenance. 

 

3.8 - Conclusions 

In this Chapter, the main lines of a typical sequential Monte Carlo, applied to a reliability 

problem, were presented. Furthermore, it was through this first approach, that all the others 

algorithms were developed. This typical approach follows the methodology presented in [1] 

and [6]. Some other specific issues were presented in this Chapter, as for example, the 
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reliability indices. These issues had in consideration the addressed problem: the generating 

capacity adequacy assessment.  

The first concern in this Chapter was to develop a more realistic algorithm. Therefore, 

following the methodology presented in [2], a non constant failure rate   was adopted. With 

this new approach, the wear-out period of the generating units started to be studied. The 

next step was the inclusion, in the algorithm, of the two types of maintenance: preventive 

and predictive maintenance. Theoretically, the predictive maintenance showed more 

advantages. Despite these advantages, the observation of the reliability indices, when the 

generating units are removed from service, will be very interesting. 

The following Chapter is devoted to apply the models and concepts that were already 

studied. Moreover, the results of the several developed simulations will be analyzed and 

conclusions will be drawn.  
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Chapter 4  

Solving the problem with sequential 
Monte Carlo 

In this Chapter, the main results of the proposed methodologies will be presented. 

Through these results, the evaluation of the impact of the different types of maintenance, in 

a power system, will be made.  

In Chapter 3, a new approach was developed. Instead of consider a constant failure rate 

 , all the bathtub curve that was studied in the previous Chapters, was implemented. This 

fact will allow to observe the effect of the infant mortality and wear-out periods upon the 

generating units reliability. Since, most of reliability studies, uses a constant failure rate, the 

analysis of these results will be very interesting. This new approach can be accomplished by 

the inclusion of new code modules in the typical Monte Carlo algorithm. As it was seen 

before, these new modules are based on the development of the cumulative distribution 

function     . The developed algorithm will, also, allow the introduction of two different 

aspects in the maintenance procedures. In a first approach, the generating units won’t be 

removed from service for maintenance actions. Then, according to a more realistic situation, 

the generating units will be removed from service for maintenance procedures.  

In first place, the power system which will have its reliability evaluated will be presented. 

Furthermore, the performances of each developed algorithm will be object of analysis. The 

comparison between these performances will allow answering to a set of important questions: 

Which is the impact of the inclusion of a non constant failure rate  ? How the maintenance 

policies affect the reliability of a power system? Which is the best maintenance procedure? 

When the generating units are out of service for maintenance actions, the reliability indices 

are affected? In which generating units, maintenance actions should occur? For last, but not 

least, a cost-effective analysis will be made, in order to analyze the advantages and 

disadvantages of the studied maintenance policies. 

All the results that will be presented were obtained with a MATLAB application developed 

for this purpose.   
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4.1 - Institute of Electric and Electronic Engineers Reliability 

Test System 79   

In order to evaluate the adequacy of the generating capacity, the IEEE RTS-79 [26] was 

the chosen power system. Therefore, the proposed methodologies will be tested in this power 

system. The need of a standardized power system to test and compare results from different 

reliability approaches, led to the development of this and other standardized systems. These 

power systems are characterized for having a standardized database. In IEEE RTS-79, a lot of 

information and data are described, as for example, transmission network data. In the 

addressed problem, only two types of data are needed: the generation data and the load 

model. 

The IEEE RTS-79 generation system is composed for 32 units. However, there are only 9 

different types of generating units. For this reason, the 32 units can be clustered into 9 

groups, in the Monte Carlo algorithms.  

The system load model can represent the hourly, daily or weekly load peaks. The hourly 

basis will be used in the developed methodologies. The annual load peak, in IEEE RTS-79, is 

2850 MW.  The unit parameters used in the assessment of IEEE RTS-79 can be found in Annex 

A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

                          

 

In order to have a good basis for comparison with the developed methodologies, the 

following table will show the exact values of the most important reliability indices. These 

indices were obtained according to an hourly load model from [27] with analytical 

calculation. 

 

 

 

 

 

 

 

Figure 4.1 - Topology of the IEEE RTS – 76 [26] 
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Table 4.1 - IEEE RTS -76 generating capacity adequacy reliability indices 

Adequacy reliability indices 

LOLE (hour/year)                             9.394179         

LOLF (occurrence/year)                  2.019717 

LOLD (hour/occurrence)                 4.651236 

LOEE (MWh/year)                                1176.3 

 

4.2 - Evaluation of the Monte Carlo performance with a constant 

failure rate   

As it was seen in the previous Chapter, the development of a typical Monte Carlo 

algorithm was the first step taken in this thesis. This algorithm is based on one particularity: 

the failure rates   of the generating units are constant and, therefore, an exponential 

distribution is followed. The figures and tables that will be presented in this section will have 

more interest, when compared to the results of the other methodologies. Anyway, it is 

important to perform some analysis and observations. After all, this algorithm is the basis of 

all working.    

First, the reliability indices and their probabilities distributions will be shown: 

 
Table 4.2 – Adequacy reliability indices of a Monte Carlo simulation according to a constant failure rate 

  

Adequacy reliability indices 

LOLE (hour/year)                                9.3755         

LOLF (occurrence/year)                     1.9992 

LOLD (hour/occurrence)                    4.6896 

EENS (MWh/year)                               1180.9 

 

These results were very important for the development of this thesis. They allowed to 

validate the followed methodology. As it is possible to observe, these results are similar to 

the ones presented in the last section, which were calculated through analytical methods. So, 

this proves that the algorithm was well constructed. It is also important to mention that these 

results were obtained according to a variation coefficient     . Moreover, these results 

constitute the ideal maintenance case. Therefore, preventive or predictive maintenance 

actions won't lead to better results. As it was said before, this situation implies that the 

generating units don't get older. Obviously, this is a hypothetical situation, since the 

generating units suffer a degradation process during their lives. 

Now, a comparison between the analytical results and the Monte Carlo results is going to 

be made.  



49 

 

 

0

2

4

6

8

10

12

14

16

18

LO
LE

 (
h

o
u

r/
ye

ar
) 

Number of States 

Monte Carlo

Analytical Value

 
Table 4.3 – Comparison of results from analytical (ANA) and Monte Carlo (MC) methods, including the 
limits for the confidence interval. 

 Adequacy reliability index LOLE 

ANA LOLE (hour/year) 9.394179    

MC   (%) 2.50 3 5 10 

 No.Simulated Years 10000 5632 2590 465 

 No.States 91984887 64231116 23822700 4276784 

 LOLE (hour/year) 9.3586 9.2728 9.3755 9.2601 

                  8.90 8.7276 8.456701 7.4451 

                  9.8172 9.8180 10.294299 11.075 

 

This table presents some important information. First, the reliability index EENS was 

computed through the Monte Carlo simulations, according to different variation coefficients 

 . Furthermore, in rows 5 and 6, the limits for the confidence interval at 95% confidence 

level are presented. Other interesting particularity is the increasing number of states with 

the decrease of the variation coefficient  . As it was studied in Chapter 2, the computational 

effort is considerably affected by the desired degree of confidence.  

Figure 4.2 will show the evolution of estimated LOLE with the number of states visited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 shows that the “Monte Carlo curve” oscillates around the analytical value, until the 

maximum of the variation coefficient          

The analysis of the probability distributions of the reliability indices is another very 

important source of information. It allows us to obtain a risk measure. The value of the 

reliability indices only gives us the mean value of their distributions. In other words, the 

values of the reliability indices don’t give information about the dispersion of the results. 

Figure 4.2 - Evolution of estimated LOLE (y-axis) with the number of states  

visited (x-axis): MC results (curve oscillating around the real value) vs  Analytical approach 
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Figure 4.3 shows the probability distribution of the studied reliability indices. To understand 

the importance of this figure, let’s take as example the mean value of LOLE:      

            . Only with this information, we wouldn’t know how this value was obtained. 

Now, two different ways to obtain this LOLE will be presented: 

 

a) Load curtailment during 9.3755 h, every single year of the simulation process; 

 

b) Load curtailment during 24282.545h in only one of the years of the simulation 

process; 

 

It is important to note that the LOLE dispersion is much more significative in case b), although 

both cases have the same mean value. The relative frequency of no load curtailment, in case 

b), is equal to 0.9996 and, in case a), equal to 0. All these results were obtained considering 

a number of simulated years equal to 2590 (     . Concluding, figure 4.3 allows to 

understand the way how the reliability indices were obtained. 

In this thesis, all the comparisons between the different approaches will be based on the 

cumulative distribution function     . Therefore, figure 4.4 will present the      curve 

according to a constant failure rate. 

 

 

LOLE 
Relative 

Frequency (%) 
 

EENS 
Relative 

Frequency (%) 
 

LOLF 
Relative 

Frequency(%) 

5,3801 76,37065637 
 

2070,994 91,93050193 
 

0,730769 58,996139 
11,1404 11,81467181 

 
4956,742 5,173745174 

 
1,823077 11,35135135 

19,7007 4,980694981 
 

10814,57 1,621621622 
 

2,479846 15,05791506 
31,3360 3,32046332 

 
15140,4 0,617760618 

 
4,195385 4,131274131 

42,1513 1,891891892 
 

19466,23 0,308880309 
 

5,576923 5,019305019 
53,1816 0,656370656 

 
23792,05 0,231660232 

 
7,098462 1,544401544 

65,9418 0,463320463 
 

28117,88 0 
 

8,5 1,853281853 
83,7021 0,308880309 

 
32443,71 0,077220077 

 
9,961538 0,540540541 

91,4624 0,077220077 
 

36769,54 0 
 

12,42308 0,810810811 
110,2227 0,077220077 

 
41095,37 0 

 
13,88862 0,193050193 

133,9830 0 
 

45421,19 0 
 

15,34615 0,154440154 
146,7433 0 

 
49747,02 0 

 
16,89769 0,154440154 

159,5035 0,038610039 
 

54072,85 0,038610039 
 

18,86923 0,193050193 

Figure 4.3 – Probability distributions of the studied reliability indices 
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Figure 4.4 shows that the probability of fail of this generating unit after         is 

equal to 1. This means that this generating unit, after 7000h, already has failed. As it was 

said before, this situation illustrates the ideal maintenance case. Thus, in the following 

approaches, it is expected that the generating units will fail in an earlier stage of their lives. 

It also important to remember that this Q(t) curve was developed according to an exponential 

distribution:                 . The data of the generating unit used to develop this Q(t) 

curve can be found in Annex A. This generating unit is a nuclear unit and was chosen as the 

example to show the changes that will be produced in the Monte Carlo algorithm. 

4.3 - Evaluation of the Monte Carlo performance with a non 

constant failure rate   

In this section, the results of the improvements produced in the Monte Carlo algorithm 

will be analyzed. Theoretically, the difference between this new approach and the typical 

method is very simple: the constant failure rate   is replaced for a variable failure rate  . In 

the other hand, in practice, the changes produced in the Monte Carlo algorithm are several. 

As it was studied in Chapter 3, instead of following an exponential distribution, the 

cumulative distribution function      needs to be developed through the calculation of an 

integral. With these improvements, we intend to create a more realistic situation. This 

situation is presented in the following figure: 

Figure 4.4 - Cumulative distribution function      of a generating unit with a constant 
failure rate   
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Figure 4.5 shows the “bathtub curve” of the nuclear units. In Annex B, the data of this curve 

can be inspected. This figure shows that, in this new approach, the infant mortality and wear-

out periods are included. Therefore, a real situation is presented, in which the nuclear units 

have debugging problems at the beginning of their lives and, in which the degradation process 

with the elapse of time is clearly visible.  

According to the algorithm presented in section 3.2, the changes produced on the failure 

rate   have as consequence the recalculation of the Q(t) curve. The new Q(t) curve is 

presented in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data of this curve is also presented in Annex B. Figure 4.6 shows a comparison between 

two Q(t) curves: one is constructed according to a constant failure rate   and the other one is 

Figure 4.5 – Bathtub curve that will be implemented in the Monte Carlo algorithm, 
instead of a constant failure rate 

Figure 4.6 – Two Q(t) curves for the nuclear units:       according to a constant   and 
      according to the bathtub curve presented in figure 4.5. 
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developed according to a variable failure rate  . The main feature to withdraw from this 

figure is the divergence shown by the curves from        . The explanation of this 

divergence is the inclusion of the wear-out period in      . From        , the probability 

of failure,     , of this generating unit is much higher, when the failure rate isn’t constant. 

This is a normal consequence of the introduction of the wear-out period, which is 

characterized for an increasing failure rate. The next figure will show more clearly the 

differences between these two curves: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After analyze this image, the following conclusions can be withdrawn:  

 

o With a non constant failure rate  , when        , the generating unit already has 

failed; 

 

o With a constant failure rate  , this moment happens in a later phase. Precisely when 

       ; 

 

It is also important to mention that this is a comparison between a reactive maintenance 

plan and an ideal maintenance case. As it was studied before, reactive maintenance is a type 

of maintenance program, in which maintenance action aren’t taken. In other words, the 

generating units are repaired only in case of failure. Therefore, the use of a non constant 

failure rate can be considered a case of reactive maintenance. 

The next goal, in this thesis, is to approach the two curves presented in figures 4.6 and 

4.7, through the implementation of maintenance policies. Before that, it is now the moment 

to analyze some more results. 

 

Figure 4.7 – Two Q(t) curves showing the moment when this generating unit fails. Q(t)=1 
means that this generating unit already have failed. 
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Table 4.4 - Adequacy reliability indices of a Monte Carlo simulation according to a non constant failure 
rate   

Adequacy reliability indices 

LOLE (hour/year)                                11.196         

LOLF (occurrence/year)                     2.3256 

LOLD (hour/occurrence)                    4.8144 

EENS (MWh/year)                                1486.1 

 

These results were obtained according to a coefficient of variation     . As it was 

expected, these reliability indices are higher, when compared to the ones obtained for a 

constant failure rate  . The inclusion of the degradation process led to an increase in the 

number of failures of the generating units. Therefore, the increase of the reliability indices 

illustrates this consequence. Moreover, these indices are more realistic, since they are the 

result of a real situation.  

4.4 - Evaluation of the Monte Carlo performance with 

maintenance activities 

In this section, the maintenance policies will be introduced in the problem of the 

assessment of the reliability of IEEE RTS – 76. Therefore, according to the type of 

maintenance program, different results are expected.  

Both preventive and predictive maintenance have the same goal: extend the useful life 

period of the generating units. In other words, their goal is to delay the entrance on the 

wear-out period. Obviously, this will lead to certain impacts on the reliability indices. By 

extending the useful life of the generating units, they will fail less and, therefore, the 

reliability indices will decrease. This fact constitutes an advantage for customers and 

suppliers.  

In the past decades, several maintenance programs were developed. Some of them had 

great success.  In the previous Chapter, two of the most widely used maintenance programs 

were described. Now, it is time to verify if the theory matches with practice. In the one 

hand, the preventive maintenance is based on a schedule, which means that there aren’t 

concerns about the generating units state. In the other hand, the predictive maintenance is 

based on the degradation state of the generating units. The advantages and disadvantages of 

each one of these maintenance programs were already studied and discussed.  

It’s now time to answer to a simple question: which one of these methods is the most 

effective? 
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4.4.1 Evaluation of the Monte Carlo performance with a preventive 

maintenance program 

 

As it was said for several times in this thesis, preventive maintenance is characterized for 

scheduled maintenance actions. Therefore, the first task was the definition of this schedule 

in order to implement it in the developed Monte Carlo algorithm. This definition depends on 

some characteristics of the generating units, as for example, the MTTF. Furthermore, each 

generating unit has their own characteristics. For this reason, it was decided to apply the 

maintenance program only to one of the types of the generating units. By choosing units with 

higher capacity, the effect of maintenance upon the reliability indices is clearer. Therefore, 

the nuclear units were the chosen ones.  According to the characteristics of the nuclear units, 

which can be inspected on Annex A, the maintenance actions will occur at each     . Thanks 

to these maintenance actions, the useful life of the nuclear units will be extended, as it is 

possible to observe in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, as it was discussed, the Q(t) curve needs to be recalculated. Therefore, the new 

Q(t) curve will include the effect caused by the useful life extension. The following figures 

present some interesting aspects that need to be analyzed: 

 

Figure 4.8 – Extended useful life period of the nuclear unit, after a preventive 
maintenance procedure 

Figure 4.9 – Figure on the left: Q(t)2 curve enters soon in the wear-out period;  
Figure on the right: The preventive maintenance plan delays the entrance on the wear-out period 
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In these figures, the effect of preventive maintenance is clearly observable. In the figure on 

the left,       represents the cumulative curve of the nuclear units, in which maintenance 

actions aren’t taken. In the figure on the right,       represents the same curve, but 

including the scheduled maintenances. In fact, the main points to withdraw are the following: 

 

o When maintenance actions aren’t taken, these generating units enter on their 

wear-out periods after        ; 

 

o When preventive maintenance is applied, these generating units enter on their 

wear-out periods after        ; 

 

So, the changes produced on the Q(t) curve are beneficial for the reliability of the power 

systems. By introducing the maintenance actions, the failure rate   of the nuclear units starts 

to increase in a later stage of their lives. The data of this new Q(t) curve and the data of the 

extended failure rate    can be found in Annex C.  

Ultimately, the reliability indices can measure the effects produced by the maintenance 

policies. The following results represent the mean values of the studied reliability indices, 

after applying the preventive maintenance plan: 

 

 
Table 4.5 - Adequacy reliability indices of a Monte Carlo simulation, after the implementation of the 
preventive maintenance 

Adequacy reliability indices 

LOLE (hour/year)                                10.882         

LOLF (occurrence/year)                      2.2621 

LOLD (hour/occurrence)                     4.8107 

EENS (MWh/year)                                1406.2 

 

 

After analyzing these results, it is possible to conclude that the preventive maintenance plan 

had the expected effect: the reliability indices are, now, lower when compared to the ones 

presented in section 4.3 (reactive maintenance). Thus, the decrease of the loss of load 

expectation, the decrease of the expected energy not supplied and the decrease of the loss 

of load frequency are the consequences of an extended useful life period, which implies a 

reduction on the number of failures of these generating units. On the other hand, by 

comparing these results with the ones obtained in section 4.2 (ideal maintenance case), these 

are much higher. This fact was already expected since now we’re treating a real situation, in 

which the failure rate   is not constant. 
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4.4.2 Evaluation of the Monte Carlo performance with a predictive 

maintenance program 

 

In this section, the results of a different type of maintenance will be analyzed. As it was 

seen before, in the predictive maintenance programs, the maintenance actions depend on the 

actual state of the generating units. In other words, the maintenance actions will take place, 

only when the degradation state of the generating units starts to increase. Therefore, the 

first step to take is to identify the moment when the generating units enter on their wear-out 

periods. This moment is different for each generating unit and depends on their failure rates 

 . So, in order to establish a comparison between the two studied maintenance types, the 

predictive maintenance will be applied on the nuclear units.  

As it was seen before, after        ,       and       start to diverge. This is exactly 

the moment when the nuclear units enter on their wear-out period. Therefore, always that 

these units enter on their wear-out period, maintenance actions will be taken.  

The predictive maintenance policy has exactly the same final goal that the preventive 

maintenance policy: the extension of the useful life period of the generating units. The 

difference between these two maintenance types lies on the moments, in which the 

maintenance actions occur. This fact leads us to another important specification: the main 

goal is the same, but the mode how it processes is very different.    

In figure 4.10, the effect of predictive maintenance upon the failure rate   of the nuclear 

units can be observed:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ups/downs of the failure rate   in figure 4.10, reflect the type of maintenance that was 

applied. Whenever   increases, maintenance actions are taken in order to bring λ to its useful 

life period. Thus, the existence of unnecessary maintenance actions is avoided.    

The produced changes on   led to the reconstruction of the Q(t) curve. The following 

figure will show this new curve: 

Figure 4.10 - Extended useful life period of the nuclear unit, after a predictive 
maintenance procedure 
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As it was expected, thanks to the predictive maintenance plan, the nuclear units enter on 

their wear-out period in a later stage of their lives (after        ). By comparing this figure 

with figure 4.9 (preventive and reactive maintenance), the advantages of predictive 

maintenance are clearly recognizable. In fact, the main conclusions to withdraw from this 

comparison are the following: 

 

o With a predictive maintenance plan, the nuclear units enter on their wear-out period 

      later, when compared with the preventive policies.  

 

o With a predictive maintenance plan, the nuclear units enter on their wear-out period 

      later, when compared with the reactive policies.  

 

The data concerning the failure rate λ and the Q(t) curve, according to the predictive 

actions, can be found in Annex D.  

It is known that predictive maintenance is an effective and efficient type of maintenance. 

However, the differences for the studies that use a constant failure rate are, still, very clear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 - Effect of predictive maintenance actions upon Q(t) curve, delaying the 
entrance on the wear-out period 

Figure 4.12- Two Q(t) curves showing the moment when this generating unit fails. 
Q(t)=1 means that this generating unit already have failed. 
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Despite include the predictive maintenance, figure 4.12 shows that the nuclear units have 

already failed after        . Once more, it is proved that the use of a constant failure rate 

is a hypothetical situation. 

In order to conclude the analysis of this new approach, there is one question that we need 

to answer:  Which is the more efficient and effective maintenance plan?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 shows that the implementation of a predictive maintenance leads to a bigger 

extension of the useful life period of the nuclear units. Therefore, apparently, predictive 

maintenance is the most effective policy. But, for now, is difficult to give a proper answer to 

this question, since the generating units aren’t removed from service for the maintenance 

actions. This particularity will be introduced in the next section.  

For last, but not least, the reliability indices for a predictive maintenance are presented: 

 

 
Table 4.6 - Adequacy reliability indices of a Monte Carlo simulation, after the implementation of the 
predictive maintenance 

Adequacy reliability indices 

LOLE (hour/year)                                10.486         

LOLF (occurrence/year)                     2.1897 

LOLD (hour/occurrence)                    4.7892 

EENS (MWh/year)                                1379.1 

 

 

Figure 4.13 – Comparison between three different types of maintenance programs: The 
predictive maintenance allows a later entrance on the wear-out period. 
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Table 4.6 shows that the reliability indices decrease regarding to the ones obtained for a 

preventive maintenance plan. This was already expected, since the predictive maintenance is 

based on a continuous inspection of the generating units state. 

4.5 - Removing the generating units from service for 

maintenance actions 

Until now, the generation units weren’t removed from service for maintenance actions. In 

other words, the maintenance actions were considered an instantaneous process. Despite 

being an unrealistic approach, it was an important first step in order to reach the main goal. 

Moreover, this first approach already allowed us to develop the major part of the algorithm 

and to evaluate the positive effects of maintenance. Despite the merits of this first approach, 

one more step needs to be taken. 

In the previous Chapter, a different approach to introduce the maintenance policies was 

studied. This new approach is based on the introduction of a new state on the life of the 

generating units – the maintenance state. This new state will be characterized by a new 

particularity: the generation units will be removed from service, during the maintenance 

actions. Therefore, the maintenance actions will no longer be an instantaneous process. The 

problem lies on the consequences that this new approach brings: if the generating units are 

removed from service for maintenance actions, the available generating capacity will 

decrease in those periods. Thus, a loss of load will be associated with the maintenance state 

and its magnitude will depend on the duration of the maintenance processes. So, it seems 

obvious that the type of maintenance that takes longer will be the most affected by this new 

approach.  

After these explanations, it is the moment to answer to the following question: which 

maintenance policy is the most expensive in terms of time?  To this particular problem, the 

following sentence fits perfectly: “Time is money”. On the one hand, the preventive 

maintenance can be compared to a routine exam. Therefore, the preventive maintenance is a 

faster process with no bigger concerns. Usually, the preventive maintenance doesn’t include 

a check-up of the system in order to detect possible defects. This type of maintenance is 

systematized.  On the other hand, the predictive maintenance can be compared to a more 

serious exam. In this type of maintenance, the actual state of the units needs to be analyzed, 

the defects need to be detected and solutions need to be developed. As it was studied 

before, the predictive actions occur when the degradation state of the generating units starts 

to increase. Therefore, predictive maintenance is a more complex, more exhaustive and more 

complete process. For all these reasons, it is easy to understand that predictive actions have 

longer durations.     

Considering the above points, it was defined that the nuclear units will be removed from 

service, during 1 hour, for preventive actions and, during 24h for predictive processes. The 

results of these changes can be analyzed in the following tables: 
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Table 4.7 - Adequacy reliability indices of a Monte Carlo simulation: the units are out of service for the 

maintenance actions 

 

  

 

 

The reliability indices that result from this new approach are particularly interesting. As it 

was expected, these indices increase when compared to the ones obtained on the previous 

approach, in which the nuclear units weren’t removed from service for the maintenance 

actions. Furthermore, another interesting aspect can be analyzed. The predictive 

maintenance that was presented as a more effective maintenance program is now, according 

to the reliability indices, the worst type of maintenance (excluding the reactive 

maintenance). This fact doesn’t invalidate all that was said about the two types of 

maintenance. The explanation of these new results lies on the higher duration of the 

predictive actions.  

In the next section, a cost-efficiency analysis will be performed in order to try to find the 

best maintenance procedure.  

The analysis of this new state doesn’t end here. As it was studied in the previous Chapter, 

after a maintenance process, the generating units return to their initial period of life. This 

period is known as the infant mortality period and is characterized by a decreasing failure 

rate  . Then, during this period, the generating units can evolve to one of the following 

modes: 

 

o Usually, after a maintenance process, the generating units are in perfect 

conditions. Therefore, after returning to their initial period of life, they evolve to 

their useful life period; 

 

o Sometimes, due to deficient maintenance actions, the generating units fail during 

their infant mortality period. So, these units don’t evolve to the useful life 

period. First, they need to be repaired.  

 

In order to simplify the implementation of this new aspect in the Monte Carlo algorithm, it 

was decided that the generating units which fail during" the infant mortality period" evolve 

directly to the repair mode. In other words, we’re forgetting the passage of these units in the 

infant mortality period, since the duration of this passage is very short.  

As it was decided in the previous Chapter: 

 

o 10% of the generating units, after a maintenance procedure, will fail before 

entering their useful life period. They evolve directly to the repair mode; 

 

Adequacy reliability indices/Predictive M 

LOLE (hour/year)                                11.022         

LOLF (occurrence/year)                     2.2841 

LOLD (hour/occurrence)                    4.8255 

EENS (MWh/year)                                1431.7 

Adequacy reliability indices/Preventive M 

LOLE (hour/year)                                10.932         

LOLF (occurrence/year)                     2.2688 

LOLD (hour/occurrence)                    4.8184 

EENS (MWh/year)                                1415.7 
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o 90% of the generating units, after a maintenance procedure, evolve without 

problems to their useful life period (operational mode); 

 

The results presented in tables 4.7 e 4.8 were already affected by this new aspect.  

Now, it is time to analyze another issue presented in the last Chapter: the qualification of 

the maintenance staff. Tests were made considering that a more qualified maintenance team 

could increase the percentage of generating units that after a maintenance procedure evolve 

to their useful life periods to the 95%.The results are presented in the following table: 

 

 

Table 4.8- Adequacy reliability indices of a Monte Carlo simulation: the probability of a unit doesn’t 

fail, after a maintenance, is now bigger.  

 

 

 

As it was expected, this increase led to the decrease of the reliability indices. 

 

4.6 - Cost-efficiency analysis 

One of the most interesting and important aspects of this thesis will be now introduced. 

The main goal of this section is to perform a comparison between the cost and the efficiency 

of each one of the studied maintenance types. In order to achieve this goal, two types of data 

are necessary: the costs of each maintenance type and the number of maintenances that 

each maintenance program implies. Through the Monte Carlo algorithm analyzed in section 

3.6, the number of maintenances of each maintenance program was obtained. On the other 

hand, the costs of each type of maintenance were obtained through [28].  

Table 4.9 – Number of maintenances of each type during the simulation process. 

Adequacy reliability indices/Predictive M 

LOLE (hour/year)                                11.001         

LOLF (occurrence/year)                     2.2811 

LOLD (hour/occurrence)                    4.8226 

EENS (MWh/year)                                   1429 

Adequacy reliability indices/Preventive M 

LOLE (hour/year)                                10.910         

LOLF (occurrence/year)                     2.2655 

LOLD (hour/occurrence)                    4.8157 

EENS (MWh/year)                                1412.8 

Number of Maintenances 

Preventive M.                                       10782         

Predictive M.                                         5388 



63 

 

 

Table 4.10 shows that the number of maintenance actions is superior when a preventive 

maintenance plan is used. This was already expected, since the preventive maintenance 

doesn’t analyze the degradation state of the generating units.  

Table 4.10 – Prices of each type of maintenance 

 

Maintenance Prices (cents/action/kW) 

Preventive M.                                         1.65        

Predictive M.                                              2 

Table 4.11 shows that predictive maintenance is a more expensive type of maintenance 

program. As it was seen before, the predictive policies are based on more sophisticated 

actions and on more qualified staff.  

By combining these two types of data, it is easy to figure out that predictive maintenance 

is more profitable. However, up until now, the analysis was only focused on the costs 

associated with maintenance. Now, it is necessary to analyze the impact of these 

maintenance programs in terms of reliability. 

Table 4.7 showed that predictive maintenance leads to worse reliability indices. This fact 

is the consequence of the higher duration of the predictive maintenances. Therefore, it is 

now more difficult to understand which maintenance type is the best. On the one hand, 

predictive maintenance is more profitable, but, on the other hand, it leads to worse 

reliability indices. Obviously, the choose of the best maintenance program depends on the 

supplier: 

 

o If the supplier has a small budget, he will probably choose a predictive maintenance 

program; 

 

o If the supplier doesn’t have concerns about the budget, he will probably choose a 

preventive maintenance plan in order to provide a better service to the clients; 

 

According to the presented data, it seems that preventive maintenance appears as the best 

maintenance plan. The difference between the maintenance costs is small, but the 

improvements on the service provided to the clients are significant (better reliability indices) 

when a preventive maintenance plan is applied.  

As it was studied in the previous section, the predictive maintenance has one crucial 

problem: the generating units spend too much time in the predictive maintenance actions. 

Therefore, the reliability indices, in this type of maintenance, are worse than in preventive 

maintenance. This problem can be surpassed through a more qualified maintenance staff. 

Thus, the predictive maintenance actions would consume a less amount of time. 

Several tests were made and the results are presented in the following tables: 
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Table 4.11- Adequacy reliability indices of a Monte Carlo simulation: a more qualified maintenance 
team 

 

 

 

Table 4.11 shows the reliability indices, considering that the duration of the predictive 

maintenance is now equal to    . Therefore, with these new conditions, predictive 

maintenance would be the best maintenance process. On the one hand, is a cheaper process 

and, on the other hand, it leads to better reliability indices. 

 

4.7 – Conclusions 

In this Chapter, the main results of the work developed in thesis were presented. Through 

these results, we can withdraw several important conclusions. First, it was proved that the 

inclusion of the real variation of the failure rate   has a significant impact upon the reliability 

indices. Although this new approach is more complex, it allows to include the impact of the 

natural process of degradation of electrical components.  Therefore, with this new approach, 

it’s possible to understand the moments when maintenance actions should occur. 

Through the results obtained in this Chapter, it was possible to figure out that the 

inclusion of the maintenance policies allowed to extend the useful life period of the nuclear 

units. Furthermore, the predictive maintenance was responsible for a higher increase of the 

useful life period. However, it was also showed that predictive maintenance has one 

significant problem: the duration of the maintenance actions when compared to preventive 

maintenance. This means that, during the predictive maintenance, the units were out of 

service for long periods. Obviously, this fact had a great impact upon the reliability indices. 

Therefore, the preventive maintenance appeared as a better maintenance process in terms of 

reliability. However, we decided to perform some more tests. Thanks to these tests, it was 

possible to figure out that the decrease of duration of the predictive maintenances led to a 

very significant decrease of the reliability indices. Therefore, it was concluded that he 

solution to achieve a more effective and efficient predictive maintenance is the improvement 

of the quality of the maintenance staff. In these tests, predictive maintenance appeared as 

the best maintenance procedure. 

 

Adequacy reliability indices/Predictive M 

LOLE (hour/year)                                10.876  

LOLF (occurrence/year)                     2.2632 

LOLD (hour/occurrence)                    4.8050 

EENS (MWh/year)                                1409.2 

Adequacy reliability indices/Preventive M 

LOLE (hour/year)                                10.910         

LOLF (occurrence/year)                     2.2655 

LOLD (hour/occurrence)                    4.8157 

EENS (MWh/year)                                1412.8 
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Chapter 5 

Conclusions and future work 

In Chapter 1, the guidelines and the main goals of this thesis were presented. Now, it is 

time to verify if those goals were achieved or not. Therefore, this Chapter will be focused on 

the main conclusions of the produced work. Furthermore, some guidelines to continue and 

improve this work will be described.  

5.1 - Objectives achieved 

In this thesis, a new method to assess power systems reliability was presented. As it was 

studied, this method is based on a typical sequential Monte Carlo algorithm. However, some 

modifications were produced on it. Furthermore, the study of the influence of the 

maintenance policies upon the power systems reliability was another important part of this 

thesis. 

In Chapter 2, the traditional methods to solve reliability problems were introduced. 

Despite the specification of some characteristics of these methods, the main objective of this 

introduction was the establishment of a starting point, in order to introduce the new 

methodologies for evaluating power systems reliability. Moreover, the main characteristics of 

three different maintenance types were described in this Chapter. Therefore, the main 

methodologies presented on the literature of power systems reliability were analyzed in 

Chapter 2. This fact leaded us to a very important conclusion: in most of reliability studies, 

the components follow a constant failure rate  . Thus, the childhood period and the wear-out 

period aren’t considered in these studies. So, these facts leaded us to analyze the effect of 

these two periods (bathtub curve) upon the power systems reliability. 

The first step taken in this thesis was the development of a new Monte Carlo algorithm 

with some modification on the failure rate λ of the generating units. In theory, these 

modifications seem slight changes, but, in practice, several improvements on the typical 

algorithm were produced. As it was studied, the use of a constant failure rate simplifies the 

algorithm, since the simulation of the life cycle of the components is based on an exponential 

distribution. In this new approach, the simulation of the life cycle depends on the 
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construction of the      curve. Therefore, this modification, per se, was a new application of 

the Monte Carlo methods, constituting an additional contribution for the actual state of the 

art. 

After the validation of this new method, a new particularity needed to be studied: the 

introduction of different maintenance policies. The main goal in this approach was to analyze 

the advantages and disadvantages of the proposed maintenance programs. To accomplish 

this, two main philosophies were developed. In a first approach, the generating units weren’t 

removed from service for the maintenance actions. Then, in a more complex approach, the 

generating units were removed from service for the maintenance activities. As it was studied, 

in this last approach, some new interesting aspects were introduced: the probability of failure 

after a maintenance procedure and the importance of the quality of the maintenance staff in 

order to decrease this probability. For last, the impact of the quality of the maintenance staff 

for the decrease of the duration of the predictive actions was object of study.    

The results presented in Chapter 4 allowed us to withdraw several important conclusions. 

In first place, by using a constant failure rate  , most of studies are far from reality. This was 

proved by the higher reliability indices, shown in Chapter 4, when a variable failure rate   

was applied. This means that the infant mortality period and the wear-out period have a 

significant impact on the components lives and, therefore, this is reflected on the reliability 

indices.  To sum up, the inclusion of the degradation process of a component is very 

important if we want to analyze a real situation.   

The inclusion of the maintenance procedures brought some more important conclusions. 

In a first approach, the predictive maintenance appeared as the best maintenance procedure. 

This was already expected, since the predictive actions are based on the actual state of the 

generating units. In a more complex approach, the big problem of the predictive maintenance 

was discovered: the duration of the predictive actions. The high duration of the predictive 

activities had as consequence a significant increase of the reliability indices. Therefore, in 

this approach, the preventive maintenance appeared as the best maintenance process. 

Despite these results, it was decided to perform some more tests. Thus, it was assumed that 

a more qualified maintenance team could decrease the duration of the predictive 

maintenance procedures. Through these new tests, it was concluded that with a well trained 

maintenance team, the predictive maintenance can be the best maintenance procedure. 

For last, but not least, the cost-efficiency analysis allowed to pre, once more, that with a 

lower duration of the predictive maintenance, this maintenance type would have more 

advantages. 

To sum up, it was proved that a more realistic Monte Carlo algorithm can be developed in 

order to evaluate the reliability of power systems. 

 

 

 

 

 

 

 

 



68 

 

 

5.2 - Future work 

The results of the work developed in this thesis may be the inspiration for other research 

studies. Thus, a list of some improvements that can be added to this work is, now, presented: 

 

o Apply the developed method to a multi-objective evolutionary particle swarm 

optimization (MEPSO). Therefore, the developed Monte Carlo algorithm would be 

one of the objective functions. Another objective function related to the 

maintenance costs would need to be developed. The main objective would be to 

find the Pareto Front of this problem. More of this subject can be found in 

[29],[30] and [31]; 

 

o This MEPSO application would be incredibly heavy in terms of computational 

effort because, for each new state of the search space, the developed Monte 

Carlo would need to be run. So, another idea is to develop a method that allows 

to run the developed Monte Carlo only one time, for one of the states of the 

search space. The other states would be visited through the application of inverse 

functions to the visited state; 

 

o Apply to the developed method an importance sampling technique in order to 

achieve a higher convergence speed; 

 

o Apply the developed method to a distribution system. This new approach would 

be very interesting for some aspects, as for example, the redundancy between 

components of a distribution system. Obviously, in this approach, an optimal 

power flow (OPF) would need to be developed; 

 

o Apply to the developed method other maintenance policies, as for example, the 

reliability centered maintenance (RCM) and compare with the results obtained in 

this thesis. More of this subject can be found in [20] 
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Annex A - IEEE RTS-76 

The evaluation of the IEEE RTS-76 generating capacity is based on the following 

parameters: 

 

Figure A1 - Reliability data of the units of IEEE RTS-76 [26]. 
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The hourly load model of the IEEE RTS-79 is calculated according to the following figures. 

As it was already said, the annual peak load is 2850 MW. 

 

 
      Figure A2 - Weekly Peak Load in Percent of Annual Peak [26]. 

 

 
Figure A3 - Daily Peak Load in Percent of Weekly Peak [26].  
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Figure A4 - Hourly Peak Load in Percent of Daily Peak [26]. 
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Annex B – Data of the bathtub and Q(t) 
curves 

This annex presents the modified data of the nuclear units of IEEE RTS-76. In order to 

implement a new approach, the constant failure rate   was replaced for a variable failure rate  . This 

new data is presented in the following table: 

Table B1 – Data of the variable   that was implemented in the nuclear units of IEEE RTS-76. 

T(hours) λ variable(failures/hour)  

0 0,0017 
100 0,0011 
200 0,00099 
300 0,00097 
400 0,000909091 
500 0,000909091 
600 0,000909091 
700 0,000909091 
800 0,000909091 
900 0,000909091 

1000 0,000909091 
1100 0,000909091 
1200 0,000909091 
1300 0,000909091 
1400 0,001363636 
1500 0,002045455 
1600 0,003068182 
1700 0,004602273 
1800 0,0069034091 
1900 0,010355114 
2000 0,01553267 
2100 0,023299006 
2200 0,034948509 
2300 0,052422763 
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As it was explained in this thesis, after change the failure rate  , the Q(t) curve was 

recalculated. The data of this new curve is presented in the following table: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Table B2 – Data of the new Q(t) function according to a 

variable failure rate  . 

T (hours) Q(t) 

0 0 

100 0,130642 

200 0,216904 

300 0,290007 

400 0,353676 

500 0,409841 

600 0,461126 

700 0,507953 

800 0,550712 

900 0,589755 

1000 0,625405 

1100 0,657957 

1200 0,68768 

1300 0,71482 

1400 0,745454 

1500 0,785346 

1600 0,833774 

1700 0,886724 

1800 0,936277 

1900 0,973114 

2000 0,992631 

2100 0,998943 

2200 0,999943 

2300 0,999999 
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Annex C – The effect of preventive  
maintenance 
 

Preventive maintenance has the main goal of extend the useful life period of the 

generating units. Therefore, after the implementation of a preventive plan, the failure rate   

and the Q(t) curve will be different. The following tables will show these changes. 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
Table C1 – Failure rate  , after a 
preventive maintenance plan 

T(hours)  (failures/hour) 

0 0,0017 

100 0,0011 

200 0,00099 

300 0,00097 

400 0,000909091 

500 0,000909091 

600 0,000909091 

700 0,000909091 

800 0,000909091 

900 0,000909091 

1000 0,000909091 

1100 0,000909091 

1200 0,000909091 

1300 0,000909091 

1400 0,000909091 

1500 0,000909091 

1600 0,000909091 

1700 0,001363636 

1800 0,002045455 

1900 0,003068182 

2000 0,004602273 

2100 0,0069034091 

2200 0,010355114 

2300 0,01553267 

2400 0,023299006 

2500 0,034948509 
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Table C2 – Data of the new Q(t) curve, after a  

preventive maintenance procedure. 

T(hours)      

0 0 

100 0,130642 

200 0,216904 

300 0,290007 

400 0,353676 

500 0,409841 

600 0,461126 

700 0,507953 

800 0,550712 

900 0,589755 

1000 0,625405 

1100 0,657957 

1200 0,68768 

1300 0,71482 

1400 0,739602 

1500 0,762231 

1600 0,782893 

1700 0,806214 

1800 0,836584 

1900 0,873452 

2000 0,913763 

2100 0,951488 

2200 0,979532 

2300 0,99439 

2400 0,999195 

2500 1 
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Annex D – The effect of predictive 
maintenance 

 

 

 

 

 

 

 

 

 

 

 

 
Table D1 – Failure rate  , after a predictive maintenance plan 

T (hours)  (failures/hour) 

0 0,0017 
100 0,0011 
200 0,00099 
300 0,00097 
400 0,000909091 
500 0,000909091 
600 0,000909091 
700 0,000909091 
800 0,000909091 
900 0,000909091 

1000 0,000909091 
1100 0,000909091 
1200 0,000909091 
1300 0,000909091 
1400 0,001363636 
1500 0,000909091 
1600 0,000909091 
1700 0,003068182 
1800 0,000909091 
1900 0,000909091 
2000 0,003068182 
2100 0,000909091 
2200 0,000909091 
2300 0,003068182 
2400 0,000909091 
2500 0,000909091 
2600 0,003068182 
2700 0,000909091 
2800 0,000909091 
2900 0,003068182 
3000 0,006903409 
3100 0,010355114 
3200 0,01553267 
3300 0,023299006 
3400 0,023299006 
3500 0,023299006 
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Predictive maintenance has the main goal of extend the useful life period of the 

generating units. Therefore, after the implementation of a predictive plan, the failure rate   

and the Q(t) curve will be different. The previous tables have shown these changes. 

 

 

 
Table D2 – New Q(t) curve, after a predictive 
maintenance procedure 

T(hours) Q(t) 

0 0 

100 0,130642 

200 0,216904 

300 0,290007 

400 0,353676 

500 0,409841 

600 0,461126 

700 0,507953 

800 0,550712 

900 0,589755 

1000 0,625405 

1100 0,657957 

1200 0,68768 

1300 0,71482 

1400 0,745454 

1500 0,772796 

1600 0,79254 

1700 0,829953 

1800 0,860619 

1900 0,872731 

2000 0,895683 

2100 0,914495 

2200 0,921925 

2300 0,936005 

2400 0,947546 

2500 0,952104 

2600 0,960742 

2700 0,967821 

2800 0,970618 

2900 0,975916 

3000 0,985372 

3100 0,993828 

3200 0,998308 

3300 0,999757 

3400 0,999976 

3500 0,999998 
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Annex E - Article for submission 

As consequence of the results obtained through the developed strategy in this thesis, it 

was decided to write a paper, in which the main achievements and ideas of such strategy are 

presented. In this Annex, a brief and general presentation of the main topics that are focused 

in the referred paper will be made. The article will be submitted for a journal or conference 

for Power Systems. 
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Abstract — This paper reports an application of a 

simulation method to power systems reliability. The Monte 

Carlo methods are, nowadays, the most widely used method 

for the estimation of reliability indices. The work reported in 

this paper shows that most of reliability studies that use Monte 

Carlo simulations are based on hypothetical situations: the use 

of a constant failure rate  . This paper demonstrates a new 

application that is able to include the typical variation of the 

failure rate   of electrical components and, moreover, is able 

introduce different maintenance policies. The results obtained 

with the Monte Carlo applications are compared with each 

other and with a typical Monte Carlo process.  

 
Index Terms — Failure rate, maintenance, Monte Carlo, 

reliability  

 

I. INTRODUCTION 

ONTE CARLO simulations remain the standard method 

to compute estimates of reliability indices in Power 

Systems. These simulations are divided in two approaches: 

the chronological and the non chronological.  

One of the goals of this paper is the inclusion of 

different types of maintenance policies in the life cycle of a 

Power System. Sometimes, maintenances are based on the 

elapse of time and, for this reason, this paper presents a 

chronological simulation. 

However, most of reliability studies that present a 

chronological approach, use an exponential distribution to 

generate the life cycle of the components of a Power 

System. The use of this approach simplifies a lot the 

generation of the life cycles. The problem of this approach 

lies on the consequence of the use of an exponential 

distribution. To use such distribution, the failure rate   of 

the components needs to be constant. In Power Systems, 

this assumption isn’t true. The failure rate   of electrical 

components suffers an evolution during their lives. The 

well-known bathtub curve illustrates this evolution. 

Therefore, this paper presents a new approach that allows to 

include the bathtub curve in order to achieve a realistic 

situation in the Power Systems reliability evaluations.  

                                                 
V. Miranda (vmiranda@inescporto.pt), L.Carvalho (lcarvalho@inescporto.pt) 
and J.Silva (ee09056@fe.up.pt) are with INESC Porto and with FEUP, 
Portugal. 

 

This paper also includes the analysis of the introduction  

 

of three different maintenance policies: reactive 

maintenance, preventive maintenance and predictive 

maintenance. The goal of these approaches is to delay the 

natural process of degradation of the electrical components. 

In other words, the introduction of the maintenance policies 

helps to delay the entrance on the wear-out period.  

All the processes presented in this paper are based on 

the construction of the cumulative distribution function 

    . The analysis of this curve is very interesting, since it 

allows to understand the differences between the developed 

approaches and the typical method. The following figure 

shows this aspects: 

 

Through the analysis of this figure, the following 

conclusions can be withdrawn. The green curve represents 

the widely used approach: the use of constant failure rate  . 

Therefore, this curve can be compared to an ideal 

maintenance case, in which the components don’t get older. 

The red curve represents the followed methodology, in 

which the bathtub curve is applied. It is possible to observe 

that these two curves diverge in a certain moment. This 

moment represents the beginning of the wear-out period. 

The other two curves are related with two different types of 

maintenance actions. By observing this figure, is clear that 

these actions delay the entrance in the wear-out period. 

This paper presents new results confirming that a more 

realistic approach, in the assessment of Power Systems 

reliability can be obtained. 

Definition of maintenance policies in power 

systems with a sequential Monte Carlo 
João Silva, Vladimiro Miranda, Fellow, IEEE  and Leonel Carvalho, INESC Porto 

M 

Fig. 1. Comparison between the followed approaches and the 
typical Monte Carlo method 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


