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hLF1-11 (GRRRRSVQW(CA) is an antimicrobial peptide (AMP) with high activity against methicillin-resis-
tant Staphylococcus aureus (MRSA), the most prevalent species in implant-associated infection. In this
work, the effect of the surface immobilization on hLF1-11 antimicrobial activity was studied. Immobili-
zation was performed onto chitosan thin films as a model for an implant coating due to its reported oste-
ogenic and antibacterial properties. Chitosan thin films were produced by spin-coating on gold surfaces.
hLF1-11 was immobilized onto these films by its C-terminal cysteine in an orientation that exposes the
antimicrobial activity-related arginine-rich portion of the peptide. Two levels of exposure (with and
without a polyethylene glycol (PEG) spacer) were analyzed. Covalent immobilization was further com-
pared with the AMP physical adsorption onto chitosan films. Surfaces were characterized using ellipsom-
etry, contact angle measurements, atomic force microscopy, infrared and X-ray photoelectron
spectroscopies and using a fluorimetric assay for hLF1-11 quantification. Surface antimicrobial activity
was assessed through surface adhesion and viability assays using an MRSA (S. aureus ATCC 33591).
The incorporation of hLF1-11 increased significantly bacterial adhesion to chitosan films. However, the
presence of hLF1-11, namely when immobilized through a PEG spacer, decreased the viability of adher-
ent bacteria with regard to the control surface. These results demonstrated that hLF1-11 after covalent
immobilization by its cysteine can maintain activity, particularly if a spacer is applied. However, further
studies, exploring the opposite orientation or the same C-terminal orientation, but non-cysteine related,
can help to clarify the potential of the hLF1-11 immobilization strategy.

© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Antimicrobial peptides (AMPs) are a new class of antibiotics
with very promising characteristics. They are usually composed
of short sequences of amino acids (<50 residues), with simulta-
neous amphipathic and cationic behaviors [1]. Although the AMPs’
exact mechanism of action is not fully elucidated, it is generally
accepted to include electrostatic interactions between the bacte-
rium negatively charged outer layer and the positively charged
AMP, which results in bacterial death [1,2]. Their most interesting
features are: high activity against a broad spectrum of microorgan-
isms (Gram-positive and —negative bacteria, yeasts), high selectiv-
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ity towards microorganisms and not mammalian cells (which have
zwitterionic membranes), fast killing even at low concentrations
and, most importantly, they do not have the tendency to induce
resistance [1,3]. This last feature differentiates them from the clas-
sical antibiotics presently used. However, AMP application has
some associated challenges, namely (i) proteolytic degradation,
(ii) peptide co-precipitation with plasma carrier proteins and (iii)
peptide self-aggregation. Also, if higher titers are applied to cir-
cumvent such problems, cytotoxic effects become apparent. One
current strategy to overcome these challenges is its covalent
immobilization onto a surface [4].

In the present work we have chosen hLF1-11, which is a 11-mer
derived from human Lactoferrin. This amphipathic peptide, with
an hydrophilic N-terminal and a hydrophobic C-terminal, has a
wide spectrum of activity, associated with an excellent safety pro-
file, tested both in vitro and in vivo [5-7]. Indeed, it has been tested
against methicillin-resistant Staphylococcus aureus (MRSA) in an
osteomyelitis model [8-10]. However, in this model, the delivery
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system consisted of hLF1-11 incorporated in calcium phosphate
(Ca-P) cement, which resulted in burst peptide release only [11].
Likewise, Kazemzadeh-Narbat et al. [12] tested hLF1-11 on a
Ca-P microporous coating and found the peptide to have a slow
and incompetent release. Therefore, as the soluble hLF1-11 appli-
cation has not provided sufficient activity, we decided to test
whether covalent immobilization could originate an efficient anti-
microbial coating against implant-related infections. To this end,
we needed a polymer that would be easily functionalized, but also
would have intrinsic characteristics favorable to the product end
application, as allowing osteointegration, and inhibiting bacterial
adhesion and growth. Therefore, we chose chitosan, as it fulfills
the characteristics mentioned above, with reported antimicrobial
[13-16] and osteogenic properties [17-20]. As summarized by us
[4], AMP covalent immobilization may result in activity lost, so
some parameters should be addressed in order to obtain maximum
activity, namely (i) orientation (N- or C-terminal immobilization)
and (ii) exposition. The combination of these parameters gives rise
to different immobilization profiles that can have very distinct
activities. Some papers have reported that positively charged ami-
no acids (arginine) of its N-terminal are essential for hLF1-11 anti-
microbial activity [6,7,21]. Also, the natural sequence of hLF1-11
offers a free sulfhydryl group at the cysteine residue near the
C-terminal, which can be used for disulfide bridge establishment
with SH-modified chitosan. This is a simple, mild reaction that
allows the control of peptide orientation. Therefore in this study,
we immobilize hLF1-11 by its C-terminal (exposing the arginine/
positive end) directly to the polymer (for a more strict and oriented
exposition of the AMP) or through a spacer (for a more movable/
flexible exposition) and compare its activity against simple physi-
cal adsorption of the peptide onto the polymer.

2. Materials and methods
2.1. hLF1-11 synthesis and characterization

hLF1-11 (GRRRRSVQWCA, C-terminal amide) was produced by
Fmoc/tBu solid-phase peptide synthesis methodologies assisted
with microwave energy (Liberty 1 Microwave Peptide Synthesizer,
CEM Corporation) [22,23]. Crude product was purified by reverse-
phase liquid chromatography and confirmed by high-performance
liquid chromatography (Hitachi-Merck LaChrom Elite), liquid chro-
matography-electrospray ionization mass spectrometry (LCQ-DecaXP
LC-MS system, ThermoFinnigan) and ultraviolet spectrometry. The
peptide used presented a purity level higher than 90%.

2.2. hLF1-11 surface immobilization

2.2.1. Substrate preparation

Au production and cleaning were performed according to
Martins et al. [29]. Briefly, chromium (5 nm) and gold (25 nm) layers
were deposited by ion beam sputtering from chromium and gold
targets (99.9% purity) on silicon wafers (AUREL, GmbH). Chromium
was used to improve the adhesion of gold to silicon. Gold sub-
strates were cleaned with “piranha” solution (7 parts of H,SO4
and 3 parts of 30% H,0,) for 5 min (caution: this solution reacts
violently with many organic materials and should be handled with
suitable protective measures), thoroughly rinsed with ethanol and
dried with a gentle stream of argon.

2.2.2. Preparation of chitosan ultrathin films

Commercial squid pen chitosan (France Chitine) was purified by
the reprecipitation method [25]. Chitosan thin films were prepared
by dispensing a drop of chitosan solution (0.4% in acetic acid w/v)
[26] on the center of the Au substrates (150 ul for 1 x 1 cm? sub-

strates) placed in the spin coater equipment (Laurell Technologies
Corporation) and spun at 9000 rpm for 1 min. Then, the newly pre-
pared ultrathin films were neutralized with 0.1 M NaOH for 5 min
and rinsed twice with MilliQ water. Each sample was dried with a
gentle stream of argon and stored in sealed plastic Petri dishes sat-
urated with argon until use.

2.3. Peptide immobilization

hLF1-11 immobilization on chitosan thin films was performed
by forming a persulfate bond (disulfide bridge) between free sulf-
hydryl groups present in the peptides cysteine side chain and in
pre-functionalized chitosan (Fig. 1).

2.3.1. Introduction of SH groups onto chitosan films

Functionalization of chitosan thin films with SH groups was
obtained by the coupling of N-acetyl cysteine (NAC) (Merck), or
0-(2-carboxyethyl)-0’-(2-mercaptoethyl) heptaethylene glycol
(Sp) (Sigma Aldrich >95% purity). Chitosan thin films were treated
with a solution of 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)car-
bodiimidehydrochloride) (EDC; Sigma-Aldrich), 0.05 M N-hydrox-
ysulfosuccimide (NHS; Sigma-Aldrich) and 25 mM of SH agent
(NAC or Sp) in 0.1 M (N-morpholino)ethanesulfonic acid (MES;
Sigma-Aldrich) buffer at pH 6.5 for 1 h (NAC) or 2 h (Sp), at 37 °C
and 100 rpm. Samples were then rinsed with MilliQ water, immersed
for 1 min in an ultrasound bath (Bandelin Sonorex Digitec Bath
35 kHz) and rinsed again with MilliQ water.

2.3.2. Peptide chemical and physical immobilization

Non-modified (for simple physical adsoption) and modified
chitosan substrates were incubated with 1 mg ml~' peptide solu-
tion in 10mM TrisHCI, pH 8.0, in oxidative conditions (20%
dimethyl sulfoxide (DMSO)) for 18 h, at 30 °C and 120 rpm.

2.4. Surface characterization

2.4.1. Infrared reflection absorption spectroscopy (IRRAS)

Measurements were performed on a Perkin Elmer Fourier trans-
form infrared spectrophotometer, model 2000, coupled to a
VeeMax II Accessory (PIKE) and a liquid-nitrogen-cooled mercury
cadmium telluride (MCT) detector. In order to ensure that there
was no water vapor adsorption, dry nitrogen was purged into the
instrument for 5 min before and during the measurement of each
sample. For each substrate, a similar gold surface was used as a
background. Incident light was p-polarized and spectra were
collected using the 80° grazing angle reflection mode. For each
sample, 100 scans were collected with 4 cm™! resolution.

2.4.2. Ellipsometry

Ellipsometry measurements were performed using an imaging
ellipsometer, model EP3, from Nanofilm Surface Analysis.
This ellipsometer was operated in a polarizer-compensator-
sample-analyzer mode (null ellipsometry). The light source was a
solid-state laser with a wavelength of 532 nm. The gold substrate
refractive index (n =0.6244) and extinction coefficient (k = 2.3845)
were determined using a delta and psi spectrum with a variation
of angle between 65 and 71°. These measurements were made in
four zones to correct for any instrument misalignment. The thick-
ness of the chitosan films was determined using (n) chitosan = 1.54
and (k) chitosan =0 [27]. Results are presented as the average of
three measurements on each of two samples.

2.4.3. X-ray photoelectron spectroscopy (XPS)

XPS measurements were carried out on a VG Scientific Escalab
200A (UK) spectrometer using magnesium K, (1253.6eV) as
the radiation source (from CEMUP - Centro de Materiais da
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Fig. 1. (A) Chitosan modification with NAC or Sp; (B) hLF1-11 immobilization by establishment of a covalent disulfide bridge.

Universidade do Porto). The photoelectrons were analyzed at a
take-off angle of 55°. Survey spectra were collected over a range
of 0-1150 eV with an analyzer pass energy of 50 eV. High-resolu-
tion Cls, Ol1s, N1s, S2p and Au4f spectra were collected with an
analyzer pass energy of 20 eV. The binding energy (BE) scales were
referenced by setting the Cl1s BE to 285.0 eV. All the spectra were
fitted using XPS peak fitting software (XPSPEAK Version 4.1). Ele-
ment atomic percentages were calculated from the integrated
intensities of the XPS peaks, taking into account the atomic sensi-
tivity factors of the instrument data system. Sulfur high resolution
spectra were fitted with a doublet structure with a 2:1 area ratio
and splitting of 1.2 eV, as described by Castner et al. [28]. All sulfur

spectra were fitted with a 1.7 eV full width at half maximum
profile.

2.4.4. Water contact angle measurements

Contact angle measurements were performed using the sessile
drop method with a contact angle measuring system from Data
Physics, model optical contact angle (OCA) 15, equipped with a vi-
deo CCD camera and SCA 20 software, as described by Martins et al.
[29]. After deposition of 4 pl drops of MilliQ water, images were ta-
ken every 2 s over 300 s. Droplet profiles were fitted using different
mathematical functions, to calculate the contact angle. The ellipse
fitting method was used to calculate contact angles between 90°
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and 30°. The water contact angle of each substrate was calculated
by extrapolating the time-dependent curve to zero. Results are the
average of three measurements on three independent samples.

2.4.5. Atomic force microscopy (AFM)

AFM studies were carried out using a PicoPlus scanning probe
microscope interfaced with a Picoscan 2500 controller (both from
Agilent Technologies, USA). Each sample was imaged with a
10 x 10 um? piezo-scanner. The surface roughness was deter-
mined in 700 x 700 nm? scanned areas in five randomly chosen
locations per sample, at room temperature. The roughness height
parameter calculated was the root mean square roughness, which
corresponds to the deviations from the center x-y plane (Rq). The
center plane is a plane such that the volumes enclosed by the
image surface above and below are equal. The control gold sub-
strate was analyzed through Tapping® mode, with a spring con-
stant of K=1-5N m~! using a silicon tip. Samples were analyzed
in contact mode, using a silicon nitride tip with a spring constant
of K=058 Nm".

2.4.6. Peptide surface density

Tethered peptide quantification was performed through colori-
metric reaction using 9,10-phenanthrenequinone (PHQ, Fluka)
[30]. The reaction between PHQ and arginine or arginine residues
forms a stable compound which fluoresces upon excitation [30].
Present protocol was adapted from Kazemzadeh-Narbat et al.
[12] Substrates were sonicated 1 h in 0.1 M HCl in an ultrasound
bath. Then, 1 ml of each sample solution was added to 3 ml of
3.5 uM PHQ in absolute ethanol. Simultaneously 0.5 ml of 2 M
NaOH was added to adjust the pH. The mixture was then incubated
at 30 °C for 3 h. Finally, 2.25 ml of 2.4 M HCl was added to stop the
reaction. At this point, the characteristic wavelengths were deter-
mined from the excitation and emission spectra. The highest emis-
sion intensity was found at the wavelength of 380 nm. The highest
peak at the excitation spectrum (256 nm) was chosen for the max-
imum emission output. The fluorescence emission was measured
using a fluorescence microplate reader (Biotek Synergy Mx Lumi-
nometer). The amount of hLF1-11 was calculated based on a cali-
bration curve prepared with standard solutions of free L-arginine
(Fluka) and free hLF1-11. Standard solutions of free hLF1-11
were adjusted by quantification at 280 nm in a Thermo Scientific
“Nanodrop 1000” spectrophotometer.

2.5. Bacterial assays

2.5.1. Bacterial strains, media and growth conditions

Methicillin-resistant S. aureus Subsp aureus strains (ATCC
33591) were obtained from the American Type Culture Collection.
Bacteria were grown on tryptic soya agar (TSA) (Merck) and tryptic
soya broth (TSB) (Merck). Bacterial suspensions were adjusted by
measuring optical density (600 nm). Bacterial numbers were con-
firmed by a colony forming units (CFUs) count.

2.5.2. Minimal inhibitory concentration determination

Minimal inhibitory concentration (MIC) was established with a
modified broth microdilution method in Mueller Hinton broth
(MHB) [31].

2.5.3. Bacterial-surface interaction

2.5.3.1. Sample preparation. Test surfaces were washed successively
in 70% ethanol and sterile water, and then dried in sterile environ-
ment. Samples were then transferred to a 24-well, flat-bottom
cellular suspension plates (Sarstedt, Ltd, Newton, USA).

2.5.3.2. Sample incubation with bacteria. 500 pl of 3 x 107 CFU ml™!
bacterial solution (S. aureus ATCC 33591) was then added to each

well and incubated at 37 °C for 4 h. Surrounding wells were filled
with 1 ml of sterilized deionized water, in order to avoid broth
evaporation.

2.5.3.3. Non-adherent viable bacteria (supernatant) assay. After the
incubation period, serial dilutions of the supernatants were per-
formed and plated onto TSA plates. CFU counts were assessed after
18 h incubation at 37 °C.

2.5.3.4. Bacterial surface adhesion assay. After the incubation period,
substrates were rinsed with phosphate buffered saline (PBS) sterile
solution, and then fixed with 300 pl of paraformaldehyde 4% for
20 min. Substrates were rinsed again with sterile PBS solution
and stained with VECTASHIELD® Mounting Medium with (4',6-
diamidino-2-phenylindole (DAPI; Vector). DAPI binds to bacteria
DNA, is excited at ~360 nm and emits at ~460 nm, resulting in
blue fluorescence. Images were obtained with an inverted fluores-
cence microscope (Axiovert 200 M, Zeiss, Germany) using a magni-
fication of 1000x, corresponding to a net surface area of
~0.1181 mm? per sample. For quantifying the total adherent bac-
teria, eight fields of each sample were obtained and analyzed using
Image] software. The image analysis results were measured as the
average area of cells per field of view, and are reported as the aver-
age percentage coverage. Three replicates for each condition were
used.

2.5.3.5. Viable surface adherent bacteria assay. After the incubation
period, substrates were rinsed with PBS sterile solution to remove
non-adherent bacteria, transferred to a new plate with 500 pl of
PBS and then sonicated for 8 min in an ultrasound bath (Bandelin
Sonorex Digitec Bath 35 kHz) to release all adherent bacteria. After
sonication, serial dilutions of the supernatant were performed, and
plated onto TSA. CFU counts were performed after 18 h of incuba-
tion at 37 °C. Three replicates for each condition were used. To con-
trol sonication efficiency, the sonicated substrates were stained
with VECTASHIELD® Mounting Medium with DAPI and observed
using a inverted fluorescence microscopy, to guarantee that all
bacteria were removed from the surface. Also, the initial inoculum
was plated before and after sonication, to ensure that minimum
death was promoted by the technique.

2.6. Statistical analysis

For statistical analysis, one-way analysis of variance followed
by Tukey’s post hoc testing were used. When Gaussian distribution
was not confirmed (Antimicrobial activity assays) the non-
parametric Kruskal-Wallis test was applied using the Graphpad
Prism program. Data are expressed as the mean * standard devia-
tion (SD) and p values of <0.05 were considered significant.

3. Results
3.1. Surface characterization

Chitosan thin films with and without hLF1-11 were character-
ized using ellipsometry, water contact angle measurements, AFM,
IRRAS, XPS and fluorimetric assay.

3.1.1. Ellipsometry

The thickness of the spin-coated chitosan films was
14.6 £ 1.4 nm. Films remained stable during reaction procedures,
since no thickness differences were detected between freshly and
buffer incubated films (data not shown). Fig. 2A shows the thick-
ness of chitosan thin films after surface modification. The thickness
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Fig. 2. Surface characterization of chitosan-modified films as determined by (A) ellipsometry (surface thickness); (B) water optical contact angle measurements; (C) AFM

(surface roughness).

of chitosan films increased after its functionalization with NAC
(+9.8 nm) or Sp (+20.5 nm) (p <0.05), which is proportional to
the length of the immobilized structure, suggesting the success
of the functionalization. After hLF1-11 immobilization onto
Chit_NAC (Chit_NAC_hLF), a 2 nm thickness increase was observed
(p <0.05), indicating that the peptide was successfully bonded to
the polymer. However, hLF1-11 immobilization onto Chit_Sp was
not detected using this technique, since no significant difference
was observed between the Chit_Sp film thickness before and after
peptide immobilization (Chit_Sp_hLF). This can be explained by
the flexibility of the spacer, which can result in a closer positioning
of the peptide towards the chitosan film or due to the SS bond for-
mation between the SH terminal of the Sp. The small increase from
14.6+1.4nm to 17.1 £0.4 nm observed in chitosan films after
immersion in the peptide solution indicates that some hLF1-11
can be adsorbed or incorporated onto chitosan films (p < 0.05).
No significant thickness difference was observed between chitosan
solely incubated with EDC/NHS reagents and Chit_NAC. This
situation can be explained by an alternative chemistry pathway
where the absence of a carboxylic group allows a direct reaction
of the carbodiimide of EDC with the free amine groups of chitosan
[33].

3.1.2. Water contact angle measurements

Water contact angle of chitosan surfaces before and after chem-
ical modification is shown in Fig. 2B. Chitosan films (6,, = 64 + 2°)
became more hydrophilic after NAC and Sp functionalization
(6w =37 = 2° and 49 * 1°, respectively) in contrast with the EDC/
NHS modification (0,, = 58 + 1°). After hLF1-11 direct immobiliza-
tion onto Chit_NAC (Chit_NAC_hLF), the water contact angle in-
creased to 40 +0.1° (p < 0.05), suggesting peptide immobilization
onto the polymer. However, surface wettability was not changed,
when hLF1-11 was immobilized to Chit_Sp (Chit_Sp_hLF). hLF1-
11 adsorption onto chitosan was also not detected using this
technique.

3.1.3. AFM

Alteration of surface roughness due to the successive chemical
modifications on chitosan was analyzed by AFM, as presented in
Fig. 2C. AFM allowed the observation of peptide incorporation on
both NAC- and Sp-modified chitosan, as the root mean square
roughness of Chit_NAC_hLF and Chit_Sp_hLF was respectively
41% and 64% higher (p < 0.05) than that of the corresponding chito-
san modified substrate. No other significant differences were found
between the remaining samples.

3.1.4. IRRAS

IRRAS spectra of chitosan thin films before and after covalent
immobilization of NAC and Sp are shown in Fig. 4.

The spectrum of chitosan immersed in buffer (Chit_b) allows
the identification of the characteristic absorption bands of chito-
san, as described elsewhere [25,26,34-36]. After reaction with
NAC and Sp, the increase of the characteristic amide I IR absorption
(1660 cm™!) confirms the covalent reaction between chitosan free
amine groups and the terminal carboxylic groups of NAC or Sp.
Chitosan incubated with EDC/NHS reagents also presented a simi-
lar peak augmentation (data not shown) in the same region, which
is consistent with the mentioned alternative chemical pathway (on
Fig. 3) involving the formation of an imine intermediate (C=N
stretching typically ranges from 1690 to 1630 cm™') [37]. The C-
H stretching peak at 2876 cm™! was masked on the Chit_NAC
and Chit_NAC_hLF samples, but it was slightly increased in the
Chit_Sp sample, as expected from the seven ethylene units from
the polyethylene (PEG) spacer. Sp-modified samples have also
shown a slightly deviated peak, from 1080 cm™! to 1114 cm™',
attributed to C-O-C stretching vibration on a straight chain (of
the spacer) instead of a glucopyranose ring (of chitosan). Spectra
from chitosan thin films obtained after hLF1-11 adsorption or
immobilization are shown in Fig. 4. In all cases, hLF1-11 peptide
could be detected through an increase of the amide I peak
(1660 cm™1!) characteristic of peptides/proteins. However, chitosan
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films modified either with NAC or with Sp also display this absorp-
tion band. Therefore, to assess hLF1-11 immobilization, a peak
height ratio (amide I peak height (1660 cm™!)/C-0-C peak height
(1080 cm™!)) was calculated for NAC-derived samples, since Sp
samples have signal overlap at the 1080 cm~! band. A higher peak
ratio was found on immobilized peptide samples (4.62) than on the
NAC samples (2.71), suggesting peptide immobilization. The slight
decrease in the C-O-C vibration peak (1080 cm™!) of chitosan films
(Chit_b) after immersion in the hLF1-11 solution (Chit hLFads) also
demonstrated that some hLF1-11 was adsorbed or incorporated
onto chitosan.

3.1.5. XPS

XPS survey spectra demonstrated the absence of contaminants
on the films, since no other elements than the expected ones were
detected (data not shown). The relative atomic composition of
chitosan films (Chit_b) is in accordance with previous reports
[26,36]. XPS S2p high-resolution spectra were used to detect chem-
ical modifications, since immobilization reactions were performed
using sulfur bonds. Table 1 shows the percentage of S2p involved in
the different chemical bonds, free thiol groups (~163 eV), disulfide
(164-165 eV) and oxidized sulfur species (168-169 eV). S2p was
only detected on covalently modified chitosan films. Peptide
immobilization was confirmed by the increase in the total sulfur
percentage with regard to the controls (Chit_NAC and Chit_Sp),
specifically the sulfur assigned to the establishment of the disulfide
bridge (164-165 eV). However, some disulfide bonds were also ob-
served on the Chit_Sp sample, which can be explained by the flex-
ibility and mobility of the SH-terminated spacer chains. Adsorbed
hLF was not detected using this technique, since no sulfur was
observed on the Chit_hLFads sample. With the exception of

exposition on the surface.

3.1.6. Peptide fluorimetric quantification

A fluorimetric technique was used to assess hLF1-11 surface
density: Chit_NAC_hLF 6.4 (#1.4)ngmm 2, Chit_Sp_hLF 4.9
(+0.8) ng mm~2 and Chit hLF ads 3.7 (+1.0) ng mm 2. These results
present the same tendency observed on the other characterization
techniques, although no statistically significant differences were
observed between samples.

3.2. Antimicrobial activity characterization

The MIC of the soluble hLF1-11 was 64 pug ml~! for the tested S.
aureus strain.

Fig. 5A shows the non-adherent viable bacteria (supernatant)
after contact for 4 h with the different surfaces. No significant dif-
ferences were found between the CFUs of the supernatants of wells
with and without samples, except for the gold surface (blank)
where a decrease in the number of viable bacteria was observed.
Comparing between samples, the number of CFUs on the superna-
tant of the gold surface was only significantly different from
Chit_Sp.

Fig. 5B shows that a thin film of chitosan decreases bacterial
adhesion to the gold surface (blank). In contrast, the presence of
hLF1-11 induced bacterial adhesion to chitosan, particularly when
the peptide was directly immobilized on chitosan (Chit_NAC_hLF)
(46-fold higher (p < 0.05)). When analyzing the viable adhered bac-
teria (Fig. 5C), hLF1-11 incorporation only increased significantly
the number of viable bacteria onto chitosan films when the peptide
was physically adsorbed onto the surface (Chit hLFads) or immobi-
lized through NAC (Chit_NAC_hLF) (p < 0.05). However, although
bacteria adhesion on Chit_NAC_hLF was ~1.7 times higher than
on the blank surface, the number of viable adherent bacteria be-
tween these two surfaces was similar. When hLF1-11 immobiliza-
tion occurred through a PEG spacer (Chit_Sp_hLF), it was possible
to observe a similar surface coverage (Fig. 5B) but a much lower
number of viable bacteria (~80%) than the blank (p<0.05)
(Fig. 5C).

Fig. 6 shows one representative image of the adherent bacteria
on each sample. Bacteria adhesion was uniformly distributed when
hLF1-11 was physically adsorbed onto chitosan film. However,
when covalently immobilized, adherent bacteria appeared
clumped together.

These results demonstrated that immobilization of hLF1-11 by
its cysteine residue leads to a loss of activity. However, hLF1-11
was still able to attract and bind S. aureus and kill about half of
adherent bacteria, particularly when immobilized through a
spacer.
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Table 1
S2p relative surface atomic composition of different chitosan samples.
Chitosan S2p (%) S2p (at.%)
samples
~163eVS-H 164-165eV S-S 168-169 eV SO;
Chit_b 0 0 0 0
Chit_EDC/ 0 0 0 0
NHS
Chit_NAC 0.8 67 0 33
Chit_NAC_hLF 1.7 18 82 0
Chit_Sp 0.9 33 56 11
Chit_Sp_hLF 1.7 18 64 18
Chit hLFads 0 0 0 0
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4. Discussion

In this study, different immobilization parameters (orientation
and exposition) were assessed in the covalent immobilization of
the hLF1-11 peptide onto chitosan ultrathin films. C-terminal
immobilization was chosen to orient the arginine-rich portion of
the peptide (associated with the antimicrobial activity [6,7,21])
towards the exterior. Also, two exposition levels (direct link and
through a spacer) were tested, in order to assess the best immobi-
lization profile for this particular AMP. Surface characterization
using a number of different techniques - ellipsometry, IRRAS,
XPS, water contact angle measurements, AFM and fluorimetric

Fig. 5. Antimicrobial activity characterization of chitosan-modified films by (A) non-adherent viable bacteria, (B) bacterial adhesion to different substrates in percentage of

surface coverage, and (C) viable adherent bacteria on different substrates.

Chit_Sp

Chit_Sp_hLF

e

Chit_NAC_hLF

Chit_NAC

Cht hLF ads

Fig. 6. Representative images of the DAPI staining of the total adhered bacteria in the different chitosan-modified surfaces. An inverted fluorescence microscope was used
with a magnification of 1000x. Scale bar corresponds to 10 pm.
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peptide quantification - demonstrated that stable chitosan thin
films with and without hLF1-11 was successfully produced. Fluo-
rimetric peptide quantification demonstrated that different chem-
ical approaches allowed the modification of chitosan films with
similar amounts of peptide (ranging from 3.7 to 6.4 ng mm~2) with
different exposure strategies. The covalent immobilization of
hLF1-11, either directly or through a spacer, was confirmed by
XPS analysis, where the relative content of the S2p peak assigned
to the disulfide bridge (164-165 eV) was clearly increased. More-
over, ellipsometry, AFM and contact angle measurements offered
further support to peptide immobilization. Higher thickness and
roughness were consistently observed on surfaces with peptide
covalently immobilized, as well as an altered wettability congruent
with the chemical modification promoted. Direct hLF1-11 immo-
bilization (Chit_NAC_hLF) was also confirmed by IRRAS due to
the rise of the characteristic infrared absorption bands of proteins,
in particular, the amide I band. hLF1-11 physical adsorption onto
chitosan films was not detected by water contact angle measure-
ments or XPS analysis (no S2p). However, a slightly thicker film
(17.1 nm) was observed when compared to control chitosan film
(14.6 nm) and the slight decrease on the chitosan C-O-C vibration
peak at 1080 cm~!, determined by IRRAS, confirms some peptide
adsorption.

Antimicrobial activity of soluble hLF1-11 was firstly tested
against ATCC 33591 S. aureus strain, as this species is the most pre-
valent in implant-related infections [8,38]. This S. aureus strain
presented a minimum inhibitory concentration of 64 g ml~'. This
value is higher than that reported elsewhere [5,7,21,39]. However,
since MIC values determined by different authors were performed
under different conditions, namely different incubation times and
initial inoculum, MIC values are mostly difficult to compare. Dur-
ing this work, MICs were calculated using the standard conditions
described by Wiegand et al. [31].

The non-adherent viable bacteria assay revealed a uniform bac-
teria concentration over the different surfaces. The exceptions seen
were the blank gold surface, and Chit_Sp. The former lower CFU
value may be associated with a higher bacterial adhesion onto
the surface, and the later higher CFU value may be explained by
the non-fouling properties of the PEGylated surface [40,41].

Considering the bacteria adhered to the surfaces, and congruent
to previous reports [13,15], bacterial adhesion to chitosan is very
low. After chitosan functionalization with NAC and Sp, the values
of adhered bacteria remained low. The low bacterial adhesion on
Chit_NAC samples can be explained by some oxidation of the cys-
teine SH group in SO3™ that, due to its negative behavior, can be
responsible for repulsive forces towards the negatively charged
bacterial membranes. It was also reported that NAC has an inhibi-
tory effect on the slime formation by Staphylococcus epidermis dur-
ing biofilm formation [42]. Further studies regarding the effect of
NAC functionalized chitosan films on bacterial biofilm formation
are currently being performed in our laboratory. Chit_Sp has a
PEGylated surface, which is well known for its non-fouling proper-
ties (i.e. it prevents cell (bacterial or mammalian) adhesion)
[40,41]. The incorporation of hLF1-11 onto chitosan films was able
to attract and bind bacteria, as expected by the orientation chosen
for covalent immobilization (exposing the arginine/positive end).
The highest value of adherent bacteria on surfaces where hLF1-
11 was directly immobilized could be related to a more rigid expo-
sition of the arginine portion of the peptide. In the particular cases
of Chit_Sp_hLF and Chit hLF ads, the enhancement of bacterial
adherence is less pronounced, which may be associated with a
more flexible (chit_Sp_hLF) or more random (Chit hLF ads) exposi-
tion/orientation of the peptide. Nevertheless, when comparing the
bacterial surface coverage with the adhered viable bacteria, it is
possible to observe that, besides attracting bacteria, the peptide
maintains some antimicrobial activity, which is more evident in

the spacer modified sample (similar surface coverage with regard
to blank but a much lower number of viable bacteria (~80%)
(p <0.05)). It remains to elucidate whether a C-terminal immobili-
zation without compromising the cysteine residue would have a
more significant activity. A number of other studies with immobi-
lized AMPs have approached the issue of AMP exposure [43-49].
For example, Gabriel et al. [44] demonstrated that the LL37 peptide
bound to titanium was capable of killing Escherichia coli on contact,
only when a PEGylated spacer was used. The authors suggested
that the use of a long, flexible PEG spacer provided a parallel pep-
tide orientation and lateral mobility that were required for bacte-
ricidal activity. Therefore, considering the parameters analyzed,
the immobilization of hLF1-11 through a spacer renders the best
profile, as it simultaneously attracts and kills bacteria.

Recently, Hilpert et al. [50] reported that, in opposition to what
was expected, immobilized AMPs that expose their hydrophobic
termini exhibit higher antimicrobial activity. It was suggested that
the hydrophobic residues could interact with the lipophilic portion
of the bacterial membrane, becoming embedded into its surface
and destabilizing the packing of the phospholipids. It was also
described that tryptophan (W) residues in AMPs could be impor-
tant for their antimicrobial activity [51], as the aromatic hydrocar-
bon residues are able to position themselves deeper into the lipid
portion of the phospholipid bilayer, making the peptide more effi-
cient in disrupting/destabilizing the bacterial cell membrane [6].
Although the exact mechanism of action of hLF1-11 is still not elu-
cidated, the membrane-induced peptide conformation [52] and
high speed of action [53] suggest direct membrane disruption.
Therefore, considering an N-terminal immobilization of hLF1-11,
the hydrophobic end of the peptide would be exposed, which could
result on enhanced activity. So the hLF1-11 immobilization chap-
ter is not closed and further studies will allow conclusions to be
drawn about the hLF1-11 application in its immobilized form. In
view of the above, future work will include new immobilization
comparing non-cysteine related C-terminal with N-terminal orien-
tation through a chemistry that allows a higher yield of immobi-
lized AMP.

5. Conclusion

hLF1-11 covalent immobilization was successfully performed
using specific orientation through its C-terminal cysteine, with
and without a PEG spacer in similar amounts. Chitosan thin films
by themselves decreased bacterial adhesion. The functionalization
with hLF1-11 increases significantly bacterial adhesion to chitosan
films, particularly when the peptide was covalently coupled with-
out a PEG spacer. However, when a PEG spacer is used, hLF1-11
maintained part of its activity.
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Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Fig. 4, are difficult to
interpret in black and white. The full colour images can be found
in the on-line version, at http://dx.doi.org/10.1016/j.actbio.2014.
02.028.
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