
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Towards a Self-Managed Framework
for Orchestration and Integration of

Devices in AAL

João Quarteu Alves

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. Hugo José Sereno Lopes Ferreira (Ph.D)

Co-supervisor: Tiago Boldt Pereira de Sousa (M.Sc)

February 13, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143389896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards a Self-Managed Framework for Orchestration
and Integration of Devices in AAL

João Quarteu Alves

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. João Pascoal Faria (Ph.D)

External Examiner: Prof. Ângelo Martins (Ph.D)

Supervisor: Prof. Hugo Sereno Ferreira (Ph.D)

February 13, 2014

Abstract

The Internet of Things (IOT) paradigm along with the use of Wireless Sensor Networks (WSNs) is
revolutionizing smart environments, enabling a new world of products and services that is enhancing
people’s daily activities. From domotics to surveillance or Ambient Assisted Living(AAL) systems
based on WSNs are proliferating worldwide, bringing new challenges to their architecture.

With the continuous aging of the world population, AAL systems can provide continuous
monitoring of individuals health status, reducing the constant need to attend health facilities
for observation. AAL4ALL is a nation-funded project, involving more than 30 institutes and
companies, that aims to build an open ecosystem for AAL. The need to have a framework that
allows to have third-party hardware and software on the top of a WSN arose from the fact that any
partner could develop its own products and services, once certified.

In the previously described scenario, multiple sensors can be deployed across the household or
health institutes to monitor one or more users. Powered by short-range communication technologies,
these devices require sensor networks to seamlessly connect to, wherever the user might be,
keeping the patient always in range of one of the nodes in the sensor network to ensure ubiquitous
monitoring.

This dissertation proposes an architecture for a generic, scalable, fault-tolerant and auto-
configurable sensor network, supporting Bluetooth, enabling dynamic loading of drivers developed
by third-party in order to allow a continuous evolution of the system without the need for manual
configuration.

The proposed solution is based in a Publisher/Subscriber pattern, where sensors are continu-
ously publishing information to a message queue in the WSN. Subscribers could be either actuators
and local or cloud services, that are consuming the information gathered. In order to achieve
concurrency and fault-tolerance, the Actor model pattern is adopted. Since low-computing devices
are used, the fact of having multiple nodes distributed across the building was exploited to build a
peer-to-peer and fault-tolerant cluster.

To assess the validity of this dissertation, an empirical evaluation was performed alongside
unit and integration tests. More than 3000 messages/second can be processed and forwarded by
the framework, making it suitable for the stated problem. Furthermore, the system proved to be
reliable, loading properly third-party developed drivers and recovering from cluster disconnection.

The research and work performed in this dissertation allowed to have a proof-of-concept
framework to orchestrate and integrate devices in the AAL4ALL project. Due to its generic
architecture, the framework developed may be suitable for other application domains.

i

ii

Resumo

O paradigma da Internet of Things (IOT) em conjunto com a utilização de Redes de Sensores Sem
Fios (WSNs) está a revolucionar os chamados ambientes inteligentes, tornando real todo um novo
mundo de produtos e serviços e melhorando as actividades diárias das pessoas. Desde domótica à
vigilância ou Ambient-Assisted Living (AAL), sistemas baseados em WSNs estão a proliferar pelo
mundo fora, trazendo novos desafios à sua arquitectura.

Dado o envelhecimento da população mundial, os sistemas de AAL podem providenciar mon-
itorização contínua do estado de saúde de indivíduos, reduzindo a necessidade constante de se
deslocarem a instituições de saúde para observação. O AAL4ALL é um projecto financiado
pelo governo, envolvendo mais de 30 institutos e empresas, que tem como objectivo construir
um ecossistema aberto para AAL. A necessidade de existir uma framework que permita que haja
hardware e software de terceiros sobre uma WSN nasceu do facto de qualquer parceiro poder
desenvolver os seus próprios produtos e serviços, uma vez certificados.

No cenário previamente descrito, vários sensores podem ser instalados ao longo de casa ou
instituições de saúde, para monitorizar um ou mais utilizadores. Alimentados por tecnologias de
comunicação de curto alcance como Bluetooth, estes dispositivos requerem redes de sensores para
se ligarem perfeitamente, onde quer que o utilizador esteja, mantendo o paciente sempre no raio de
um dos nós na rede de sensores, assegurando monitorização ubíqua.

Esta dissertação propõe uma arquitectura para uma rede de sensores genérica, escalável,
tolerante à falha e auto-configurável, suportando Bluetooth, permitindo o carregamento dinâmico
de drivers desenvolvidas por terceiros, a fim de permitir uma evolução contínua do sistema, sem a
necessidade de configuração manual.

A solução proposta é baseada no padrão Publisher/Subscriber, onde os sensores estão a publicar
informação continuamente para uma fila de mensagens na WSN. Os subscritores tanto podem ser
actuadores como serviços locais ou na cloud, que consumam a informação recolhida. De forma a
alcançar concorrência e tolerância à falha, foi adoptado o padrão Actor model. Tendo em conta que
a utilização de dispositivos de baixa computação, o facto de existirem vários nós distribuídos num
edifício foi explorado para construir um cluster ponto-a-ponto e tolerante à falha.

Para aferir a validade desta dissertação, foi feita uma avaliação empírica em conjunto com
testes unitáros e de integração. Mais de 3000 mensagens/segundo podem ser processadas e reen-
caminhadas pela framework, fazendo-a adequada para o problema proposto. Além disso, o sistema
provou ser fiável, carregando correctamente drivers desenvolvidas por terceiros e recuperando de
desconexão do cluster.

A pesquisa e trabalho desenvolvidos nesta dissertação permitiram que haja uma prova de
conceito de uma framework para orquestrar e integrar dispositivos no projecto AAL4ALL. Dada a
sua arquitectura genérica, a framework desenvolvida poderá ser adequada para outros domínios de
aplicação.

iii

iv

Acknowledgements

To Professor Hugo Ferreira and Tiago Boldt, for their patience, guidance and always helpful advices
during this dissertation.

To André Pereira and Luís Carvalho from Fraunhofer AICOS Portugal, for their help tweaking
the available sensors and testing all the system.

To my teachers at Ancorensis, in special Indaleto and Chavarria, for all the tremendous
knowledge shared in the Informatics course and for encouraging me to pursue ambitious goals.

To Professor Rui Maranhão, one of the best professors I’ve ever met, for the distributed systems
classes which helped me to choose this path for my future.

To my future boss, Elmar Weber, for supporting me in this final rush and giving me all the time
to finish this report.

To all my friends who shared the last 5 and half years with me, even some sleepless nights with
a lot of coffee.

To Márcia, for all the patience, help and support, for cheering me up when I said that something
was impossible to accomplish and for making me feel like I am the best guy in this world.

To all my family, in special to my godparents Toninho and Lúcia and my cousin Bruna, for the
countless moments we have shared in the past 22 years.

To Tozé, more than a cousin, a brother and destined to be a great architect. He is one of the
most inspiring examples that I try to follow in my life.

To my departed grandparents, António, João and Eva, who certainly would be proud to see
their graduated grandson.

To my heroes Florinda (mom), João (dad) and Joana (sister), for all the support, for making me
believe in myself and for all the values and lessons taught. Finally, I’d like to thank my grandmother
Florinda for raising and educating me and for all the affection over these years.

João Quarteu Alves

v

vi

“The only way to make software secure, reliable, and fast is to make it small.”

Andrew S. Tanenbaum

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Goals . 2
1.3 Outline . 3

2 Problem Statement 5
2.1 AAL4ALL . 5
2.2 Sensor Networks . 6

2.2.1 Scalability . 6
2.2.2 Auto Configuration . 6
2.2.3 Deployment . 6

3 State of the Art 7
3.1 Background . 7

3.1.1 Internet of Things . 7
3.1.2 Wireless Sensor Networks . 8
3.1.3 Wireless Technologies . 10
3.1.4 Distributed communication . 11
3.1.5 The Scala language . 13
3.1.6 The Actor Model . 13

3.2 Related work . 14
3.2.1 TeleCARE . 14
3.2.2 ALARM-NET . 16
3.2.3 openAAL . 17
3.2.4 CAALYX . 17
3.2.5 Summary . 18

4 Design and Implementation 19
4.1 Methodology . 19

4.1.1 Test-Driven Development . 19
4.1.2 Re-using components . 20
4.1.3 Deployment . 21

4.2 Concepts . 22
4.3 High-level Architecture . 23
4.4 Implementation Details . 24

4.4.1 Concurrency and fault-tolerance . 24
4.4.2 Actor hierarchy . 25
4.4.3 Interaction with the cloud . 26

ix

CONTENTS

4.4.4 Obtaining configurations . 29
4.4.5 Device drivers . 31
4.4.6 Clustering nodes . 32

4.5 Adopting in AAL4ALL . 35
4.5.1 Low-cost computing . 35
4.5.2 Communicating with sensors and actuators 36
4.5.3 System deployment . 36

4.6 Summary . 37

5 Tests and Results 39
5.1 Unit tests . 39
5.2 Integration tests . 39
5.3 Real application tests . 40

5.3.1 Stress tests . 40
5.3.2 Reliability tests . 42

5.4 Summary . 43

6 Conclusions 45
6.1 Overview . 45
6.2 Summary of the contributions . 45
6.3 Future work . 46

References 47

A Twitter Driver 51

x

List of Figures

3.1 Typical Wireless Sensor Network architecture. 8
3.2 Multicast example . 11
3.3 Broadcast example . 12
3.4 Message queue example . 12
3.5 Publisher/Subscriber example . 13
3.6 TeleCARE global approach. 14
3.7 TeleCARE platform architecture. 15
3.8 ALARM-NET platform architecture. 16

4.1 Test-Driven development approach followed. 20
4.2 Sonatype Nexus repository. 22
4.3 High-level architecture of the Wireless Sensor Network. 23
4.4 Wireless Sensor Network node architecture. 24
4.5 Actor hierarchy of the application. 27
4.6 Driver Interface model. 31
4.7 Raspberry Pi model B. 35
4.8 System deployment at home with two nodes in AAL4ALL. 37

5.1 Message processing and forwarding latency from the mock sensor. 41
5.2 Message processing and forwarding latency from the Fraunhofer sensor. 42
5.3 Difference in latency between a mock and the Fraunhofer sensors. 42

xi

LIST OF FIGURES

xii

List of Tables

3.1 Related work summary. 18

5.1 Latency values across the three parts of processing and forwarding data. 41

xiii

LIST OF TABLES

xiv

Abbreviations

AAL Ambient-Assisted Living
AAL4ALL Ambient-Assisted Living For All
CI Continuous Integration
DNS Domain Name Server
EU European Union
GDP Gross Domestic Product
ICT Information and Communication Technologies
IoT Internet of Things
IP Internet Protocol
LAN Local Area Network
MAS Multi-Agent Systems
PC Personal Computer
PDA Personal Digital Assistant
SBT Simple Build Tool
SSP Secure Simple Pairing
TDD Test-Driven Development
WSN Wireless Sensor Network

xv

Chapter 1

Introduction

Smart environments on the top of Wireless Sensor Networks brought a revolution into computer

networks. Besides traditional Personal Computers (PCs) there are a set of smart objects that could

be used to enhance people’s daily activities on several domains, such as domotics or ambient

assisted living. Thus self-managing and control systems are currently a research trending topic in

last years.

These facts can be explored by product manufacturers and service providers creating open

ecosystems in order to offer different kinds of services to end-users.

1.1 Context

In recent years, the percentage of elderly population has been growing worldwide due to the

increased life expectancy. It is expected that by 2060 the number of people with at least 65 years

in the European Union (EU) exceed in 100% the number of children [DMSS12]. The costs of

health-care are rising as the population is getting older. In 2011, according to the World Bank1, the

US spent 17.9% of their Gross Domestic Product (GDP) on health-care, which means that in nine

years the costs arose 4.9%, from the 13% back in 2002 [CCEF09].

The increasing adoption of Information and Communication Technologies (ICT) in our lives

decreased the costs of many goods and services, augmenting the productivity [KJ03]. Evolution

of technology permitted their general adoption in health-care, changing the way how health-care

services are provided, improving life quality and augmenting life expectancy [Var07]. However,

contrary to several industries, the cost of technology in health-care is still high [KJ03]. This happens

because products created are too expensive, specially to end-users, and commonly developed in

academic environments [LBC+12], lacking a business model in order to make them marketable.

1More details at: http://data.worldbank.org/indicator/SH.XPD.TOTL.ZS

1

http://data.worldbank.org/indicator/SH.XPD.TOTL.ZS

Introduction

Furthermore, there is a rising need to move from the current hospital-centered model which

focus on disease treatment to a more affordable one, based on monitoring, prevention and well-

being [OMSJ05]. The demand for telehomecare and monitoring systems is growing, in order to

avoid long-term hospitalization or nursing home care [CCEF09, BLHG02]. Therefore, the research

is looking to provide solutions to monitor seniors’ health who lack the financial resources to acquire

existing products, combining health-care services, informal caregivers, family and friends with the

technological evolution in wireless networking and sensors [OMSJ05].

1.2 Motivation and Goals

Continuous health monitoring systems provided by Wireless Sensor Networks can help to complete

this transition to a model focused on the patient [WVD+06]. Capturing real-time data such as

temperature, blood pressure or insulin levels could improve both doctors ability to diagnose the

patient’s condition and the assistance provided by caregivers or family members who can be alerted

in case of a possible health problem. There is also a real advantage to the patient himself, since he

can better control his own health state. Considering [Org11], heart diseases are the largest cause

of death worldwide, representing 30% of all global deaths and can be prevented if detected early.

Wellness issues associated with financial constraints and the need to free up beds in the hospitals

are increasing the demand for continuous monitoring systems using wireless based sensors.

Monitoring and automated control of devices on top of distributed networks has been a trending

topic in the past few years. While several studies have been conducted in this area, the lack of

a business model and the high costs of hardware lead to nonmarketable products, mainly when

aiming at home users. The existing systems address the problem based on its final use, and there is

a lack of a more general solution which could solve several problems of different domains.

Motivated by this, we wanted to develop a framework for managing a cluster of computers

(nodes) in a Local Area Network (LAN), extensible with behavior for either control or monitoring

third-party devices. These devices can be connected over wireless protocols such as Wi-Fi, ZigBee

or Bluetooth. However, all of these technologies share a common problem: they are short-ranged,

which is the reason to build a cluster of nodes. We need to ensure coverage across a building

without data loss, so it is essential to have more than one node, allowing the user to walk freely

around the house without the danger of losing any monitoring data.

It is expected that nodes discover each other and cluster automatically, distributing the compu-

tation over the available nodes in a cluster without a single point of failure. The cluster should also

provide the ability to be extended with processing capabilities over the acquired data and propagate

it to cloud services. Aiming at providing low-cost clusters, initial nodes will run on Raspberry Pi2’s.

Furthermore, the resulting application should be generic enough to be exported to other application

domains.

The main goals of this dissertation are listed bellow:

2More details at: www.raspberrypi.org

2

www.raspberrypi.org

Introduction

1. Automatic configuration of each node. When a new node is plugged into the electrical

power, it is expected that it automatically installs all the required software and drivers from

an online repository. After that, the main application should start, providing interfaces to

communicate with sensors and actuators around the house.

2. Acquire and process data from different sources, controlling the connected devices.
This type of systems have several different data sources (e.g., blood pressure and cardiac

rhythm sensors, light sensor, etc) and the application should manage the devices connected

to each node and search continuously for new devices, in order to minimize the downtimes.

Different sources also means different manufacturers and different drivers, which arose the

need of loading hardware drivers dynamically, in run-time, without affecting the rest of the

system.

3. Detect peer nodes on the network and cluster with them automatically. The application

should automatically detect peer nodes and be able to distribute tasks across them, balancing

the workload of the system.

1.3 Outline

This report is structured into three different parts, with the following structure:

Chapter 2: “Problem Statement” explains in more detail the problem to be addressed in this

report.

Chapter 3: “State of the Art” gives an overview about the Internet of Things, Wireless Sensor

Networks and about the wireless technologies which support them. Then we will describe

related projects in the AAL area, analyzing and comparing them with the desired functionality

of this dissertation’s project.

Chapter 4: “Design and Implementation” describes our approach to the problem. It is also

described the methodology used as well as the solution’s high-level architecture and some

technological decisions.

Chapter 5: “Tests and Results” presents our system evaluation according to the tests described

in this chapter.

Chapter 6: “Conclusions” will present the conclusions of our work, reviewing our goals and

achievements and presenting future work to be done in the context of this dissertation.

3

Introduction

4

Chapter 2

Problem Statement

Aging and associated health degradation tend to reduce autonomy in older adults, who require

frequent monitoring [OMSJ05, WVD+06, Var07, LBC+12]. New technologies can be used to

continuously monitor their health conditions in an attempt to early detect dangerous conditions in

their health status.

By acquiring data related to the user’s vital signs, detecting falls or through location sensors,

caregivers can remotely assure the patients’ status. Thus, it is possible to reduce the need for

frequent visits to the doctor, enhancing citizens’ life quality. Such technology can also simplify the

diagnose and follow up on patients that require constant monitoring due to their health conditions.

2.1 AAL4ALL

AAL4ALL (Ambient-Assisted Living For All) [AAL] is a nation-funded project, developed by a

consortium of over 30 partners, including universities, research institutions and industry, that aims

to create an ecosystem of products and services for Ambient-Assisted Living (AAL) in Portugal.

By providing an open ecosystem, any partner can join in and provide his products, once certified.

The products can be either a sensor, an actuator or a virtual service. People can have their own

customized experience by purchasing or subscribing only the required equipment and services that

better fits them. A large scale trial will validate the project at the end, with tens of users adopting

the initial services and equipment for a prolonged amount of time.

Resulting from the open nature of the ecosystem, several sensors and actuators would be

available at the patient’s house through Bluetooth. Using this wireless protocol, there is the need to

provide a sensor network which must be capable of manage the communication with it as described

in the following section.

The global architecture of this project can be divided in two parts: a lower layer responsible for

capturing data from the patient and a top layer which receives this information and forwards it to

the appropriate service. This top layer keeps a list of service subscriptions per user and allow them

5

Problem Statement

to subscribe to data generated by the user. For this to happen, the bottom layer requires an WSN to

capture and forward data to the cloud. The developed solution is presented in chapter 4.

2.2 Sensor Networks

The need of a WSN arose from the AAL4ALL goal to provide an ecosystem of services and equipment

for monitoring patients, either in their homes or health-care institutions. Focusing on the indoor

scenario, the patient is expected to walk freely in the several divisions and Bluetooth, which sensors

rely on, is a short ranged technology [LSS07]. In order to continuously gather data from each

patient, a WSN should be deployed to avoid any lack of coverage all around the house for both

communication protocols, which can be expensive. Considering this project, it is vital to have a

WSN node that communicates either with ZigBee and Bluetooth devices. Furthermore, there are

other concerns, such as the scalability, auto configuration of the system and software deployment

which are explained in subsections 2.2.1, 2.2.2 and 2.2.3, respectively.

2.2.1 Scalability

The system must ensure full coverage over a building and the number of sensors and actuators

deployed may be dozens or hundreds, depending on the building. Due to the use of short ranged

technologies [LSS07], it is expected the coexistence of more than one AAL4ALL node, in order to

achieve a lossless and fault-tolerant system. Furthermore, this may permit a distribution of tasks

such as data processing and drivers management over the available WSN nodes.

2.2.2 Auto Configuration

Most of the people do not have a deep technological knowledge to install and configure this kind

of system. The AAL4ALL project is intended to be used by everyone. The installation should be

simple as plug each node to the electrical power. After that, it is expected that each node auto

configures itself, connecting to the network and downloading the corresponding configurations,

such as hardware drivers and software, from a repository located on the cloud.

2.2.3 Deployment

The deployment of the software application and all its dependencies should be transparent to the

user. This factor is important because it should allow to update the existing software – both third-

party software in which our application rely on and the application itself – without any external

intervention. Thus, it is expected that it will only be necessary to configure the operative system

once and it will automatically update itself with the proper software.

6

Chapter 3

State of the Art

This chapter analyzes the state of the art of Wireless Sensor Networks and how are they used in

monitoring and control problems.

In Section 3.1 is presented the background of the dissertation. Section 3.1.1 introduces the

Internet of Things and how it is related to smart and self-managed environments. In Section 3.1.2

it is briefly described the global architecture of a WSN. Section 3.1.3 enumerates wireless tech-

nologies related to WSNs, showing their main characteristics. Section 3.1.4 discusses distributed

communication patterns and its advantages or disadvantages in WSN. In Section 3.1.5 Scala lan-

guage is introduced. Section 3.1.6 introduces the Actor Model and its main advantages building a

fault-tolerant system.

Section 3.2 shows several monitoring and self-managing systems projects with a special focus

in AAL. Finally, in Section 3.2.5, the studied projects are summarized and compared with the goals

of this dissertation.

3.1 Background

This section presents a background on the Internet of Things (Section 3.1.1) and Wireless Sensor

Networks (Section 3.1.2), focusing key concepts addressed by this dissertation. Moreover, a

discussion about related projects is presented in Section 3.2 as well as a summary of the literature

review and some conclusions in Section 3.2.5.

3.1.1 Internet of Things

According to [AIM10], the Internet of Things is a novel paradigm which concept is to have a network

of interconnected smart objects forming pervasive computing environments [MSPC12], through

unique addressing schemes. Any object, such as mobile phones, sensors or actuators, should be able

to join the network and cooperate with its neighbors to achieve common goals through a distribution

of different tasks [CRMS09, AIM10]. By embedding computational capabilities in objects, the IOT

will bring new opportunities to the ICT sectors that need smart environments [HSW+00], such as

health-care or domotics [ANLR10].

7

State of the Art

3.1.2 Wireless Sensor Networks

The use of WSNs is commonly associated to monitoring and control problems in several domains

such as health [WVD+06], military [HKL+06] and environmental [WAJR+05] systems.

Wireless Sensor Networks are extremely important in the IOT paradigm, since they can encap-

sulate a group of heterogeneous objects into a transparent system [ANLR10]. A common global

architecture of a WSN is shown in figure 3.1. Each sensor has the capability to collect and route data

to the network, which can process the data or/and send it to the cloud. Moreover, the connection

between a sensor and a WSN is not static, meaning that a sensor is able to switch from a WSN to

another, communicating with several WSNs over the time.

Sensors

Wireless
Sensor
Network

Cloud

Figure 3.1: Typical Wireless Sensor Network architecture.

3.1.2.1 Applications

Although WSNs were initially designed to serve military purposes, nowadays it is possible to

think about a huge number of applications. Assisted driving, mobile ticketing, industrial plants

monitoring, object tracking, environmental monitoring or habitat study are possible applications of

WSNs [AIM10, SGAV12]. Also, futuristic applications can be thought, such as robot taxis [AIM10]

that are aware of traffic movements and have several proximity sensors to avoid collisions either

with cars or other objects on the road.

3.1.2.2 Challenges

Taking into account the stated before applications, building WSNs rises some challenges:

Resource constraints
Sensors and actuators are limited and have restricted computational capabilities and battery

supplies [GH09]. This fact leads to other issues and challenges, such as the implementation of

efficient data transfer protocols or security mechanisms in these devices [AIM10, ABRV12].

8

State of the Art

Quality-of-Service
Quality-of-Service in WSNs can be categorized in two perspectives application-specificand

network-specific [YIE11]. The first one focuses in the application requirements such a

lifetime, coverage, deployment [YIE11] and sensing accuracy between the data reported to

WSN nodes and what is really occurring [GH09]. Network-specific perspective takes into

consideration network characteristics such as latency, packet loss and reliability [YIE11].

Sensor data is typically time-sensitive and wireless connections may change over time due to

the use of short-ranged technologies or interferences [GH09].

Scalability and self configuration
WSNs may scale to thousands of nodes, requiring more flexible and scalable solutions [SGAV12],

in order to support heterogeneous application domains over the same architecture [GH09].

Since thousands of sensors can be randomly deployed across a building or even in a physically

unreachable area, they are required to operate by themselves. These networks should have

the ability to recover from failures, reconfiguring the system or restarting modules without

affecting the applications that are running upon [GH09].

Security
WSNs are specially vulnerable networks, because communications rely on wireless technolo-

gies, which can be problematic due to eavesdropping, jamming, denial of service attacks

or injecting malicious traffic [AIM10, ABRV12]. As stated before, thousands of sensors

may be deployed across buildings, which make them vulnerable to be captured or tam-

pered [GH09, AIM10]. Moreover, since the adopted devices are commonly low-powered

and with limited computational capabilities it is difficult to implement complex and efficient

security layers [AIM10, ABRV12].

Privacy
The increasing adoption of WSNs to daily activities leads to a major concern on privacy. Sen-

sors are continuously transmitting sensitive data about people such as their daily activities or

health status [GH09, AIM10, ABRV12]. So there is a need to prevent malicious applications

to get data that they are not authorized to access, through privacy policies. These must ensure

that it is not possible to link people’s data to their identities and the deletion of the collected

data as it is not need anymore for controlling or monitoring purposes [AIM10].

It is very challenging to build an architecture that meets all stated before goals simultaneously.

As stated before, resource constraints can be a barrier to the Quality-of-Service or to implement

security mechanisms. Alongside with self configuration, these aspects are the most relevant to the

objectives pursued in this dissertation.

9

State of the Art

3.1.3 Wireless Technologies

Since there is an increasing use of wireless technologies on the top of sensor networks, it is

necessary to study what are the technologies used and why are they used in several WSNs. Bluetooth

(Section 3.1.3.1), ZigBee (Section 3.1.3.2) and Wi-Fi (Section 3.1.3.3) as well as other wireless

technologies (Section 3.1.3.4) are presented below.

3.1.3.1 Bluetooth

Bluetooth is a wireless technology for exchanging data over short distances, originally created in

1994 at Ericssson. The devices are connected through a piconet: an ad-hoc network which allows

to have a server device to interconnect with up to seven client devices [LSS07]. However, this

system allows up to more 255 inactive clients, through a scatternet, which is basically a cluster of

two or more piconets. In a scatternet, the server can turn active one device at any time, turning one

of the current seven clients inactive [LSS07].

To share information between two devices they must be paired. Prior to Bluetooth v2.1, there is

a legacy pairing method, where each device must enter a PIN code and the pairing is only successful

if both devices enter the same code. After Bluetooth v2.1, it was implemented the Secure Simple

Pairing (SSP) which uses a form of public key cryptography in order to avoid man-in-the-middle

attacks and simplify the pairing process.

3.1.3.2 ZigBee

ZigBee is a specification built upon the IEEE 802.15.4 standard for a suite of high level communi-

cation protocols used to create Wireless Personal Area Networks (WPAN) for supporting simple

and low-cost devices that consume minimal power [BPC+07, LSS07].

Though low-powered, ZigBee devices are often used in mesh network, allowing more than

65000 cell nodes [LSS07] and making possible to transmit data over longer distances as long as

each node can communicate with other.

3.1.3.3 Wi-Fi

Wireless Fidelity, Wi-Fi, is a popular technology built upon the IEEE 802.11 standards for Wireless

Local Area Networks (WLAN), that allows to exchange data without wires [LSS07]. Any Wi-Fi

enabled device can connect to the Internet via an access point, which could be problematic due to

its location, there could be many dead zones without coverage in a home [AWW05]. Despite the

wider communication range of Wi-Fi protocol, the cost/power consumption rate is not as good as in

Bluetooth or ZigBee [PB10].

3.1.3.4 Other technologies

There are other wireless technologies, such as UWB or IrDA which could be used by AAL4ALL

partners on their sensors and actuators.

10

State of the Art

UWB, short for Ultra-Wideband, is a radio technology built upon the IEEE 802.15.3 stan-

dard, which may be used at a very low energy level for short-range high speed wireless connec-

tions [LSS07]. Although this technology is not appropriate to a WSN due to its high complexity

and the unsuitable wide bandwidth modulation [HF08, PB10].

Infrared Data Association (IrDA) is a group founded in 1993 which defines a set of protocols

for wireless infrared communications that uses point and shoot principles to transfer data between

low-cost, low-powered and short-range devices [WML95, Wil00]. IrDA does not require to pair

devices in order to communicate, but it needs a direct line of sight.

3.1.4 Distributed communication

Supporting communication between devices through a WSN has some particularities. Many entities

are interested in receive data from several sources. Therefore, distributed communication patterns,

such as Multicast (Section 3.1.4.1), Broadcast (Section 3.1.4.2) and Message queues(Section 3.1.4.3)

are discussed in this section.

3.1.4.1 Multicast

As seen in figure 3.2 multicast is the delivery of a message or information to various, but usually

not all, hosts over a computer network [Tan02]. Multicast is most commonly implement over the

Internet Protocol (IP) and it is often used when distributing real time audio and video to the set

of hosts which have joined a distributed conference. Although there is no connection setup or

tear-down and messages are only received by hosts that are interested in them, multicast is not

reliable since messages may be lost [Tan02].

Figure 3.2: Multicast example. A message is sent over the network but only the interested hosts
will receive it.

3.1.4.2 Broadcast

Broadcast is the term used to describe communication where a message or information is sent from

one host to all other hosts within the network, as shown in figure 3.3 [Tan02]. This could be a

possible solution to send information across all the devices in WSNs but there are come constraints

11

State of the Art

such as the heaviness of the broadcast traffic generated when deploying thousands of devices.

Moreover, data consumers have different information interests, so it could be a huge waste of

bandwidth and energy.

Figure 3.3: Broadcast example. A message is sent over the network and all the hosts will receive it.

3.1.4.3 Message Queues

Message Queues are software components that allow asynchronous communication between two

software processes or threads. This fact arises the need of having a third entity: a message broker

which is an intermediary that receives messages from one or more senders and route them to one

or more receivers. Figure 3.4 shows an example of a message queue. There is a producer P and a

consumer C and the message flow goes through a message queue named “hello”.

P Chello

Message Broker

Figure 3.4: Simple message queue example. Adapted from http://www.rabbitmq.com/img/
tutorials/python-one.png

When working with message queues there are several configuration options, such as: i) durabil-

ity, ii) delivery and routing policies, iii) acknowledgment of a received message or iv) time-to-live

of the messages.

Publisher/Subscriber Publisher/Subscriber is a data-centric communication approach based on

message queues, where senders of messages, called publishers, do not need to know the receivers

addresses, called subscribers [BMR+08]. Instead, published messages are characterized into

classes, without knowledge of what subscribers there may be. Every publisher can chose in what

topic he will send the message and the subscribers can chose in what topic they are interested

12

http://www.rabbitmq.com/img/tutorials/python-one.png
http://www.rabbitmq.com/img/tutorials/python-one.png

State of the Art

in [BMR+08]. As shown in figure 3.5 the message broker routes the information from publishers

to subscribers as well as it manages the list of publishers and subscribers. In the addressed problem,

there could be topics for each different components grouped by classes (e.g., domotics, chardiac

sensors, etc). This pattern provides greater network scalability, since it allows decoupling between

publishers and subscribers.

Publisher 1

Publisher 2

Publisher 3

Topic A

Subscriber 1

Subscriber 2

Subscriber 3

Message Router service

Topic B

Figure 3.5: Publisher/Subscriber pattern and message routing example.

As stated in Section 3.1.2 it is possible that sensors switch from a WSN to another, which means

that devices may change their address over the time. The Publisher/Subscriber pattern is suitable

for this dynamic topology, due to the fact that publishers and subscribers do not need to know each

other addresses.

3.1.5 The Scala language

Scala is an object-functional programming language created by Martin Odersky and it is compiled

to Java bytecode and runs over the Java Virtual Machine, which allows to using all of the Java

libraries directly in Scala code [OSV08]. This fact make Scala a good candidate language to

address this dissertation’s problems due to its compatibility and its portability, since the Java Virtual

Machine is available for the most existing architectures and operative systems.

3.1.6 The Actor Model

The Actor Model was first introduced by Hewitt et al. [HBS73] and then it was improved by

Agha [Agh86] and it was a new approach to the concurrency problems caused by threading and

locking. In the actor model each object is an actor which is comprised by three parts:

An address where the messages are sent to.

A mailbox where the received messages are buffered.

13

State of the Art

A behavior which will be applied to the messages in the mailbox, one at time. There are three

operations that an actor needs to support: i) send messages to other actors; ii) create new

actors; iii) assume new behavior for the next message to be received.

All the communication in this model happens by exchanging asynchronous messages between

actors. Since actors never share state they do not need to compete for locks in order to access to

shared data. Moreover, it is easier to isolate components, which is an advantage while dealing with

fault-tolerant systems.

3.2 Related work

This section describes different studies and projects about self-managed monitoring and control

systems. It is divided in four subsections where four different projects are presented and analyzed,

showing limitations and differences when compared to the dissertation’s goals.

3.2.1 TeleCARE

TeleCARE is a project which aims to build a configurable and generic framework focused on virtual

communities for elderly support [CMA04, CMRO04] (Figure 3.6). These virtual communities

connect elders who are at home with their relatives and care institutions through a three-level

architecture, separated in a basic platform and specialized components [CMA04] (Figure 3.7).

Figure 3.6: TeleCARE global approach.

The basic platform is constituted by an external layer for device abstraction and a Multi-Agent

System (MAS) layer which is the core of the TeleCARE systems [CMRO04]. The MAS layer is

responsible for two critical features of the framework: the inter-communication between agents,

through FIPA ACL1 messages and the agent management and failure recovery [CMA04].

1FIPA ACL message structure specification: http://www.fipa.org/specs/fipa00061/SC00061G.pdf

14

http://www.fipa.org/specs/fipa00061/SC00061G.pdf

State of the Art

Figure 3.7: TeleCARE platform architecture.

On the top of the basic platform, it is possible to have several specialized components such as

interfaces for monitoring systems or web services to collect and analyze data [CMA04].

3.2.1.1 Discussion

TeleCARE authors present a generic architecture for AAL, providing abstraction layers both for

hardware and software, through a MAS core. However, it is not specified how the framework deals

with third-party hardware drivers.

The authors do not mention if there is any automated testing protocol before their deployment

or if there is an online repository where the drivers can be downloaded or updated. Also, in a

system like this it is possible that several versions of an hardware device could coexist, but the

problem is not addressed by the authors.

Despite the distributed and fault-tolerant environment presented, TeleCARE does not cluster

the available nodes, which could allow load balancing and improve the power consumption of the

system. Furthermore, there is no reference to the hardware requirements of the framework or if it is

prepared to low-cost and low-powered devices. This is a relevant issue when a solution aims to

reach final consumers, like elderly citizens and their relatives.

15

State of the Art

3.2.2 ALARM-NET

ALARM-NET is a WSN for AAL and residential monitoring, developed at the University of

Virginia [WVD+06]. The presented architecture (Figure 3.8) relies on a Body Area Network (BAN),

which is a wearable piece that aggregates a set of wireless sensor devices, tailored for each patient.

Moreover, several sensors, such as temperature, motion and light, are deployed all around the house,

creating a multi-hop wireless network [WVD+06].

The gateway between the WSN and IP networks is performed by a group of nodes called

AlarmGate nodes, which permit the inter-communication between user interfaces and the back-end.

Finally, the user interfaces allows the patient, relatives or caregivers to access the sensors data

through a PC or a PDA [WVD+06].

Figure 3.8: ALARM-NET platform architecture.

3.2.2.1 Discussion

Despite the innovative Circadian Activity Rhythm analysis module, which could improve the system

power consumption through the learning of citizens’ daily activities, ALARM-NET architecture

has some problems. Since body sensors are deployed through unique wearable devices and elder’s

health condition may change over time, is difficult to adapt this system to new situations.

The authors do not specify how the installation and configuration is performed and if it is

possible to update the software without a specialized technician. Additionally, ALARM-NET is

a closed architecture, without focus on support third-party devices or software, which limits the

potential of the solution.

16

State of the Art

3.2.3 openAAL

OpenAAL is an open-source middleware for AAL solutions, built on top of an OSGi frame-

work [All07], that allows easy integration and communication between services [WSO+10]. The

openAAL middleware has three main components: Context Manager, Procedural Manager and

Composer.

Context Manager is an ontology-based information storage that captures sensor information and

user input [WSO+10]. Procedural Manager decides if the system should or should not inform the

user or caregivers about a situation, based on the Context Manager information. Finally, Composer

module finds and executes virtual services (e.g.: TV alert, send SMS, etc) upon request. As an

example, if an assisted person is leaving his home and the Context Manager notices that the tv is

turned on, the Procedural Manager module will notify the Composer module, in order to find a way

to notify the person.

3.2.3.1 Discussion

The openAAL framework has abstraction layers both for hardware devices and third-party software.

Although, its configuration is complex and it is built on the top of an OSGi framework which does

not address the problem of providing fault tolerance support for bundles. Furthermore, the latest

available source-code is from 2010 and the project’s documentation is not complete.

3.2.4 CAALYX

CAALYX (Complete Ambient Assisted Living Experiment) is a project funded by the European

Commission under the AAL Joint Programme2 [RMFJ+11]. CAALYX is divided in three main

systems: Home, Mobile and Caretaker.

The home system is a monitoring system which takes advantage of the existing TV set to

interact with the user, helping him to live independently at home [RMFJ+11]. To capture his

vital signs, the elder must use the Wearable Light Device (WLD), a unique wearable piece which

concentrates several wireless sensors in a BAN. The Mobile system controls the BAN, reducing

the dependency from a central system and it has a local reasoning system which detects possible

elder’s health problems [RMFJ+11].

The intercommunication between assisted people, family and caregivers is performed by the

Caretaker system. The Caretaker system is a logic layer which offers services such as monitoring

and raises alerts, depending on elder’s health condition [RMFJ+11].

3.2.4.1 Discussion

Unlike other discussed projects, CAALYX project has a major concern about how the elder will

use the system, trying to make it usable to old-aged people. The authors shows preoccupation to

build a platform that can have full functionality in low-cost and low-powered device.

2 AAL Joint Programme official website: http://www.aal-europe.eu/

17

http://www.aal-europe.eu/

State of the Art

On the other hand, CAALYX sensors are deployed in a unique hardware piece, with limited

sensors which means that it is difficult to adapt the BAN to new health conditions and elder’s

requirements. Since CAALYX relies the control of the BAN in a mobile phone, there is a problem

associated with the battery. Sometimes the assisted person do not remembers to charge the mobile

phone, compromising the system. Furthermore the lack of a software abstraction layer leads to a

closed environment with limited applications.

3.2.5 Summary

In the last years, WSNs are being used to solve remote monitoring and control problems, more

specifically in AAL. However, as it is possible to see in table 3.1, none of the studied projects

presents solutions to all the problems raised by this dissertation.

OpenAAL (3.2.3) provides a configurable framework with abstraction layers both for hardware

and software, but it lacks an easy way to configure the all system and it has performance problems.

On the other hand, CAALYX (3.2.4) shows a more user-friendly solution, easy to configure and

using the user’s TV set but with limited hardware and software solutions.

Table 3.1: Related work summary.

TeleCARE ALARM-NET openAAL CAALYX
Hardware and Software
abstraction

Yes No Yes No

Easy configuration No No No Yes
Suitable for low-powered
and low-cost devices

No Yes No Yes

Drivers and software up-
date dynamically

No No Yes No

Fault-tolerant Yes Yes No Yes
Device clustering No No No No

18

Chapter 4

Design and Implementation

This chapter presents the solution to the problems addressed by this dissertation. Basic concepts in

which the solution was built upon are explained in Section 4.2. The high-level architecture is shown

in Section 4.3. Section 4.1 shows the methodology used in the development of this dissertation. In

Section 4.5 is explained the framework adoption in the AAL4ALL project. Section 4.6 synthesizes

the solution and discusses eventual portabilities to other domains.

4.1 Methodology

The methodology followed in this dissertation is described in this section. Section 4.1.1 describes

the implementation methodology. In Section 4.1.2 we describe how the software packages are

re-used. The deployment strategy used are described in Section 4.1.3.

4.1.1 Test-Driven Development

During the implementation phase we adopted an agile process, writing tests for each created

component and releasing versions periodically. In order to do that, a Continuous Integration (CI)

environment was setup. As shown in figure 4.1, the development and test cycle occurred as follows:

1. Write the code for a feature

2. Write unit tests for a given feature

3. Commit the changes to the version-control repository

4. Run all the tests on a CI server

5. Refactor and repeat the process

19

Design and Implementation

Write
Code

Write
Tests

GitLab CI GitLab

Development

commit changes

run
tests

Control version and continuous integration
server

Figure 4.1: Test-Driven development approach followed.

On the server-side, they were installed GitLab, an open-source source-code manager that allows

to create teams, roles, projects and keep track of them. GitLab1 is built upon Git2, a distributed

source control manager. Furthermore, GitLab CI was also installed in order to integrate with the

existing projects on GitLab and run the proper tests for each one.

4.1.2 Re-using components

In this dissertation we adopted a strategy to re-use the created software components. In the design

phase we identified the main components of the application and decoupled them in order to have a

more flexible architecture and to test each component separately. Moreover, this way it is possible

to re-use the components produced in other projects.

4.1.2.1 SBT

SBT3 is the abbreviation of “simple build tool” and it is an open-source build tool for Scala and Java.

Using it we can write an SBT file with the library dependencies of a given project and a repository

1GitLab’s official website: http://gitlab.org/
2Git’s official website: http://git-scm.com/
3SBT official website: http://www.scala-sbt.org/

20

http://gitlab.org/
http://git-scm.com/
http://www.scala-sbt.org/

Design and Implementation

to publish our own projects. An example of importing software components is shown in Listing 4.1

and another one of publishing software components is shown in Listing 4.2.

With this build tool we can create one project for each software component, publish them in a

repository and re-use them after, making an application which aggregates the software components.

This way we can iterate and test each component without breaking the final application.

1 libraryDependencies ++= Seq(

2 "pt.inescporto" %% "zeroconf" % "0.23"

3)

Listing 4.1: Re-using software components with SBT.

1 credentials += Credentials(Path.userHome / ".sbt" / "credentials")

2

3 publishMavenStyle := true

4

5 publishTo := {

6 Some("aal4all" at "http://cathedralgotix.inescporto.pt:83/nexus/content/

repositories/aal4all")

7 }

Listing 4.2: Publishing software components with SBT.

4.1.2.2 Sonatype Nexus

As stated before in Section, with SBT we can define a repository to publish the software components.

Sonatype Nexus4 provides a central point for management of binary software components and their

dependencies, so every developer with access to the repository can re-use the available software

components. Figure 4.2 shows an example of a repository with several software components

available.

4.1.3 Deployment

Setting up the application and all its dependencies can be a complex task, so we wanted to make

this process easier and provide a simple initial setup.

Using a SBT plugin named “SBT Native Packager”5 is possible to bundle up Scala software for

many operative systems such as Debian6, Red Hat7 or Microsoft Windows8. Listing 4.3 shows an

example of how to inject the OpenJDK9 dependency for Debian operative system in a SBT file.
4Sonatype Nexus official website: http://www.sonatype.org/nexus/
5SBT Native Packager github’s page: https://github.com/sbt/sbt-native-packager
6Debian’s official website: http://www.debian.org/
7Red Hat’s official website: http://www.redhat.com/
8Microsoft Windows’ official website http://windows.microsoft.com/pt-pt/windows/home
9OpenJDK’s official website: http://openjdk.java.net/

21

http://www.sonatype.org/nexus/
https://github.com/sbt/sbt-native-packager
http://www.debian.org/
http://www.redhat.com/
http://windows.microsoft.com/pt-pt/windows/home
http://openjdk.java.net/

Design and Implementation

Figure 4.2: Sonatype Nexus repository.

1 debianPackageDependencies in Debian ++= Seq("openjdk-7-jre (>= 7)")

Listing 4.3: Injecting software dependencies with SBT.

4.2 Concepts

In a Wireless Sensor Network it is possible to identify two fundamental features: to collect data

from sensors and to deliver the collected data, either locally processed or sent to an external service,

hosted on the cloud [HTSC08, BMKK12]. Sensors are publishing information continuously so that

actuators and virtual services can subscribe to the gathered data. Hence, for communication between

devices we adopted a Publisher/Subscriber pattern, a data-centric communication approach where

publishers and subscribers do not need to know each other destination or addresses in order to

communicate. This particularity solves the problem of connecting and disconnecting sensors, which

in a dynamic system like this can be connected to different nodes in different moments, having

different addresses too.

As seen in figure 3.5, published messages are categorized by topics, due to the fact that

publishers do not know who and how many are the data subscribers. In the same way, subscribers

can only subscribe a subset of all the exchanged messages. In order to distribute the information to

the subscribers, WSNs must must run a message routing service.

22

Design and Implementation

4.3 High-level Architecture

Sensors and actuators are low-powered devices and they cannot interact directly with the upper

system, in the cloud. The WSN nodes are needed both to orchestrate the data-flow between

publishers and subscribers and to manage the connections between the Bluetooth-enabled devices

and the upper system. Moreover, Bluetooth is a short-ranged technology, which means that in

order to achieve full coverage inside a building and avoid data loss situations, we need to deploy

more than one WSN node. Moreover, since the deployed nodes are meant to be low-cost and

low-computing devices it makes sense to take advantage of the stated above nodes and build a

cluster of nodes, interchanging data and performing load balancing and task distribution across

them.

The high-level architecture of the solution is presented in figure 4.3. As stated in Section 4.2,

publishers (sensors) and subscribers (actuators and services) are the two main entities. Subscribers

can receive information either from local services, running on the top of the WSN node cluster, or

information directly from the cloud. In this dissertation, the focus is maintained in the WSN nodes.

Figure 4.3: High-level architecture of the Wireless Sensor Network.

As seen in figure 4.4, there are three major components in a WSN node. On the top, there is an

AMQP10 client which communicates with the upper levels in the global architecture (figure 4.3),

publishing acquired data and subscribing to relevant commands to control local actuators.

The auto configuration (section 4.4.4) service is responsible to properly configure each node,

receiving new drivers to dynamically load them. There is also a cluster service, which allows

clustering of the WSN nodes, as explained in Section 4.4.6.

Finally, the communication component is responsible both for managing the connected devices

as well as discover new devices in its range.

10Advanced Message Queue Protocol. More details at: http://www.amqp.org

23

http://www.amqp.org

Design and Implementation

Figure 4.4: Wireless Sensor Network node architecture.

4.4 Implementation Details

In this section, the WSN node architecture will be explained in more detail, focusing in the actor

hierarchy and explaining each feature properly.

4.4.1 Concurrency and fault-tolerance

Building an open an expansible framework for a WSN could lead to a more error-prone system,

since there is no full control about third-party software’s behavior. As stated above, there will be

several virtual services running on the top of each node. Given the dynamic nature of the system,

services have concurrent tasks such as collecting data from a sensor and publishing it either in

a local service and to the cloud. In order to solve this problem, the Actor model was adopted,

decoupling each service from the main process, ensuring that if it is experiencing issues, it can be

restarted or stopped permanently without compromising the rest of the system. As an example, if

a service such as a web service that process collected data crashes it will be possible to restart it

without any technical intervention or system breakdown.

24

Design and Implementation

4.4.1.1 Akka

Akka11 is an open-source framework which goal is to simplify the construction of concurrent

applications on the Java platform, using the Actor Model. Akka is written in Scala and it is available

both for Scala and Java. The actor hierarchy used is presented in the Section 4.4.2.

4.4.2 Actor hierarchy

The systems’ actor hierarchy is shown in figure 4.5. It is separated in two main components:

Device communication
This component is responsible to discover new Bluetooth devices to connect and for starting

the communication with them, starting the respective drivers and opening input and output

streams. Furthermore, this component is responsible to forward messages to an AMQP server

hosted on the cloud. The actors of this module are described below:

Bluetooth device discovery which is responsible to find the available Bluetooth devices as

well as the available services provided by them.

Cloud forwarder which is responsible to forward the information sent to the cloud to the

proper service, properly configured with the URL, username and password when the

application starts.

Connection reader which is instantiated for each open connection, performing all the read

operations.

Connection writer which is instantiated for each open connection, performing all the write

operations.

Driver which is responsible for the communication with each driver, calling the initial setup

and redirecting the read and write requests to it.

Cluster
Discover peer nodes and cluster with them is another application’s core functionality. The

nodes share a message queue in order to communicate within each other. There are two

actors associated with this features:

AMQP subscriber which is responsible to subscribe a message queue from the RabbitMQ

cluster, allowing to exchange information and serialized tasks across the peers.

Peer discovery which is responsible to send a multi-cast message with the information of

the local RabbitMQ service. Also, it listens the multi-cast information announced by

other peers, in order to establish the peer cluster.

11Akka’s official website: http://akka.io

25

http://akka.io

Design and Implementation

Both connection writer and reader rely on a dependency injection pattern, allowing their

instantiation with any input or output stream. This means that the system only needs to know

that any connection will have an input and output stream as well as way to connect (e.g.,

Bluetooth, ZigBee, etc), as shown in Listing 4.4. Every connection type must implement the

GenericConnection trait, allowing to extend the types of connection without changing the

framework.

1 trait GenericConnection {

2 def openInputStream(): InputStream

3 def openOutputStream(): OutputStream

4 def connect(driver: DriverDetails, context: ActorContext, log:

LoggingAdapter): ActorRef

5 }

6

7 class BluetoothConnection(c: StreamConnection) extends GenericConnection {

8 val streamConnection: StreamConnection = c

9

10 def openInputStream(): InputStream = {

11 streamConnection.openDataInputStream()

12 }

13

14 def openOutputStream(): OutputStream = {

15 streamConnection.openDataOutputStream()

16 }

17

18 def connect(driver: DriverDetails, context: ActorContext, log:

LoggingAdapter): ActorRef = {

19 val dev = RemoteDevice.getRemoteDevice(c)

20 val mac = dev.getBluetoothAddress

21 val actor = context.actorOf(Props(new Connection(this, driver)),

22 name = s"connection.${driver.driverName}.${UUID.randomUUID()}")

23 actor

24 }

25

26 }

Listing 4.4: Generic Connection trait and the Bluetooth connection implementation.

4.4.3 Interaction with the cloud

Published data is sent to the top layer of the global architecture (figure 4.3) with metadata that iden-

tifies the sensor from where the data was received, context information (e.g., user’s identification)

and the content itself. This information is required by the rest of the system to compare this data

with the subscription list and understand where the data should be forwarded to. The input format

published by the application, must be formatted using the JSON standard and include four fields:

26

Design and Implementation

Figure 4.5: Actor hierarchy of the application.

origin
The unique key that identifies the sender and can be used to route traffic to it.

date
Unix time, corresponding to the number of seconds since 1 January 1970, of when the

message was generated.

topic
Routing key, used to route the message to the proper subscriber(s).

payload
the content of the message, a JSON itself that might contain encrypted data for additional

security. The final message must be a valid JSON-formatted string. As such, some characters

are invalid in the payload (such as single “ or \). If a message is not valid JSON, it will be

27

Design and Implementation

discarded on arrival. Moreover, the cloud service which receives the messages is content-

agnostic, meaning that publishers can create their own messages, as long as they respect the

JSON format. Listing 4.5 exemplifies how a message can be build.

1 {

2 "origin": "user.patient1234",

3 "date": "1388708123",

4 "topic": "aalReminder.Reminder001",

5 "payload":

6 {

7 "data": {

8 "caretaker_name": "Dr. House",

9 "patient_name": "John Doe",

10 "prescription": [

11 {

12 "drug_name": "Brufen 600",

13 "dosage": 1,

14 "message": "Hello John. Please take your medicine",

15 }

16],

17 "date": "2013-01-03 08:00:02"

18 }

19 }

20 }

Listing 4.5: A well formated message sent by the application to the cloud.

The messages are encapsulated in a Scala case class (see listing 4.6) and they are transformed

from and to JSON using the Argonaut library.

1 implicit def NodeMessageJSON =

2 casecodec4(NodeMessage.apply,

3 NodeMessage.unapply)("origin",

4 "date",

5 "topic",

6 "payload")

7

8 case class NodeMessage(origin: String,

9 date: Long,

10 topic: String,

11 payload: String) {

12

28

Design and Implementation

13 def toJson = {

14 this.asJson.toString()

15 }

16

17 }

Listing 4.6: The NodeMessage case class and the implicit (de)coder from and to JSON.

4.4.4 Obtaining configurations

Configuration happens after a node is powered: the configurations are acquired from a remote

service via HTTP to know how to set itself up. This is transparent for the user, as the node is

previously registered in the system and knows to which context it must configure itself, downloading

the appropriate drivers according to the list of service and drivers subscriptions from that user,

available at the Component Management Server, as shown in figure 4.3. Although the development

of a Component Management Server is not a requirement from this dissertation, it became necessary

to build a prototype in order to assure the fulfillment of the auto-configuration requirement. When

the application requests the configuration for the user, the response given by the server must be a

JSON valid message with the following three fields:

version
The version of the configuration file, as a date in the yyyy-mm-dd format.

akka_system
The Akka system name where the system will be configured.

devices
A list of the devices installed in the user’s home, with the MAC address, port to connect and

driver to download and use.

pub
A list of services to publish data to the cloud, with the service identifier, device MAC address

and the routing key where to publish data.

sub
A list of services to subscribe data from the cloud, with the service identifier, device MAC

address and the routing which should be subscribed by the application.

bt_services
A list of the services names available from the Bluetooth devices.

amqp_server
The AMQP server URL and credentials to publish and subscribe data.

An example of this configuration file is shown in listing 4.7.

29

Design and Implementation

1 {

2 "version": "2014.01.07",

3 "akka_system": "AAL4ALLBeta",

4 "devices": [

5 {"mac": "0002723D8BD1", "port": 2, "driver": {"file": "

generic.jar", "class": "aal4all.drivers.ActuatorDriver"}}

,

6 {"mac": "000666056165", "port": 2, "driver": {"file": "fhp.

jar", "class": "aal4all.drivers.fhp.Driver"}}

7],

8 "pub": [

9 {

10 "id": "aal4all.user1.heartbeat",

11 "device": "000666056165",

12 "key": "aal4all.services.chardiac"

13 },

14],

15 "sub": [

16 {

17 "id": "aal4all.user1.light001",

18 "device": "0002723D8BD1",

19 "key": "aal4all.services.domotics.light"

20 }

21],

22 "bt_services": [

23 "eCALLYX_bt",

24 "NULL-SPP"

25],

26 "amqp_server": {

27 "url": "http://bruxelix.inescporto.pt:8080/publish/",

28 "username": "test",

29 "password": "test"

30 }

31 }

Listing 4.7: A configuration file for a given user.

In the lower level, as soon as the list of existing devices becomes available, communication is

attempted with each device from that user. This level is responsible for establishing and maintaining

communication only, with every communication being then handled by the drivers at the middle

30

Design and Implementation

level.

4.4.5 Device drivers

Drivers are developed by equipment manufacturers, by implementing an existing abstract interface,

which assures the integration in the node. As shown in figure 4.6, the driver interface uses the proxy

design pattern.

Figure 4.6: Driver Interface model.

Each manufacturer must implement the DriverInterface class, which has three methods: setup,

readDevice and readCloud. The setup method can have actions which must be performed before

starting the driver; readDevice and readCloud perform data reading from the device and cloud,

respectively. The other two methods, writeDevice and writeCloud are delegated to the proxy class

DriverProxy, and they are not accessible to the manufacturers. An example of the interface in Scala

is provided in listing 4.8.

1 class RambleDriver(p: DriverProxy) extends DriverBehavior(p) {

2 /*

3 * Starts communication.

4 */

5 def setup() {

6 log.debug("RAMBLE DRIVER started!!")

7 // This behaviour may be extended

8 }

9

10 // Read from Device

11 def readDevice(data: Array[Byte]) {

12 Thread.sleep(1000)

13 writeDevice(UUID.randomUUID().toString.getBytes)

14 }

15

16 // Read from Cloud

17 def readCloud(data: String) {

18 Thread.sleep(1000)

19 writeCloud(UUID.randomUUID().toString, "test")

20 }

21 }

31

Design and Implementation

Listing 4.8: Driver Interface implemented in Scala.

Each driver is loaded using the reflexion feature of the Java Virtual Machine, which allows to

load compiled classes into the running application, which in this case allows to load a given driver

into the system without restarting it. As an example, listing 4.9 shows how drivers are dynamically

loaded into the system.

1 val directory = "/drivers/"

2 val driver = "frunhofer.jar"

3 val loader = new java.net.URLClassLoader(Array(new File(directory).toURI.toURL),

this.getClass.getClassLoader)

4 val externalClass = loader.loadClass(driver)

5 Some(externalClass.getDeclaredConstructor(classOf[DriverProxy]).newInstance(new

ConnectionProxy).asInstanceOf[DriverBehavior])

Listing 4.9: Java Virtual Machine reflexion example in Scala.

Third-party drivers are a special concern in the presented solution. Despite all the testing that

every driver must be submitted before be used by the system, it is possible that it fails. This fact

must be taken into account and if a situation like this occurs it must not affect the all system. To

solve this issue, it was implemented an actor supervision strategy, provided by Akka. The fault

Handler takes as parameter a list of exceptions which will be handled, the maximum number of

restart tries and within-time in milliseconds. An example is shown in listing 4.10.

1 val supervisorConfig = SupervisorConfig(OneForOneStrategy(List(classOf[Exception]),

3, 1000), Nil)

2 val supervisor = Supervisor(supervisorConfig)

3

4 val driverActor = context.actorOf(Props(new DriverActor(d)), name = s"driver.${

driver.driverName}")

5 supervisor.link(driverActor)

Listing 4.10: Driver actor supervision strategy

4.4.6 Clustering nodes

Acquiring data from sensors and triggering events to actuators is not the only functionality of the

home node. In a multi-node deployed system, it is possible to balance the workload across the

nodes, assigning tasks to the most available nodes and avoiding nodes overload, which could lead

to crashes and data loss. This tasks can be loading hardware drivers, perform minor computation

over the acquired data and propagate data to a higher level node, hosted on the cloud.

32

Design and Implementation

Therefore, the presented architecture allows decoupling and scalability, based on a multi-level

node architecture. As an example, it is possible to have nodes which function is only to collect

information from sensors and other ones running pre-processing and data aggregation services. In a

superior level, third-party services may consume the processed data and show it to an user through

a web interface.

4.4.6.1 A first approach

Using Akka as the actor model framework in which the system is built upon, it became an obvious

first choice to use Akka-Cluster12, an Akka extension to provide a fault-tolerant decentralized

peer-to-peer based cluster membership service. However they were three main problems:

Inception
Creating a cluster with Akka-Cluster is an easy task. However, it was necessary to have one

seed node which act as the leader of the cluster. Since we do not have control either on how

many nodes will be deployed in a building and when they start the application, it was not

possible to previously chose a seed node and inject it in a configuration file.

Electing the leader
Electing the leader of the system brought another problem. How could the leader be elected

in a blind cluster (i.e., none of the existing nodes knew the others existence before) without

race conditions? It was needed a third-party service, running outside the system in order to

do that. The solution found involved the use of Apache Zookeeper13 alongside with Apache

Curator14 library. Apache Zookeeper is an open-source centralized service which provides

distributed configuration and synchronization service as well as a naming registry service for

large distributed systems. Apache Curator is a Java library that simplifies the use of Apache

Zookeeper, and it with a specific functionality to elect a leader between a set of candidates.

Partition recovery
In this kind of systems it is expected that one or more nodes can experience connection loss.

This is because the nodes are meant to be spread all over a building and it is possible that,

for instance, someone stumble on a node, unplugging it from the electrical power. Thus,

when the node is plugged in again, it should start and join the cluster again. We concluded

that Akka-Cluster have some issues with partition recovery, which make it unusable for our

problem.

12Akka-Cluster official website: http://doc.akka.io/docs/akka/snapshot/common/cluster.html#
cluster

13Apache Zookeeper’s official website: http://zookeeper.apache.org/
14Apache Curator’s official website: http://curator.apache.org/

33

http://doc.akka.io/docs/akka/snapshot/common/cluster.html#cluster
http://doc.akka.io/docs/akka/snapshot/common/cluster.html#cluster
http://zookeeper.apache.org/
http://curator.apache.org/

Design and Implementation

4.4.6.2 A fault-tolerant cluster

As stated in the previous section, we concluded that Akka-Cluster is not ready for a production

application. Therefore, the solution we developed relies in a multi-cast DNS system along with

message queues in order to exchange information between peers.

Inception
When a new node is installed, the application should detect other peers in the same LAN

and cluster with them. To achieve this, we used the JmDNS15 library, which is a Java

implementation of zero-configuration networking, a group of technologies that includes

service discovery, address assignment, and hostname resolution, using multi-cast DNS

records. There is a discovery actor per node responsible for detecting new peers and adding

them to the list of the available peers.

RabbitMQ
RabbitMQ16 is an open source message broker software that implements the AMQP. A

distinctive characteristic is that RabbitMQ allows to easily build a cluster, replicating the

message queues across the nodes. Moreover, RabbitMQ provides cluster partition handling

out-of-the box, which is crucial on a fault-tolerant system.

To announce a service in the system, each node should register itself with the provided services,

as shown in listing 4.11. After detecting a new peer in the system, each node should add the new

RabbitMQ client, as shown in listing 4.12.

1 val serviceType = "_aal4all._tcp.local."

2 val serviceName = "inesc.gateway"

3 val port = 1268

4 val serviceProps = Map[String, String](

5 "name" -> "rabbit-node",

6 "address" -> "192.168.1.103"

7)

8 val props = List[String]("name", "address")

9

10 val discovery = system.actorOf(Props(new ServiceDiscovery(serviceType, serviceName,

port, serviceProps,props)))

Listing 4.11: Announce a service in the multicast DNS system.

1 val name = "rabbit2"

2 val address = "192.168.1.103"

3 Runtime.getRuntime().exec(s"rabbitmqctl -n rabbit join_cluster ${name}@${address}")

4 Runtime.getRuntime().exec(s"rabbitmqctl -n rabbit start_app")

15JmDNS offical website: http://jmdns.sourceforge.net/
16RabbitMQ’s official website: http://www.rabbitmq.com/

34

http://jmdns.sourceforge.net/
http://www.rabbitmq.com/

Design and Implementation

Listing 4.12: Add a new node to the RabbitMQ cluster.

4.5 Adopting in AAL4ALL

AAL4ALL is meant to be an open ecosystem for AAL, allowing products and services development

through certified partners. In this section there are shown a few particularities of the project and it

is also explained why AAL4ALL is suitable for using the proposed architecture.

4.5.1 Low-cost computing

Multiple research projects in the AAL subject have failed to reach the market due to the unacceptable

costs they would impose on patients or health-care institutions. While building a sensor network

which should be deployed to most divisions of the patient’s house, this aspect was taken into

consideration.

In order to develop a prototype at an acceptable price, the Raspberry Pi computer was adopted.

As shown in figure 4.7, it is a single-board computer built by the Raspberry Pi Foundation, initially

intended to be used as part of computer science teaching in schools. The latest model is equipped

with a 700MHz ARM processor, 512MB of memory, network card and it uses a SD Card for

booting and long-term storage with its price set at $35 combined with a power consumption of only

3.5W. By plugging a Bluetooth dongle in one of the two available USB ports, it is provided the

perfect device to build the nodes for the sensor network.

Although the application is prepared and tested to run on a Raspberry Pi, it is portable to any

other architecture with support to the Java Virtual Machine.

Figure 4.7: Raspberry Pi model B.

35

Design and Implementation

4.5.1.1 Raspbian OS

Raspbian17 is a Debian-based operative system. It was chosen to be the operative system deployed

in the AAL4ALL nodes because it is optimized for the Raspberry Pi hardware and it has support

to Debian packages generated as explained in Section 4.1.3, making easier to install, deploy and

manage the AAL4ALL nodes. An image based on Raspbian OS was created in order to have the

system ready to boot and cluster automatically.

4.5.2 Communicating with sensors and actuators

As mentioned in Section 3.1.3, Bluetooth protocol is low cost and have a low power consumption.

These facts make it the preferred communication protocol by partners and general AAL research

and production projects.

Communication can be performed in either direction, receiving and sending data to a remote

device. Enhancing users’ daily life is another objective of AAL4ALL and as such, devices should be

able to perform actions and control mechanisms or systems to help the patient in his daily routine.

These devices are called actuators. For instance, when a person with reduced mobility is in his

bed and he remembered that the kitchen’s light is turned on, he could turn off the light remotely,

through a mobile application. Consequently, there is an emergent necessity of communication

between sensors and actuators in a system like this. Although, commonly, the information flow of

these devices is one-way only, i.e. they are either information publishers or subscribers, but not

both. Using the WSN node as a communication bridge not only solves this issue but it also makes

possible to exchange messages between different binary communication protocols.

4.5.3 System deployment

A possible and typical system’s deployment at home is shown in Figure 4.8. Virtual services may

consume data directly from the upper node (AAL4ALL server) because, usually, the applications

run under a network-capable device such as a PC or set-top box. On the other hand, actuators have

limited network capabilities, so they consume data via Bluetooth, subscribing topics at the home

nodes. Each Raspberry Pi, representing a home node, will run two applications: the framework

itself and the RabbitMQ service which allows to cluster all the available nodes.

Although this architecture was primarily thought to be deployed at the users’ homes, it is

possible to deploy it across a bigger building such as an health-care center, with several nodes

across the divisions, allowing to capture data from several different patients without any change in

the actual system.

Sensors
Two sensors: an Electrocardiogram sensor (ECG) and a blood pressure sensor (SpO2). These

sensors communicate with one of the nodes in their communication range, sending them data.

17Raspbian’s offical website: http://www.raspbian.org/

36

http://www.raspbian.org/

Design and Implementation

Figure 4.8: System deployment at home with two nodes in AAL4ALL.

Since the patient can move freely around the building, sensors might connect to different

nodes in different moments.

Actuators
Two actuators: a light actuator which could be used to turn on/off the lights and an insulin

actuator which could provide insulin doses to the patient upon request by the doctor’s

application.

Virtual services
Two virtual services: an application installed in the user’s set-top box, to see his condition,

videos and medical recommendations on TV and a an application installed in the doctor’s

computer, which allows to provide insulin to the patient, through the proper actuator.

4.6 Summary

The architecture was kept as generic as possible, so that it would adapt to the continuously expanding

needs of this open ecosystem without requiring architectural changes. By doing so, portability

between contexts was also achieved, with the proposed architecture being able to adapt to any other

scenario where sensors and actuators need to communicate between each-other, as well as with

could services. This happens not only at the sensor network level, but the whole architecture is

able to orchestrate any domain where the Publisher/Subscriber pattern can be applied to propagate

information. The involved entities can also be modeled as services which interact with the system.

An alternative application for the system would be a manufacturing process in a factory having

sensors publishing data related to machinery production and actuators consuming such data. Thus

items could be picked up from the output of a first machine and delivered to the next one as soon

as it was ready in the production line. A monitoring service could raise alarms to the responsible

37

Design and Implementation

engineer when errors where detected and a mobile or web application could monitor the whole

process so that managers could follow the production status. Moreover, in the same way, it is

possible to apply these principles to domotics, ambient assisted living and other LAN monitor and

control problems.

38

Chapter 5

Tests and Results

We believe that building an auto-configurable and self-managed system like the one discussed in

Chapter 4 needs several kinds of tests to be proven as a reliable solution. This chapter describes the

tests performed to ensure the fulfillment of this dissertation’s goals.

5.1 Unit tests

A TDD approach was followed in this dissertation, so unit tests were written to all the relevant

components of the system, ensuring that each component worked as an isolated element. The

framework used for the test was ScalaTest1 alongside with Akka-TestKit2 in order to test the

existing Actor system. An example of the performed tests is shown in listing 5.1.

1 "A ConnectionManager actor" should {

2 "close in a ClosedStreamException" in {

3 val actorRef = system.actorOf(Props(new ConnectionManager(new AMQPServer("

http://%s:8080/publish/".format("bruxelix.inescporto.pt"),

4 "test", "test"))))

5 val result = Await.result(actorRef ? ClosedStreamException, 1 seconds).

asInstanceOf[String]

6 result must be ("ClosedStreamException")

7 }

8 }

Listing 5.1: Unit testing example with ScalaTest and Akka-TestKit.

5.2 Integration tests

Integration tests were also conducted during this dissertation. They consisted in put together the all

system and verify that it behaved as expected. The list of the requirements to assess the correct
1ScalaTest’s official website: http://www.scalatest.org/
2Akka-TestKit’s official website: http://doc.akka.io/docs/akka/snapshot/scala/testing.html

39

http://www.scalatest.org/
http://doc.akka.io/docs/akka/snapshot/scala/testing.html

Tests and Results

behavior is stated below:

• Download the last version of the application and start it correctly

• Download all the proper hardware drivers

• Search peer nodes and if they exist, cluster with them

• Search available Bluetooth devices and establish a connection

• Receive a message from the Bluetooth device and forward it to an AMQP server in the cloud

• Verify if the message was successfully received

5.3 Real application tests

The tests described in the previous sections allowed to show that the system worked but to assess if

the dissertation goals were fulfilled, we conducted some real world application simulations. Some

of these tests were conducted at Fraunhofer AICOS Portugal3. There were two components tested

in this phase:

Nodes
There were two nodes: a Raspberry Pi and another computer, both running the same version

of the application.

Sensors
There were two sensors: a door sensor connected to an Arduino4 microcontroller sending

real data and a mock sensor connected to the computer sending randomly generated data.

5.3.1 Stress tests

In order to assess the system response to a bigger number of messages sent by the sensors, André

Pereira from Fraunhofer tweaked the Arduino to sent data from the door sensor in an infinite

loop, during approximately 10 minutes. They were received and forwarded more than two million

messages without a single crash.

Figures 5.1 and 5.2 shows the message processing and forwarding latency both from mock and

the real sensor from Fraunhofer. The application processed and forwarded more than 80% of the

data received in less than 200ms and more than 90% in less than 300ms.

As seen in Figure 5.3, the time consumed is divided in three parts: from the reception to

the driver, driver operations and forwarding message. The messages sent from the Fraunhofer

sensor are 8 bytes length and the messages sent from the mock sensor are 16 bytes length. Despite

3Fraunhofer AICOS Portugal official website http://www.fraunhofer.pt/en/fraunhofer_aicos/
about_us.html

4Arduino microcontroller official website: http://arduino.cc/

40

http://www.fraunhofer.pt/en/fraunhofer_aicos/about_us.html
http://www.fraunhofer.pt/en/fraunhofer_aicos/about_us.html
http://arduino.cc/

Tests and Results

Figure 5.1: Message processing and forwarding latency from the mock sensor.

this fact does not affect the latency, the Fraunhofer driver executes a data checking algorithm,

which consumes more 20ms on average to process the data. However, the time consumed passing

messages between data reception and driver and forwarding messages to the cloud is similar, as

seen in Table 5.1.

Table 5.1: Latency values across the three parts of processing and forwarding data.

Received avg (ms) Driver avg (ms) Forwarding avg (ms)
Mock 0.301 0.383 177.34
Fraunhofer 0.309 20.2 177.75

Despite the lack of available sensors, there were performed more stress tests, in order to assess

if the system was prepared for a larger data volume and for handling more sensors, like in a real use

case.There were created 15 Bluetooth services in a mock sensor, sending data from devrandom

as well as data from Twitter5, using Twitter4J6 library and a proper driver. The results of these

tests were similar to the first, confirming the scalability of the system with more sensors and data

volume.

5Twitter official website: http://twitter.com
6Twitter4J official website: http://twitter4j.org/

41

http://twitter.com
http://twitter4j.org/

Tests and Results

Figure 5.2: Message processing and forwarding latency from the Fraunhofer sensor.

Figure 5.3: Difference in latency between a mock and the Fraunhofer sensors.

5.3.2 Reliability tests

To be proven as a reliable solution for this dissertation’s problem, we decided to make two different

tests:

42

Tests and Results

• Load properly a third-party developed driver

• Restart one of the nodes’s application and verify if it joins the cluster again

• Shut down the node where the sensors are connected to assess if they connect with the

remaining node

Both tests were performed seamlessly. However, due to the use of Java Virtual Machine in a

hardware with poor resources such as the Raspberry Pi, restarting a node take up to 40 seconds.

About the third test, the connection between the remaining node and the sensors took up near 15

seconds each. In this case the mock sensor had not a cache mechanism, so the randomly generated

data was lost. Nevertheless, the sensor developed by Fraunhofer together with their driver have a

cache mechanism, so the real data was not lost and it was sent to the remaining node.

5.4 Summary

Following the need to validate our solution, we have performed different types of tests with the

hardware available at the moment. Each separated component was testes isolated, as well as together

in a system. Moreover, it was simulated a real environment, performing stress and reliability tests.

Based on the results and experience recollected during this dissertation, we perceived that some

of the initial requirements are hard to achieve in this kind of auto-configurable, self-managed and

fault-tolerant systems.

43

Tests and Results

44

Chapter 6

Conclusions

This section presents an overview about the this dissertation’s report, a summary of the contributions

made and some guidelines about what can be done to extend and improve this work in the future.

6.1 Overview

In Chapter 1 we introduced the dissertation, presenting the context and explaining some concepts

related with it such as AAL. We also explained the motivation of this dissertation and what were

our goals.

Chapter 2 presents the problem addressed in the AAL4ALL context alongside with some

concerns typically related with WSNs.

The literature about some background concepts of Wireless Sensor Networks is revisited in

Chapter 3. Also there were analyzed four projects related with WSNs and AAL.

In Chapter 4 it was explained our methodology approach to the problem together with the

implementation of the application details.

Finally, in Chapter 5 we described the performed tests as well as the gathered results.

6.2 Summary of the contributions

The three main goals defined to this dissertation (Section 1.2) were accomplished.

The research and work performed in this dissertation allowed to have a proof-of-concept

framework to orchestrate and integrate devices in the AAL4ALL project. We kept the framework as

generic as possible and we believe that the application built during this dissertation can be ported to

other application domains, such as domotics, without a lot of effort.

Although the initial goals were accomplished, we experienced several difficulties building a

fully decentralized, peer-to-peer and blind – i.e., none of the nodes knew about the existence of

the others – cluster of nodes. These difficulties led us to abandon the Akka-Cluster solution and

explore a solution based in multi-cast DNS and message queues.

45

Conclusions

From our tests we are able to conclude that the developed framework behaves as expected

even in stress situations. However, in order to assess if the solution is ready for production, it is

essential to perform more tests in a more real ambient with more devices and nodes. Moreover, the

connection between the Component Management System and the framework must be redone as

soon as the third-party entity responsible for it releases a specification.

6.3 Future work

During this dissertation, we gathered some ideas to extend and improve this work in order to release

a production ready version.

Extend the connectivity
We developed our framework to work with Bluetooth enabled devices, because it was the

only protocol consensual between the AAL4ALL partners. Most of them are still building

prototypes and testing other technologies. This component can be extended in order to

support other wireless protocols such as ZigBee or Z-Wave.

Create alerts on driver faults
There is a supervision strategy to handle third-party drivers failures. However, it would be

useful to generate alerts in order to inform the system administrator of the failing driver.

Recollect data about the system
Since the developed system is meant to be deployed in several nodes across several buildings,

it would be interesting to have access to data about the system (e.g., CPU usage, RAM

consumption) in order to gather information to see, for instance, if is needed more powerful

nodes than the existing ones.

Test the device limit
Due to devices limitation, it was not possible to assess the number of connections allowed

by the Bluetooth library used. It would be helpful to test the framework with more different

devices from different manufacturers.

Test in a real world situation
Although the all application passed through several levels of testing, when talking about

software to monitor people’s life it is necessary to test it in a real world scenario, monitoring

the failures and infer if any data was eventually loss.

46

References

[AAL] AAL4ALL official website. http://aal4all.org/. Accessed on 30-12-2013.

[ABRV12] Alvaro Araujo, Javier Blesa, Elena Romero, and Daniel Villanueva. Security in
cognitive wireless sensor networks. challenges and open problems. EURASIP Journal
on Wireless Communications and Networking, 2012(1):48, 2012.

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, USA, 1986.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.
Computer Networks, 54(15):2787 – 2805, 2010.

[All07] OSGi Alliance. Osgi service platform, core specification, release 4, version 4.1. OSGi
Specification, 2007.

[ANLR10] Cristina Alcaraz, Pablo Najera, Javier Lopez, and Rodrigo Roman. Wireless sensor
networks and the internet of things: Do we need a complete integration? In 1st
International Workshop on the Security of the Internet of Things (SecIoT’10), Tokyo
(Japan), December 2010.

[AWW05] Ian F. Akyildiz, Xudong Wang, and Weilin Wang. Wireless mesh networks: a survey.
Computer Networks, 47(4):445 – 487, 2005.

[BLHG02] Thomas Bodenheimer, Kate Lorig, Halsted Holman, and Kevin Grumbach. Patient
self-management of chronic disease in primary care. JAMA : the journal of the
American Medical Association, 288(19):2469–2475, November 2002.

[BMKK12] J.N. Bagale, J.P.T. Moore, A.D. Kheirkhahzadeh, and P. Komisarczuk. Comparison of
messaging protocols for emerging wireless networks. In New Technologies, Mobility
and Security (NTMS), 2012 5th International Conference on, pages 1–5, 2012.

[BMR+08] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. PATTERN-
ORIENTED SOFTWARE ARCHITECTURE: A SYSTEM OF PATTERNS. Number v.
1. Wiley India Pvt. Limited, 2008.

[BPC+07] Paolo Baronti, Prashant Pillai, Vince W.C. Chook, Stefano Chessa, Alberto Gotta,
and Y. Fun Hu. Wireless sensor networks: A survey on the state of the art and the
802.15.4 and zigbee standards. Computer Communications, 30(7):1655 – 1695, 2007.
<ce:title>Wired/Wireless Internet Communications</ce:title>.

[CCEF09] Marie Chan, Eric Campo, Daniel Estève, and Jean-Yves Fourniols. Smart homes —
current features and future perspectives. Maturitas, 64(2):90 – 97, 2009.

47

http://aal4all.org/

REFERENCES

[CMA04] L. M. Camarinha-Matos and H. Afsarmanesh. Telecare: Collaborative virtual elderly
care support communities, in the. Journal on Information Technology in Healthcare,
2:73–86, 2004.

[CMRO04] L. M. Camarinha-Matos, João Rosas, and Ana-Inês Oliveira. A mobile agents platform
for telecare and teleassistance. In Luis M. Camarinha-Matos, editor, 1st International
Workshop on Tele-Care and Collaborative Virtual Communities in Elderly Care, pages
37–48. INSTICC Press, 2004.

[CRMS09] Delphine Christin, Andreas Reinhardt, Parag Mogre, and Ralf Steinmetz. Wireless
sensor networks and the internet of things: Selected challenges. In Technische
Universität Hamburg-Harburg Institut für Telematik, editor, Proceedings of the 8th
GI/ITG KuVS Fachgespräch D̈rahtlose Sensornetzë, Hamburg, Germany, pages 31–34,
Aug 2009.

[DMSS12] Marin Dinu, Marius-Corneliu Marinaş, Cristian Socol, and Aura-Gabriela Socol. The
impact of population aging on the sustainability of european social model. Timisoara
Journal of Economics, 5(17):33–46, 2012.

[GH09] V.C. Gungor and G.P. Hancke. Industrial wireless sensor networks: Challenges, design
principles, and technical approaches. Industrial Electronics, IEEE Transactions on,
56(10):4258–4265, 2009.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for artificial intelligence. In Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

[HF08] Yang Hao and Robert Foster. Wireless body sensor networks for health-monitoring
applications. Physiological Measurement, 29(11):R27, 2008.

[HKL+06] Tian He, Sudha Krishnamurthy, Liqian Luo, Ting Yan, Lin Gu, Radu Stoleru, Gang
Zhou, Qing Cao, Pascal Vicaire, John A. Stankovic, Tarek F. Abdelzaher, Jonathan
Hui, and Bruce Krogh. Vigilnet: An integrated sensor network system for energy-
efficient surveillance. ACM Trans. Sen. Netw., 2(1):1–38, February 2006.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer
Pister. System architecture directions for networked sensors. In Proceedings of the
ninth international conference on Architectural support for programming languages
and operating systems, ASPLOS IX, pages 93–104, New York, NY, USA, 2000.
ACM.

[HTSC08] U. Hunkeler, Hong Linh Truong, and A. Stanford-Clark. Mqtt-s — a publish/subscribe
protocol for wireless sensor networks. In Communication Systems Software and
Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Conference
on, pages 791–798, 2008.

[KJ03] S.E. Kern and D. Jaron. Healthcare technology, economics, and policy: an evolving
balance. Engineering in Medicine and Biology Magazine, IEEE, 22(1):16–19, 2003.

[LBC+12] Xiaohui Liang, M. Barua, Le Chen, Rongxing Lu, Xuemin Shen, Xu Li, and H.Y.
Luo. Enabling pervasive healthcare through continuous remote health monitoring.
Wireless Communications, IEEE, 19(6):10–18, 2012.

48

REFERENCES

[LSS07] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen. A comparative study of wireless
protocols: Bluetooth, uwb, zigbee, and wi-fi. In Industrial Electronics Society, 2007.
IECON 2007. 33rd Annual Conference of the IEEE, pages 46–51, 2007.

[MSPC12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.
Internet of things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497 – 1516, 2012.

[OMSJ05] Chris Otto, Aleksandar Milenković, Corey Sanders, and Emil Jovanov. System
architecture of a wireless body area sensor network for ubiquitous health monitoring.
J. Mob. Multimed., 1(4):307–326, January 2005.

[Org11] World Health Organization. Global status report on noncommunicable diseases 2010
/ [World Health Organization]. World Health Organization Geneva, Switzerland,
2011.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehen-
sive Step-by-step Guide. Artima Incorporation, USA, 1st edition, 2008.

[PB10] A. Pantelopoulos and N.G. Bourbakis. A survey on wearable sensor-based systems for
health monitoring and prognosis. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 40(1):1–12, 2010.

[RMFJ+11] Artur Rocha, Angelo Martins, José Celso Freire Junior, Maged N Kamel Boulos,
Manuel Escriche Vicente, Robert Feld, Pepijn van de Ven, John Nelson, Alan Bourke,
Gearóid ÓLaighin, et al. Innovations in health care services: The caalyx system.
International Journal of Medical Informatics, 2011.

[SGAV12] S. Singhal, A.K. Gankotiya, S. Agarwal, and T. Verma. An investigation of wireless
sensor network: A distributed approach in smart environment. In Advanced Comput-
ing Communication Technologies (ACCT), 2012 Second International Conference on,
pages 522–529, 2012.

[Tan02] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Technical
Reference, 4th edition, 2002.

[Var07] Upkar Varshney. Pervasive healthcare and wireless health monitoring. Mob. Netw.
Appl., 12(2-3):113–127, March 2007.

[WAJR+05] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. Monitoring vol-
canic eruptions with a wireless sensor network. In Wireless Sensor Networks, 2005.
Proceeedings of the Second European Workshop on, pages 108–120, 2005.

[Wil00] S.K. Williams. Irda: past, present and future. Personal Communications, IEEE,
7(1):11–19, 2000.

[WML95] S.K. Williams, I. Millar, and Hewlett-Packard Laboratories. The IrDA Platform. HP
Laboratories technical report. Hewlett-Packard Laboratories, Technical Publications
Department, 1995.

[WSO+10] Peter Wolf, Andreas Schmidt, Javier Parada Otte, Michael Klein, Sebastian Rollwage,
Birgitta König-Ries, Torsten Dettborn, and Aygul Gabdulkhakova. openaal-the open
source middleware for ambient-assisted living (aal). In AALIANCE Conference,
Malaga, Spain, 2010.

49

REFERENCES

[WVD+06] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang, Z. He, S. Lin, and
J. Stankovic. Alarm-net: Wireless sensor networks for assisted-living and residential
monitoring. Technical report, 2006.

[YIE11] M. Aykut Yigitel, Ozlem Durmaz Incel, and Cem Ersoy. Qos-aware {MAC} protocols
for wireless sensor networks: A survey. Computer Networks, 55(8):1982 – 2004,
2011.

50

Appendix A

Twitter Driver

1

2 import twitter4j._

3

4 // Twitter OAuth config

5 val config = new twitter4j.conf.ConfigurationBuilder()

6 .setOAuthConsumerKey("consumer key")

7 .setOAuthConsumerSecret("consumer secret")

8 .setOAuthAccessToken("access token")

9 .setOAuthAccessTokenSecret("secret")

10 .build

11

12 // Twitter Actor

13 class TwitterActor(t: TwitterDriver) extends Actor with ActorLogging {

14

15 def receive = {

16 case ’Start => start()

17 case tweets: List[String] => tweets.foreach(t => .writeDevice(t))

18 }

19

20 def start() {

21

22 val twitterStream = new TwitterStreamFactory(config).getInstance

23 val listener = StatusListener(self)

24 twitterStream.addListener(listener)

25 twitterStream.sample

26

27 }

28

29 }

30

31 // Status Listener. Sends 3000 tweets in a row

32 class StatusListener(parent: ActorRef) extends ServiceListener {

33

51

Twitter Driver

34 var tweets: List[String] = List()

35

36 def onStatus(status: Status) {

37 if(tweets.size == 3000) {

38 parent ! tweets

39 tweets = List(status.getText)

40 }

41 else

42 tweets = tweets ++ List(status.getText)

43 }

44 def onDeletionNotice(statusDeletionNotice: StatusDeletionNotice) {}

45 def onTrackLimitationNotice(numberOfLimitedStatuses: Int) {}

46 def onException(ex: Exception) { ex.printStackTrace }

47 def onScrubGeo(arg0: Long, arg1: Long) {}

48 def onStallWarning(warning: StallWarning) {}

49

50 }

51

52 // Twitter Driver

53 class TwitterDriver(p: DriverProxy) extends DriverBehavior(p) {

54 /*

55 * Starts communication.

56 */

57 def setup() {

58 log.debug("Twitter driver started!")

59 val twitterActor = context.actorOf(Props(new TwitterActor(this)))

60 twitterActor ! ’Start

61 }

62

63 // Read from Device

64 def readDevice(data: Array[Byte]) {}

65

66 // Read from Cloud

67 def readCloud(data: String) {}

68 }

Listing A.1: TwitterDriver used to test the system.

52

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goals
	1.3 Outline

	2 Problem Statement
	2.1 AAL4ALL
	2.2 Sensor Networks
	2.2.1 Scalability
	2.2.2 Auto Configuration
	2.2.3 Deployment

	3 State of the Art
	3.1 Background
	3.1.1 Internet of Things
	3.1.2 Wireless Sensor Networks
	3.1.3 Wireless Technologies
	3.1.4 Distributed communication
	3.1.5 The Scala language
	3.1.6 The Actor Model

	3.2 Related work
	3.2.1 TeleCARE
	3.2.2 ALARM-NET
	3.2.3 openAAL
	3.2.4 CAALYX
	3.2.5 Summary

	4 Design and Implementation
	4.1 Methodology
	4.1.1 Test-Driven Development
	4.1.2 Re-using components
	4.1.3 Deployment

	4.2 Concepts
	4.3 High-level Architecture
	4.4 Implementation Details
	4.4.1 Concurrency and fault-tolerance
	4.4.2 Actor hierarchy
	4.4.3 Interaction with the cloud
	4.4.4 Obtaining configurations
	4.4.5 Device drivers
	4.4.6 Clustering nodes

	4.5 Adopting in AAL4ALL
	4.5.1 Low-cost computing
	4.5.2 Communicating with sensors and actuators
	4.5.3 System deployment

	4.6 Summary

	5 Tests and Results
	5.1 Unit tests
	5.2 Integration tests
	5.3 Real application tests
	5.3.1 Stress tests
	5.3.2 Reliability tests

	5.4 Summary

	6 Conclusions
	6.1 Overview
	6.2 Summary of the contributions
	6.3 Future work

	References
	A Twitter Driver

