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Abstract

Breast cancer is one of the most aggressive diseases, affecting thousands of women every year.
Usually, this kind of patients require invasive treatments, such as surgery and radiation therapy,
leading to undesired physical and psychological secondary effects. At an aesthetic level, there
is a demand for solutions that help processing clinic evaluations before and after the procedures,
since the commonly used subjective approach is based on photography. This approach may lead
to non-optimal decisions and consequently unpleasant results. For this reason, 3D body model
reconstruction has been shown as a practical solution in order to facilitate the doctor’s work on
observing a patient torso. The existent equipments in the market, used for 3D modeling, exhibit
high-costs and normally require special knowledge behind them, making the task of applying them
in a regular basis for physicians, a very complex job. Over the last 6 years, since the release of
the Microsoft Kinect, there has been a growth of studies concerning low-cost RGB-D cameras.
Because of this, developers have seen the opportunity to implement inexpensive and simpler so-
lutions for 3D modeling in order to use them in a myriad of applications, specially in medicine.
The creation of 3D models from human bodies demands algorithms to get minimal errors in the
registration of the point clouds. These errors are a recurring problem, due to the non-rigidity of
the human body that is captured during the acquisition process.

This thesis relies on improving and automatizing the framework that has been developed for
the project PICTURE from the VCMI group of INESC-TEC, with the purpose of creating an
inexpensive and easy to use 3D model system, for medical analysis on breast cancer patients,
without any special knowledge. This work proposes a few improvements for the given framework,
such as: automatic body pose selection, automatic segmentation process of rigid body parts, 3D
data processing for noise reduction and a study of rigid registration methods for multiple clouds
points is done.

The results have shown some optimistic improvements from the previous framework, where
the reconstruction of the patient’s 3D models with data from low-cost RGB-D cameras were
achieved with low distortion errors in comparison with models from an high-end 3D modeling
System such as the 3dMD. Additionally the framework automation was accomplished for the se-
lection of the patient’s pose and the extraction of rigid body parts.

Keywords: 3D Modeling and Reconstruction; Rigid Registration; Low-cost cameras; RGB-D
sensors; Breast Cancer.
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Resumo

O cancro da mama é das doenças mais agressivas que afeta milhares de mulheres todos os anos.
Geralmente, este tipo de doente necessita de tratamentos agressivos, como cirurgia e radioterapia
levando a efeitos secundários indesejáveis tanto físicos como psicológicos. A nível estético existe
uma procura recorrente de soluções que ajudem a processar avaliações clínicas, antes e depois, de
procedimentos comuns como abordagem de avaliação subjetiva baseada em fotografia. Esta abor-
dagem pode conduzir a decisões menos exatas e consequentemente a resultados desagradáveis.
Por esta razão o modelação 3D para reconstrução do corpo humano tem sido apresentada como
uma solução prática, que facilita o trabalho dos médicos durante a observação do torso da paciente.
Os equipamentos existentes no mercado para modelação 3D, têm custos elevados e, normalmente,
exigem conhecimentos prévios sobre estes. Tornando a sua aplicação regular uma tarefa complexa
para o médico. Nos últimos 6 anos, desde o lançamento do Microsoft Kinect, houve um aumento
dos estudos sobre câmaras RGB-D de baixo custo. Devido a isto, investigadores têm visto a opor-
tunidade para implementar soluções menos dispendiosas e mais simples em modelação 3D para
as usa em inúmeras aplicações, tal como na medicina. A criação de modelos 3D do corpo humano
exige algoritmos para minimizar a obtenção de erros no registo das nuvens de pontos. Estes erros
são um problema recorrente devido à falta de rigidez do corpo humano que são observados durante
o processo de aquisição.

Esta tese assente na melhoria e automatização de uma ferramenta que tem sido desenvolvida
para o projeto PICTURE do grupo VCMI, do INESC-TEC, com o objetivo de criar um sistema
de modelação reconstrução 3D para a análise médica de cancro da mama de pacientes sem neces-
sidade de conhecimentos adicionais. Este trabalho propõe alguns melhoramentos da ferramenta
desenvolvida como: seleção automática da posição do corpo, processo automático de segmentação
das partes rígidas do corpo, processamento de dados 3D para redução do ruído e um estudo sobre
métodos de registo rígido de múltiplas nuvens de pontos.

Os resultados mostraram alguns melhoramentos em comparação com a ferramenta anterior,
onde a reconstrução dos modelos 3D das pacientes, a partir de dados adquiridos das câmaras
RGB-D de baixo custo, apresentam erros baixos de distorção, em comparação com modelos de
uma sistema topo como o 3dMD. Adicionalmente a automatização da ferramenta foi conseguida
na seleção da posição do paciente e a extração de partes rígidas do corpo.

Palavras-chave: Modelação e reconstrução 3D; Registo Rígido; Câmeras de baixo-custo; Sen-
sores RGB-D; Cancro da mama.
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“In the end it is not the years in your life that count,
it’s the life in your years.”

Abraham Lincoln
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Chapter 1

Introduction

1.1 Background

In the age of technological evolution, particularly in computer vision, there has been a huge search

for the development of tools for 3D modeling and reconstruction of objects and scenarios, with

perspectives of great potential. In the level of applicability, we can find several areas of research

such as: robotics, military, quality control, 3D printing, virtual reality, multimedia, computational

animation and medicine [1].

In the world of medicine there is a constant demand for new techniques and tools, with the re-

quirements of being more efficient, non expensive and with an easy applicability in many different

medical specialties, going from the detection of pathologies to surgery.

Breast cancer is a disease with a large incidence on women, with a high aesthetic and psycho-

logical impact. Its aggressiveness implies treatments that lead, in many cases, to surgery such as

mastectomy or Breast Cancer Conservative Treatment (BCCT), in other words, the local removal

of the tumor [2].

In clinical breast cancer evaluations, parameters such as aesthetic, color, geometry, volume,

profile and symmetry before and after treatment or surgery, traditionally resumed to photography,

imply a subjective evaluation from one or more observers.

The introduction of new technologies like 3D cameras, to create complete 3D models of the

torso of the woman, have allowed to estimate and do a quantitative analysis of the characteristics

of the breast, helping the doctors planning their treatments, such as surgery for the patient [3].

Clinical routine needs practical tools. Much of the equipment that exists in the market has high

costs, lack of portability, a complexity in its use due to the requirement of special knowledge and

an increase of expenditure of hiring personnel [4].

3D modelling is considered as a field in development. Diverse organizations have presented

solutions to the production of software tools and explore new techniques. Due to these orga-

nizations it is possible to obtain inexpensive 3D cameras, providing free software tools with a

wide shared documentation within a community that is interested in the look for innovation in the

branch of computer vision [5].

1
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1.2 Motivation

Currently, there are scenarios where a surgeon would benefit from a tool which allows to share

information with the medical team and show how some parameters could affect the aesthetic out-

come of the surgery. From the point of view of the patient, it would be more interesting to get

a more comprehensible and illustrative way to understand the conditions of a surgery, before and

after, in order to observe its impact.

The existent solutions available on the market have become expensive, require specialized per-

sonnel and only operate in controlled environments. The motivation for this research arises from

the need of finding solutions for the breast cancer area with the introduction of modeling tech-

nologies and 3D reconstruction. Those solutions should comprise simple and low-cost systems,

to be used in aesthetic evaluation and surgery planning, by any healthcare professional without

requiring any extra knowledge.

Taking into account that it is intended to use a non usual equipment in health, it shows how

this is a major challenge to develop algorithms that build realistic 3D models and complete from

several ’views’ shot of a non-rigid object, that varies its shape in time. The human body is prone

to natural involuntary movements such as breathing, leading to errors in data readings very often,

making the whole process harder for these systems.

1.3 Objectives

The VCMI group from the INESC-TEC, has been looking for solutions, as part of the European

research project PICTURE [6], for the development of a framework to be integrated in 3D model

reconstruction system, for breast cancer analysis and treatment, with the goal of using simple and

low-cost RGB-D sensors. This sensors work by collecting data through a RGB camera, in order

to get several photographs and simultaneously with a depth sensor capable of getting information

on the distances from the surfaces of an object of interest. After mapping and processing all the

values from the collected data, this will finally result in point clouds that will be used for the

registration and generation of unique complete 3D model of a woman torso.

The main objectives of this thesis focus on improving the given framework and solve its main

issues as for the automation, accuracy and efficiency, in order to make it more independent of the

acquisition technology and user input.

1.4 Contributions

The main contributions that have resulted in this thesis are the following:

• Body Pose Selection - Automatize the process of selecting the main views of frontal, left

and right poses;

• Segmentation of rigid body parts - Automatize the segmentation of the rigid body parts to

improve the rigid registration process;

http://medicalresearch.inescporto.pt/breastresearch/index.html
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• Preliminary processing - Implement a 3D data processing module, to improve the appear-

ance of the point clouds by smoothing the surface and remove outlier points which result

from the noise of the acquisition data with the Microsoft Kinect;

• Rigid Registration - Improve the accuracy of the algorithm so it can handle the difficulties

of non rigidity from the human body and its variability in time;

1.5 Document Structure

In addition to the introduction, this dissertation contains five more chapters. For the chapter 2, it

is made a bibliographic revision and an overview on related works. In the chapter 3, some context

about the previous work done for the project ’PICTURE’ is given, in order to explain the purpose

of this thesis and where it is necessary to intervene in the framework. In chapter 4, it is explained

in detail the methodology followed for each step of the framework that was developed. In the

following chapter 5 results and discussion according with the validation. Finally, in chapter 6 a

conclusion of this work is made.
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Chapter 2

Literature Revision

In this chapter, it is discussed the state of the art related with the purpose of the thesis. It reviews

what exists today and the different approaches that can be found on 3D imaging techniques, in-

cluding some examples of devices which are available on the market for consumer use. Also, a few

studies on their applicability in 3D modeling and body pose selection and identification are made.

Next, a review about rigid registration on point clouds is done, followed by some new techniques

that have been recently proposed.

2.1 3D imaging techniques

A lot of new techniques for 3D imaging have been developed over the past few decades. Taking

into account the variability and complexity of different situations, not every sensor and technique

may be appropriated for every kind of application. At the moment it can be said that, for all kinds

of objects and scenarios, there is no single modelling technique able to satisfy all the requirements

of high geometric accuracy, portability, full automation, photo-realism, low-cost, flexibility and

efficiency [7].

A good part of current sensors operate primarily in two forms. First the active form, which act

by projecting controlled light onto objects followed by recording the respective reflections, which

will contain the information about the shape. The second is known as the passive form, where

the main point is acquiring energy from an object that is being transmitted [8]. In both forms the

outcome is dependent of the surrounding environment [9].

In general 3D imaging techniques can be grouped into three types of technological methods as

follows: optical triangulation, time delay and the use of monocular images. For the measurements

it is possible to get them with direct techniques, where they result in range data, creating a relation

with distances between the surface and the sensor. Indirect measures are obtained from techniques

based on monocular images or by the usage of prior knowledge about the surfaces properties [8].

The next table 2.1, from the 2009 Sansoni’s review [8], classifies the variety of non-contact

and optical methods used by nowadays hardware.

5
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Table 2.1: A classification of 3D imaging techniques (from [8]) .
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Laser triangulators X X X X
Structured light X X X X
Stereo vision X X X X
Photogrammetry X X X X
Time of Flight X X X X
Interferometry X X X X
Moiré fringe
range contours

X X X X

Shape from focusing X X X X X
Shape from shadows X X X X
Texture gradients X X X X
Shape from shading X X X X
Shape from photometry X X X X

In the next sections, it is presented an overview of three very common techniques that had a

major impact in several of today’s well known 3D information acquiring equipment [10].

2.1.1 Structured light

The structured light sensors project bi-dimensional patterns of non-coherent light to the scene.

As the structure of the projected pattern is known, the object depth map can be reconstructed by

looking at the differences between the projected and the recorded pattern. The projected pattern is

deformed by the object and can be used to describe its structure orientation or texture [11] [9].

Figure 2.1: Structured light principle, with vertical slits projection pattern example (from [11]).
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The projection of grid patterns, dot patterns, multiple vertical slits (as on Figure 2.1) of mul-

ticolor projection patterns have been extensively studied. There is a wide variety of patterns and

decoding algorithms. However, they share a set of common characteristics or required steps that

every algorithm must follow, and can be categorized in: camera projector calibration, pattern gen-

eration, projection and recovery, finding correspondences, triangulation, and surface creation [12].

Since it is considered a simple process, some low-cost sensors have arisen in the markets with

high data acquisition rate and with resolution quality [13] [14]. Some of the weaknesses are found

in situations with missing data due the presence of occlusions and shadows [11].

In more recent developments (mobile 3d system, broadway scanner) of structured light sys-

tems, the main goal has been to increase the speed of projections into multiple patterns, in order to

enable the real-time acquisition, with a special look to motion and human body acquisitions [8].

Some known examples of this technique are described as it follows.

2.1.1.1 Microsoft Kinect 1.0

In November 2010, Microsoft introduced the Microsoft Kinect for the Xbox 360 video game

console. Designed to work along with a video display while tracking a player body and hand

movements in 3D space, it allows the user to interact with the console [15].

Figure 2.2: Microsoft Kinect hardware1.

As Figure 2.2 suggests, the Microsoft Kinect contains a RGB VGA camera, a depth sensor,

an infrared (IR) light source projector, a three-axis accelerometer, a multi-array microphone (to

get the direction of the audio source) and a supporting hardware which allows to send information

coming from the sensor to an external device via USB. It is a low weight and small dimension

sensor, with an angular field of view of 57o horizontally and 43o vertically [16].

The principle of depth imaging is structured light, where the IR projector projects an IR

speckle dot pattern on the object and the IR pass filtered CMOS camera captures the reflected

light. The depth is calculated (by triangulation) from the deformation of the known irregular pat-

tern, caused by object distance. In other words, the amount of disparity observed, will correspond

to the necessary shift in order to match the pattern captured by the IR camera with the reference

1https://msdn.microsoft.com/en-us/library/jj131033.aspx
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model [11]. The depth images are provided by a frame rate around 30 Hz and have a spatial res-

olution of 640×480 pixels with 11 bits, which provides 2048 levels of depth [17]. The range of

operation is 0.8 to 3.5 meters and the average resolution is 1.31 centimeters at 0.8 meters [18].

Some of the reasons that explain why the Microsoft Kinect has reached a high level of pop-

ularity within the research communities are its price, which is around 100e , and the amount of

documentation available online freely [10]. It comes with a versatile Software Development Kit

(SDK) by Microsoft and several open-source drivers, allowing any user to connect the device

to his/her own personal computer and start developing [16]. The community has never stopped

working to evolve and bring a lot of new libraries and open source drivers such as OpenNI, NITE

and OpenKinect [1]. All have emerged for various kind of applications in order to create tools

for scene perception and analysis with the advantage of being able to be produced in many dif-

ferent programming languages like C#, C++, Visual Basic, Java, Python and ActionScript [11].

On March 2013, a new library called Kinect Fusion was released which allowed to reconstruct 3D

scenes in real time just by holding in hand the device and moving across space [19].

2.1.1.2 Orbbec Astra

Figure 2.3: Orbbec Astra2.

More recently, Orbbec released the Astra camera (Figure 2.3) and it claims to be a powerful

and reliable standalone 3D camera. It is Optimized for long and wide range distances for scenarios

including gesture control, robotics and 3D scanning. It was developed to be highly compatible

with existing OpenNI applications, which is ideal for pre-existing software on the market. It also

comes with the Orbbec Astra SDK software for developing along side the OpenNI framework in

very known operating systems such as Windows, Linux and Android [20]. For the price of $149.99

we can get a small, light-weight device, with a depth sensor, using the structured light technique,

on a resolution of 640×480 pixels of 16bit at the rate of 30Hz. It presents a field of view of 60o

horizontally and 49.5o vertically with ranges between 0.4 to 8 meters [20].

2https://www.linkedin.com/company/orbbec-3d-technology-international-inc-
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2.1.1.3 Intel RealSense R200

Intel is very well know for their production of Original Equipment Manufacturer (OEM) products.

With this in mind, Intel RealSense R200 camera (Figure 2.4) is meant to be integrated into the back

of a tablet or laptop display in a rear-facing topology, but also to be used in installation projects by

providing toolkits for developers. It offers capabilities for applications on Scene perception, face

tracking and recognition, 3D scanning objects and bodies, "Depth enabled Photo & Video" and

speech recognition, with the help of a microphone. Being considered good for medium-long range

indoor applications, it was developed in a variety of frameworks supporting C++, C#, Javascript,

Processing, Unity and Cinder, thanks to the robust RealSense SDK [21].

Figure 2.4: Intel RealSense R2003.

This camera brings a Full HD 1080p (1920× 1280 pixels) RGB video resolution at the rate

of 30Hz, while the depth sensor is at 640× 480 pixels for a rate of 60Hz. Since it also uses the

structured light, it possesses a laser projector companion with the sensor for field of view of 90o

both horizontally and vertically for ranges from 0.5 to 3.5 meters. It was released in the September

of 2015 and is currently available on the market for a price of $99 [21].

2.1.2 Time of flight

This active method produces a depth image from the object’s surface information in real time

[22]. The object is hit with a light signal, featured as a modulated amplitude cosine wave, with a

frequency generated by the sensor’s laser pulse emitter. As seen in Figure 2.5, the sensor’s receiver

will detect the reflection and measure the phase difference between the emitted and received lights

so we can get the depth of the object at short ranges [10] [11].

This calculations can be achieved by the formula 2.1, where c is the velocity of light, d the

distance travelled by it, f mod is the modulation frequency and ∆ represents the phase shift [10].
3https://software.intel.com/sites/default/files/managed/89/d4/realsense-r200-camera-375x295.png
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Figure 2.5: Time of flight principle from [11].

d =
c
2

∆Φ

2π f mod
(2.1)

Another different approach for the time of flight (easy to find in LiDAR sensors) is to send

pulses with a rapid laser at the object, such that it becomes possible to calculate the time that the

pulse took to travel and get back to the sensor. For close range objects, about one meter, using

time of flight gets harder because the time differences get shorter. This will require high speed

timing circuitry. Although the accuracy drops sharply at close measurement ranges, it is possible

to get good results with medium large ranges, from 15 to 100 meters [8].

Sensors that use this technology normally face a few problems with shiny surfaces, which will

not reflect so well unless they are perpendicularly oriented to the line of sight. Some key advan-

tages are found as the good acquisition rate and the performance independently to the ambient

light [8].

Next, a few examples of sensors using this technique are described.

2.1.2.1 Microsoft Kinect 2.0

The second generation of the Microsoft Kinect sensor (Figure 2.6) was released along with the new

Xbox One console by the summer of 2014. Comparing this new camera with the first generation of

Microsoft Kinect, the main difference is found in the technical part with the switch of 3D imaging

technique, going from structured light to the approach of Time of flight. It promised to be more

precise, since it can create a series of different output images independently of ambient light [23].

Those series can be acquired at multiple modulation frequencies, which can help eliminating the

ambiguity of depth measurements [11].

4http://www.xbox.com/pt-PT/xbox-one/accessories/kinect-for-xbox-one#fbid=DWcy0kOhflT
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Figure 2.6: Kinect second generation4.

Also a few of other technical specifications have been improved to solve some drawbacks of

the first Microsoft Kinect version, such as, the low geometric quality, the poor quality from the

RGB camera and problems with the structured light approach, for not being always robust enough

to provide complete framed scenes. Some extracted information would come with some missing

parts and very noisy [11][4]. However the new camera brings an High Definition color camera

(resolution of 1920×1080 pixels) and a new depth camera (resolution of 512×424 pixels) with

much better field of view 70o horizontally and 60o vertically [24][23]. The new released SDK

2.0 offers tools to track six full skeleton, including the information of the position, direction and

rotation of 26 skeleton joint for each detected body, with a good accuracy at the ranges of 5 meters

[25]. The external hardware interface USB 3.0 makes this device able to transmit data at the rate

of 30 Hz but with a new improvement on the quality of its images [24]. Although this sensor offers

a new quality standard for its price, around $150, for being so recent, there is not much research

and documentation available. For that reason, researchers from the computer vision communities

still prefer the original Microsoft Kinect 1.0 for their own applications.

2.1.2.2 Softkinectic DepthSense 325

This camera follows the time-of-flight technique for consumer and industrial close range appli-

cations [26]. As soon as Softkinetic launched this pocket camera (Figure 2.7), it alleged that it

would be the most accurate depth camera at the market. It was built to provide precise finger and

hand tracking into a wide range of applications in different platforms. The depth sensor delivers

real time 3D distance data in order to create depth map images with a resolution of 320× 240

pixels from a rate of 25Hz up to 60Hz. It works in a range distance between 0.15 and 1 meter,

with a field of view of 74o horizontally and 58o vertically. The noise that can be found in the data

normally is less than 1.4 centimeters at 1 meter distance from the object to the sensor. The RGB

camera allows to record video with a resolution of 1280× 720 pixels with a field of view 63.2o

5http://www.theverge.com/2012/6/5/3065706/softkinetic-ds325-worlds-smallest-gesture-camera
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Figure 2.7: Softkinectic DepthSense 3255.

horizontally and 49.3o vertically. With the dual microphones also integrated it allows audio-based

interaction. Although production has been discontinued, it is still available for the price of $259

[26].

2.1.2.3 PMD[vision] CamCube 2.0

CamCube 2.0 is an optical sensor created by PMD[vision], considered a high-end product at the

time of its release due to its performance (Figure 2.8). It presents a depth resolution of 204×204

pixels, in an average frame rate of 25Hz for measurement ranges between 0.3 to 7 meters and with

a field of view of 40o horizontally and 40o vertically [27].

Figure 2.8: PMD[vision] CamCube 2.06.
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Because of the use of time-of-flight technology, the key features of this device are the follow-

ing: being flexible in measurement ranges using modular light sources, multi-camera operation

using different frequency channels, flexible readout with programmable region-of-interest (ROI),

suitable for indoor and outdoor environments and the use of Suppression of background Illumina-

tion (SBI) technology. The toolkits and API available are mainly for programming interfaces in C

and MATLAB [27].

2.1.3 Stereo Vision

This method uses two or more cameras that capture the same scene simultaneously in displaced

space (see Figure 2.9). No special equipment or projections are needed [10].

Figure 2.9: Simplified Stereo Vision System7.

The acquired images will present a small displacement, which allows to get depth informa-

tion of the scene points from that divergence. The depth values for each point are calculated by

means of the triangulation with the corresponding points found within a pair of images. After the

calculations are made, it is possible to reconstruct the 3D scene [10].

Stereo vision, among all the passive sensors techniques, is the one that has become more

popular for applications in robotics and computer vision, where the interpretation of the scenario

is more important than the quality of the data, which depends with the surface texture [28].

This technique can be found in the sensors which will be next described.

2.1.3.1 StereoLabs ZED Stereo Camera

The Zed Stereo Camera (Figure 2.10) is a depth sensor based on the passive stereo vision tech-

nique. It is able to produce a high resolution side-by-side video on a USB 3.0 interface containing

two synchronized left and right video streams. With the use of ZED SDK, a host machine is able

6https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/PMDvision_CamCube.jpg/640px-
PMDvision_CamCube.jpg

7http://www.ni.com/cms/images/devzone/tut/lrlwhxvh4348425072667506924.jpg
8https://www.stereolabs.com/img/about/zed_face.jpg
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Figure 2.10: ZED Stereo Camera8.

to process the data and compute the depth map from the side-by-side video in real-time [29]. It

captures video in different quality levels, being the best at 2.2K resolution (4416× 1242 pixels)

with a frame rate of 15Hz. Despite others modes provide less resolution quality, they are able to

operate at faster frame rates up to 120Hz. The Depth data provide at the resolution of the video

with 32-bits depth resolution per pixel, for distances ranging between 1 to 15 meters. It uses wide

angle lens with reduced distortion leading to a field of view with a maximum of 110o diagonally.

This camera is targeted for Windows and Linux environments with its own SDK provided for de-

velopers and compatibility with OpenCV toolbox. Although the great performance and powerful

hardware, the provided SDK is limited to just capturing the depth data stream, without any further

processing or high level interpretation, which means that the developers are responsible for the

implementation of applications, such as tracking objects and scanning scenarios. This device was

released in May 2015 and can be found at the price of $449 at StereoLabs online shop [29].

2.1.3.2 DUO3D DUO MLX

The DUO MLX is a compact depth sensor (Figure 2.11), intended for the use in research areas

such as robotics, inspections, microscopy and human computer interaction. It is based in the stereo

vision technique combined with high power infrared LEDs and filters allowing to precisely control

lighting environment for both indoor and outdoor usage [30].

It offers a configurable stereo resolution in a set of different modes, from 752×480 pixels at

the rate of 56Hz up to 360Hz but for a lower resolution of 320×120 pixels. It operates in a field of

view of 170o wide angle and with distance ranges between 0.3 to 2.4 meters with low distortion.

This specifications work for both RGB and Depth data that is processed by the provided basic

SDK for the creation of depth maps although there is no higher-level interpretation. The SDK is

9https://duo3d.com/public/media/products/web_00-4.png
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Figure 2.11: DUO MLX9.

available for almost every operating system including even ARM-based systems. Since its release

in May 2013, it can be bought for the price of $695 [30].

2.1.3.3 Ensenso N10 Stereo 3D camera

Figure 2.12: Ensenso N10 Stereo 3D camera from IDS10.
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Imaging Development Systems (IDS) introduced the 3D stereo camera Ensenso N10 (Figure

2.12), which works by using the stereo vision principle combined with a projected light technique.

It owns two global shutter CMOS sensors and a pattern projector, which is used to project a random

light pattern on the object. Through triangulation, stereo images are matched with the help of the

projected patterns which presents good results even in unstructured surfaces [31] [28].

It is a very light weight compact device, compared to other sensors. Besides, it provides images

with a resolution of 752×480 pixels and operates in a distance between 280-1400 mm, at a frame

rate up to 30 Hz. The depth sensor presents a resolution around 0.1mm and 1.6mm depending

of the object distance. For development, IDS provides supporting software freely, which includes

MVTec HALCON interface and an object-oriented API (in C++ language) [10]. Due to these

specifications, this equipment may be considered as an high-end device.

2.1.4 Summary

After this overview concerning the three most common 3D imaging techniques, a summary on the

pros and cons is done, with the following simplified Table 2.2.

Table 2.2: 3D imaging Technique Strengths and Weaknesses.

3D imaging Technique Strengths Weaknesses

Structured Light Pattern

- High data acquisition rate;
- Not so much computation demanding;
- Devices using this technique are
easy to find for a low costing price;

- Prone to interference
of the light conditions;
- Missing data in correspondence
with occlusions and shadows;

Time of Flight

- Good data acquisition rate;
- Great accuracy ;
- Performance generally independent of
ambient light;

- Average cost is higher ;
- Complex build and circuitry;
- Multiple reflections of the
emitted laser;

Stereo Vision

- High accuracy on well defined targets;
- For the acquisition equipment, only need
2 cameras and no special electromagnetic
emitter and sensor receiver are required;
- Depth resolution as good as the RGB
cameras;

- More computation demanding;
- Sparse data covering;
- Limited to well defined scenes;
- Low data acquisition rate;
- Equipment cost;

Concerning the objectives of this thesis on getting a relatively affordable, easy to use and

portable system, by the analysis of the Table 2.2 it is possible to conclude that the most preferred

technique would be the Structured Light pattern due to the fact that it has a good combination of

strengths that the others do not have. In other words, this is a technique where it is easy to find very

affordable sensors, with a high data acquisition rate and does not demand so much computational

resources.

10https://en.ids-imaging.com/store/media/catalog/product/cache/2/image/795x795/9df78eab33525d08d6e5fb8d27136e95/c/a/camera-
usb2-ensenso-3d-1_6.jpg
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Within the preferred technique, it is presented a summarized analysis (see Table 2.3) of the

main advantages and disadvantages between the previous selected and described examples of sen-

sors.

Table 2.3: RGB-D Strengths and Weaknesses comparison table.

RGB-D Sensors Strengths Weaknesses

Microsoft Kinect 1.0

- Huge amount of documation and
software toolkits built within the
computer vision’s community
available online targeting this device;
- Good frame rate for both depth and
color sensors;
- Low-Cost price;
- Simplicity of usage;

- Accuracy dependent on lighting
conditions;
- The field of view’s angles are not
the best with this camera;
- Lower depth resolution
compared with more recent sensors;

Intel RealSense R200

- Small dimensions, good for
portability;
- Good frame rate at 60Hz;
- Cost;

- Lack of documentation support;
- Depth range distances are shorter
compared with others;
- No Skeleton tracking;

Orbbec Astra

- Good pixel depth resolution at 16 bits;
- Large distance ranges;
- Well made system, with a fast
performance processor;

- Very few supporting toolkits;
- Lack of documentation support;
- Low frame rate for
the RGB camera;

It is fair to conclude that, from the available sensors in the market, the one that calls more

attention would be the first generation of the Microsoft Kinect. Despite having sensors with better

hardware specifications, they turn out to always be more expensive, difficult to use and generally

present a lack of information with software. Besides, Microsoft was the first to release an af-

fordable RGB-D with great support by the computer vision community dedicated to 3D modeling.

This has encouraged developers and groups of research to build the most part of the documentation

and software, that are found today and available freely.

2.2 3D modeling applications with Microsoft Kinect

As previously stated, since the release of the Microsoft Kinect sensor, several researchers have

given new and different perspectives in the field of computer vision, contributing specially to 3D

modeling. In this section, a few projects involving the use of Microsoft Kinect sensor for 3D body

modeling will be shown.

One of the first approaches in this area was presented in 2011 by the research group Kinect

Fusion from Microsoft [19]. Their project contributed with a system that would allow a user to

pickup a standard Microsoft Kinect camera and move around a room in order to reconstruct a

very precise 3D model of the scene, with a great quality. Basically, to obtain this, the system

would continually track the 6 degrees-of-freedom from the pose of the camera and fuse with the

live depth data from the camera into a single three-dimensional model. As long as the user gets
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more new views of the physical scene, more data is available and revealed to be fused into the

same reconstruction model, so that in the end it gets more complete and refined. A few of the

uses of KinectFusion goes for Low-cost Handheld Scanning (Figure 2.13), Object segmentation

through direct interaction (Figure 2.14) and Geometry-Aware Augmented Reality (Figure 2.15)

[32]. For the implementation, they have designed algorithms for real-time camera tracking and

surface reconstruction, working altogether for parallel execution on the Graphics Processing Unit

(GPU) pipeline [32]. This pipeline consist on four main stages:

• Depth Map Conversion converts image coordinates into 3D points and normals in the

coordinate space, to get a live depth map.

• Camera Tracking in this phase, the goal is to align the current oriented points with the

previous frame with a rigid transformation based on the 6 degrees-of-freedom.

• Volume Integration they use volumetric surface representation instead of creating a mesh

by estimating the physical surface from the conversion of the oriented point into global

coordinates based on the global pose of the camera.

• Raycasting In the end, the volume is raycast to extract the views of the implicit surface.

This raycasted view of the volume will represent an estimation of a synthetic depth map that

can be used as a less noisy and consistent reference frame for the alignment of the frames.

Figure 2.13: The user rotates an object in front of a fixed Microsoft Kinect to allow a 360o view
3D reconstruction and printout the outcome 3D model (from [32]).

In 2011 a new method was presented by Alexander Weiss for human shape reconstruction

from noisy single image from one Microsoft Kinect sensor [33]. It combines low-resolution image

silhouettes with coarse range data to estimate a parametric model of the body. A SCAPE body

model was used, which factors a consistent 3D body shape and poses variations [34]. With a

simple method it is possible to estimate standard body measurements from the recovered SCAPE

model and show how the accuracy can be nearly the same as high cost commercial body scanning

systems.

Guanglin Zhang published in 2014 a new technique for human body 3D modeling with the

use of a single Microsoft Kinect camera, where the models are reconstructed by using the tools
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Figure 2.14: After scanning an entire scene including the object of interest, the 3D reconstruction
shows the surface normals and textures mapped model. Allowing the system to monitor in real-
time changes and for example color yellow the reconstruction of the segmented object that has
changed position(from [32]).

Figure 2.15: Virtual sphere composited onto texture mapped 3D model and calibrated live Mi-
crosoft Kinect. Real-time 3D model used to handle precise occlusions of virtual by complex
physical geometries(from [32]).

Figure 2.16: An overview of the Weiss method proposal. (2a) Four views of the body in different
poses are captured from a single Microsoft Kinect. (2b) 3D point cloud and segmented 3D point
cloud with ground plane for four frames (one shown). (2c) Recovered pose and shape (4 frames).
(2d) Recovered shape in new pose. (from [33]).

of Processing and Point Cloud Library (PCL) [35]. In order to achieve the reconstruction, it was

adopted Iterative Closest Point (ICP) algorithm for registering the captured upper human body 3D

point cloud data, with the standard reference human body data. The 3D data should be converted

to an appropriated format so that it can be viewed in the PCL. Zhang concluded that the number

of points of a human body is too much to register precisely and that may lead to a little matching

error, although the use of the Kinect showed (see Figure 2.17) to be enough for gathering data of

the upper human body.
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Figure 2.17: This Figure represents the reference model and the target model. A transform is
needed to be applied to make sure that these sets can be gathered in the same coordinate plane and
coincident after a few iterations of the algorithm [35].

Another approach was presented by Zhenbao Liu [36] in 2014 with the idea of using multiple

low-cost depth cameras with particular interest of using Microsoft Kinects for 3D real human

reconstruction. The cameras are positioned in the form of a polygonal mesh, helping the user to

enter a virtual and immersive environment. First, the system removes the static background to

obtain a 3D partial view of the human, such that later every two neighboring partial views can be

registered. The whole human model is registered by using all the partial views in order to obtain

a single clean 3D body point cloud. The 3D mesh model is obtained from the point cloud by

implementing Delaunay triangulation and Poisson surface reconstruction. This strategy has found

some limitations mainly due to the involuntary motion of the users appearing in the different partial

views, which leads to the lost of depth values, leading to the failure of the reconstruction process.

Another observed aspect that complicates the process, is when the overlapping region between

two views is almost flat, making more difficult to get an accurate registration. Because of the lack

of features in the overlap, it becomes harder to find the right correspondence given two views.

Figure 2.18: Environment of the experiment, where six depth cameras were placed around the
user(from [36]).
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Figure 2.19: This Figure shows progression from two partial 3D views without any correspon-
dence, that were aligned by initial feature correspondence, resulting after a few iterations a final
registration between the two (from [36]).

Figure 2.20: An example of a failure case of registration with two views resulting in a defective
registration because of the variation position of the body (from [36]).

2.3 Rigid Registration

Point cloud registration is the process of overlaying two or more point clouds of the same scene

taken at different times, from different viewpoints. It will align two point clouds geometrically,

based on the differences between the pair due to different conditions. This process is important

to achieve a complete model of the object, because of the incomplete and noisy data from just a

single 3D viewpoint [37]. In medical applications, it is usual to face problems due to the non-rigid

scenes causing difficulties in registration [4]. The involuntary and unpredictable movements of the

object of interest and the lack of a priori knowledge about the poses and views, are a few of the

challenges that researchers have been looking to overcome [38].

The 3D Registration methods can be subdivided in Coarse Registration and Fine Registration.

Next a brief description for each group of methods is done, followed by some examples.
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2.3.1 Coarse Registration Methods

In coarse registration, the goal is to compute an initial estimation of the rigid motion between two

point clouds using correspondences between both. In order to compute it, distances between corre-

spondences are minimized. These methods can be described by: Registration strategy, Robustness,

Motion estimation and kind of correspondence [39].

For the group of coarse registration, it is possible to classify on shape features or matching

methods [40]. Shape features methods use neighborhood information with the goal of finding

correspondences along the search for point’s characteristics. On the other hand, Matching methods

focus on finding points from a pair of surfaces to be associated [39] [38].

2.3.1.1 Spin Images

This method is a 2D image characterization of a point belonging to a surface. Considering a given

point, its tangent plane is computed by using the position of its neighboring points. After that,

a region around the given point is considered in which two distances are computed to determine

the spin image. The distance between each point to the normal vector by the tangent plane and

the distance between this point to the tangent plane are defined. Finally, a table is generated with

the values of the distances, where each cell contains the number of points that corresponds to

a certain region. Spin images are computed in the first cloud and then, for each one, the best

correspondences are sought in the second view. The transformation can be applied after finding

the best correspondence [39] [41].

2.3.1.2 Principal component analysis - PCA

The idea for this method is to use the direction of the main axis of the volume given by the

cloud of points to align the sequence of range images between them. In a given moment, the

overlapping region will become large enough (about 50%), such that both main axes should be

almost coincident and related to a rigid motion so that registration successes. In other words,

the principle is to apply a single transformation which will align both axes. This method can be

considered very fast but it will only be effective if there is a sufficient number of points. The most

challenging detail about this method is in operation of surfaces that contain symmetries [39] [1].

2.3.2 Fine Registration Methods

In the case of fine registration, the main principle is to obtain the most accurate solution as possible.

Using an initial estimation of the motion to represent all range images with respect to a reference

system, the transformation matrix will then be refined by getting the best minimization in the

distances between the correspondences. This is an iterative process that will try to converge to

a more accurate output. Usually, these methods require a lot of processing to decide which is

the closest point. The important aspects to characterize fine registration methods are: registration
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principle, use of an efficient search method, robustness and minimization of the distances strategy

[39].

Robustness can be seen as how well the methods deal with noise and false correspondences

because of the non-overlapping regions. This is important, specially in medical images where

there are always real images and the misalignments may be imminent due to the non-rigidity of

objects or bodies.

2.3.2.1 Iterative Closest Point - ICP

The ICP method was presented by Besl and McKay in 1992 [42]. The main goal is to get an ac-

curate result by minimizing the distance between points with correspondences, known as closest

points. It is also known for being a Pair-wise registration where only a pair range image is reg-

istered in every execution [39]. The algorithm can be described by the following steps, with the

input of a reference point cloud followed with a second cloud:

1. Pre-processing - clean data using an outlier filter and make an inliner selection of source

points from both clouds, with the options of using all points, Uniform sub-sampling, Ran-

dom Sampling or Normal sampling;

2. Matching - Associate points from reference to data by finding correspondence with the use

of neighbor search and/or search of features;

3. Weighting - Change importance of pairs, which depends on: distance between point-correspondences,

compatibility of normals and the uncertainty of the covariance matrix;

4. Rejection - When a cloud is not a subset of the following in the sequence, some correspon-

dences are outliers and those pairs must be discarded;

5. Error computation - Compute the error of each pair, which in this case is point-to-point;

6. Minimization - Find the best transformation to minimize the errors, to apply on the second

cloud, which can be the combinations of translations and rotations;

7. Go back to step 2 and repeat process until convergence.

For the Matching step, there are two possible approaches using nearest neighbor search:

• Linear search, exhaustive but good for really high dimension or low number of points;

• Space partitioning, K-dimensional Tree, more complex but helps to speed processing.

The output of this process is going to be a transformation between the the data input and

reference. A few criteria to consider convergence and stop the algorithm’s iteration can be defined

as the following:

• Number of iterations has reached to a selected maximum;
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• The transformation epsilon difference between the previous transformation (translations and

rotations) and the current estimated transformation is smaller than an imposed value;

• The sum of Euclidean squared errors is smaller than a defined threshold.

Iterative closest point is considered as one of the basis for 3D registration and since its disclo-

sure, a lot of variants have emerged with the goals of improving the errors and the computational

cost. Commonly, researchers look for alternatives to get better matching strategies or error esti-

mation functions and metrics or minimization transformation algorithms [43].

2.3.2.2 Chen and Medioni Method

After Besl and McKay proposal, Chen and Medioni proposed a similar alternative to the original

ICP algorithm that same year, with the standard ICP algorithm [44], with the idea of using the

minimization of the distance between points and planes. The minimization function worked with

the distances between point in the first point cloud with respect to tangent planes in the second.

Considering a point in the first cloud, the intersection of the normal vector at that point with the

second surface determines a second point at which the tangent plane is computed. At the time, they

proposed a new algorithm to find intersections between lines and point clouds, which is a process

that demands computational power. Although this method is more robust, with good result tests

by Salvi’s review [39] against others registration methods, it has the drawback for the lack of

sensibility in the presence of non-overlapping regions. Chen’s principle normally requires less

iterations than the ICP approach, but due to the computational power demand, it takes more time

in the in the overall process.

2.3.2.3 Iterative Closest Point Non-Linear

The Iterative Closest Point Non-linear is considered a variant of the original ICP method, with the

difference of the metric used for the step of computing the error. While the original idea was the

sum of squared distances between corresponding points (or point-to-plane in the Chen method),

the alternative proposed was the usage of the Levenverg-Marquardt Algorithm [45] to solve non

linear least-squares equations, which is seen as an optimization technique that can allow to find

more generic minimization functions rather then just the sum of euclidean distances. Some results

for the 3D registration were presented in the work of A. Fitzgibbon in his paper of 2003 [46].

2.3.2.4 Generalized-ICP

Aleksandr V. Segal in 2009 released a paper [47] proposing a new idea combine the ICP point-to-

point with the point-to-plane approach into a single probabilistic framework. The author claims

that it can be seen as a plane-to-plane approach, since the framework models locally planar surface

structures from both point clouds, which would be more robust to incorrect correspondences and

making it easier to tune the maximum match distance parameter present in a big part of the ICP

variants. Additionally, the proposed method allows for more expressive probabilistic models while
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keeping the performance and simplicity of ICP framework and allows the addition of outlier terms,

measurement noise and others techniques in order to get robustness.

2.3.2.5 Other approaches

Some studies came with another approaches instead of the ICP, such as the Iterative Closest Line

(ICL) [48] which is similar to the ICP but with the difference of matching lines instead of points,

from each model. It uses the Hough transformation for edge detection in order to extract lines

to be used in point clouds by projection. Also in some situations it is used the Iterative closest

Triangle (ICT) [49], where the search is for sets of three points to form triangles. This means that

large triangles represent points that are far from each other, and for the opposite, small triangles

can be easily found in curved surfaces [4].

In 2010 Zexiao Xie released a paper [50] with a proposal of a high-accuracy method for fine

registration of overlapping point clouds. The algorithm is basically a variation of the Method of

Chen, with the approach of establishing the original correspondences from two point clouds by

adopting a dual surface fitting using a B-spline interpolation. The combined constraint uses global

rigid motion in conjunction with local geometric invariant to reject unreliable correspondences,

in order to estimate transformation parameters in an efficient way. This method takes in account

the surface shape and geometric properties of the object, claiming to be less likely influenced by

the quality of the original data sets. His experimental results (see Figure 2.21) demonstrated high

registration accuracy in the overlapping region and uniform error distribution.

Figure 2.21: Experimental results from [50] with a comparison of two sectional point clouds from
a cat toy before and after registration using different approaches: (a) before registration; (b) after
registration using proposed method; (c) ICP approach; (d) Chen’s approach; (e) proposed method
with OAPC and (f) proposed method with OCC.

A more recent study published in 2014 by Y. Guo [51] proposed an algorithm for pairwise and

multi-view range image registration. The first step of the algorithm extracts a set of Rotational
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Projection Statistics (RoPS) features, from pairs of range images and performs feature matching

for each group. Next, the two range images are registered using a variation of the ICP based

on the pairwise registration algorithm, by means a shape growing based multi-view registration

algorithm. With the initialization of the seed shape, sequentially it will update with pairwise

registration between itself and the pair. Then, all input range images are registered iteratively

during the growing process. The results from the comparative experimental tests (see Figure 2.22)

lead to conclude that the algorithms for pairwise and for multi-view range image registrations, have

shown good accuracy and robustness. In different resolutions for depth images, the experiments

have shown the reconstructed 3D models to be complete and accurate.

Figure 2.22: This Figure illustrates the proposed 3D object model method, going trough the steps
of: (a) input meshes, (b) shape growing, (c) Multi-view Registration and (d) final result of the 3D
models (from [51]).

In the middle of 2015, a proposal from Jun Xie et al. [52] claimed of a new fine registration

method with superior accuracy and, at the same time, maintaining the computational power. The

ICP has shown some limitations to produce good results in challenging scenarios involving objects

that suffer from the lack of features due to structural ambiguity. The proposed approach introduces

a new cost function with dynamic weights for the ICP algorithm, by balancing the significance of

structural and photometric features with dynamically adjusted weights to improve the error mini-

mization. Additionally it is included a novel outlier rejection method, which is adapted according

to a defined threshold in every ICP iteration, while using the structural information of the object

and the spatial distances of sparse SIFT (Scale-invariant feature transform) feature pairs. The pa-

per shows a comparison between the proposed solution against other approaches and presents good

results when it comes to RMS error in situations with symmetrical objects, views with less overlap

regions and cases with distinctive geometric structures, while having good processing times.

2.4 Human Body Parts and Pose Selection and Segmentation from
RGB-D sensors

A considerable amount of research as been done towards the body parts identification from depth

and RGB data in the last decade. This fields of research are useful for such applications in com-

puter vision for different scenarios such as medical, sports, security or military applications. In
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this Section it will be shown a few works, which focus towards the human body pose recognition

from depth images.

One of the most recognized works on this field is by Jamie Shotton et. al [5] in 2011, where he

proposes an approach to build a randomized decision tree to find an approximate pose of body parts

from single depth frames in Real-time application. He used a large training dataset to allow the

classifier estimate body parts regardless the pose or body shape. Next it is generated confidence

scored 3D proposal of several body joints in order to obtain the whole skeleton and determine

the body pose. Although this approach requires several amounts of training with a considerable

large dataset, the authors results have shown to get fast and accurate predictions of the body

joints. This method is currently available in the Microsoft Kinect SDK for Real-Time applications

environment [5] .

Figure 2.23: This Figure illustrates an overview of this approach by Shotton (from [5]), with a
single input depth image, a per-pixel body part distribution is done (colors refer the part labels at
each pixel and corresponding joint proposals). This approach tries to estimate proposals for the
locations of body joints in 3D space, even for multiple users.

In 2011 Daniel L. Ly presents a new method [53] for pose information from a single depth

image given an arbitrary kinematic structured without a priori beliefs or pre-trained models. Using

an evolutionary algorithm to obtain the optimal kinematic configuration which better applies to the

observed image. Figure 2.24 shows an example of its use.

James Charles and Mark Everingham [54] proposed a method for learning shape models to

estimate articulate human poses, tested with depth images from the Microsoft Kinect device. Their

proposal uses for each limb a 2D shape models in form of a mixture over probabilistic masks, by

using the depth images and explore them with automatic segmentation. They claim that using their

’Pictorial structure model’ based framework, has improved the accuracy on their pose estimations,

because of the improvements in the fidelity of the models to the observed silhouettes (see Figure

2.25).

Before the release of the kinect system, in 2006 Ankur Agarwal and Bill Triggs [55] proposed

a learning-based method to obtain the 3D body pose from singles images and sequences. Without
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Figure 2.24: This Figure illustrates the process of estimating the pose from a single depth image
using an arbitray skeleton. With a depth image as input (top left) and a parameterizable skeleton
(top right), the algorithm will set of the parameters in order to get a skeleton which better fits with
the data(from [53]).

Figure 2.25: This Figure illustrates the proposed method: From a the silhoutte (a), they infer 2D
human pose (b) using the models of shape (c). The mixture models of probabilistic shape templates
for each limb are learnt with the depth images from the Kinect by deducing the segmentation of
the limbs from the silhouette (from [54]).

requiring body models or prior labeling of body parts. Their alternative was to recover the pose

by direct nonlinear regression of joint angles against shape descriptors extracted automatically

from image silhouettes. To handle the loss of depth and limb labeling information they propose
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a regressive tracking framework, to estimate a learned regression value to disambiguate the pose.

For testing they train the regressors with a wide range of view-points, with the author claiming

results of mean angular errors of 4-6◦for a variety of walking motions.

2.5 Depth maps Filters

For RGB-D cameras, during the acquisition process, it is impossible to avoid the existence of

noise coming from different sources. The depth information output may be affected by some of

the following variables: the interference of the ambient light, due to the technology involved of

using structured light, incorrect calibration between the cameras, the delay of capture between a

depth frame and the corresponding RGB color frame and also with the inaccuracy of the depth

camera’s resolution [56]. One way of addressing these issues is by using filters for noise reduction

and smoothing on depth maps. In this section, two known filters will be shown for these kind of

scenarios.

2.5.1 Bilateral Filters

In 1998, C. Tomasi and R. Manduchi [57] proposed the non iterative bilateral filter for removing

noise from images with a smoothing effect, while preserving edges with a non-linear combination

of nearby image values. They had defined range and domain filtering, while the former will aver-

age image values with weights that decay with dissimilarity, the latter domain filtering concerns

about enforcing closeness by weighing pixel values with coefficients that fall off with the distance.

The spatial locality is still an important concept, due to the fact that range filtering by itself would

just distort the image map. It was the combination of the two filtering insights that made this

interesting process be denoted as bilateral filtering.

More recently, in a conference paper by Li Chen in 2012 [58], he proposed an approach where

Region Growing and Bilateral Filter are used to counter the poor accuracy of depth image captured

by the Microsoft Kinect caused by invalid pixels, noise and unmatched edges. The important role

of the bilateral filter was to fill the holes with the estimated values of invalid pixels from the

region growing technique and also smooth the surface considering the special noise property of

the Kinect’s depth sensor.

2.5.2 Outlier Remover Filters

Rusu, R. B. et al in 2008 published a work with the purpose of investigating the problem acquiring

3D object maps of indoor household environments [59]. A new approach was introduced for map-

ping the point cloud data, with sophisticated interpretation methods, including statistical analysis,

to eliminate noise and resample the data without deleting important details, in terms of planes and

3D geometrical shapes (see Figure 2.26).

11http://www.pointclouds.org/assets/images/contents/documentation/filters_statistical_noise.png
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Figure 2.26: Left: raw scan; middle: scan after applying outlier removal; right: mean distances to
k = 30 neighbors before and after removal 11.

The measurement errors on depth sensors typically lead to sparse outliers, which corrupt the

results and becomes harder for local point characteristics estimations such as surfaces. These

irregularities can be corrected by computing the mean distances between a determined number of

nearest neighbors and standard deviation, with the goal of removing the points that fall outside

of a defined threshold. For the selection of the nearest points, an approach combining spatial

decomposition techniques and Euclidean distances calculations is commonly used. This search

can be done until a desired number of points are found or all points within a bounding sphere with

a defined radius are obtained [59].

2.6 3D Model Reconstructing tools available on the market

Back in 2010, Gladilin E. [60] published a paper on the possibility of making use of 3D optical

body scanning of patients breast to achieve more success full aesthetic results, with customized

surgery planning with visual reliability on 3d shapes in order to a get 3D photo-realistic appearance

of the breast to simulate different surgical scenarios.

Following that same motivation, there is a demand by the medicine field to provide new ways

of examining the patients and get more reliable information about them [61]. In that perspective,

this section presents a few of the solutions which are currently available on the market for both

breast cancer patients and plastic surgery planning by using 3D models generated from high-end

equipment.

2.6.1 Crisalix 3D

Crisalix is a pioneer company on developing Web-Enabled 3D Consultation Tool for Breast plastic

Surgery along with researchers from the Institute for Surgical Technology and Biomechanics,

University of Bern in Switzerland [62]. The solution does not need any kind of special hardware or

training, being mainly a software that takes a few 2D color pictures of the woman torso as an input

and then generates a 3D model, which is available for visualization by using a browser (Figure
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2.27). With the possibility to interact with the tool to perform simulations on dedicated servers,

allowing the surgeon, together with the patient, pre-visualize the impact of the surgery beforehand.

They claim to have good feedback, with appealing results from physicians and patients, with

rates of 96% of the clients satisfied with the 3D simulation, while 53% believe that 3D was the

decisive factor to the surgery. The least expensive license for plastic surgery clinics goes for 3490e

annually, with some features in the solution including 3D imaging for the face [63].

More recently, the company has been working to incorporate virtual reality technology for an

immersive and greater experience of visualizing the simulation results [64].

Figure 2.27: Crisalix 3D application 12.

2.6.2 Vectra XT

Vectra XT is a product provided by the American company, Canfield, which focus on developing

ultra-high resolution 3D simulation systems for face, breast and body imaging. This product also

delivers software to work along side the machine (see Figure 2.28). Some of the specifications

of the capture system are described as the 1.2mm geometry resolution, 3.5 milliseconds capture

time, stereophotogrammetry technology with an on-board computer and flat panel display. To see

the results a computer, with a recent graphics card and at least 8 Gigabytes of memory, will be

required [65].

Figure 2.28: Vectra XT 13.

12http://parksidecosmetic.com.au/wp-content/uploads/crisalix-3d-modelling-feat.jpg
13http://www.canfieldsci.com/common/images/products/9/title/product-title.gif
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Some of the software features that are included are: Automated volumetric measurements, au-

tomatic stitching of patient’s the views into a single image, dynamic soft tissue modeling technol-

ogy to generate 3D models of the breast implants and visualize the expectations of the simulations

of adding or removing volume in the body. Although there is not a reference about the pricing for

the hardware, for installation and training on-site by Canfield it is available at $1750 for the first

day and $1000 for each additional day. In alternative there are live Webinar sessions available for

$250 each [65].

2.6.3 3dMD

3dMD has developed a 3D capture technology incorporating different camera viewpoints (Figure

2.29) with the goal of achieving ultra-fast capture speeds which are required to track human sub-

jects. It is based on an approach with high-precision 3D surface image of a patient’s face, head,

torso, limb, thorax or even full body. Thanks to this system, hospitals and researchers are able

to accurately obtain images in a non-invasive procedure. The manufacturer claims to be simple

to use and a reliable enough system to handle the pressure of acquisition in a high-throughput

environment and keep the accuracy and speed [66].

Figure 2.29: 3dMDtorso System 14.

For the specifications on the 3dMDtorso System, it features a capture speed of approximately

1.5 milliseconds, with a wide capture angle for the torso and breast area, working along with

a configuration of 12 synchronized cameras, with a geometry accuracy of 0.2-0.5mm RMS and

the generation of a continuous 3D polygon surface mesh with color mapping without any image

stitching [66].

2.6.4 Axis Three

Axis Three has the motivation to offer a solution for cosmetic and plastic surgery, with a simulation

system to show patients, during the consultation process, a more accurate view of the surgical

outcome prior to surgery [67].

14http://www.3dmd.com/wp-content/uploads/2012/03/Torso-system-shot-300x242.jpg
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This solution offers a robust, low complexity 3D image capture, with multiple cameras (see

Figure 2.30) and projector pairs capture, based on the Color Coded Triangulation [68] (CTT)

technology patented by Siemens, and later combining the images to provide an 180 degree view in

a single scan. The 3D simulation software know as "Tissue Behavior Simulation" that is provided

for Axis Three responds to the patient’s body attributes so that when an implant is placed, the

breast tissue reacts similarly as in reality. Besides, tissue elasticity adjustment is included, in order

to provide more realistic and accurate outcome compared with the patient’s body characteristics.

This is done by using actual clinical data to enhance physics based on tissue typing [67].

Figure 2.30: Axis Three system 15.

2.7 Summary

This revision has shown different approaches in 3D imaging techniques which organizations have

followed to create low-cost RGB-D sensors. RGB-D sensors, and have attained a lot of attention

in the areas of 3D model reconstruction. Some sensors have shown technical specifications that

are enough for applications in 3D body model reconstruction, such as in the breast cancer research

for the women torso.

It is also important to conclude on the registration methods, that there are a number of different

approaches, which happen to be variations of the same basis, implemented specially for a concrete

application, defined by the developer. Usually, the criteria for choosing an algorithm depends

on the required level of computing power or the time required to complete the process. In this

case, there is a special need for a robust algorithm based on rigid transformations in scenarios

of modeling human bodies, which are known for their observable non-rigidity over time in the

different collected views.

Acquiring bad views and not doing segmentation of the body’s rigid parts, will make the rigid

registration fail, with the output models showing undesired results with lot of noise and artifacts,

as seen in Pedro Costa work [1]. This effects may be attenuated with the use of techniques such

as filtering for depth maps, smoothing the surface, filling the missing data and removing outlier

points without compromising the edges and the color information.

15http://www.axisthree.com/phpthumb/phpThumb.php?src=../uploads/jpg/1390816495–ax3.jpg
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In the end, the main goal is to get quality in 3D body models with low-cost and simple to use

equipment like the Microsoft Kinect. In section 2.6, a few of the solutions available on the market

are shown. Although they are really reliable on accuracy, they demand high-costs and special

knowledge to operate them, which justifies the motivation for this thesis to attempt revolutionize

this field of computer vision in Breast Cancer applications.



Chapter 3

Previous Work

The research group VCMI from the INESC-TEC, has been working to build solutions, as part of

the European research project PICTURE [6], where their focus has been into the development of

a framework to be used with low-cost acquisition technology for the creation of 3D models of

women’s torso. The final product should be used as a supporting tool for the analysis of the breast

cancer patient’s physiology for both aesthetic quantification and surgical planning.

This framework is divided in two main modules, the Surface Reconstruction Module and the

Texture Mapping Module. The Surface Reconstruction module appertains to the attainment of

patient-specific surface data, from readily available off-the-shelf imaging devices, in a setting that

could be widely adopted in clinical practice. An overview of the method is presented in the Figure

3.1. Briefly, given a sequence of RGB-D images of a patient in upright position turning about the

longitudinal axis of the body, a set of poses are selected manually and the corresponding point

clouds are generated and registered using a two-step ICP-based method.

Figure 3.1: Overview of the proposed surface reconstruction approach.

Moreover, the steps that precede the point cloud generation are:

1. Segmentation of the human silhouette in the depth images, performed via a discontinuity

based approach, using Gabor filters followed by the Otsu’s algorithm;

2. View selection, carried through a rule-based approach using pose features (centre of mass,

geometrical centre, shoulder line angle to camera, normalized width) extracted from the

segmented silhouette;

35

http://medicalresearch.inescporto.pt/breastresearch/index.html


36 Previous Work

3. Depth map filtering [69], using the segmentation of the color image obtained with GrabCut

algorithm.

Although the selected depth maps provide some insight on the 3D shape of the female torso,

a single view does not yield a complete characterisation of the surface of interest. Thus, richer 3D

models are be obtained by registering the selected views of the patient in a common coordinate

basis. Coarse registration is the first stage and aims to give an initial estimation of the rigid motion

between the views. The three point clouds are pre-aligned based on the centre of mass values of

each view, taking the frontal view as reference. Follows a strategy based on the concept of Tes-

sellation surfaces in order to select some keypoints with the purpose of obtaining high descriptive

feature points, as well as providing a representative sampling of the original clouds. These key-

points are automatically selected using the Delaunay Triangulation (DT) principle. An example of

the key point selection stage using a female torso model is shown in Figure 3.2.

Figure 3.2: Visualization of the vertices of the free boundary triangles of the Delaunay Triangula-
tion of an example point cloud.

The second step, or fine registration, searches for the most accurate solution possible by per-

forming an iteratively refined alignment. The Iterative Closest Point algorithm (ICP) is used taking

the coordinate of frontal view as its target. The algorithm performs the registration of each lateral

view with the corresponding point cloud subset of the frontal view. Performing the registration of

lateral views with each corresponding half of the frontal view, provides that the non-overlap part

of frontal view is not considered for the registration. The fine registration stage is finished either

when: (1) The point clouds remain almost unchanged after one iteration (the mean square error be-

tween consecutive poses of the point clouds is below a predefined threshold defined successively);

or, if the first condition is not met, (2) a maximum number of iterations is reached.

The Texture Mapping module refers to the mapping of color information onto the recon-

structed patient-specific external surface. For this purpose, Kinect’s color sensing and mapping

tools are used.

Although the color provided by the Kinect has enough quality for a myriad of applications,

due to different acquisition light condition when patient is rotating, the color of the reconstructed

patient-specific surface presents artifacts. To suppress these artifacts, a three-stage color inconsis-

tency correction method is used. An overview of the method is presented in the Figure 3.3.

In the first step, the closest point correspondences between each lateral set of points and the

frontal pose point cloud are established using the points’ xyz-coordinates as features. Each lateral
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Figure 3.3: Overview of the proposed color inconsistency correction approach.

point color is then replaced by for the corresponding frontal point information considering a small

neighbourhood threshold.

Secondly, all remaining points in the oblique views, which preserved the original color, are

re-colored based on an iterative approach, using spherical coordinates. The origin of the spherical

coordinates is the nipple in each side. The new color of the points in the oblique views is found

based on an interpolation approach, taking as reference the points from the frontal views in the

same radius, as illustrated in Figure 3.4.

Figure 3.4: color interpolation using spherical coordinates. A) Point cloud after initial local color
transfer. B) Region of interest for color interpolation, centred in the nipple – Frontal view (light
grey) – Oblique view to be interpolated (dark grey). C) Polar image centred in the nipple with
information from frontal view. D) Polar image centred in the nipple with information from oblique
view.

In the final step, the information from the 2D HD color images is used as reference to improve

the color appearance of the final point cloud, using the following color transfer approach [70]:

f R(x) = (
σ2D

σK
)× (x−µK)+µ2D (3.1)

Where µK , σK are respectively the mean and standard deviation of the source image (Kinect

data) and µ2D, σ2D the same for the target image (2D HD data).

The next Figure 3.5 represents an high level block diagram of the described framework.

Through the development of this framework, some problems were identified and demanded an

improvement of the used methods or the use of new approaches.
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Figure 3.5: High-level block-diagram of the framework.

The purpose of this thesis involves the improvement of certain aspects of the existing algo-

rithm, in order to become more objective, automatic (without any kind of intervention in the mid-

dle of the process, for example parameters correction), obtain more realistic results and make it

more independent of the acquisition technology and user input. In order to accomplish this, these

are the crucial points of the algorithm that need an improvement:

• Body Pose Selection - Automatize the process of selecting the main views of frontal, left

and right poses;

• Segmentation of rigid body parts - Automatize the segmentation of the rigid body parts to

improve the rigid registration process;

• Preliminary processing - Implement a 3D data processing module, to improve the appear-

ance of the point clouds by smoothing the surface and remove outlier points which result

from the noise of the acquisition data with the Microsoft Kinect;

• Rigid Registration - Improve the accuracy of the algorithm so it can handle the difficulties

of non rigidity from the human body and its variability in time;



Chapter 4

3D Model Reconstruction framework
for Breast Cancer Patients

In this chapter, the proposed methodologies and procedures used to solve the objectives defined

in the Introduction (see chapter 1) will be described. Their goal is to improve the framework

developed by the VCMI group for ’PICTURE’ project as explained in the Previous work (see

chapter 3), with dedicated sections for each step of the pipeline.

Looking at the Figure 4.1 as a reference, in Section 4.2 a pose selection algorithm is proposed

to work with the raw RGB-D input data, in order to get automatically the main views of the scene,

for later registration. In Section 4.3, it is shown a procedure to automatically segment rigid parts of

the body, with the purpose of avoiding registration errors caused by the non-rigidity of the human

body through time in moving actions scenarios.

Figure 4.1: Main steps of the framework for improvement.

As seen earlier in the literature revision, low-cost cameras like the Microsoft Kinect can in-

troduce noise and artifacts from various sources. To work around this problem, in Section 4.4, it

is proposed a processing module, for 3D data Generation, with a process to smooth the surface,

fill the invalid gaps and remove outliers points, such that the final results have a more realistic

appearance and, possibly, the registration step will benefit from this. The last step of the pipeline

is the Rigid Registration, where the point clouds of the single views are aligned and combined to

obtain a model of the full body. To perform it is used the open-source library Point Cloud Library

(PCL), which provides various implementations of fine rigid transforms estimations such as ICP

and other variations. For this Section 4.5 this registration methods are test in different conditions

39
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such as manual or automatic segmentations and using the ’3D data Generation’ module, in order

to find how their perform under diverse scenarios.

4.1 Acquisition challenges and conditions

Due to the nature of the equipment, the acquisition protocol and the subject’s body, there are sev-

eral challenges that strongly compromise the whole framework pipeline in the different modules.

4.1.1 Microsoft Kinnect depth camera noise

The video footage of each camera is composed of sequential frames with a configured rate of

15 Hz, where each frame is saved as a PNG file associated with an identification number and a

timestamp in milliseconds. Also, it has a spatial resolution of 640×480 pixels, where for the color

image there are 8 bits for each RGB color component, while the depth image is saved with 16 bits

but just 11 of them are in fact used by the Microsoft Kinect to store the depth intensity values,

ranging between 0 and 2047.

As for the operation of the device, since the capture of the depth and color frames are from

different cameras, it is difficult to get both frames at the same instant, normally getting a variable

delay between them. Additionally the depth frame are vulnerable from different sources of noise,

as reported by the complete review about ’Noise in Kinect Depth Images’ from Mallick et. al in

2014 [71], where he categorizes four types of spatial noise that may affect the acquisition of a

depth frame.

• Object Distance, refers to the limited ranges of the Kinect and axial noise, which makes the

accuracy of the depth measure decrease while the distance of the object increases.

• Imaging Geometry, where the imaging deals with the geometric structure of the objects,

getting noises defined as Shadow noise, Lateral noise and the effect of background objects,

meaning the difficulties of detecting and quantify the edge pixels of an object, which de-

pends of its position with the background [71].

• Surface or Medium Property, the noise due to the IR emitter in the Kinect, which may

be affected by a reflective or transparent/absorbing surface, causing the speckle pattern to

diffuse or not reflecting back to the sensor.

• Sensor technology, the Kinect may have problems of interpreting the Structured Light Cod-

ing due to two specific types of noise. Where band noise is related to the windowing effect

of block correlation, used for calculating the disparity. Then, there is the Structural Noise

which reports depth variances, with formations of wavy to circular ripple patterns verified

by the author with a plane surface [71].
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4.1.2 Acquisition Protocol

To acquire the data, a protocol was created to state the rules of the acquisition for the ’PICTURE’

project (see Appendix A) in order to guide the patients while the capture of video footage is done,

composed of depth and color information. A fixed RGB-D camera is settled, where the subject

must follow a constant and stable 180◦degrees rotation around its own vertical axis between the

full lateral views, so every possible view of the torso may be caught.

For the given acquisition protocol,it is not possible to guarantee that is performed perfectly.

In situations such as, the patient having motion difficulties due to health conditions may lead to

situations that may condition the later processing. Normally the biggest issue is for not rotating

properly in its own axis, by changing the center of mass too much through the footage. Also ro-

tating too fast and positioning the arms incorrectly will certainly cause obstructions and body’s

posture changes as tilting and twisting the torso. Furthermore, if the head and legs are not visible

enough for detection, the Microsoft Kinect’s SDK skeleton joint tracking system will be impossi-

ble to use.

4.1.3 Diversity of patients characteristics

About the patients characteristics, there are several different body types, which leads to the im-

portant point of implementing procedures to accommodate all kinds of unpredictable features that

may be lacking or are very prominent in the body. Such as, the size of the woman abdomen, breast

changes after surgery, arms thickness, hips width and the person’s height.

4.2 Pose Selection Algorithm

The introduction of a step to select the best views based on the pose, comes with the purpose of

simplifying the work for 3D modeling, since three unique views are enough to cover the body’s

torso frontal view and minimize the computational power for 3D registration, as shown in Pe-

dro Costa work [1] and used in Crisalix System [63]. Although in the previous framework, the

selection of pose step was done manually to provide reliable selections for further steps of the

framework, it lacked for automation, increasing the user input and time consumed.

The body poses to look for (see Figure 4.3) are the full frontal view to the camera 4.3b, and the

right 4.3c and left 4.3a sides of the body, with enough rotation to see the breast’s Infra-Mammary

Fold (IMF) [72] (see Figure 4.2) and get both lateral and frontal view’s common features, to help

later with the matching step in the registration process.

As it is explicit in the diagram’s first block of the Figure 4.4, it is necessary to perform a

pairing between the depth and the RGB images, which is done by finding the minimal difference

between frame’s timestamps from each camera and reject frames which do not find a pair within

70 milliseconds. Since the camera was configured with a capture rating of 15 Hz, which means

1/15 of a second between consecutive frames, approximately 66.667 milliseconds. Additionally, it

1https://en.wikipedia.org/wiki/Inframammary_fold#/media/File:Imframammary_fold.jpg
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Figure 4.2: Cross section of the breast of an adult, female human1.

Figure 4.3: Three main poses to select, (a) Left pose view (b) Frontal pose view (c) Right pose
view. (d) (e) and (f) exemplar cases from the PICTURE dataset of the aforementioned poses.

is also necessary to confirm if each pair, of depth and color image, has unique images and remove

any repetitions between matched pairs.

4.2.1 Segmentation using K-means quantization

As seen in Shotton’s [5] work, the huge color and texture variability induced in the scene and the

data being reduced to just 2D silhouettes. Only depth images will be used to analyze the patients

in this proposal, since they allow to find more features about body surface’s curvature besides the

human figure.
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Figure 4.4: An high-level diagram block of the pose selection algorithm.

The patient is found in a certain distance in front of the wall during the acquisition. In order to

extract the foreground for each depth frame in the sequence, a threshold limit is applied by using

the Otsu method [73] as shown in Figure the input 4.5a) and the output result with the background

removed 4.5b).

Figure 4.5: Background Removal. a) Examples of input normalized depth maps; b) normalized
depth maps after applying otsu threshold and background removed.

In the James Charles [54] work, on learning shapes models, the k-means technique is used to

segment the human body in Kinect depth images. Segments of the body appear as different regions

that were classified into depth classes. The subject’s body pose will be more frontal to the camera

when the closest region gets a larger number of pixels within the same range of depth, due to the

large and flat area of pixels from the chest and abdomen being more equally distant. In contrast,

for a lateral view, the closest body part will usually be the arm, such that the area will get much

fewer points and therefore be smaller.

Following this principle, the K-mean Clustering method [74] is used for every frame, such that
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the area of the nearest region’s area gets measured. The number of classes used was experimentally

tuned, with the concern of segmenting an acceptable number of regions to preserve the major body

parts individually, as can be seen in the Figure 4.6.

Figure 4.6: Closest Region Segmentation a) Results after applying the K-means Clustering method
for segmentation, with different colors for labeling different regions; b) The closest region is
segmented and isolated to measurement its area.

4.2.2 Closest Region Analysis

Figure 4.7 illustrates the measurements along the frame sequence, showing a notorious presence

of noise and outlier measurements, introduced from the irregularity of the previous segmentations

along each frame. In order to smooth these values for better evaluation (see Figure 4.7), a Gaussian

filter is applied, with a sigma of 10 being enough for this kind of range values, which are related

with the camera’s spatial resolution and the size of the footage.

G(x) =
1√

2πσ
exp

(
− x2

2σ2

)
(4.1)

The estimation of the possible frontal pose is done by computing the mean value of the areas

and identify the frames which are near this calculation. This results in two frames from each side

of the whole sequence, as can be seen in Figure 4.7. Finally, the frame with the frontal pose is

obtained by getting the mean position between these identified two frames.

4.2.3 Lateral Poses

Looking at the previously identified frames that were found near the average area measurements,

they usually occur in moments of transition between the footage endpoints and the frontal position.

The observation of this heuristic approach allowed to find these frames leading to acceptable body

poses being selected for right and left side views.
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Figure 4.7: Area Measurements, of the nearest region for every frame in the sequence, represented
by the blue line; Area measurements after smoothing, drawn by the red line; Orange line tracing
the Mean area value; Purple line indicating the selected frame for frontal pose.

During the rotation of the subject, its center of mass will inevitably change within the image

frame due to the size of the body and its own position. Taking advantage of this fact, it is possible

to determine from the previously selected lateral frames which pose they represent, left or right,

relatively to the frontal pose. This is done with a comparative evaluation of the calculated centroids

from each body’s silhouette binary masks as can be seen at the Figure 4.8, being noticeable the

relative difference of both centroid’s horizontal coordinate. Using the Figures 4.3 as a reference

for the body pose to look for, and, Figure 4.8 for the relative centroids distance, the view which

has the closest centroid to the right limiter of the frame is selected as the Left pose view. Given

that selection result, the other frame gets identified as the Right pose view.
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Figure 4.8: Centroid of two selected lateral views with the orange line indicated horizontal coor-
dinate. (a) and (b) are right and left, respectively.

4.3 Body Part Segmentation

As described in Literature Revision (see chapter 2), the Rigid Registration is a procedure that

matches different views of the same scene or object from different perspectives, into a single 3D

model. In order to avoid misalignment and distortion, the object of interest shall not change its

shape and keep its position within the scene during the views acquisition. Otherwise, the different

views will not be similar and the difficulty of matching common features during the registration is

increased.

For this work, the patients will perform a rotation around their center of mass, while following

the Protocol (see appendix A). As explained in the Section 4.1, some parts of the human body may
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move involuntarily and change their posture during this rotation, such as legs, arms, head and the

abdomen. To avoid this non-rigidity, the rigid parts have to be segmented and used to estimate the

best transformation to apply to the original full point cloud.

This Section will focus on obtaining segments for each kind of point cloud, from the previous

selected poses. Figure 4.9, illustrates the proposal to segment each pose, where the green segments

represent the regions to be preserved. The proposed approach for this module is to create two dif-

ferent kind of segmentations for each pose. For the point clouds used to estimate the registration,

hereafter denoted as rPCv v ∈ {L : Le f t,F : Frontal,R : Right}, the main focus is in the torso area,

ignoring any non-rigid visible parts such as legs, arms, abdomen and head, as described in Figure

4.9a. This segmentation will be performed mainly in the 2D depth images, before the generation

of the point clouds to avoid higher computational power that may be required in the 3D space.

In the other hand, the full point clouds, which are going to be later transformed with computed

estimations from the rPC, are hereafter denoted as wPCv v ∈ {L : Le f t,F : Frontal,R : Right}.
Common body parts that are vulnerable to the rotation movements, e.g. the arms, may appear in

different positions if their articulation or shape vary between different captured instants. To avoid

these visual overlap conflicts in the final output, the arms in the wPCF need to be removed, the

same way it was done for rPCF in 2D depth map, see Figure 4.9b. Meanwhile,for the poses wPCR

and wPCL (Figures 4.9c and 4.9d), a vertical cut is performed in order to remove furthest points,

which are subjected to a greater error. This vertical cut is the only operation for segmentation done

in the 3D space.

Figure 4.9: Body segmentation approach: a) Torso segmentation to be applied in every pose rPCv

for rigid registration, b) Segmentation for the wPCF pose, c) Vertical cut for wPCR, d) Vertical cut
for wPCL.

The pipeline of this module will follow the diagram from the Figure 4.10. Starting with the

frontal segmentation rPCF , the torso limits (Top Limit (TL) and Bottom Limit (BL)) are found

and everything above the shoulders and below the Infra-mammary Fold (IMF) is removed. After

isolating the torso region, the arms are removed by finding the torso edges. Next the same principle
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is applied for the lateral rPCR and rPCL views, by applying the torso limits found previously and

then remove the closest arm. For the wPCF , just the arms will be removed, while the last step will

be for rPCR and rPCL by applying a vertical cut.

Figure 4.10: Body segmentation pipeline.

4.3.1 Segment of Point Cloud for registration Frontal rPCF

4.3.1.1 Finding Torso Limits

To remove the non-rigid parts such as the head, abdomen and legs, in this Section it is proposed to

find the top and bottom limits (see Figure 4.11) which will segment just the torso region.

Figure 4.11: Torso segmentation defined with lines limits TL- top limit and BT- bottom limit.

In the frontal pose view, by looking at the upper-body’s from the top to the bottom, it is

noticeable the presence of a characteristic silhouette, existing a small width in the head area and

increasing when going down through the body, due to the shoulders, the wide torso and the arms

getting thicker. With this in mind, it is possible to analyze the variance of the body silhouette’s

width in the frame by applying an horizontal projection with the lines of pixels. This will result in

a pattern, presented in Figure 4.12, with a peak value being at the height where the body appears

the most in a single line of pixels, with the large torso and arms in a still position, while the hands

are touching the hips. In contrast, the lowest values can be found at the top with the presence of

the head and neck.

The desirable position for the Top line limit (Figure 4.11 line TL) is within the transition of

the neck and shoulders, which can be found by looking at the previously calculated projection
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Figure 4.12: Depth map horizontal projection.

(in Figure 4.12), somewhere above the position maximum projection value. In Figure 4.13, an

overlap of the depth image, and the horizontal projection is done to demonstrate the progression

of the lines of pixels along the body.

Figure 4.13: Depth map Normalized with the horizontal projection from Figure 4.12 with vertical
orientation and overlapped in blue.

With its observation, it is possible to notice that when the shoulders start to appear, the pro-

jection will show closely half of pixels presence than the peak value which is around breast area

and the arms thickness. In order to find the desired value, the algorithm 1 is applied. With the

principle of looking for the first line of pixels which meets the condition to be selected as the pre-

ferred height in order to make the cut. Even for situations where the neck does not appear inside
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the frame, the cycle will break in the first iteration and accept the first line of pixels as it should.
Data: Depth image and the horizontal projection.

Result: TL, Top line which first meets the condition.

for line = 1 to numberO f Lines(image) do
if sum(image(line)) >= 0.5×max(pro jection) then

T L← line;

break;

end
end

Algorithm 1: Find the Top line bounding torso.
This Top line will be used to segment the body with a cut in the depth map, removing the neck

and head while keeping the shoulders and the rest to find the next limit. The Figure 4.14 shows

the results of cut with a overlap of the previously calculated projection to evidence the intuition to

find this top limit.

Figure 4.14: Depth map with Top limit applied and the previous calculated horizontal projection
overlapping the image.

4.3.1.2 Bottom line Limit

Given the fact that the subject has to use its legs to perform the rotation, this will make them mod-

ify their position and shape between views. In addition the breathing action will cause the body’s

diaphragm move and consequently change the abdomen and stomach region’s shape. The pro-

posed approach finds the preferred position, to define a bottom line, close to the Infra-Mammary

Fold (IMF), so it limits over the line, the rigid area of the torso, keeping the breast features and

remove the critical regions for better registration. The chest area is characterized for the vertical

deviation due to the existence of edge from the IMF. In order to find the IMF edge position, a

vertical gradient filter with a size 21 is applied in the raw depth map image, in order to find natural

transitions between the breasts and the body. This filter is large enough to properly detect the



4.3 Body Part Segmentation 51

slope of the breast. But before that, in order to avoid the appearance of slopes due to shoulders

and arms, a threshold is applied to the depth map. The threshold value is obtained from the mean

depth values of the foreground. This is done by taking in account that in a frontal view the torso

is the closer comparatively to the arms.

In Figure 4.15, the detected edges by the gradient filter can be seen, where the most weighted

values are mainly the edges between the body and the background. In order to separate body

features from the body silhouette edges, a binarization is done with a threshold. Figure 4.15b

shows the resulting binary image.

Figure 4.15: a) Gradient Filter with vertical orientation; b) Binary mask with the strong edges of
body with the background filtered out.

Assuming that the conditions of acquisition do not change among the patients, the patient’s

chest will always show at the top half of the frame, which means that is enough to just consider

the top half lines of the image to find the Infra-Mammary Fold line. This is done with a horizontal

projection with just the top half lines of the binary image 4.15b, resulting the plot in the Figure

4.16. The value to look for will be the maximum peak value, which is the point where the IMF

region is localed and it can be used to define the desired BL line limit from the Figure 4.11.

Figure 4.16: Horizontal projection from the binary mask in Figure 4.15b.
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Next, a crop is done to the depth image, by removing everything below the estimated Bottom

Line (BL), resulting in the depth map of the Figure 4.17.

Figure 4.17: Resulting image after using the computed torso’s limits.

4.3.1.3 Arms Removal

The arms are body parts that can easily move and change their shape during the body’s movements,

which gives them non-rigidity properties and makes them body parts that must be removed. As

defined in the acquisition protocol, the patient hands must stand still at the hips, which will make

the arms open into an arc shape giving some space off the torso. This way, the body’s edges with

the background may be identified by the application of an horizontal gradient filter.

After its application, the vertical edges, which become more salient and have more weight,

are kept due to the transitions with the background. The inner edges belong to the torso, such

that if they are identified, it is possible to eliminate the arms pixels. This assumes that the patient

followed the protocol and kept the arms steady.

Since both arms appear in the frontal view, it is preferable to separate them into two binary

masks to analyse each torso edge. To perform this separation of the body, the centroid of the torso

area is used, as exemplified in Figure 4.18.

It is noticeable that there is also present in the depth maps the edge of the arm in each side of

the body, since it is a part which can be ignored, a way of isolating the torso’s edges is by finding

just one of its pixels and use it as a seed for the Region Growing technique, as described in the

book [75] by Richard E. Woods. These pixels used as seeds, can be found by doing a search, by

starting from the center of the body, with the centroid’s coordinates calculated earlier, and go right

and left so it finds both side of torso’s edge.
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Figure 4.18: Depth map of the torso segment with a red line representing the calculated coordinate
x of the centroid.

Figure 4.19: Top: a) Left Half of the body after gradient filter, b) binary mask with weighted neg-
ative transitions from gradient, c) After dilating edges on the binary image; Bottom: d) Right Half
of the body after gradient filter, e) binary mask with weighted positive transitions from gradient,
f) After dilating edges on the binary image.

After identifying and isolating the edges with the Region Growing technique, as seen in Figure

4.20b, now it is possible to start removing the arms from the depth maps, by using the edges to

know coordinates of each side as the reference of the lines to remove pixels from those start points

until the border of the frame. Thanks to this approach, it is possible to obtain a clean cut just for

the arms and preserve the integrity for the rest of the body, demonstrated in Figure 4.20c.

Finally in order to remove the rest of the arm above the torso edge but preserve a portion of the

shoulder, which can be considered rigid, a cut with a 45◦degrees orientation is performed. Using

the edges, found in Figure 4.20b, top endpoints as a starting point and remove everything in the

opposite direction of the body, as can be seen in Figure 4.20d with the final segmentation result
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for the rPCF .

Figure 4.20: Top: a) Torso segment Depth map, b) binary mask of the identified and isolated torso
edges; Bottom: c) Both arms erased from the Depth map, d) Applied the 45◦degrees oblique cut
for the shoulders.

4.3.2 Segment of Point Cloud for registration Left rPCL and Right rPCR

As for the lateral poses segmentations used for registration, the process will be similar to the

rPCF . The torso limits TL and BL will be used to segment the torso region, since the patient will

not change her height during the rotation. In other words, the shoulders and the IMF limit will not

change their vertical position enough to go off the limits.

Finally, while for the rPCF , both arms need to be removed, in the lateral views (see Figure

4.21a and 4.21c) normally just one of the arms appears on the view, so it is just required to find

one edge of the torso, from the side of the closest arm to the camera, and eliminate each pixel from

that edge to the closest frame limits.

4.3.3 Segment of whole Point Cloud Frontal wPCF

As explained before in the beginning of this Section, this segmentation will be used just for the

final model. With this in mind, in order to avoid faulty overlaps of the arms from both registered

lateral views, they must be removed to avoid this visual effect. To proceed this, the exact same

principle for the rPCF in 4.3.1.3 is used, to find the torso edges (see Figure 4.22b) and remove

both arms (Figure 4.22c). Additionally, the shoulders are also trimmed with a 45◦degrees oblique

cut, to obtain the final depth map segmented in Figure 4.22d.
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Figure 4.21: The proposed algorithm applied in the lateral views Top: a) Right pose full before,
b) Right pose Segmented; Bottom: c) Left pose full before, d) Left pose Segment.

Figure 4.22: Top: a) Depth map input, b) binary mask of the identified and isolated torso edges;
Bottom: c) Both arms erased from the Depth map, d) Applied the 45◦degrees oblique cut for the
shoulders.

4.3.4 Segment of whole Point Cloud Left wPCL and Right wPCR

4.3.4.1 Vertical Cut

After the application of the estimated transforms in the full lateral point clouds, the overlap of

this lateral views common regions may cause some visible artifacts, mainly caused by imperfect

registration and the camera difficulties on capturing this surface portions that are smaller and

further away.



56 3D Model Reconstruction framework for Breast Cancer Patients

As explained later in the Rigid Registration framework’s step (see Section 4.5), the frontal view

is used as reference for the lateral Point Clouds, which means that the final model will preserve

frontal view orientation, as shown in Figure 4.23. If the frontal view is facing well to the camera,

calculating its center of mass, would give a close approximation of the body’s center.

Figure 4.23: Patient model after registration with axis for reference in 3D space, axis X in red,
axis Y in green and axis Z in blue.

Using the axis at the Figure 4.23 as reference, the frontal point cloud mean value of the x

coordinate, will be used as the center position for the vertical limit to apply the cut. Its application,

is done for each wPCLR individually, after the applied rigid transform, by removing all the points

which show an offset, in the x coordinate, from the calculated limit to the inverse direction of

respective lateral view, has suggested previously in the Figure 4.9. The resulting cuts are visible

in the Figures 4.24 for wPCL and 4.25 for wPCR.
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Figure 4.24: Left view Point cloud before a) and after b) the vertical cut.

Figure 4.25: Right view Point cloud before a) and after b) the vertical cut.

4.4 3D Data Generation for each View

Applications using low-cost RGB-D cameras for 3D modeling have been increasing in popular-

ity in the recent years, since it is possible to obtain acceptable models in 3D space using cheap

equipment. Even then, as previously reported in Section 4.1, different acquisition problems may

compromise the results, leading to lower success rates for certain applications.

Following what the literature revision contains about filtering for 3D modeling (see Section

2.5), the proposed approach for this step will be as shown in Figure 4.26. During the Preliminary

Processing, a bilateral filter is applied to the previously segmented depth images in order to smooth

the body surface. Following, a closing operation is performed to fill some small gaps. Meanwhile,

a depth image filtering scheme aiming at removing untrustworthy noisy points at the edge of the

foreground silhouette is applied. Therefor the color image is aligned with the depth map according

to the camera calibration setup given by the used equipment. The aligned color image is then
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segmented by the grabcut algorithm, initialized with a binary mask from depth map. The result of

the grabcut is then applied to the depth map.

Finally, the point cloud will be generated and an outlier removal filter will be used to detect

and remove the points which are too isolated from the body.

Figure 4.26: 3D data Generation pipeline.

4.4.1 Preliminary Processing

Due to its smoothing surfaces and edge conservative properties, the bilateral filter was chosen to

work with the 2D depth maps captured by the Kinect, see Figure 4.27 . It was implemented in

MATLAB using the mathworks scripts available with this filter functions, following the original

process developed by C. Tomasi and R. Manduchi [57].

Since it is a technique which cares about keeping the edges, in order to find the invalid pixel

values, a closing morphology operation [76] is done with a disk of radius 5. This configuration

was found empirically to fill invalid regions which may appear due to depth estimation failures

from the Kinect’s depth camera and also avoid the introduction of points and artifacts that were

removed previously in the segmentation process, as seen the example in Figure 4.28.

Since for this thesis, the equipment of choice has been the Microsoft Kinect, the Kinect Soft-

ware Development Kit (SDK) must to be used to manage the calibration setup which is necessary

to rectify the alignment between the depth and RGB data. Using the depth map as the reference,

is aligned such that each color pixel corresponds to the same point in the real world.

The aligned color image is then used for a process of segmentation with the Grabcut algorithm,

published by Carsten Rother et. al in 2004 [77], to extract the foreground and generate a mask.
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Figure 4.27: The depth images in the (b) and (d) are the same in (a) and (c) zoomed, respectively.
The images (a) and (b) are the input and the depth images, in (c) and (d) are results after the
Bilateral Filter.

Figure 4.28: The depth images in the (b) and (d) are the same in (a) and (c) zoomed, respectively.
The images (a) and (b) are results after the Bilateral Filter in (c) and (d) are results after the Closing
Operation.
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The aligned color mask is applied into the depth map image, to remove any foreground depth

pixels which belong to the background in the color map.

4.4.2 Point Cloud Generation

The resulting depth map is converted into the 3D space, with each point receiving its corresponding

color from the color map. Based on the Kinect calibration setup, from the used camera and saved

during the acquisition.

4.4.3 Outlier Removal Filter

The principle of this filter, as described in Section 2.5 in the chapter 2, can be seen in the following

pseudo-code (see algorithm 2). In a nutshell, a point is seen as an outlier if the mean distance of

the k nearest neighbors is higher than a certain threshold.

input : PCin Point cloud, k neighbors, Thresh threshold

output: PCout, new filtered Point cloud

std← getStandardDeviation(PCin);

foreach Point p of the Point cloud PCin do
neighbors← findNeighbors(PCin[p],k);

meanDistance← mean(PCin[p],PCin[neighbors]);

normalizedDistance← meanDistance/std;

if normalizedDistance < T hresh then
// Save Point for the Output Point cloud

PCout[p]← addPoint(PCin[p]);

end
end

Algorithm 2: Point Cloud Outlier Removal.
To look for the starting parameters in this implementation, experiments with a dataset of

point clouds were done, finding some variables which must be taken into account, such as, the

conditions of the acquisition, distance from the body to the camera, the density and size of point

cloud achieved with the Kinect. The conclusion was that, for larger clouds, more closer neighbors

should be used to achieve better results. For full size view point clouds (with about hundred

thousand points in average) 100 nearest neighbors were used with a threshold of 0.05, while for

the view segments, which represent nearly a quarter of the full sized clouds, proportionally just 25

neighbors were used.

This filter will remove points which appear isolated from the main group, caused by mea-

surement errors, and also clean the irregular edges of cloud as described in R. Radu’s work [59].

Additionally for this application, the filter may help correct some minor unwanted faults from

previous steps of the framework’s pipeline, such as the segmentation of rigid parts and the close

operation from the Preliminary Processing 4.4.1.
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4.4.4 Summary

The main goal of this step was to achieve point clouds with smooth surfaces, less noise, get invalid

values filled with new points and remove outliers.

Figures 4.29 and 4.30 show the difference between the old framework point clouds output

(Top row) against the ones that went through the new proposed approach (Bottom row), whose

results have better appearance than the original, the gaps were almost completely fulfilled, edges

of the breasts and torso are smoother with low artifacts and the points density in skin got better

distributed, which makes it look cleaner and colors match better with their neighbors.

Figure 4.29: Comparative Analysis of the patient models, point distribution: (a) old framework
model result without filters in preliminary processing; (b) Model results with new approach for
preliminary processing.
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Figure 4.30: Comparative Analysis of the patient models, filling gaps: (a) old framework model
result without filters in preliminary processing; (b) Model results with new approach for prelimi-
nary processing.

4.5 Rigid Registration

Registration is the method used to combine different perspectives from the object of interest with

acquired 3D data into a single model. This thesis will focus only on rigid registration methods

instead of non-rigid methods, given the prevalence of studies for rigid registration in computer

vision, the availability of public libraries and the expected higher computational demand for non-

rigid methods. Rigid registration means using just translations and rotations (while non-rigid

methods includes scale and skew transforms) to determine the best transformation, which maxi-

mizes the matching between two different 3D samples.

Reviewing the previous work on the old framework (see chapter 3), the registration process

can be decomposed in three main components, as described by the diagram in Figure 4.31.

Figure 4.31: A high-level diagram of the registration process.
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As already explained briefly in the Section 4.3, in order to achieve more successful registra-

tions, non-rigid body part have to be removed. The previously defined point clouds denoted as

rPC are the point clouds which are going to be used for registration, while the denoted wPC will

receive the estimated transforms that were found with the rPC. The main goal for the registration

in this application is to match both lateral poses with the reference frontal pose.

Since the point clouds refer to different instants of capture from a fixed camera, they will

appear overlapped with different orientations as shown in Figure 4.32a). In order to help the reg-

istration and maximize the matching, an angle of 25◦degrees (average rotation difference between

lateral and frontal poses) is used to perform a rotation transform for each lateral view’s point

clouds, like in Figure 4.32b, to make them aim in the same direction as the frontal view, which is

always used as reference.

Then, a coarse alignment is followed, by doing a registration with the Iterative closest Point

method, using the frontal view as a reference and a down-sampled version of every view point

cloud obtained from the Delaunay Triangulation principle as suggested by Pedro Costa work [1]

(Figure 4.32c).

Finally, for the fine registration, the last transforms estimations are computed with the point

clouds which resulted from the torso segmentation step, after going through the coarse registration.

The Rigid Registration method chosen was the Iterative Closest Point (ICP) using the frontal view

as reference to find the best transform for each one of the lateral point clouds (Figure 4.32d).

The computed transforms are applied to the full lateral view point clouds versions and com-

bined together with the frontal view into the single 3D model reconstructed in the Figure 4.32e.

The Point Cloud Library (PCL) is an open project library [78] for 2D/3D image and point

cloud processing, containing several state-of-the art algorithms for filtering, feature estimation,

registration, model fitting and others. Its development has been done from a large number of

different organizations around the world and supported by well known technology companies,

such as, Toyota, Nvidia, Google, Leica and Intel [79].

For the framework’s Registration module, this thesis will focus on analyzing different ap-

proaches for the fine rigid registration block in the framework’s diagram Figure 4.31. The meth-

ods provided in the Point Cloud Library (PCL) were used and their performance was compared,

focusing the execution time and the mean and Hausdorff distance errors. The discussion about the

findings will be done in Chapter 5.

The different Fine Registration methods used for comparison were the following:

• Iterative Closest Point - Original Point-to-Point [42];

• Iterative Closest Point - Non-Linear [46];

• Iterative Closest Point - Point-to-Plane [44];

• Iterative Closest Point - Generalized [47];

• Iterative Closest Point - Point-to-Plane Estimation with Levenberg Marquardt [45];
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Figure 4.32: Framework Registration procedure, Top: a) Input Lateral views point clouds, b) Pre-
alignment, c) Coarse alignment; Bottom: d) Fine Registration, e) Patient Complete Point cloud
model after adding the frontal view.

For the reconstruction of the models in every scenario and methods, the same stop criteria

options were applied for all patients:

• Transform Epsilon: 1e-25, The epsilon (difference) between the previous transformation

and the current estimated transformation is smaller than an user imposed value;

• Euclidean distance between two Point Clouds: 1e-9, The sum of Euclidean squared errors

is smaller than a user defined threshold;

• Max iterations: 1000000, Number of iterations which has reached the maximum user im-

posed number of iterations;

With the new set of methods proposals for this framework, a way to analyse everything was

established by testing every registration method in all patients in four different scenarios with

a combination of conditions, in order to find which method/scenario provides the overall best

performance for this kind of application. The results and their discussion is present in Chapter 5.

This four scenarios can be described as:

• Original old framework configuration, with manual segmentation and no filters being ap-

plied in any point cloud.
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• Automatic segmentation with all proposed methods for the module ‘3D data generation’

used just for wPCLF R.

• Automatic segmentation with all proposed methods in the module ‘3D data generation’ used

for wPCLF R, while for the rPCLF R just the preliminary processing proposals are used, which

includes Bilateral filter and Closing Operation without the outlier removal filter.

• Automatic segmentation with all proposed methods in the module ‘3D data generation’

applied for both wPCLF R and rPCLF R, including outlier removal filter.

4.6 Final Summary

New approaches were proposed to solve the main issues of the old framework. In order to reduce

the need for user input, an algorithm was developed to automatically select the patient’s main

poses. After choosing the frontal and lateral views, it was done an implementation of a procedure

to extract, from the depth maps, the rigid body parts to help and assure the rigid registration

module.

Looking at problems described in the Section 4.1 to encounter the noise introduced in the data

by the camera, new processing steps for the 3D data generation were proposed. This proposal

intends to implement a module in the framework to: smooth the surface with a bilateral filter, fill

the gaps using the closing operation and after generating the point cloud an outlier removal filter

is applied.

Finally, a test was implemented with different scenarios of using manual or automatic segmen-

tation, using Processing for 3D data and apply different fine registration methods.
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Chapter 5

Results and Discussion

In this chapter, the results from the algorithms and methodologies proposed in Chapter 4 are

presented and discussed. The tests were made to evaluate the performance of the automation in

selection of the poses and the segmentation of rigid body parts. Additionally, it is done a discussion

about the different proposed scenarios for the Fine Registration methods in combination with the

’3D data Generation for each View’ module described in Section 4.4.

For the evaluation of the timings performances, the tests were done in an Intel Core i7-3770K

CPU @ 3.50GHz, 16GB RAM (64-bit) computer.

5.1 Pose Selection

The automatic pose selection, proposed in Section 4.2, is an important step of the pipeline for

picking the three main views, which will be crucial for the model’s reconstruction. In order to test

the algorithm, a dataset was used, which is composed of video depth and color frames recorded

from 23 different patients, following the acquisition protocol (see Appendix A). The validation is

based on the pose boundaries annotations, in which the images are associated with a given pose

according to manually selected frames. For example, given all the frames, certain interval ranges

can be considered as the left, frontal and right pose classes. The automatic selection is considered

successful if the selected frames for each pose are contained in the corresponding intervals above

defined.

In table 5.1, it is displayed the algorithm’s success rate for each pose selection and an average

percentage error distance from the missed selections to the respective pose limits, given the footage

size from the respective patient. The full results for each patient are available in the Appendix B.

Regarding the execution time, this algorithm took in average 25.10seconds for a given patient

with a standard deviation 12.43seconds, which is proportional to the number of frames acquired

during a rotation.

The results have showed a solid performance on finding the frontal pose, while the lateral

poses despite their good ratings, were not so robust possibly because of the irregularities from the

K-means segmentation, which affected the determination of the nearest region. The patients may

67



68 Results and Discussion

Table 5.1: Pose selection Success Rate results in percentage and an average percentage distance
error from missed selections.

Pose
Success Rate

(%)
Average Distance

Error (%)
Frontal 100.0 0.0±0.0
Right 87.0 13.4±10.4
Left 78.3 7.9±8.5

not always followed the protocol correctly, for example by not rotating in a constant speed, their

arms not be positioned correctly and unwanted body movements. These inconsistencies may lead

to less reliable closest area measurements and consequently selecting lateral poses incorrectly.

5.2 Body Part Segmentation

As explained in the Section 4.3, it is important to remove the non-rigid body parts, in order to help

the rigid registration step. To evaluate the performance of the segmentation algorithm, segmenta-

tions for the previous selected 23 patients were done manually for each pose in the 3D space by

selecting the points to be removed. Then, thanks to the Microsoft Kinect SDK, this point cloud is

converted into depth-mask for comparison with the generated results from the proposed algorithm.

The validation task was performed with a similarity test between the automatic and manually bi-

nary masks segments by using the Jaccard Index [80] with equation 5.1 and the Sørensen–Dice

index [81] with equation 5.2. Additionally, an error metric is computed based on the percentage

of manual segmentation pixels missing in the automatic segmentation mask.

J(A,B) =
|A∩B|
|A∪B|

(5.1)

D(A,B) =
2×|A∩B|
|A|+ |B|

(5.2)

MissingArea(A,B) = (1− |A∩B|
|A|

)∗100 (5.3)

Table 5.2 presents the results of the average indexes (Jaccard and Sørensen–Dice), their stan-

dard deviation and the missing pixels error for each pose. The tests were only done for the wPCF

depth mask and the three rPC depth masks that were used for the registration, since they were the

only segmentations done in the depth maps. The full results for each patient are available in the

Appendix B.

From the results in table 5.2, it is possible to see that the segmentation algorithm is able to

achieve good levels of similarity to the reference. As for the lateral poses( rPCL and rPCR), they

seem to give worse segmentations, possibly due to the patient inconsistent rotation, leading to

body movements such as tilting or not keeping an erect position which may change their height.

Consequently, the torso gets out of applied top and bottom limits that were found earlier in the
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Table 5.2: Similarity Indexes Averages and Error for each Segment Results.

Views Segments Jaccard Index
Sørensen–Dice

Index
Missing area (%)

wPCF depth map 0.89±0.03 0.94±0.02 2±1.40
rPCF depth map 0.77±0.07 0.87±0.05 15±7.55
rPCL depth map 0.72±0.07 0.84±0.05 17±9.54
rPCR depth map 0.68±0.07 0.81±0.05 20±9.55

frontal image. Although some of the segments results show Missing areas between 15% and 20%,

it will be shown in the next section that it is still possible to perform registration correctly. This

comes with no surprise, taking into account that the manual segmentation used for this test was

done only by one annotator. Looking at [82], it shows how much variation the results may get

from different annotators, which leads to the conclusion that these results cannot provide the true

performance of the algorithm but just an approximation evaluation. This same principle may be

applied to the selection Pose algorithm and its tests results.

5.3 Rigid Registration and Filtering

In order to obtain the 3D models, the registration procedure has to be done such that all the views

are transformed into a single model. As previously said in the Section 4.5, four scenarios were

tested in order to perform a comparative analysis between the different registration methods and

observe the impact of using the ’3D data Generation’ module from Section 4.4 for rPCLF R (point

clouds used for registration estimation) and wPCLF R (point clouds to apply the estimated transfor-

mation) from manual and automatic segmentation. This evaluation is done by using the resulting

registered models, from a dataset of 7 patients, against the Ground Truth models obtained from

the high precision sensor 3dMD, see section 2.6.3. These tests will include the mean euclidean

distance error of the model’s points in both directions, Hausdorff Distance and execution time

comparison.

Table 5.3 describes how each scenario is composed from the possible different conditions,

with associated labels, used for the evaluation of Rigid registration methods and Point Cloud

Processing:

These are the different Registration Methods, with denoted labels, as will be seen hereafter for

the evaluation results:

• M1 - Iterative Closest Point - Original Point-to-Point [42];

• M2 - Iterative Closest Point - Non-Linear [46];

• M3 - Iterative Closest Point - Point-to-Plane [44];

• M4 - Iterative Closest Point - Generalized [47];
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Table 5.3: Combination of conditions for each scenario.

Conditions \Labels S1 S2 S3 S4
Manual Segmentation

√

Automatic Segmentation
√ √ √

Preliminary Processing + Outlier Removal
for wPC

√ √ √

Preliminary Processing
for rPC

√ √

Outlier Removal
for rPC

√

• M5 - Iterative Closest Point - Point-to-Plane Estimation with Levenberg Marquardt algo-

rithm [45];

From these described labels, it is relevant to notice that the combination S1 M1 refers to the old

framework configuration, where the Registration Method is the Iterative Closest Point, Original

Point-to-Point approach, with manual segmentations and no use of Processing for the 3D data.

Figure 5.1 presents a graph of the average execution time, for each registration method differ-

ent scenario.

Figure 5.1: The average execution time in seconds for each method in the different scenarios.

The Standard deviation (stdev) for the Figure 5.1 is not represented, due to fact that the

stdev for one of the patients was 17811 seconds what would yield an unintelligible plot. None-

withstanding, the values may be seen in the Appendix B.

In the next tables, the results values were computed with the free software CloudCompare to

calculate the error distances, using a matching function with 3dMD model as reference to all other

generated models for comparison. The full results for each patient are available in the Appendix

B.

Figure 5.2 presents the mean distance error obtained when testing the methods from the dif-

ferent scenarios in the 7 patients.
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Figure 5.2: The mean euclidean distances error (in millimeters) for each method and scenario,
using the direction from the 3dMD model to the Microsoft Kinect model.

From Figure 5.3, it is possible to observe that the error in the direction of the Microsoft Kinect

model to the 3dMD model is homogeneous among the different scenarios and methods. This

happened because the former model has a much larger point cloud than the latter.

Figure 5.3: The average mean euclidean distances error (in millimeters) for each method and
scenario, using the direction from the Microsoft Kinect model to the 3dMD model.

As for the Hausdorff Distance, Figure 5.4 contains the results from the 3dMD model to the

Microsoft Kinect Models, it is a metric used to measure how far they are from each other, providing

the longest distance from a given point of the reference point cloud to the nearest point from

another point cloud [83]. Doing an overview of the results, they follow the tendencies of the mean

distance errors, this is, for cases where the latter is higher, the former is also higher.

From the results, several conclusions can be taken. From all the scenarios, S1 is the one which

has showed the lowest mean distance error, since the other 3 scenarios were all obtained with the

automatic segmentation depth maps and filtering treatments for the model’s point clouds. The

accuracy of segmentation algorithm’s results and the possible unnoticeable distortion introduced

by the filters explain this behavior, despite achieving better looking models.

For the first scenario, the method with the lowest errors was the M4, which corresponds to the

Generalized-ICP, being able to step ahead of the standard ICP method used in the old framework.

However, by looking at the execution time, it took about the double of the time to achieve this

improvement which is near to a decimal of a millimeter, concluding that its use is not justified if
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Figure 5.4: The average Hausdorff Distance (in millimeters) for each method and scenario, using
the direction from the 3dMD model to the Microsoft Kinect model.

time is an important factor.

The method M2, which refers to the ICP non-linear, despite having really short time per-

formances, the mean distances are the highest and that is noticeable by looking at the resulting

models, confirming the registration failures on matching the views with almost every scenario and

patients.

The scenarios S1 and S2 are the best in the error distances metric for the registration methods

with the point-to-point approach. Meanwhile, from the scenario S3 to scenario S4 it is observable

an improvement, mainly for point-to-plane method approaches, for both time and error metrics. It

is very likely that this occurred due to the use of the outlier removal filter, which is able to remove

the distortion from lateral rPC, introduced with Preliminary Treatment and therefore improve the

normals estimation to be used in the point-to-plane approach.

Although the dataset used for this evaluation was limited to 7 patients, it is possible to address

its diversity of cases. By looking at the Appendix B in the mean distance from the 3dMD model

to the Microsoft Kinect model tables, it is observable, for example, in the last two scenarios the

patient PX_018_026_N had bigger errors due to some failures in registration, which also con-

tributed for bigger time consumption. However, from the median execution time results (see the

tables in Appendix B) and mean distance errors, without considering the outlier’s results which

have great influence for methods such as M5, the performance reaches levels of error similar to

the old framework, while being faster and providing better appearance models.

If the determining factor is the timing associated with good visual results, then the preferred

option is the use of ICP point-to-plane (M3) in the last scenario. Against the old framework (S1

scenario with method M1) it is able to achieve an acceptable average mean distance error of just

1 millimeter in difference, performing four times faster and gives a model with more pleasant

visuals due to the Preliminary Treatment and Outlier Removal Filter. As reported in the Literature

Revision, see section 2.3, the point-to-plane approaches demand higher computational power,

which is noticeable with large time consumption in data with a lot of noise as in S1 and S2.

Although here is presented a situation where is possible to attenuate that impact, by smoothing

the object of interest’s surface. With its normals calculated for each point, these will have a better
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similarity and distribution due to the noise reduction. This way, the method will be able to estimate

the transform to apply in less iterations.

When looking for the model with the least mean distance error and at the same time having

good visual appearance, the best scenario is S2 with the ICP standard method M1, although M3

and M5 are in average just 0.05 millimeters away, which is barely unnoticeable in the real world.

Figure 5.5 presents the visual outcome of the reconstructed 3D models of the 7 breast cancer

patients with the combination of the scenario S2 with method M5. The overview of the models

present very promising visual appearance results, with noise reduction and more complete sur-

faces.

Figure 5.5: The complete 3D models of 7 patients in the scenario S2 with method M5.

The point clouds of every patient for every combination of scenario and registration method

are available in the dissertation webpage1for download.

1https://paginas.fe.up.pt/~ee11098/Tese/PointClouds.html
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5.4 Color Correction

Although the color correction was not a defined objective for this thesis, a simple test was done

to verify the Texture Mapping module from the old framework, as referred in chapter 3. The

goal of this task was to see the results between the registered point clouds which went through

the ’3D data Generation’ module (see Section 4.4) and after the color transfer module step with

2D HD photos, against the output of the old framework with the whole Texture Mapping module.

This comparison can be seen in the Figure 5.6, with 2 patients models from two different views

side-by-side to see the differences.

Looking at the frontal views, although the original models look more uniform, they show

visual artifacts which affect their photo-realism. Those artifacts become particularly relevant in

the lateral views given the interpolation color step from the Texture Mapping Module. On the

other hand, the new results of the proposed methods, despite showing some artifacts from the

reconstructed person’s rotation, present some ambitious results. The proposed method allows to

lose less high frequency information and fine detail, being possible to conclude that it may have

potential in order to avoid or simplify additional processing steps.

5.5 Conclusions

The methodologies proposed have showed good performance in terms of automation, registration

and modelling. Solid results were achieved when considering the pose selection (mainly the frontal

pose) despite the environment conditions, and the segmentation in terms of removing the non-rigid

regions. Several results were obtained by combining the different methods and scenarios proposed.

To decide which is the best scenario to use in the framework, the choice should take into account

three main factors: processing time, mean distance error and visual results. If the main goal is

to reduce the time required, the best models came from the ICP point-to-plane model (M3) in

scenario S4. When the visual results have higher priority, the best scenario was S2 since it uses

filters in the wPC point clouds and shows the best compromise between time of execution and

mean distance error. However, if the most important factor is the mean distance error, than the

first scenario (S1) using the Generalized-ICP (M4), without any point cloud visual enhancement

processing, seems to be the most adequate.

Due to the fact of using heuristics and empirical approaches for the algorithms in the automatic

pose selection and segmentation modules, an additional independent dataset of 23 patients was

used, without any algorithm adjustment, in order to prove its robustness for other different patients.

Tables 5.4 (Pose Selection algorithm) and 5.5 (Body Part Segmentation algorithm) show the results

which validate the proposed algorithms to automatize the framework’s initial procedures since they

are similar with the results to the previous dataset.

Additionally, these new 23 patients were used to verify the performance of the rigid registration

with the combination of method M5 in scenario S4. The new results have showed an average

execution time of 2471± 3284 seconds and an average distance error of 2.81± 0.82 millimeters
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with the direction from the 3dMD model to the Kinect models. In comparison with the previous

results, for the same combination of method and scenario, there are no significant changes between

both datasets, which demonstrates its robustness given different patients and their known non-rigid

properties. The overall results of this new dataset are available at Appendix B .

Table 5.4: Pose selection results for the independent dataset, showing the Success Rate results in
percentage and an average percentage of distance error between selected frames and the closest
respective pose limits, given the footage size from the respective patient.

Pose
Success Rate

(%)
Average Distance

Error (%)
Frontal 95.7 3.8±0.0
Right 78.3 19.7±12
Left 78.3 20.5±13

Table 5.5: Segmentation algorithm results for the independent dataset, showing the Similarity
Indexes Averages and Error for each Segment Results.

Views Segments Jaccard Index
Sørensen–Dice

Index
Missing area (%)

wPCF depth map 0.89±0.02 0.94±0.01 1±0.60
rPCF depth map 0.84±0.05 0.91±0.03 9±4.99
rPCL depth map 0.72±0.06 0.84±0.04 18±7.86
rPCR depth map 0.75±0.06 0.86±0.04 19±6.69
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Figure 5.6: The 3D models with the proposed method (a),(c),(e) and (g) in comparison with the
models done with the reference method (b),(d),(f) and (h).



Chapter 6

Conclusions

Breast Cancer is a disease which affects a huge number of women across the world and known

for both physical and psychological impact. Its treatment requires an intensive monitoring and

recurrent analysis to keep track of the evolution. To face this medical demand, the evolution of

technology in the last years, such as the introduction of 3D modeling, has enabled the arising of

tools for the acquisition and sharing information between physiologists and patients.

3D modeling has gained popularity over the last few years thanks to the development of low-

cost RGB-D cameras. This equipment is able to produce 3D models with acceptable accuracy for

a relative reduced cost, in comparison with traditional systems available on the market which are

known to be expensive, complex to operate and require special knowledge.

A medical analysis application was developed by the VCMI group from INESC-TEC, a frame-

work which reconstructs a 3D model of the patient’s torso with the data acquired from the low-cost

RGB-D device Microsoft Kinect.

This kind of medical applications for 3D modeling faces many challenges, in order to assure

the correct registration of multiple views captured during a rotation. As for the human, it is known

for its non-rigidity properties such as involuntary movements, change of shape and limbs articula-

tion. Additionally, it is not possible to guarantee the correct execution of the acquisition protocol

by the patients and an adequate environment, since the lighting conditions and the space may affect

the camera.

This thesis proposes new approaches to improve the framework and overcome its major flaws

in the four main steps of the processing pipeline: (a) pose selection, (b) rigid body parts segmenta-

tions, (c) 3D data Generation and (d) Rigid Registration. For (a) and (b) the purpose was to find a

more automatic procedure to reduce user input, by selecting the patients poses from video footage

and extract the rigid body parts from the views before generating the point cloud. In (c) and (d) a

new 3D data Generation for each view approach is proposed and used for the conducted analysis

of different scenarios, in combination with various rigid registration methods, in order to find the

best configuration in terms of time execution, visual appearance and level of distortion.

The results achieved by the proposed techniques were successful at obtaining an automatic

system and an improved aesthetic outcome, good enough for comparison with the high-end system
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3dMD. Furthermore, due to the fact that heuristics and empirical approaches were used for these

algorithms, automatic pose selection and segmentation modules, an additional independent dataset

of 23 patients was tested, without adjusting the implementations, to verify its performance. The

final tests showed similar results to the previous dataset, which validates the robustness for the

proposed algorithms in order to automatize the framework’s initial procedures.

6.1 Future Work

Regarding future work, the proposed approaches should be tested on larger and different datasets,

in order to test the methods in a higher variety of patients and find more unexpected conditions,

which may compromise the generation of the point clouds. Overcoming these aspects is important

to pursue a more robust framework, capable of retrieving successful registrations for different

patient scenarios.

Although the results have showed some improvements against the old framework, there is

still room for upgrades in some modules, such as the Texture Mapping Module, where the colors

provided by the Microsoft Kinect do not match the real patient’s color skin due to different light

acquisition condition. This module needs automation and rework in order to fill gaps and assign

acceptable color for these new points. After obtaining the best point cloud possible, the mesh has

to be generated for a complete surface of the model.

Finally, this system needs to have the framework able to work independently of the acquisition

technology.



Appendix A

Acquisition Protocol

For this section it is presented the image acquisition protocol used to obtain the data from patients.

This process works with the patient spinning smoothly and constantly in its own vertical axis along

180 degrees, while the 3D camera is records the depth and RGB images, such as the Microsoft

Kinect.
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A.1 PICTURE – IMAGE ACQUISITION PROTOCOL MICROSOFT
KINECT – 3DMK

Background

• A neutral background should be used to prevent reflections from influencing the patient’s

skin colour (Light blue).

Camera Mount

• Camera should be mounted on a tripod at ~90 centimeters from the subject.

• Camera height: mounted to prevent patient identification (below the neck).

Patient Positioning

• The subject positioned without jewellery or clothing.

• Hands on hips to prevent obstruction of the lateral view.

Image Acquisition Layout

• Images will be acquired continuously for a full 180◦rotation between lateral views, per-

formed as smoothly as the patient is able (from left to right and left to right), see Figure

A.1.

Specifications

• Computer Windows 7 or higher.

• 8GB Ram.

• Hard Disk with 6000 rpm.

Figure A.1: RGB-D image acquisition protocol using the Microsoft Kinect.



Appendix B

Full Results

In this section the full results for each proposed improvement of the framework are presented.
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B.1 Pose Selection

Table B.1: Pose Selection with each patient results.
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Table B.2: Pose Selection with each patient results, for the independent dataset.
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B.2 Body Segmentation

Table B.3: Segmentations Similarity Jaccard Index
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Table B.4: Segmentations Similarity Dice Index
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Table B.5: Segmentations Missing Pixels Error
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Table B.6: Segmentations Similarity Jaccard Index, for the independent dataset
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Table B.7: Segmentations Similarity Dice Index, for the independent dataset
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Table B.8: Segmentations Missing Pixels Error, for the independent dataset
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B.3 Rigid Registration and Filtering

B.3.1 Times of execution

Table B.9: Times of execution for each method in scenario S1.

Table B.10: Times of execution for each method in scenario S2.

Table B.11: Times of execution for each method in scenario S3.
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Table B.12: Times of execution for each method in scenario S4.

B.3.2 Mean Distance Error from 3dMD Model to Microsoft Kinect Model

Table B.13: Mean distance error from 3dMD Model to Microsoft Kinect Model in scenario S1

Table B.14: Mean distance error from 3dMD Model to Microsoft Kinect Model in scenario S2
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Table B.15: Mean distance error from 3dMD Model to Microsoft Kinect Model in scenario S3

Table B.16: Mean distance error from 3dMD Model to Microsoft Kinect Model in scenario S4

B.3.3 Mean Distance Error from Microsoft Kinect Model to 3dMD Model

Table B.17: Mean distance error from Microsoft Kinect Model to 3dMD Model in scenario S1

Table B.18: Mean distance error from Microsoft Kinect Model to 3dMD Model in scenario S2
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Table B.19: Mean distance error from Microsoft Kinect Model to 3dMD Model in scenario S3

Table B.20: Mean distance error from Microsoft Kinect Model to 3dMD Model in scenario S4

B.3.4 Hausdorff distance from 3dMD Model to Microsoft Kinect Model

Table B.21: Hausdorff distance from 3dMD Model to Microsoft Kinect Model in scenario S1
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Table B.22: Hausdorff distance from 3dMD Model to Microsoft Kinect Model in scenario S2

Table B.23: Hausdorff distance from 3dMD Model to Microsoft Kinect Model in scenario S3

Table B.24: Hausdorff distance from 3dMD Model to Microsoft Kinect Model in scenario S4
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