
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Alternative Solutions for Substation
Telecontrol

Hugo Filipe Oliveira Rocha

FINAL VERSION

Masters in Electrical and Computers Engineering

Adviser: Maria Teresa Andrade Assistant Professor

Co-adviser: Pedro José Fonseca Engineer

July 26, 2013

c© Hugo Filipe Oliveira Rocha, 2013

Resumo

Os serviços de distribuição eléctrica cobrem grandes áreas geográficas e expandem-se ao longo
de grandes distâncias. Os operadores da rede necessitam de métodos fiáveis e financeiramente
suportáveis para aceder às subestações de modo a garantir a monitorização remota. O acesso
remoto é normalmente garantido recorrendo a fibra ótica ou a feixes hertzianos, no entanto estas
tecnologias têm as suas limitações. Existe a necessidade de encontrar novas soluções alternativas
que garantam o controlo remoto aplicado a situações reais. Esta dissertação procura explorar novas
maneiras de garantir a comunicação de dados em sistemas SCADA. Estas soluções distanciam-se
das tecnologias clássicas explorando alternativas que recorrem a modems wireless para garantir o
telecontrolo de subestações aplicada na maior empresa de distribuição de energia em Portugal.

Esta dissertação detalha todo o trabalho desenvolvido para implementar a solução, a sua inte-
gração e testes e outras funcionalidades extra que foram desenvolvidas. A solução revela-se como
uma solução flexível e adequada para o telecontrolo de subestações.

i

ii

Abstract

Electric power distribution services often cover large areas and reach great distances. The distri-
bution network includes, among other equipment, remotely located substations, in charge mainly
of performing transformations from high to low voltage and vice-versa. Normally, the substa-
tions are unattended but given the crucial role they play within the distribution of electricity to
the final consumer, it is essential that reliable and cost-effective monitoring systems are made
available to remotely located operators. The remote access is traditionally provided by SCADA
systems (Supervisory Control And Data Acquisition), supported by optical fiber or microwave
links. However, these communication technologies have some limitations and therefore there is
the need to research alternative solutions that may be able to guarantee efficient remote monitoring
in practical conditions. This dissertation aims to explore new alternative ways to implement sub-
station telecontrol in SCADA systems within the distribution network of one of the leading electric
power distribution company in Portugal. These solutions detach from the classic ways to transmit
telemetry data by exploring the use of wireless modems applied to the telecontrol of substations.
This manuscript details all the work developed during the course of this dissertation to implement
the sought solution, including its integration with existing equipment, as well as the execution of
functional and performance tests. It also describes additional functionality that was designed and
implemented, providing the final system with flexibility and capabilities that were not foreseen
at the beginning. According to the feedback obtained from the tests performed,the solution has
revealed itself as an efficient, cost-effective and flexible solution for substation telecontrol.

iii

iv

Acknowledgements

Although this is an individual work I would like to show my appreciation and gratitude to all those
who supported me during this work.
Therefore I would like to thank to my supervisor Maria Teresa Andrade for all the helpful advices,
guidance and for the time spent reviewing the dissertation’s content.
I would like to thank to my co-adviser Pedro José Fonseca for his help and guidance, for fa-
cilitating all the required hardware and many important information that lead to the successful
accomplishment of the proposed objectives.
I would like to thank to the EDP’s ATOM department particularly to the technicians Fernando
Rocha and Rui Ferreira for their help in understanding crucial hardware details and to the engi-
neer Pedro Vidal for his restless support.
Finally I would like to thank to my friends especially Hugo Alves and Rita Neves for their support
and everlasting friendship. To my girlfriend Eduarda Sousa for finding me when all seemed lost,
being more than I could ever wish for and being my answer to the hardest question in life. And to
my mother, brother and especially to my father Nelson Rocha, who besides my father, is a close
friend, who always did for me more than one could ever expect, for his unwavering dedication and
everlasting support, for always doing the impossible to help me with this project and life itself, for
being someone who will always have my gratitude and who I will always be grateful for.

Hugo Filipe Oliveira Rocha

v

vi

“Quality is never an accident; it is always the result of high intention,
sincere effort, intelligent direction and skillful execution;

it represents the wise choice of many alternatives.”

William A. Foster

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 2
1.3 Objectives and Outcomes . 2
1.4 Structure . 3

2 State of the Art 5
2.1 SCADA Systems . 5
2.2 SCADA Protocols . 6

2.2.1 OSI Model . 6
2.2.2 Modbus Protocol . 8
2.2.3 DNP 3 Protocol . 9
2.2.4 IEC 60870-5 Standard . 10
2.2.5 Protocol Comparison . 14

2.3 GPRS Technology . 16
2.3.1 Siemens TC65 . 17
2.3.2 Cinterion MC55i . 17
2.3.3 iTegno 39XX . 17
2.3.4 Robustel GoRugged M1000 . 17
2.3.5 ABB RER601 and RER603 . 17

2.4 SCADA Satellite Systems Providers . 18
2.4.1 Orbcomm . 18
2.4.2 Thuraya . 18
2.4.3 Iridium Communications . 18
2.4.4 Inmarsat . 19
2.4.5 Globalstar . 19

2.5 Overview . 19

3 Specification of the adopted solution 21
3.1 Objectives and Functionalities . 21
3.2 System’s Architecture . 22
3.3 System’s Specification . 23
3.4 Impact in the Company . 31

4 Development 33
4.1 System Overview . 33
4.2 Core Functionalities . 34

4.2.1 Initiation . 34

ix

x CONTENTS

4.2.2 Reception . 35
4.2.3 Transmission . 37

4.3 Additional Features . 37
4.3.1 Error Correction Mechanisms . 37
4.3.2 Operation Modes . 42
4.3.3 Dynamical Variable Assignment Mechanisms 42

4.4 Online Monitoring Interface . 44
4.4.1 REST Interface Design . 45
4.4.2 Interface Functionalities . 46

4.5 Performance Considerations . 53
4.5.1 J2ME and Jar Size . 54
4.5.2 Busy Loops . 56
4.5.3 Garbage Collection . 57
4.5.4 Multi-threading . 59
4.5.5 IEC 60870 Frame Validation . 59
4.5.6 TCP vs. UDP . 60
4.5.7 HTTP Requests Minimization . 64
4.5.8 Web Integration Protocol Efficiency . 64
4.5.9 Automatic Modem’s Geographic Location Detection 67

4.6 Satellite Systems Benchmarking . 69
4.6.1 Iridium . 70
4.6.2 Inmarsat . 70
4.6.3 Orbcomm . 71
4.6.4 Thuraya . 71
4.6.5 Globalstar . 71
4.6.6 Overview . 72

5 Conclusions and Tests 75
5.1 Garbage Collection . 75
5.2 UDP and TCP . 78
5.3 Real Tests . 80
5.4 Conclusions . 80
5.5 Limitations . 82
5.6 Future Work . 82

A Garbage Collection Tests 85
A.1 String Object Tests . 85
A.2 StringBuffer Object Tests . 88

B TCP and UDP Tests 93
B.1 UDP Tests . 93
B.2 TCP Tests . 95

C Real Tests Logs 99
C.1 Log Sample . 99

D Use Case Textual Specification 103
D.1 Use Case Textual Specification . 103

CONTENTS xi

References 109

xii CONTENTS

List of Figures

2.1 Typical SCADA hierarchy . 6
2.2 Typical SCADA system . 7
2.3 OSI Model’s Structure . 8
2.4 IEC 60870 Structure . 11
2.5 IEC 60870 frame types . 12
2.6 IEC 60870 link user data detail . 13
2.7 Message sequence diagram . 14

3.1 Overall system’s architecture . 23
3.2 System’s Collaboration Diagram . 24
3.3 Technician’s use case diagram . 25
3.4 Application’s main use case diagram . 26
3.5 Java application class diagram . 30

4.1 Java application’s block diagram . 34
4.2 High level applications’ initiation flow chart . 36
4.3 Reception thread’s high level flowchart . 38
4.4 Transmission thread’s high level flow chart . 39
4.5 Configuration interface . 43
4.6 Client application’s file structure . 44
4.7 Application’s web request time sequence . 45
4.8 Online modems listing . 46
4.9 Modem’s geographic location . 47
4.10 Modem’s details . 47
4.11 Modem’s sent and received frames graph . 48
4.12 Online SIM’s listing . 48
4.13 Online configuration’s listing . 49
4.14 Modem’s configuration interface . 49
4.15 Active connections listing . 50
4.16 Active connections details . 50
4.17 Active connections geographic location . 51
4.18 Active connections reset states . 51
4.19 Predefined connections listing . 52
4.20 Insert predefined connection interface . 52
4.21 Events visualization . 53
4.22 Event filtering . 54
4.23 Solution’s occupied space comparison . 55
4.24 Occupied space after size reduction techniques 56

xiii

xiv LIST OF FIGURES

4.25 Source code before performance tuning . 58
4.26 Source code after performance tuning . 58
4.27 Thread wait method implementation . 59
4.28 Initial frame validation sequence . 61
4.29 Frame validation’s state machine . 62
4.30 Initiation HTTP requests before optimization 65
4.31 Initiation HTTP requests after optimization . 66
4.32 Example of an application’s XML object . 66
4.33 Example of the implemented custom protocol 67
4.34 Mobile network geographic structure . 68

5.1 TCP/UDP tests scheme . 78
5.2 Frontend’s real test configuration . 81

List of Tables

2.1 IEC 60870, DNP3 and Modbus comparison . 16

3.1 Exchange data use case textual description . 25
3.2 Exchange data course of events . 26
3.3 Create connection use case textual description 27
3.4 Create connection course of events . 27
3.5 Register use case textual description . 27
3.6 Register course of events . 28
3.7 Register connection use case textual description 28
3.8 Register connection course of events . 28
3.9 Report information use case textual description 29
3.10 Report information course of events . 29

4.1 J2ME TCP/UDP comparison . 63
4.2 Geographic location detection method comparison 69
4.3 Main satellite services airtime charges . 72
4.4 Main satellite services monthly airtime cost for a given amount of data 72

5.1 Garbage collection tests sample size estimation parameters 76
5.2 Garbage collection tests sample size estimation results 76
5.3 Garbage collection tests results . 77
5.4 Garbage collection paired t-test results . 77
5.5 TCP/UDP tests sample size estimation parameters 78
5.6 TCP/UDP tests sample size estimation results 79
5.7 TCP/UDP tests results . 79
5.8 TCP/UDP paired t-test results . 79

A.1 String object measured delay . 85
A.2 StringBuffer object measured delay . 88

B.1 UDP connection measured delay . 93
B.2 TCP connection measured delay . 95

D.1 Configure serial port parameters use case textual description 103
D.2 Configure server use case textual description . 104
D.3 Configure operation mode use case textual description 104
D.4 Configure application’s parameters use case textual description 105
D.5 Generate configuration file use case textual description 105
D.6 Configure connections use case textual description 106

xv

xvi LIST OF TABLES

D.7 View modems’ list and details use case textual description 106
D.8 View SIM cards’ list and details use case textual description 107
D.9 View connections use case textual description 107
D.10 Reset modem use case textual description . 108

Symbols and Abbreviations

ASDU Application Service Data Unit
ATOM Automation, Telecontrol, Operations and Maintenance
DNP Distributed Network Protocol
FTP File Transfer Protocol
GGSN Gateway GPRS Support Node
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
HTTP Hypertext Transfer Protocol
IEC International Electrotechnical Commission
IED Intelligent Electronic Device
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
ISDN Integrated Services Digital Network
ISO International Organization of Standardization
J2ME Java 2 Platform, Micro Edition
JVM Java Virtual Machine
M2M Machine to Machine
MCC Mobile Country Code
MNC Mobile Network Code
OSI Open System Interconnection
PDP Packet Data Protocol
PLC Programmable Logic Controller
REST Representational State Transfer
RTU Remote Terminal Unit
RUDICS Router Unrestricted Digital Internetworking Connectivity Solution
SCADA Supervisory Control and Data Acquisition
SCP Secure Copy Protocol
SOAP Simple Object Access Protocol
SSH Secure File Transfer Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol

xvii

Chapter 1

Introduction

This introductory chapter provides a bird’s eye view of the work that was developed within the con-

text of this dissertation. It presents the main objectives that were established, a concise overview

of the context and scope of the work, identifying the main obstacles to overcome as well as the mo-

tivation to surpass those difficulties. It briefly indicates the main outcomes of the developed work,

highlighting strengths and weaknesses. Finally it also describes how this document is organized,

listing the different chapters that compose it and the main topics addressed in each one.

1.1 Motivation

In modern industrial processes and electrical distribution systems telemetry is often needed to

connect equipment and systems separated by large distances. This can range from a few meters

to thousands of kilometers. Telemetry is usually used to send commands and receive monitoring

information from these remote locations. SCADA often includes telemetry and data acquisition

and involves information gathering, transferring it back to the central station, carrying out any nec-

essary analysis and control and then displaying that information on a number of operator screens

[1]. The operational efficiency of any commercial service based on SCADA, greatly depends on

the ability to remotely control and monitor devices and equipment located in distant places, such as

machines or complete substations. It is critical for the operations and maintenance departments, to

have tools that can be easily deployed, enabling to quickly access the status of remote equipment

and extract useful information. The ability to obtain this data through remote access is a prereq-

uisite [2]. In many services, like electric power or water distribution, it is necessary to install

equipment in distant places and geographically sparse. Nowadays it is unacceptable to maintain

individuals in every substation, mostly due to the high costs involved, highlighting the importance

of remote monitoring through telecontrol. An efficient and competitive service must necessarily

rely on the use of remote diagnosis tools to detect in real-time faulty equipment and obtain relevant

information to accordingly initiate maintenance tasks. These features greatly reduce the operation

costs and time efficiency of the technicians. The research of viable alternatives to achieve these

objectives applied to the context of crucial services has a great importance to their success [3].

1

2 Introduction

SCADA uses a centralized system to monitor and control processes spread out over large geo-

graphic locations. Telemetry is used to receive monitoring information or to send commands to

these locations. It is commonly found in industrial processes, namely, electrical power generation

and transmission, water treatment and distribution, oil and gas pipelines, wind farms and others

[1, 2]. SCADA systems traditionally use radio communications (VHF/UHF or microwave radio),

direct wired communications (copper, coaxial or fiber optic cable) or a combination of the two.

However these methods are very vulnerable when major natural disasters occur or even too costly

or difficult to implement in some locations. More than often, a bulldozer rips a fiber optic cable,

bad weather makes radio links fail or other random accidents lead to loss of communication. It is

essential to research alternative methods that can overcome the limitations of the usual communi-

cation technologies and guarantee the availability of communication links while repairs are being

done. GPRS technology and satellite systems applied to SCADA may offer a powerful solution

to implement the communications between geographically sparse systems, constituting suitable

alternatives to the usual communication methods. Investigating new telecontrol alternatives and

how to efficiently deploy them, can lead to great cost reductions and time optimization, operational

efficiency and overall system performance of any service. These objectives highlight the impor-

tance of the research of new solutions and new alternatives to the telecontrol and communication

of SCADA information.

1.2 Scope

This dissertation was proposed by EDP, an electrical distribution and production company, aiming

at exploring new alternatives to implement the telecontrol of their substations. Specifically, the

goals established for this dissertation are to evaluate the possibility of using GPRS technology

and satellite communications to implement the remote control within the SCADA system, con-

sequently developing a prototype and integrating it within the EDP’s system. The corresponding

work will be developed at specific department within EDP (ATOM), responsible for handling the

operations and maintenance of their communications and equipment. It will be developed in Gaia

at the EDP’s installations, under the guidance of the engineer Pedro José Fonseca. Internally the

dissertation will be supervised by professor Maria Teresa Andrade.

1.3 Objectives and Outcomes

The overall goal of this dissertation is to investigate and recommend flexible and efficient alter-

natives for the implementation of the remote control systems of EDP’s substations. The work

associated to this dissertation has been conducted at the EDP’s Operations and Maintenance de-

partment building, which has proved to be beneficial for the successful achievement of the pro-

posed work. This has in particular facilitated the fullfillment of the first set of objectives that

had been established, namely, to get acquainted with the activities of the department, to study

the GPRS technology, the IEC 60870-5 standard, as well as their applications. The second set

1.4 Structure 3

of objectives included investigating the potential of using GPRS technology to transmit SCADA

information, consequently determining the best alternatives to implement such a solution for the

telecontrol of EDP’s substations. Based on the outcomes of this phase, the next objective was

to actually implement a solution adopting the identified optimal approach. This has involved the

specification and development of a Java-based application to be deployed on GPRS modems. Such

application had to support the initially studied protocols to transfer SCADA information between

SCADA frontends, located at the main operational center, and the remote substations. The final

set of objectives established for this dissertation was to investigate the feasibility and eventual

benefits, of using satellite communications as an alternative to GPRS.

The outcome of the work conducted based on this set of proposed objectives was an automated

software system that supports the exchange and transmission of IEC 60870 data between a sub-

station and frontend. The system also features several error recovery techniques and performance

tuning. The online interface is capable to remotely and automatically register, manage, monitor

and configure every modem and the modem network.

1.4 Structure

This manuscript is divided into five main parts. The present chapter has provided a bird’s eye

view of the dissertation. Chapter 2 provides a description of the review performed on the relevant

state of the art, notably, on the most important protocols to be used, on the available technologies

to allow developing the functionality necessary to fulfill the objectives, on the services available

to transmit telemetry data through satellite communications and the main GPRS modems avail-

able. The functional specification of the adopted solution, together with its overall architecture,

is described in chapter 3. It identifies the functionality offered by the system to support the ini-

tially proposed objectives, presenting a formal description of the system through the use of various

formal diagrams, namely, use cases, component, collaboration and class diagrams. Chapter 4 de-

scribes in detail all the work that was undertaken to develop the identified solution. It provides

a description of the main functionalitiy implemented, also describing operational aspects of the

system, indicating how the system operates to deliver the referred functionality. This chapter also

addresses performances issues of the system, indicating approaches tested and alternatives imple-

mented to overcome initial limitations. Chapter 5 describes operational and usability tests of the

system in a real-world environment, presenting the obtained results and draws some conclusions

and briefly presents future work that could be performed based on the outcomes of this dissertation

and on additionally identified needs of the user of the developed technology.

4 Introduction

Chapter 2

State of the Art

This chapter provides relevant background concerning technologies that are foreseen to be used

in the development of the project and their main alternatives. It will be presented an overview of

the main protocols, hardware and solutions relevant to the project. It will be described the main

GPRS modems available and their features, an overview of the IEC 60870-5 standard and its main

alternatives and the main satellite solutions for telemetry in Europe.

2.1 SCADA Systems

In modern industrial processes it’s often crucial to connect and transmit data from equipments and

systems separated by great distances [4]. These distances can range from few meters to thousands

of kilometers. Telemetry is used to send programs, data or commands and receive monitoring and

measurement data from these equipments. SCADA typically uses telemetry and data acquisition to

collect information from the equipments, transmitting it to the central site, manage the processing

of data and display the information in several screens or any other user interfaces [5]. It also

manages the sending of commands and control actions back to the equipments. The figure 2.1

describes a typical SCADA hierarchy.

The systems usually consist of several equipments or RTUs collecting field data and transmit-

ting it back to the central station through a communications system. The communications system

can be implemented with wire, fiber optic, radio links or even satellite. To optimize the communi-

cation of data, different protocols can be used to guarantee the error detection and efficiency of the

link. The central station displays the data and allows the user to send commands and control the

devices remotely [1]. This leads to safer operations, a more efficient and reliable system, lower

costs of operation and to the optimization of the industry’s operation and processes. Figure 2.2

pictures a typical SCADA system with different communication technologies.

5

6 State of the Art

Figure 2.1: Typical SCADA hierarchy

2.2 SCADA Protocols

A protocol is a set of formal rules to describe how information should be transmitted inside a

network. These rules can be low level, defining physical and electrical characteristics and bit

level operations, or high level, describing for example the frame organization and content [6].

In this chapter it will be provided a brief overview of the OSI model and the main functions and

fundamentals of the main SCADA protocols used in electrical systems: Modbus, DNP3 and IEC

60870.

2.2.1 OSI Model

All modern protocols have a representation in the OSI model. This model is an ISO standard with

seven layers. All the layers define the structure of a communications network to be developed by

each protocol. The flow of information is done vertically; each layer receives the information of

the layer directly above and passes the information to the layer directly below. The information of

each layer is destined to the same layer on the receiving system [7]. The structure of the model is

illustrated in image 2.3.

2.2 SCADA Protocols 7

Figure 2.2: Typical SCADA system

A brief definition of each layer and its main functions it’s presented below:

• Application - provides the interface to access the service implemented by the communica-

tions architecture;

• Presentation - defines the structure of the information between the systems, describes the

type of data, the acceptable range of values and provides encryption and decryption of data;

8 State of the Art

Figure 2.3: OSI Model’s Structure

• Session - establishes, manages and terminates connections between users and applications’

sessions, ensuring the synchronization;

• Transport - assures that the packages are received in an orderly manner and without errors,

providing reliable transport between users;

• Network - states the network topology and ensures the routing of data between the systems;

• Data Link - provides transmission with error detection between two systems by physical

addressing;

• Physical - ensures a data path between two points in a physical environment, specifying the

physical and electrical characteristics and the signal type.

2.2.2 Modbus Protocol

This protocol was developed by Modicon and it is one of the oldest protocols in industrial ap-

plications. It is easy to implement, largely accepted and provided by a wide range of suppliers

[3]. Although it’s not an official standard, through the years it has become an open, non-official

2.2 SCADA Protocols 9

standard for industrial communications between RTUs and PLCs [8]. The Modbus protocol falls

within the seven layer of the OSI model, the application layer, implementing communications be-

tween devices within a network in a Master/Slave architecture [3]. As in a traditional Master/Slave

architecture, the master is the only device allowed to initiate the communication. The other de-

vices answer to the message sent by the Master, sending the required information. This protocol

uses an addressing scheme that allows broadcast messages or communication with specific Slaves.

The same addressing scheme limits the scalability of the system due to the limited number of ad-

dresses [3]. Communicating with every Slave individually requires the reading of each register

by the master, which may require a large bandwidth, becoming too demanding for applications

with a large number of RTUs. Although its drawbacks and limitations in large applications, this

protocol is highly efficient in simple networks where there’s a small amount of information being

transmitted [7]. To overcome these drawbacks it was created several new versions of this protocol

that somehow bypass these problems (Modbus TCP / IP or Modbus Plus) [6]. Although there

isn’t an official standard that ensures consistency between suppliers this protocol is available in

most devices and it’s considered a standard between many companies.

2.2.3 DNP 3 Protocol

This protocol is a telecommunications standard for SCADA communications and was created by

the Harris Controls Division (now owned by GE Energy) initially designed for electrical distribu-

tion systems, although now it can be found in many different applications like water distribution

systems, security industries and oil and gas distribution [3]. It hasn’t a large spread in Europe,

where IEC 60870-5-101 is widely used, but it has a great impact and a high acceptance in North

and South America, South Africa, Asia and Australia, being a very popular protocol and the prin-

cipal IEC 60870-5 competitor. In these countries it is recognized by one of the major SCADA

protocols, it is provided by a large number of suppliers and used in several applications in many

different areas like electrical and water distribution systems [1]. DNP3 is also an open standard

provided by the DNP3 User Group, available to everyone by a nominal fee. The protocol was

created to achieve interoperability between systems in a distribution network and it defines com-

munications between RTUs or any other remotely controlled system in a SCADA environment.

The frame formats and message structures are based on the section 1 of IEC 870-5 (named Trans-

mission Frame Formats) which was being developed at the time. Using the IEC 870-5 documents

made DNP3 and IEC 60870-5-101 share some common ground, giving them some similar foun-

dations in the data link layer, although they differ greatly in the higher levels of functionality and

data objects [1]. Since the main objective to the development of this protocol was to be used in a

SCADA system it was designed to transmit small amounts of data in a reliable manner, assuring

that the packets arrive in a deterministic sequence. This could be achieved using TCP/IP using

for example FTP, or SCP/SSH or even HTTP [9]. All of these could guarantee communications

with the needed features but not in a way that would be completely suitable for SCADA control,

since it usually transmits small amounts of data and it needs a slow delay, the overhead in other

non SCADA oriented protocols can be excessive [9]. DNP3 supports several topologies: multiple

10 State of the Art

masters, multiple slaves, peer to peer and hierarchical structures with intermediate data concen-

trators. It can operate in different modes either polled or quiescent [1]. Quiescent mode provides

better efficiency for the system’s communications since it allows the slaves to initiate communica-

tions. This allows the system to be silent and only communicate when there are changes. Although

there is always a background polling system that makes the master aware if any of the slaves lost

the connection. Despite the slaves being able to initiate communications they can’t request data or

issue commands, making the designation “slave” still suitable in this case since those abilities are

restricted to the master. Besides these features DNP3 provides broadcast messages, a large num-

ber of devices addresses by single link (65000), message confirmation, time controlled events and

synchronization and optimum error control (dividing the messages into frames) [7]. The DNP3

was created to achieve several objectives providing it with numerous attractive features. The data

link and application layer use the frame format defined by the IEC 870-5 which allows confirma-

tion messages providing data integrity [10]. The implementation of an object based application

layer with an adapting structure allows a wide range of applications while maintaining interop-

erability [10]. It provides different modes of operation (polled or quiescent) making it suitable

for different applications [1]. As a layered protocol can have a wide range of applications over

local and wide area networks alike. It was developed to maintain flexibility using a minimum of

overhead possible, ensuring a high efficiency [1]. It is a non-proprietary evolving standard and

the full specification of the protocol is available to any person [10].

2.2.4 IEC 60870-5 Standard

IEC 60870-5 was completed in 2000 and intended to define a set of open standards for the trans-

mission of information and telemetry data in SCADA environments. Although it was initially

focused to electrical applications (it has data objects specifically for those) it can be applied to any

general SCADA system in any industry [7, 9]. The standard describes detailed functional opera-

tion for controlling equipments in a SCADA system with processes geographically dispersed. The

standards are divided in six parts with a number of companion standards. Each part is divided in

several sections that were sequentially published through the years. Part 5 is divided in 5 sections

that provide the core specification for the transmission protocols. The companions add specific

information about the field of operation defining different information objects applied to different

purposes [1]. The IEC 60870 structure detailing transmission protocols, is pictured in 2.4.

IEC 60870-5-101 companion has the most meaning when IEC 60870 is mentioned in the con-

text of SCADA environments. This document defines the data objects in the application level

essential to SCADA systems, completing the full definition of a complete working SCADA pro-

tocol. This companion was able to finally provide data objects and the necessary application level

functions to define a full working transmission protocol. It defines general communications with

RTUs and data types specialized to electrical applications, although they are generic enough to

be applied to other SCADA applications [11, 12, 1]. This companion provides link and ASDU

addresses for end station classification, data is classified into different information objects with

a specific address and can be transferred with different mechanisms depending on its priority. It

2.2 SCADA Protocols 11

Figure 2.4: IEC 60870 Structure

also provides cyclic and spontaneous data updating schemes, time synchronization and file transfer

functionalities. It supports multidrop and point-to-point communication links, with either balanced

or unbalanced communication [10]. Balanced scheme is limited to point-to-point links and needs

collision avoidance, making the system more complex, although it provides a better communica-

tions system’s efficiency. On the other hand, unbalanced communications simplifies the system

and doesn’t need collision avoidance but only the master can send primary frames. Since balanced

communications are exclusively for point-to-point links, in a multidrop topology the master must

implement a cyclic polling scheme to interrogate the slave stations. The network access compan-

ion IEC 60870-5-104, it’s also of particular importance. In this document it is defined how the

part 5’s messages are transported over networks. It refers to the usage of TCP/IP for the transport

of protocols [13]. As expected this standard defines very different physical and data transport

mechanisms but leaving the data objects of the higher layers unchanged. IEC 60870-5-104 and

101 aren’t completely independent from each other. In the lower layers, while 101 defines every

aspect of the protocol from the application layer to the physical layer, 104 uses existing func-

tionalities in TCP/IP transport and network protocol for the message transport. In the application

layer though, the two standards are completely equivalent, 104 uses the same functions defined

in 101 [1]. It is important to detail some of the standard’s specifications relevant to this project.

12 State of the Art

The two most important features that the Java application has to deal with are the frame structure

and the link initialization. The frame structure is important because the application has to detect

and process the standard’s frame structure. It is important to know the link initialization process

because the flow of the messages is essential to understand the tests and the logs.

2.2.4.1 IEC 60870-5 Standard Structure

There are two forms of frame formats, one with fixed length and another with variable length.

The fixed length frame carries no user data and is used only for acknowledgments and data link

control commands [1]. There is also a single control character used only for acknowledgment [1]

but it is not used in the company’s standard implementation. The picture below shows the overall

frame construction of each type of frame at the octet level. The first octet is shown at the top,

and following octets are shown below. The L field indicates the length of the frame from C to the

end of the link user data. C is the control field and is used to identify the type of frame. A is the

address field and contains the link address of the secondary station.

Figure 2.5: IEC 60870 frame types

The link user data is composed by one ASDU. The ASDU has two main sections, the data unit

indentifier and the data itself. The data unit identifier defines the specific type of data and provides

2.2 SCADA Protocols 13

addresses to identify the data’s identity. The data is composed by one or more information objects.

Picture 2.6 details the ASDU structure.

Figure 2.6: IEC 60870 link user data detail

2.2.4.2 IEC 60870-5 Message Sequence

The standard defines two main phases of message exchange: the link initialization and transmis-

sion procedures [1]. The information below is relevant for the company’s implementation which

is an unbalanced multi-point application. Link initialization is a service carried out when a station

is offline and becomes available again. The master station periodically sends link status request

functions until the slave station responds with the link status. For unbalanced mode the master

starts by sending status request until the status of link is received, then the master sends the link

reset and the link becomes active when the master receives an acknowledgement, the slave then

generates a station initialization complete event [1]. After the initialization the controlling station

will cyclically poll each station for any available class 2 user data. The secondary station will re-

turn any class 2 user data and will also indicate if there is any class 1 data available. The message

sequence is presented in picture 2.7.

14 State of the Art

Figure 2.7: Message sequence diagram

2.2.5 Protocol Comparison

While IEC 60870 and DNP 3 are standardized (by IEC and DNP user’s group respectively) Mod-

bus is a proprietary protocol with no technical committee to guarantee interoperability between

devices from different suppliers and create standards to implement new functionalities. Making

two devices work under Modbus can be difficult while using a well standardized protocol makes

this job much easier. Also when the system needs an expansion the user may be bound to use the

components of the same proprietary system or change a considerable amount of parts to change to

another’s manufacturer’s protocol. IEC 60870 and DNP3 have technical committees that work to

implement new functionalities and ensure interoperability achieving high compatibility between

2.2 SCADA Protocols 15

devices from different manufacturers. Modbus has exclusively a Master/Slave topology, not sup-

porting reports by exception. With DNP3 and IEC 60870 besides being possible to choose several

different topologies, they support balanced communications and a quiescent mode in DNP3. This

allows that only changes in the system are reported, greatly improving the communications ef-

ficiency and the communications channel usage by reducing the bandwidth [1]. Besides these

characteristics DNP3 and IEC 60870 offer many features that aren’t available in Modbus. Some

of these are time synchronization, data objects and functions suitable for electrical SCADA sys-

tems, pooling report by exception, data classes and unsolicited responses [10]. Also DNP3 and

IEC 60870 support event time stamping at the remote device. This feature is important when a de-

vice fails, being the information and the timestamp of the event recorded in the device even if the

communications fail. This information can be collected later preventing data loss and allowing the

proper identification of each event. Besides these drawbacks Modbus usually has a lower imple-

menting cost, its simpler and suitable for simple serial networks with low amounts of information

being exchanged [3]. Considering that both DNP3 and IEC 60870-5-101 have emerged from the

same frame formats defined in IEC 60870-5-1 they have many similarities. Besides the function-

alities referred before they support freeze and clear counters, file download and upload and high

security data transmission [1]. Despite their similarities they still have several areas where there is

a considerable difference between them. IEC 60870 uses both link and application addresses when

DNP3 only uses link addresses. This characteristic gives IEC 60870-5-101 greater flexibility in its

addressing system [10]. IEC 60870-5-101 also has a larger point address range and uses variable

address lengths, using less bandwidth when only a small amount of addresses are needed. Both

DNP3 and IEC 60870-5-101 support balanced communications, however in the second these are

limited to point-to-point configurations. This might overcharge the bandwidth and may become

unacceptable in multidrop configurations [1]. They also have several differences in application

functions and data objects, DNP3 separates the functions and the data objects obtaining greater

flexibility but perhaps at the cost of complexity. DNP3 has testing procedures and authorities and

defined minimum implementation levels being one of the strong features for DNP3. However

these features are fading since DNP3 is older and had an early lead in this area, IEC 60870-5-101

has been catching up for the past few years. In IEC 60870-5-101 data objects have no variations,

the point address scheme is simpler and uses single byte ACK transmissions on data link layer,

these characteristics between others make IEC 60870-5-101 simpler than DNP3. Although these

features make the protocol operate in a simpler manner, they also require additional configuration

which can complicate the system integration [1]. Another practical consideration is the location

of the SCADA system. DNP3 is considerably more popular in America while IEC 60870 it’s

dominant in Europe. It can be more or less difficult to find support depending on the application’s

geographic location and industry type. Table D.10 summarizes the main differences between

these three protocols.

16 State of the Art

Table 2.1: IEC 60870, DNP3 and Modbus comparison

Feature IEC-60870 DNP3 Modbus
Organization IEC TC 57 WG 03 DNP User Group Modicon
Architecture Three layer architecture Four layer architecture.

Also supports 7 layer
TCP/IP

Application layer proto-
col

Standardization IEC Standard Open Industry Specifica-
tion

No standardization

Topologies Peer-to-peer and mul-
tidrop

Peer-to-peer, multiple
slave and multiple master

Peer-to-peer

Time synchro-
nization and time
stamped events

Yes Yes No

Polled report by ex-
ception and unso-
licited responses

Yes Yes No

Data classes Yes Yes No
Complexity Complex but simpler than

DNP3
Most complex Simplest

Implementing cost Higher Higher Lower
Configuration
parameters

Baud rate, device ad-
dresses, balanced/ unbal-
anced, frame length, size
of link addresses, size
of ASDU addresses and
structure of point number

Baud rate, device ad-
dresses and fragment size

Baud rate, mode (ASCII
or RTU) and parity mode

Dominant market Europe and Australia North and South America,
Asia, Australia and South
Africa

Worldwide

2.3 GPRS Technology

GPRS is a packet-switching technology that supports data transfers in GSM networks. It sep-

arates data into blocks with appropriate size, despite their type or content and transmits them.

The packets are then grouped and pieced together at the receiver. Using packet switching allows

the device to be connected and ready to send information without reserving the communications

channel making it available simultaneously for several users, allowing an increase of bandwidth

per user [14]. It also improves the efficiency of the radio spectrum because it only uses the net-

work resources when there is a need to transfer data. GPRS was designed to coexist with the GSM

public land mobile network and is able to provide higher data rates and support longer messages

improving the capacities of GSM networks [15]. It extends Internet and X.25 networks to wire-

less cellular networks, allowing any application running with IP or X.25 protocols to operate over

a GSM cellular connection [16, 15]. The main features of the GPRS modem used to test the

implementation and its main alternatives are briefly explained next.

2.3 GPRS Technology 17

2.3.1 Siemens TC65

This modem will be used to test the implementation of this project. It is suitable for machine to

machine communications and has a set of very interesting features that makes it a very attractive

solution for remote control. Supports several standard interfaces like bus, audio, ADC, serial and

even a SIM card interface and provides multislot GPRS class 12. It has a Java software devel-

opment platform making it a suitable solution even for complex applications allowing memory

allocation and processing capabilities. Java also supports secure data transmission with HTTPS,

FTP, TCP, UDP, SMTP and a TCP/IP stack via AT commands. It also has a plug and play func-

tionality being easy and quick to integrate [17].

2.3.2 Cinterion MC55i

Also suitable for machine to machine communications the MC55i is an interesting alternative to

the TC65 providing many of the same features with reduced power consumption and extended

temperature range. Similar to TC65 it supports TCP/IP stack access through AT commands, UDP,

FTP, POP3, HTTP and SMTP. Besides this features it has some interesting drivers for Microsoft

Windows and Windows Mobile and supports GPRS multislot class 10 [18].

2.3.3 iTegno 39XX

Specifically designed for industrial applications, this GPRS modem is a simple and adequate so-

lution for telemetry and data control. It’s built to provide robust and compact wireless commu-

nications, at a low price with an easy and simple integration. Provides multislot GPRS class 10,

integrated TCP/IP and UDP/IP stacks and user interface through AT commands. It also supports

an optional low transmit power mode [19].

2.3.4 Robustel GoRugged M1000

Developed for machine to machine communications, this modem offers state of the art GPRS

connectivity. Transmits data over GSM or GPRS mobile networks and supports Modbus RTU

slave protocol, has software selectable interfaces and supports a wide range of input voltages.

It also has the functionality to use a set of AT commands to control the modem. Offers GPRS

data transfer through a TCP/IP stack, it can directly convert serial data to SMS without using AT

commands and supports remote configuration through SMS [18].

2.3.5 ABB RER601 and RER603

RER601 and RER603 are wireless gateways and are able to guarantee versatile and reliable com-

munications. They have built-in secure VPN connection and GPRS communication and are able

to provide a secure connection between the master station and substation. This solution connects

to SCADA via the M2M gateway using the standard IEC 60870-5-104. It uses a secure VPN

connection to any public GPRS network provider. These devices can also connect to other devices

18 State of the Art

using the IEC 60870-5-101 standard and can also convert the information between both 101 and

104 protocols. This solution can be used to automate distribution networks, remote substations or

transformers.

2.4 SCADA Satellite Systems Providers

Communications in SCADA systems are usually implemented with optical fiber or microwave.

However these methods are very vulnerable when major natural disasters occur or even too costly

or difficult to implement in some locations. Satellite systems are the best option in these situa-

tions. They are robust against natural disasters and become cost effective where optic fiber isn’t.

Satellite systems become a reliable backup communication system improving the communication

reliability [20]. The main data transmission services over satellite communications will be briefly

described next.

2.4.1 Orbcomm

Orbcomm’s satellite network focuses on machine to machine communications supporting satellite

and cellular data transmission. They offer solutions for remote control, management and device

tracking. Their services manage two way data communications, combined satellite and cellular

communications, networks management and full control of remote applications. The network uses

low Earth orbit satellites providing low delay communications and lower signal attenuation. With

each link the satellites scan the available frequency bands and dynamically assign channels to users

minimizing interference. The satellites are simple, reliable and have longer lifecycles lowering the

cost to support the satellite system providing lower subscription prices [21, 22].

2.4.2 Thuraya

Thuraya supports voice and data communications worldwide excluding the polar regions, through

an intelligent satellite network. The network is able to allocate resources dynamically minimizing

signal congestion, varying the transmitted bandwidth to adapt demand. This makes the communi-

cations link more reliable and stable, reaching farther locations by increasing the satellite power

and concentrating the capacity on specific beams. Satellite calls may also be switched in space,

increasing the efficiency of the network and providing greater flexibility to the terrestrial network

components [21, 23].

2.4.3 Iridium Communications

Iridium Communications Inc. uses a satellite communications system to offer real time and re-

liable voice and data communications. It guarantees global coverage through a constellation of

66 low Earth orbiting cross linked satellites. All of the satellites’ spot beams overlap minimizing

missed connections. The satellite constellation works similarly to a mesh network, each satellite

2.5 Overview 19

communicates with nearby satellites in adjacent orbits. The information received is passed auto-

matically to all other satellites and transmitted in their footprint. Iridium’s architecture provides

increased reliability through the multiple routing paths, when a single link is down the system is

able to detect it and find an alternative path. Also low orbit satellites provide a shorter transmission

time and less signal loss, allowing end users to communicate with lower potency equipments and

generally simpler [21, 24].

2.4.4 Inmarsat

Inmarsat provides reliable mobile satellite services with a wide range of solutions. It has three

constellations with a total of 10 geosynchronous satellites. These manage to provide a global cov-

erage of broadband voice and data communications and two way data connectivity for messaging

and monitoring of fixed or mobile installations. They offer strong communications links guaran-

teeing great reliability with availability above 99.99%. The broadband services are able to support

complex applications and simultaneous voice and data communications. It also provides VPN

products and encryption standards, supports the latest IP and switched circuited services with easy

integration with legacy applications and provides plug and play terminals for machine to machine

communications [21, 25].

2.4.5 Globalstar

Globalstar provides mobile satellite voice and handset data services. It has 32 low earth orbiting

satellites providing imperceptible voice delay and reduced signal loss. The system’s software op-

erates on the ground allowing faster and easier system maintenance and upgrade. The constellation

covers 80% of the planet surface and different satellites can pick up the same connection. This

makes the system redundant, guaranteeing that a link is kept even if the user moves outside the

satellite’s range. When two satellites establish a link with the same terrestrial gateway the trans-

mission starts, guaranteeing that at least one link is kept. The gateway distributes the information

to cellular networks or the internet. Maintaining the gateways and the system’s software terrestrial

make the services easy to manage and the system easy to upgrade and to expand [21, 26].

2.5 Overview

The presented protocols are well defined and all of them represent suitable solutions to implement

remote telemetry in SCADA applications. According to the differences and features analyzed,

IEC 60870 proves to be the most appropriate solution for the desired application. All of the

satellite system’s providers seem to offer interesting solutions to implement substation telecontrol.

A comparison between solutions and prices applied to the desired application will be presented

later on. All of the GPRS modems presented would fulfill the requirements for this project but

Siemens TC65 presents several advantages for allowing the development of personalized Java

applications and for being a cheaper choice. Also the company has some experience with these

20 State of the Art

modems and it is easier for the technicians to use something they already know than something

entirely new.

Chapter 3

Specification of the adopted solution

This chapter describes the functional specification of the adopted solution, presenting its overall

architecture. It identifies the functionality offered by the system to support the initially proposed

objectives, presenting a formal description of the system through the use of various formal dia-

grams, namely, use cases, component, collaboration and class diagrams. It thus provides further

details concerning the objectives of this dissertation and the functionality offered by the system.

|t presents the system’s actors and main architectural components and how they interoperate to

deliver the desired functionality and thus fullfill the proposed objectives.

3.1 Objectives and Functionalities

The main purpose for this dissertation is to explore alternative ways to implement telemetry and

telecontrol of remote substations within an electric power distribution network. More specifically,

it aims at implementing an automated system that uses GPRS modems to transfer telemetry data

between SCADA Frontends and Substations using the IEC 60870 standard. The solution requires

the development of software to be deployed in the modems to manage the transmission of the

protocol’s messages. Besides this solution the dissertation also briefly explores the possibility to

telecontrol Substations using satellite systems. Going beyond the initially proposed objectives, a

Web-based online remote monitoring and configuring application was developed to allow remote

users to manage the modem’s network. This Web application had not been foreseen as part of the

initial objectives and introduces new interesting features to the basic system. The final solution

that was obtained is of the type "plug-and-play". When one modem is connected to the Frontend

the communication link is automatically established with the modem connected to the Substation.

The software implemented in the modems should be able to communicate with the GPRS network

equipment, configure the connection, manage the Packet Data Protocol (PDP) context and manage

the data flow between the mobile network and the RS232 interface. When one modem is connected

to the substation the application on the Frontend’s side should be able to negotiate its own IP ad-

dress and communicate to the Substation’s modem. It is also expected that the applications run

for several hours, days or even months on possibly remote and hardly accessible locations and it

21

22 Specification of the adopted solution

is unacceptable to expect that the technician will have to go there often. So it is essential that

the connection stays operational for a considerable amount of time without requiring maintenance

operations. For this reason several extra functionalities were implemented to make the solution

more robust, being able to recover from error conditions. The application’s performance was also

a critical aspect due to the Frontend’s timeout. A standard IEC 60870 Frontend has a configured

timeout to receive the Substation’s responses. If the response takes longer than the timeout it will

be discarded. Usually this timeout is considerably small so it is important that the application in-

troduces the smallest possible amount of delay. Having this into consideration, several additional

performance optimization features were experimented and introduced in the final solution to min-

imize the processing delay. The Web application, providing an online interface, offers several

additional functionalities that go beyond the initial requirements. Its main purpose is to provide

a tool to monitor the modems’ activity and configure them remotely, without the need to install

special software as a simple Web browser can be used. This application is also self-sufficient and

it is capable of updating itself without any user input. It provides detailed information about all the

modems and SIM cards registered in the system, their geographic location, data sent and received

over time and supports the remote interaction and modification of the modem’s configurations.

3.2 System’s Architecture

The system has three main components: the substation, the command center and the online server.

The substation’s equipment records the telemetry data and gathers them in an industrial PC. The

industrial PC connects to the communications channel and sends the data. The command center

gathers the data from several substations and displays them in user interfaces. Since there can

be many substations transmitting to the same master station, a Frontend manages the incoming

information and sends the corresponding answers. The Substation and the Frontend are the main

components and the solution’s main purpose is to support the connection between them. As re-

ferred above, the online server did not appear in the initial design of the system and in fact it goes

beyond the initially stated objectives. It was added to support the online monitoring interface and

it stores, displays and manages the information coming from the modems. The REST interface

manages the interactions with the modems, all relevant information is stored in the database and

displayed in the online interface. The system’s high level architecture is pictured in figure 3.1.

The Intelligent Electronic Devices (IEDs) gather all the data from the Substation devices. This

information is transmitted to the Substation’s industrial PC and transmitted to the serial interface.

The modem receives the data and sends them to the mobile network. The command center’s

modem receives the data from the mobile network and sends it to the Frontend’s serial interface.

The Substation’s data is then displayed in the SCADA interface and new responses and commands

are issued from the Frontend back to the Substation using the same mechanism. Besides managing

the connection between the Substation and Frontend the modems report important information to

the online server. To do this the modems access and use different Web services implemented by

the REST interface to communicate the required parameters. The REST interface receives these

3.3 System’s Specification 23

Figure 3.1: Overall system’s architecture

parameters and stores them in the database. The online interface displays all information and

allows to remotely configure the modem.

3.3 System’s Specification

The system has three main actors: the technician, Frontend and Substation. The Substation and

Frontend communicate with one modem and all the logic associated with that interaction managed

by the Java application. The technician can either use the application’s backend to interact with

the modem or use the online interface. Each application has several different conceptual modules

being similar to both client and server applications. The processing module is responsible for most

processing operations, interprets the IEC 60870 frames and manages the interactions between all

the modules. The serial and mobile interface modules create the connections with the serial port

and mobile network and manage the information flow between them. The applications’ backend

is responsible for all functionalities related with the technician’s interaction with the applications

and the error recovery module implements the error recovery mechanisms. The Web interface

implements all functionalities supported by the online monitoring interface and the REST interface

manages the interactions between the modems and the online server and implements the Web

services. The system’s high level collaboration diagram is pictured in figure 3.2.

The application’s main use cases are presented in the use case diagram pictured in figure 3.4

and the technician’s interaction with the system is presented in figure 3.3.

24 Specification of the adopted solution

Figure 3.2: System’s Collaboration Diagram

The detailed specification and course of events of each java application’s use case is presented

below.

3.3 System’s Specification 25

Figure 3.3: Technician’s use case diagram

Table 3.1: Exchange data use case textual description

Use Case: Exchange data

Code UC01
Name Exchange data
Description The Substation or the Frontend sends the information to the serial port and the

modem reads and sends it to the remote device using the mobile network. The
remote modem reads the information from the mobile network and sends it to
the serial port. The remote device can access the information through the serial
port.

Actors Frontend, Substation
Pre-conditions Both modems must be connected.
Post-conditions The data is sent by the device and received by the remote device.

26 Specification of the adopted solution

Figure 3.4: Application’s main use case diagram

Table 3.2: Exchange data course of events

Typical Course of Events

Actor Action (Substation or Frontend) System Response (Application)

1 This use case begins when the Substa-
tion or the Frontend sends information
to the serial port.

2 Reads the information from the serial
port and verifies the frame’s integrity.

3 Sends the information to the mobile
network.

4 Reads the information from the mobile
network.

5 Sends the information to the serial port.
6 Reads the information from the serial

port.

3.3 System’s Specification 27

Table 3.3: Create connection use case textual description

Use Case: Create connection

Code UC02
Name Create connection
Description The Frontend’s application creates the connection to the Substation’s modem

using the mobile network and the server’s IP specified in the configurations.
Actors Modem
Pre-conditions None.
Post-conditions The connection is created.

Table 3.4: Create connection course of events

Typical Course of Events

Actor Action (Modem) System Response (Application)

1 This use case begins when the modem
initiates and requests a connection to
the remote device.

2 Reads the IP address defined in the
configurations.

3 Creates a connection to that IP address.
4 The connection is successfully created.

Table 3.5: Register use case textual description

Use Case: Register

Code UC03
Name Register
Description The modem requests the registration web service to register itself on the online

database. The parameters for that modem are sent in the request and the server
returns that modem’s configurations.

Actors Modem
Pre-conditions The connection with mobile network has to be established.
Post-conditions The modem is registered and its information stored in the database.

28 Specification of the adopted solution

Table 3.6: Register course of events

Typical Course of Events

Actor Action (Modem) System Response (Online Server)

1 This use case begins when the modem
sends a request to the registration web
service.

2 Parses the parameters sent in the re-
quest.

3 Stores the parameters in the request.
4 Sends that modem’s configurations.

5 Parses the configurations and loads
them.

Table 3.7: Register connection use case textual description

Use Case: Register connection

Code UC04
Name Register connection
Description The modem requests the connection web service to register the connection on

the online database. The parameters relevant for that connection are sent in the
request and stored in the database.

Actors Modem
Pre-conditions The connection with mobile network and remote device has to be established.
Post-conditions The connection is registered.

Table 3.8: Register connection course of events

Typical Course of Events

Actor Action (Modem) System Response (Online Server)

1 This use case begins when the modem
sends a request to the connection regis-
tration web service.

2 Parses the parameters sent in the re-
quest.

3 Stores the request’s parameters in the
database.

4 Sends the confirmation.

3.3 System’s Specification 29

Table 3.9: Report information use case textual description

Use Case: Report information

Code UC05
Name Report information
Description The modem regularly reports the modems activity from time to time accord-

ingly with the configured time interval. To send the information the modem
requests the statistics web service and sends the parameters in the URL. The
service parses the parameters and returns any actions for that modem.

Actors Modem
Pre-conditions The connection with mobile network and remote device has to be established.

The report functionality has to be enabled.
Post-conditions The report data is received by the REST server.

Table 3.10: Report information course of events

Typical Course of Events

Actor Action (Modem) System Response (Online Server)

1 This use case begins when the modem
sends a request to the statistics web ser-
vice.

2 Parses the parameters sent in the re-
quest.

3 tores the parameters in the request.
4 Sends any actions for that modem to

execute.
5 Parses the parameters and executes the

actions.

Regarding the Java application requirements specified above, the preliminary class diagram

for the application is presented in picture 3.5.

30 Specification of the adopted solution

Figure 3.5: Java application class diagram

The diagram is simplified and does not include all the variables and methods implemented

in the application. Also the variables confVars, errorVars, etc represent all the variables associ-

ated with configuration, error recovery, etc. If the diagram would have detailed all variables and

methods it would become extremely large; accordingly, it was decided to present instead a higher

level diagram. The Main class’s startApp method runs when the modem initializes. This method

initializes all the variables and uses the other classes according to the application’s specification.

The Receive class manages the data reception while the Send class manages the transmission. The

HTTP requests are sent and interpreted by the Http class. The ATListener manages the responses

of the module’s AT parsers when AT commands are sent. The ConfigStart class creates the user

interface, loads the new configuration parameters and creates configuration files. The Validation

3.4 Impact in the Company 31

class is used by both Main class and Http class and it is responsible for validating user input. The

base64UrlSafe class encodes strings in base64 encoding making them appropriate to be used in

the URL.

3.4 Impact in the Company

EDP is amongst the largest European operators in the energy sector, is one of the largest in the

Iberian Peninsula and the largest industrial group in this sector in Portugal. It has over 564 power

substations countrywide and an extensive power network throughout the whole country. Every

substation is controlled and monitored remotely through an extensive telecommunications system.

The power substation’s telecontrol is usually supported using optical fiber or microwave links.

The telecommunications system is able to support remote maintenance tasks in the power supply

network reducing the electrical power unavailability time. The system specifed within the context

of this dissertation, whose functional specification has been described in this chapter, introduces

a more flexible and less expensive alternative way to telecontrol power substations using GPRS

modems. In fact, it provides an easier and fast solution to the existing infrastructure, namely

when problems occur such as those that require to reinstate a broken fiber cable or to maintain

the communications link during maintenance operations. Also it is the most adequate way to

connect a Mobile Substation to the communications network. Mobile Substations are usually hard

to connect because they require a whole PDH or SDH equipment and a new fiber node. This

requires moving expensive equipment and moving fiber cables to the Mobile Substation that often

is on the street and outside of the Substation premises. The online monitoring interface introduces

interesting features for the departments in charge of overseeing the network. It allows the modem’s

configuration and monitoring from virtually everywhere and a powerful tool to configure and

manage the whole modem network. Besides the main application this interface is applicable to

any device with Internet connection. EDP also has an extensive medium voltage network with

several devices, most of them modems Siemens TC65 also running different Java applications.

The medium voltage network currently has 3126 Siemens TC65 modems installed and there is no

registration tool or a way to find out which modem is where or to see any information about each

modem. The online monitoring interface implements a way to monitor, configure and manage all

of these 3126 modems and their connections completely automatically. The interface was also

built in a way that any device with an Internet connection can use the services. This eases the

scalability of the system making it easily applicable to future devices that may be included in the

network.

32 Specification of the adopted solution

Chapter 4

Development

This chapter describes the development work that was conducted within the course of this dis-

sertation, describing the approaches adopted and the solutions devised to satisfy the proposed

objectives. The work consisted on the specification and development of a client-server system,

where the communication between the two remotely located components was established via

GPRS modems. Both components were developed using JAVA technology. This chapter pro-

vides details concerning the main features of those components, the adopted workflow and the

envisaged mode of operation. It is divided in five main sections: system overview, core function-

alities, additional features; online monitoring interface; and performance considerations. After

an overall description of the system, the second section describes how the main objectives for

the project are fulfilled, by presenting the main features of the system and its operating mode.

The main functionalities implemented on the online monitoring interface are detailed in the third

section. The additional features that were integrated in the system, providing support for further

functionality in relation to the basic initial requirements are described in section 4. Finally, section

5 discusses aspects related with the system performance, explaining specific procedures that were

included to enhance the efficiency of the system and justifying choices made.

4.1 System Overview

The main purpose of the developed system is to automatically manage the exchange of SCADA

telemetry data between a Power Substation and a Frontend module, using the IEC 60870 standard.

To accomplish such objective, It was developed two applications were conceived and developed,

namely a client application that was installed in the Frontend’s modem, and a server application

installed in the Substation’s modem. Four main functional blocks, common to both applications,

can be identified: initiation, reception, transmission and management. Their interaction is depicted

in figure . The application starts by running the initiation functionalities, creating two new threads

that will manage the reception and transmission of data. The management block is additional and

goes beyond the initial project’s objectives. It allows the modem’s configuration and monitoring.

33

34 Development

The initiation is responsible for variable initialization, modem configuration, serial port initial-

ization, GPRS network registration, connection initialization and reception/transmission threads

initiation. The reception thread manages the flow of information from the GPRS network to the

serial port, while the transmission thread manages the flow of information from the serial port to

the GPRS network. The management block configures several parameters available in an online

database and reports the modem’s statistics over time.

Figure 4.1: Java application’s block diagram

4.2 Core Functionalities

The transmission and reception of information and everything related to their execution are the

application’s core functionalities, they fulfill the project’s objectives and completely support the

communication between the Substation and the Frontend. To achieve the requirements only the

initiation, reception and transmission are necessary, the management block was implemented to

support additional functionalities.

4.2.1 Initiation

The main initiation’s main activities are variable initialization (timers, threads, GPRS profile dec-

laration, etc.) and system configuration though the ATCommand interface. This interface allows

the interaction with the AT command layer of the modem making it possible to issue AT com-

mands within the normal flow of the Java application. AT commands allow the execution of

various operations such as to configure the Autostart functionality, specifying if the application is

4.2 Core Functionalities 35

automatically started on power-up. This is an important functionality and it’s always enabled in

the application initiation, making the application more error resilient. If the application reaches an

error condition or if an unexpected error occurs, the modem restarts and will start the application

automatically. This will prevent the application to stop and endow it with the ability to correct

itself if spontaneous and unexpected errors or connection losses occur. The error correction mech-

anisms are detailed further in the chapter 4.3.1.

The initiation is also creates the connection with the serial port and the mobile connection to

the remote device. The serial port’s connection uses the specified baud rate. Initially it was de-

fined statically to the standard Substation’s industrial PCs although later in the development it was

developed several dynamical variable assignment mechanisms which define the baud rate dynam-

ically. These mechanisms go beyond the project objectives and are detailed in the chapter 4.3.3.

All of the functionalities detailed so far are shared by both server and client. This is not the case

for the GPRS network connection. A socket connection is used to connect the client and the server

using TCP. There were two options to do the connection, either UDP or TCP [27], the thought

process and comparison between TCP and UDP is detailed in the performance considerations in

chapter 4.5.6. The Java Micro Edition implements a socket connection using one device as server,

waiting for connections, and other device as client, trying to connect to a specified server. At

this point the server creates a server socket connection and blocks waiting for connections, while

the client tries to open a socket connection to the defined server. The initial requirements for the

system defined that the server’s IP could be assigned statically, since the SIM cards owned by the

company had fixed IP addresses. Regular SIM cards have dynamic IP allocation but the ones that

the company provided had static IP addresses that they arranged with the operator, so the initial

solution would work but in order to make the solution more flexible, the server’s IP address was

incorporated in the dynamical variable assignment mechanisms that were developed and detailed

in the chapter 4.3.3. If both server and client have correct configurations the connection is made,

otherwise the client will throw a connection not found exception, triggering an error condition

making the modem reboot.

Once the socket connection is established between the two devices two new threads are launched

to manage the reception and transmission of information. The main thread runs an infinite loop and

only terminates the application if an error condition is met. The client’s and server’s application

initiation high level flow chart is pictured below.

4.2.2 Reception

The reception thread manages the information received from the mobile network and sends it to

the serial port interface. A loop keeps polling the socket input stream for new data. This loop is

infinite unless an error condition is met. When new bytes are available for reading they are stored

until there is no available data left. The stored data is then sent to Substation or Frontend through

the serial port interface. In this thread the flow of information is mostly transparent since the error

detection occurs in the transmission. There could be error detection both on the transmission and

reception but by doing this the application would exchange delay and processing capabilities for

36 Development

Figure 4.2: High level applications’ initiation flow chart

4.3 Additional Features 37

no or little significant functionalities. Since the connection is made through TCP it ensures data or-

dering and reliability, being highly unlikely to receive information errors through the connection,

so the optimization of processing delay justifies the lack of error verification. Also the Frontend

already has error verification so there’s no need to burden the application with exhaustive verifica-

tion. Besides it is highly beneficial to do the error verification in the transmission thread instead of

the reception thread since if occurs an error resources won’t be spent in sending that information.

Since the mobile network belongs to a private company there are always costs associated with

sending information through that network. And since it is guaranteed that the information sent to

the TCP connection is a correct frame it’s very likely that a correct frame reaches the destination

without compromising the processing delay excessively. The error correction mechanisms imple-

mented in this thread are detailed in the chapter 4.3.1. The reception thread’s high level flow chart

is pictured in figure 4.3.

4.2.3 Transmission

The transmission thread manages the information received from the serial port and sends it to the

TCP socket connection. This thread works similarly to the reception thread. Like the last, a loop

polls the serial port input stream for new data infinitely unless an error condition occurs. When

there are available bytes in the serial port they are compared with the IEC 60870 frames structure.

Initially this comparison was done in a similar way with other solutions developed by the com-

pany in programs running different protocols, using simple comparisons [28]. For this solution it

was developed a different, more efficient way using a state machine. This implementation and the

comparison between the two are detailed in the performance considerations in chapter 4.5.5. If the

data received from the serial port has a different structure than the IEC 60870, it’s automatically

discarded. Otherwise it’s sent to the remote device through the TCP connection. The error cor-

rection mechanisms implemented in this thread are detailed in the chapter 4.3.1. The transmission

thread’s high level flow chart is pictured in figure 4.4.

4.3 Additional Features

Throughout the project it was implemented several additional functionalities. They include differ-

ent variable assignment mechanisms, error correction mechanisms and different operation modes.

4.3.1 Error Correction Mechanisms

This application is meant to replace and to represent a suitable alternative to the regular communi-

cation technologies to transmit SCADA telemetry data between Frontends and Power Substations.

Frontends are usually near the master station and therefore easily reachable, however the same

doesn’t happen with substations. The same maintenance department can cover distances to hun-

dreds of kilometers and the technicians are expected to move to the locations very rarely. This

application will be expected to run for several hours, days or even months on possibly remote and

38 Development

Figure 4.3: Reception thread’s high level flowchart

4.3 Additional Features 39

Figure 4.4: Transmission thread’s high level flow chart

hardly accessible locations and it is unacceptable to expect that the technician will move there of-

ten. So it is essential that the modem will be able to run for a considerable amount of time without

being the target of maintenance operations. During that time it is expectable that the modem or

the application itself, encounters unexpected error situations like operator’s network signal loss,

connection failure, memory overflow, power failure, serial port connection problems, deadlocks

or any other unanticipated error situations. It is important to foresee mechanisms to surpass, as far

as possible, these error conditions.

4.3.1.1 Automatic Restart

Known as a common rule of thumb restarting the system solves many problems. This can solve

illegal state conditions, memory overflow, unexpected runtime hangings or even connection prob-

lems. Through the AT commands interface it is possible to force the modem to shut itself down. It

is also possible through the same interface to configure the Autostart functionality to make an ap-

plication run automatically at start up. Joining the two and integrating the AT command interface

40 Development

in the application it is possible to make the application restart within its natural flow. The Au-

tostart functionality is enabled in every application initiation. This guarantees that the application

will run the next time the modem starts, automatically restoring the application. This can prevent

maintenance operations for example in electrical power failures, being the application restored as

soon as the electrical power is available again. The structure of the program is prepared to handle

events that disrupt the normal flow of instructions on main procedures that occur during the pro-

gram’s execution. When one of these events occurs the event is logged and the reset mechanism is

activated. If the real time reporting of events is enabled, the error condition is also reported on the

web interface, this interface is an extension to the initial structure, goes beyond the initial objec-

tives and it is detailed in chapter 4.4. An AT command is sent to the modem’s AT command layer

to reset it. When receiving that command the system will try to shut itself down. It is still possible

an unexpected event occurs when trying to issue this command or in its execution although highly

unlikely. In this case there’s no solution unless manual shutdown. Never the less this functionality

is able to solve most of problems that may occur. Every time an exception is thrown when trying

to run the core functionalities of the application a variable registers the occurrence of the error.

After the initiation the application’s main thread hangs on a loop which monitors this variable.

This variable is shared between all the application’s main threads. When an error is registered the

application main thread ends terminating the application and the restart command is issued. This

mechanism is implemented in the mobile network registration and communication, serial port’s

connection and communication and other vital parts of the application.

4.3.1.2 Communication’s Timeout

When a problem occurs it is possible that it’s not in the application itself but it’s the communica-

tion’s channel. This mechanism was implemented to allow the automatic detection of communi-

cation’s problems. It is possible that there’s a connection loss with the serial port or the mobile

network. This kind of problem won’t be detected because an exception isn’t thrown and there’s

no way to actually be sure if the connection was lost or it’s still viable. For example if for some

reason the signal strength with the operator’s network gets too low and eventually drops the con-

nection, the application will still be sending information through the socket and it would never

reach the destination. Even if the signal strength rises to normal values again the connection won’t

be restored and it is necessary to restart it. According to the IEC 60870 standard specifications

relevant to this project, detailed in chapter 2.2.4, and the installation’s protocol configurations,

the frontend requests information once every a fixed interval [1] (one minute for the company’s

configurations [29]). So it is expectable that once in every minute a frame is sent and received.

If this fails to happen it is safe to assume that there is a problem with either the reception or the

transmission. If the problem is in the communication’s channel itself (low signal strength, RS-232

cable disconnection, etc.) there’s nothing the application can do at that level obviously. But it

will be able to restore the connection as soon as the communication conditions are restored again.

The reception and transmission thread each have a timer that schedule tasks for execution after

the specified time. The timers are restarted every time a frame is sent, for the transmission timer,

4.3 Additional Features 41

or is received, for the reception timer. The timer’s delay is specified using the dynamical variable

assignment mechanisms specified in chapter 4.3.3. If the timer fires, it’s very likely there is a

problem with the communications and an error condition is met, triggering the automatic restart

mechanism. By restarting the modem the connection with the serial port and the mobile network

will be restarted as well, successfully restoring the communications. If there’s still a problem

external to the modem, the application will keep trying to connect until a correct connection is

made.

4.3.1.3 Frame Offset

This mechanism is applied to the same context; to automatic surpass communication’s problems.

The mechanism counts the number of sent and received frames and compares the difference be-

tween the two to a specified maximum. This maximum is assigned with the dynamical variable

assignment mechanisms specified in chapter 4.3.3. The communication’s timer detailed in the pre-

vious chapter doesn’t account for frames sent within the timer’s delay but in an unbalanced manner.

For example if the timer’s delay is set to four minutes and within that time are sent four frames

and only received one during let’s say ten minutes, there is an offset between the transmission

and reception frame count of thirty frames. According to the IEC 60870 specifications detailed in

chapter XX, the standard accounts for a service with no reply [1] so the previous scenario was

possible, this service however wasn’t implemented by the company [28]. So we can assume two

reasons for the previous scenario: either the reception delay is huge or there’s a problem with the

reception. If the delay is too large it will eventually cause communication’s problems due to the

Frontend’s timeout. This problem would never be detected by the previous method because the

timeout would never occur, since there’s always a two way flux of information within the speci-

fied time. Another possible scenario that may happen is if the timer’s delay is significantly higher

than the polling interval, making the error detection excessively slow. For example if the pooling

interval is one minute and the timer’s delay is set to four hours, it will take at least four hours to

detect the problem. When it could be a lot faster if the problem is either with the Substation’s

communications or the Frontend’s, which is most likely than the both at the same time. When

the problem occurs with just one of them the other keeps transmitting and it’s possible to detect

the problem faster by comparing the number of sent and received frames. Setting the maximum

frame offset to let’s say 50 frames, it would take 50 minutes to detect the problem instead of four

hours and only 50 frames would be discarded instead of 240. This mechanism is implemented by

introducing two counters in each one of the applications, one for the sent frames and one for the

received ones. Every time a frame is sent or received the respective counter is incremented. If the

offset between the two counters exceeds the specified maximum offset it will be interpreted as an

error condition which will trigger the automatic reset functionality. There is an implementation

detail that was taken into account when implementing this mechanism, when the counters are too

large they are reinitialized to zero. This will prevent the overflow of the variables if the program

runs for too long, as it’s supposed to. The maximum value for an int in Java is 2147483647, if the

variable is incremented again its value will be the minimum value for an int [30] (since the Java

42 Development

Language Specification implements that the built-in integer operators do not indicate overflow or

underflow in anyway, the results are specified by the language: Interger.MAX_VALUE + 1 ==

Integer.MIN_VALUE [30]), which is -2147483648. This initialization won’t change the value

of the offset at any time since they are reinitialized independently when a certain maximum is

reached, being the difference always correct. This mechanism won’t trigger for example if both

the serial port and mobile network communications fail at the same time. Or if no information is

exchanged at all since the offset will always be zero. These problems will still be detected by the

communication’s timers detailed in the previous chapter.

4.3.2 Operation Modes

It was implemented three different operation modes that run different functionalities. These modes

aren’t hardware dependent, they were implemented in the application and were designed to ease

the technician’s interaction with the modem. The available modes are: debugging, normal and

configuration. Configuration mode allows the technician to manually assign values to the ap-

plication’s parameters. The modem has no user interface so it was implemented a way for the

technician interact visually with the modem. This mode runs a user interface displaying a menu

where the user can manually input the application’s parameters. The interface runs through the

serial port and it’s displayed in any software capable of reading from the port. It can also generate

a new configuration file, the contents and uses of the file are detailed in the chapter 4.3.3. This is

important in case the file gets lost and the technician doesn’t remember the file’s structure. In that

case it can simply input the values manually and a new configuration file will be generated. If the

file is absent the configuration mode will automatically run allowing the technician to create a new

file. The configuration mode will generate a new file with standard values when there’s no user

interaction. This was implemented in case the technician simply plugs in the modem, if no valid

input is submitted it is assumed that the modem is connected to the Substation or Frontend. The

application will restart after some time and run normal mode, resuming the main functions with

the standard values. The configuration interface is pictured in figure 4.5.

Debugging mode was implemented to find the causes of possible error conditions. While in

debugging mode the application displays every information message printed in the source code

through the serial port. These messages will easily indicate why the modem encountered an error

condition and can be used to surpass it. Normal mode implements the modem’s regular function-

alities and it’s intended for the modem’s normal execution.

4.3.3 Dynamical Variable Assignment Mechanisms

While implementing and designing the applications there were several parameters that had to

be specified. The most important and most likely to be changed were: the server’s IP address,

the serial port’s baudrate, number of bits per char and parity, the maximum frame offset, the

communication’s timeout, the reporting time rate, the application operating mode and whether it

is relevant or not to use HTTP monitoring. Initially these parameters were assigned statically,

4.3 Additional Features 43

Figure 4.5: Configuration interface

although the applications would still work using static initialization it was far more useful if these

parameters could be changed without actually altering the source code every time a change is

needed. The variables are assigned using three different mechanisms: statically, by a configuration

file or remote configuring. Initially the application uses the standard values declared in the source

code. If a configuration file is present the application will load the values declared in the file. If

the HTTP remote configuring is enabled the values will be requested to the online server.

4.3.3.1 Configuration File

To use this functionality a text file named “config.txt” has to be present in the application’s di-

rectory. This file needs a fixed structure or the file will be interpreted as corrupt. The structure

validation prevents the assignment of erroneous values or the reading of other files that may exist

in the application’s folder. The client application’s file structure is pictured below.

Every parameter assigned in the file is also validated. The application won’t accept a different

IPv4 format for the server’s address, non-standardized baudrates, negative or non-numeric times

or frame offsets, different modes than the implemented, etc. If any of the values has a non-

accepted format the static value will be used instead or the remote value if the remote configuring

functionality is enabled. If the file gets lost or if the technician doesn’t remember the structure

44 Development

Figure 4.6: Client application’s file structure

a new file can be generated using the configuration mode, the implemented operation modes are

detailed in the previous chapter.

4.3.3.2 Remote Configuring

If the HTTP remote configuring is enabled, the parameters can be assigned remotely using the

online server. This functionality is integrated with the online monitoring and configuring inter-

face detailed in chapter 4.4. The values are loaded with the initial modem online registration.

By requesting the registration web service each modem gets a response with the corresponding

remotely assigned parameters. The values suffer no validation since the input validation occurs on

the web interface. The monitoring rate is the only parameter that can be changed during the appli-

cation’s execution. This functionality was applied to just this parameter because it’s the only one

that makes sense to be changed during the modem’s normal execution. Since the other parameters

are all used in the application’s initiation changing them would mean the modem had to reboot for

the changes to take effect. By restarting the modem the application automatically loads the new

values anyway so there’s no point in making those parameters dynamical during the application’s

execution. The remote configuring is detailed further in the online monitoring and configuring

interface.

4.4 Online Monitoring Interface

In order to further control the connection and the solution’s potential it was implemented an in-

terface to monitor and remotely configure the modems. This interface goes beyond the initial

dissertation’s objectives and manages to implement additional interesting features to support the

solution’s scalability. Through this interface it is possible to view all the currently active modems

in the network, their configurations and SIM cards, the geographically located connections and

their details, graphically view the modems and connections sent and received frames throughout

the time, the errors and main events, remotely configure the modems and remotely set up new con-

nections or reconfigure old ones. All the information related to the modems and their connections

are updated automatically without the need of any manual input. Since this is an online interface

the technician can access all the modem’s parameters, connections and configurations from vir-

tually anywhere. Besides this, it is also possible to configure the modem with new parameters

4.4 Online Monitoring Interface 45

and even restart it remotely. These features make the interface a powerful asset and considerably

increase the solution’s potential.

4.4.1 REST Interface Design

REST is a simple solution to manage interactions between independent systems. The interactions

often exchange resources which are referred with a global identifier within the HTTP request.

REST supports the scalability of devices and their interaction and it is flexible enough to guar-

antee that even if the devices change they can access the full capabilities of the interface. It

fully explores the HTTP potential and supports interactions between different devices minimizing

overhead. REST was used instead of other solutions (like SOAP) due to its flexibility to support

personalized protocols that minimize overhead and optimize efficiency and delay, further consider-

ations about the REST advantages are detailed in chapter 4.5.8. The implemented REST interface

provides three web services: modem’s registration, connection recording and statistics reporting.

Each modem uses one of the services according the specific need of the program at that time. The

following diagram pictures the program’s web request time sequence since the beginning of the

application.

Figure 4.7: Application’s web request time sequence

46 Development

When the application starts it uses the registration service and transmits all the information

about that modem. After storing this information in the database, the service answers with the

configuration parameters to that specific modem. The application uses these parameters to initiate

the serial port and mobile network connection. As soon as a connection between two modems is

established the information about this connection is stored in the database using the connection

service. The application regularly sends information to the online database using the statistics

service. This service also supports the remote reset functionality, every time a modem reports

any information it receives a response with any new parameters and whether a reset command

was issued. The considerations about minimizing the HTTP requests to improve performance are

detailed in chapter 4.5.7.

4.4.2 Interface Functionalities

This section presents and describes all the main functionalities supported by the online interface.

It supports the display of information related to the modem’s configurations, main events, connec-

tions, locations, SIMs and relation with the company’s assets. It also presents images of the main

visual interfaces.

4.4.2.1 Modems Listing

Every time a modem starts the application it automatically registers itself on the online database.

A list of all the modems along with their IMEI, software version, configurations and geographical

location is available on the interface. This listing is pictured in image 4.8.

Figure 4.8: Online modems listing

This table also includes the unique company’s database tag of the substation where the respec-

tive modem is installed. The table can be ordered by each column and the user can cycle through

the entries with the navigator below the table. Below this table the user can also see the geographic

location of all the modems registered in the database. The geographic location of CC Alexandre

Herculano is pictured in figure 4.9.

Also in this page the user can access each modem’s details by pressing the last column. The

details page will present the modem’s IMEI, software version, baud rate, communication’s time-

out, frame offset, IMSI of the modem’s SIM card, signal strength, IP address, the time of the last

modem’s and SIM’s activation, connection ID, the modem’s role, to which modem it is connected

and the unique company’s tag. In this page it is also available a graph with the modem’s sent and

4.4 Online Monitoring Interface 47

Figure 4.9: Modem’s geographic location

received frames through the time. The modem’s details interface is pictured in figure 4.10 and the

sent and received frame graph in picture 4.11.

Figure 4.10: Modem’s details

All of this information is inserted and updated automatically. Every time the modem is con-

nected to a power supply it automatically sends all of the parameters and registers the number of

sent and received frames from time to time, according to the monitoring timer. The modem’s lo-

cation is also updated automatically, the strategies to implement the geographic location detection

are presented in the performance considerations in chapter 4.5.9. If one of the modems is installed

48 Development

Figure 4.11: Modem’s sent and received frames graph

in a different location it will update all of the parameters automatically on start up.

4.4.2.2 SIMs’ Listing

When a modem automatically registers itself it also registers the associated SIM card at that time.

The user can also consult a list with all the SIMs registered in the interface. In this list it is available

each SIM card’s IMSI, the last signal strength recorded, the last IP address, the modem’s IMEI

where the SIM card is installed and the last activated time. This information is pictured in figure

4.12.

Figure 4.12: Online SIM’s listing

The user can order the table’s entries by each column and navigate through the results using

the navigator below the table.

4.4.2.3 Configurations

The user can also see the configurations for each modem. On start up each modem registers itself

and the server returns a response with the predefined configurations for that modem. If there aren’t

any configurations predefined the server records the current configurations. If there are already

saved configurations in the database the Java application will parse the parameters and load them

on the initiation. Considering this the technician can remotely configure the modem by simply

editing the database parameters, the modem will automatically load them the next time it initiates.

4.4 Online Monitoring Interface 49

And since the interface is available online one can configure every single modem registered in

the network from virtually anywhere. The listing displays which modem has that configuration,

the server’s IP address, baud rate, communication’s timeout, frame offset, monitoring time and

whether the configuration is active or not. As detailed in chapter 4.3.1, the communication’s

timeout and frame offset are embedded in the error correction mechanisms. The monitoring time

is the interval from how long each modem reports information, if it is for example 5 minutes

that modem will update the information every 5 minutes. The active column informs whether the

configuration is already active or not. The configurations listing is pictured in figure 4.13.

Figure 4.13: Online configuration’s listing

The user can order the table’s entries by each column and navigate through the results using

the navigator below the table. By pressing the last column the user can change that configuration.

The interface to modify the parameters is pictured in figure 4.14.

Figure 4.14: Modem’s configuration interface

The fields are initiated with the current modem’s configurations and the user can change any

one of them to the desired specifications. The baudrate is limited to the serial port’s supported

values and the times can be inputted in minutes, seconds or milliseconds.

4.4.2.4 Active Connections

Every time a connection is established it’s also recorded in the online database. In the interface

it is possible to see the list of all the existing and active connections. If the modem’s location is

50 Development

identified it is also automatically displayed the substation’s and frontend’s names. The connections

listing is pictured in figure 4.15.

Figure 4.15: Active connections listing

By pressing details the user can see that connection’s details and a graph displaying the sent

and received frames by both the client and the server. It is also possible to see the connection’s

geographic locations. This interface is pictured in figure 4.16 and 4.17.

Figure 4.16: Active connections details

In this interface it is also possible to remotely reset each modem in the connection. If the user

sends the reset command the interface will also inform when the reset was executed. This action

state transition interface is pictured in figure 4.18.

subsubsectionPredefined Connections

4.4 Online Monitoring Interface 51

Figure 4.17: Active connections geographic location

Figure 4.18: Active connections reset states

The user can also create new connections or change existing ones. By defining a new con-

nection the client device when initiating, loads the predefined server’s IP address and attempts a

connection. This feature is exceptionally useful when using SIM cards with dynamic IP addresses.

Before this functionality was implemented it was necessary to manually see the server’s SIM card

IP address and update it in the client’s source code or configuration file every time the modem

restarted, since the IP address changes with every network registration. With the online interface

52 Development

each modem automatically stores the SIM card’s IP address on every start up. The client while

registering also checks if there are any predefined connections assigned to that modem. If there’s

any then the client will check which modem it is supposed to connect with, which SIM card that

modem has and the SIM card’s IP address. By doing all of this the client automatically loads the

server’s IP address even if it keeps changing, since all of the parameters are updated automati-

cally. To connect two modems the user just needs to access the interface and add which modems

are connected and everything will be configured automatically. The predefined connections’ list-

ing is pictured in figure 4.19. To insert a connection the user can access the interface pictured in

figure 4.20.

Figure 4.19: Predefined connections listing

Figure 4.20: Insert predefined connection interface

The user only needs to choose one of the existing modems in the database to be the client and

another to be the server. The other parameters are filled in automatically when changing the value

of the drop down lists.

4.4.2.5 Event Visualization

The online interface also features an event visualization tool. This allows the user to see all the

events of every modem registered in the database. There are five types of events: start, restart,

4.5 Performance Considerations 53

error, reception and transmission. The restart event is issued when the modem is about to shut

down and restart the application. The start even occurs when the modem registers itself on the

database. The error event signals that an unexpected error has occurred and it is normally followed

by a restart event. The reception and transmission events indicate how many frames were sent and

received since the last report. Through this interface the user is able to see the network’s activity

and easily monitor any modem or connection. The event table is pictured in figure 4.21.

Figure 4.21: Events visualization

The user can order the table’s entries by each column and navigate through the results using

the navigator below the table. It also features automatic synchronization. When activated the table

is automatically updated with new events. The events can also be filtered by modem, connection,

device type, event type and date. The filter interface is pictured in image 4.22.

4.5 Performance Considerations

In this chapter it will be detailed the performance considerations implemented while designing the

Java application. The main resources optimized were: CPU usage, system’s memory and com-

munications delay. This application runs on a wireless module with limited resources. The capa-

bilities available on this kind of devices are considerable more restricted than a regular PC. The

modem has a very limited storage space for Java applications (approximately 1,5MB), a restricted

memory and a rather limited processing potential [31]. The modem’s processor may stress with

significantly complex or poorly designed applications introducing excessive delay or even fail to

run due to memory shortage. On the other hand, considering the whole system’s architecture, the

Frontend’s timeout is a critical factor. If the Substation’s response takes longer than the Frontend’s

54 Development

Figure 4.22: Event filtering

timeout to arrive, the Frontend will discard the response and resend the frame, making the com-

munication unviable. The round-trip time has to be lower than the Frontend’s timeout, otherwise

the frames will be discarded. The company’s Frontend’s parameters are very demanding [28]

and although these parameters can be changed, there was a concern to optimize the application’s

performance in order to fulfill these requirements as best as possible.

4.5.1 J2ME and Jar Size

The modem uses the J2ME environment. It was originally designed to manage the constraints

related with application development in small devices. It features the basics for Java ME tech-

nology and it’s suitable to run on devices with limited power capacity, memory and display [27].

Although this is the most suitable environment for this kind of modems, it has a rather limited

range of available libraries [27]. This made some objectives hard to accomplish. For example the

functionality to write and read text files from the modem’s file system would be trivial to achieve

using the standard Java API, through for example FileReader. However this class isn’t available

in J2ME, neither the most common methods for file manipulation. One possible solution explored

would be adding the Java classes’ full specification to the application’s project. This however

increased the executable size by approximately 200KB. Since the initial executable size, without

the additional specification, it’s around 30KB (2% of the total available space) this would increase

its size by 670%. Bearing in mind the full storage capacity is approximately 1,5MB it would

mean that the executable size would occupy 15% of the total available space instead of the initial

2%. The comparison between the basic J2ME specification and the solution that involves adding

additional Java libraries (represented by J2ME+) is pictured in figure 4.23.

Although adding additional libraries has obvious advantages like adding additional function-

alities to the application and simplifying the coding process, increasing the file system’s occupied

4.5 Performance Considerations 55

Figure 4.23: Solution’s occupied space comparison

space by 13% and the executable size by 670% would be completely unacceptable. Instead ways

were sought to do the same functionalities without adding an excessively amount of unused space,

thus optimizing the storage capacity. Using the connector interface available in J2ME (the same

interface used to open socket connections), it is possible to read and write text files although in a

more intricate way. This however manages to minimize the executable size by maintaining the reg-

ular J2ME classes. Besides this and bearing in mind the modem’s memory constraints mentioned

before, the executable size was also minimized through obfuscation. An obfuscator is a program

that removes all dispensable information from the compiled Java program [32]. Usually it is used

as a security method to make the application more difficult to reverse engineer. However it is still

useful for minimizing the executable size, removing all the unnecessary information makes the

executable file smaller. The size reduction depends on the obfuscator and the application, but at

least a 10% reduction is expectable [33]. In this case it reduced the file size from 31.243 to 21.722

bytes, reducing it by roughly 30%. Besides obfuscation the size was also reduced by using an un-

named package. The references to the classes in Java are done using their fully qualified name

[32], which can add a significant overhead when using long class names. Using a package without

a name eliminates this overhead. Although this is a detail and the impact on the file size is very

small, it decreased the executable size from 21.722 to 21.456 (about 1,2%). The space reduction

is presented in figure 4.24.

By minimizing the final file size the modem’s resources are optimized and can be used for

other useful purposes like store instruction files, other applications or different versions of the

same application.

56 Development

Figure 4.24: Occupied space after size reduction techniques

4.5.2 Busy Loops

Generally when the application needs to actively wait for something (like a busy loop) it blocks

the execution thread. As a good practice, this should be done in a separate thread to avoid hanging

the main thread [33]. However this practice wasn’t adopted in this application. Throughout the

application there is one point where the application blocks its main thread and two busy loops

are used in a polling fashion in different threads: in the server’s application while waiting for a

socket connection and in both applications the reception and transmission threads poll with a busy

loop the mobile network and the serial port respectively. To create a socket connection the server

uses the ServerSocketConnection interface. This interface uses the acceptAndOpen method which

blocks the execution thread until an incoming connection is detected [27]. This method is called

in the initiation phase in the main thread. As a good practice this method should be executed in a

different thread to avoid hanging the main application. In this particular application this is unnec-

essary. This would make sense if the application would run on a user interface because the user

would actually see the application hanging and not responding, since the modem does everything

internally and there is no user interface, there is no need. It is more adequate to spend the pro-

cessing capabilities to check for a client connection than wasting it on two separate threads where

one of them just kept the main thread alive. The server application also needs a client connection

to continue its execution. It is important to remember that the application’s main purpose is to

establish a connection, so at that point there’s nothing more important than detecting a client con-

nection. The transmission and reception thread detect new information available in the TCP and

4.5 Performance Considerations 57

serial port connection with the input stream’s available method. This method indicates how many

bytes are available in that connection [27]. The application queries with a busy loop the amount

of available data. This is rather inefficient and may lead to low performance. Instead applications

should use the reading methods that specify the amount of data to be read in a more intelligent

way [33]. Although this is a good practice in general applications driven by user interfaces it

isn’t in this particular case. Querying in a busy loop how much data is ready uses a high amount

of the available processing time just checking the number of bytes that can be read while most

of the times there’s none. This might not be desirable in other applications but it is in this one.

Since the main functionality of the application is to manage the flux of information it makes sense

that most of the processing is destined to this purpose. In this case this is the main functionality,

everything else is secondary. It is also important to minimize the delay the processing introduces

in the whole connection, by constantly pooling the communications channels the data is detected

faster and interpreted sooner thus reducing the processing delay. Other approaches might be more

efficient for other functionalities in different applications (like animations, processing operations

or graphical interfaces) but in this one this is the most adequate for this solution.

4.5.3 Garbage Collection

The garbage collector allows the automatic memory management enabling increased abstraction

of interfaces and more reliable code. Its main responsibilities are memory allocation, guaranteeing

that any referred objects remain accessible in the memory and freeing memory used by unreach-

able objects from references in executing code. The JVM initially requests a certain amount of

space from the operating system. The garbage collector uses part of this space, called the heap,

to allocate the program’s objects [30]. Objects can be either referenced or no longer referenced.

No longer referenced objects aren’t needed and the resources allocated to them can be freed. The

set of procedures that find and free the resources allocated to these objects is called garbage col-

lection. Garbage collection involves several complex processes which take time and resources of

their own and might introduce a significant delay [30]. Skillful programming is able to reuse

existing objects instead of creating new ones, avoiding the accumulation of garbage objects on the

heap. Doing this it is possible to minimize the time each garbage collection takes, making the

application’s execution faster. Reusing doesn’t solve everything though. Immutable objects can’t

be changed after creation and easily become garbage objects if their initial value is not needed or

changes. Also immutable objects are quite common and frequently used to guarantee thread safety

and code reliability. Most programmers forget how frequently immutable objects are created and

the number of garbage objects they produce. Each time an immutable object’s value changes a new

immutable object must be created with the new value [33]. The initial object is now considered a

garbage object and must be garbage collected. Many times the advantages of immutable objects

are not worth the cost and it is preferable to use reusable objects instead. One common example is

the java.lang.String. The String object is immutable and many applications overlook the number

of garbage objects it can generate even in simple operations. The developed applications were

58 Development

tuned in order to minimize the garbage collection effort. One example from the client’s applica-

tion where the String object was optimized is pictured in figure 4.25. The code below was used

in the client application to print a String with the characters read from the serial port connection.

All the available bytes are read and stored in a ByteArrayOutputStream and then converted to a

byteArray. This is a clear example of the implemented code of something that happens frequently.

Figure 4.25: Source code before performance tuning

The dataByte variable stores the bytes read from the serial port. The assignments in line 1341

and 1342 don’t actually modify the string stream, because String is an immutable object. Instead

it creates a new String copying the contents assigned on line 1341 and it creates a new one again

on line 1342, with an additional space. So with every iteration of the For loop, it is created two

new String objects. In total it unnecessarily creates len * 2 garbage objects. For example if the

number of bytes read from the serial port is 128, there will be 256 garbage objects that need

collection. Problems related with the String object can be solved using the java.lang.StringBuffer.

StringBuffer represents a mutable sequence of characters [27], being similar to the String object

but it can be modified. It is possible to use this object instead of using the String object, avoiding

the creation of the additional garbage objects. This example can be implemented much more

efficiently using StringBuffer exemplified in figure 4.26.

Figure 4.26: Source code after performance tuning

By implementing the StringBuffer object the same object is used on each assignment, by

simply appending the new information to that object, therefore only one object is used instead

of 256. It is still important to note that this is a very meticulous approach, most of the times

immutable objects are worth the cost and creating a few garbage objects doesn’t have a noticeable

impact on performance [32]. Even a virtual machine designed for smaller devices can comfortably

handle thousands of objects per second [33]. It would be still worth to ask exactly what the cost of

4.5 Performance Considerations 59

using immutable objects is or if in fact there is a difference between the two solutions. In this case

this upgrade managed to reduce the time of that part of the code by 82% (from 208ms to 38ms on

average) when using 128 bytes. The tests measuring the delay of each solution, the performance

improvement and the statistical comparison between the two are presented in chapter 5.1.

4.5.4 Multi-threading

Besides being necessary for implementing the full applications’ specifications, multi-threading

also makes the application more efficient and leads to a better performance. Multi-threading was

already necessary for managing the information flux between the serial port and mobile network,

since it is required a simultaneous two way flux of information. It also has an impact on per-

formance because it allows a thread to execute while another is waiting on some condition, for

example an HTTP response [33]. Sometimes simple thread usage isn’t enough to fulfill the full

multi-threading potential. It is important to remember that Java threading is not guaranteed to be

pre-emptive but may be cooperative [30]. When several threads are executing simultaneously and

one of them is waiting for a condition in a busy loop the processor might wait longer than normal

before it changes to another thread, thus being cooperative. Instead every thread should call yield

or wait voluntarily allowing the processor to cycle freely between the threads. Image 4.27 pictures

one of the implemented mechanisms.

Figure 4.27: Thread wait method implementation

This implementation optimizes the time spent on each thread, guaranteeing that none of the

threads monopolizes the processor.

4.5.5 IEC 60870 Frame Validation

The transmission thread receives bytes from the serial port and processes them. This thread runs

infinitely unless an error condition occurs. When there are new bytes available they are read

and compared with the IEC 60870 standard’s frame structure. Initially this comparison was im-

plemented similarly to other serial port applications developed by the company under different

protocols. In every iteration the available bytes at that time were buffered in an array and then the

contents of the array compared with the IEC 60870 frame structure. However this solution works

on the assumption that every byte of the frame arrives instantly. Although according to common

experience the industrial PCs actually work like this, it’s conceivable that they don’t. In general

60 Development

serial port applications even if all the bytes are sent as soon as possible they can be buffered by

the operating system or the serial interface. In the application it was verified that sometimes the

serial port’s available method is called before the entire frame arrives. Since only part of the frame

is compared with the frame structure, it will forcefully not have the standard structure, being con-

sidered as garbage and discarded. Every time this situation occurs the application would discard

a correct frame. This situation is pictured in image 4.28. In situation 1 the industrial PC sends

the whole frame. If no errors occurred in the serial port connection the frame has the correct IEC

60870 structure, being correctly validated by the Java application and then transmitted to the mo-

bile network. The problem with the initial implementation is represented in situation 2. Unlike

situation 1, the frame is not sent instantly. The Java application reads the frame’s initial part, and

compares the received data to the standard’s structure. Since the whole frame wasn’t available

at that time it hasn’t the correct structure because the trailer was never received, being the initial

part of the frame discarded. The same happens when the rest of the frame arrives, since it has no

header it is discarded also. Every time this situation occurred an otherwise correct frame would be

wrongly discarded.

Instead using this approach it was implemented a new one that corrected this problem. It was

used a state machine which interprets the frame byte by byte. Besides correcting this error state

machines are more efficient [34]. The transmission thread reads a new byte in each iteration and it

is immediately compared with the standard’s structure. As the frame is received the state machine

advances through the states, being each state a validation of the frame’s structure. When a correct

header is not received the byte is discarded being interpreted as garbage. A correct header makes

the state machine advance through the states and when a trailer is finally received the frame is

sent. States 1 to 5 validate variable length frames while states 6 and 7 validate fixed length frames.

This solution is more efficient than the last and doesn’t have the problem detailed before since the

interpretation is made byte by byte instead on regular time intervals. The state machine diagram is

pictured in figure 4.29. The byt variable represents the byte read on the serial port on that cycle.

L1 and L2 represent the length of the frame specified in the standard. The standard’s structure and

its validation are detailed on chapter 2.2.4.

4.5.6 TCP vs. UDP

Network’s speed can be evaluated in terms of bandwidth and latency [35]. Being bandwidth the

rate of data transferred in an open connection and latency the time a single item of data takes to

cross the network from the source to the destination. When there’s a large amount of information

being transmitted bandwidth is usually the most important factor, on the other hand if there’s a

need to transmit small amount of data latency usually has more effect on the networking speed

[35]. In this application the deciding factor is latency since most of the times the information is

exchanged in small packets. Also the time the frames take to reach the destination is crucial for the

viability of the link due to the Frontend’s timeout. It is also important to remember that both band-

width and latency have an average and a variation, if the variation is large the latency may reach

unacceptable values. J2ME supports two kinds of point to point connections, either UDP or TCP

4.5 Performance Considerations 61

Figure 4.28: Initial frame validation sequence

62 Development

Figure 4.29: Frame validation’s state machine

4.5 Performance Considerations 63

[27]. HTTP is also available but it’s not suitable for machine to machine communications since

an intermediate online server would have to manage the connection making the delay unbearable

(HTTP latency is considerably higher than the latency verified in an UDP or TCP connection),

being much more efficient one of the last two. Also it is not suitable to manage the flux of data

online, outside the company’s private APN due to security reasons. Having said this HTTP was

still implemented to support the online monitoring interface but this interface is extra and doesn’t

have the same latency restrictions as the main connection. UDP connections are supported with

the UDPDatagramConnection interface. The primary objective of this interface is to efficiently

send data to the remote device without reliability, data order or a mechanism to prevent data dupli-

cation. There’s no concept of request and response or connection establishment, the information is

simply sent from the sender to the receiver. It also doesn’t guarantee that the information reaches

the destination but can send data faster than a TCP connection, in theory. A TCP connection

is similar to a client-server connection, which is conceptually more suitable to this project since

there’s actually a master and a slave due to the IEC 60870 standard’s configuration. The connec-

tion is implemented using the ServerSocketConnection and the SocketConnection interfaces. The

first defines the server socket stream connection and the second the client socket stream connec-

tion. These interfaces are connection-oriented, for the connection to begin the server has to wait

and listen for client connections. TCP is reliable, guarantees data order, delivery and has inbound

mechanisms to prevent data duplication, although being slower than UDP, in theory. Table 4.1

summarizes the characteristics available in J2ME of the two connections.

Table 4.1: J2ME TCP/UDP comparison

Characteristics TCP socket connection UDP datagram connection
Speed Lower (in theory) Higher (in theory)
Data Ordering Yes No
Reliability Yes No
Duplication Prevention Yes No
Connection Yes No

The first version of the application used UDP. UDP was chosen because it was simpler to im-

plement and minimized the delay. Although it fulfilled the requirements, TCP was conceptually

more consistent and proved itself better than UDP. The tests measuring the delay of each connec-

tion, the performance improvement and the statistical comparison between the two are presented

in chapter 5.2. Surprisingly and despite expectations, TCP revealed itself faster than UDP. This

happens due to a number of reasons. TCP actually tries to buffer the data and fill a full network

segment using the available bandwidth more efficiently [35]. This has a large impact in the per-

formance when the packets being transmitted are considerably small, like the ones used in this

application. TCP implements the Nagle’s algorithm reducing the number of packets that are sent

to the network, improving TCP/IP’s efficiency. The Nagle’s algorithm combines several small

frames and sends them all at once avoiding the network’s congestion and minimizing overhead

[35]. On the other hand UDP sends the packets immediately, congesting the network with nu-

64 Development

merous small packets. This was verified when there were a lot of packets being sent in a small

amount of time, the delay kept increasing until the packets were eventually dropped. The excessive

delay on UDP connections is also explained due to the specific implementation of the UDPData-

gramConnection’s available method on the modems. Every time this method is used it blocks for

around 500ms after UDP datagrams have been received. These reasons make TCP around 50%

faster than UDP on average making it a better choice than UDP. The test results demonstrating this

difference are presented in chapter 5.2

4.5.7 HTTP Requests Minimization

HTTP requests typically take around 5 to 8 seconds in the first round-trip and 2 to 4 seconds in

the following round trips [33]. This delay is considerably higher than a socket connection and the

corresponding HTTP thread might add a considerable delay to the application. Since HTTP is used

to implement the extra online monitoring and configuring interface it shouldn’t excessively disturb

the main functionalities or add an excessive delay. Considering this the number of requests to the

online server was minimized. The application’s initiation HTTP requests sequence is pictured in

figure 4.30.

Initially the application started by sending the modem’s and SIM’s parameters to the online

server, the first request represented in the previous picture. The second request was issued to

allow the modem to obtain the configurations specified in the online server. The third was sent

after the connection initialization and updated the current connection in the online database. After

the performance optimization the new HTTP requests sequence is pictured in figure 4.31.

The first and second requests were joined together. Every time a modem registers its param-

eters it also automatically obtains the corresponding configurations for that modem, eliminating

one request. This burdens the first request with additional processing but the time the server takes

to process that request is much lower than the time it takes to make a new request, thus improving

the performance. This was also applied in the regular reporting functionality; whenever informa-

tion is reported the modem also receives the commands issued from the online interface. The time

interval each modem reports its information can also be configured remotely.

4.5.8 Web Integration Protocol Efficiency

A web service was used to implement the online interface. To manage the communications be-

tween the server and the devices one could use either REST or SOAP. REST uses every unique

URL to represent a single object being the contents of that object accessible through an HTTP

request. A GET request can be used to access the object while a POST to modify it [36]. SOAP

on the other hand is an industry standard, it features a clear protocol and has defined rules for

each application. It relies on XML to define the overall structure of the message as well as the re-

sponses. The messages are sent through HTTP or HTTPS requiring a remote procedure call to be

processed [36]. REST is considerably simpler and more flexible than SOAP, since the services are

accessible to any device with HTTP support. SOAP requires a new XML specification and most

4.5 Performance Considerations 65

Figure 4.30: Initiation HTTP requests before optimization

of the times a SOAP toolkit is needed to parse and form requests. Considering security, while is

always possible to distinguish the intent of each message by analyzing the HTTP request when

using REST, in SOAP it’s not possible to know the purpose of each message without consuming

resources especially for that task [36]. On the other hand sensible information should never be

transmitted through the URL like it is in REST. The interface between the modem’s Java applica-

tion and the online database was implemented using a REST interface through a custom protocol.

The advantage of using REST instead of complex XML based protocols like SOAP is the reduced

parsing time and the reduced overhead [36]. These characteristics make REST the most suitable

protocol since the delay to process the request is crucial for the application’s performance and

the reduced overhead reduces bandwidth costs. Instead of using XML or other similar complex

66 Development

Figure 4.31: Initiation HTTP requests after optimization

protocols, a custom protocol was designed in order to improve the efficiency. An example of a

possible XML object structure for this application is pictured in figure 4.32.

Figure 4.32: Example of an application’s XML object

4.5 Performance Considerations 67

XML introduces an excessive unnecessary overhead unless the application actually needs the

advanced capabilities of XML, which in this case it doesn’t. It is possible to greatly reduce this

overhead by designing a custom protocol and combining it with REST. The implemented protocol

is pictured in figure 4.33.

Figure 4.33: Example of the implemented custom protocol

By designing both the protocol and the REST interface it is possible to parse the custom

protocol and retrieve the required data. The custom protocol is able to greatly reduce the overhead,

minimizing the delay while maintaining the required functionalities.

4.5.9 Automatic Modem’s Geographic Location Detection

The online interface automatically displays the modem’s geographic location on the map. If this

location is changed the interface is automatically updated also. The modems have no GPS func-

tionality and it is impossible to use a straightforward way to find the modem’s location. To im-

plement this functionality there was four possible alternatives: install a GPS device, obtain the

location based on the SIM card’s IP address, using the mobile network provider’s cell IDs or

through the local address transmitted in the IEC 60870 standard.

4.5.9.1 Install a GPS device

It is possible to simply connect a GPS device to the modem and obtain the modem’s GPS location

by accessing to that device. Once the information is available it can be sent to the online database

through one of the HTTP requests. Also with this alternative it is possible to access the modem’s

location at any time. However this has a major disadvantage; it is necessary to buy the GPS device

increasing the costs of the solution. Due to this reason the other solutions are more attractive,

never the less it could become more relevant if the solution was applied to a mobile system, for

example a mobile Substation.

4.5.9.2 SIM card’s IP address

A single IP address is assigned every time a computer connects with the Internet. This address can

be either dynamical or static, either way the assigned address can be traced to a specific geographic

location. Unless a proxy is used, the obtained location is reasonably accurate [15]. However when

using a GPRS connection the situation changes. The GGSN is responsible for assigning a GPRS

IP address to a particular mobile unit. The IP addresses assigned by GGSN belong to the service

provider’s GPRS network, so even if the mobile device accesses the GPRS network while roaming

or outside the area assigned to that provider, the address will still give the impression that the user

68 Development

is still within the provider’s network [15]. Due to this reason the GPRS IP address is not an

accurate way to find the modem’s geographic location.

4.5.9.3 Provider’s cell ID

The signal coverage in the radio mobile network is guaranteed with a number of towers dispersed

throughout the map. The network is made up of adjacent cells centered in each tower. Each cell

is uniquely identified by four parameters: the cell ID, the code of the area that cell belongs to

(area code), the code of the national network (MCC) and the company code which identifies the

provider’s company (MNC) [15]. This situation is pictured in figure 4.34.

Figure 4.34: Mobile network geographic structure

It is possible to obtain all of these parameters using the modem’s AT command interface and

use them to obtain the mobile device geographic location. When the modem detects several towers

the location can be reasonably accurate by triangulating the position. This method has a major

disadvantage though, the cell ID’s location is highly proprietary. There are some online databases

with the cells’ locations and even services capable of knowing the maximum distance allowed

between a cell and a device before the device connects to a new cell, capable of detecting the

location with accuracy down to 50 meters but they are very incomplete and many times outdated.

These databases are user made and operators can easily protect their property by switching the

identifiers at random. Although this would be a very interesting method with the right resources,

the lack of a consistent database with the cells’ location make it unviable.

4.6 Satellite Systems Benchmarking 69

4.5.9.4 IEC 60870 Local Address

According to the IEC 60870 standard specification every device has a local address and this ad-

dress is sent in every frame [1]. Unfortunately this address isn’t unique for every device inside the

company’s network. But the combination of the Substation’s address with the Frontend’s address

is. Since the application receives and verifies the standard’s frames it is possible to obtain both ad-

dresses. By comparing each pair of addresses with the company’s database it is possible to know

exactly to which Substation and Frontend each modem is connected. Once this information is

available it is possible to know the modem’s exact geographic location since the company has the

location of every Substation and Frontend. This was the implemented solution to automatically

obtain the modem’s geographic location. When one frame from the Substation and one from the

Frontend are transmitted in the same connection, both addresses are registered and compared with

the installations database. By knowing to which specific Substation and Frontend each modem is

connected it is possible to know their location since it is the same as the Substation’s and Fron-

tend’s location. This solution still has some limitations since it is impossible to know the modem’s

location when it’s not connected to the installation. Also if the Substation’s industrial PC isn’t in

the correct place for example under maintenance, the obtained location is incorrect. Still under

normal circumstances it is the best way without additional costs, to accurately find the geographic

location.

4.5.9.5 Overview

Table 4.2 compares all the methods detailed before. It compares how much it costs to implement

that method, how accurate is the obtained location and conceptually how often the location is

available.

Table 4.2: Geographic location detection method comparison

Method Cost Accuracy Availability
GPS Device High High High
IP address None Very low High
Cell ID None Medium Low
Local Address None High Medium

The implemented method, the IEC 60870 local address detection is the costless solution with

highest accuracy, although with not the best availability due to the limitations mentioned before.

Never the less in normal situations this is the best way to obtain the geographic location.

4.6 Satellite Systems Benchmarking

This section explores the best satellite systems and their services for implementing Power Sub-

stations telecontrol. It is presented a cost comparison between the main services available. This

section wasn’t overly detailed due to the lack of interest of the company in keeping exploring these

70 Development

solutions due to the elevated associated costs. Instead the focus for this dissertation was to develop

the system using GPRS modems. Never the less a brief overview is presented since it is in the ini-

tial dissertation’s objectives. It is important to note that the information about the satellite systems

delay, prices and even their services was exceptionally hard to find. Most providers require the

customers to contact them directly to obtain this information and won’t provide it unless there’s

an actual interest in buying a service. Also the prices might change according to the customer and

the type and size of the application.

4.6.1 Iridium

Iridium uses 66 low earth orbiting satellites and has a pole to pole coverage. It supports a wide

range of services like full duplex, real time calls for voice and data, SMS and Short Burst Data

[24]. Its terminals can make and receive dial-up calls similarly to any landline modem with a 2400

bits/s rate. The setup time can take up to 40 seconds and the costs around AC0.8 per minute. The

latency and cost can be lower when both terminals are using the Iridium system. If the device

is using the TCP/IP stack it is possible to make a point to point protocol dial-up connection to

the internet. This has a lower throughput due to the extra overhead introduced by TCP/IP but

considerably reduces the setup time. There’s also the RUDICS service which is similar to a dial-

up connection but it uses an internet connection rather than a dial-up modem. The setup time is

greatly reduced and it is cheaper than dial-up having a cost ofAC0.5 per minute but it has a one-time

fee of AC1919. It can reduce costs in applications where it is required to monitor multiple devices

[24, 37]. Besides the call based services mentioned before Iridium also supports message based

services. The short burst data service is aimed at terminals that make frequent short connections

transmitting messages up to 1960 bytes. It has a cost of AC10 per month, AC0.03 for 30 bytes and

AC0.0012 for the subsequent bytes. There’s also the option to pay a higherAC12 monthly fee and get

the first 12000 bytes included. Besides the short burst data Iridium also supports the traditional

GSM based text messaging carrying 160 characters with cost of AC0.34 per message. Finally

Iridium also supports the OpenPort service which offers a data service at 32, 64 and 128 kbits/s

with a much lower cost than the regular price per byte than the traditional services. The OpenPort

data costs vary depending on the monthly subscription but normally the price is between AC4 and

AC13 per megabyte. The service is only supported on a specific terminal with a cost of AC3070

[24, 37].

4.6.2 Inmarsat

Inmarsat has a fleet of geostationary satellites that cover most of the earth except the poles. It has

a range of products and services aimed at both sea and land based users. It provides the BGAN,

FleetBroadband, Fleet 33/55/77 and IsatM2M [25]. BGAN is a portable broadband product,

which supports voice calls and IP data at speeds up to 492 Kbit/s. BGAN’s line rental costs

around AC38 per month and has a fee of AC5 per megabyte. The terminals cost between AC1765

and AC3454 depending on the specification. While BGAN is more adequate for land applications,

4.6 Satellite Systems Benchmarking 71

Inmarsat also has a marine based product called the FleetBroadband. It is physically larger, uses

a stabilized antenna and has a top bitrate of 432Kbit/s. Unlike BGAN the line rental has no cost

but charges AC9 per megabyte subject to a minimum monthly spend of AC23. The Fleet services

offer voice, fax and dial-up data services. It uses MPDS a packet based, pay by the bit data

service. Fleet 33 operates at 28Kbit/s uplink and 64Kbit/s downlink, Fleet 55 at 64Kbit/s uplink

and downlink and Fleet at 128Kbit uplink and downlink. MPDS data costs AC26 per megabyte,

dial-up data costs AC5 per minute for 64Kbit/s and AC10 per minute for 128Kbit/s. Fleet terminals

cost around AC5756 for Fleet 33, AC9824 for Fleet 55 and AC12740 for Fleet 77 [25, 37]. Inmarsat

also offers the IsatM2M service which is a burst data service that can send 10 or 25 byte messages

and receive up to 100 byte messages. Each message has a cost of AC0.046 per 10 byte message and

AC0.09 per 25 byte message. Each terminal has a minimal monthly spend of AC4 and cost roughly

AC690 [25, 37].

4.6.3 Orbcomm

Orbcomm has 29 low Earth satellites and provides a message based communication service. The

messages are downlinked by ground stations and can be delivered close to real time unless the

satellite isn’t in range. When this happens the messages are stored and sent as soon as the next

satellite comes in range [22]. It provides services with unrestricted traffic for a AC46 monthly fee

with 2.4Kbit/s uplink and 4.8Kbit/s downlink. Terminals cost between AC154 and AC307 depending

on if they are just modems or if they include a programmable microcontroller to collect data from

other devices [22, 37].

4.6.4 Thuraya

Thuraya operates several different sectors offers voice and data satellite communications solutions.

The satellite system covers Europe, south-east Asia, Australia, most of Africa and the Middle East

[23]. It offers a dial-up data service at 9.6Kbit/s, packet data similar to GPRS at 60Kbit/s downlink

and 15Kbit/s uplink and SMS messaging. A dial-up connection has a AC27 monthly subscription

and a cost ofAC1.5 per minute. A packet data connection has aAC42 monthly subscription including

the first 5MB and then a cost of AC4 per MB [23, 37]. It also has the ThurayaIP service which

offers internet access at roughly 450Kbit/s having a monthly cost of AC422 for 138MB or AC3 per

MB. There’s also a plan with no cost per MB for AC3852 per month. The terminal is portable,

small, weights 1.3kg and costs AC3072 [23, 37].

4.6.5 Globalstar

Globalstar uses a low Earth orbit satellite constellation that covers North America, South America,

Europe, north Africa and most of the Atlantic [26]. It offers dial-up connection with bitrate at

9.6Kbit/s, with a monthly fee of AC30 and a cost of AC0.7 per minute. Globalstar also has a short

burst data service that supports messages up to 144 bytes. This service can be priced in 9 bytes or

36 bytes increments and start at AC23 per month for 100 messages of 9 bytes [26, 37].

72 Development

4.6.6 Overview

The main services referred before an their airtime charges are resumed in table 4.3 and their

monthly airtime cost in table 4.4.

Table 4.3: Main satellite services airtime charges

System Data rate (kbit/s) Monthly fee Charged rate
Iridium dialup 2,4 AC 11 AC 0,80/min
Iridium RUDICS 2,4 AC 11 AC 0,50/min
Iridium OpenPort 32/64/128 AC 27 to AC 862 AC 4 to AC 13/MB
Fleet MPDS 28/64/128 AC 0 AC 26/MB
Fleet 33 dialup 9,6 AC 0 AC 2/min
Fleet 55/77 ISDN 64 AC 0 AC 4/min
Fleet 77 ISDN2 128 AC 0 AC 5/min
BGAN 492 AC 38 AC 5/MB
FleetBroadband 432 AC 0 AC 9/MB
Thuraya dialup 9,6 AC 27 AC 0,80/min
Thuraya GmPRS 15 AC 42 AC 4/MB
ThurayaIP 444 AC 423 AC 3/MB
Globalstar dialup 9,6 AC 31 AC 0,80/min

Table 4.4: Main satellite services monthly airtime cost for a given amount of data

System 1MB 10MB 100MB 1000MB
Iridium dialup AC 55 AC 458 AC 4.479 AC 44.694
Iridium RUDICS AC 39 AC 296 AC 2.861 AC 28.516
Iridium OpenPort AC 40 AC 97 (32 kbit/s) AC 539 (32 kBit/s)AC

620 (64 kbit/s)
AC 4314 (32 kbit/s)
AC 4853 (64 kbit/s)
AC 5755 (128 kbit/s)

Fleet MPDS AC 26 AC 262 AC 2.619 AC 26.194
Fleet 33 dialup AC 33 AC 331 AC 3.313 AC 33.127
Fleet 55/77 ISDN AC 12 AC 116 AC 1.156 AC 11.556
Fleet 77 ISDN2 AC 11 AC 100 AC 1.001 AC 10.015
BGAN AC 44 AC 92 AC 578 AC 5.431
FleetBroadband AC 23 AC 92 AC 925 AC 9.245
Thuraya dialup AC 39 AC 143 AC 1.183 AC 11.583
Thuraya GmPRS AC 42 AC 64 AC 445 AC 4.259
ThurayaIP AC 424 AC 424 AC 424 AC 3.852
Globalstar dialup AC 42 AC 146 AC 1.186 AC 11.587

All of the satellite systems’ coverage areas referred before includes Portugal [24, 25, 22, 23,

26]. The cheapest service is different for the amount of data used. For 1MB is Fleet 77 with a cost

of AC11 per month, for 10MB is Thuraya GmPRS with a cost of AC64, for 100MB and 1000MB is

ThurayaIP with a cost of AC424 and AC4259 per month respectively. It is expectable that the regular

traffic between a Substation and Frontend is between 10MB and 100MB, so for this application

4.6 Satellite Systems Benchmarking 73

the best service would be the ThurayaIP. This solution would have a cost of AC424 per month plus

the price for two terminals at AC3072 each.

74 Development

Chapter 5

Conclusions and Tests

This chapter describes the tests that were conducted to assess the performance of the system,

more specifically to verify if improvements had indeed been achieved as a consequence of the

optimization performed in the system as detailed in chapter 4.5. It presents the results obtained,

including measurements of average delays, analysing such results to understand and justify the

observed system behaviour. A statistical analysis is presented, which is able to prove that there is

a statistically significant improvement in the system performance. Results of tests conducted in a

real world situation, using a simulated Frontend and a real Industrial PC of the Morgade Power

Substation, are also described. This chapter also draws the main conclusions, pointing possible

routes for future work and highlighting the current system’s limitations, where improvement is

still desirable.

5.1 Garbage Collection

Referring to the garbage collection optimization stated on chapter 4.5.3, the tests measure the time

before and after the code pictured in this chapter, using both the String object and the StringBuffer

object. To evaluate and compare the two solutions it was used a paired t-test. The purpose of the

statistical evaluation is to verify if there is in fact evidence that the techniques to minimize the

garbage collecting are improving the performance. This test is very effective for detecting differ-

ences when the test subjects are the same and when the subjects are measured before and after

some sort of treatment or change [38]. Since the subject in this experience is the Java application

and the objective is to measure the performance before and after the performance improvements,

this is the most suitable test. It is important to size the number of tests that are needed to correctly

draw conclusions about the impact of the technique in the application’s performance. Assigning

the Cohen’s d (the anticipated effect size), the desired statistical power level and the significance

criterion it is possible to estimate the minimum sample size required to make the test statistically

relevant. The significance criterion represents the probability of mistakenly rejecting the null hy-

pothesis [38], in other words the risk of concluding that the improvements were effective while

75

76 Conclusions and Tests

they weren’t. The statistical power level represents the probability of rejecting a false null hypothe-

sis [38], or the probability of rejecting the conclusion that there were no significant improvements

when there were. The effect size represents the impact of a phenomenon [38], if it is expected

that the improvements will have a small, medium or large effect. To estimate the number of tests

it was used the standard values for the significance criterion (0.05) and the statistical power level

(0.8) [38]. The effect size is the most difficult part to evaluate due to the generally low level of

consciousness of the magnitude of the phenomena being the evaluation rather subjective [38]. It

is particularly hard to estimate in this case since the performance of the garbage collecting also

varies from device to device [32]. Considering this and the history of possible gain of efficient

garbage collection [32] it is expected an effect size between medium and large, so it was used 0.6

(small being 0.2, medium 0.5 and large 0.8). The used parameters are resumed in table 5.1.

Table 5.1: Garbage collection tests sample size estimation parameters

Parameter Value
Cohen’s d 0.6
Statistical power level 0.8
Significance criterion 0.05

Tests can be either one tailed or two tailed, one tailed tests are appropriate when a difference

in one direction is expected while two tailed are appropriate when a difference in any direction

is expected. For this test both will be evaluated. Considering these parameters the sample size

results obtained are resumed in table 5.2.

Table 5.2: Garbage collection tests sample size estimation results

Results Sample Size (units)
Minimum total (one-tailed hypothesis) 72
Minimum per group (one-tailed hypothesis) 36
Minimum total (two-tailed hypothesis) 90
Minimum per group (two-tailed hypothesis) 45

The tests measured the time just before and after the code pictured in chapter 4.5.3, using

the String object and the StringBuffer object. It was used a byte array of 128 bytes, both tests

were on the same modem, using the exact same application and with exactly the same conditions.

Considering the sample size results it was done 50 tests per group. The results of each test can be

found on appendix A. The average and the standard deviation of each set of tests can be found in

table 5.3.

Comparing the averages of both methods one can notice a dramatic improvement. The average

time to run the code is 82% faster with the StringBuffer object and there’s a reduction of 171 ms on

average. Another noticeable difference is the standard deviation, which is considerably higher on

Stringbuffer’s test. It is important to notice that the time it takes to execute the instructions varies

5.1 Garbage Collection 77

Table 5.3: Garbage collection tests results

String Object StringBuffer Object
Average 208 ms 37 ms
Standard Deviation 38,29 ms 64,24 ms

and there are always background tasks that take time, since the String object’s delay is larger these

tasks are less visible thus making the standard deviation smaller. It is still necessary to prove that

these tests weren’t a fluke and are statistical relevant. To do so it was used a paired t-test for the

mean. The results are resumed in table 5.8.

Table 5.4: Garbage collection paired t-test results

Parameter Results
t Stat 14,32
P(T<=t) one-tail 1,96E-19
t Critical one-tail 1,68
P(T<=t) two-tail 3,91E-19
t Critical two-tail 2,01

From the results it is observable that the absolute value of the t Stat is greater than the t Critical

one-tail and the t Critical two-tail. So it is safe to assume that there is a significant difference be-

tween the two tests (based on the two-tail) and the String’s mean is larger than the StringBuffer’s

mean (based on the one-tail) [38]. It is also correct to say these tests weren’t a coincidence,

since the probability that these tests were a fluke, given by the P one-tail and two-tail is much

smaller than specified significance criterion (0.05). Considering this, it is safe to reject the null

hypothesis and conclude that there is an actual statistical difference between the String tests and

the StringBuffer tests. And since the StringBuffer’s average delay was definitely smaller than the

String’s average delay the t test also proves that the StringBuffer’s delay is statistically signifi-

cantly smaller, therefore better in a performance perspective. Remembering the initial statement

on chapter 4.5.3 that a few garbage objects didn’t have a noticeable impact on performance, well

this is also true. Although there was a statistically significant improvement and on average the

improvements are 82% better than the initial solution this means a difference of 171ms on aver-

age. It is discussable how critical this is on the whole system. Since the delay would be smaller

for smaller frames which are the most common in the standard and such a high garbage collection

cost isn’t often present in the code, so the delay wouldn’t reach such high values very often. Either

way this is a costless improvement always worth to implement.

78 Conclusions and Tests

5.2 UDP and TCP

Referring to the garbage collection optimization stated on chapter 4.5.6, the tests measure the

round-trip delay time. It was impossible to measure a single trip’s delay from the sender to receiver

since the modem’s internal clock is desynchronized. Each modem’s internal clock has a different

time so it was impossible to accurately compare both of the modem’s clocks with a precision of

milliseconds. Instead it was measured the round-trip delay time, one modem recorded the time it

sent a single frame, the remote modem simply received and sent back to the sender and the initial

modem recorded the received time. Similarly to the previous chapter, to evaluate and compare the

two solutions it was used a paired t-test. The test’s scheme is represented in picture 5.1.

Figure 5.1: TCP/UDP tests scheme

To estimate the number of tests it was used the standard values for the significance criterion

(0.05) and the statistical power level (0.8) [38]. Since it is expected an effect size between medium

and large, closer to large, it was used 0.7. The used parameters are resumed in table 5.5.

Table 5.5: TCP/UDP tests sample size estimation parameters

Parameter Value
Cohen’s d 0.7
Statistical power level 0.8
Significance criterion 0.05

Considering these parameters the sample size results obtained are resumed in table 5.6.

It was realized 40 tests using the same modem and same application, with the exact same

situations. They were done on two week days on the exact same time of the day (19:00), so

5.2 UDP and TCP 79

Table 5.6: TCP/UDP tests sample size estimation results

Results Sample Size (units)
Minimum total (one-tailed hypothesis) 52
Minimum per group (one-tailed hypothesis) 26
Minimum total (two-tailed hypothesis) 68
Minimum per group (two-tailed hypothesis) 34

the network’s congestion would be the same for both. The results of each test can be found on

Appendix B. The average and the standard deviation of each set of test can be found in table 5.7.

Table 5.7: TCP/UDP tests results

TCP Connection UDP Connection
Average 2,013 s 4,198 s
Standard Deviation 0,274 s 1,502 s

Comparing the averages of both connections one can notice a significant difference; the UDP’s

average delay is considerably higher than TCP’s. Changing the connection from UDP to TCP im-

proves the delay on average by 52% and there’s a reduction of 2,185 seconds. The TCP’s standard

deviation is also considerably smaller than UDP. This was expected since UDP doesn’t guarantees

reliability and the packets may take different paths each time [35] thus the high deviation. It is

still necessary to prove that these tests weren’t a fluke and are statistical relevant. To do so it was

used a paired t-test for the mean. The results are resumed in the table below.

Table 5.8: TCP/UDP paired t-test results

Parameter Results
t Stat 12,22
P(T<=t) one-tail 3,3E-15
t Critical one-tail 1,69
P(T<=t) two-tail 6,6E-15
t Critical two-tail 2,02

From the results it is observable that the absolute value of the t Stat is greater than the t Critical

one-tail and the t Critical two-tail. So it is safe to assume that there is a significant difference

between the two tests (based on the two-tail) and the UDP’s average delay is larger than the

TCP’s average delay (based on the one-tail) [38]. It is also correct to say these tests weren’t a

coincidence, since the probability that these tests were a fluke, given by the P one-tail and two-tail

is much smaller than specified significance criterion (0.05). Considering this, it is safe to reject the

null hypothesis and conclude that there is an actual statistical difference between the UDP tests and

the TCP tests. And since the TCP’s average delay was definitely smaller than the UDP’s average

80 Conclusions and Tests

delay the t test also proves that the TCP’s delay is statistically significantly smaller, therefore better

in a performance perspective. The advantages implemented by TCP plus the lower delay verified

when comparing it with UDP makes TCP the best choice for this application. Implementing TCP

significantly decreases the delay improving the whole application’s performance by a substantial

value.

5.3 Real Tests

These tests were done in a real situation using a Frontend and the industrial PC of the Morgade

substation. It was used two modems Siemens TC65 using two SIM cards from TMN. It was

necessary to do some minor adjustments in the serial port’s configuration with the substation and

the solution worked as expected. It was verified that the delay was higher initially and lowered

when the connection stabilized. The delay when the connection was stable was around 2 seconds

as expected. The Frontend’s logs about this test can be found on Appendix C. The logs show

the correct communication of the IEC 60870-5-101 standard of both Frontend’s and Substation’s

responses and their timeline. Picture 5.2 presents the Frontend’s configurations used for this test.

The main conclusion about the tests was that the Frontend’s parameters might have to be ad-

justed according to the specific Substation where the solution is implemented. The Frontend’s

timeout has to be 5 or 6 seconds to guarantee the correct reception due to the delay’s variation in

the beginning of the connection. However if the timeout is configured to 3 seconds the connection

will still be viable although the initial frames might be discarded until the connection stabilizes.

Different substations might have different timeouts depending on how far they are. Many times

the company’s Frontends have timeouts of less than 1 second. It is impossible to accomplish a

round-trip time this low using this solution, since it is impossible to achieve optic fiber’s perfor-

mance with a system of this nature. Never the less this solution is incomparably cheaper and faster

to implement than an optic fiber based system and reveals itself a flexible and consistent alter-

native to the classic methods of telecontrol. Lastly, the tests demonstrated that the Frontend was

able to correctly communicate with the Substation proving that this solution is a viable powerful

alternative to telecontrol electrical substations.

5.4 Conclusions

The satellite solution wasn’t implemented due to the lack of interest revealed by the company,

never the less it also reveals as an interesting solution with moderate costs that should be con-

sidered more carefully in a near future. The system presents several advantages and interesting

features when compared with the traditional communications technologies. It is a very flexible

and adaptive solution that can be applied to different situations and many applications having no

geographic limitations like optic fiber or microwave links as long as the operator’s network covers

that location. It is very portable since the modems are small and lightweight and have no cost to

move the system from a specific location to another but the cost to move the modems, this can

5.4 Conclusions 81

Figure 5.2: Frontend’s real test configuration

be very troublesome when using optic fiber and microwave links. The system requires no previ-

ous configuration since it is plug-and-play and the link establishment is seamless. This system is

considerably cheaper than implementing an optic fiber or microwave link. The online monitor-

ing and configuring interface made the system even more accessible and endowed it with several

new interesting features. The interface made the system accessible and configurable from virtu-

ally everywhere, provided a tool for the system’s registration and supports the system’s escalation.

Also this interface revealed itself as a very interesting tool to be applied not just to the substation

telecontrol but also to the telecontrol of the medium voltage network. This network currently has

82 Conclusions and Tests

3126 Siemens TC65 modems installed and there is no registration tool or a way to find out which

modem is where or to see any information about each modem. The online monitoring interface

implements a way to monitor, configure and manage all of these 3126 modems and their con-

nections completely automatically. The interface was also built in a way that any device with an

internet connection can use the services. This eases the scalability of the system and manages to

make the system useful for future devices that may be included in the network. Overall the system

has several interesting features that make it a very interesting alternative to telecontrol electrical

substations and the online interface is a very powerful tool to be applied in the company’s con-

text. The additional features made the system even more interesting making it error resilient and

adequate to be used in long periods of time. The performance improvements minimized the pro-

cessing delay and optimized the occupied space making the only relevant delay the one introduced

by the mobile network. Finally all the proposed objectives were accomplished and surpassed and

the additional features and the online monitoring interface were introduced to further complete

the solution. The developed system reveals itself as a viable and interesting solution to remotely

control electrical substations. The real tests demonstrated that the communications channel can be

supported using GPRS modems and this system represents a sustainable alternative to guarantee

communications between a SCADA frontend and an electrical Substation.

5.5 Limitations

This system is limited to the operator’s network coverage zone. If a particular substation is outside

the operator’s network it won’t be able to support the connection. This however is high unlikely

since the company has deals with two of the major mobile network providers and they provide

coverage to most of the country. Also this solution is highly dependent from the provider’s net-

work. This makes the connection not fully manageable from the company’s point of view and

makes it dependent from an external entity. Besides this the system also has a minimal round-trip

delay of two seconds which is the operator’s network delay, the optic fiber delay is significantly

lower.

5.6 Future Work

Despite all the new features introduced by the online interface the implemented functionalities

could be further explored and implemented new ones since it has a great potential. The security

considerations for the company’s integration should be also carefully reviewed. A solution using

a satellite system should also be further explored and tested as the benchmarking revealed that

the costs weren’t too excessive and might be an interesting option. A new project involving the

conversion of IEC 60870 RS-232 data to IP also could be an interesting project since the future

of SCADA communications involves internet communications [39, 6, 5, 9]. This could be imple-

mented using a modem with an RS-232 port and an Ethernet port with a software to manage the

5.6 Future Work 83

communications between the SCADA Frontend and Electrical Substations. This also falls with

the company’s strategy to convert the existing networks to IP.

84 Conclusions and Tests

Appendix A

Garbage Collection Tests

This chapter presents all the tests and their results to measure the delay introduced by garbage

collection.

A.1 String Object Tests

Table A.1: String object measured delay

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
1 01:10:12 904 272

01:10:13 176

2 01:10:13 347 189

01:10:13 536

3 01:10:13 665 203

01:10:13 868

4 01:10:14 131 208

01:10:14 339

5 01:10:14 394 213

01:10:14 607

6 01:10:14 644 240

01:10:14 884

7 01:10:14 893 217

01:10:15 110

8 01:10:15 119 185

01:10:15 304

9 01:10:15 313 212

01:10:15 525

10 01:10:15 530 212

Continued on next page

85

86 Garbage Collection Tests

Table A.1 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
01:10:15 742

11 01:13:42 751 263

01:13:43 14

12 01:13:43 42 341

01:13:43 383

13 01:13:43 420 203

01:13:43 623

14 01:13:43 766 259

01:13:44 25

15 01:13:44 85 203

01:13:44 288

16 01:13:44 574 208

01:13:44 782

17 01:13:44 851 189

01:13:45 40

18 01:13:45 77 236

01:13:45 313

19 01:13:45 317 208

01:13:45 525

20 01:13:45 530 216

01:13:45 746

21 01:14:08 18 351

01:14:08 369

22 01:14:08 424 185

01:14:08 609

23 01:14:08 697 203

01:14:08 900

24 01:14:09 80 207

01:14:09 287

25 01:14:09 518 208

01:14:09 726

26 01:14:09 786 231

01:14:10 17

27 01:14:10 35 185

01:14:10 220

28 01:14:10 229 198

Continued on next page

A.1 String Object Tests 87

Table A.1 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
01:14:10 427

29 01:14:10 437 207

01:14:10 644

30 01:14:10 649 203

01:14:10 852

31 01:14:33 797 337

01:14:34 134

32 01:14:34 295 189

01:14:34 484

33 01:14:34 531 203

01:14:34 734

34 01:14:34 909 277

01:14:35 186

35 01:14:35 228 207

01:14:35 435

36 01:14:35 620 208

01:14:35 828

37 01:14:36 3 189

01:14:36 192

38 01:14:36 220 217

01:14:36 437

39 01:14:36 446 208

01:14:36 654

40 01:14:36 658 213

01:14:36 871

41 01:15:03 314 268

01:15:03 582

42 01:15:03 660 194

01:15:03 854

43 01:15:04 44 221

01:15:04 265

44 01:15:04 334 208

01:15:04 542

45 01:15:04 782 222

01:15:05 4

46 01:15:05 64 249

Continued on next page

88 Garbage Collection Tests

Table A.1 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
01:15:05 313

47 01:15:05 327 189

01:15:05 516

48 01:15:05 525 212

01:15:05 737

49 01:15:05 747 212

01:15:05 959

50 01:15:05 964 216

01:15:06 180

A.2 StringBuffer Object Tests

Table A.2: StringBuffer object measured delay

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
1 01:19:54 954 42

01:19:54 996

2 01:19:55 9 28

01:19:55 37

3 01:19:55 217 116

01:19:55 333

4 01:19:55 342 189

01:19:55 531

5 01:19:55 586 88

01:19:55 674

6 01:19:55 683 33

01:19:55 716

7 01:19:55 794 125

01:19:55 919

8 01:19:55 960 28

01:19:55 988

9 01:19:55 993 60

01:19:56 53

10 01:19:56 62 23

01:19:56 85

11 01:20:34 797 50

01:20:34 847

Continued on next page

A.2 StringBuffer Object Tests 89

Table A.2 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
12 01:20:35 207 88

01:20:35 295

13 01:20:35 332 32

01:20:35 364

14 01:20:35 489 28

01:20:35 517

15 01:20:35 521 37

01:20:35 558

16 01:20:35 613 24

01:20:35 637

17 01:20:35 646 120

01:20:35 766

18 01:20:35 881 102

01:20:35 983

19 01:20:35 992 23

01:20:36 15

20 01:20:36 24 23

01:20:36 47

21 01:20:56 876 101

01:20:56 977

22 01:20:57 0 185

01:20:57 185

23 01:20:57 217 37

01:20:57 254

24 01:20:57 374 33

01:20:57 407

25 01:20:57 416 304

01:20:57 720

26 01:20:57 840 60

01:20:57 900

27 01:20:57 965 125

01:20:58 90

28 01:20:58 99 23

01:20:58 122

29 01:20:58 131 32

01:20:58 163

30 01:20:58 173 23

Continued on next page

90 Garbage Collection Tests

Table A.2 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
01:20:58 196

31 01:21:23 406 41

01:21:23 447

32 01:21:23 461 32

01:21:23 493

33 01:21:23 595 37

01:21:23 632

34 01:21:23 641 37

01:21:23 678

35 01:21:23 844 65

01:21:23 909

36 01:21:24 140 32

01:21:24 172

37 01:21:24 218 134

01:21:24 352

38 01:21:24 416 24

01:21:24 440

39 01:21:24 449 60

01:21:24 509

40 01:21:24 527 28

01:21:24 555

41 01:21:45 949 115

01:21:46 64

42 01:21:46 83 32

01:21:46 115

43 01:21:46 129 198

01:21:46 327

44 01:21:46 406 32

01:21:46 438

45 01:21:46 553 47

01:21:46 600

46 01:21:46 613 254

01:21:46 867

47 01:21:46 904 134

01:21:47 38

48 01:21:47 70 28

Continued on next page

A.2 StringBuffer Object Tests 91

Table A.2 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
01:21:47 98

49 01:21:47 103 27

01:21:47 130

50 01:21:47 140 27

01:21:47 167

92 Garbage Collection Tests

Appendix B

TCP and UDP Tests

This chapter presents all the tests and their results to measure the delay introduced by using either

TCP or UDP.

B.1 UDP Tests

Table B.1: UDP connection measured delay

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
1 00:57:55 700 6900

00:58:02 600

2 01:06:43 4 5543

01:06:48 547

3 01:07:26 532 7832

01:07:34 364

4 01:37:19 37 8104

01:37:27 141

5 01:38:04 147 7320

01:38:11 467

6 01:41:01 863 5704

01:41:07 567

7 02:02:05 149 8188

02:02:13 337

8 02:02:39 119 7864

02:02:46 983

9 02:03:18 899 5404

02:03:24 303

10 02:03:50 837 4062

Continued on next page

93

94 TCP and UDP Tests

Table B.1 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
02:03:54 899

11 02:04:14 459 3780

02:04:18 239

12 02:04:36 86 3753

02:04:39 839

13 02:04:56 888 3951

02:05:00 839

14 02:05:23 657 3762

02:05:27 419

15 02:05:51 631 4048

02:05:55 679

16 02:06:27 368 4611

02:06:31 979

17 02:06:51 128 4011

02:06:55 139

18 02:07:22 466 4293

02:07:26 759

19 02:07:54 968 4071

02:07:59 39

20 02:08:18 746 3573

02:08:22 319

21 02:14:49 100 7850

02:14:56 950

22 02:15:28 940 7970

02:15:36 910

23 02:15:55 723 5321

02:16:01 44

24 02:16:19 390 4740

02:16:24 130

25 02:16:48 389 4011

02:16:52 400

26 02:17:17 69 4071

02:17:21 140

27 02:17:38 69 3831

02:17:41 900

28 02:18:05 92 3923

Continued on next page

B.2 TCP Tests 95

Table B.1 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
02:18:09 15

29 02:18:30 749 4311

02:18:35 60

30 02:18:59 184 3716

02:19:02 900

31 02:19:30 509 4066

02:19:34 575

32 02:20:29 549 5271

02:20:34 820

33 02:20:51 989 4846

02:20:56 835

34 02:21:15 509 4371

02:21:19 880

35 02:21:38 572 3988

02:21:42 560

36 02:22:00 749 4186

02:22:04 935

37 02:22:23 129 4006

02:22:27 135

38 02:22:49 150 4210

02:22:53 360

39 02:23:25 169 4178

02:23:29 347

40 10:08:49 955 3923

10:08:53 878

B.2 TCP Tests

Table B.2: TCP connection measured delay

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
1 10:17:33 192 1690

10:17:34 882

2 10:20:06 312 1920

10:20:08 232

3 10:20:45 322 2335

10:20:47 657

Continued on next page

96 TCP and UDP Tests

Table B.2 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
4 10:21:34 69 2188

10:21:36 257

5 10:22:34 189 2013

20:22:36 202

6 10:23:19 406 1796

10:23:21 202

7 10:24:04 392 1994

10:24:06 386

8 10:27:57 50 2170

10:27:59 220

9 10:28:31 924 1966

10:28:33 890

10 10:29:16 560 1984

10:29:18 544

11 10:29:58 929 1966

10:30:00 895

12 10:30:36 304 1911

10:30:38 215

13 10:31:17 529 1186

10:31:18 715

14 10:32:02 349 2326

10:32:04 675

15 10:32:46 121 2714

10:32:48 835

16 10:35:15 549 2026

10:35:17 575

17 10:36:06 203 2192

10:36:08 395

18 10:36:42 424 2211

10:36:44 635

19 10:37:21 253 1962

10:37:23 215

20 10:40:49 950 2585

10:40:52 535

21 10:41:22 170 1980

10:41:24 150

22 10:42:00 358 2312

Continued on next page

B.2 TCP Tests 97

Table B.2 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
10:42:02 670

23 10:42:28 840 1984

10:42:30 824

24 10:43:02 573 1602

10:43:04 175

25 10:43:34 364 2345

10:43:36 709

26 10:45:24 884 1676

10:45:26 560

27 10:46:11 324 2211

10:46:13 535

28 10:46:35 897 1998

10:46:37 895

29 10:47:00 829 2151

10:47:02 980

30 10:47:29 827 2013

10:47:31 840

31 10:47:54 344 2031

10:47:56 375

32 10:48:48 829 2326

10:48:51 155

33 10:49:17 107 2188

10:49:19 295

34 10:49:43 784 1856

10:49:45 640

35 10:50:15 824 2331

10:50:18 155

36 10:52:01 570 1934

10:52:03 504

37 10:52:28 270 1740

10:52:30 10

38 10:52:53 960 1855

10:52:55 815

39 10:53:17 664 2216

10:53:19 880

40 10:53:44 124 2211

Continued on next page

98 TCP and UDP Tests

Table B.2 – Continued from previous page

Test Number Hour:Minutes:Seconds Milliseconds Delay (ms)
10:53:46 335

Appendix C

Real Tests Logs

This chapter presents the real test Frontend’s logs. It is possible to see the message exchange, link

initialization and the IEC 60870 message structure.

C.1 Log Sample

<- 17:45:44.671 [10 49 1E 67 16]

Status of link Request

Link Control: Status of link [PRM:1 FCV:0 FCB:0] LinkAdr: 30

-> 17:45:49.812 [10 0B 1E 29 16]

Status of link Response

Link Control: Status of link [PRM:0 ACD:0 DFC:0] LinkAdr: 30

<- 17:45:49.828 [10 40 1E 5E 16]

Reset remote link Request

Link Control: Reset remote link [PRM:1 FCV:0 FCB:0] LinkAdr: 30

-> 17:45:55.265 [10 00 1E 1E 16]

ACK Response

Link Control: Acknowledge [PRM:0 ACD:0 DFC:0] LinkAdr: 30

<- 17:45:59.281 [68 0A 0A 68 73 1E 64 01 06 01 00 00 00 14 11 16]

Interrogation Request

Link Control: User Data (Confirm) [PRM:1 FCV:1 FCB:1] LinkAdr: 30

99

100 Real Tests Logs

ASDU: 100 <Interrogation Command> Count:1 SQ:0

COT: 6 <activation> Sector 1

QOI: 20 <Station Interrogation>

-> 17:46:04.906 [10 00 1E 1E 16]

ACK Response

Link Control: Acknowledge [PRM:0 ACD:0 DFC:0] LinkAdr: 30

<- 17:46:04.921 [10 5B 1E 79 16]

Class 2 Request

Link Control: User Data Class 2 [PRM:1 FCV:1 FCB:0] LinkAdr: 30

-> 17:46:06.171 [10 09 1E 27 16]

Data Not Available Response

Link Control: NACK - Requested Data not available [PRM:0 ACD:0 DFC:0] LinkAdr: 30

<- 17:46:08.921 [10 7B 1E 99 16]

Class 2 Request

Link Control: User Data Class 2 [PRM:1 FCV:1 FCB:1] LinkAdr: 30

-> 17:46:10.828 [10 09 1E 27 16]

Data Not Available Response

Link Control: NACK - Requested Data not available [PRM:0 ACD:0 DFC:0] LinkAdr: 30

<- 17:46:12.921 [10 5B 1E 79 16]

Class 2 Request

Link Control: User Data Class 2 [PRM:1 FCV:1 FCB:0] LinkAdr: 30

-> 17:46:15.281 [10 09 1E 27 16]

Data Not Available Response

Link Control: NACK - Requested Data not available [PRM:0 ACD:0 DFC:0] LinkAdr: 30

C.1 Log Sample 101

-> 17:46:16.921 [empty]

Request Timeout (No Activation Confirmation)

<- 17:46:20.921 [68 0A 0A 68 73 1E 64 01 06 02 00 00 00 14 12 16]

Interrogation Request

Link Control: User Data (Confirm) [PRM:1 FCV:1 FCB:1] LinkAdr: 30

ASDU: 100 <Interrogation Command> Count:1 SQ:0

COT: 6 <activation> Sector 2

QOI: 20 <Station Interrogation>

-> 17:46:23.703 [10 00 1E 1E 16]

ACK Response

Link Control: Acknowledge [PRM:0 ACD:0 DFC:0] LinkAdr: 30

<- 17:46:24.921 [10 5B 1E 79 16]

Class 2 Request

Link Control: User Data Class 2 [PRM:1 FCV:1 FCB:0] LinkAdr: 30

-> 17:46:26.343 [10 09 1E 27 16]

Data Not Available Response

Link Control: NACK - Requested Data not available [PRM:0 ACD:0 DFC:0] LinkAdr: 30

<- 17:46:28.921 [10 7B 1E 99 16]

Class 2 Request

Link Control: User Data Class 2 [PRM:1 FCV:1 FCB:1] LinkAdr: 30

-> 17:46:32.578 [10 09 1E 27 16]

Data Not Available Response

Link Control: NACK - Requested Data not available [PRM:0 ACD:0 DFC:0] LinkAdr: 30

<- 17:46:32.921 [10 5B 1E 79 16]

Class 2 Request

Link Control: User Data Class 2 [PRM:1 FCV:1 FCB:0] LinkAdr: 30

102 Real Tests Logs

-> 17:46:34.031 [10 09 1E 27 16]

Data Not Available Response

Link Control: NACK - Requested Data not available [PRM:0 ACD:0 DFC:0] LinkAdr: 30

Appendix D

Use Case Textual Specification

This chapter presents the detailed specification and course of events of each technician’s use case.

D.1 Use Case Textual Specification

Table D.1: Configure serial port parameters use case textual description

Use Case: Configure serial port parameters
Code UC14
Name Configure serial port parameters
Description The technician can interact with the Java application or the web interface to

manually configure the parameters for the serial port connection
Actors Technician
Flow of Events

• The technician accesses the interface

• The technician inputs the values

• The technician saves the modifications if the values are correct

Pre-conditions None
Post-conditions The inserted values are loaded in the application

103

104 Use Case Textual Specification

Table D.2: Configure server use case textual description

Use Case: Configure server
Code UC15
Name Configure server
Description The technician can interact with the Java application or the web interface to

manually configure the client’s server IP
Actors Technician
Flow of Events

• The technician accesses the interface

• The technician inputs the values

• The technician saves the modifications if the values are correct

Pre-conditions None
Post-conditions The inserted values are loaded in the application

Table D.3: Configure operation mode use case textual description

Use Case: Configure operation mode
Code UC16
Name Configure operation mode
Description The technician can change the application’s operation mode according to the

desired function
Actors Technician
Flow of Events

• The technician accesses the serial interface

• The technician chooses the operation mode

• The technician saves the modifications if the values are correct

Pre-conditions None
Post-conditions The application runs in the selected mode

D.1 Use Case Textual Specification 105

Table D.4: Configure application’s parameters use case textual description

Use Case: Configure application’s parameters
Code UC17
Name Configure application’s parameters
Description The technician can interact with the Java application or the web interface

to manually configure the application’s runtime parameters (waiting timeout,
frame offset, etc)

Actors Technician
Flow of Events

• The technician accesses the interface

• The technician inputs the values

• The technician saves the modifications if the values are correct

Pre-conditions None
Post-conditions The inserted values are loaded in the application

Table D.5: Generate configuration file use case textual description

Use Case: Generate configuration file
Code UC18
Name Generate configuration file
Description The technician can interact with the Java application’s interface to generate the

configuration file with the inserted or default values
Actors Technician
Flow of Events

• The technician accesses the interface

• The technician verifies the configuration values

• The technician generates the configuration file

Pre-conditions None
Post-conditions The file is created in the modem’s root

106 Use Case Textual Specification

Table D.6: Configure connections use case textual description

Use Case: Configure connections
Code UC19
Name Configure connections
Description The technician can interact with the online interface to edit existing connec-

tions or create new ones
Actors Technician
Flow of Events

• The technician accesses the online interface

• The technician configures the connections

• The technician submits the changes

Pre-conditions The devices involved in the connection must be registered
Post-conditions The connection is changed or created

Table D.7: View modems’ list and details use case textual description

Use Case: View modems’ list and details
Code UC20
Name View modems’ list and details
Description The technician can interact with the online interface to view the list of all the

modems registered in the system and view each modem’s details
Actors Technician
Flow of Events

• The technician accesses the interface

• The technician accesses the modems’ list

• The technician selects a modem and sees its details

Pre-conditions The modems must be registered in the system
Post-conditions The information is displayed

D.1 Use Case Textual Specification 107

Table D.8: View SIM cards’ list and details use case textual description

Use Case: View SIM cards’ list and details
Code UC21
Name View SIM cards’ list and details
Description The technician can interact with the online interface to view the list of all the

SIM cards registered in the system and view each card’s details
Actors Technician
Flow of Events

• The technician accesses the online interface

• The technician accesses the SIM cards’ list

• The technician selects a SIM card and sees its details

Pre-conditions The SIM cards must be registered in the system
Post-conditions The information is displayed

Table D.9: View connections use case textual description

Use Case: View connections
Code UC22
Name View connections
Description The technician can interact with the online interface to view the existing active

connections, their geographic location, the details and the devices associated
with each connection

Actors Technician
Flow of Events

• The technician accesses the online interface

• The technician accesses the connections’ map

• The technician selects a connection and sees its details

Pre-conditions The connections and the devices associated to that connection must be regis-
tered in the system

Post-conditions The information is displayed

108 Use Case Textual Specification

Table D.10: Reset modem use case textual description

Use Case: Reset modem
Code UC23
Name Reset modem
Description The technician can access the online interface, choose a specific modem and

remotely reset it
Actors Technician
Flow of Events

• The technician accesses the online interface

• The technician accesses one modem’s details

• The technician resets the modem

Pre-conditions The modem must be registered in the system and must be active
Post-conditions The modem is rebooted

References

[1] G. Clarke and D. Reynders. Practical modern SCADA protocols: DNP3, 60870.5 and related
systems. Newnes, 2004.

[2] Engin Ozdemir and Mevlut Karacor. Mobile phone based scada for industrial automation.
ISA Transactions 45, no. 1, 2006.

[3] Arash Shoarinejad. Communication protocols in substation automation and scada. GE En-
ergy Network Reliability Products and Services, 2005.

[4] J. Fitch and H. Y. Li. Challenges of scada protocol replacement and use of open commu-
nication standards. 10th IET International Conference on Developments in Power System
Protection, March 29 2010.

[5] Paulo S. Motta Pires and Luiz Affonso H. G. Oliveira. Security aspects of scada and corpo-
rate network interconnection: An overview. International Conference on Dependability of
Computer Systems, May 2006.

[6] J. Stoupis S. Mohagheghi and Z. Wang. Communication protocols and networks for power
systems - current status and future trends. IEEE/PES Power Systems Conference and Expo-
sition, March 2009.

[7] J. Makhija and LR Subramanyan. Comparison of protocols used in remote monitoring: Dnp
3.0, iec 870-5-101 and modbus. Tech. Rep, 2003.

[8] R. Kalapatapu. Scada protocols and communication trends. EXPO, 2004.

[9] Joaquin Luque Jaime Benjumea Gemma Sanchez, Isabel Gomez and Octavio Rivera. Using
internet protocols to implement iec 60870-5 telecontrol functions. IEEE Transactions on
Power Delivery 25, no. 1, 2010.

[10] D. Kang and R.J. Robles. Compartmentalization of protocols in scada communication. In-
ternational Journal of Advanced Science and Technology Volume 8, July 2009.

[11] Enrique Dorronzoro David Oviedo Sergio Martin Jaime Benjumea Veronica Medina, Is-
abel Gomez and Gemma Sanchez. Iec-60870-5 application layer for an open and flexible
remote unit. 35th Annual Conference of the IEEE Industrial Electronics Society, November
2009.

[12] Enrique Dorronzoro David Oviedo Sergio Martin Jaime Benjumea Veronica Medina, Is-
abel Gomez and Gemma Sanchez. Iec-60870-5 application layer over tcp/ip for an open and
flexible remote unit. IEEE International Symposium on Industrial Electronics, July 2009.

109

110 REFERENCES

[13] Antonio Gomes Varela Pedro Gama and Wolf Freudenberg. Iec 60870-5-104 as a driver to
evolution of substation and distribution automation at edp. 20th International Conference
and Exhibition on Electricity Distribution, June 8 2009.

[14] Usha Communications Technology. General packet radio service, 2000. Technology White
Paper.

[15] R. J. Bates. Gprs:General Packet Radio Service. McGraw-Hill Professional, 2004.

[16] M. Ismail M. Krishnan and K. Annuar. Radio resource and mobility management in gprs
network. Global Research and Development in Electrical and Electronics Engineering, July
2002.

[17] SIEMENS. Wireless module tc65, 2006. Siemens TC65 Datasheet.

[18] Gsm/gprs modems and gsm/gprs modules. Available at http://www.gsmfavorites.
com/gsmhardware/, last accessed on 04/06/2013.

[19] Overview of gsm/gprs modems. Available at http://www.smssolutions.net/
hardware/gsmgprs1/, last accessed on 04/06/2013.

[20] Ge Liu Xingquan Xiao, Zhong Fu and Chuang Deng. A backup data network for power
system automations based on satellite communication. International Conference on Power
System Technology: Technological Innovations Making Power Grid Smarter, October 2010.

[21] Sat runner. Available at http://www.satrunner.com/en/
satellite-phones-type/remote-satellite-modem-terminal.html, last
accessed on 04/06/2013.

[22] Orbcomm global satellite communications. Available at http://www.orbcomm.com/,
last accessed on 13/06/2013.

[23] Thuraya. Available at http://www.thuraya.com/, last accessed on 13/06/2013.

[24] Iridium satellite provider. Available at http://www.iridium.com/default.aspx,
last accessed on 13/06/2013.

[25] Inmarsat mobile satellite company. Available at http://www.inmarsat.com/, last ac-
cessed on 13/06/2013.

[26] Globalstar, inc. Available at https://la.globalstar.com/pg/?rls=1, last accessed
on 13/06/2013.

[27] JSR 228 Expert Group. Information module profile next generation. Technical report,
Siemens AG and Nokia Corporation, October 2005.

[28] Direção de Tecnologia e Inovação. Instalações de telecomunicações - unidade remota de
teleação e automatismos para subestação. Technical report, EDP Distribuição, January 2011.

[29] Direção de Tecnologia e Inovação. Protocolos de comunicação de sistemas de proteção,
comando e controlo numéricos (spcc). Technical report, EDP Distribuição, November 2011.

[30] James Gosling. Java 8482 Language Specification. Sun Microsystems, 2000.

[31] SIEMENS. Java user’s guide, 2005. Siemens Cellular Engine Java Development Guide.

http://www.gsmfavorites.com/gsmhardware/
http://www.gsmfavorites.com/gsmhardware/
http://www.smssolutions.net/hardware/gsmgprs1/
http://www.smssolutions.net/hardware/gsmgprs1/
http://www.satrunner.com/en/satellite-phones-type/remote-satellite-modem-terminal.html
http://www.satrunner.com/en/satellite-phones-type/remote-satellite-modem-terminal.html
http://www.orbcomm.com/
http://www.thuraya.com/
http://www.iridium.com/default.aspx
http://www.inmarsat.com/
https://la.globalstar.com/pg/?rls=1

REFERENCES 111

[32] Jack Shirazi. Java Performance Tuning. O’Reilly Media Incorporated, 2003.

[33] Nokia Corporation. Efficient midp programming, 2004.

[34] Egon Börger and Robert F Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

[35] Jon C Snader. Effective Tcp/Ip Programming: 44 Tips to Improve Your Network Programs.
Addison-Wesley Professional, 2000.

[36] Olaf Zimmermann Cesare Pautasso and Frank Leymann. Restful web services vs. big’web
services: Making the right architectural decision. 17th international conference on World
Wide Web, 2008.

[37] Michael Prior-Jones. Satellite communications systems buyers’ guide. Technical report,
British Antarctic Survey, 2009.

[38] Jack Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge Academic,
1988.

[39] Fan R. L. Cheded Fan and O. Toker. Internet-based scada: A new approach using java and
xml. Elektron 23, no. 1, 2006.

	Front Page
	Conteúdo
	Lista de Figuras
	Lista de Tabelas
	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Objectives and Outcomes
	1.4 Structure

	2 State of the Art
	2.1 SCADA Systems
	2.2 SCADA Protocols
	2.2.1 OSI Model
	2.2.2 Modbus Protocol
	2.2.3 DNP 3 Protocol
	2.2.4 IEC 60870-5 Standard
	2.2.5 Protocol Comparison

	2.3 GPRS Technology
	2.3.1 Siemens TC65
	2.3.2 Cinterion MC55i
	2.3.3 iTegno 39XX
	2.3.4 Robustel GoRugged M1000
	2.3.5 ABB RER601 and RER603

	2.4 SCADA Satellite Systems Providers
	2.4.1 Orbcomm
	2.4.2 Thuraya
	2.4.3 Iridium Communications
	2.4.4 Inmarsat
	2.4.5 Globalstar

	2.5 Overview

	3 Specification of the adopted solution
	3.1 Objectives and Functionalities
	3.2 System’s Architecture
	3.3 System’s Specification
	3.4 Impact in the Company

	4 Development
	4.1 System Overview
	4.2 Core Functionalities
	4.2.1 Initiation
	4.2.2 Reception
	4.2.3 Transmission

	4.3 Additional Features
	4.3.1 Error Correction Mechanisms
	4.3.2 Operation Modes
	4.3.3 Dynamical Variable Assignment Mechanisms

	4.4 Online Monitoring Interface
	4.4.1 REST Interface Design
	4.4.2 Interface Functionalities

	4.5 Performance Considerations
	4.5.1 J2ME and Jar Size
	4.5.2 Busy Loops
	4.5.3 Garbage Collection
	4.5.4 Multi-threading
	4.5.5 IEC 60870 Frame Validation
	4.5.6 TCP vs. UDP
	4.5.7 HTTP Requests Minimization
	4.5.8 Web Integration Protocol Efficiency
	4.5.9 Automatic Modem’s Geographic Location Detection

	4.6 Satellite Systems Benchmarking
	4.6.1 Iridium
	4.6.2 Inmarsat
	4.6.3 Orbcomm
	4.6.4 Thuraya
	4.6.5 Globalstar
	4.6.6 Overview

	5 Conclusions and Tests
	5.1 Garbage Collection
	5.2 UDP and TCP
	5.3 Real Tests
	5.4 Conclusions
	5.5 Limitations
	5.6 Future Work

	A Garbage Collection Tests
	A.1 String Object Tests
	A.2 StringBuffer Object Tests

	B TCP and UDP Tests
	B.1 UDP Tests
	B.2 TCP Tests

	C Real Tests Logs
	C.1 Log Sample

	D Use Case Textual Specification
	D.1 Use Case Textual Specification

	References

