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Nowadays people are more concerned and conscious about the impact that lifestyle 

might have on their own health and well-being. Further, a huge interest for smartphones and 

wearables has been verified over the past few years. Their versatility and portability make 

them a consideration for people who want to decrease visits to the doctors and remotely 

monitoring themselves, in a comfortable and practical way. The heart rate changes according 

to the type of activities being performed, levels of stress and anxiety, nutrition and internal 

factors such as the respiration mechanism. However, some of them can be abnormal and 

indicative of cardiac or neurologic diseases and disturbances. Living in a society where 

everybody is busy and lives in a rush and under stress, heart rate irregularities may occur 

without noticing, with negative consequences on health. They can be present at all times or 

occur randomly during the day, so they might not be detected in standard exams such as ECG 

(Electrocardiography). 

This work aims to study if it is viable to use a wearable device system for continuous 

heart rate monitoring in a daily basis, in combination with activity monitoring, to improve 

current activity related features and detect abnormalities that other way might go 

unnoticed. For this, a heart rate validity measurement test was performed, with 8 volunteers 

between 22-30 years old, in which the Fitbit Surge smartwatch was tested against the Zephyr 

Bioharness 3 chest strap within different activities. Furthermore, the application of heart 

rate variability analysis techniques and the study of how their patterns are related with the 

activities being performed was also a focus theme. For this public datasets (PAMAP and 

PAMAP2) and also the datasets acquired during the validity test mentioned above were used. 

Besides this, a study of how the heart rate data and its features can be used to improve 

activity monitoring analysis, especially the energy expenditure estimation, was 

accomplished, using a dataset from a previous work. This dataset includes data from 13 

subjects, with an average age of 33±9 years, wearing a heart rate chest strap monitor and 

performing a stress test in which the energy expenditure was measured through indirect 

calorimetry and also through an activity based model, which in turn used accelerometer data 

provided by the smartphone’s accelerometer that was located in the subject’s belt. The 

energy expenditure values provided by the model that combines both activity and heart rate 

data, the activity based model and heart rate model were evaluated against the results 

provided by the indirect calorimetry. Finally, a system that monitors both activity and heart 

rate was built as a proof of concept, in which the activity monitoring is performed by an 

already developed system that captures the smartphone accelerometer data, classifying the 

activity through Machine Learning techniques and computing its main features, and the heart 

rate is monitored through a smartwatch wearable device. 

The results obtained suggest that smartwatches, although at the moment they are 

not the ideal monitoring device for an exigent heart rate monitoring that is requested by 
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cardiac patients, are suitable to behave as activity and heart rate trackers and guide common 

users to follow an healthy lifestyle, taking into account the validity test results 

(reliability=75.39%, accuracy=93.80%, mean error=4.21 BPM, mean absolute error=7.22 BPM). 

Further, the study allowed to better perceive the heart rate variability patterns and how 

they depend on the type of activity performed, and that the energy expenditure is more 

accurate and reliable when both activity and heart rate data are combined, where the best 

result achieved a NRMSE of 19.9%. Hence, current generation of smartwatches, although it 

presents some limitations, represents a valuable tool that can revolutionize the way the 

healthcare is currently provided, by enabling continuous monitoring of the user’s health 

status and helping following a healthy lifestyle. 

 

Keywords: Heart Rate Monitoring; Activity Monitoring; Heart Rate Variability; 

Energy Expenditure; Smartwatch 
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Atualmente, as pessoas estão mais conscientes acerca do impacto que o estilo de 

vida pode ter na sua saúde e bem-estar. Por outro lado, tem-se verificado uma enorme adesão 

a smartphones e wearables, que permitem aos seus utilizadores, de forma confortável e 

prática, monitorizar-se de forma remota e, assim, diminuir as consultas médicas. A 

frequência cardíaca varia dependendo do tipo de atividades realizadas, níveis de stress, 

nutrição e também factores internos como a respiração. Contudo, algumas destas variações 

podem ser anormais ou indicativas de doenças cardíacas, neurológicas ou outros distúrbios. 

Numa sociedade cada vez mais ocupada e dominada pelo stress, podem ocorrer 

irregularidades na frequência cardíaca sem qualquer percepção, frequentemente ou 

aleatoriamente ao longo do dia, e com consequências negativas na saúde, podendo não ser 

detectadas em exames standard como o ECG. 

Este projecto tem como objectivo determinar se é viável usar um sistema wearable 

para monitorizar diariamente e continuamente a frequência cardíaca, em combinação com 

monitorização de atividade, no sentido de melhorar as atuais características de atividade e 

detectar anormalidades que, de outra forma, não seriam detectadas. Para isso, um teste de 

validação da medição de frequência cardíaca foi executado, com 8 participantes entre os 22 

e 30 anos de idade, no qual o smartwatch Fitbit Surge foi testado em relação a uma fita 

cardíaca Zehpyr Bioharness 3, durante diferentes atividades. A análise da variabilidade da 

frequência cardíaca e a forma como os seus padrões se relacionam com o tipo de atividade 

executada foi também um tema de foco. Neste sentido foram utilizados datasets públicos 

(PAMAP and PAMAP2) e também os datasets recolhidos durante o teste de validação referido 

anteriormente. Para além disso, foi estudada a forma como a frequência cardíaca e as suas 

características podem melhorar a análise de monitorização de atividade, especialmente no 

que diz respeito à estimação do dispêndio de energia, no qual foi utilizado um dataset de um 

trabalho anterior. Este dataset inclui dados de 13 indivíduos, com idade média de 33±9 anos, 

que realizaram um teste de esforço, no qual foi registada a frequência cardíaca e o dispêndio 

de energia foi medido por calorimetria indirecta e também usando um modelo baseado na 

atividade, que usou os dados do acelerómetro do smartphone que os sujeitos usavam no 

cinto. Os valores de estimação de energia fornecidos pelo modelo que combina ambos os 

dados de frequência cardíaca e atividade, pelo modelo baseado na atividade e pelo modelo 

baseado na frequência cardíaca foram comparados com os valores fornecidos por calorimetria 

indireta. Finalmente, foi desenvolvido um sistema que monitoriza a frequência cardíaca e 

atividade, como prova de conceito. A monitorização de atividade é executada por um sistema 

the recebe os dados do acelerómetro de um smartphone, classificando a actividade e 

calculando as suas principais características, e a frequência cardíaca é monitorizada por meio 

de um smartwatch. 

Os resultados obtidos sugerem que os smartwatches, apesar de neste momento não 
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serem precisos o suficiente para monitorizar exigentemente doentes cardíacos, são a 

ferramenta ideal para monitorizar indivíduos comuns e ajudá-los a seguir uma vida saudável, 

tendo em conta os resultados do teste de validação (reliability=75.39%, accuracy=93.80%, 

mean error=4.21 BPM, mean absolute error=7.22 BPM). Permitiu também compreender 

melhor os padrões de variabilidade de frequência cardíaca e como estes dependem do tipo 

de atividade executada, e que a estimação do dispêndio de energia é, de facto, mais 

confiável quando os dados de atividade e frequência cardíaca são combinados, tendo-se 

obtido como melhor resultado um NRMSE de 19,9%. Em suma, apesar de os atuais 

smartwatches apresentarem algumas limitações, representam uma ferramenta valiosa que 

pode revolucionar a forma como os cuidados médicos são prestados, ao permitir uma 

monitorização contínua e ajudar os utilizadores a seguir um estilo de vida saudável. 

 

Keywords: Monitorização da Frequência Cardíaca; Monitorização de Atividade; 

Variabilidade da Frequência Cardíaca; Dispêndio de Energia; Smartwatch 
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Chapter 1 

Introduction 

1.1. Motivation 
 

Nowadays people are more concerned and conscious about the impact that lifestyle has 

on their own health and well-being, taking into account the relation between lifestyle, stress 

and diseases. Additionally, coronary artery diseases, depression and emotional exhaustion are 

diseases and problems that are related to the lifestyle an individual chooses to take. At the 

same time, it has been observed a huge adhesion to smartphones and wearables over the past 

few years. Their versatility and portability make them a considerable option for people who 

want to decrease visits to the doctors and remotely monitoring themselves. 

With the aging of the population, which is even more busy and with stressful lives, and 

the increasing of chronic diseases and psychological disturbances, the continuous heart rate 

and activity monitoring became fundamental to increase the quality of life of people, 

maintaining their independence. This is possible due to the great contribute given by the 

wearable technology that has been developed in the past few years, comfortable and practical 

for daily use.  

Clinical assessment might be performed from the heart rate signal and activity 

monitoring. It provides data for a detailed analysis of the activities and possible abnormalities 

identification, as for example risk factors related to serious pathologies, by analysing changes 

in the monitored variable caused by body reaction to specific stressful events. 

1.2. Problem Statement and Objectives 
 

Heart Rate monitoring, besides being important for athletes and exercisers, to control 

and improve exercising, is also relevant for a daily basis use.  

The heart is the reflex of an individual’s health status, and through its continuous 

monitoring, changes can be detected. These changes are derived from the type of activities 

done, levels of stress and anxiety, nutrition and internal factors such as the respiration 

mechanism. However, some of them can be abnormal and indicative of cardiac or neurological 

diseases and disturbances. Living in a society where everybody is busy and lives in a rush and 

under stress, heart rate irregularities might occur without noticing, with negative consequences 

on health. They can be present at all times or occur randomly during the day, so they might 

not be detected in standard exams such as ECG. The Holter monitor might be an alternative, 

but it can represent a serious discomfort, though. 



2 
 
 

Since current wearable devices include heart rate sensors, perform activity monitoring 

and it has been observed an increasing of their use and popularity over the past few years, both 

heart rate and activity data might be both used to improve current monitoring algorithms. This 

will allow the combination between heart rate data and the physical activity monitoring in 

order to assess the user personal physical behaviour during the day, allowing the detection of 

some anomalies, whether cardiac or psychological, avoid potential harmful events and 

understand the personal context of the user. Hence, the main goal is to study if wearable 

devices are suitable for heart rate monitoring in a daily basis, and develop a proof of concept 

system that performs a combined heart rate and activity monitoring analysis that generates 

alerts for abnormal heart rates. This way, it will be possible to combine heart rate and activity 

data, in order to detect some possible abnormal events and to realize the user quotidian 

context. 

1.3. Project 
 

This work aims to study if it is viable to use wearable devices for continuous heart rate 

monitoring and analysis, in combination with activity monitoring, and improve activity related 

features with the heart rate variability. Further, a great focus was made in the study of the 

inter-combination between energy expenditure, speed and workload, activity features and 

heart rate. A system was built as proof of concept, which monitors both activity and heart rate. 

The activity monitoring is performed by an already developed system that captures the 

smartphone accelerometer data and classifies the activity through Machine Learning techniques 

(sitting, staying, lying, walking, running, cycling, tilting) and computes its features. In turn, 

the heart rate is monitored through a smartwatch wearable device. 

The project includes two main areas of research. The possibility of using a wearable 

device, mainly a smartwatch, for heart rate monitoring, comparing its performance with 

currently used devices, in this case a chest strap, was evaluated. For this, a heart rate validity 

measurement test was performed, with 8 participants within a range of 22-30 years old. The 

Fitbit Surge smartwatch was tested against the Zephyr Bioharness 3 chest strap within different 

activities, which were manually annotated and recorded by a developed system that includes 

an accelerometer and a recorder application that saves its data, in a supervised laboratory 

environment. Furthermore, the application of heart rate variability techniques and how their 

patterns are related with the activities being performed was focused, in which public dataset 

(PAMAP and PAMAP2) and also the dataset acquired during the validity test previously 

mentioned were used. Besides this, another topic included the study of how the heart rate data 

and its features can be used to improve activity monitoring analysis, especially the energy 

expenditure estimation. For this, a dataset from a previous work, which includes data from 13 

subjects, with an average age of 33±9 years, wearing a heart rate chest strap monitor and 

performing a stress test was used. In this test, the energy expenditure was measured through 

indirect calorimetry and also through an activity based model, which used accelerometer data 

provided by the smartphone’s accelerometer that was located in the subject’s belt. A model 

that combines both activity and heart rate and another model that uses only the heart rate 

data were applied on this dataset. Hence, the results obtained by the heart rate and activity 

model, the activity based model and heart rate model were evaluated against the results 

provided by the indirect calorimetry. 

This project mainly contributed to better understand the real potential of current 

wearable devices to improve people lives, by enabling comfortable continuous activity and 

heart rate monitoring, which is determinant to take a healthy lifestyle and avoid long-term 

health problems, either due to abnormal heart rate values, inactivity or stress. It allowed to 

realize that smartwatches, although they are not the ideal monitoring device for an exigent 

heart rate monitoring that is requested by cardiac patients yet, are suitable to behave as 

activity and heart rate trackers and guide the users to follow an healthy lifestyle. Further, it 
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allowed to better perceive the relationship between heart rate and activity, namely the heart 

rate variability patterns, and that the energy expenditure is more accurate and reliable when 

both activity and heart rate data are combined. In short, this study demonstrated that current 

generation of smartwatches, although they present some limitations, they represent a valuable 

tool that can revolutionize the way healthcare is currently provided, by enabling continuous 

monitoring the health status of the user and giving feedbacks. 

This study was performed using PyCharm and MatLab® R2013a, for the data processing 

and evaluation. The Android Studio was used to develop the proof of concept system. 

 

1.4. Overview of Dissertation 
 

This dissertation includes four chapters, besides this Introduction. Chapter 2 includes 

an explanation of the main concepts related with the heart rate, its variability, main 

applications and measurement methods. Further, activity monitoring concepts and Machine 

Learning Technology are also described in detail. Besides, it includes a state of the art review 

related with measurement and monitoring systems, mainly heart rate measurement devices 

and heart rate and activity monitoring systems. In Chapter 3, the research methodology 

approach is described in detail, whose results are presented and discussed in Chapter 4. Finally, 

Chapter 5 summarizes the major achievements and conclusions related with the dissertation, 

with some improvements and future work suggestions. 
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2.1. Heart Rate 
 

Cardiac cycle starts spontaneously from the sinoatrial node of the heart, located at the 

right atria, due to depolarizing pacemaker cells. From these cells, the electrical signal spreads 

through the atria, causing both of them to contract, and then the atrioventricular node is 

activated, followed by the ventricles, leading to their contraction due to the impulse’s spread 

over the heart muscle. After the heart pumps the blood into the arteries, the ventricles 

repolarize and the heart fills with blood, relaxing. The period of relaxation is called diastole 

and the period of contraction is designated as systole (Hall, 2010).  

Heart rate is, thus, known as the speed of the heartbeat and it is described as the 

number of contractions of the heart per unit of time, generally in beats per minute (BPM). 

The depolarization rate of the pacemaker cells is controlled by the autonomous nervous 

system (ANS), through its two separate branches, the sympathetic nervous system (SNS) and 

parasympathetic nervous system (PNS), which have opposite effects on the heart. The SNS 

stimulates the heart, increasing the heart rate, whereas the PNS inhibits the heart functions, 

leading to lower heart rates. This way, a balance between the SNS and PNS is required in order 

to the cardiovascular system to adapt to several different body requirements and maintain 

equilibrium. Figure 1 (Marieb & Hoehn, 2007) reflects the autonomic innervation of the heart. 

The baroreflex system is an important regulation system based on baroreceptors, which 

are specialized neurons that continuously sense arterial pressure, located in the heart, arteries 

and vessels. This homeostatic mechanism allows the blood pressure to be nearly constant, 

through a degenerative feedback loop, in which a high blood pressure causes the heart rate to 

decreases, so the pressure can decline. In turn, a lower blood pressure decreases the baroreflex 

system’s activation, which causes the heart rate to increase and, this way, restores blood 

pressure. The cyclic changes in arterial blood pressure due to the baroreflex control system are 

designated Mayer waves (Myers et al., 2001). 

The heart rate is also affected by the respiration mechanism. During the inspiration the 

heart rate increases and it decreases during expiration, due to direct SNS and PNS stimulation. 

Moreover, during respiration cycle the intra-thoracic pressure changes, which results in blood 

pressure changes and, consequently, baroreflex system activation. This continuous balance 

between cardiovascular system and autonomous nervous system results in varying heart rate.  

Chapter 2 

Literature Review 
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Figure 1: Autonomic innervation of the heart (Marieb & Hoehn, 2007).  

The heart rate has a huge impact on the cardiac output, which represents the volume 

of blood that is pumped by the heart, in one minute (L/min) (Vincent, 2008). The cardiac output 

is an important indicator of how efficient the heart can meet the body needs. The stroke 

volume refers to the quantity of blood pumped out of the left ventricle with every heartbeat. 

The product between the stroke volume and heart rate equals the cardiac output. Thus, cardiac 

output is influenced by the heart rate, because the higher is the frequency the heart contracts 

with, the higher the cardiac output. However, if the heart rate increases too much, the amount 

of blood that fills the heart during the diastole will be lower and, consequently, less is the 

amount of blood that the heart pumps for the all body with every beat. In turn, the efficiency 

of the heart decreases. 

The heart rate is mainly affected by the autonomic nervous system, hormones, fitness 

level condition and also by the age. 

The normal heart rate value is strongly dependent on the person’s age, gender, size, 

heart conditions, physical capacity and also the activity in cause, whether the person is sitting, 

walking or doing other challenging or stressful activity. Even emotions have a huge impact on 

heart rate value. The heart rate can vary according to the body’s physical requirements, in 

order to maintain equilibrium between the needs, oxygen and nutrients delivery and carbon 

dioxide excretion. 

The basal heart rate (resting heart rate) is typically defined as the heart rate value 

when the person is awake, under neutral temperature environment and not subjected to any 

exertion, stimulation or stress. A heart rate between 60 and 100 beats per minute is considered 

normal for a resting adult (Association, 2015). It must be highlighted that people in excellent 

physical condition such as athletes have lower resting heart rate values. A resting heart rate 

slower than 60 beats per minute is said to be bradycardiac and a rate faster than 100 beats per 

minute is said to be tachycardiac. When the heart contracts following an inconsistent pattern, 

it is said that the individual suffers from an arrhythmia, although he might not present any 

symptom.  

The maximum heart rate (HRmax), which corresponds to the highest heart rate a person 

can achieve without severe sequelae, normally decreases with age. This value is often 
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estimated through formulas, being the most cited the one proposed by Dr. William Haskell and 

Dr. Samuel Fox (Simon, 2004): 

 

 𝐻𝑅𝑚𝑎𝑥 = 220 − 𝑎𝑔𝑒 (2.1) 

 

During exercising, the desired range of values differs a lot, and is based mostly on age 

and the activity’s intensity, expressed in percentage. For example, for a 50-70% intensity 

physical exercise a 22 years old person, who has a HRmax of 198 beats per minute should 

present a heart rate between 99 and 139 BPM. This is useful to control the effort done during 

any physical activity. 

 

 50% intensity: (220-22) x 0,50 = 99 BPM (2.2) 

 70% intensity: (220-22) x 0,70 = 139 BPM (2.3) 

 

The reduction that heart rate suffers between the peak achievement during exercise 

and after a cool down period of fixed time, is designated as heart rate recovery. A high 

reduction in heart rate after some exercise during the fixed period is highly associated with a 

high physical condition. People with low heart rate recovery values present an increased risk 

of death (Watanabe et al., 2001). 

The heart rate is a non-stationary signal, and its variation includes indicators of current 

disease or warnings about impending cardiac diseases. All parameters of cardiac function, 

including heart rate, conduction, force of contraction and relaxation, reflect the net balance 

between an inhibitory parasympathetic influence and an excitatory sympathetic influence. 

In general, a low heart rate variability reflects the depletion of the autonomous nervous 

system, either due to the aging, chronic stress, depression or other pathologies. The heart rate 

value itself influence heart rate variability. When the sympathetic activity increases, the heart 

rate rises and the range of variability that can be measured is smaller. In turn, when the 

parasympathetic activity increases, the inter-beat interval duration is higher and so is the range 

of variability that can be measured (Nieminen et al., 2007). 

There are several factors that influence the heart rate, from the individual factors, 

such as age, gender, body mass index and physical condition, to the physiological factors, such 

as breathing frequency, blood pressure, hydration, nutrition or drugs and environmental factors 

such as the temperature or altitude (Achten & Jeukendrup, 2003; Parati & Di Renzo, 2003).  

The age influences the maximum heart rate value that an individual can achieve, as 

described by the formula suggested by Fox (Simon, 2004). The age also influences the heart 

rate variability. As the individual gets older, the heart rate variability will also present lower 

values. Time domain parameters such as SDNN, coefficient of variation, SDANN, RMSSD and 

pNN50, which quantify the variability of an inter-beat interval time series, are inversely related 

to age for both genders.  

The physical condition, which is influenced by exercise habits, determines the lower 

heart rate value that an individual can achieve. It is known that a trained heart is more 

efficient, and therefore, it needs to contract less times than a non-trained heart. The life style 

an individual takes has also an important role in the cardiovascular system and its variability. 

As for example, work stress has repeatedly been associated with an increased risk for 

cardiovascular disease.  

Factors such as high ambient temperature, high humidity, and emotional stress will 

cause an increase in heart rate without a significant rise in oxygen consumption, which is also 

affected by the muscle mass of each individual (Achten & Jeukendrup, 2003). 

Posture also influences the heart rate. When a subject transits from sit to stand, the 

heart rate increases due to the baroreflex system, which is activated due to the decrease in 

the blood pressure (Olufsen et al., 2008). 
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Regarding the environmental conditions, there are some factors that can also influence 

the heart rate and its behaviour. For instance, when a physical activity is performed in hot or 

dehydration conditions, the heat loss mechanisms become less efficient and core temperature 

increases, which leads to higher heart rate values at the same exercise intensities, 

overestimating the exercise’s intensity (Achten & Jeukendrup, 2003). In turn, during exercise 

in cold environments the heart rate will be very similar to that in warm conditions, although 

the oxygen volume consumption will be higher. Therefore, the heart rate value will 

underestimate the intensity of exercise (Achten & Jeukendrup, 2003). Performing exercise at 

altitude will cause the heart rate to increase, due to the reduced partial level, compared to 

the sea level. However, when the individuals stay at altitude for a long time, some adjustments 

in the body take place (Achten & Jeukendrup, 2003). 

Regarding the external factors, nutrition and drugs influence the heart rate. For 

instance, caffeine and nicotine stimulate the nervous system, increasing the heart rate. 

Equally, the presence of catecholamine, such as epinephrine and norepinephrine, and thyroid 

hormones increase the heart rate (Smith et al., 1977). In turn, beta blockers and calcium 

channel blockers have an opposite effect, decreasing the heart rate (Bangalore et al., 2008). 

 

2.3. Heart Rate Measurement 
 

Besides the manual measurement, there are other methods to detect heartbeats and 

measure the number of contractions that the heart performs in a specific unit of time.  

The electrical activity of the heart can be acquired through biopotential electrodes, as 

is used in the typical Electrocardiogram exam. Blood plethysmography is the measurement of 

changes in volume of blood in the capillaries. The fluctuations of blood flow can be detected 

through several methods such as changes in light absorption (photoplethysmography) and 

detection of changes in electrical resistance (impedance plethysmography). Since the blood 

flow is proportional to the cardiac cycle, being higher during the systole, optical sensor can 

measure indirectly the heart rate, through the measurement of the light absorbed and reflected 

by the blood. Following the same logic, bioimpedance sensor can also be used to measure heart 

rate through the measurement of skin resistance, assuming that it is also proportional to the 

blood flow and, consequently, to the heart activity. Finally, the cyclic activity of the heart 

exerts blood pressure changes along the blood vessels wall and, consequently, the vessels 

pulsate in the rhythm of the heart, which can be detected with pressure sensors. 

2.3.1. Electrocardiography 

 

The mechanism of electric conductivity in the body involves ions as charge carriers and, 

thus, collecting the signal involves interacting with these ionic charge carriers, transducing 

ionic currents into electric currents, carried by electrons. Electrodes carry out this transducing 

function and they are, in their simplest form, metallic conductors in contact with the skin. 

Biopotential electrodes used to capture cardiac electrical signal are placed on the skin. 

The integrity of the skin is not compromised when these electrodes are applied. These can be 

wet and dry depending on the use or not of an electrolyte. An ECG signal, captured through 

biopotential electrodes, is represented in Figure 2 (Kumar, 2011). This signal provides a clear 

waveform, which allows excluding heartbeats that are not originated in sinoatrial node, and 

several segments can be distinguished. The P wave represents the depolarization of the atria, 

whereas the PR interval consists on the time that the electrical impulse takes to travel from 

the sinoatrial node to the atrioventricular node. The QRS complex represents the ventricular 

depolarization and the ST segment represents the time when the ventricles are depolarized. In 

turn, the T wave represents the repolarization of the ventricles. The heart rate is calculated 
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through the inverse of time between two QRS complexes, which corresponds to the time 

between two heartbeats. 

 
Figure 2: ECG signal (Kumar, 2011). 

2.3.2. Photoplethysmography  

 

Photoplethysmography sensors can be based on the light transmission principle, usually 

applied on the finger or earlobe, or based on principle of reflection, for wrist application. In 

the first one, the emission module and the photo-detector are placed on opposite sites but 

accurately adjusted and aligned so the signal is well captured by the detector. When based on 

the reflection principle, both the emission module and the detector are placed on the same 

site. The system is basically composed by an emission module, normally infrared LEDs, a 

reception module, generally a photodiode that converts the optical signal into current, a trans-

impedance amplifier that converts the current signal into tension, and an analog signal 

processing module, responsible for the signal amplification and filtering. Usually, a band-pass 

filter is used to remove the DC component and the high frequency noise to the signal. 

Infrared LEDs usually own a very narrow bandwidth spectrum, with a wavelength 

between 850-950 nm, which cover the maximum absorption by the oxyhemoglobine. 

For a rigorous and accurate monitoring it is necessary to take into account the dynamic 

behaviour intrinsic to the physiologic parameters of interest. Therefore, it is fundamental that 

the analysis is done over signals acquired in a continuous way, since it provides information 

that allows to minutely describing the variations suffered by the parameters throughout the 

monitoring time. The heart rate monitoring through the wrist using bracelets or watches has 

been demonstrated to be very challenging since it offers a comfort monitoring, biofeedback 

and visual system regarding to the health state of the user. 

Heart rate measurement can be done assuming the photoplethysmography principle, 

this is, the measurement of blood flux variations using an optical method. The sensors measure 

the quantity of infrared light that is absorbed or reflected by the blood, taking into account 

the existing relation between the vessels volume, blood pressure and volume (Tamura et al., 

2014). However, the sensors must be placed on spots with high perfusion and low number of 

surrounding tissues. The cardiac cycle has two phases: the diastole, when the blood flows from 

the vessels to the atria and the vessels volume and pressure reach the lowest value, and the 

systole, when the blood is pumped by the ventricles to the all body, leading to the increase of 

the volume/pressure in the vessels. Therefore, light absorption or reflection will be higher 

during systole.  

Bones, skin, tissues, venous blood and non-pulsatile blood are the main responsible for 

the continuous light absorption, which corresponds to the DC component of the signal (Utami 

et al., 2013). The variation of the optical signal, the AC component, is due to changes in blood 

flux. Furthermore, the spatial orientation of red blood cells also influences the 

photoplethysmography, because they adopt a perpendicular position relative to the blood flux 
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during the systole and a parallel position during diastole (Kyriacou, 2001). Thus, during the 

systole, the optical path is bigger and, consequently, also the light absorption. The instant 

heart rate can be calculated from the inverse of the time between cardiac cycles. 

 

 
Figure 3: Photoplethysmography transmission principle (Utami et al., 2013). 

Light propagation might be affected by different factors, making difficult to obtain a 

reliable optical heart rate monitoring (Delgado-Gonzalo et al., 2015b).The human skin is a 

complex and non-homogeneous structure and thus, a small change in the sensor-skin contact 

might lead to significant changes in the light propagation pathway. Therefore, it is very prone 

to movement artefacts. Moreover, even physiology, such as temperature control mechanism, 

causes peripheral vascular dilatation and constriction, depending on the environmental 

temperature or body heat production. This makes the volume of both blood, close to skin and 

the one depth, to vary depending on external conditions and individuals. Furthermore, there 

are some differences in the skin and tissue structures, namely the thickness of the layers and 

the amount of melanin between different persons. Thus, both the optimal measurement depth 

and the strength of the signal as well depend on the individuals since the different components 

of the tissue present different optical properties, longer wavelengths, such as infrared light 

(IR), penetrate deeper into the tissue than short wavelengths, such as green light. However, 

decreasing the distance between the LED and the photo-detector reduces the average light 

propagation path. Furthermore, the larger the measurement area is, more prone to movement 

artefacts the measurement is. It should be taken into account that reducing the weight of the 

sensing device reduces forces caused by the movement. Using light to measure a pulse is 

relatively straightforward when a person is at rest, but becomes challenging when the subject 

moves around. Ambient light, as well as the movement of the person’s muscles, tendons and 

capillaries, can all interfere with the measurements. 

2.3.3. Impedance Plethysmography 

 

Impedance plethysmography detects changing tissue volumes in the body, based on the 

measurement of electric impedance at the body surface, i.e., the resistance to the passage of 

an electrical current (Khalil et al., 2014). The electrodes used are similar to the ones used in 

electrocardiography. The electrodes send small electrical currents through the skin and 

measure the tissue’s resistance to calculate how many times the heart contracts in one minute. 

The sensor measures impedance changes within the body, namely the changes that occur due 

to volume of blood flowing. Blood has a relatively high conductance when compared to other 

tissues such as muscle or fat and thus, the arteries expansion at systole produce an increase in 

overall conductance in the region through which it passes. In the wrist, for example, two main 

arteries supply blood to the hand, the radial and the ulnar. Thus, it is expected that a resistance 

change occur due to blood flow through these arteries. This can be observed in Figure 4 (Bera, 

2014). Measurement of resistance is theoretically simple to achieve, using Ohm’s law. The 

potential measured in response to the constant current that passes through the tissue is then 

proportional to the characteristic impedance of the tissue (Khalil et al., 2014). Therefore, the 
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magnitude of the impedance acts as a resistance, giving the drop in voltage amplitude across 

an impedance  for a given current. 

 

 𝑍 =
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐷𝑟𝑜𝑝

𝐶𝑢𝑟𝑟𝑒𝑛𝑡
 𝑂ℎ𝑚 (Ω) (2.4) 

 
Figure 4: Comparison between ECG, PPG and Bioimpedance signals, for heart rate measurement purposes 

(Bera, 2014). 

2.3.4. Blood Pressure Measurement 

 

For each cardiac cycle the blood pressure varies between the systolic pressure, which 

corresponds to the maximal pressure in the arteries when the ventricles contract, and diastolic 

pressure, which is the minimum pressure exerted on the arteries when the ventricles fill with 

blood. Therefore, the pressure exerted on the blood vessels wall changes proportionally to the 

heart’s cycle. Thus, the blood vessels pulsate in rhythm to heart’s cycle, which can be detected 

with pressure sensors placed at specific places on the human body. This is the principle used 

by automatic blood pressure monitors to detect the heart pulse. The heart rate can be 

calculated through the inverse of time between consequent systolic pressures (Kumar, 2011). 

 
Figure 5: Blood Pressure Signal (Kumar, 2011). 

2.4. Heart rate variability 
 

Heart rate variability (HRV) is the physiological phenomenon of variation in the time 

interval between heartbeats, as it can be observed in Figure 6 (Sjövall, 2015). Heart rate 

variability data analyses non-stationary characteristics of the heart rate signal. 

Its variation may contain indicators of current diseases or warnings about possible 

cardiac diseases, psychological syndromes or even neurologic disturbances. These indicators 
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may be present at all times or may occur randomly during certain intervals of the day. Thus, 

heart rate variability is a reliable reflection of many physiological factors that modulate the 

normal rhythm of the heart. In fact, it provides a powerful method of observing the equilibrium 

between the sympathetic and parasympathetic nervous systems and, consequently, the heart’s 

ability to adapt to changing circumstances by detecting and quickly responding to unpredictable 

stimuli (Task Force of the European Society of Cardiology the North American Society of Pacing 

Electrophysiology, 1996). The greater the HRV, the better the heart can keep up with changes 

and, therefore, the healthier is the individual. 

The heart rate varies during different activities and postures, according to age and 

gender. Reduced levels of resting heart rate are commonly observed in athletes due to the 

training effect on cardiovascular system. 

During dynamic exercise, the heart rate increases due to both sympathetic and 

parasympathetic systems, depending on the exercise intensity. The heart rate increases 

according to the intensity of exercising. 

Stress is the body’s physical and mental response to real or perceived challenges in real 

life, so it can be caused by internal factors related to body’s status, and external factors related 

social-life events. 

Heart rate variability is, thus, a biological marker that characterizes the way a person 

experiences and regulates emotions, like facing a challenge in quotidian, fear, stress, and fury 

or panic situations. Whenever an individual is confronted with potential dangers or stressful 

conditions, a fight-or-flight response is activated by the autonomous nervous system, which 

leads to heart rate shooting, puffy breathing, muscles stiffening, and a feelings cascade 

unfolding. The sympathetic branch of the nervous system mediates this response, with hormone 

secretions. 

The heart response to sympathetic stimulation is relatively slow, taking about 5 seconds 

to increase the heart rate since the beginning of the stimulation, and takes almost 30 seconds 

to reach its peak (Gorman & Sloan, 2000). In turn, the heart response time to parasympathetic 

stimulation is very fast, taking about one or two heartbeats before the heart slows down to the 

minimum value proportional to the level of stimulation, depending on the phase of heart cycle 

at the moment of the stimulus (Task Force of the European Society of Cardiology the North 

American Society of Pacing Electrophysiology, 1996). 

Hence, heart variability analysis can be used to assess autonomous nervous system 

function. Low HRV is generally interpreted as a consequence of higher sympathetic nervous 

system activity, associated with stress, overtraining and inflammation. A high HRV indicates 

dominance of the parasympathetic response, the ANS branch that promotes relaxation, sleep 

and recovery. High heart rate variability or instability caused by arrhythmias or nervous system 

disturbances is detrimental to efficient physiological functioning and energy utilization. 

However, little variation is characteristic of age-related system depletion, chronic stress, 

pathologies or inadequate functioning of the self-regulatory control systems (Task Force of the 

European Society of Cardiology the North American Society of Pacing Electrophysiology, 1996). 

HVR is an overall measure of cardiac health status and it can also denounce psychological 

diseases and disturbances. It is the measurement of the complex interaction between the brain, 

heart and other systems in the body. It is important to note that stress is not always harmful, 

because it might be caused by joyful experiences. However, it can have negative impact on 

health when it experienced for long periods of time. The heart must experience a recovery 

time after its activity peak, to overcome the effect of stress. 

Inter-beat intervals can be represented on a tachogram, in which the x-axis plots the 

number of the beat and y-axis plots the intervals time, as shown in Figure 7 (Task Force of the 

European Society of Cardiology the North American Society of Pacing Electrophysiology, 1996). 

Studies suggested that individuals with depression or anxiety disorders present 

decreased HRV, resulting in a higher risk of cardiovascular diseases (Gorman & Sloan, 2000). 

Moreover, low heart variability is a powerful predictor of sudden cardiac death (Gorman & 
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Sloan, 2000). 

 
Figure 6: Heart Rate Variability (Sjövall, 2015). 

 
Figure 7: Tachogram examples (Task Force of the European Society of Cardiology the North American 

Society of Pacing Electrophysiology, 1996). 

There is a variety of factors that affect HRV, including hormonal reactions, metabolic 

processes, physical activity, cognitive processes and stress or emotional reactions, alcohol and 

drugs consumption, nutrition and illness. A decrease in the HRV occurs with increasing age, due 

to the decline in efferent vagal cardiac tone. The inter-beat variation in heart rate has been 

demonstrated to be a function of conditioning status in young subjects. A simple autonomic 

provocation consists in an active change of posture from supine to standing. This results in a 

shift of blood away from the chest to venous system below the diaphragm, usually referred to 

as venous pooling. Almost invariably in all healthy volunteers, an increase in heart rate is the 

result. 

The cardiovascular adjustments in exercise represent a combination and integration of 

neural factors such as activation of sympathetic nervous system, reflexes in the contracting 

muscles and baroreflex, and chemical factors. When exercise stops the heart rate suffers an 

abrupt decrease and parasympathetic activity is enhanced. 

Moreover, the heart rate variability is dependent on the level of heart rate itself. The 

inter-beat interval has a nonlinear inverse relation with the heart rate value. The higher the 

heart rate the shorter the inter-beat interval and shorter intervals usually present less variation 

(Nieminen et al., 2007). 

2.4.1. Inter-beat Interval Extraction and Pre-processing 
 

The heart rate variability time series can be derived through the heart rate data 

provided by a smartwatch, taking into account the time when the heart rate value was 

measured and the time relationship between heart rate and inter-beat interval. 

Pre-processing of inter-beat interval time series data is frequently required before 

heart rate variability analysis, in order to reduce analysis errors. Some of the inter-beat interval 
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pre-processing methods are ectopic beat and interval correction and inter-beat interval 

resampling (Ramshur, 2010). An abnormal inter-beat interval can occur due to a false or missed 

beat. These are considered ectopic beats and can be detected using several techniques, such 

as assuming that any interval that change more than a defined percentage (normally 20%) from 

the previous one. These ectopic beats can be replaced by the mean or median value of the 

some defined neighbours inter-beat intervals centred on the ectopic interval (Ramshur, 2010). 

Another option is to use cubic spline interpolation to replace these ectopic beats or simply 

removed them (Clifford, 2002; Medeiros, 2010; Ramshur, 2010). 

The time series constructed from all the available heart rate values measured by the 

smartwatch are, clearly, not exactly equivalent to the time series extracted by an ECG signal, 

but they are also not equidistantly sampled, which has to be taken into account before 

frequency-domain analysis so additional harmonics are not introduced into the power spectrum. 

A common approach is to use interpolation methods for converting the non-equidistantly 

sampled inter-beat interval function to equidistantly sampled, such as the cubic spline or linear 

interpolation (Ramshur, 2010).  

All the HRV parameters are calculated on inter-beat intervals, caused by normal heart 

contractions paced by sinus depolarization. HRV can be described by both time and frequency 

domain analysis measures. These are calculated from recordings with durations about 5 minutes 

for short-term recordings and 24 hour for long-term recordings (Task Force of the European 

Society of Cardiology the North American Society of Pacing Electrophysiology, 1996). 

2.4.2. Time Domain Analysis  

 

Time Domain heart rate variability analysis parameters can be classified as statistical 

or geometric, depending if the analysis is performed through statistical or geometric patterns. 

Statistical HRV indices are calculated on a beat-to-beat basis and are based on 

Euclidean root-mean square (rms) metrics. 

Time domain analysis includes the mean inter-beat intervals duration and statistical 

measures of the variance(Gorman & Sloan, 2000; Medicore, n.d.; Schubert et al., 2009; Task 

Force of the European Society of Cardiology the North American Society of Pacing 

Electrophysiology, 1996). 

𝐼 ̅represents the mean of inter-beat intervals, where N represents the total number of 

the inter-beat intervals and 𝐼𝑖 the interval itself: 

 𝐼 ̅ =
1

𝑁
∑ 𝐼𝑖

𝑁

𝑖=1

 (𝑚𝑠) (2.5) 

SDNN is the standard deviation of the inter-beat interval, calculated as the square root 

of their variance. It reflects all the cyclic components of the variability of the intervals. SDNN 

values should be compared taking into account the length recording. Low SDNN values indicate 

low heart rate variability. Hence, this measure is calculated as follows: 

 𝑆𝐷𝑁𝑁 = √
1

𝑁 − 1
∑(𝐼𝑖 − 𝐼)̿2

𝑁

𝑖=1

 (𝑚𝑠) (2.6) 

SDNN index is designated as the mean of all the 5-minute of inter-beat intervals 

standard deviations during a 24 hours period (Task Force of the European Society of Cardiology 

the North American Society of Pacing Electrophysiology, 1996), whereas the SDANN is the 

standard deviation itself. N5 is the total number of 5 minute sections of inter-beat intervals 

during a 24 hours period, 𝐼5𝑖̅̅ ̅ is the mean of inter-beat intervals in a 5 minute section and 𝐼5̿ is 

the mean of all the means of inter-beat intervals in all the 5 minute section. The SDNN index 

and SDANN are calculated as follows: 
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𝑆𝐷𝑁𝑁𝑖𝑛𝑑 =

1

𝑁5

∑ 𝑆𝐷𝑁𝑁𝑖

𝑁5

𝐼=1

 (𝑚𝑠) 

 

(2.7) 

 𝑆𝐷𝐴𝑁𝑁 = √
1

𝑁5 − 1
∑(𝐼5𝑖̅̅ ̅ − 𝐼5̿)2

𝑁5

𝑖=1

 (𝑚𝑠) 
 

(2.8) 

 

RMSSD (root mean square of successive differences) estimates high-frequency 

variations in heart in short-term recordings and, thus, the regulation of the heart by 

parasympathetic nervous system and reflexion of vagal tone: 

 

 𝑅𝑀𝑆𝑆𝐷 = √
1

𝑁 − 1
∑(𝐼𝑖+1 − 𝐼𝑖)2

𝑁−1

𝑖=1

 (𝑚𝑠) (2.9) 

 

Another popular measure is pNN50, which represents the percentage of differences 

between adjacent inter-beat intervals that differ more than 50 milliseconds. NN50 represents 

the number of differences between adjacent inter-beat intervals that differ more than 50 ms. 

The pNN50 parameter is calculated as follows: 

 

 

 
𝑝𝑁𝑁50 =

𝑁𝑁50

𝑁
× 100 (%) (2.10) 

 

pNN50 is a quantification of the relative frequency of high beat-to-beat interval 

changes, and it is strongly correlated with other ANS activity measures such as spectrum power 

and RMSSD. This measure can be also applied by changing the time varying between intervals 

to lower values and, then, increasing the variability resolution, as is the case of the pNN20. 

Further, the coefficient of variation gives a global measure of the heart rate variability 

in time-domain, and it is defined as the ratio between the standard deviation of inter-beat 

intervals and the average inter-beat interval duration: 

 

 𝐶𝑉 =
𝑆𝐷𝑁𝑁

𝐼̅
× 100 (%) (2.11) 

 

The inter-beat interval time series can also provide a geometric pattern of variability, 

such as the sample density distribution of inter-beat intervals durations or the sample density 

distribution of differences between adjacent inter-beat intervals. Geometric heart rate 

variability measures are calculated from the geometric pattern characteristic of the inter-beat 

interval time series, being the histogram the most common pattern used. Taking into account 

the histogram, two measures might be calculated such as the HRV triangular index (HRVti) and 

the triangular interpolation of the inter-beat intervals histogram (TINN). 

Geometric methods are advantageous because of their relative insensitivity to the 

analytical quality of the series of inter-beat intervals. However, a reasonable number of inter-

beat intervals to construct the geometric pattern is needed. 

HRV triangular index (HRVti) is calculated dividing the area integral of the density 

distribution of the IBI series by the maximum value present in the density distribution, i.e., the 

total number of inter-beat intervals divided by the maximal height of the IBI series histogram 

(the most frequent Inter-beat interval) (Medeiros, 2010; Ramshur, 2010): 

 

 𝐻𝑅𝑉𝑡𝑖 =
𝑁𝐼𝐵𝐼

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 (2.12) 
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Triangular Interpolation of the histogram of the inter-beat intervals (TINN) is calculated 

by approximating the inter-beat intervals distribution to an isosceles triangle and measuring 

the width of the unequal side (the base). It is the baseline width of the distribution measured 

as a base of a triangle approximating the inter-beat intervals interval distribution, where the 

triangle is found through the minimum square difference (Medeiros, 2010; Ramshur, 2010). 

2.4.3. Frequency Domain 

 

Frequency domain analysis measures and describes power spectral density, i.e., finds 

out the power of different frequency bands in the signal. This requires a spectral analysis, 

representing the HRV data into frequency over time, as a combination of sine and cosine waves, 

which requires a Fourier transform approach(Gorman & Sloan, 2000; Medicore, n.d.; Ramshur, 

2010; Schubert et al., 2009; Tarvainen, 2014; Task Force of the European Society of Cardiology 

the North American Society of Pacing Electrophysiology, 1996).  

Spectral analysis is thought to provide an understanding on the effects of sympathetic 

and parasympathetic nervous system on the heart rate variability. Three main components are 

usually analysed through the spectrum: very low frequencies, which are known to represent 

fluctuations that occur slowly and are possible due to circadian rhythms, peripheral vasomotor 

and thermoregulatory influences; low frequencies, which are dependent on sympathetic tone 

due to the baroreceptor activity; high frequencies, which are indicative of vagal activity.  

The HF power is considered a reliable marker of vagal control of the heart rate, whether 

the LF is indicative of sympathetic activity although it also is influenced by the parasympathetic 

nervous system. Therefore, a change in LF power cannot be assumed as an indicator of 

alterations in sympathetic cardiac control. The LF/HF ratio has been considered as an index of 

the sympathovagal modulation of the sinoatrial node. Therefore, LF/HF ratio indicates overall 

balance between SNS and PNS. High values indicate sympathetic activity dominance or reduced 

parasympathetic activity. Total power reflects overall variance of the signal, and thus, the 

autonomic activity where SNS activity is a primary contributor. As aforementioned, the most 

popular bands used to divide the signal are frequencies lower than 0.04 Hz, known as very low 

frequencies (VLF), frequencies between 0.04 Hz and 0.15 HZ, designated as low frequencies 

(LF) and frequencies between 0.15 Hz and 0.40 Hz, denoted as high frequencies (HF)(Medicore, 

n.d.; Schubert et al., 2009; Task Force of the European Society of Cardiology the North 

American Society of Pacing Electrophysiology, 1996). 

This frequency analysis can be verified in Figure 8 (Task Force of the European Society 

of Cardiology the North American Society of Pacing Electrophysiology, 1996). Frequency domain 

variables represent essentially the fluctuations in the balance of the autonomous nervous 

system, and their interpretations consider the balance between the SNS and the PNS. Very low 

frequencies reflect the activity of slow mechanisms of sympathetic function. Low frequencies 

reflect modulations of both the SNS and PNS. Generally is indicative of sympathetic activity. 

People with exaggerated sympathetic activity as occurs in disturbed patients, present stronger 

LF fluctuations that in healthy subjects. PNS influence is represented by low frequencies during 

deep breathing or very low respiration rate. LF values can be high when a subject is in 

relaxation. High frequencies reflect parasympathetic activity and also the respiratory 

phenomenon (heart rate higher during inhalation and lower during exhalation). 
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Figure 8: Frequency spectrum analysis (Task Force of the European Society of Cardiology the North 

American Society of Pacing Electrophysiology, 1996). 

2.4.4. Time-Frequency Analysis 

 

The spectral analysis assumes that the data series is stationary. However, statistical 

properties in both time- and frequency-domain of heart rate variability are known to vary over 

time (Dekker et al., 2000; Medicore, n.d.; Ramshur, 2010). The HRV analysis in the frequency 

domain yields information about how the IBI signal power is distributed in the frequency domain 

but it does not provide an insight into the temporal evolution of the spectrum. Statistics 

measured in a specific period of time interval of HRV probably differ from those measured in 

the next time interval and from those measured in the entire time provided by the sum of the 

two periods. The power spectral density does not reveal the frequency components in time and 

the instantaneous power does not show the time components in frequency, i.e., the information 

about how the frequency changes over time is lost. 

In this analysis both time and frequency information can be combined to provide a 

deeper insight. Similarly to the frequency-domain analysis, time-frequency HRV analysis also 

quantifies VLF, LF, and HF related measures. The most common methods of time-frequency 

analysis used are the windowed Fourier transform, also called short-time Fourier transform, 

wavelet transforms, windowed periodograms and Wigner-Ville distribution. 

The short-time Fourier transform STFT is a classical time-frequency transform to 

analyse time-related spectral characteristics. The usefulness of STFT is based on the data 

stationarity in the observed window and the selection of window length in STFT includes a 

trade-off between time and frequency resolutions. In this method, a complex window w(t) , 

centered around the time origin t = 0 , is shifted in equal steps along the time axis, and the 

Fourier transform of the data segment of the signal within the time-window is computed (Chan 

et al., 2001). In short, the waveform is divided into a number of short segments, assumed as 

stationary, and the Fourier Transform is computed on a window of data that slides along the 

time axis.  

 

 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑆𝑇𝐹𝑇 𝑠(𝑡) = 𝑆𝑇𝐹𝑇(𝑡, 𝑓) = ∫ 𝑠(𝜏)𝑤(𝜏 − 𝑡)𝑒−2𝜋𝑗𝑓𝜏
+∝

−∝

𝑑𝜏 (2.13) 

 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑆𝑇𝐹𝑇 𝑠(𝑛) = 𝑆𝑇𝐹𝑇(𝑚, 𝑓) = ∑ 𝑠(𝑛 − 𝑚)𝑤(𝑛)

𝑁−1

𝑛=0

𝑒−2𝜋𝑗𝑓𝑛 (2.14) 

 

The short-time Fourier window can give a localized measure of the spectral density, 

although the choice of the window size might be determinant due to the trade-off between the 

time resolution and frequency resolution, since they are constant along the entire time-

frequency plane. A wide time-window yields a poor time-resolution and a good frequency-
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resolution, whereas a narrow time-window yields a good time resolution and a poor frequency-

resolution. In the computation of the short-time Fourier transform, both the time and the 

frequency-resolution of the time-frequency plane are dependent on the chosen time-window 

since, as referred before, the time and frequency-resolutions are fixed throughout the entire 

time-frequency plane. A signal consisting of abrupt changes of short duration superimposed on 

slow components with long periods, can be analysed with a short time-window, which is optimal 

to discriminate the transient events, or it can be analysed with a long time-window, which in 

turn is great to discriminate the slow frequency components. However, with the short-time 

Fourier transform it cannot be analysed with both simultaneously (Steenis, 2002). 

In contrast, the Wavelet Transform can be applied on non-stationary signals and uses a 

short window at high frequencies and a long window at low frequencies, overcoming the 

resolution problem. The Wavelet Transform decomposes the signal into a series of base 

functions denominated wavelets, which are expansions or contractions of a prototype wavelet 

that might be understood as band-pass filter. Therefore, the signal is expressed as a 

combination of wavelets and the signal decomposition provides wavelets coefficients. The 

signal can be reconstructed through the linear reconstruction of the wavelets functions, taking 

into account the coefficients. There are several types of Wavelet Transforms, which should be 

chosen according to the features of the signal to be processed. When the signal to be analysed 

is continuous the Continuous Wavelet Transform should be used, whereas the Discrete Wavelet 

Transform should be used when the signal is discrete (Chan et al., 2001). 

 

 𝑊𝑇(𝜏, 𝑎) =
1

√𝑎
∫ 𝑠(𝑡)

1

√𝑎
Ψ∗ [

𝑡 − 𝜏

𝑎
] 𝑑𝑡 (2.15) 

 

τ represents the time delay whereas 𝑎 represents the scale factor. As a smaller scale 

parameter is selected, the more contracted in time is the associated wavelet function, which 

means it can catch fast changing characteristics in the signal, giving better time resolution for 

high frequency components. The wavelet coefficients WT(τ,a) describe the correlation between 

the signal s(t) and the wavelet at various translations and scales. For a larger scale parameter, 

the wavelet is wide enough to cover slow-varying components, which by the frequency 

resolution is good for low frequency components. In the case of the Discrete Wavelet 

Transform, the scaling and translations are done in a less smooth or more discrete manner. The 

dilation function is often represented as a tree of low and high pass filters (Chan et al., 2001).ψ* 

is the complex conjugate of the mother wavelet. 

The windowed power spectrum is an extension of the basic power spectrum density, 

where the data is divided into consecutive segments or windows, which might be overlapped 

or not. The power spectrum density is then computed for each segment, using a nonparametric 

estimation. Plotting PSD values onto a two-dimensional plane with frequency and time as the 

vertical and horizontal axes, respectively, produces a spectrogram. The windowed periodogram 

can use other techniques to compute the PSD, as Burg periodogram and the windowed Lomb-

Scargle periodogram (Ramshur, 2010). In the case of the windowed Burg periodogram, which 

corresponds to an autoregressive method, the entire data series is first resampled and then 

divided into segments of equal lengths. Finally, the PSD is computed for each segment using 

the Burg periodogram, which estimates the power spectral density by fitting an autoregressive 

model to the signal by minimizing the forward and backward prediction errors. Autoregressive 

spectral estimation methods differ from non-parametric methods since they do not estimate 

directly the power spectrum density but they attempt to model the data. In turn, the windowed 

Lomb-Scargle periodogram is computed similarly, although this method does not require the 

resampling step, using non-uniformly sampled data. The data is also divided into segments of 

equal lengths of time and the Lomb-Scargle Periodogram for each segment is computed, which 

estimates the frequency spectrum by performing a least squares fit of sinusoids to the data 

(Ramshur, 2010). 
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𝑃𝐿𝑆(𝑓) =
1

2𝜎2
(

⌊∑ (𝑠(𝑡𝑛) − 𝑠̅)cos (2𝜋𝑓(𝑡𝑛 − 𝜏)𝑁
𝑛=1 )⌋2

∑ 𝑐𝑜𝑠2(2𝜋𝑓(𝑡𝑛 − 𝜏))𝑁
𝑛=1

+
⌊∑ (𝑠(𝑡𝑛) − 𝑠̅)sin(2𝜋𝑓(𝑡𝑛 − 𝜏))𝑁

𝑛=1 ⌋2

∑ 𝑠𝑖𝑛2(2𝜋𝑓(𝑡𝑛 − 𝜏))𝑁
𝑛=1

) 

(2.16) 

 

In 2.16, 𝑠̅ represents the mean and 𝜎2  represents the variance of the time series, 

whereas the 𝜏 is a time frequency time delay that makes the periodogram insensitive to time 

shift. 

 
Figure 9: Example of a power spectrum density versus time (Ramshur, 2010). 

The Wigner-Ville Distribution is capable of interpreting the time-varying characteristic 

of the signal without the compromise between time and frequency resolution. This 

methodology was the pioneer in the performance of time-frequency analysis. The spectrum of 

the Wigner-Ville transform is calculated through the following formula, where s(t) represents 

the stochastic process to consider, s*(t) presents the complex conjugate, t is time, f is the 

frequency and τ the time delay (Chan et al., 2001; Ramshur, 2010; Steenis, 2002). 

 

 𝑊𝑉𝐷(𝑡, 𝑓) = ∫ 𝑠 (𝑡 +
𝜏

2
) 𝑠∗(𝑡 −

𝜏

2
)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 (2.17) 

 

This distribution preserves the time and frequency translations. To calculate the 

spectrum in a specific time t, a multiplication between a signal portion immediately before 

and a signal portion immediately after is done, where both portions must be equal (Steenis, 

2002). The Wigner-Ville distribution is interpreted as a power spectral density function that 

represents the power of the signal x (t ) for each point (t, f ) of the time-frequency plane. 

2.4.5. Non-Linear Analysis 

 

Non-linear methods make use of chaos theory to describe non-linear properties of heart 

rate fluctuations, providing a more sensitive way to characterize the cardiovascular system 

behaviour (Clifford, 2002; Tarvainen, 2014). 

One of the most used non-linear features is the Poincaré Plot. This method is a graphical 

representation of the correlation between consecutive inter-beat intervals and it is created by 

plotting all the inter-beat intervals in two dimensional system, where two adjacent intervals 

represent one point in the plot. The first interval represents the x-coordinate and the second 

interval represents the y-coordinate (Ramshur, 2010; Tarvainen, 2014). The shape of the plot 

is the essential feature and it commonly parameterized by fitting an ellipse to the plot. The 

standard deviation of the points perpendicular to the line described as SD1 (line of identity y=-

x) describes short-term variability, whereas the standard deviation of the points perpendicular 

to the line described as SD2 (line of identity y=x) describes long-term variability. The area of 

the ellipse represents the total variability (Medeiros, 2010; Ramshur, 2010; Tarvainen, 2014). 
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Figure 10: Poincaré Plot example (Tarvainen, 2014). 

2.5. Heart Rate Applications 
 

Heart rate data has a huge clinical value since it reflects the overall health status and 

physical condition of an individual. The continuous monitoring of heart rate allows performing 

a lifestyle assessment, through the analysis of heart rate variability. Its analysis enables 

detecting daily periods of stress and recovery, what caused the periods of stress and, 

consequently, it is possible to infer about the heart and autonomous nervous system health 

status. Along with the data provided by activity measurement, it can be evaluated if a specific 

heart rate value is abnormal or not, depending on the activity level being performed. Both 

activity and heart rate data can be analysed in order improve the user quality of life and help 

him to understand his current well-being, how daily habits and routines affect him, detect 

abnormalities such as heart rate increase due to psychological problems or exaggerated fears, 

excessive heart effort when doing normal daily activities such as climbing stairs, which 

denounces a weak physical status. It allows the identification of stress factors, and early 

warnings signs of conflict, overload, and burnout before more serious problems occur. It is 

important to underline that it is assumed that any physical activity has certain duration and 

during it cardiac activity is increased. It might be useful that the monitor user is provided with 

a diary to record some events during the day, such as challenging tasks, alcohol consumption 

or few hours of sleep. 

The accelerometer data improves the ability of the analysis to recognize whether an 

increased activation level in the body is caused by mental stress or physical activity. This 

improves the accuracy especially with unfit people, with whom even slight activation can 

increase the heart rate significantly, and also with very fit people, who typically do not show 

much of a heart rate reaction to light exercise. 

Continuous heart rate monitoring allows continuous supervising at any environment, 

without hospitalization or clinical appointments. Further, heart rate data can be used to assess 

physical capability (fitness level), assuming that the heart rate increasing is proportional to the 

physical effort and activity speed. This is especially important for athletes and sports 

practitioners, but has also interest for inactive, elderly people and cardiac rehabilitation 

patients. It has also interest for the detection of arrhythmias, as occurs in the case of high 

heart rate variability but low physical activity during the day. 

The heart rate monitoring is very important to avoid excessive training components 

such as the frequency of exercise sessions, its durations and intensity, so the performance is 

not deteriorated and overtraining syndrome is not developed (Achten & Jeukendrup, 2003). 

The intensity of each exercise session is usually defined as the amount of energy expended per 

minute to perform a certain task, which currently available methods are not suitable for non-
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laboratory occasions. Therefore, the heart rate is used to evaluate the intensity of exercise 

and, consequently, to determine the effect of a training session, using the heart rate reserve. 

The heart rate shows an almost linear relationship with the volume of oxygen at submaximal 

intensities, so it can be used to estimate the exercise intensity, although this relationship is 

individual and should be determined for each person (Achten & Jeukendrup, 2003; Altini, 2015). 

Heart efficiency might also be evaluated. By definition, increasing the heart rate 

increases the cardiac output, because there is major number of stroke volumes of blood being 

released into the system. This occurs as long as the heart is given enough diastole time to fill 

the heart with the same volume. However, if the heart rate becomes excessively high, the 

heart may not have enough time to properly fill with blood between beats, which leads to a 

decreased cardiac output. This is not desirable for athletes in high physical effort because it 

means that the fatigue will overcome very soon. The heart is a muscle as any other and thus, 

it can be trained in order to increase its efficiency, which makes the heart rate useful to 

evaluate the progress of physical activity status. 

Moreover, heart rate data is already used to estimate energy expenditure, along with 

the acceleration data. The incorporation of the heart rate data in activity-specific regression 

equation showed consistent improvements in energy expenditure estimation (Albinali et al., 

2010; Altini et al., 2012; Ceesay et al., 1988; Ltd., 2012). Acceleration reflects a relation 

between motion and energy expenditure, whereas heart rate shows a strong correlation 

between energy expenditure and oxygen consumption. However, heart rate during an activity 

is specific to a person since it depends on the individual’s cardiorespiratory fitness level. 

Therefore, the heart rate should be normalized according to each individual’s fitness level, 

using normalization parameters at individual level (individual calibration). It is very important 

to realize that the heart rate is affected not only by the activities such as walking or running, 

but also by work or social interactions. Thus, the heart rate normalization for energy 

expenditure estimation must be recognized and interpreted according to the situation in which 

the activities are performed. Some studies have suggested algorithms for individual calibration 

of heart rate, motivated by the substantial inter-individual differences between heart rate and 

energy expenditure due to cardiorespiratory fitness level (Altini et al., 2013, 2015). 

Estimating energy expenditure from heart rate is relatively cheap and easy to perform. 

When the heart rate is used to estimate the volume of oxygen or energy expenditure, a linear 

relationship between the heart rate and oxygen volume consumption is assumed. Although this 

is true for a large range of intensities, during very low and very high intensities the relationship 

becomes non-linear. At rest, slight movements can increase the heart rate, while energy 

expenditure remains almost the same. In addition, the estimation of energy expenditure from 

the heart rate is sport-specific. It has been well documented that the type of physical activity 

and posture can influence the relationship between heart rate and energy expenditure and can 

therefore affect the energy estimation (Achten & Jeukendrup, 2003; Altini, 2015). During 

intermittent exercise, the relationship between the heart rate and energy expenditure might 

not be as accurate. This occurs because the heart rate responds relatively slowly to changes in 

work effort. A sudden increase in work effort will not immediately result in heart rate increase 

that would be observed at that exercise intensity after body’s adaptation. Similarly, when the 

work effort is decreased, the heart rate will remain elevated for some time and only gradually 

return to the heart rate value observed during steady-state conditions at this lower work 

intensity (Achten & Jeukendrup, 2003). 

The heart rate and its variability has been greatly used for stress state detection. Stress 

consists in a psychological response to a certain physical, emotional and physical event that a 

person faces and it is known as ‘fight-or-flight’ or acute stress. Physiologically, it consists in 

the secretion of hormones such as adrenaline and cortisol into the body’s blood stream 

(Alexandratos, 2014). These hormones intensify the individual's concentration, increase 

alertness and provide extra energy. Despite the fact that stress alert the person to eventual 

dangerous events, long periods of stress can be very harmful for the health as and it can lead 
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to various conditions like cardiovascular disease, obesity or depression and anxiety disorders 

(Alexandratos, 2014). Despite the complexity of measuring the stress level directly, it is quite 

possible to annotate stressful events and relate them to physiological signal changes that can 

be easily measured, such as the heart rate or electrodermal activity (Alexandratos, 2014; Liu 

& Ulrich, 2014). Thus, it is important to measure physiological signals accurately anytime and 

anywhere. There is a balance between the two branches of the autonomous nervous system 

under normal situations, placing the body in a state of homeostasis. However, under a state of 

mental stress, this balance is altered and several physical changes might occur in the human 

body. These include increased heart rate, faster breathing and increased sweating due to the 

higher activity of sympathetic branch. Therefore, HRV can be used to detect the change in 

system balance as measures of mental activity and mental stress. During stress conditions, it is 

expected that SDNN, RMSSD, pNN50, Total Power, HFnorm decrease and that LFnorm and LF/HF 

increase (Alexandratos, 2014; Dennis et al., 2014; Yang et al., 2008). 

 
Figure 11: Tachograms under non-stress situation and under stress (Yang et al., 2008). 

As referred, several studies have reported reduced heart rate variability in patients 

with anxiety disorders and chronic or post-traumatic stress, due to the autonomic nervous 

system alterations. This represents a higher risk of developing a cardiovascular disease (Liu & 

Ulrich, 2014; Yang et al., 2008). Therefore, a real-time personal stress monitor can be a 

powerful tool by providing meaningful information about the user stress level at anytime and 

anywhere. A real-time system that monitors the user's heart, suitable for stress state detection, 

arrhythmia detection and heart rhythm classification was developed (Pierleoni et al., 2014). 

This system includes a Zephyr HxM-BT device and a smartphone, where the data packages are 

transmitted at a frequency of 1 Hz to the smartphone. The stress state detection, due to 

emotional stress occurrence, is based on the heart rate variability analysis, through the 

computation of time-domain parameters over an appropriate data acquisition window, 

including the SDNN, RMSSD, pNN50 and average heart rate. The window used has a standard 

duration of 5 minutes. According to (Andreoli et al., 2010), the stress state was reached every 

time at least three of the four values exceeded the correspondent established thresholds (Yang 

et al., 2008). This analysis is possible since the heart rate monitor acquires continuously the 

cardiac activity, which means that all of the heart beats are included in the algorithm. 

 

Table 1: Time-Domain HRV parameters thresholds for stress state detection (5 minutes recording) (Yang 

et al., 2008). 

HRV feature Threshold 

Mean HR higher than 85 BPM 

pNN50 lower than 7% 

SDNN lower than 55 msec 

RMSSD lower than 45 msec 
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2.6. Activity Measurement 
 

Physical activity is any body movement promoted by the skeletal muscles, which results 

in energy expenditure (Westerterp, 2013), and it can be measured through an inertial 

measurement unit (IMU) that includes sensors such as accelerometers, gyroscopes and 

magnetometers. Physical activity can be characterized by its duration, frequency and intensity. 

Activity monitoring is deeply related with motion-aware systems that classify the 

activity being performed by an individual and compute valuable features that are 

representative of the activity level and intensity. Accelerometers are the most broadly used 

sensor to activity monitoring. They can be uni-axial if they can measure acceleration in just 

one direction, or tri-axial, if they measure movement acceleration, on vertical, anterior-

posterior and lateral-medial axes, in m/s2 in SI (International System). They are small and low 

energy consumption sensors and allows distinguishing between a continuous and intermittent 

activity and also its frequency. Through their data it is possible to extract velocity and distance 

values. Velocity can be calculated through the integral over time of the acceleration and, in 

turn, distance is defined as the integral over time of the velocity. However, practically, the 

acceleration integration over time to obtain velocity brings a considerable error to the 

measure. Other option consists in use the number of steps and multiply them by the step’s 

length, and posteriorly divide the result by the time’s window (Aguiar et al., 2014). 

Magnetometers measure the magnetic field in the X, Y and Z-axes, mostly used to assist 

calibration against orientation guidance and calculate an absolute direction, relative to the 

earth coordinate system (Figueira, 2015). In turn, gyroscopes measure angular velocities of an 

object in rad/s or degrees/s, along each one of the three axes, being used to estimate the 

orientation, based on the principles of the conservation of momentum. 

Activity monitoring performed by smartphones and smartwatches use essentially data 

from accelerometers and gyroscopes to identify activity patterns and daily activities such as 

sitting, lying, walking and general transitions (Cerqueira da Silva, 2013). Furthermore, 

barometers have been recently included in smartphones, in order to help the GPS sensor to 

correct the altitude measurement. Barometers measure the atmospheric pressure from its 

height, which changes with the distance above or below the sea level. This way, smartphones 

can track elevation gained or measure stairs climbed, improving activities recognition. 

Activity recognition is considered a machine learning problem, using techniques based 

on probabilistic and statistical arguments. This process begins with gathering the raw data 

through motion sensors, followed by its pre-processing in order to remove artefacts and noise, 

where it is segmented into its components. Then, segments of long stillness or interchanging 

between movements are excluded. Once the components are representative of the physical 

activity performed, features are extracted. These features are measurable properties that 

enable the characterization of the movement and they must be selected and analysed in order 

to extract relevant and sufficient information for the classification step. However, its number 

should not be too large in order to the data not became scarce relatively to the features 

dimensionality and, therefore, not increasing exaggeratedly the computational cost. The data 

can be analysed in time or frequency domain, where the last one can be obtained through the 

application of mathematical operator such as transforms, as for the example the Fourier 

Transform. The algorithm, based on the extracted features, performs the classification of the 

segments in order to identify activities. There are several machine learning approaches that 

might be employed for pattern recognition. The algorithms may be supervised or non-

supervised, although supervised are the most broadly used in the field of activity monitoring 

(Figueira, 2015). The supervised algorithms include a training phase and a test phase. The 

training phase include the classifier selection (Neural Networks, Decision Trees, Support Vector 

Machine, Bayesian, K-Nearest Neighbours, for example), and its training using a labelled 

dataset, i.e., objects of data with known class and features, in order to create a model to 
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classify unlabelled objects of data. The test phase is used to evaluate the algorithm 

performance, through confusion matrices, measurement of accuracy, precision and F-Measure. 

 

Current activity measurements include features such as distance walked, speed, 

number of steps, calorie consumption and hours of sleep. Speed is a metric that is usually 

defined by the distance performed during a specific interval and characterize the activity’s 

intensity or workload. Energy expenditure is an important metric used to evaluate the quality 

and progress of individual training and is frequently assessed along with energy intake for 

weight management purposes. The assessment of this feature in real life has become very 

important because it might help to identify inactive lifestyles. It can be estimated using METs 

(metabolic equivalents) values for the quantification of the extent of activity intensity, using 

linear regression (Carneiro et al., 2015). The accelerations are converted into “activity counts” 

per defined period of time, which are then converted to METS. Ryu et al (Ryu et al., 2008) 

presented also an approach to estimate the METS, depending on the activity recognition and 

the walking or running speed. Other methods were proposed based on linear regression derived 

from the data collected by the motion sensors, one using the speed and the other using the 

feature root mean square of the magnitude of the accelerometer signal (Carneiro et al., 2015). 

This data has huge applicability in the detection of dangerous situation in a person’s 

lifestyle, especially for elderly and disabled people, assessment of individual’s degree of 

functional ability and also for active and healthy lifestyle promotion (Machado, 2013). 

Therefore, these data analysis might be enriched by heart rate data and its variability, allowing 

to make a more reliable and valuable analysis. 

2.7. Heart Rate and Activity Monitoring 

2.7.1. Physical Activities and their heart rate variability patterns 

 

Physiological signals present a nonlinear behaviour. The heart rate unexpectedly 

changes depending on the exercise’s intensity and its variation also differs among individuals, 

depending on the physical condition of each individual. A low heart rate variability and/or 

increased heart rate usually indicates alterations of autonomic activity characterized by 

sympathetic nervous system activity and/or vagal withdrawal. Parasympathetic nervous system 

which regulates the vagal tone is dominant during relaxed state and sleeping activity. In turn, 

vagal activity decreases during exercise and is eventually absent, while sympathetic activity 

dominates. Sympathetic nervous system can also be triggered by anxiety, stress, depression 

and fatigue. Since sympathetic nervous system could be triggered due to either physical or 

mental factors, movement state information should be incorporated for a more reliable and 

significant analysis (Bidargaddi et al., 2008). Moreover, clinical significance of movement 

activity information can be assessed by interpreting the heart rate and its variability· 

An active state is characterized by high heart rate values and low heart rate variability, 

due to increased sympathetic activity caused by exercise (Bidargaddi et al., 2008). The 

presence of high heart rate values and low heart rate variability in an inactive state indicates 

that the sympathetic activity could be triggered by stress and fatigue. Therefore, activity 

Data acquisition Preprocessing
Feature 

extraction
Activity 

Classification
Evaluation

Figure 12: Schematic representation of machine learning process. 
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information plays a critical role in differentiating these two possibilities. Increased 

parasympathetic activity leading to relaxed state in inactive state is characterized by high heart 

rate variability and low heart rate values. However, low heart rate values and heart rate 

variability can also be observed in an inactive state, which indicates higher sympathetic activity 

but the presence of low heart rate values at the same time (Bidargaddi et al., 2008). Combining 

heart rate values, heart rate variability and movement activity data allows to discriminate 

between normal and abnormal physiological state and autonomic function (Bidargaddi et al., 

2008). 

The increase in heart rate during exercise is the main mechanism by which cardiac 

output is increased to meet the demands of working skeletal muscle. During early exercise, 

heart rate rises because of a central withdrawal of parasympathetic tone, until it achieves a 

steady state  that corresponds to the optimal heart rate value for meeting the circulatory 

demands at that specific work rate (Lauer, 2001). The heart rate fall that occurs immediately 

after exercise, or heart rate recovery, is thought to be due to rapid central vagal reactivation. 

During the recovery, heart rate decreases gradually but it does not achieve pre-exercise values 

within several minutes after exercise. The rate of decrease in heart beat frequency and the 

recovery time duration after intense exercise are commonly used as indicators of cardiovascular 

fitness level (Lauer, 2001). The combination between physical activity monitoring and heart 

rate analysis is important for physical activity applications as an additional information of the 

human physical behaviour during the day. It could also be used to trigger alarms in case of 

abnormal heart rate values that have a negative impact on the person’s health. The 

combination between activity and heart rate is also import to perceive some heart rate patterns 

that are influenced by physical activity. 

Other works have been performed to study the heart rate usefulness to better 

characterize and distinguish different activities. A real-time algorithm for automatic 

recognition of not only physical activities, but also their intensities, using five tri-axial wireless 

accelerometers and a wireless heart rate monitor was presented (Emmanuel Munguia Tapia et 

al., 2007). The heart rate is a useful measure since it correlates with energy expenditure for 

aerobic exercise. However, alone it value provides little information about the activity type 

being performed, and it is influenced by other factors such as emotional states, ambient 

temperature, and fitness level. In this study, they concluded that the heart rate has little 

discrimination power, even when normalized. 

Moreover, the possibility of discriminating between normal and abnormal physiological 

state based on heart rate, its variability and movement activity information was studied 

(Bidargaddi et al., 2008). By applying k-means clustering on heart rate, heart rate variability 

and movement information obtained from cardiac patients, three different clusters were 

obtained in inactive state and one cluster in active state. Two of the clusters that were found 

in inactive state were characterized by high heart rate values and low heart rate variability, 

and both low heart rate variability and heart rate values, which could be inferred as 

pathological with abnormal autonomic function. Furthermore, activity information was 

significant in differentiating between the normal cluster found in active state and the abnormal 

cluster found in inactive state, both with low heart rate variability. In this study, it was found 

out that the activity information must be taken into account while interpreting heart rate 

values and its variability. As observed in Figure 13, the clusters obtained can be well 

characterized. Cluster 1 falls in the inactive state and presents low heart rate values and high 

HRV, which is a characteristic feature of relaxed state, induced by high parasympathetic 

activity. Cluster 2, which again falls in the inactive zone, has both low heart rate values and 

HRV, which indicates increased sympathetic activity. In this case, since the heart rate values 

are low, further clinical investigation and analysis is needed. Clusters 3 and 4 have similar 

characteristic features of high heart rate values and low HRV. High heart rate values and 

reduced HRV is characteristic of high sympathetic activity. As above mentioned, sympathetic 

activity could be induced by physical activity or due to stress, fatigue, depression or other 
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psychological factors. The sympathetic activity in Cluster 3 is activated by physical activity 

since it belongs to an active state. However, the Cluster 4 belongs to an inactive state, which 

could indicate the presence of stress and fatigue due to the high sympathetic activity. 

Therefore, movement activity information is essential to differentiate between these two 

situations. 

Further, a system that combines acceleration data with vital signs to achieve highly 

accurate activity recognition was developed (Lara et al., 2012). This system recognizes five 

activities: walking, running, sitting, ascending, and descending stairs. After evaluating eight 

different classifiers and three different time window sizes, the results showed an overall 

accuracy of 95.7%, which is higher than other approaches under similar conditions, indicating 

that vital signs are useful to discriminate between certain activities. 

Finally, the mean heart rate proved to be a determinant feature for activity 

classification (Maguire & Frisby, 2009). In this study classification accuracy increased about 

5.28% and it was possible to correctly identifying 6 common activities when using combined 

heart and accelerometer data. 

As above mentioned, there are heart rate variability patterns and heart rate values 

ranges that might distinguish between rest activities and dynamic activities. Therefore, 

applying heart rate variability analysis to the heart rate signal should help on activity 

distinction. 

 
Figure 13: Different Activity clusters obtained in (Bidargaddi et al., 2008). 

2.7.2. Heart Rate, Speed and Activity Relationship 
 

Moreover, it is known that the heart rate is closely related to the rate of change of 

oxygen uptake (Bodner & Rhodes, 2000; Vachon et al., 1999). As exercise intensity increases so 

does the rate of change of oxygen uptake. This rate of increase is determined by the rate at 

which oxygen is transported to the tissues, the blood’s oxygen carrying capacity and the amount 

of oxygen extracted from the blood. Therefore, the heart rate, and the cardiac output, increase 

in a rectilinear relationship with the increasing workload, until the maximum exercise 

performance is reached. The myocardial cells are capable of contracting at over 300 BPM but 

the rate of 210 BPM is rarely exceeded because a faster heart rate would not be beneficial, 

since there would be inadequate time for ventricular filling (Plowman & Smith, 2013). Hence, 

the heart would become inefficient. 

A correlation and a linear relationship is verified between the activity workload, or 

speed, and the heart rate, because the oxygen demand linearly increases with the workload 

until the anaerobic deflection point is reached. The heart rate, which is the limiting factor of 

these three variables, increases so that oxygen can be delivered to the body. When the heart 

rate reaches its maximum, the volume of oxygen that can be consumed by the body also reaches 
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its maximum. This is called VO2 max and, at this point the volume of oxygen consumed is equal 

to the volume of CO2 exhaled. Moreover, there can be no further increase in exercise intensity, 

heart rate, or VO2 max. When the subject starts to produce energy anaerobically, it is said that 

the Conconi point, or heart rate deflection point, was achieved. Moreover, a plateau is reached 

due to proximity to the maximum heart rate (Vachon et al., 1999).The heart rate deflection 

point evidences the decrease in the slope of the linear relationship between heart rate and 

physical effort. This is visually manifested as a curvilinear response in the graphic power-heart 

rate (Figure 14) and it is usually observed in the range of 88 to 94% of maximum heart rate that 

the individual can achieve (Bodner & Rhodes, 2000). 

An increase of the heart rate value due to a decrease in vagal outflow is an immediate 

response of the cardiovascular system to exercise. This increase is followed by an increase in 

sympathetic outflow to the heart and systemic blood vessels. During dynamic exercise, heart 

rate increases linearly with workload and V ̇O2. But during low intensity levels of exercise and 

at a constant work rate, heart rate will reach steady state within several minutes. Further, as 

the workload increases, the time necessary for the heart rate to stabilize will progressively 

lengthen. Under submaximal load the heart rate increases linearly with the increase of the 

exercise intensity, which is usually defined as the speed, if the activity performed is walking, 

running or cycling, and with the oxygen uptake. 

 
Figure 14: Relationship between Speed and heart rate (Bodner & Rhodes, 2000). 

 

2.7.3. Energy Expenditure and heart rate relationship 

 

Regarding the relationship between energy expenditure and heart rate, there are some 

concepts that should be studied. Energy Expenditure (EE) consists in the sum of internal heat 

produced as basal metabolic rate and thermic effect of nutrients processing, and also external 

work, measured by physical activity level (Altini, 2015). It is usually estimated through indirect 

calorimetry. In this method, the oxygen consumption and carbon dioxide production are 

monitored for a certain period of time. 

There is a linear relationship between heart rate and energy expenditure that allows 

to detect changes in physical effort. However, studies have shown that it is difficult to monitor 

physical activity and EE using only heart rate data (E M Tapia, 2008). The accuracy of such 

monitoring increases when individual calibration is performed establishing a relationship 

between the heart rate and energy expenditure equations, because different fitness levels 

between humans lead to different heart rate values for the same activity level and also because 

variation occurs due to emotional states or stress (Stankevičius & Marozas, 2013). 

Energy expenditure is the most common parameter used to quantify physical activity, 

and it is typically estimated using acceleration and heart rate sensors. Acceleration reflects a 

relation between motion and EE, while the heart rate shows a strong correlation with EE via 

the relation of EE and oxygen consumption. However, the heart rate value during an activity is 

specific to a person since it depends on the individual’s cardiorespiratory fitness level (CRF). 
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Therefore, EE estimation based on heart rate typically requires individual calibration, since an 

individual with higher CRF will have a lower heart rate during exercise, compared to an 

individual with low CRF. CRF is defined as the ability of the circulatory and respiratory systems 

to satisfy the body’s need by supplying oxygen during sustained physical activity, and it is among 

the most important determinants of health and wellbeing (Altini, 2015). 

Motion sensors were the first wearable sensors to be employed in order to estimate 

energy expenditure. Using accelerometers, researchers tried to quantify physical activity and 

EE in different modalities, by exploiting the relation between whole body motion as measured 

by accelerometers and EE, and then, by using accelerometers to distinguish activity types and 

then develop activity specific EE models (Altini, 2015). Several methods have been studied 

recently related to assign specific MET values to each one of the group of activities and use 

anthropometric features or other static features to personalize the activity-specific models for 

different individuals or groups of individuals or apply a regression equation for each activity 

classified extending counts-based approaches to multiple group of activities. The regression 

models typically use accelerometer features, heart rate and anthropometric characteristics as 

independent variables (Altini, 2015). Estimating the oxygen volume and subsequently energy 

expenditure from heart rate presents some advantages, compared to established metabolic 

equations, since the heart rate changes during exercise reflect the volume of oxygen whereas 

metabolic equations assume a fixed expenditure rate for a specific intensity. 

For the estimation to be specific of each individual, the relationship between the 

oxygen volume and heart rate should be determined. Although currently there are some studies 

regarding individual calibration methods without performing a test in laboratory environments, 

but using the accelerometer and heart rate data itself do determine a normalization factor 

(Altini et al., 2014, 2016), the usual methodology requires the individual to complete a 

progressive exercise test in a laboratory environment. During the test, the heart rate is 

simultaneously measured along with indirect calorimetry to estimate energy expenditure. It is 

required that the maximal oxygen volume and resting oxygen volume are determined, along 

with the resting and maximal heart rate. Posteriorly, the volume of oxygen per beat above the 

rest should be determined, dividing the VO2 reserve by the Heart Rate reserve to yield a VO2-

pulse coefficient, and multiplied by the number of heart beats above rest, which indicates of 

exercise’s intensity, to derive the oxygen volume per minute. Finally, it is added the oxygen 

volume at rest, the result is multiplied by the ratio of kcal per one litter of oxygen, and then 

multiplied by the total minutes of the exercise with the same intensity (Pettitt et al., 2007). 

 
Figure 15: Energy Expenditure estimation model (Pettitt et al., 2007). 

 

Furthermore, heart rate monitors have proved to be accurate for moderate to vigorous 

activities. In turn, during lower intensity activities, other factors might be determinant on the 

heart rate and independent of any change in oxygen uptake. These factors include stress, 

emotions, caffeine intake, ambient temperature or even illness (Andre & Wolf, 2007). 

Heart rate monitoring provides an objective and effective method to monitor the 
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intensity, duration, and frequency of daily activities using a physiological parameter that 

represents the exercise intensity and cardiovascular adaptation to it. The heart rate reflects 

relative stress placed on the cardiopulmonary system during physical activity. However, it can 

also be elevated by emotions, stress and mental activity. Hence, the simultaneous use of the 

heart rate value and motion sensors data provides a more accurate prediction of energy 

expenditure, compared with the use of heart rate or motion sensors independently. 

As it can be observed in Figure 16, the heart rate is as higher as the physical effort 

required by the physical activity performed, which is confirmed by the energy expenditure per 

minute in each activity type. In general, the energy expenditure is as higher as the heart rate 

value in each activity, due to the also higher oxygen intake demanding required by high physical 

effort. The heart rate is highly correlated with energy expenditure during moderate and 

vigorous activities such as walking, running and biking. But during lying or sedentary activities, 

this relationship is weaker. 

 

 
Figure 16: Relationship between heart rate and different physical activities (Altini, 2015). 

2.8. Measurement and Monitoring Systems 

2.8.1. Heart Rate Monitors  

 

Heart rate monitors are monitoring devices that allow measuring heart rate in real time 

or recording the heart rate for later analysis. They have a huge clinical applicability, since they 

enable to infer about the clinical state of the person. Furthermore, they also have an 

immeasurable impact on sports field, because they provide immediate feedback on how hard 

the person is working out so that adjustments can be made to get the greatest benefit from 

exercising. Since the heart rate is a useful indicator of physiological adaptation and intensity 

of effort, its monitoring is very important for cardiovascular fitness assessment and training 

programs. Nowadays there are plenty of devices that measure the heart rate, from typical ECG 

to current wearables such as smart vest or smartwatches. These devices differ essentially by 

the heart rate measurement mechanism: the ECG, Holter monitors and chest straps rely on 

biopotential mechanism, smartwatches and bracelets rely on photoplethysmography or 

bioimpedance mechanisms, oximeters rely on photoplethysmography mechanisms and blood 

pressure monitors rely on pressure method. 

The electrocardiograph (ECG) and Holter monitoring devices have been demonstrated 

to be accurate, but not feasible for use in field settings due to cost, size and complexity of 

operation (Jain & Tiwari, 2014). The ECG is the current gold standard approach for heart rate 

measuring, but requires a hospital visit, sticky gels and uncomfortable electrodes attached to 
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the skin. In turn, portable heart rate monitors emerged as portable ECG like Holter, wireless 

chest straps that send data to a monitor worn on the wrist, ECG electrodes built-in in vests, 

pulse monitors worn on the wrist such as watches or bracelets, and even worn on the ear as 

earbuds. The Holter monitor uses biopotential electrodes incorporated in gel patches that are 

placed on the chest. 

Nowadays, smart vests, smartwatches and bracelets, besides the heart monitoring, also 

include activity tracking, so both data can be combined to do a more reliable clinical/fitness 

analysis. However, studies have demonstrated that wrist-based heart rate monitoring is not as 

reliable as the ECG or even the chest straps (Parak & Korhonen, 2014a; Richmond, 2015). 

The chest straps that connect to sports-watch models allow the continuous tracking of 

heart rate by sending the information to a monitor worn on the wrist. It is advisable to moisture 

the electrodes placed on the chest strap in order to conduct the signal. Chest-strap heart rate 

monitors can be a burden to participants because of the constriction required across the chest 

to maintain good skin contact. Electrode-based heart monitors are difficult to wear, as 

placement, skin treatment, and irritation can be significant issues and detriments to long-term 

wear. Current sports watches and fitness trackers provide target zones in order to the user 

control physical effort and can also include other activity features such as calorie counters, 

speed and distance monitors, lap counters, recovery heart rate and time spent in the target 

zone. Gym equipment such as treadmills, elliptical machines, stationary bikes and stair 

climbers are also equipped with pulse monitors based on biopotential sensors, however they 

are not so accurate. Everyone, from at risk heart people, injury-rehabilitation patients, 

athletes, sports amateurs and healthy life style people can benefit from continuous heart rate 

monitoring. Heart patients can prevent potential life-threatening heart attacks by using heart 

rate monitors to protect themselves. 

Heart rate sensors included by the majority of smartwatches work via 

photoplethysmography, where each signal’s pulse peak can be interpreted as an R wave with 

good accuracy. However, they present some limitations such as the need the recharge the 

battery, limiting the potential monitoring time. Furthermore, individual skin’s characteristics 

such as the pigmentation, existence of tattoos, temperature, variations in skin pressure or even 

hairiness, allied to fluctuations in oxygen levels or movement artefacts can all affect readings 

that are performed via PPG (Carpenter & Frontera, 2016). Current smartwatches, although they 

represent a great tool for heart rate monitoring, they do not enable arrhythmia detection yet, 

since they do not incorporate ECG features such as P wave and P-R interval, which are important 

features to detect arrhythmias (Carpenter & Frontera, 2016). Further, they do not provide, for 

third parties applications, the all beat-a-beat heart rate signal, but the heart rate at a specific 

time, which does not provide a constant rhythm analysis  

The market for consumer wearable devices is popular and continues to grow. Besides 

this, these gadgets presents a great potential utility to be used by cardiovascular patients 

(Hickey & Freedson, 2016). Wearable devices may provide opportunities to overcome 

limitations of self-reported activity and also provide a driver for sedentary behaviour change. 

These devices can be used to track physical activity behaviour as an outcome after different 

treatments and also to be used as encouragement to be more active and prevent cardiovascular 

diseases. However, it must be determined which features of the devices are the most effective 

in changing the lifestyle behaviour. These wearables present a huge potential to improve the 

healthcare system and treatment providers. For instance, it was reported the use of Fitbit 

Charge HR to determine the onset time of a patient’s arrhythmia and guide his emergency 

department management (Rudner et al., 2016). Although they cannot identify arrhythmias yet 

but only the pulse rate, they can detect heart rate abnormalities, which in turn can guide the 

clinician in designing further evaluation strategies using more sophisticated instrumentation. 

Hence, they are devices with a great potential, which in the future will be highly accurate to 

behave as a medical helping tool and the current limitations will be outdated and, taking into 

account the technology development speed, very probably with the possibility to perform non-
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invasive detection of cardiac arrhythmias (Carpenter & Frontera, 2016). 

The heart rate devices differ on the heart rate measurement method used, included 

activity and heart rate variability features and also on the easiness and using comfort. In a 

previous work, the Dissertation Preparation Monography, these devices were already analysed 

in detail, taking into account their main attributes and capabilities. Hence, the main products 

that are available in the market can be consulted in that work. 

2.8.2. Heart Rate and Activity Monitoring Systems 

 

Accelerometers and heart rate monitors have been combined to improve the accuracy 

and precision with which Energy Expenditure can be predicted, measure of physical fitness by 

combining the heart rate values with body movement. Nowadays, the energy expenditure 

estimation is a very valued feature by the consumers when they attempt to buy a wearable 

device for activity monitoring. However, the models included in these devices might not be as 

reliable as desirable. The validity of total energy expenditure estimates of several wearable 

devices, against the gold standard metabolic chamber method and doubly labelled water (DLW) 

methods, was assessed through an accuracy test, with 19 healthy volunteers (Murakami et al., 

2016). The total energy expenditure was measured using 12 different wearable devices, which 

differ in the energy estimation method, depending if they include heart rate sensor or not, and 

also the wearing method. The results showed that the measurements from the devices, for a 

standardized day, were higher than the metabolic chamber but blower than the values provided 

by the DLW. In short, the wearable devices tested were able to rank daily total energy 

expenditure between individuals, but absolute values differed widely among devices and varied 

significantly from the gold standard measures. Furthermore, they all underestimated total 

energy expenditure and the large variance observed among the values measured by the devices 

may be associated with posture detection and also periods of not wearing the devices. With 

this study it was concluded that majority of wearable devices do not produce a valid measure 

of total energy expenditure. 

Nevertheless, heart rate and activity monitoring features are currently combined in 

several systems that are available on the market. These sensor fusion systems present 

advantages when compared to activity monitoring systems. For instance, low motion might 

indicate rest or it might indicate physical activity using a part of the body far from the 

accelerometer. In turn, moderate motion might indicate physical activity or it might indicate 

riding in a moving vehicle on a rough road. By adding another variable, such as heart rate, these 

different contexts can be disambiguated, since subjects at rest will typically have lower heart 

rates than those performing low-motion physical activity. By taking advantage of the science 

of data fusion, multi-sensor systems typically achieve higher accuracies than single sensor 

systems while typically keeping overall costs moderate. Further, the heart rate logging might 

be used for different purposes, mainly for clinical or fitness purposes, although they are 

related. Heart rate data from biopotential sensors, characteristics of the ECG, existent in smart 

vests and Holter monitor, are currently used for clinical purposes, especially for arrhythmia’s 

detection and cardiac rehabilitation. 

Firstbeat1, a Finnish company, has developed a strong tool for heart rate analysis that 

enables the creation of a user’s physiology model, in order to improve well-being (Wellness 

Service) or training effect (Sports Service), depending on the purpose. In both cases, Firstbeat 

Bodyguard 22 records the data. In the Sports Service, the tool is suitable for athletes and 

coaches, providing tools for optimizing training load and recovery. It detects VO2max from a 

freely performed workout, based on the heart rate response and external workload, with high 

accuracy, in this case walking at a considerable speed. This parameter represents the maximum 

                                                 
 
1 http://www.firstbeat.com/ 
2 http://shop.firstbeat.com/all-products/bodyguard.html#.V2qWWLgrLIU 
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volume of oxygen the body can consume in one minute, and it is an important measure of 

fitness condition. Firstbeat’s VO2max algorithm uses real life running, walking or cycling data, 

analysing the relationship between the heart rate and the speed. It can be used to evaluate 

fitness improvement over time and compare results with age-gender reference. The exercise 

impact on the body is also estimated, based on user profile, duration and intensity of the 

workout. Anaerobic threshold is the highest workload at which the body is able to achieve a 

steady-state condition, so the lactic acid accumulation and removal are in equilibrium. This 

threshold is estimated through the relation between heart rate and speed and heart rate 

variability as well, using sophisticated data modelling methods. Energy expenditure is 

calculated through heart rate data, respiration rate and VO2, which, in turn, is derived from 

heart rate. Daily performance, recovery time are also calculated to optimize training. In the 

Wellness Service, the tool is used for lifestyle assessment and thus, measures daily periods of 

stress and recovery, creating a detailed report. This allows avoiding exaggerated stress and its 

negative consequences on health, by detecting its causes, and promotes the user to find a 

balance between stressful and relaxing activities. It analyses periods of stress and recovery, 

hours of sleep, hours of physical activity and energy expenditure. These assessments are done 

for a 3 days period, with previous personal information from a pre-questionnaire. Currently, 

daily basis heart rate devices such as smartwatches and bracelets enable continuous heart rate 

measurement and, thus, heart rate logging. They usually include an app where the user is 

allowed to see the heart rate logging throughout the day and the time in each heart rate zone, 

along with other activity measures like distance, speed, steps walked, oxygen consumption, 

calories burnt and even sleep patterns. These data is analysed for well-being and fitness 

purposes. Firstbeat tool has been adopted by smartwatches and bracelets brands (Sony, Suunto, 

Garmin and Samsung) so the users can improve their fitness experience, well-being and find a 

balance between stress and recovery. However, the main focus is on fitness improvement. 

Within the PAMAP 3  project, a Mobile and unobtrusive platform that enables the 

accurate monitoring of physical activities in daily life, which is posteriorly integrated into a 

healthcare system that supports out-of-hospital services, was developed (Reiss et al., 2012). 

The main purpose of this mobile platform is the monitoring of the user’s daily activities by 

collecting and processing sensory data, and also giving instant feedback to the user. The main 

goals of an aerobic activity monitoring system consist in analysing what activity the user 

performed, for how long and with what intensity. For that, the system presents three IMUs, 

placed on the hand, chest and shoe, and a chest strap heart rate monitor, which can be quite 

uncomfortable for a daily use. 

This data enables the detection of daily activities such as sitting/standing, lying, 

cycling, run, walking or Nordic walking and “other” activities, that cover all the other transition 

actions between the ones with interest. The physical effort associated to each activity is 

primarily established, categorizing each one as light, moderate or vigorous. Therefore, the 

total time spent doing activities with a certain intensity is the time spent doing the activities 

labelled with that same intensity. Due to the available heart rate information, the mobile 

application allows defining a specific heart rate value, which if it is exceeded, an alarm is 

initiated. Besides this, it provides a summary of how much time the user spent in different 

heart rate zones, taking into account the normalization of the heart rate according to the rest 

and maximum values, i.e., an activity summary with the detailed activities performed and the 

associated physical effort. These summaries can be observed in Figure 17. 

 

                                                 
 
3 http://www.pamap.org/index.html 
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Figure 17: Example of the heart rate summary provided by the application (Reiss et al., 2012). 

Heart rate and activity monitoring has leaded to technology evolution. Recently, Bosch 

Sensortec4 launched two sensor hubs to collect vital signals based on heart rate and motion 

evaluation for fitness and well-being applications. These allow integrating data from different 

sensors and process them, which promotes battery consumption and improves performance. A 

third party company, the Firstbeat Company, provides the analytic software on-chip. The two 

chips, BHV250 and BHV160, integrate 3 and 6-axis inertial MEMS sensors, accelerometer, and 

the BHV160 also includes a gyroscope. The devices are Android-Wear compatible and they were 

specifically designed for sensor based always-on applications in wearable devices such as 

smartwatches, fitness wristbands, earphones, smart shoes and textiles. Hence, they are an 

ideal all-in-one-solution for sensor based applications such as fitness level and training effect 

analysis, sleep quality and body stress, tracking of physical activity and calorie consumption 

based on Firstbeat’s powerful vital analytics algorithms, and also sensor features like activity 

and gesture recognition. The system can be used to measure relevant body parameters in e-

health and telemedicine monitoring projects, where healthcare providers can monitor the 

progress of their patients through an e-health portal. 

The ECG Necklace5 device is a smart biomedical sensor that measures the ECG signal 

and also activity parameters from the human body, through two leads and a small device. This 

can analyse the signals in real time and transmit them to a user interface wirelessly. This 

technology is specifically designed for healthcare and research applications, measure relevant 

body parameters in e-health and telemedicine monitoring projects. The data provided by the 

system can be translated by algorithms into meaningful information for use in an app on a 

smartphone.  

The Kyma µ–cor6 is a system for monitoring of patients with chronic cardiac illnesses. 

Attached to the patients’ torso, it measures fluid trends in the thoracic region, performs heart 

and breathing rate measurement and also activity and body posture analysis. 

Rejiva7 is a wireless ECG based telemedicine and biofeedback patch that captures 

overall health, manages stress, tracks sleep and energy level. It measures ECG, Heart Rate and 

its variability, respiratory rate, sleep position, breathing Index, and energy Level to analyse 

the state of the Autonomic Nervous System. 

SecuraFone 8  is a device that combines remote monitoring of vital signs with GPS 

tracking and emergency response to deliver an individualized mobile health solution. It includes 

system-on-a-chip semiconductors, accelerometers, cloud-based computing and an app with a 

dashboard, where the user can understand the vital signs acquired by the SecuraPatch, which 

                                                 
 
4 https://www.bosch-sensortec.com/bst/products/all_products/bhv160 
5 http://www.maastrichtinstruments.nl/portfolio/ecg-necklace-body-area-network/ 
6 http://www.kyma-med.com/tech/solutions.html 
7 https://rijuven.com/ 
8 http://www.securafone.com/home/ 

http://www.eetsearch.com/search/?q=sensors
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is a wireless adhesive sensor that includes heart rate, respiration rate, body posture and 

temperature sensors. The SecuraFone Health can be configured to allow the caregiving team 

to access both real-time and historical data and to work with a 24/7 monitoring company that 

provides near-immediate emergency response to health and other events. 

Released in the end of 2015 by Reassure Analytics, CareMind9 is a new smartphone app 

that allows tracking the vitals of an elderly, making use of Fitbit Surge smartwatch. It takes 

advantage of Fitbit’s ability to share information with paired devices over Bluetooth 

connections to transmit activity levels, sleep and heart-rate patterns. This app can convey this 

information in something like real time, allowing it to send out alerts during some health crises 

and provide other notifications, making it ideal for cardiac patients and elderly. It allows to 

know the user heart rate, the time they woke up, last time they moved and also the number of 

steps token. It alerts when the heart rate is too low or too high, when the user has not moved 

for a long period of time, when abnormal sleep patterns are detected or there is a high risk of 

falling. The frequency with which the users sync the Fitbit will determine how often their data 

will refresh in the CareMind app. If the users have an Apple smartphone, it will periodically 

sync when the Fitbit and iPhone are near each other, but may require the user to occasionally 

open the Fitbit app. If they are using an Android smartphone, the Fitbit and their Android 

smartphone will automatically sync every 15 mins throughout the day as long as the devices are 

near each other. 

Olive10 is a bracelet, still in project phase, that uses a number of indicators to see if 

the user is under stress and how much, such as the heart rate, skin endurance, muscle tension 

and trends in skin temperature. It also analyses daily physical activities to see if they contribute 

to the stress, such as sleep or even exposure to light. When the bracelet detects higher than 

normal stress levels, it notifies the wearer through haptic feedback or LED lights on the wrist. 

Imec’s health patch system11 consists on an imec’s breakthrough health patch with a 

dedicated software. It includes an innovative approach to measuring accurate energy 

expenditure, computing the person’s individual cardiorespiratory fitness level to continuously 

calibrate the activity monitoring. It deduces the wearer’s cardiorespiratory fitness level from 

the heart rates at rest and during walking. The system stores the heart rate at rest and while 

walking (including walking speed). The normalization factor is recalculated every day, using 

the median values of the last week of heart rate data. That way, changes in cardiorespiratory 

fitness will be automatically reflected in changes in the normalized heart rate. This will at all 

times ensure an accurate monitoring of the energy expenditure. 

  

                                                 
 
9 http://www.caremindapp.com/ 
10 https://www.indiegogo.com/projects/olive-a-wearable-to-manage-stress#/ 
11 http://www2.imec.be/be_en/research/wearable-health-monitoring.html 
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3.1. System Architecture 
 

Monitoring means to be aware of the state of a specific system, observing a situation 

or condition for any changes which may occur over time. Cardiac monitoring usually refers to 

continuous electrocardiography with assessment of the patient’s condition relative to their 

cardiac rhythm. 

This projects aims to develop a system, as proof of concept, which allows both activity 

and heart rate monitoring, in a daily basis, in order to study the inter-combination between 

energy expenditure, speed or workload, activity and heart rate and generate alerts for 

abnormal heart rates. There are already plenty of devices developed for heart rate monitoring 

purposes, using as heart rate monitor ECG patches or chest straps, which are very 

uncomfortable and difficult to use in the quotidian. Therefore, the heart rate monitor should 

be comfortable and highly accurate, preferentially positioned at the wrist as a bracelet, in 

order to be comfortable enough to be used during all day. 

The activity data will be provided by the MoverLib (Teixeira et al., 2011), which is a 

Fraunhofer component that allows falls and activity monitoring that receives data from a 

smartphone’s built-in accelerometer, and classifies the type of activity being performed and 

its main characteristics, such as energy expended, distance, number of steps performed and 

speed. On the other hand, the smartwatch provides the heart rate data, acquired continuously 

from the wrist. 

The combination of both data is important for physical activity applications as an 

additional information of the human physical behaviour during the day. It could also be used to 

trigger alarms in case of abnormal heart rate values that have a negative impact on the person's 

health. It is also important to perceive some heart rate patterns that are influenced by physical 

activity. Taking into account the heart rate applications and its potential to improve activity 

monitoring, several system requirements were defined. The system should analyse the heart 

rate variability along the day and relate it to the activities and physical effort performed, 

studying the correlation between the energy expenditure, speed, physical effort and even 

stress with heart rate patterns and the autonomic nervous system balance. It should also 

evaluate the physical effort and the type of activity being performed, detecting if the heart 

rate is not normal for the physical effort required, detect abnormal situations and generate 

alerts for emergency situations. Besides this, it can also perform a daily summary with the time 

Chapter 3 

Research Methodology 
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spent in each cardiac zone, and the main activity and heart rate characteristics along the day. 

 
Figure 18: System Use Case Diagram. 

3.1.1. Hardware 

 

The system requires a heart rate monitor that is comfortable and accurate at the same 

time, preferentially positioned at the wrist. Moreover, it is desired that the monitor is capable 

of continuously reading the heart rate, in order to acquire all the important information. 

Further, the device should enable easy access to the all acquired data and the development of 

third parties applications. 

Taking into account the smartwatches and bracelets that are available on the market 

and according to preliminary tests performed in the previous work related with the Preparation 

of Dissertation Monography, which evaluated the precision and reliability of the smartwatches 

Fitbit Surge12, Samsung Gear S, Moto 360 and LG Watch R13, the main choice fell within the 

Fitbit Surge as heart rate monitor. Further, other features were taken into account in this 

choice, as the possibility to access the heart rate and other activity features data, and mainly 

the almost constant reading frequency. In turn, the other tested smartwatches provided a very 

low and non-constant reading frequency, which is not suitable for continuous heart rate 

monitoring because a lot of valuable heart rate information is lost. 

The Fitbit Surge is a smartwatch that measures the heart rate through the 

photoplethysmography principle. Its LED emits light that reflects onto the skin to detect blood 

volume changes due to the cardiac cycle. Is also tracks the number of steps taken, distance 

performed, calories burned, floors climbed, active minutes, hours slept and the time spent in 

each heart rate zone. The heart rate zone is defined using the estimated maximum heart rate 

(220-age): the Peak zone corresponds to heart rate values greater than 85% of HRmax; the 

Cardio zone corresponds to values between 70% and 84% of HRmax; the Fat Burn zone includes 

heart rate values between 50 and 69% of HRmax and finally; the Out of Range zone includes 

heart rate values below 50% of HRmax. The watch includes several sensors such as 3-axis 

accelerometer, which measures motion patterns and determines the steps taken, distance 

travelled, calories burned, active minutes and quality of sleep, an altimeter, which measures 

floors climbed, GPS, Bluetooth 4.0, an optical heart rate sensor, 3-axis gyroscope and 3-axis 

magnetometer. Fitbit Surge holds detailed minute-by-minute information for the most recent 

7 days, and 30 days of daily summaries. The heart rate data can be stored at one-second 

intervals resolution during exercise tracking and at five-second intervals at all other times. 

The Fitbit has an application programming interface that allows developers to interact 

with Fitbit data in their own applications, products or services. This data can be personal or 

                                                 
 
12 https://www.fitbit.com/surge 
13 http://www.lg.com/us/smart-watches/lg-W110-lg-watch-r 
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from other users. Any developer can build an application to access a Fitbit user’s data on their 

behalf, if the application is registered and authorized by the users to access the data. This is 

useful, for instance, to help a doctor tracking the patient’s health and behaviour throughout 

the day, by accessing his heart rate and other activity features. The Fitbit Web API uses the 

OAuth 2.0 protocol for user authorization, which enables applications to obtain limited access 

to user accounts on an HTTP service. The implicit code grant method is preferable over the 

authorization code grant flow since the token has a higher lifetime, which does not require a 

constant authorization by the user. The developed application redirects the user to Fitbit's 

authorization page. Upon user consent, Fitbit redirects the user back to the application's 

redirect URL with an access token as a URL fragment. In turn, the application stores the access 

token, which will be used to make requests to the Fitbit API. This token has a limited validation 

time of one year, therefore, each time the token is expired the application must refresh the 

access token. 

The smartwatch saves the heart rate data with a variable frequency, from every 1 to 

20 seconds, depending on the activity and effort required from the watch system. Therefore, 

the acquirement frequency cannot be defined, which becomes the data coordination such a 

challenge. 

To access the data acquired by the smartwatch, a specific library was built, with 

different classes to get specific structured JSON data objects from the server. It enables the 

access to data saved at one second level resolution, called intraday time series, daily 

summaries, which include a summary and list of a user's activities and activity log entries for a 

given day, or even the user’s profile data, including personal information such as birthdate, 

gender or height, among other features. 

The tracker syncs with Fitbit Server every 15 minutes if network connection is available 

and new data has been pushed. The tracker syncs with the Fitbit app every time the app is 

opened, or periodically throughout the day if the all-day sync option is turned on. 

The Fitbit Surge measures energy expenditure taking into account the basal metabolic 

rate, which is the rate at which an individual burns calories at rest in order to maintain body’s 

functions such as breathing, heartbeat, brain activity or digestion. This is estimated based on 

the individual’s gender, age, height and also weight. Further, the estimation of calories burnt 

takes also into account the activity recorder by the tracker, heart rate and other activities that 

might be logged into the system manually. The Fitbit Surge owns the PurePulse technology, 

developed by Fitbit, which uses heart rate data, when available, to more accurately estimating 

energy expenditure.  

Several studies have been performed to assess the Fitbit reliability, either in activity 

or heart rate monitoring (Alharbi et al., 2016; Jo & Dolezal, 2016; Paul et al., 2015). 

Cardiovascular researchers from the University of Sydney have found that Fitbit is a 

valid and reliable way of monitoring physical activity for cardiac patients (Alharbi et al., 2016). 

They discovered that Fitbit accurately identified whether patients met physical activity 

guideline recommendations, such as number of steps per day, offering valuable data for 

clinicians and researchers working in cardiac rehabilitation programs to monitor, evaluate and 

encourage their patient’s physical activity levels. It is important to assess physical activity in 

cardiac rehabilitation participants because they are more likely to have lower levels of activity. 

These individuals are often of older age and have conditions that cause symptoms such as chest 

discomfort, dizziness, shortness of breath and leg or arm discomfort. Therefore, Fitbit devices 

might be perfect to use in this population to help tracking theirs physical activity and to 

motivate sustained changes in moderate-intensity exercise. 

Moreover, physical activity features such as daily step counts and moderate vigorous 

minutes, measured though Fitbit-Flex14, which does not include heart rate monitor but includes 

                                                 
 
14 https://www.fitbit.com/flex 
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the same method to count steps and active minutes as the Fitbit Surge, were compared against 

Actigraph15 accelerometer (Alharbi et al., 2016). The results showed that Fitbit device was 

significantly correlated with Actigraph in measuring step counts and active minutes of light 

activity, moderate activity and moderate to vigorous physical activity. However it seemed to 

progressively overestimating the step count as the number of steps increased, which might be 

due the manufacturer definition of the intensity cut-off points or the placement of Fitbit on 

the wrist rather than the waist. Fitbit was also correlated with Actigraph for measuring all 

active minutes except during vigorous activity. Another work concluded that Fitbit was a valid, 

reliable and inexpensive alternative device for activity monitoring, suitable to predict 

attainment of physical activity guideline recommendations and monitoring physical activity in 

cardiac patients (Paul et al., 2015). Although some overestimation in step counter and active 

minutes might occurred, it was capable of continuously monitoring free-living conditions and 

providing valuable physical activity data for clinicians, individuals and researchers to track 

physical activity levels. 

Furthermore, the validity of the Fitbit Charge HR, which include the optical heart rate 

monitor, was evaluated (Militara et al., 2015). In this work, the possibility of the smart gadget 

Fitbit Charge HR being suitable for self-management and daily feedback in type 2 diabetes 

patients was studied. For that, researchers compared the heart rate monitoring values and the 

calories burnt, distance and speed against RunKeeper16, which is a mobile application that uses 

the phone’s built in accelerometer and GPS to track data. They concluded that the device 

presented an acceptable accuracy for the investigation. In a different study, the Fitbit Surge 

and Fitbit Charge HR were evaluated against a Zephyr Bioharness chest strap (Jo & Dolezal, 

2016), as performed in Chapter3. However, the obtained results were not positive. They 

concluded that the PurePulse technology exhibited an aggregate mean bias of 8.9 BPM and a 

mean absolute differential of 13.9 BPM when compared against Zephyr. Further, during higher 

exercise intensities, the mean bias was -16.8 and the mean absolute difference increased to 

19.2 BPM. 

Currently, there are several apps for daily monitoring that use Fitbit tracker to assess 

physical activity and also heart rate, as is the case of CareMind, as referred in Chapter 2.8.2. 

However, it has to be taken into account that Fitbit trackers are designed to provide 

meaningful data to users and help them reach their health and fitness goals, and are not 

intended to be scientific or medical devices. 

Besides the heart rate monitor, the system requires a smartphone with built-in sensor 

such as accelerometer, in order to acquire activity data that will be analysed and used to 

classify the activity being performed. 

Since the Fitbit does not allow to access the data in real-time, the possibility of using 

an Android Wear smartwatch was tested. However, none of the tested devices, which included 

Moto 360 and LG watch R, showed an acceptable behaviour. Further, it is not possible to 

establish a suitable and constant reading rate to perform a continuous monitoring with these 

devices. 

3.1.2. Software 

 

The activity monitoring will be performed by a developed library denominated Mover 

Lib. This library, developed by Fraunhofer AICOS, is useful for applications that are inserted in 

a lifestyle category, enabling activity level tracking and also helping the user to become more 

active. 

The Mover Lib reads data from the smartphone’s accelerometer, classifying ambulatory 

activities and postures of the user in real-time. It also computes the number of steps and speed 

                                                 
 
15 http://actigraphcorp.com/ 
16 https://runkeeper.com/ 
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of walking or running activities. The signals usually present a fixed sample frequency of 33.33 

Hz but when it is detected that the user is motionless, the sampling frequency is drastically 

decreased to 4 Hz (Aguiar et al., 2014; Teixeira et al., 2011). The output provided by the 3-

axis accelerometer of the smartphone is a continuous stream of acceleration vectors that is 

divided into segments of 5 seconds, using a total of 28 different signal components in the 

analysis and activity classification. For each signal component several features are calculated 

such as mean, median, maximum, minimum, root mean square, standard deviation, median 

deviation, interquartile range, energy, entropy, skewness and kurtosis are computed, making 

a total of 336 features for each time window (Aguiar et al., 2014). 

Currently, this system includes an energy expenditure estimation model that was 

validated against indirect calorimetry (Carneiro et al., 2015). The Indirect calorimetry is a 

standard measurement method of energy expenditure and it is based on the indirect measure 

of the heat expended by nutrients oxidation, which in turn is estimated by monitoring oxygen 

consumption and carbon dioxide production during a period of time. It consists in the collection 

of the inspired and expired gas, quantifying the volume and concentration of inspired oxygen 

and carbon dioxide (Carneiro et al., 2015). The energy expenditure model has been introduced 

by (Ryu et al., 2008) and it consists of two linear regressions of Metabolic Equivalents (METS) 

based on speed, one for walking and another for running. Thus, once a time window is classified 

as walking or running, a peak detector based step counter algorithm is executed in order to 

compute the total number of steps performed, from which speed is computed. Once an activity 

is classified, energy expenditure is calculated based on the activity recognition result, whose 

values of METS are computed from the equations in Table 2. 

 

Table 2: METS Estimation per activity type. 

Activity METS 

Run 0.00558 (
𝑘𝑐𝑎𝑙

𝑘𝑔 × 𝑘𝑚
) × 𝑠𝑝𝑒𝑒𝑑 (

𝑘𝑚

ℎ
) − 4.7 (

𝑘𝑐𝑎𝑙

𝑘𝑔 × ℎ
) 

Walk 0.00163 (
𝑘𝑐𝑎𝑙

𝑘𝑔 × 𝑘𝑚
) × 𝑠𝑝𝑒𝑒𝑑 (

𝑘𝑚

ℎ
) + 1.2 (

𝑘𝑐𝑎𝑙

𝑘𝑔 × ℎ
) 

Stand 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 1.2 𝑎𝑛𝑑 2.3 (
𝑘𝑐𝑎𝑙

𝑘𝑔 × ℎ
) 

Sit 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 1.0 𝑎𝑛𝑑 2.0 (
𝑘𝑐𝑎𝑙

𝑘𝑔 × ℎ
) 

Lay 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 0.95 𝑎𝑛𝑑 1.3 (
𝑘𝑐𝑎𝑙

𝑘𝑔 × ℎ
) 

 

The METS value of the postures vary linearly with the standard deviation of the 

accelerometer magnitude in a defined range of values. The energy expenditure estimation is 

calculated using the METS values, using the formula (3.1). 

 

 𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 (𝑘𝑐𝑎𝑙) = 1.05 × 𝑀𝐸𝑇𝑆 (
𝑘𝑐𝑎𝑙

𝑘𝑔 × ℎ
) × 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (ℎ) × 𝑊𝑒𝑖𝑔ℎ𝑡(𝑘𝑔) (3.1) 

 

As reported in (Carneiro et al., 2015) the actual model that is implemented does not 

adjust correctly the values of METs to the speed, even the real speed given is used instead of 

the calculated through the accelerometer data (Carneiro et al., 2015). Moreover, for high speed 

levels the step counter and stride length algorithms implemented do not allow enough speed 

estimation accuracy. 

Besides the Mover Library, the Fitbit App is required in order to synchronize the 

smartwatch data with the Fitbit Server.  
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Besides all the valuable data and advantages that the heart rate monitoring brings, 

allied to the activity monitoring, if a thorough analysis is performed to the current activity 

monitoring, some potential improvements can be detected. The heart rate data could be used 

to improve energy expenditure estimation, since it is proved that the combination of both 

activity and heart rate data leads to a better estimation than using just activity or heart rate 

date alone (Albinali et al., 2010; Altini et al., 2012). Further, it is desirable that a bigger 

number of different activities can be distinguished. For instance, the current system cannot 

distinguish between walking and ascending or descending stairs, which are entirely different 

activities. However, they are all interpreted as walking activities and the same MET value is 

attributed, although the physical effort required and the energy expenditure in each activity 

are completely different. Further, the heart rate data could be used to avoid abnormal heart 

rate values for the considered normal effort required by the activity performed, by comparing 

the normalized heart rate value with the range of normal values established for each activity 

type. Hence, the developed system constitution is represented in Figure 19. 

 
Figure 19: Component Diagram. 

 

 
Figure 20: System Deployment Diagram. 
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The system behaviour is represented on Figure 20. The Fitbit Surge sends the data to 

the Fitbit Application, which in turn, syncs the data with the Fitbit webserver, if the network 

communication is available. This data includes activity, heart rate and also personal user’s 

data. The developed app, which includes the Mover Lib to monitor and classify the activity 

performed by the user, access the Fitbit data through HTTPS requests to the Fitbit Webserver. 

For that, previous user’s authorization procedure should be performed, to get the access token 

needed to access the user’s data stored in the webserver, as represented in Figure 20. 

A service is responsible for gathering the data provided by the activity monitoring 

system and also by the smartwatch. The activity data is acquired every 5 seconds, using the 

Mover Lib, and it includes the activity classification, speed, distance, number of steps and also 

the energy expenditure, for the correspondent window. In turn, the access to the heart rate 

data is limited by the existence of network communication and synchronization method 

between the smartwatch and the webserver. 

3.2. Smartwatch Heart Rate measurement validity 
 

The use of wearable technologies has become increasingly popular among the common 

population and it is expected that about 99 million wearable fitness bands will be sold in 2019 

(El-Amrawy & Nounou, 2015). 

Nowadays, wearable activity trackers use photoplethysmography (PPG) techniques to 

measure heart rate, which is a non-invasive method for the heart rate detection and it is 

connected with the optical properties of vascular tissue using LEDs. Therefore PPG sensors use 

LED lights to shine directly into the skin and interact with changes in the blood volume 

(Delgado-Gonzalo et al., 2015b). The heart rate is determined based on that blood flow through 

the artery is inversely related to the amount of light refracted or absorbed, dependent on the 

site that the light detector is placed. PPG techniques using optical LED blood flow sensors have 

allowed heart rate monitoring devices to become increasingly popular, with many new models 

entering the market each year. The healthcare system is experiencing a revolution because of 

the use of these devices to provide a convenient continuous feedback. In turn, chest strap heart 

rate monitors, based on electrocardiography, have been considered as the standard for sports 

heart rate monitoring. These monitors typically have a correlation higher than 0.90 and a 

standard estimation error lower than 5 BPM during rest and moderate activity, which is 

considered sufficient for consumer sports use (Terbizan & Dolezal, 2002). However, they cause 

discomfort and complication of use, which has limited their popularity among consumers. 

Given the huge influx, interest, money and also the great potential that these devices 

present for the medical applications, validated research is needed to ensure that activity 

monitors accurately measure the heart rate under resting, light, moderate, and vigorous 

intensity conditions, because there has been little evaluation of their use, accuracy and 

precision. 

Similar works have been performed in order to access the smartwatches reliability, 

either the activity or the heart rate monitoring (Delgado-Gonzalo et al., 2015a, 2015b; El-

Amrawy & Nounou, 2015; Haavikko, 2014; Stahl et al., 2016). 

Researchers have tested several smartwatches (Scoche Rhythm17, Mio Alpha, Fitbit 

Charge HR18, TomTom Runner Cardio19, Microsoft Band20 and Basis Peak21) against the chest 

                                                 
 
17 http://www.scosche.com/rhythm+ 
18 https://www.fitbit.com/chargehr 
19 https://www.tomtom.com/pt_pt/sports/running/products/runner-sport-gps-watch/all-
black/ 
20 https://www.microsoft.com/microsoft-band/en-us 
21 http://www.mybasis.com/ 
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strap Polar RS40022 (Stahl et al., 2016). Fifty volunteers with age between 19 and 45 years old 

and sports habits were recruited. The devices were programmed with the participants' personal 

data before the protocol start. The protocol included a rest phase, where the heart rate was 

recorded every minute for 3 min, in the beginning and at the end. A treadmill phase was 

performed between the rest phases, which included walking and running at 3.2, 4.8, 6.4, 8.0, 

9.6 and 4.8 km/h for 5 min at each speed. A good criterion validity was found between all the 

monitors and the Polar HR monitor that was used as reference. Specially, the Fitbit Charge 

presented a mean of 105.00±30.6 BPM, compared with 109.06±29.3 BPM presented by the 

criterion measure. The highest percentage of error occurred, however, in the Fitbit Charge HR 

in the 3.2 (9.99%) and 6.4 km/h (10.06%) walking phase, respectively.  

 
Figure 21: Bland-Altman plot obtained in (Stahl et al., 2016). 

In another fitness trackers and smartwatches proved to be accurate for tracking step 

counts and heart rate (El-Amrawy & Nounou, 2015). The protocol included walking 200, 500 

and 1000 steps, which corresponded to thirty heart rate measurements, and each set was 

repeated 40 times. For this study, four healthy adults aged between 22 and 36 years old, were 

recruited. The positive controls used were a tally counter and Onyx Vantage 959023, for the 

step counting and heart rate, respectively. In this study, the accuracy and precision were 

calculated. Accuracy was defined as the closeness of measured values to the positive control, 

i.e., the percent by which measurements deviated from the average. In turn, the precision was 

defined as the coefficient of variability between the repeated measurements for each tracker. 

The accuracy and precision ranged from 99.9% (Apple Watch24) to 92.8% (Moto 36025) for 

accuracy and from 5.9% (Apple Watch) to 29.6% (Samsung Gear S26) for precision. In general, 

the devices tested were found to be relatively accurate and beneficial, helping solving many 

health problems. 

                                                 
 
22 http://www.polar.com/en/products/earlier_products/RS400 
23 http://www.nonin.com/Finger-Pulse-Oximeter/Onyx-Vantage-9590 
24 http://www.apple.com/watch/health-and-fitness/ 
25 http://www.motorola.com/us/products/moto-360 
26 http://www.samsung.com/global/microsite/gears/ 
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Figure 22: Results obtained in (El-Amrawy & Nounou, 2015). 

The accuracy and reliability of PulseOn27 technology was evaluated against ECG-derived 

heart rate in laboratory conditions during a wide range of physical activities and also during 

outdoor sports (Delgado-Gonzalo et al., 2015b). They also compared the performance to 

another on-the-shelf wrist-worn consumer product Mio LINK. The results showed a PulseOn 

reliability of about 94.5%, which was defined as the % of time with error <10 BPM, and an 

accuracy of 96.6%. In turn, the Mio Link 28  86.6% and 94.4%, for reliability and accuracy, 

respectively. The results showed that PulseOn smartwatch provides reliability and accuracy 

similar to traditional chest strap ECG HR monitors during cardiovascular exercise. All data was 

linearly interpolated to the match PulseOn’s HR monitor operation frequency and averaged 

over 5seconds windows. This device’s performance was also tested in another work, under 

controlled laboratory conditions with 20 subjects (Haavikko, 2014). A Polar heart rate chest 

strap and a Firstbeat Bodyguard 229 Holter monitor were used as reference. Before the protocol, 

the devices were set up, but also there was a three-minute waiting period after all the devices 

were turned on. The protocol included periods of rest and activities of varying intensities such 

as walking and running at different speeds and cycling. To make the readings comparable, the 

average heart rate value over a five second time window was taken to represent the device 

over time. Here, the results showed that the PulseOn device had a good accuracy, being in the 

same heart rate zones as the reference device, and the calculated errors were decent enough 

since the device showed correct readings during most part of the test. In this study, the 

reliability measure was defined as the percentage of number of data point pairs where the 

error between the PulseOn device and the reference is less than 5 or 10 beats per minute. The 

PulseOn device presented an average reliability value of 90.40%. 

Finally, the performance of Mio Alpha and Scosche Rhythm against an ECG reference, 

with a similar protocol, was also evaluated (Parak & Korhonen, 2014b). Their results showed 

that the devices had reliability values of 87.49 % and 86.26 %, and mean absolute errors of 4.43 

BPM and 6.82 BPM, respectively. In the processing phase, the signals were smoothed by a 

moving average of 5 seconds window. 

  

                                                 
 
27 http://euro.pulseon.com/support 
28 http://www.mioglobal.com/Mio-Link-heart-rate-wristband/Product.aspx 
29 http://shop.firstbeat.com/all-products/bodyguard.html#.V103VfkrLIU 
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3.2.1. Material and Methods 

 

The smartwatch tested was the Fitbit Surge, since it was the chosen heart rate monitor 

to include in the proof of concept developed system and there is little investigation about its 

heart rate monitoring validity and error. As comparison device, the Zephyr Bioharness 330 was 

the chosen due its validity against a 3-Lead ECG (Johnstone et al., 2012; Systems, 2012). The 

Bioharness 3 was worn against the skin by each participant via an elasticated strap attached 

around the chest. The monitoring device attaches on to the strap and acts a data logger or 

transmitter, measuring five variables simultaneously. Before the beginning of every test, the 

chest strap was adjusted to the subject’s chest perimeter. The smartwatch was used on the 

left wrist. A visual inspection of the wrist and forearm was conducted so the watch was 

correctly fitted, according to the manual specifications. 

 

Table 3: Zephyr Bioharness Accuracy (Zephyr, 2012). 

Accuracy (BPM) Activity Level % of time Max deviation (BPM) 

±1 Laboratory – ECG emulator 100 1 

±2 Low activity (static) 99 5 

±3 Moderate activity (walk/jog) 95 5 

±3 High activity (run) 95 10 

 

The test included rest and different dynamic intensities, in order to simulate daily 

activities (Table 5). Furthermore, the protocol was repeated on another day, in order to ensure 

repeatability. The activities were manually annotated and the volunteers also used a system 

solution that includes an accelerometer and a recorder application that saves this data to 

posteriorly analysis. The heart rate at rest was considered as the minimum heart rate achieved 

in the first sitting task, in order to set the baseline. The Zephyr Bioharness 3 saves the heart 

rate data at frequency of 1 Hz. In turn, the Fitbit Surge saves the data at a variable frequency 

from 1/3 to 1 Hz. Therefore, both signals were synchronized through the timestamp and only 

the data whose timestamp was present in both signals was taken into account. 

The test group, with an average age of 25.6±2.1 years old, consisted on N=8 healthy 

volunteers, from which 5 are men and 3 are women (see Table I). 

The heart rate signals analysis was performed using Pycharm IDE. Bland Altman analysis 

was performed using IBM-IPSS version 23. 

 

Table 4: Subjects' characterization. 

Subjects Gender Age HR max HR rest 

Subject 1 M 29 191 75 

Subject 2 M 29 191 54 

Subject 3 M 26 194 80 

Subject 4 F 23 197 62 

Subject 5 M 27 193 61 

Subject 6 M 24 196 48 

Subject 7 F 25 195 70 

Subject 8 F 22 198 74 

  

                                                 
 
30 https://www.zephyranywhere.com/products/bioharness-3 



45 
 
 

3.2.2. Evaluation  

 

The heart rate measurement performance was estimated by the device’s accuracy and 

reliability. Reliability, was considered as the % of samples in which the absolute error is smaller 

than 10 BPM, whereas the accuracy consisted in the complement of the relative error (i.e., 

100% - mean absolute percentage error). The reliability provides a measure of the amount of 

time the system is working within an acceptable confidence interval. The 10 BPM error 

threshold was chosen to represent a level that is adequate for consumer sports device for 

typical recreational use, providing the error committed by the system at any time (Delgado-

Gonzalo et al., 2015b). The concordance analysis was performed with the application of a 5 

seconds moving average window, as referenced in (Delgado-Gonzalo et al., 2015b; Parak & 

Korhonen, 2014b). For that, the Fitbit Surge signal was linearly interpolated to overcome the 

non-constant reading frequency. 

According to (Bland & Altman, 1999), methods that are designed to measure the same 

parameter must have good correlation, which is not synonymous of agreement. The correlation 

coefficient does not assess agreement but association, which is very different. Perfect 

agreement occurs when both measurements lie perfectly along the line of equality. In turn, 

poor agreement can produce quite high correlation. Agreement between two different methods 

of clinical measurement can be quantified using the differences between measurements using 

the two methods on the same subjects. The 95% limits of agreement are estimated by mean 

difference ±1.96 standard deviation of the differences, and they provide an interval within 

which 95% of differences between measurements by the two methods are expected to lie (Bland 

& Altman, 1999). In the case of a reliable measure, 95% of the value points should lie between 

these limits. 

The relative reliability between test and retest was evaluated with Intra-Class 

Coefficient (ICC) model (3, k), as defined in (Shrout & Fleiss, 1979), which takes both systematic 

and random errors in the data into account and uses the mean scores of repeated tests as 

evaluation score. Hence, and as referenced in (Bruton et al., 2000), ICC scores equal or larger 

than 0.75 correspond to an excellent relative reliability, an ICC score between 0.4 and 0.75 is 

known to correspond to a good relative reliability and finally, an ICC score lower than 0.4 is 

considered as poor relative reliability  

The visual assessment of reliability was carried out using Bland-Altman plots: the plot 

of the average of two measurements by the difference among two measurements provides a 

qualitative estimate of absolute reliability. Mean differences should be close to zero to 

demonstrate agreement. 

 

Table 5: Testing Laboratory Protocol and durations. 

Protocol Task Duration (min) Starting time 

Sitting at rest 1 00:00 

Standing still 1 01:00 

Walking 3.5 km/h 0% inclination 2 02:00 

Walking 3.5 km/h 10% inclination 2 04:00 

Walking 5 km/h 10% inclination 2 06:00 

Running 8 km/h 0% inclination 2 08:00 

Running 8 km/h 10% inclination 2 10:00 

Sitting at rest 1 12:00 

Ascending Stairs 0,5 13:00 

Descending Stairs 0,5 13:30 

Total Duration 14 
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3.3. Datasets 
 

In order to study the relationship between the heart rate variability patterns and the 

activity being performed, speed and energy expenditure, public datasets and some acquired 

datasets were used, with different purposes and methods.  

The public datasets used, which included both activity and heart rate data, were PAMAP 

and PAMAP2. The PAMAP dataset was recorded with an early system prototype developed in 

the PAMAP (Physical Activity Monitoring for Aging People) project, in August 2010, where wired 

3D-IMUs and a heart rate monitor were used as sensors (“PAMAP.ORG,” n.d.). Eight volunteers, 

with an average age of 27.9±1.9 and from which 7 are men and 1 is woman, were subjected to 

a predefined data collection protocol of about one hour each, which makes approximately 8 

hours of data that was collected. In turn, the PAMAP2 dataset was recorded in autumn 2011. It 

includes data from 9 volunteers subjects, with an average age of 27.2±2.7 and from which 8 

are men and 1 is woman, wearing 3 IMUs31 and a heart rate monitor32, and performing 18 

different activities. Over 10 hours of data were collected altogether, from which nearly 8 hours 

were labelled as one of different 18 activities. Both datasets have been made publicly available 

for research purposes, and can be downloaded33. These datasets include outdoor activities, 

such as walking, running, cycling, playing soccer and rope jumping, and also indoor activities 

such as lying, sitting, standing, vacuum cleaning, ironing and ascending/descending five flights 

of stairs. It also includes transient activities that consist in going from one location to the next 

activity’s location, waiting for the preparation of some equipment. The detailed description of 

each activity performed is presented in Table B1. 

In order to study the possibility to use the smartwatch heart rate signal to infer about 

stress states, three subjects, aged between 22 and 25 years old, wore the Fitbit smartwatch 

and a smartphone, to record the heart rate and the activity data, respectively, during several 

days, in order to record some possible stressful daily situations. The heart rate data was 

posteriorly accessed through the developed API protocol library, which enables the access to 

the heart rate data that the Fitbit syncs to its server. To record de activity data, it was used 

an application that records the accelerometer data that was already developed at Fraunhofer, 

in order to create an annotated dataset. This data was posteriorly analysed by a proper library 

that classified the activities. The smartphone was always placed on the pocket and the 

recording was performed with an execution with 5 seconds delay before starting, to enable the 

users to place the phone in the pocket and stabilize it. Both data was synchronized through the 

timestamp. Daily basis activities were performed and stressful situations were manually 

annotated. These last include work, car traffic or public presentations. 

In order to study the combination between heart rate and energy expenditure, it was 

also used a dataset acquired during a previous validation procedure (Carneiro et al., 2015). In 

this test, three models were compared with indirect calorimetry outputs of energy expenditure 

during an incremental speed treadmill protocol. During the test, it was measured the maximum 

volume of oxygen consumption, accelerometer and heart rate data. The method used as ground 

truth was the indirect calorimetry, with the oximeter Jaeger Oxycon Pro Metabolic Cart TM34, 

which measures the concentration of expiration gases in intervals of 5 seconds. The performed 

protocol consisted in a maximal incremental treadmill protocol starting with a 2 minutes warm-

up phase at 4 km/h, followed by speed increase to 6 km/h for 1 minute and subsequent 

increases of 1 km/h, each level lasting for 1 minute. The tests were carried out using one 

                                                 
 
31 http://trivisio.com/index.php/products/motiontracking/colibriwireless 
32 http://bm-innovations.com/index.php/shop_products.html 
33 http://www.pamap.org/index.html 
34 http://www.carefusion.com/our-products/respiratory-care/metabolic-carts/oxycon-
mobile-device 
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smartphone attached to the left side of the belt and another to the right side of the belt of 

each subject. Further, during the tests the subjects also wore an oronasal mask 7450 Series V2 

Mask35 with flow sensor for gas collection and analysis. The heart rate data was acquired 

through the chest strap Polar Wearlink36, which was sent through Bluetooth and synchronized 

with the oximeter data. Each subject performed the test on the treadmill until volitional 

exhaustion was reached. The real number of steps was manually annotated using a tap counter 

application for smartphones and the total distance was obtained from the treadmill. Moreover, 

in order to differentiate between walk and run activities, the time when the subject started to 

run was manually annotated. The group was composed of 13 subjects, 12 females and 1 male, 

with an average age of 33.2±9.1 years, average height of 161.2±4.8 cm and an average weight 

of 56.2±3.1kg. The total number of samples were initially 26, two per subject, but one subject 

was rejected due to an interruption during the acquisition, resulting in 24 valid samples. 

 

3.4. Heart Rate and Activity Analysis 

3.4.1. Heart Rate Variability and activity patterns 

 

The collected datasets, with heart rate and annotated activity data, were analysed 

using the standard heart rate variability measures, referenced in Chapter 2.4. This approach 

allowed to obtain more insights about the relationship between activity and heart rate and to 

detect potential heart rate variability patterns to discriminate activities. 

The time-frequency domain analysis was performed using the MatLab® R2013a and the 

developed HRVAS tool box (Ramshur, 2010). The heart rate data was pre-processed, excluding 

ectopic beats, followed by a cubic spline interpolation at 2Hz, to assume equidistant sampling 

and calculate the spectrum directly from the inter-beat interval tachogram. The time-

frequency transforms were applied using time windows from 30 to 60 seconds, depending on 

the activity performed, so the heart rate variability changes could be properly detected, and 

an overlap of 15 seconds. The time-frequency transforms applied included the Wavelet 

Transform and Lomb-Scargle Periodogram, as explained in Chapter 2.4.4. 

Regarding the time-domain heart rate variability analysis, this one was performed using 

Pycharm. The calculated time-domain parameters included the RMSSD, SDNN, mean heart rate, 

mean inter-beat interval duration, as explained in Chapter 2.4.2, and mean variation speed 

between consecutive intervals. This last feature was calculated because the heart rate data 

provided by the smartwatch was not acquired at a constant frequency. Hence, in order to 

normalize the variation between consecutive intervals, the heart rate signal was resampled at 

a 1/3 Hz frequency, using cubic spline interpolation. Further, a sliding window of 100 samples, 

which corresponds to the standard 5 minutes short-term analysis, was applied to the signal, in 

order to capture the time domain heart rate variability behaviour over time. 

For the stress state detection test, the same time-domain heart rate variability 

methodology was applied, so the algorithm proposed in (Yang et al., 2008) could be tested. 

  

                                                 
 
35 http://www.rudolphkc.com/product_detail.php?id=181 
36 http://support.polar.com/us-
en/support/Polar_WearLink___Transmitter_with_Bluetooth__Compatibility 
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3.4.2. Relationship between heart rate and energy expenditure 

 

In order to confirm that the heart rate data is useful to estimate energy expenditure 

and that when combined with activity data, the estimation is improved, some already 

developed models were tested against the current model that is employed in the activity 

monitoring system.  

The similarity between the results obtained by the algorithms and the reference values 

was determined by calculating the normalized root mean square error (NRMSE) value between 

the datasets. The NRMSE can be obtained by dividing the root mean square error (RMSE) by the 

mean of the observed data. 

 

 𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑐𝑎𝑙𝑐,𝑖)
2𝑛

𝑖=1

𝑛
 (3.2) 

 

 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑋𝑜𝑏𝑠
̅̅ ̅̅ ̅̅

 
(3.3) 

 

Since the dataset used to perform this study included already the computed energy 

expenditure estimation for each 5 seconds windows, instead of the raw accelerometer data, 

the algorithm chosen to combine the activity and heart rate data should allow including both 

data contribution by establishing a weight factor for each one. This way, the model already 

used for the energy expenditure estimation using smartphone’s accelerometer could be 

combined with another model that uses the heart rate data.  

Hence, in this procedure an energy expenditure estimation model through heart rate 

was combined with the activity based energy expenditure estimation model, which was 

suggested by (Ryu et al., 2008), following the branch model algorithm proposed by (Søren Brage 

et al., 2004) and adapted by camntech (Camntech, 2013; Crouter et al., 2008). In the case of 

using both activity and heart rate data, there is a heart rate value below which the linear 

relationship between heart rate and energy expenditure no longer holds. This is referred as the 

Flex Point and it has been used to distinguish between resting energy expenditure and energy 

expended during physical activity, and it was initially defined as the average of the highest 

heart rate value during rest and the lowest heart rate value during incremental exercise, 

performed during a treadmill test (Camntech, 2013). If the heart rate value is above this Flex 

Point, the energy expenditure is predicted using a regression line. A suggested multi-linear 

regression equation that was derived and expressed in terms of both activity counts and heart 

rate values is presented in Figure 23 (Søren Brage et al., 2004). P1, P2, P3 and P4 are weighting 

factors, X refers to the accelerometer counts, which is used to discriminate between activity 

and rest. Y and Z behave as heart rate thresholds in the presence and absence of activity, 

respectively. Y is used to discriminate between walking and running activities and Z is used to 

discriminate between the existence of movement or not during inactive states. During running 

the heart rate is a very reliable measure of energy expenditure whereas activity, measured by 

vertical acceleration, is less reliable since during running the latter does not increase linearly 

with speed. Further, when running at high speeds, the accelerometer usually reaches a 

maximum range value which leads to signal saturation. This is reflected by the high value of 

the weighting factor relative to the heart rate-energy expenditure relationship. In turn, the 

heart rate is a poor measure during resting activities whereas movement registration is more 

reliable, and this is reflected by a relatively low value of weighting factor relative to the heart 

rate-energy expenditure relationship. In boxes 2 and 3 movement and heart rate are equally 

weighted. The weight factors and the other parameters values were derived by walking and 

running on a treadmill in studies described in (S Brage et al., 2005; Crouter et al., 2008), 
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conducted with the Actiheart37, and are currently included in the Actiheart energy expenditure 

analysis because they are believed to be reasonably valid for free living conditions (P1 value= 

0.9, P2 value=0.5, P3 value=0.5, P4 value=0.1). Further, transition HRaS, which is the average 

heart rate above sleeping between the highest walking and slowest jogging, was used to decide 

if equation 1 or 2 should be applied, was defined as 80 BPM (Crouter et al., 2008). The Y 

parameter was calculated by adding the transition HRaS to the sleeping heart rate. 

Since the data provided did not include the heart rate measurement at rest but the age 

and the maximum oxygen volume, this one was estimated with a prediction equation, suggested 

by (Uth et al., 2004), using theoretical maximum heart rate value and the maximum oxygen 

volume consumption. 

 

 𝑉𝑂2𝑚𝑎𝑥 ≅ 15,3 ×
𝐻𝑅𝑚𝑎𝑥

𝐻𝑅𝑟𝑒𝑠𝑡
 (3.4) 

 

This model was adapted, using the activity based model introduced by (Ryu et al., 2008) 

as the relationship between the activity and energy expenditure, and the model introduced by 

(Charlot et al., 2014) as the relationship between the heart rate and energy expenditure. Since 

the data used only includes walking and running activities, only the boxes 1 and 2, from the 

scheme, were used. 

Other energy expenditure estimation models that use heart rate data were tested, as 

was the case of the case of the model proposed by (Keytel et al., 2005), with and without 

VO2max, and the one proposed by Actiheart (Crouter et al., 2008). However, these algorithms 

showed a poor performance. 

 
Figure 23: Branched equation model, suggested by (Søren Brage et al., 2004) and adapted by camntech 

(Camntech, 2013). 

The model equation that was chosen to include in the combining method, and proposed 

by (Charlot et al., 2014), includes the heart rate value, height, weight, gender, resting heart 

rate and theoretical maximum heart rate, assuming that the heart rate at rest is an acceptable 

index of fitness level. According to the results obtained in (Charlot et al., 2014), the basic 

equation (3.5) proved to be accurate and to have a good correlation with indirect calorimetry. 

Besides this basic equation, Charlot et al. proposed also other equations that include 

parameters determined in laboratory environment, such as maximum oxygen volume, real 

maximum heart rate, running speed and speed at VO2max (3.6). Although in the study 

performed by (Charlot et al., 2014) the equations that include running speed showed the best 

                                                 
 
37 https://www.camntech.com/products/actiheart/actiheart-overview 
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performance, one of these equation does not include the heart rate value and the other had a 

worst performance when applied to the data, when compared to the basic model and the one 

which includes VO2max data. 

 
 

 

𝐸𝐸 (
𝐾𝑐𝑎𝑙

ℎ
) = 171,62 + 6,87 × 𝐻𝑅(𝑏𝑝𝑚) + 3,99 × 𝐻𝑒𝑖𝑔ℎ𝑡(𝑐𝑚) + 2,30 × 𝑊𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)

− 1,39 × 𝐺𝑒𝑛𝑑𝑒𝑟(1 = 𝑀, 2 = 𝐹) − 4,26 × 𝐻𝑅𝑟𝑒𝑠𝑡(𝑏𝑝𝑚) − 4,87 × 𝑇

− 𝐻𝑅𝑚𝑎𝑥(𝑏𝑝𝑚) 

 

(3.5) 

 
𝐸𝐸 (

𝐾𝑐𝑎𝑙

ℎ
) = 738,90 + 6,89 ×  𝐻𝑅(𝑏𝑝𝑚) + 5,48 × 𝑊𝑒𝑖𝑔ℎ𝑡(𝑘𝑔) − 2,81

× 𝐻𝑅𝑟𝑒𝑠𝑡(𝑏𝑝𝑚) − 9,50 × 𝑅 − 𝐻𝑅𝑚𝑎𝑥(𝑏𝑝𝑚) + 32,31 × 𝑆 − 𝑉𝑂2𝑚𝑎𝑥 

(3.6) 

 

Moreover, the same combined HR-activity based algorithm, but using the activity 

classification as method to decide which weight factors to attribute to each heart rate or 

accelerometer model, instead of using the heart rate above sleep (HRaS) value as threshold, 

was also tested. 
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4.1. Smartwatch Heart Rate Validity Reliability Test 
 

Since the heart rate data acquired does not follow a normal distribution, the Wilcoxon 

Signed Ranked Test, which is a non-parametric test for paired data, was applied on data, from 

all the participants, from both test and retest. Further, it was also evaluated the Pearson 

correlation. This analysis is depicted in Table 6. 

 

Table 6: Evaluation of the statistical difference between Fitbit Surge and Zephyr Bioharness 3, using data 

from all the participants in test and retest. 

Statistical Measure Corr (r2) Wilcoxon test p-value 

Value 
Test 0.95 p<0.05 

Retest 0.96 p<0.05 

 

The accuracy and reliability results, for each subject and also for test and retest, are 

presented in Table 7. The results regarding the test-retest reliability are presented in Table 8. 

The p-values computed in paired t-test, its 95% confidence interval boundaries and ICC scores 

to evaluate relative reliability are presented. 

 

Table 7: Accuracy and Reliability results for each subject, for test and retest. 

Subject Accuracy (%) Reliability (%) 

test retest test retest 

1 90.66 95.45 54.98 71.73 

2 94.38 95.90 85.20 93.85 

3 97.34 95.04 97.26 84.30 

4 89.40 89.82 36.80 47.98 

5 96.62 92.38 92.10 55.49 

6 96.22 95.03 95.64 89.17 

7 96.98 94.23 92.04 72.34 

8 91.62 91.73 52.64 84.64 

Average 94.15 93.45 75.83 74.94 

Chapter 4 

Results and Discussion 
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Table 8: Test-retest reliability of the accuracy and reliability assessments. 

Assessments 
Mean ± SD 

Test 

Mean ± SD 

Retest 

Mean ± SD 

Diff 

p-

Value 

95% CI of Diff  
ICC 

Lower Upper 

Accuracy 94.15± 3.16 93.70±2.15 0.46±2.83 p>0.05 -1.91 2.82 0.65 

Reliability 75.83±23.79 74.94±16.32 0.90±22.16 p>0.05 -17.63 19.42 0.61 

 

 
Figure 24: Bland-Altman plot comparing the chest strap-obtained RR intervals to the Fitbit-obtained RR 

intervals, for all the subjects’ protocol data. The confidence interval µ±1.96𝜎 is represented by the dashed 

lines. Left: test (N=7058). Right: retest (N=6885).  

 
Figure 25: Bland-Altman plot comparing the chest strap-obtained RR intervals to the Fitbit-obtained RR 

intervals, for all the subjects’ sitting data. The confidence interval µ±1.96𝜎 is represented by the dashed 

lines. Left: test (N=920). Right: retest (N=870). 
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Figure 26: Bland-Altman plot comparing the chest strap-obtained RR intervals to the Fitbit-obtained RR 

intervals, for all the subjects’ standing data. The confidence interval µ±1.96𝜎 is represented by the dashed 

lines. Left: test (N=478). Right: retest (N=420).  

 

Figure 27: Bland-Altman plot comparing the chest strap-obtained RR intervals to the Fitbit-obtained RR 

intervals, for all the subjects’ walking data. The confidence interval µ±1.96𝜎 is represented by the dashed 

lines. Left: test (N=2880). Right: retest (N=2824). 

 
Figure 28: Bland-Altman plot comparing the chest strap-obtained RR intervals to the Fitbit-obtained RR 

intervals, for all the subjects’ running data. The confidence interval µ±1.96𝜎 is represented by the dashed 

lines. Left: test (N=1880). Right: retest (N=1920). 
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Figure 29: Bland-Altman plot comparing the chest strap-obtained RR intervals to the Fitbit-obtained RR 

intervals, for all the subjects’ ascending and descending stairs data. The confidence interval µ±1.96𝜎 is 

represented by the dashed lines. Left: test (N=858). Right: retest (N=852). 

 

Figure 30: Some results obtained: Comparison between the chest strap and smartwatch heart rate signals. 

Above: Good performance. Middle: Good performance. Bottom: Failure. 
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Globally, the heart rate signal provided by the Fitbit Surge smartwatch was concordant 

with the signal provided by the chest strap. 

Figure 30 evidences some of the obtained results per subject, while the Table A1 and 

Table A2 present the results per both subject and activity type. In average the accuracy of the 

smartwatch was acceptable for the tested subjects, although the reliability should be better in 

some cases. Figure 30 compares some of the signals provided by the chest strap and the 

smartwatch for three of the participants of this study. In the majority of the cases the signals 

are practically concordant with the chest strap. However, there are cases where the error 

between the two signals is not acceptable for reliability purposes. 

As observed, although the Pearson Correlation coefficients reached 0.95 and 0.96 in 

test and retest, respectively, when applying the Wilcoxon Signed Rank statistical test for a 

significance level of 5%, there are significant differences between the values provided by the 

chest strap and the smartwatch. 

Figure 24 shows the Bland-Altman plots with all the subjects’ protocol data, while 

Figure 25, Figure 26, Figure 27, Figure 28 and Figure 29 show the Bland-Altman plots with data 

relative to sitting, standing, walking, running and climbing/down stairs activity, respectively. 

Observing these plots, it can be concluded that the walking activity presented the greater 

dispersion. However, it must be noticed that the number of samples regarding the walking 

activity is the higher, and consequently, the most propitious to dispersion. Furthermore, and 

according to Bland-Altman, both devices agreed in most part of the tests, with the majority of 

data being between the 95% limits of agreement (Bland & Altman, 1999). 

It should be noted that the chest strap signal presented high variance along the time. 

There are possible reasons for increased data variance from the Bioharness 3, mainly at higher 

velocities. The correct heart rate measurement using chest straps, with mounted biopotential 

electrodes, is reliant on a constant close connection with the performer’s chest. It is posited 

that physical activity at higher velocities is associated with possible breaks in connection with 

the performer’s chest, increasing movement artefacts linked to chest strap instability or noise, 

all of which may intermittently corrupt the heart rate data provided (Johnstone et al., 2012). 

Therefore, and although the chest straps are considered as a standard heart rate measure 

method in sports field, these motion artefacts should be taken into account. In turn, the optical 

sensor from the smartwatch is susceptible to outside light errors sources and the wrist blood 

vessels expression might vary with the subjects, being very prone to movement artefacts. 

The results obtained in this study can be compared to results from other publications. 

The validity of seven commercial heart rate chest straps, including two Polar chest straps, 

which use the traditional measurement of electric potential on the skin surface, was assessed 

(Terbizan & Dolezal, 2002). Their measurements were performed in four different conditions 

for a duration of ten seconds, in which one was during rest, and the remaining three were on 

a treadmill. Their criterion for a valid measurement reading was that the correlation should be 

over 90 %, and the standard error of estimate less than 5 BPM. The results showed that none of 

the devices gave a valid reading according to these restrictions when it came to the fastest 

speed on the treadmill, which was about 9.6 km/h. Four of the devices, including the Polar 

chest straps, filled the criterions on the slower speeds and rest, and one of the devices was 

valid during the first two speeds, but failed during the rest period, and the remaining two 

measurement devices, failed to achieve the limits completely in any situation. Moreover, and 

as above mentioned, the performances of Mio Alpha and Scosche Rhythm were evaluated 

against an ECG reference with a similar measurement protocol (Parak & Korhonen, 2014b). 

Their results showed that the devices had 10 % reliabilities of 87.49% and 86.26%, and mean 

absolute errors of 4.43 BPM and 6.82 BPM, respectively. Taking other studies relative to other 

smartwatches, the results obtained in (Delgado-Gonzalo et al., 2015b) showed that the 

PulseOn’s mean reliability was about 94.5% with an accuracy of 96.6%, opposed to 86.6% and 

94.3% of Mio LINK. Furthermore, in another work it has also been studied the PulseOn accuracy 

and reliability, showing an average value of 90.40% for reliability (Haavikko, 2014). Comparing 
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the results obtained in this study, it can be concluded that the Fitbit Surge presented an 

accuracy similar to the presented in literature but a lower reliability (reliability=75.39%, 

accuracy=93.80%, mean error=4.21 BPM, mean absolute error=7.22 BPM). Although the mean 

error and mean absolute error are higher but close to the ones presented by (Delgado-Gonzalo 

et al., 2015a; Parak & Korhonen, 2014a) and the accuracy values are within the range present 

in literature, the reliability values are still below the values mentioned above. 

As it can be observed, the individuals that showed poor results in the first tests, had 

also poor results in the retest. Hence, and regarding the test-retest results, a p-value of the 

paired t-test higher than 0.05 and the presence of zero value inside of the 95% CI indicate that 

there are no significant differences between the scores obtained in test and retest procedures. 

Both accuracy and reliability demonstrated good retest reliability with ICC of 0.65 and 0.61, 

respectively. 

There are some reasons that might explain the difference, besides the obvious 

dissimilarities in the measuring technology, which include the measurement device to which 

the readings are compared. In (Delgado-Gonzalo et al., 2015b) and (Haavikko, 2014) the 

comparing device chosen was a Polar chest strap and in (Parak & Korhonen, 2014b) the results 

presented refer to Embla Titanium38 multi-parameter wearable recorder. In this study, the 

Zephyr Bioharness 3 was chosen to be the comparing device, but we must keep in mind all the 

time that this reference doesn’t tell the exact truth. Further, anatomical issues might also have 

influenced the results. Since the devices used were the same size for everyone, and although 

they give the user the possibility to adjust the size to the body, the volunteers that participated 

in the test present different morphologies. Hence, the devices might have adjusted better to 

some volunteer than others. Although the smartwatch positioning was carefully inspected, each 

volunteer placed on himself the chest strap, according to instructions present in the manual, 

which might represent an error source. 

These results showed that the Fitbit Surge device had a good accuracy and acceptable 

reliability. It must be noticed that one reliability measure is acceptable depending on the 

purpose for which the device is intended to be used. In fact, this device is not suitable to 

behave as a medical device and to perform heart rate monitoring in cardiac patients, since the 

error that is associated with the smartwatch could make the difference in the patient’s status. 

However, this reliability value could be acceptable for heart rate monitoring of people that 

intend to follow an active and healthy lifestyle. For this purpose, the values provided by the 

smartwatch can be very useful in order to provide the user an idea of its lifestyle assessment, 

taking always into account that these kind of devices are gadgets that were not built for medical 

purposes and that they might present, as expected, higher error values than the medical ones. 

Therefore, the calculated errors were decent enough to have the device showing correct 

readings most of the time during normal use. Moreover, the results show that the device 

provides results with some repeatability, giving, though, some credibility to use it in a daily 

basis. 

The ideal device would be able to record the heart rate from any individual in every 

condition, which is an impossible task considering that each subject is a unique black box with 

many unknown parameters that should be known completely to get the perfect reading every 

time. 

In average, the heart rate values were correlated, with differences up to 20 BPM, but 

with Fitbit showing a slightly lower heart rate value. Further, some problems were observed at 

sudden transitions of activity intensity, with the Fitbit responding a bit late to the pace change, 

and with high intensity activities, where in some cases it did not follow the heart rate increase 

to theirs peak values. 

                                                 
 
38 http://www.stowood.co.uk/Brochures/Embla%20Titanium%20Brochure.pdf 
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The number of volunteers that have participated in this study is considered low, when 

compared to the number of volunteers in other similar tests (Delgado-Gonzalo et al., 2015b; 

Haavikko, 2014). Hence, the obtained results might not be sufficient to achieve a conclusive 

finding. However, if the failure cases were considered as outliers and if they were removed 

from the analysis, there would be a huge improvement on accuracy and reliability results on 

the both test and retest, increasing from and 93.8% to 95.42% and from 75.39% to 92.42%, 

respectively.  

4.2. Heart Rate and Activity Patterns 

4.2.1. Activity Distinction through heart rate variability 

 

The performance of different activities, with also different intensities, leads to changes 

in heart rate and, consequently, in its variability. During dynamic exercising, the initial heart 

rate adjustment depends on the decrease in parasympathetic activity, whereas the subsequent 

increases are due to the increase in sympathetic activity. The modulation between the two 

nervous systems depends on the physical activity’s intensity. Thus, some heart rate variability 

patterns, related to the activity being performed, might be detected. 

The signal presented in Figure 31, regarding the execution of the protocol described in 

PAMAP, includes several activities with different intensities. In the image, it can be denoted 

one low intensity activity, corresponding to walking slow, three moderate intensity activities 

corresponding to walking, walking fast and cycling, and three very intense activities, 

corresponding to running, playing soccer and rope jumping. Therefore, the heart rate signal 

suffers great variability throughout the time. 

The Wavelet Transform and periodogram denote the beginning of each activity with the 

intense presence of low frequencies, which correspond to sympathetic nervous system activity, 

because the heart rate suffers an abrupt increase to adapt to the body’s needs, varying greatly. 

Further, higher frequencies can be also distinguished, although with lower intensity, 

corresponding to the recovering phases, when the heart rate decreases and the 

parasympathetic nervous system dominates. Further, an intense variation can be detected at 

the beginning of the signal, during the walking slow and walking activities. During this period, 

both very low frequencies and also higher frequencies are present. Hence, the abrupt increase 

that the heart rate suffers at the beginning of each intensity can be highlighted by very low 

frequencies. It can be also noted that before every abrupt heart rate increase, higher 

frequencies are highlighted due to the preceding recovery phase. 

Regarding the time-domain heart rate variability over time, in Figure 33, and since in 

this case the window width is higher than the time that every activity transition takes to occur 

(the window’s width is about five minutes and every activity takes about three minutes, 

followed by one minute break), the beginning of each activity cannot be highlighted. In turn, 

the global heart rate variability over time can be analysed. In fact, at the beginning of the 

signal the heart rate suffers a lot of variation, with the execution of three activities with 

different intensity levels. After the 1000 seconds, the heart rate variability decreases because, 

as it can be seen in the figure, the heart rate keeps within a smaller range of values, during 

the transition phases and the cycling activity that occurs between the running activities. After 

this occurrence, the heart rate variability returns to higher values, again due to the execution 

of three different activities with high intensity levels, in a cyclical way. In this case, and 

although the heart rate variability achieves higher values, these are still below the ones 

achieved at the beginning at the signal, because the intensity of each activity performed here 

is almost equivalent. This is observed with the RMSSD and SDNN behaviour throughout the time. 

Further, looking at the speed variation between consecutive inter-beat intervals it can be 

observed that it suffers also a lot of variation, achieving its minimum value during the transition 

phases and cycling activity that occur between the running activities. 
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Figure 31: Time-Frequency Analysis of a heart rate signal acquired during PAMAP protocol. Above: Heart 

rate signal according to each activity. Middle: Wavelet Time-frequency Transform. Bottom: Periodogram. 
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Figure 32: Time-Frequency Analysis of a heart rate signal acquired during PAMAP2 protocol. Above: Heart 

rate signal according to each activity. Middle: Wavelet Time-frequency Transform. Bottom: Periodogram. 
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Figure 33: Time-Domain Heart Rate Variability analysis over time regarding PAMAP sample (HR-Heart 

Rate; RMSSD- Root Mean Square of the Successive Differences; SDNN-Standard Deviation of inter-beat 

intervals; Variation speed-Mean Variation speed between consecutive intervals; mri-mean inter-beat 

intervals duration; mhr-mean heart rate). 

 

 
Figure 34: Time-domain Heart Rate variability over time regarding PAMAP2 sample (HR-Heart Rate; 

RMSSD- Root Mean Square of the Successive Differences; SDNN-Standard Deviation of inter-beat intervals; 

Variation speed-Mean Variation speed between consecutive intervals; mri-mean inter-beat intervals 

duration; mhr-mean heart rate). 

The signal presented in Figure 32, regarding the execution of the protocol described in 

PAMAP2, also includes several activities with different intensities. The majority of the activities 

are low intense activities, corresponding to lying, sitting and standing. It also includes moderate 

intensity activities corresponding to ironing and vacuuming and intense activities, which 

correspond to walking, ascending and descending stairs, running, walking fast, cycling and rope 

jumping. The beginning of each activity that is characterized by an intense increase of heart 

rate is distinguished in the spectrums with the presence of low frequencies. During the low and 

moderate intensity activities, the heart rate suffers great variability, which is denoted by some 

higher frequencies, during their execution, and also by a highlighted region in the spectrums, 

as it is observed from the beginning until the 2000 seconds. 
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The Figure 34 depicts the time-domain heart rate variability features along the time. 

Once again, the windows’ width applied is higher than the activities duration, whereby the 

beginning of each activity is not highlighted as occur in the time-frequency analysis. In turn, 

the global variability of the signal is analysed. Similarly to the previous signal, the higher 

variability occurs when different activities with high intensity are performed in an alternated 

way, separated by transition phases or low intensity activities. In the beginning the heart rate 

suffers high variability during the transition from lying to sitting position, with some higher 

intensity level transition phases that occurs between them and previously to the lying activity. 

Further, the heart rate variability decreases from this point, and but it keeps within high levels 

of variability since the activities performed are characterized by low intensity levels and, 

therefore, the heart rate value can vary greatly. Regarding this observation, the RMSSD and 

SDNN present a different behaviour, since the SDNN analyses the variation of each interval 

comparing to the mean interval duration of each window, but the RMSSD compares the 

variability relative to the previous interval duration. Hence, during these low intensity 

activities, the SDNN reports a lower heart rate variability, comparing to rest of the signal 

because the mean interval duration of the window is very similar to the heart rate values 

observed, but the RMSSD reports a high heart rate variability when it is analysed the variability 

comparatively to consecutive intervals. This situation keeps from the sitting position until the 

ascending stairs activity is performed twice, separated by a low intensity transition phase and 

descending stairs. After this, one moderate intensity activity is performed, followed by two 

more intense activities (walking fast and cycling). Hence, this transition from walking to 

walking fast causes a higher heart rate variability, which is decreased soon after because the 

cycling activity presents an intensity similar to the walking fast activity. Finally, the heart rate 

variability increases again due to execution of an activity with high intensity levels. This is 

depicted by the RMSSD and SDNN behaviour throughout the time. The speed variation between 

consecutive inter-beat intervals also corroborates this analysis, since it suffers some variability 

at the beginning, followed by a period in which it keeps almost unchanged, and then a period 

of great variability. 

The signals presented in Figure 35 and Figure 37 correspond to heart rate signal of two 

of the volunteers that participated in the Fitbit Surge validity test. At the beginning, during 

the transition from sitting to standing position, the heart rate suffers a considerable variability, 

due to the body’s adaptation to the pressure change. This is highlighted in the spectrum with 

the intense presence of low frequencies. Once again, the transition from one activity to another 

can be distinguished by the presence of low frequencies in the spectrums. Further, during low 

and moderate intensity activities the spectrum denote the presence of higher frequencies, due 

to higher variability suffered by the heart rate signal. During these activities, the heart rate 

variability is higher, which is reflected by the spectrums content, considerably bigger than the 

remaining signal. 

Regarding the time-domain heart rate variability analysis, throughout the time, 

represented in Figure 36 and Figure 38, it can be observed that as the intensity of the activity 

performed increases, the heart rate variability decreases, denoted by both RMSSD and SDNN, 

which corroborates the HRV theory present in literature, that refers that the higher the heart 

rate the shorter the inter-beat interval and shorter intervals usually present less variation 

(Nieminen et al., 2007). Further, also the speed variation between consecutive inter-beat 

intervals suffers some variability, although it keeps positive since from the beginning until the 

end of the running activity. This parameter achieves higher values when the transition from 

one activity to another occurs. When the body starts to adapt to the exercise requirements, 

the speed decreases, until a new high intensity level activity begins. 

Thus, comparing the heart rate variability analysis and patterns that were observed in 

the samples taken from the PAMAP and PAMAP2 and the ones taken from the Fitbit Surge validity 

test, it was observed that similar conclusions and patterns were found, despites the signal 

sampling frequency difference of each device.  
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It can be concluded that low frequencies are influenced by both sympathetic and 

parasympathetic branches, although they are mainly associated with sympathetic activity. 

LF/HF ratio increases with the increase of the heart rate, during stress, exercise or mental 

tasks and emotions, when the sympathetic activity predominates. Moreover, the heart rate 

variability tends to decrease as the exercise intensity increases. 

 
Figure 35: Time-Frequency Analysis of a heart rate signal acquired during Fitbit validity test. Above: 

Inter-beat interval signal. Middle: Wavelet Time-frequency Transform. Bottom: Periodogram. 

 

 

Time (s)

F
re

q
 (

H
z
)

0 200 400 600 800

0.500

0.250

0.125

0.063

0.031

0.016

0.008

 

 

Time (s)

F
re

q
 (

H
z
)

100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4



63 
 
 

 
Figure 36: Time-domain Heart Rate variability over time regarding one Fitbit Surge validity test sample, 

represented in Figure 35 (HR-Heart Rate; RMSSD- Root Mean Square of the Successive Differences; SDNN-

Standard Deviation of inter-beat intervals; Variation speed-Mean Variation speed between consecutive 

intervals; mri-mean inter-beat intervals duration; mhr-mean heart rate). 

A normal increase in heart rate during exercise and the ability to slow it in the 

immediate post-exercise phase are dependent on the autonomic nervous system and the ability 

of the cardiac conduction tissue to normally propagate the electrical impulse. The shortening 

of the inter-beat intervals in dynamic activities would account for a reduced beat-to-beat 

variability in the low frequencies band. 

Thus, the time-frequency analysis is a great tool to differentiate the activity type being 

performed in time, although it cannot be used as activity classification or differentiation 

approach. It can distinguish rest activities, characterized by low heart rate values and high 

heart rate variability, continuous intense exercising, characterized by high heart rate values 

and no considerable variation during its performance, and interval exercising, characterized by 

great heart rate variability. 

Further, the analysis performed is dependent on the trade-off that is performed 

between the window’s width that is applied and the activity duration. This will be determinant 

on the results of the heart rate variability analysis, namely if will allow distinguish the transition 

from one activity to another, or if it will give an overall measure of the global heart rate 

variability throughout the time. Nevertheless, and although the heart rate variability 

performed with a heart rate signal provided by a chest strap or a smartwatch might not be 

equivalent to one that is performed with the signal provided by an ECG, since some information 

is lost due to the resampling frequency, similar conclusions can be taken from the analysis that 

is executed. Hence, the signal provided by this kind of wearables is still important to analyse 

some heart rate variability patterns, according to the activity type performed, which gives 

useful information about how the nervous system and consequent heart rate modulation 

behaves with the performance of different intensity levels activity. 
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Figure 37: Time-Frequency Analysis of a heart rate signal acquired during Fitbit validity test. Above: 

Inter-beat interval signal. Middle: Wavelet Time-frequency Transform. Bottom: Periodogram. 
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Figure 38: Time-domain Heart Rate Variability analysis over time regarding one Fitbit Surge validity test 

sample, represented in Figure 37(HR-Heart Rate; RMSSD- Root Mean Square of the Successive Differences; 

SDNN-Standard Deviation of inter-beat intervals; Variation speed-Mean Variation speed between 

consecutive intervals; mri-mean inter-beat intervals duration; mhr-mean heart rate). 

In order to avoid excessive physical effort and cross a specific heart rate value that 

could be harmful to the health, taking into account the activity being performed, the 

monitoring of the heart rate could be very useful. Therefore, for each type of activity should 

be determined the heart rate values range considered normal or healthy. These heart rate, 

though, should be applicable to every individual with any fitness level condition and age. 

Therefore, the heart rate values ranges should be normalized, against the maximum heart rate 

value that the individual can reach and also the minimum heart rate value, normally considered 

as the heart rate at rest, using the formula: 

 

 %𝐻𝑅𝑟𝑒𝑠𝑒𝑟𝑣𝑒 =
(𝐻𝑅 − 𝐻𝑅𝑟𝑒𝑠𝑡)

(𝐻𝑅𝑚𝑎𝑥 − 𝐻𝑅𝑟𝑒𝑠𝑡)
× 100 (4.1) 

 

To estimate the HRmax, an age-predicted estimate equation can be utilized, suggested 

by Fox (220–age) (Simon, 2004), although its validity might be questionable because it was 

developed through clinical observations and not through rigorous research methodology. 

Taking into account the relationship between the activity demanding and the 

instantaneous heart rate (an increase in workload should be reflected in a proportional increase 

in the heart rate value), abnormal heart rate values might be determined, comparing the values 

with the activity being performed. Therefore, for each type of activity that can be distinguished 

should be assigned a range of values that can be interpreted as normal or healthy, according 

to the physical effort that it requires. 

Researchers have studied the cardiac response for different types of activity (Tamaki 

et al., 1987). In this work, eighteen healthy volunteers with an average age of 31 years old, 

performed different daily activities, including sitting quietly for 10 minutes, where the heart 

rate at rest where measured, standing still for two minutes, walking briskly in a firm surface 

for ten minutes and ascending 10 to 16 flights of stairs. Moreover, there are public datasets 

PAMAP and PAMAP2, which include the heart rate data of subjects performing a huge number 

of physical activities, including the heart rate at rest and maximum heart rate of each 

individual. It should be noted that when descending stairs, it should be taken into account if 

the ascending activity was performed right before. In negative case, the heart rate values that 

characterize the activity will be lower than in the positive case. 
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Observing the Table 13, and although there are little differences between the Fitbit 

and zephyr values, the obtained heart rate ranges are within the ranges reported in (Tamaki et 

al., 1987) and also in PAMAP and PAMAP2. However, the values obtained for ascending and 

descending stairs are higher than the ones reported in PAMAP and PAMAP2, due to the intense 

running activity that was performed before. 

 

Table 9: Cardiac Responses reported by (Tamaki et al., 1987) (N=18). 

 

Activity %HRreserve SD 

Standing 9.65% 13.17% 

Walking 21.93% 17.54% 

Ascending Stairs 73.68% 18.43% 

 

Table 10: Cardiac Responses obtained in public dataset PAMAP-outdoor activities. 

Activity %HRreserve SD 

Walking slow 17.37% 6.89% 

Walking 28.71% 10.57% 

Walking fast 39.02% 11.95% 

Walking after running 54.79% 13.27% 

Playing Soccer 80.12% 17.10% 

Running 64.42% 17.57% 

Cycling 40.85% 7.59% 

Rope jumping 79.27% 17.66% 

 

Table 11: Cardiac Responses obtained in public dataset PAMAP-indoor activities. 

Activity %HRreserve SD 

Laying 4.92% 4.20% 

Sitting 8.57% 4.38% 

Standing 15.79% 4.83% 

Ascending Stairs 44.21% 17.63% 

Descending Stairs 41.85% 17.67% 

 

Table 12: Cardiac Responses in public dataset PAMAP2. 

Activity %HRreserve SD 

Laying 7.11% 7.12% 

Sitting 10.37% 6.26% 

Standing 17.50% 7.37% 

Walking 36.88% 6.17% 

Walking fast 45.33% 7.79% 

Ascending Stairs 49.68% 16.35% 

Descending Stairs 49.33% 18.50% 

Running 70.89% 18.65% 

Cycling 45.75% 7.51% 
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Figure 39: Cardiac responses for the Fitbit Surge validity test workload. 

Table 13: Cardiac Responses obtained in Fitbit Surge validity test against Zephyr Bioharness. 

Baseline (BPM) 65.50±9.25 

HR max 

(BPM) 

194.38±2.13 

Test Retest 

Sitting (%HRreserve) 
Fitbit 3.44±2.54 5.63±8.85 

Zephyr 4.26±4.19 5.66+9.09 

Standing (%HRreserve) 
Fitbit 7.98±4.09 9.66±11.86 

Zephyr 10.32±7.40 11.91±11.94 

Walking 3.5 km/h 0% 

(%HRreserve) 

Fitbit 18.64±8.10 23.23±13.67 

Zephyr 23.46±11.01 22.53±9.69 

Walking 3.5 km/h 10% 

(%HRreserve)) 

Fitbit 34.99±14.44 34.65±12.88 

Zephyr 34.13±10.99 35.03+12.56 

Walking 5 km/h 10% 

(%HRreserve) 

Fitbit 36.04±8.14 43.52±11.51 

Zephyr 45.61±13.04 49.93+13.82 

Running 8km/h 0% (%HRmax) 
Fitbit 59.50±12.99 62.01±13.61 

Zephyr 63.79±12.71 67.16+14.22 

Running 8km/h 10% (%HRreserve) 
Fitbit 74.16±10.67 71.31±11.80 

Zephyr 78.28±10.47 77.69±11.99 

Ascending/Descending Stairs 

(%HRreserve) 

Fitbit 56.20±9.24 55.26±11.80 

Zephyr 59.49±10.47 55.61±12.54 

 

Table 14: T-Test results between Fitbit Surge and Zephyr Bioharness 3 cardiac responses, in test and 

retest. 

 Corr (r2) 
Mean ± SD 

Diff 

95% CI of Diff  
p-value 

Lower Upper 

Test 0.986 -4.21±3.34 -7.71 -0.70 p<0.05 

Retest 0.993 -3.00±3.30 -6.48 0.49 p>0.05 
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The  
Table 14 presents the results obtained when t-test was applied to the cardiac responses 

provided by Fitbit surge and Zephyr Bioharness 3, in both test and retest. Although the in test, 

some significant difference were found between the values provided by the Fitbit Surge and 

the Zephyr Bioharness, in the retest this does not occur. The p-value of the paired t-test higher 

than 0.05 and the presence of zero value inside of the 95% CI indicate that there are no 

significant differences between the scores by the Fitbit Surge and the Zephyr Bioharness in the 

retest. 

Further, a linear relationship between the workload and the heart rate value, either by 

the chest strap or the smartwatch, was also verified, as denoted in Figure 39. 

Taking account the values reported in the study performed by (Tamaki et al., 1987), 

the values reported in PAMAP and PAMAP2 and the values obtained in the Fitbit validity Test 

and retest, the following heart rate value range for each activity can be established and 

assumed as normal and healthy values. 

 

Table 15: Heart rate values ranges assumed as healthy for each activity type. 

Activity Heart Rate range (%HRreserve) 

Laying 0-10% 

Sitting 5-15% 

Standing 10-25% 

Walking 15-45% 

Running/Cycling 35-100% 

Stairs 15-80% 

 

These heart rate values ranges should be taken into account during heart rate and 

activity monitoring, either during rest or dynamic activities, so the user does not achieve heart 

rate values that might be harmful to the health or perform exaggerated physical effort 

comparing to the activity’s intensity. 

 
Figure 40 Relationship between heart rate and accelerometer's signal magnitude. The signal used is a 

sample from one of the volunteers that participated in the Fitbit Surge validity test. 

Further, it can be confirmed that the heart rate response to physical effort is not 

instantaneous, but it responds relatively slowly to changes in physical effort. It is verified that 

a sudden increase in work effort will not immediately result in heart rate increase and when 
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the work effort is decreased, the heart rate remains elevated for some time and only gradually 

return to the rest values, as can be observed in Figure 40. 

Moreover, it could be concluded that there is an almost linear relationship between the 

accelerometer’s magnitude, which is representative of the activity’s intensity level, and the 

heart rate. The higher the accelerometer’s magnitude the higher the heart rate value. 

However, the accelerometer can also achieve a saturation state for very high speed levels 

(Carneiro et al., 2015), point from which this relation is no longer valid. It was observed that 

when the floor inclination changed from 0% to 10%, running at 8km/h, the accelerometer’s 

magnitude slightly decreased, which might be due to the impact attenuation caused by the 

high inclination, since the vertical ground reaction force, and consequently the power 

absorption, is lower during sloped running (Gottschall & Kram, 2005). 

4.2.2. Inter-combination between Heart Rate and Energy 

Expenditure, Speed and Activity 

 

Table 16: Results obtained in the energy expenditure estimation study. 

Energy Expenditure model NRMSE Corr (r2) 
Wilcoxon test p-

value 

Activity based (Ryu et al., 2008) 35.1% 0.88 p<0.05 

Heart Rate- Basic Equation (Charlot et al., 

2014) 
23.5% 0.90 p<0.05 

Heart Rate – S-VO2/R-HRmax (Charlot et al., 

2014) 
24.6% 0.90 p<0.05 

Combined HR-

Activity 

Using HRaS 22.6% 0.90 p<0.05 

Using Activity Classification 19.9% 0.92 p>0.05 

 

Combining the heart rate and activity data to estimate energy expenditure, there is an 

improvement of the results obtained with only activity based model. 

Using the activity based model, with the equations proposed by (Ryu et al., 2008) to 

estimate energy expenditure, the NRMSE reaches 35.1% with a Pearson correlation coefficient 

of 0.88. 

Using the basic heart rate model, proposed by (Charlot et al., 2014), the NRMSE reaches 

23.5%, with a Person correlation coefficient of 0,90. In turn, the model that includes the real 

maximum heart rate value and the speed at which occurs the maximum oxygen volume 

consumption, but also proposed by the same author, reaches a NRMSE of 24.6% and a Pearson 

correlation coefficient of 0.90. Generally, although the errors might be acceptable, these 

models overestimates the energy expenditure, especially during walking, where the NRMSE 

achieves 43.2%. Otherwise, they underestimate the energy expenditure during very high speed 

running (above 14 km/h), where the NRMSE achieves 17.2%.  

Since the data does not follow a normal distribution, the statistical test applied was 

the Wilcoxon Signed Rank Test, a non-parametric test for paired data. Applying the statistical 

test for a significance level of 5%, it can be confirmed that there are significant differences 

between the energy expenditure values obtained from the indirect calorimetry measurements 

and from the activity based model and both heart rate models. 

In turn, combining the heart rate and activity based models, where the heart rate 

model is the one with the better performance (basic model), the NRMSE reaches 22.6%, with a 

Pearson correlation coefficient of 0.90. 

Nevertheless, there is a significant improvement in energy expenditure estimation 

when activity and heart rate data are combined. However, there are still significant differences 

between the values obtained through indirect calorimetry and through the models that includes 

both heart rate and activity data. Nevertheless, this result can still be improved, by using 
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individual calibration procedures, as proposed by (Altini et al., 2013, 2015) and (Søren Brage 

et al., 2004, 2007), instead of using developed equations with group calibration, as occurs in 

these models. 

 

 
Figure 41: Average energy calculated, for all the participants. The green line represents the energy 

expenditure given by the oximeter, the orange line represents the through basic heart rate model and the 

blue line represents the energy calculated through the heart rate model that includes the speed at which 

occurs the VO2max. 

Otherwise, when using the activity classification as method to decide which weight 

factors should be attributed to each heart rate and accelerometer contribution, instead of 

using the HRaS as threshold, the NRMSE reaches 19.9%, with a Pearson correlation coefficient 

of 0.92. The results obtained here showed no significant differences comparative to the values 

provided by the indirect calorimetry. With this model the error is reduced during moderate to 

intense walking activity. 

Further, the model applied showed a better performance during running, because it 

was initially derived to improve running energy estimation, although during its estimation it 

was also included the walking activity. The NRMSE achieves 32.4% and 16.25% for walking and 

running activities, respectively. 

The average energy expenditure measured, for all the participants, through the 

oximeter, basic heart rate model, activity based model and combined heart rate-accelerometer 

model, using activity classification to establish the weight factors, are depicted in Figure 42. 

As observed, the model suggested by (Ryu et al., 2008), based on smartphone’s accelerometer 

to classify the activity performed and calculate a MET value for each activity, gives acceptable 

energy expenditure values during walking. However, it overestimates the energy expenditure 

during running at moderate speed levels. In this model, it is observed a saturation phenomenon 

in the accelerometer signal for higher speed levels, which affects the performance of the step 

counter and distance calculator and, consequently, the calculated speed and energy 

estimation. In turn, when applying the combined heart rate and activity data model, there is 

great improvement when compared to the activity based model. However, although the energy 

expenditure estimation has improved for walking activity, this model still underestimate the 

energy expenditure for very high speed levels. 

It should be noted that this study presents some limitations that extent to data that 

were missing due to monitor’s instability or malfunctioning. Hence, some samples were 

excluded due to the missing heart rate values. However, just the null values were excluded, 

since they not allow the energy expenditure estimation, and all the other values, including the 
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ones corresponding to possible artefact movements or poor skin-contact were included in the 

analysis. 

Thus, the combined heart rate-activity model that uses activity classification to 

attribute the weight factors to each heart rate and accelerometer contribution, is the most 

suitable method to estimate the energy expenditure using the accelerometer of the smartphone 

and activity classification and heart rate data. However, and although it has been proved that 

the heart rate data improves the heart rate estimation, the heart rate monitor to be used 

should be accurate and precise, in order to heart rate information not be lost because if this 

occurs, the total energy expenditure during the all measurement will be underestimated, as 

occurred in the present study.  

Taking this study into account, it can be said that the use of a smartwatch to estimate 

energy expenditure through heart rate could be advantageous, since this variable improves 

energy expenditure estimation. However, depending on the device’s accuracy and reliability, 

this can be verified or not, since if the heart rate value provided by the device is not even 

similar to the real one, the energy expenditure estimation will be also very distant from the 

real value. 

 

 
Figure 42: Average energy calculated, for all the participants. The orange line represents the energy 

expenditure given by the oximeter, the yellow line represents the energy calculated through basic heart 

rate model, the green line represents the energy expenditure given by (Ryu et al., 2008) and the blue line 

represents the energy calculated through the combination of both heart rate-activity model, that uses 

activity classification to establish the weight factors. 

Further, with the same data, the linear relationship between speed and heart rate 

during submaximal intensity, which is referred in the literature (Bodner & Rhodes, 2000; Vachon 

et al., 1999), was verified. As observed in Figure 43, after the 13 km/h, this linear relationship 

is no longer present, due to the anaerobic threshold crossing (Heart Rate Deflection Point), 

when the range of 88% to 94% of the maximal heart rate is achieved (Bodner & Rhodes, 2000; 

Vachon et al., 1999). This almost linear relationship between the heart rate value and the 

speed, until the deflection point is reached, is depicted, with more detail, in Figure 44. 
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Figure 43: Relationship between heart rate and speed, using the data of all the participants. The heart 

rate values are the mean. 

 
 
 

 
Figure 44: Relationship between the heart rate and speed, using the data of one of the participants. 
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4.2.3. Stress State Detection 

 

Through the time-domain heart rate variability analysis throughout the time, it can be 

concluded that the algorithm proposed by (Pierleoni et al., 2014) is not suitable to be applied 

on the signal provided by the smartwatch, since the calculated time-domain HRV parameters 

are not comparable due to the very different sampling frequency. The proposed methodology 

intends to be applied on a heart rate signal that includes all the heart beats. In turn, the 

smartwatch does not accomplish this requirement, since it provides the heart rate at a specific 

timestamp. 

 
Figure 45: Time-domain HRV analysis of one of the stress state samples (HR-Heart Rate; RMSSD- Root 

Mean Square of the Successive Differences; SDNN-Standard Deviation of inter-beat intervals; Variation 

speed-Mean Variation speed between consecutive intervals; mri-mean inter-beat intervals duration; mhr-

mean heart rate). 

It was found out that, in all the samples that were analysed, the RMSSD is always below 

the established threshold (45msec). Besides this, both RMSSD and SDNN seem to behave 

oppositely comparing to the expected and referred on the literature. In fact, these parameters 

seem to suffer an increase when a stress state occur, due to the abrupt heart rate rising.  

Further, the reported stressful situations were classified as such state in a subjective 

way, just taking into account the individual’s feelings. Hence, and since a blood test should has 

been performed in order to detect the stress hormone serum cortisol, as reported in (Yang et 

al., 2008), allied to a low number of samples, this topic’s goal was not achieved and more 

investigation is needed. In short, no conclusive findings were achieved about this topic. 

4.3. Developed System Behaviour 
 

As referenced in Chapter 3.1, in order to the application access the user data, the user 

must previously give authorization to do so. For that, on the first time the user experiences the 

application, he will be redirected to the authorization page, as described in Figure 46, so the 

application can get the access token needed to execute the data requests to the webserver. 

This is how the OAuth 2.0 protocol, adopted by Fitbit, works. Once the user authorizes the 

access, the access token provided has one year of lifetime. Hence, this procedure only needs 

to occur once a year. 
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Figure 46: Application authorization procedure. 

The application includes a main page that displays the main user’s personal data, such 

as the name, birthdate and the heart rate value at rest. This last feature is important because 

it is an indicative of the individual fitness level and how it evolves throughout the time, since 

it is known that a low heart rate value at rest is indicative of a good physical condition. It also 

includes a detail panel that displays the activity performed in real-time, the number of steps 

performed, the energy expenditure, the number of active minutes so far, and also the maximum 

heart rate and the cardiac zone in which the user spent more time during the last data that 

was synchronized. The number of steps and energy expenditure is relative to the current day. 

Hence, every day these features are reinitialized. Further, it also displays the application 

menu, including the monitoring details regarding the heart rate and activity monitoring, 

abnormal events analysis and also the daily summary. The user might also opt by turn on the 

Threshold Mode, where a heart rate threshold is manually established by the user and every 

time this threshold is crossed, the application saves the event to alert the user. This is useful 

to give the user an idea of the ideal effort for every physical activity and how was his 

performance. 

The heart rate and activity monitoring details include the detailed heart rate signal 

throughout the time of the current day, the time spent and the calories that were burned in 

each cardiac zone, which in turn is defined using the theoretical maximum heart rate value (% 

of the HRmax). Further, it includes the option to consult the number of active minutes along 

the day, depending on the activity’s intensity performed: sedentary, lightly, fairly or very 

active. The user can also request the data of a specific day. The abnormal events option records 

the heart rate events along the day, which includes crossing the established threshold and 

abnormal heart rate values for the activity that is being performed, which could be indicative 

of stress or emergency situations. This analysis takes into account the type of activity being 

performed and the established range of healthy values, as referred in Chapter 4.2.1, and also 

if vigorous exercise was executed previously or not to a rest activity. In this case, it is expected 

to occur a recovery phase. Finally, the daily summary details the most important features that 

characterize each day, namely the maximum and minimum heart rate value achieved, the 

minutes spent in each activity, the number of steps and calories burnt. The number of active 
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minutes is compared with the goal suggested by the World Health Organization39, which is about 

daily 30 active minutes. It also reports the number of abnormal events and the most active and 

stressful day so far. These are computed taking into account the day with the higher number 

of active minutes and stress events, respectively. For that, specific databases for each type of 

data were created. 

 

 
Figure 47: Main page and the heart rate signal plot, with the threshold crossing events signalized. 

   

    
Figure 48: Left: The plot of the number of time and energy expenditure in each cardiac zone. Middle: 
Example of a daily summary. Right: Example of list of events, including thresholding crossing, stress 
events or abnormal heart rate values. 

  

                                                 
 
39 http://www.who.int/dietphysicalactivity/factsheet_adults/en/ 
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Although the developed system was not validated yet due to calendar issues, the data 

outputs that are provided to the user are intended to help him following a healthy lifestyle, 

keeping the heart rate within the range of values considered as normal and also giving an idea 

how the cardiorespiratory fitness level evolves throughout the time, through the heart rate at 

rest value and cardiac response to physical activity. Hence, the heart rate and activity data 

can be combined to give valuable information to the user and guide him to prevent long-term 

serious health problems, due to harmful heart rate values, inactive lifestyle and exaggerated 

stress during quotidian. 
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The heart rate corresponds to the number of times that the heart pumps blood through 

the blood vessel of the circulatory system in one minute, and it is very important to infer about 

the health status, being an important variable to keep on track by every person, from athletes, 

cardiac patients and common individuals. The heart rate variability reflects the physiological 

phenomenon of variation in the time interval between heartbeats. Its variation may contain 

indicators of current diseases or warnings about potential cardiac diseases, psychological 

disturbances or even neurological disturbances. These indicators may be present at all times 

or may occur randomly during certain intervals of the day. It reflects physiological factors that 

modulate the normal rhythm of the heart, providing a powerful method of observing the 

equilibrium between the sympathetic and parasympathetic nervous systems and, consequently, 

the heart’s ability to adapt to changing circumstances. 

Although there are plenty of devices that are capable of heart rate monitoring, such as 

the gold standard ECG, Holter monitors and blood pressure monitors, these devices are not 

suitable for daily basis use since they might be quite uncomfortable and difficult to use. 

Nevertheless, the wearable technology market is experiencing a huge growth and it is expected 

to expand even more during the next years. Current smartwatches and bracelets, which are 

daily basis accessories, already track the user activity, reporting several measures such as 

distance, speed, number steps performed, calories burned and also distinguishing between 

several different types of activities: walking/running, sitting and laying down. These are 

calculated through data acquired by built-in inertial sensors. These accessories might include 

an optical heart rate sensor, whose data is very useful for athletes, to control their effort during 

the workout and optimize the training. Its applicability has been used essentially for exercising 

purposes.  

Therefore, one of the main goals of this project was to study if it is viable to a wearable 

device to continuously monitor the heart rate in a daily basis, and if when combined with 

activity monitoring, additional valuable data could be generated for analysis. Namely, if it 

allows inferring about the health status of the user and understanding the quotidian context 

and the impact that the lifestyle has on health. Further, it was also studied how the heart rate 

data could bring advantages to the activity monitoring, mainly, how both data and features can 

be combined in order to improve activity monitoring, especially the impact on heart rate 

variability patterns observed in different activities and how the heart rate data can enrich the 

energy expenditure estimation. 

  

Chapter 5 

Conclusions and Future Work 
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5.1. Achievements 
 

The objectives of studying the viability of using a wearable device for continuous heart 

rate monitoring and how the heart rate data could be combined with activity data to perform 

a better analysis of the user’s lifestyle and quotidian context were achieved. 

A heart rate measurement validity test for the smartwatch Fitbit Surge was performed 

against a Zephyr Bioharness 3 chest strap. This smartwatch was chosen by taking into account 

a previous test that included other smartwatches such as the Moto360, LG Watch R and Samsung 

Gear S, and also the high popularity that this gadget has won among the healthy lifestyle and 

exercisers community40. The test performed included a test and retest with eight volunteers 

with an average age of 25.6±2.1 years old, including five men and three women. In average 

both heart rate signals provided by the chest strap and the smartwatch were concordant during 

the most part of the test and retest. However, there were some cases in which the error 

obtained were not acceptable for heart rate monitoring purposes. The walking and running 

activities were the ones with lowest reliability and bigger data dispersion, although they were 

the activities with higher samples. The accuracy achieved was within the values presented in 

literature but the reliability was quite lower than the expected (reliability=75.39%, 

accuracy=93.80%, mean error=4.21 BPM, mean absolute error=7.22 BPM). However, since the 

volunteers that performed the test were in lower number than the usual subjects number in 

these kind of tests, the data obtained might not be sufficient to achieve a conclusive finding. 

Further, the individuals that showed poor results in the test, had also poor results in the retest. 

Hence, regarding the test-retest results, a p-value of the paired t-test higher than 0.05 and the 

presence of zero value inside of the 95% CI indicates that there are no significant differences 

between the scores obtained in test and retest procedures. Both accuracy and reliability 

demonstrated good retest reliability with ICC of 0.65 and 0.61, respectively. The results showed 

that the Fitbit Surge device had a good accuracy and acceptable reliability, assuming that it is 

not supposed to the smartwatch acting like a medical device and that it has associated error 

that can or cannot be acceptable, depending on the purpose for which the device is intended 

to be used. Since the purpose is not performing heart rate monitoring in cardiac patients, the 

reliability value obtained can be acceptable for heart rate monitoring of people that intend to 

follow an active and healthy lifestyle. Moreover, the results show that the device provides 

results with some repeatability, giving, though, some credibility to use it in a daily basis. In 

average, the heart rate values were correlated, with differences up to 20 BPM, but with Fitbit 

showing a slightly lower heart rate value. Further, some problems were observed at sudden 

transitions of activity intensity, with the Fitbit responding a bit late to the pace change, and 

with high intensity activities, where in some cases it did not follow the heart rate increase to 

theirs peak values. 

Regarding the heart rate variability patterns and the activity type being performed, 

some conclusions can be taken. When applying time-frequency transforms to the heart rate 

signal, the obtained spectrums can distinguish the beginning of each activity that causes an 

abrupt heart rate increase, when the window’s width applied is sufficient and suitable for each 

activity’s duration. Further, during low intensity and moderate activities, the presence of 

higher frequencies are highlighted, due to the greater variability presence. However, these 

patterns can distinguish between low intensity and intense activities, since although the first 

ones could also cause the abrupt heart rate increase and, therefore, will cause the presence of 

low frequencies in the spectrum, they also are characterized by some heart rate variability. 

Hence, also higher frequencies are present during these activities. Further, it was possible to 

confirm the almost linear relationship between the heart rate value and the activity’s intensity 

                                                 
 
40 http://www.telegraph.co.uk/technology/news/12033656/Fitbit-is-the-most-popular-
wearable-of-2015-as-sector-grows-almost-200pc.html 
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level, which can be also confirmed by the accelerometer’s magnitude. However, the 

accelerometer can also achieve a saturation state for high speed levels, from which this 

relationship is no longer valid. Nevertheless, it was also possible to infer about the range of 

healthy heart rate values that are considered normal to achieve during different activities, 

depending on its intensity and physical effort required. These are normalized heart rate values, 

against the maximum heart rate value and the heart rate at rest, so they can be suitable to 

apply on every individual, regardless the cardiorespiratory fitness level and age of each 

individual. These ranges are important for an efficient monitoring, giving the user a guide of 

which is healthy to perform or not, avoiding harmful heart rate values that can lead to serious 

long-term health problems and damages. 

Combining the heart rate with activity data, which is provided by motion sensors such 

as the accelerometer, improves the accuracy of energy expenditure estimation, as is testified 

by the results obtained in the present study. The normalized root mean square error (NRMSE) 

decreased from about 35.1% to 23.5% when applying the heart rate model that includes 

individual parameters such as the heart rate at rest, height, weight, age and gender, instead 

of the activity based model. When combining both heart rate and activity models to estimate 

the energy expenditure, which consist in attributing weights factors to each specific model, 

the NRMSE reached 22.6%, when using the heart rate above sleep as threshold to decide the 

weights that are attributed to each heart rate and activity based model, and 19.9% when using 

the activity classification to do establish the weights of each model. Thus, the combined heart 

rate-activity model that uses activity classification to attribute the weight factors to each data, 

seemed to be, among the other tested models, the most suitable method to estimate the energy 

expenditure using the accelerometer of the smartphone, activity classification and heart rate 

data. Further, with the same data used in the energy estimation study, the linear relationship 

between speed and heart rate during submaximal intensity, which is referred in the literature 

(Bodner & Rhodes, 2000; Vachon et al., 1999), was verified. This data was relative to a stress 

test like protocol, and it was observed that after about the 13 km/h, this linear relationship is 

no longer present, due to the anaerobic threshold crossing. 

In short, it can be concluded that the smartwatches are valuable devices that help 

people achieving a healthier lifestyle, by monitoring their activity. Although some of them do 

not include optical heart rate sensor, and the majority of those who include are not reliable 

and suitable for heart rate monitoring, the smartwatch studied in this project showed that it 

has a good accuracy and a median reliability and performs a continuous heart rate monitoring, 

although with a variable sampling frequency. Further, it allows the development of third parties 

applications, which current continuous smartwatches, such as Mio alpha and PulseOn, do not 

enable. However, they are not suitable for arrhythmia detection, due to the insufficient 

sampling frequency. Moreover, these kind of devices can be used to improve energy estimation 

methods, if they are accurate and reliable, and also used as a quotidian tool, to help people 

having a healthy lifestyle and not executing exaggerated efforts by monitoring their heart rate. 

The heart rate value is a valuable indicative of the cardiorespiratory fitness level, and its 

behaviour throughout the time gives an idea of how the physical condition evolves. The heart 

rate data provided can be used to improve current energy estimation methods used by activity 

monitoring systems, and also to improve both activity monitoring and activity classification, 

since there are different activities that are classified with the same label but characterized by 

different intensities and, therefore, different heart rate values, as is the case of walking and 

ascending stairs. Although it does not allow a real-time monitoring, due to the data 

synchronization frequency, this study serves as a proof of concept, with the certain that in the 

future this kind of technology will be improved and the real time monitoring through third 

parties application will be possible. 
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5.2. Future Work 
 

Further development of this project would be of interest to improve the developed 

monitoring application that gives a relevant feedback about the user physical history. The main 

improvements of that could be applied to this project and future work were identified during 

its development. 

Due to the positive results obtained in the energy expenditure estimation using both 

heart rate and accelerometer models, it should be integrated a model to estimate the energy 

expenditure that combines the heart rate data, provided by the smartwatch, and the 

accelerometer data, provided by the smartphone. This model could replace the activity based 

model (Ryu et al., 2008) that is currently being used by the developed system to estimate the 

energy expended. 

One of the goals of this project was to combine heart rate and activity data to infer 

about the user’s stress state detection, however, this goal was not achieved due to several 

reasons. Firstly, it was found that the stress state detection algorithms are based on the heart 

rate variability features and establishing some thresholds for each one, but the signal provided 

by the smartwatch is not suitable to apply these algorithms due to the lower sampling 

frequency. Further, the acquired data relative to this topic was considered low to achieve a 

conclusion about the adaptation and use of such device’s heart rate signal to detect stress. 

Moreover, each stress state should be confirmed by a blood test for measuring the stress 

hormone serum cortisol. Hence, more investigation about this topic is needed. 

Further, and since the developed system is a proof of concept and prototype, this can 

be largely improved. Firstly, the smartwatch that is currently being used with the system does 

not enable a real-time heart rate monitoring. Therefore, and since this is a very important 

feature, the smartwatch that is currently being used should be replaced by another that enables 

the continuous heart rate monitoring in real-time, and that is accurate and reliable enough at 

the same time. As studied, none of the Android Wear smartwatches with an optical heart rate 

sensor fulfil these requirements, since a suitable and constant reading frequency cannot be 

established. Hence, as soon as a smartwatch that completely fulfils these requirements be 

launched on the market, it should be considered the possibility of replacing the current heart 

rate monitor. Nevertheless, the data output display and data history should be improved, since 

it is important to the user that these aspects are as complete as possible and, currently, they 

are just prototypes. Further, the system performance must be tested and evaluated, in order 

to validate the algorithms and its behaviour, taking into account the purpose for which it was 

built. 
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This appendix details the results regarding the reliability and accuracy measures, per 

subject and activity type, the mean errors and mean absolute error obtained per activity, and 

also other representative graphics that compare both heart rate signals provided by the zephyr 

Bioharness 3 and the Fitbit Surge. 

Table A1: Reliability results per activity and subject. 

Subject/ 

Activity 

Sit Stand Walk Run Stairs 

test retest test retest test retest test retest test retest 

1 100 79,50 76,27 86,66 17,78 48,89 80,83 85,42 60,34 100 

2 100 96,61 50,85 86,66 78,06 91,11 94,17 95,42 98,18 100 

3 86,87 73,79 81,36 80,00 100 77,50 100 95,83 100 100 

4 65,25 100 91,52 81,66 29,44 48,33 6,67 30 64,66 20,69 

5 93,22 61,86 77,97 11,67 87,50 59,17 98,33 11,67 100 66,67 

6 100 30,00 84,75 NA 96,39 98,68 96,25 95,00 93,10 82,76 

7 93,10 56,78 94,92 86,66 87,50 66,39 93,75 72,08 100 100 

8 59,32 70,34 76,27 78,33 51,94 95,28 41,67 71,25 73,91 100 

Average 87,22 71,11 79,24 73,10 68,58 73,34 75,99 69,64 86,27 83,76 

NA-Not Available. Smartwatch was not responding.  

Table A2: Accuracy Results per activity and subject. 

Subject 

/Activity 

Sit Stand Walk Run Stairs 

test retest test retest test retest test retest test retest 

1 95,67 97,29 92,98 95,83 83,16 92,18 96,20 97,94 95,17 98,52 

2 95,95 96,89 89,48 93,49 92,83 94,41 96,36 97,78 96,17 97,09 

3 96,40 95,53 94,74 91,86 97,52 94,04 98,01 96,93 98,23 97,73 

4 97,20 93,51 94,27 88,92 87,63 90,84 87,34 86,06 94,05 92,65 

5 93,24 91,36 93,20 77,80 95,77 89,88 99,90 88,76 98,27 94,24 

6 93,17 86,42 91,20 NA 96,41 95,69 97,16 97,39 96,92 92,55 

7 97,99 93,67 95,16 95,17 96,08 92,77 97,98 95,43 98,07 96,86 

8 97,84 93,22 93,58 90,52 89,78 92,26 91,30 89,76 95,10 94,74 

Average 95,93 93,49 93,08 92,40 90,51 92,76 95,53 93,76 96,50 95,55 

Appendix A 

Fitbit Surge heart rate measurement 

validity test results 



91 
 
 

Table A3: Mean and Mean Absolute error observed. 

Activity 
Mean Error (BPM) 

Mean Absolute Error 

(BPM) 

Test Retest Test Retest 

global 4,55±10,37 3,88±8,93 7,43±8,55 7,01±6,76 

sitting 4,80±9,29 0,80±10,19 6,09±8,51 6,86±7,57 

standing 3,04±7,27 3,47±6,16 5,60±5,54 4,66±5,31 

walking 5,11±11,52 3,10±8,27 8,61±9,20 6,88±5,55 

running 4,81±11,32 6,78±7,88 8,09±9,26 7,61±7,08 

stairs 3,12±6,43 3,29±11,07 5,13±4,98 7,40±8,87 

 

 
Figure A1: Other examples of results obtained in Fitbit Surge Validity test - Comparison between the 

chest strap and smartwatch heart rate signals. 
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This appendix details the description of each activity that was included by the public 

datasets PAMAP and PAMAP2. 

 

Table B1: Description of the activities performed on public datasets PAMAP and PAMAP2. 

Activity Description 

Laying 
PAMAP Lying quietly, doing nothing, but small movements such as 

changing the laying posture are acceptable. PAMAP2 

Sitting 
PAMAP Sitting in a chair, where writing, desk work or typing is allowed. 

PAMAP2 Sitting comfortably in a chair. Changing sitting postures is allowed. 

Standing 
PAMAP 

Standing still, possibly talking and gesticulating. 
PAMAP2 

Walking 
PAMAP Walking outside with moderate to brisk pace, with a speed 

between 4 and 6km/h, on a firm surface. PAMAP2 

Walking slow PAMAP 
Walking at speed lower than 3,2 km/h, level ground, strolling, 

very slow. 

Walking fast 
PAMAP Nordic Walking, performed outside on asphaltic terrain, using 

asphalt pads on the walking poles. PAMAP2 

Running 
PAMAP 

Jogging outside with a suitable speed for the individual subjects. 
PAMAP2 

Cycling 
PAMAP 

Bicycling at speed lower than 16.1 km/h, including leisure, riding 

to work or just for pleasure 

PAMAP2 Performed outside with a real bike with slow to moderate pace. 

Ascending Stairs 

PAMAP Walking upstairs during 1 minute. 

PAMAP2 
Performed in a building between the ground and the top floors, a 

distance of five floors had to be covered going upstairs 

Descending 

Stairs 

PAMAP Walking downstairs during 1 minute 

PAMAP2 
Performed in a building between the ground and the top floors, a 

distance of five floors had to be covered going downstairs 

Rope jumping 

PAMAP Basic rope jump, where both feet jump at the same time over the 

rope, or the alternate foot rope jump, where alternate feet are 

used to jump off the ground. 
PAMAP2 

Playing Soccer 
PAMAP Playing 1 vs. 1 or 2 vs. 1, running with the ball, dribbling, passing 

the ball and shooting the ball. PAMAP2 
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