
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Visual-Inertial Based Autonomous
Navigation of an Unmanned Aerial

Vehicle in GPS-Denied Environments

Francisco de Babo Martins

Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Supervisor: Luís Teixeira

Co-Supervisor: Rui Nóbrega

July 21, 2015

c© Francisco de Babo Martins, 2015

Resumo

Nos últimos tempos, desenvolvimentos tecnológicos tais como controlo de estabilidade, autono-
mia de baterias e redes de sensores permitiram a criação de veículos aéreos não tripulados (UAVs)
baratos e acessiveis a uma grande diversidade de aplicações.

Para UAVs, a navegação em interiores é um problema desafiante devido ao limite de carga que
estes podem carregar. Devido a uma autonomia reduzida da bateria, apenas sensores com um peso
reduzido, tal como câmeras monoculares, que não têm um impacto elevado na vida útil da bateria
nem nas limitações de peso, podem ser anexados ao UAV. Estas câmaras no entanto apresentam
um problema relativamente a navegação autónoma e estimação de posição, devido à ausência de
percepção de profundidade, que só pode ser obtida com utilização de câmeras estereoscopicas
e outros sensores adicionais. Esta dissertação aborda este problema através do desenvolvimento
de um método destinado a permitir que um UAV possa navegar com segurança num ambiente
previamente desconhecido, onde não existe cobertura de GPS, ao mesmo tempo que detecta as
portas dos corredores e mantem o drone centrado nesse mesmo corredor.

Por outras palavras, o objectivo é o de produzir um sistema de navegação e estimação de
posição robusto e autónomo para um veículo aéreo não tripulado.

A fim de conseguir cumprir este objectivo, o vídeo vindo em tempo real do UAV é processado
por três módulos diferentes: navegação, detecção de portas e estimativa de posição. Para a parte
da navegação, o sistema baseia-se na detecção do ponto de fuga da imagem capturada, utilizando
a transformada de Hough para detectar e prevenir a colisão com as paredes. A parte de detecção
de portas baseia-se não só na detecção dos contornos das portas, mas também na detecção das
reentrâncias de cada porta. O sistema usa estes dois diferentes tipos de detecção a fim de detectar
as portas com uma precisão mais elevada, utilizando a detecção de reentrâncias como o detector
principal e o detector de contornos para uma validação adicional. Para a parte de estimativa de
posição, o sistema baseia-se em informação pré-codificada do piso em que o UAV está a navegar,
e na velocidade linear do UAV fornecida pela IMU do mesmo.

A fim de validar o método desenvolvido, os resultados desta abordagem foram obtidos e avali-
ados em diferentes corredores usando um quadricoptero, o Parrot AR. Drone. O drone foi capaz de
navegar com segurança nesses mesmos corredores, detectando as portas do mesmo e estimando
a sua posição aproximada relativamente ao seu ponto de partida. Isto prova que os métodos de
navegação e detecção de portas desenvolvidos são robustos e permitem uma navegação autónoma
de um veículo aéreo sem qualquer intervenção humana.

i

ii

Abstract

In recent years, the latest developments in technologies such as stability control, batteries and
sensing systems have allowed manufactures to produce Unmanned Aerial Vehicles (UAVs) both
affordable and accessible to a vast diversity of applications.

For UAVs, indoor navigation is a challenging problem due to the limited payload they can
carry. Because of a limited battery capacity, only light weight sensors such as monocular cameras,
which do not take a toll on battery life and weight limitations, can be attached to the UAV. These
cameras however present a problem towards autonomous navigation and position estimation due
to the lack of depth perception which can only be obtained with vision disparity using stereo
cameras and other additional sensors. This dissertation addresses this problem by developing a
method intended to allow an UAV to safely navigate in a previously unknown and GPS-denied
environment and focus on the detection of doors of corridors while keeping the drone aligned with
the center of the same corridor.

In other words, the goal is to produce a robust and autonomous navigation and position esti-
mation system for an unmanned vehicle.

In order to achieve this, the video input from a drone is processed by three different modules:
navigation, door detection and drone position estimation. For the navigation part, the system
relies on the detection of the vanishing point using the Hough transform for wall detection and
avoidance. The door detection part relies not only on detection of the contours but also on the
recesses of each door. The system uses these two different detection types in order to detect
doors with a higher precision, using the recess detection as the master detector and the contour
detection as an additional validation. For the position estimation part, the system relies on pre-
coded information of the floor in which the drone is navigating, and the velocity of the drone
provided by its IMU.

To validate the developed method, results of this approach were obtained and evaluated in
different corridors using a quad-rotor drone, the Parrot AR. Drone. The drone was able to safely
navigate in those corridors while detecting evident doors and estimate its approximate position
relatively to its starting point. This shows that developed vision navigation and door detection
procedures are reliable and enable an aerial vehicle to fly without the need of human intervention.

iii

iv

Acknowledgements

I would like to thank my supervisor Luís Teixeira and my co-supervisor Rui Nóbrega for their
guidance and influential supervision throughout this project. I would also like to thanks my parents
Agostinho e Felisbela for their constant support and faith throughout my master study. A special
appreciation to all my friends and colleges for their enthusiasm and encouragement towards my
project.

Francisco de Babo Martins

v

vi

“Roads?
To where we are going, we don’t need...roads!”

Dr. Emmett Lathrop Brown

vii

viii

Contents

Resumo i

Abstract iii

Acknowledgements v

Abbreviations xv

1 Introduction 1
1.1 Context . 1
1.2 Research Questions . 2
1.3 Objectives . 3
1.4 Contributions . 5
1.5 Summary and Document Structure . 5

2 State of the art 7
2.1 Computer Vision and Image Processing Methods and Algorithms 7

2.1.1 Image Acquisition . 7
2.1.2 Pre-Processing . 7
2.1.3 Image Processing . 8
2.1.4 Machine Learning . 12

2.2 Unmanned Aerial Vehicles (UAVS) . 13
2.2.1 On-board Electronics . 13
2.2.2 Quad-copters . 16
2.2.3 Parrot AR. Drone . 17

2.3 Related Work . 20
2.3.1 Laser Assisted Navigation . 20
2.3.2 Sonar Assisted Navigation . 21
2.3.3 Camera Assisted Navigation . 21
2.3.4 IMU Assisted Navigation . 23

2.4 Summary . 23

3 System Overview 25
3.1 Video Acquisition . 25
3.2 Video Processing . 26

3.2.1 System Framework . 26
3.3 Methods Evaluation . 28

3.3.1 Quantitative Evaluation . 28
3.3.2 Qualitative Evaluation . 29

ix

x CONTENTS

3.3.3 Test Scenarios . 29
3.4 Tools . 30

3.4.1 Robot Operating System(ROS) . 30
3.4.2 OpenCV . 31
3.4.3 AR. Drone Driver for ROS . 31

3.5 Summary . 32

4 Vision Based Autonomous Navigation and Position Estimation 33
4.1 Video Stabilization . 33

4.1.1 Proposed Method . 33
4.1.2 Results . 34
4.1.3 Conundrums . 35

4.2 Filtering . 35
4.3 Vanishing Point Detection . 36

4.3.1 Proposed Method . 36
4.3.2 Results . 39
4.3.3 Conundrums . 39

4.4 Door Detection . 40
4.4.1 Recessed Door Detection Method . 41
4.4.2 Door Contour Detection Method . 47

4.5 Position Estimation . 49
4.5.1 Proposed method . 49
4.5.2 Results . 51
4.5.3 Conundrums . 51

4.6 Summary . 52

5 Experiments and Discussion 55
5.1 Experimental Setup . 55

5.1.1 Aditional Considerations . 55
5.1.2 Corridor Dimentions and Charateristics 56

5.2 Navigation and Position Estimation . 56
5.3 Flight Experiments . 57

5.3.1 Experiment 1 . 58
5.3.2 Experiment 2 . 61
5.3.3 Experiment 3 . 64
5.3.4 Discussion . 66

5.4 Summary . 67

6 Conclusions 69
6.1 Results . 69
6.2 Discussion . 70
6.3 Future Work . 70

A List of QR Codes of the videos 73

References 77

List of Figures

2.1 Representation of a line . 11
2.2 The AR. Drone quad-copter with the protection hull attached 18
2.3 Rotation Direction of each of the four rotors found in a quad-copter 18
2.4 The rotation system on a quad-copter: yaw, pitch and roll 19
2.5 Data exchange between the AR.Drone and a Computer 20
2.6 Hough Lines in the left and right wall . 22

3.1 Drone navigating inside a corridor . 25
3.2 The developed framework which bridges the gap between the hardware of the

drone and the external processing unit using an Wifi connection 26
3.3 Beginning, middle and end of corridor number 1 29
3.4 Beginning, middle and end of corridor number 2 30
3.5 Beginning, middle and end of corridor number 3 30

4.1 Result of the Stabilization method when a strong oscillation occurs http://
youtu.be/clsiq7GzUjw . 34

4.2 Example of the dynamic threshold used in the Canny edge detector 37
4.3 Example of the vanishing point detection method https://youtu.be/LoF001DMSoU 39
4.4 Example of a bad detection of the vanishing point due to the interference of a

board with posters . 40
4.5 Example of two recessed doors as seen by the drone 41
4.6 Markers used to select foreground (floor) and background (everything else) . . . 42
4.7 Examples of successful floor segmentations https://youtu.be/3M78qyrev1k 43
4.8 Floor segmentation, thresholding and the useful intersection area 43
4.9 Recess door detection vertex temporal validation algorithm 44
4.10 The various steps of the recessed door detection method https://youtu.be/

alToFq8htFk . 45
4.11 Example of a sporadic invalid recessed door detection 45
4.12 Unsuccessful left recessed door detection due to floor reflections 46
4.13 Unsuccessful left recessed door detection due to floor reflections 46
4.14 Example of a sequence of valid vertex detections 46
4.15 Result of the Stabilization method when a strong oscillation occurs 47
4.16 Example of the door contour detection method https://youtu.be/lhktcVTLNrg 48
4.17 Example of problematic door contour detections 49
4.18 Comparison between the rendered representation of a corridor and its schematic . 50
4.19 Updating the position of the Drone and the detected door 51
4.20 Example of a successful door detection and position estimation https://youtu.

be/HfYTlzBVStk . 52

xi

http://youtu.be/clsiq7GzUjw
http://youtu.be/clsiq7GzUjw
https://youtu.be/LoF001DMSoU
https://youtu.be/3M78qyrev1k
https://youtu.be/alToFq8htFk
https://youtu.be/alToFq8htFk
https://youtu.be/lhktcVTLNrg
https://youtu.be/HfYTlzBVStk
https://youtu.be/HfYTlzBVStk

xii LIST OF FIGURES

4.21 Example of a not so successful door detection 52

5.1 Two different types of corridor . 56
5.2 Floor Schematics . 57
5.3 Example of the control window provided by the framework 58
5.4 DEEC Ground Floor Framework Simulation and Experiment number 1 59
5.5 Vanishing Point dispersion map for flight experiment number 1 60
5.6 DEEC Ground Floor Framework Simulation and Experiment number 2 62
5.7 Vanishing Point dispersion map for experiment number 2 63
5.8 Repairing the external hull of the AR. Drone with a double sided adhesive tape . 64
5.9 Simulation http://youtu.be/0Q-owmC5N4s 65
5.10 Vanishing Point Detection from the simulation and experiment 2 65

A.1 QR code of Video Stabilization (figure 4.1) . 73
A.2 QR code of Vanishing Point Detection (figure 4.3) 73
A.3 QR code of Floor Segmentation (figure 4.7) . 74
A.4 QR code of Recessed Door Detection (figure 4.10) 74
A.5 QR code of Door Contours Detection (figure 4.16) 74
A.6 QR code of Position Estimation (figure 4.20) 74
A.7 QR code of Simulation #1 (figure 5.4a) . 74
A.8 QR code of Flight Experiment #1 (figure 5.4b) 75
A.9 QR code of Simulation #2 (figure 5.6a) . 75
A.10 QR code of Flight Experiment #2 (figure 5.6b) 75
A.11 QR code of Simulation #3 (figure 5.9) . 75

http://youtu.be/0Q-owmC5N4s

List of Tables

2.1 Technical Specifications of the Parrot AR. Drone 2.0 17

4.1 Example of a corridor data file . 50

5.1 Standard deviation and median value Vanishing Point from experiment 1 60
5.2 Door Detection data from simulation and experiment 1 60
5.3 Navigation data from experiment 1 . 61
5.4 Standard deviation of the Vanishing Point for experiment 2 63
5.5 Door Detection data from simulation and experiment 2 63
5.6 Navigation Data from experiment 2 . 64
5.7 Standard deviation of the Vanishing Point for experiment 3 65
5.8 Door Detection data from simulation 3 . 66
5.9 Summary of the experiments . 66

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

UAV Unmanned Aerial Vehicle
MAV Micro Air Vehicle
GPS Global Positioning System
IMU Inertial Measurement Unit
HD High Definition
FPS Frames per Second
ROS Robot Operating System
SURF Speeded-Up Robust Features
SVM Support Vector Machines
HOG Histogram of oriented gradients
SIFT Scale-invariant feature transform
SLAM Simultaneous Localization and Mapping
SVM Support Vector Machines
SLAM Simultaneous Localization and Mapping
HOG Histograms of Oriented Gradients

xv

Chapter 1

Introduction

Nowadays, the technological advances in both hardware and software bridge the gap between sci-

ence fiction stories and physical reality. Regarding robot technology, sophisticated hardware and

software are coming together in order to create machines capable of accomplishing and replicating

human activities. Today, UAVs are used for tasks such as surveillance, surveys, search and rescue

operations[1], traversal of paths inaccessible to ground vehicles, quick deployment, and military

applications which would be dangerous and hazardous for human beings.

However, this represents a certain problem due to some tasks being simple and latent knowl-

edge for human beings, but being non-trivial when it comes down to replicating them on machines.

Technology in this domain is still in need of certain advancements in order to achieve human like

intelligence. However, sub-tasks which can someday be integrated into a system, are being re-

searched.

Walking down a corridor while avoiding colliding with the walls and at the same time perceiv-

ing the structure of the corridor (doors and windows), is a trivial activity for any human being. This

dissertation presents a solution that will enable an aerial vehicle to possess this kind of perception

and dead reckoning.

1.1 Context

In recent years, Unmanned Aerial Vehicles (UAVs) have become affordable and relevant in several

research areas such as military applications and surveillance systems. These reliable, small-sized

and low-cost devices are normally equipped with high definition cameras and can be used as an

autonomous image gathering device. The captured images can be processed in order to extract and

obtain useful information that may be used for a variety of tasks and applications.

Being able to hover, fly laterally and at low speeds, makes UAVs an optimal platform to ac-

complish different military and civilian tasks such as reconnaissance support in hazardous zones,

visual surveillance and inspection. In addition, some relevant industries are starting to use drones

for other tasks beyond surveillance (e.g Amazon’s "Prime Air"1). Moreover, the most important

1www.amazon.com/b?node=8037720011

1

2 Introduction

task in order to achieve UAV autonomy is autonomous navigation. This may prove useful in a

near future for tasks in indoor environments such as indoor transportation, object retrieval (e.g

a missing part in an assembly line), monitoring misplaced books in a library and autonomously

reporting sports event[2].

Although years of research of GPS position and data tracking have improved outdoor nav-

igation and localization, in environments such as indoors or dense urban areas where maps are

unavailable and the GPS signal is weak, an UAV will operate in high hazardous regions, running

the risk of becoming lost and colliding with obstacles.

Since the scope of this project consists of enabling an UAV to autonomously navigate in an

unknown environment without resorting to GPS localization, the main challenge is using visual

odometry and on-board IMU to develop navigation and position estimation algorithms to achieve

an autonomous and robust navigation. A vast majority of UAVs depend on GPS for navigation,

hence this project is more challenging since GPS coverage is not available.

1.2 Research Questions

The main research question that is being addressed in this dissertation is:

How to enable an aerial vehicle to possess a collision-free navigation and a door detection
system, allowing a precise and robust position estimation of both the vehicle and the doors

in a floor plan?

From this question it is possible to define the main addressed topics. These will be the use of

collision-free navigation, door detection and position estimation.

From this broader problem several research questions arise. First, is it feasible to create a nav-

igation and wall collision application just by using the vanishing point from a scene as feedback?

Secondly, can the door detection method recognize doors with different formats? Finally, is the

position estimation of both the drone and the doors accurate?

For each research question there are several hypothesis that can possibly be presented as a

solution for each problem.

Research Question 1 Is it feasible to create a navigation and wall collision application just

by using the vanishing point from a scene as feedback?

There are few projects that require only monocular cameras to capture all the information

needed to build a navigation algorithm. In many cases, sensors like sonar and laser range finders

are used for this purpose. Even stereo cameras and RGB-D are used in this sort of application due

to their main advantage: image disparity which is used for range estimation.

Therefore, the goal is then to propose a new method that, by using only a monocular camera

and by detecting the vanishing point in a video feed, will grant a wall avoidance navigation to an

UAV.

1.3 Objectives 3

Research Question 2 Can the door detection method recognize doors with different formats?

Different types of doors are normally detected with different methods, either by training a

classifier or by detecting the shape of the door. Some doors however are not entirely visible when

navigation down a corridor as only a recess is certain to be observable.

The goal is to identify different doors in a corridor, being normal doors or recessed doors.

Research Question 3 Is the position estimation of both the drone and the doors accurate?

The main question is if it is possible to estimate the position of an UAV, using only the infor-

mation provided by its sensor system, and the position of visually detected doors using both the

estimated position of the UAV and the information provided by a pre-coded map containing metric

data of a floor.

There are a few projects that explore floor mapping and simultaneous localization and mapping

(SLAM) solutions for similar problems, but few set out to accomplish a robust position estimation

system based solely on metric parameters from an aerial vehicle and detection of structural ele-

ments in the scene. The goal is to create a system which estimates the position of both a drone and

the doors of a corridor using only the metric data provided by the onboard sensors of the drone

and a generalised door detection system.

1.3 Objectives

In order to address the research questions, this project focused on exploring methods that may

allow autonomous flight indoors without GPS while using only on-board sensors. Therefore it

sets out to study and implement an automatic video analysis framework responsible for enabling

an aerial vehicle to possess these abilities. The main novelty of the proposed solution to the stated

problem is the proposal of a system that uses only a monocular camera to acquired all the necessary

data to both the navigation, door detection and position estimations methods to be developed.

Given the complexity of the stated problem, this project needs to be split into simpler prob-

lems:

• Acquisition and quantification of sensory data: Processing and evaluating the values

from the UAV sensors is of the utmost importance. The readings from the sensors will

prove to be a valuable asset when the development of the autonomous navigation algorithm

requires sensory data to analyse the state of the UAV.

• Adjustment of the UAV navigation parameters: In order to create a navigation algorithm,

a fully functional communication between the UAVs and the external processing unit (lap-

top) must be established. Prior to the creation of the navigation algorithm, it must ensured

4 Introduction

that the laptop is fully capable of sending desirable commands to the UAV. These include

adjustments to parameters such as yaw, pitch and roll.

• Image data acquisition from the UAV camera: All the image frames captured by the UAV

camera will be used to compute all the necessary data for the navigation algorithm.

• Image processing: Images previously acquired should undergo a series of processes aimed

at detecting points and regions of interest which are relevant to the detection of features in

the indoor environment and the UAV navigation. Such processes may include: Binarization,

Segmentation, Noise Reduction and Perspective Transformations.

• Image feature detection and extraction: All the acquired frames from the camera should

be analysed in order to detect features of interest to be used on the classification stage. The

techniques to be used may include:

– Canny edge detection[3];

– Hough transform[4];

– SURF[5];

The desirable framework will be implemented using typical image processing methods com-

monly found in the literature. This framework will have a modular architecture, meaning that each

module will work independently from one another. The gist of this approach is that of breaking

new ground for modular image processing based drone navigation systems in which additional

modules can be developed and added to the framework, creating an ever evolving system with

several new capabilities. The base framework is going to be composed of the following stages:

• Image Acquisition through a monocular camera on-board an aerial vehicle;

• Navigation Control based only on the current position of the vanishing point of the scene;

• Detection of structural features in corridors such as doors;

• Position Estimation of both the drone and the doors by cross-referencing their estimated

position with metric data of the floor plant;

In order to achieve this goal, the system needs to meet the following requirements:

• The computational complexity of the system should be independent of the environment size.

• Firm and robust door detection.

• Fast data processing to satisfy real time constrains.

• Brisk and Flexible navigation;

This project aspires to be the stepping stone towards an automatic and autonomous vision

navigation and position estimation system with an image acquisition based on UAVs. The final

product will be a complete and working framework built upon common methods paving the way

to future works which may improve the performance of the system.

1.4 Contributions 5

1.4 Contributions

Bellow are listed the various contributions that resulted from all the work developed on the scope

of this dissertation:

• Development of a computer vision framework for autonomous navigation and position esti-

mation in corridors.

• Study and implementation of a vanishing point and door detection methods: the former for

navigation purposes and the latter for position estimation purposes.

• The corridors in which the tests were conducted and the videos were recorded had their

dimensions, including the distance between its doors, measured and annotated, therefore

creating a small dataset of the metric information from corridors.

• An article about this project and all the research done was written and submitted to ROBOT’2015:

Second Iberian Robotics Conference2, in particular, the special issue "Visual Perception for

Autonomous Robots".

1.5 Summary and Document Structure

This project sets out to develop a modular algorithm in order to generate confident results regarding

autonomous navigation and position estimation in indoor environments.

After this introductory chapter, a literature review and an analysis of other solutions for au-

tonomous navigation will be presented on chapter 2.

In chapter 3, an overview of the framework of the system is presented and the major problems

it faced are identified.

Chapter 4 touches upon the several stages of the framework and preliminary results and output

examples are also presented for each stage.

In chapter 5, results from several simulations and practical experiments are presented and

discussed in order to evaluate the robustness of the system.

Finally, chapter 6 concludes this dissertation by discussing the work developed, presenting the

main conclusions, the answers to the research questions and discussing possible future work.

2https://web.fe.up.pt/ robot2015/index.php/special-sessions

6 Introduction

Chapter 2

State of the art

This chapter will focus on the existing work on the field of computer vision systems for au-

tonomous navigation and will present a literature review which is befitting for a better under-

standing of the problem under study.

Section 2.1 will focus on currently used algorithms for image processing, machine learning

and navigation that are suitable methods for solving the problem this project set out to solve.

In section 2.2 data collected from researching quad-copters and a more profound analysis of

the one that was found to best meet the requirements of this project.

Finally, in section 2.3, a brief description of the current development state of autonomous

navigation using UAVs will be presented.

2.1 Computer Vision and Image Processing Methods and Algorithms

2.1.1 Image Acquisition

The first stage of a computer vision system, and one of the most important, is without a doubt

the image acquisition phase. Architectures based on image acquisition normally differ from one

another depending on the type of camera that is used (see section 2.2.1, 2.2.1 and 2.2.1) and the

amount of cameras used[6, 7].

2.1.2 Pre-Processing

Following image acquisition, the necessary step that comes after is image pre-processing. This

can significantly increase the reliability of an optical inspection.

An example of a pre-processing method is video stabilization which is often present in a com-

puter vision system when there is a need to compensate undesired camera motion[8, 9]. This is of

the utmost importance when spatial image coherence is required.

Several filter operations which intensify or reduce certain image details enable an easier or

faster evaluation of the scene. Filtering is colloquially referred to as smoothing or blurring as is

commonly used in order to reduce noise in an image.

7

8 State of the art

The most used filters are linear, meaning that the value of an output pixel is determined as a

weighted sum of input pixel values:

• Normalized Box Filter: Each pixel will have an output that corresponds to the mean of its

kernel neighbours.

• Gaussian Filter: This type of filtering is accomplished by convolving each point in the input

image with a Gaussian kernel and then summing them all to produce the output image.

• Median Filter: This filter runs through each element of an image and replaces each pixel

with the median of the pixels from its neighbourhood.

Another type of filtering consists of morphological transformations which consist of a set of

operations that process images based on shapes. These morphological operations apply a structur-

ing element to an input image and generate an output image.

The most commonly used Morphological operations are:

• Dilation: Computes a convolution of an image with a kernel which can have any shape or

size (normally a square or circle).

• Erosion: Similar to dilation. Compute a local minimum over the area of the kernel.

• Opening: Obtained by the erosion of an image followed by a dilation (normally used to

remove small objects).

• Closing: Obtained by the dilation of an image followed by an erosion (normally used to

remove small holes and dark regions).

2.1.3 Image Processing

Image processing is a field of imaging science in which the output of image processing results in

yet other image or a set of parameters and characteristics related to the image.

Commonly, the first step after capturing an image is that of converting it into a greyscale image

and then into a binary image, or changing its color space from RGB to HSV.

Concerning the the identification of connected components, a segmentation and contour de-

tection is used and in order to reduce computational costs, objects smaller than a specific area are

normally discarded.

Segmentation

Dividing an image in different regions of interest which possess common features is the pro-

cess known as image segmentation. The most commonly used techniques are the watershed

algorithm[10] and grabcut[11] for background subtraction.

2.1 Computer Vision and Image Processing Methods and Algorithms 9

Object Detection

The gist of object detection is the precise recognition of an object in a set of images. This is a

very complex problem and nowadays still proves to be quite challenging[12]. Although the most

used approach to detect objects in a video stream consists of using information from different

frames, it delivers results with a high error rate. A typical workaround is that of analysing tem-

porary information which was computed from a set of sequential frames, hence reducing the error

rate[12].

Edge Detection

In image processing, an edge is defined as a discontinuity in rightness of an image. Therefore the

problem of detecting edges consists of finding those discontinuities which may represent changes

in properties of that same image such as depth, orientation and illumination.

The Canny edge detector[3] is one of the most used edge detection operators and is comprised

of the following steps:

• Noise removal with Gaussian filer.

• Localization of the intensity gradients of the image.

• Non-maximum suppression application to eliminate false responses to edge detection.

• Double threshold application to resolve potential edges.

• Suppress the remaining edges that are week and are not connected to strong edges.

Feature Detection

The SURF algorithm[5] is a robust local feature detector built upon the SIFT detector and descrip-

tor but is reported to perform better than the latter[13] when it comes down to speed and robustness

to viewpoint and illumination changes.

This algorithm detects salient features and provides their image coordinates together with their

descriptions. It is composed of 4 stages:

• Integral image generation

• Interest point detection

• Descriptor orientation assignment

• Descriptor generation

In a navigation algorithm the calculation of the Speeded up Robust Features may prove to be

the most intensive and computationally demanding part, so it needs to be accelerated in order to

obtain a real-time performance.

10 State of the art

Object Tracking

Object tracking consists in the process of tracking an object in a sequence of frames or images. Its

typical applications are in surveillance tasks and interaction systems.

Some typical challenges that object tracking tries to overcome and which directly influences

its success are the following:

• The movement of the object.

• A change in the pattern, structure and background of the object.

• Camera movement.

• Object occlusion by other object or background.

The major algorithms used in object tracking are Point Tracking, Kernel Tracking and Silhou-

ette Tracking[14].

When it comes down to object tracking the concept of optical flow is often used. Being the

apparent motion between an observer and the environment, it is used to estimate the motion field.

This is accomplished by estimating the location of each pixel from one frame in the second frame.

However it does not always correspond to actual motion.

One of the major challenges in calculating optical flow is that of finding corresponding pixels

as many of them can have the same color and even surrounding pixels with the same color value.

This leads to the assumption that in order to calculate the optical flow, it is assumed that there

is very little movement from one image to the other, leading to a "travelled distance" of just one

pixel. This assumption poses a problem when dealing with fast moving vehicles due to delays in

sending and interpretation images.

One possible workaround is that of using sparse optical flow. This is a process in which image

features are tracked across different images[15].

Some navigation methods used on UAVs are based on a dead-reckoning system, which is the

process of calculating the current position based on a previously determined one. These methods

are used to estimate the speed of an aerial vehicle based on the optical flow in the image of its

bottom camera. The value of these speeds are then integrated in order to get an estimate of the

drone position[1].

Feature Extraction

One of the most used feature extraction techniques is the Hough Transform. It was originally

designed to find lines in a image[16] but it has been modified in order to detect shapes such as

circles and ellipses[17].

Many variants of the standard Hough Transform were developed, such as the Generic Hough

Transform with Gradient, 2-1 Hough Transform and Fast Hough Transform[18].

2.1 Computer Vision and Image Processing Methods and Algorithms 11

Prior to shape detection, an image must undergo a preprocessing in order to acquire informa-

tion of the edge of each object. Techniques such as those mentioned in 2.1.3 are used to compute

this data which will later be processed using the Hough Transform to find a shape.

In order to find a line, which is represented by

y = mx+ c (2.1)

the first thing to do is to represent a line into a point, resulting in the following equation:

c =−mx+ y (2.2)

The Hough Transform converts a point in xy-space to a line in mc-space (the parameter space),

which consists of representing the information of an image discrete points (x1,y1)(x2,y2) in terms

of the slope parameter m and the intercept parameter c. As the points from an edge of an image

are therefore transformed into lines, some lines that are constructed from edges of the same object

will intersect. This means that the intersection of lines in in mc-space correspond to information

of a line in xy-space.

However, a vertical line proves to be a problem as m has an infinite value, requiring infinite

memory to store the data in mc-space. Therefore, another representation is used to avoid this

problem.

In this new representation, a line is represented by the distance p of a line from the point (0,0)

and the angle θ of a line to the x-axis. Thus, a line is represented by the following equation:

p = x.cos(θ)+ y.sin(θ) (2.3)

Where x and y is a point passed by the line.

In this method, a line in xy-space will be transformed into a point in pθ -space and a point in

xy-space will be transformed into a sinusoidal curve[19].

Figure 2.1: Representation of a line

Using this method, the Hough Transform uses the values of x, y and R to recognize circles in

a image. The Hough Transform will create circles with a certain radius in every pixel of an object

and the calculation of the points with the maximum number of interceptions of those circles will

12 State of the art

be computed. In the end, the point with the most interceptions will acknowledge as the center

point.

The Hough transform has proven to be a strong candidate for this project as it has proven to

be efficient and quite reliable in some other similar projects[20].

A team from the University of Indonesia used the Hough Transform method[18] to detect and

track shapes in an indoor environment using the front-facing camera of the AR. Drone. They

accomplish this by following these steps:

• Conversion of the image color model from RGB to HSV.

• Conversion of the video stream into a binary image: since this team detected objects based

on its color and shape, they had to pay close attention to the range of the HSV components

in order to obtain the ideal threshold.

• Following, using an implementation of the Hough Transform method from the OpenCV

library, a circle shape is found.

• The tracking method then uses the information obtained in the previous step and sets a

rectangle window inside the viewfinder of the input image. After that, the controller method

uses this information and makes sure that the rectangle always contains the information of

the desirable object to track.

2.1.4 Machine Learning

Machine learning is a sub-field of artificial intelligence that enables computers to act indepen-

dently without being programmed to do so. Many applications that rely on machine learning

are, for example, self-driving cars, practical speech recognition and effective web search. This is

accomplished by constructing algorithms that are able to learn from available data.

There are different methods that can be categorized as follows:

• Supervised learning which use both the inputs and the outputs in order to replicate an in-

tended model:

– Parametric algorithms.

– Non-Parametric algorithms.

– Support Vector Machines (SVM).

– Kernels.

– Neural networks.

• Unsupervised learning, which are used when there is no information regarding the intended

output:

– Clustering.

2.2 Unmanned Aerial Vehicles (UAVS) 13

– Dimensionality Reduction.

– Recommender Systems.

– Deep learning.

Support Vector Machines

In order to enable an UAV to possess the ability to recognize objects, a machine learning method

that is considered to be of relevant use is Support Vector Machines (SVM).

SVMs are a kernel-based technique that aim to output an optimal separating hyperplane that

categorizes previously labelled images. They are mostly used in pattern recognition tasks and

require a training set of images in order to train the classifier. Its modus operandi is finding the

hyperplane that maximizes the margin of the training data. This means that the optimal separating

hyperplane gives the largest minimum distance to the training data.

SVMs have a fairly satisfactory success rate towards redundant attributes, have a reliable ac-

curacy and classify data rather quickly.

2.2 Unmanned Aerial Vehicles (UAVS)

In recent years, UAVs such as quad-copters have increasingly gained interest in robotics and com-

puter vision research. Commonly used as a flying camera, they are mostly employed for surveil-

lance tasks and recording humanly impossible videos. Therefore, in order to navigate safely, these

equipments rely on their on-board sensors and cameras to track their position autonomously. The

advantages of using UAVs includes their easy manoeuvrability and ability to hover.

Whilst there has been substantial research about navigation algorithms on ground vehicles,

these approaches can not be directly transferred to aerial vehicles:

• An indoor aerial vehicle cannot hold as many sensors as a ground vehicle.

• A flying vehicle has more degrees of freedom than a ground vehicle, which prevents the use

of 2D navigation algorithms.

• The risk of failure is more catastrophic in a flying vehicle. If a navigation prediction failure

occurs on a ground vehicle, it can be stopped by a user, whereas when the same occurs in a

flying vehicle, it falls on the ground damaging its structural integrity.

It is of the important to enable an UAV to possess collision avoidance capabilities to avoid the

risk of damaging the structure of the vehicle and the surrounding environment. This catastrophic

scenario depends mostly on the altitude of the vehicle and the nature of the collision.

2.2.1 On-board Electronics

Different UAVs have an array of devices capable of providing accurate data which can prove to be

useful for navigation, localization, landing and obstacle avoidance tasks.

14 State of the art

GPS

The Global Positioning System [21] was funded by the United States Department of Defence and

was initially designed for the United States military, although in 1980, it was made available for

civilian use.

This system works anywhere in the world, 24 hours a day and in any weather conditions. Four

GPS satellite signals are used in order to compute the positions in three dimension and also the

time offset in the receiver clock.

IMU

The IMU is a single unit, that houses two sensors, which collects angular velocity and linear

acceleration data and returns it to the main processor. It is used to acquire pitch, roll and yaw data

from the UAV.

A brief description of these two sensors follows:

• Accelerometer: An accelerometer is a device that measures acceleration forces which may

be static (the force of gravity), or dynamic (vibrating or even moving the accelerometer

itself).

• Gyroscope: A Gyroscope is a device that measures the orientation of a device based on the

angular momentum of that same device. It is used to acquire the angular rate of a certain

vehicle[22].

Laser Range Finder

This sensor uses a laser beam to determine the distance of the source of emission to an object. Its

normal mode of operation consists of sending a laser pulse to a certain object and measuring the

distance that it takes the pulse to reflect off the object and bounce back to the emitter. They are

commonly used for 3D-Modelling[23].

Ultrasonic Sensor

This sensor can be used as a sonar based altimeter, providing altitude estimation and vertical

displacements. Their modus operandi is similar to a sonar which consists of generating high

frequency sound waves and measuring the time that takes for the transmitter to received the echo

of the emitted wave, thus determining the distance to an object.

Pressure Sensor

A pressure sensor is commonly used to provide stability to an UAV, allowing the on-board pro-

cessing to automatically correct and maintain a still position while the vehicle is airborne. This is

achieved regardless of altitude and wind intensity[1]. On-board pressure sensors provide unique

2.2 Unmanned Aerial Vehicles (UAVS) 15

stability that will automatically correct and maintain a still position in the air regardless of altitude

and wind intensity

Magnetometer

A Magnetometer is an electronic device capable of measuring the strength and direction of a mag-

netic field. Therefore it can be used in navigation applications by measuring the earth’s magnetic

field.

Monocular Camera

Even though this type of cameras have low weight, power consumption, size and cost, they still

provide an immense amount of information, which is unmatched by any other type of sensor.

Compared to other depth measuring devices, the range of a monocular camera is virtually unlim-

ited. This feature proves to be useful when using a monocular SLAM system to operate in open

environments[24].

In spite of those advantages, this device proves to be inefficient when it comes to determine

the scale of the environment as there is no way to obtain depth perception. In this case, a vehicle

must rely on another set of sensors such as those of the IMU (2.2.1).

Stereo Camera

This particular camera, containing two or more lenses with a image sensor per lens, is a direct

solution to the disadvantage of the aforementioned monocular camera: extraction of depth infor-

mation of an object in a image. It is possible to capture 3D images with these cameras due to

the fact that the lenses simulate the human binocular vision. Hence, this process is called stereo

photography.

Not all stereo cameras are used to acquire 3D photographs or video whereas depending on the

lenses configuration, the acquired data may not contain stereoscopic information. For example a

twin-lens reflex camera uses one lens to image to a focusing/composition screen and the other to

capture the image on film (these are usually in a vertical configuration).

RGB-D Sensor

The RGB-D sensor provides the combined data of RGB color information and per-pixel depth

information. The data acquired from these sensors can be represented as a point cloud which

consists of a collection of points in three dimensional space. Additional features can be associated

with the point from that space, meaning that color can be one of those features.

One device that provides these functionalities and is affordable, unlike the rest of the RGB-D

sensors in the market, is the Microsoft Kinect[25].

16 State of the art

2.2.2 Quad-copters

In recent years, UAVs have been used in several research projects and applications due to their

simple manoeuvrability, mechanical simplicity and several improvements that have been made in

technologies such as: stability, control, batteries and sensors.

Recent developments in drone technology have spawned different types of drones. The most

common ones are listed bellow.

• Flapping wing drones

• Fixed wing drones

• Rotor based drones

Due to their low weight, small size and agility, flapping wing drones drones have the advantage

of being able to fly and hover in a close proximity to objects [26] [27]. Fixed wing drones use a

gliding mechanism: either built in linear propellers or an external propulsion mechanism. Unlike

flapping wing drones, these are less agile but on the other hand have longer flight durations which

makes then ideal candidates for survey and mapping applications [28]. The flight control of Rotor

based drones is based on regulating the speed of the rotors, providing the drone with an ample

degree of freedom during its flight. These drones normally have a larger payload due to carrying

additional sensors as well as on-board cameras. These cameras receive visual signals that are used

in several research areas such as obstacle avoidance, tracking and feature detection. However,

camera based methods rely strongly on external light sources needed to illuminate the environment

and on edge and texture features. Also, these methods may be limited in low or irregular visibility

situations based on illumination.

Nowadays there are several available options in UAVs with an array of sensors and feedback

hardware. For this project a quad-copter small enough to be used indoors was required. This

vehicle would allow agile and responsive flight and effortless maintenance. Also, only quad-

copters with frontal monocular cameras were considered due to the need of processing a video

feed been captured in the front of the drone.

A large variety of drones is available in the market now more than ever. However, one quad-

copter drone stands out as the most affordable, easy to use and to repair: the Parrot AR. Drone1.

When compared to other drones such as the Dji Phantom2 or the AscTec Firefly3, the Parrot

AR. Drone presents itself as the ideal solution for this and any other vision oriented project[2] due

to several factors:

• Low price.

• Open communications protocol: allowing the development of autonomous flight projects

with the help of a HD camera with high quality and transmission rate.

1ardrone2.parrot.com
2www.dji.com
3http://www.asctec.de/uav-applications/research/products/asctec-firefly/

2.2 Unmanned Aerial Vehicles (UAVS) 17

• Repairability: Despite having a reduced robustness, the AR. Drone is fully repairable

which is a characteristic of paramount interest since it will be used as a testing platform.

Therefore, falls and impacts is certainly not avoidable.

2.2.3 Parrot AR. Drone

The Parrot AR. Drone (Figure 2.2) was initially conceived as a toy and therefore is quite popular

and affordable.

Table 2.1: Technical Specifications of the Parrot AR. Drone 2.0

Structure Carbon Fiber and Outdoor Hull
Weight 400 g
Autonomy 18 min

Sensors
Gyroscope,Accelerometer,Magnetometer,Pressure Sensor, Ultassounds,
Vertical Camera for ground velocity

Communications Wi-Fi
Camera 720p 30fps. Low latency Wi-Fi Transmission
Observations Fully Repairable. Open and documented communications protocol
Price 300 euros

Being an off-the-shelf drone makes it easy to maintain and replace parts as well as providing

specific features of on-board stabilization and accessible control design that makes it possible to

focus on developing efficient software solutions without worrying about development for hard-

ware.

A list of the most useful characteristics that come factory-fitted with this drone are shown on

the list below.

• Front and bottom facing cameras: The Parrot AR. Drone comes equipped with a front

facing camera and a bottom facing camera that provide live video streaming to the device

controlling the drone. The front facing camera is used for piloting the drone while the

bottom facing camera is used to see what is below the drone, horizontal stabilization and

velocity estimation.

• Automatic stabilization: This drone provides an exceptional on-board stabilization system

that makes use of the rotors, gyroscope and bottom facing camera for that purpose.

• Wireless connectivity: Wireless devices can easily connect to the AR. Drone by either

using the official application provided by Parrot (both for iOS and Android) or the corre-

sponding drivers such as the ardrone_autonomy (see chapter 3.4.3)

Quad-copter flight control

The control and manoeuvrability of a drone is directly influenced by its design. Such design

consists if four rotor blades attached to a main body that is arranged in structure resembling 2x2

18 State of the art

Figure 2.2: The AR. Drone quad-copter with the protection hull attached

matrix. In this structure each pair of rotors turn in the same direction meaning that, as seen in

Figure 2.3, the rotor pair 1,4 and 2,3 turn in opposite directions: the former turns counter clockwise

and the latter turns clockwise. This configuration is what enables the drone to possess the ability

to hover in one place.

Figure 2.3: Rotation Direction of each of the four rotors found in a quad-copter

In order to move, the drone relies on a three-dimensional tilt/rotation system around the X,

Y ad Z axis using differential torque and thrust amongst the rotors. As illustrated in Figure 2.4,

rotation along each of the three axes allows the drone to move forward/backwards (pitch), left/right

(roll) and turn left/right (yaw).

2.2 Unmanned Aerial Vehicles (UAVS) 19

Figure 2.4: The rotation system on a quad-copter: yaw, pitch and roll

In order for a quad-copter to achieve linear movement, the rotation speed of two correspond-

ing rotors varies relatively to the other two rotors. A quad-copter has the following degree of

movement:

• Forward/backward linear movement: A differential speed between the front and the rear

rotors achieves this movement (+/- pitch).

• Up/down linear movement: Applying the same speed on all four rotors achieves this move-

ment. This means that lower speed lowers the drone and higher speed increases the hover

hight (+/- height).

• Left/right linear movement: A differential speed between the right and the left rotors

achieves this movement (+/- roll).

• Left/right rotation movement: A differential speed between the diagonal rotors achieves

this movement (+/- yaw): the rotor pair 1,3 has a different torque than the rotor pair 2,4.

The speed and the direction of movement of the drone can be directly influenced by the degree

of ration around either axes and the speed of each rotor.

Inertial Measurement Unit (IMU)

The Parrot AR. Drone contains an Inertial Measurement Unit (IMU) with six degrees of freedom

that are measured using the following components:

• A 3-axis accelerometer that is used to measure acceleration int the X,Y and Z axes.

• A gyroscope used to measure,in degrees per second, roll and pitch (2-axis) and yaw (1-axis)

by angular velocity.

20 State of the art

In addition, the height estimation, stabilization and vertical speed of the AR. Drone is done by

an Ultrasound Altimeter that is attached to the bottom of the drone. This altimeter is able to esti-

mate the current height of the drone from a relatively flat surface bellow the drone by transmitting

ultrasonic waves and "listening" to their echo on said surface.

On-board Processing

Due to the on-board processing software that comes pre-installed in the AR. Drone being closed-

source and not publicly documented by Parrot, it was not modified throughout the fulfilment of

this project. This software is responsible, among other things, for flight stability which requires

the use of all the sensory and image data in order to maintain the position,awareness and state

estimation of the drone.

Since it was designed as a toy, this drone has limited computational power which may prove

a problem as image processing using computer vision algorithms require a lot of resources. One

possible workaround is using a computer that is connected to the AR. Drone via wireless. The

communication flow between the AR. Drone and the computer can be seen in figure 2.5.

Figure 2.5: Data exchange between the AR.Drone and a Computer

The batteries of this UAV provide enough energy for a 15 minutes flight. However, its turbines

are not powerful enough to keep a steady position in windy conditions, which limits its outdoor

use.

All the documentation for the AR. Drone was made available by Parrot on their official web-

site4.

2.3 Related Work

The goal of developing autonomous UAVs is one of allowing them to perform complex manoeu-

vres and navigate independently in structured and unstructured environments.

2.3.1 Laser Assisted Navigation

A relevant project was that of a team from the Massachusetts Institute of Technology which used

a laser range-finder sensor to enable an MAV to autonomously explore and map unstructured and

unknown environments[29]. They used on-board sensors to estimate the position of the MAV and

used SLAM algorithms to build a map of the environment around the vehicle.

4ardrone2.parrot.com/

2.3 Related Work 21

The motion estimation of this project comprised of different problems: motion estimation

using laser scan-matching and height estimation using the on-board IMU.

2.3.2 Sonar Assisted Navigation

Sonar technology used to be prevalent among UAVs and some projects still use it for field mapping

using UAVs [30]. However, due to the fact that the time it takes for the sonar waves to travel

decreases the UAV obstacle detection range, this technology can no longer be used.

The alternative is a way of detection images and avoid obstacles much sooner which can be

achieve using a technology that does not depend on propagation waves, but rather uses light as

medium to detect objects: optical cameras.

2.3.3 Camera Assisted Navigation

Pre-coded Maps

A team from the Czech Technical University in Prague developed a navigation system for a UAV

using a monocular camera and odometry[31]. The navigation system was based on dead-reckoning

techniques[32] to calculate the traversed segment length and the information from the camera to

calculate the UAV yaw and vertical speed. This allowed the team to use a histogram voting scheme.

The developed navigation method consists of a "record and play" technique in which the UAVs

is guided along the path that it will autonomously navigate later on. During the initial phase, a

map is created by guiding the UAV along a path, using the front-facing camera to recognize and

track salient features using the SURF[5] feature detector. In the second phase the UAVs navigates

autonomously in the learned path by using the dead-reckoning system to calculate the traversed

distance and retrieves the relevant landmarks from the precoded map in order to compare to the

data currently being obtained through the camera. The difference of coordinates is then computed

using a histogram voting technique and this information is then processed to the UAV yaw and

altitude controllers to safely adjust the drone position. Briefly, using this method, the UAV builds a

SURF-based landmark map in a guided tour and then uses the method described above to navigate

autonomously in the mapped environment.

The only limitation of this project consists in the necessity of using a pre-autonomous-navigation

phase in which the UAV is human-guided.

Autonomous Indoor Navigation

The implemented project is the spiritual successor of a project of a team from University of Texas

[33] which aimed at navigating autonomously in indoor environments (corridors) and industrial

environments (production lines) and detecting and avoiding obstacles (people). The navigation

was accomplished by using the vanishing point algorithm, the Hough transform (2.1.3) for wall

detection and avoidance and HOG descriptors using SVM classifiers for detecting pedestrians.

The UAV used was the AR. Drone.

22 State of the art

Firstly, edge detection is performed using the Canny edge detector followed by a Gaussian

blurring to reduce noise and irrelevant edges. Using the points exported by the Canny edge detec-

tor, the Hough transform is used to detect the perspective lines using a voting scheme procedure

which finds the lines that are closer to those same points. The following operation was that of

removing some lines that were dependent on thresholds that influenced the Canny edge detector

and the Hough transform (outliers). This was achieved by thresholding their angles (in radians).

The next phase was finding the line intersection of the lines which were detected by the Hough

transform, which was achieved by using the Least square problem which estimates the minimum

distance of a point from a set of lines. In corridors, such as those used in this project, the line

interception is called the vanishing point. In this step there is a boundary box in the image used to

distinguish between valid estimations of the vanishing point and invalid ones. If there is an invalid

estimation, it is overlooked and the system awaits for another one.

As the AR. Drone lacks a laser or even an obstacle avoidance sensor, only the camera can

be used to avoid collisions with the right and left wall. In this project it was assumed that the

UAV should have the ability to know its relative position to the left and the right walls in order to

avoid them while moving. The way they did it was by manually pre-estimating this ability which

consisted of manually putting the camera of the drone to the right and left wall and analysing the

angular value of the lines obtained from the Hough transform. It is important to mention that the

angular values of the lines can be automatically estimated while the drone is at the center of a

corridor. By exporting the value of the angles shown in figure 2.6 it was possible to determine

when there was enough space for the UAV to safely navigate without hitting the side walls:

• When angle angle B = D, the drone is positioned at the center of the corridor.

• When the angle A is twice bigger than the the angle B+D, the AR-Drone has enough space

to navigate without hitting any obstacles on the side walls or even the side walls themselves.

Figure 2.6: Hough Lines in the left and right wall

The human detection process implemented for this project used the Histogram of Oriented

Gradient descriptors (HOG) and a linear SVM classifier (2.1.4). The SVM classifier was used to

test the feature detector in the MIT pedestrian database which contains 1800 pedestrians images

of different poses and backgrounds.

In order to avoid hitting the target (person), the boundaries of the side walls are considered a

place of safe passage, meaning that when a person is detected by the AR. Drone, an estimation

of the most large free sideways are is made in order to avoid hitting the moving target. The wall

2.4 Summary 23

detection algorithm is of the utmost importance as the position of the moving target is computed

relatively to the boundaries of the side walls.

The main difference between this project the implemented project is that the latter sets out to

improve on the navigation an wall avoidance algorithm and provide a feature detector to the drone.

The original project only uses the information of the vanishing point to avoid wall collisions while

the implemented project also uses this information to detect the end of a corridor as well as an

obstacle blocking the way for the drone. Additionally, the implemented project provides video

stabilization to compensate for abrupt movements and detects structural features of a corridor

(doors) in order to estimate the current position of the drone.

Stereo and SLAM

Other approaches involved using stereo cameras[34] and the Microsoft Kinect RGB-D sensors[35]

to solve the SLAM problem and find the best solution for a robust state estimation and control

methods. These approaches perform local estimation of the vehicle position and build a 3D model

of the environment (SLAM) to plan trajectories through an environment.

2.3.4 IMU Assisted Navigation

Some other projects recurred to Kalman filters and ultrasound sensors to compute the UAV pose

estimation in a GPS denied environment[36]. Every time that the UAV has to reach a certain

location, a path which provides a favourable observation density is computed from a predefined

map, minimizing the risk of localization failures.

2.4 Summary

Recently, UAVs, more importantly quad-rotor drones, have become more affordable and conse-

quently, available to wider range of applications and research. These vehicles, now equipped with

on-board HD cameras are suitable for capturing images and recording videos in areas or situations

that may or may not be possible for human beings. Their portability, effortless manoeuvrabil-

ity and potential for autonomous flight have made them a image capturing low cost solution for

research and consequently this project.

Several image processing techniques useful for this kind of project are available and some

of them were used in the implementation of the developed solution for this project. The image

processing techniques used are the Hough Transform, Canny Edge Detection and Optical Flow.

24 State of the art

Chapter 3

System Overview

This chapter presents an overview of the system, explaining how the video feed is acquired and

processed. The framework created for this project will be described succinctly.

The proposed method consists of a modular algorithm designed using image processing meth-

ods. The result of the algorithm is a generated map in which the position of the drone and the

doors of a corridor are estimated and displayed.

3.1 Video Acquisition

The video feed used in this project comes from a 1280x720 (720p) resolution camera on-board

the AR. Drone. The video is recorded at 30 frames per second (fps) in real-time while the drone

navigates inside corridors (Figure 3.1) of the Department of Electrical and Computer Engineering1

of the Faculty of Engineering of the University of Porto2.

Figure 3.1: Drone navigating inside a corridor

1http://paginas.fe.up.pt/ deecsite/
2https://sigarra.up.pt/feup/

25

26 System Overview

3.2 Video Processing

The analysis of the video feed is performed remotely in real-time using the OpenCV library for

C++ (see section 3.4).

In the several stages of this process, different methods are used. The following sections explain

how the developed framework and each of its modules operate and cooperate, with regard to input

and output, as well as the main reason for using them.

3.2.1 System Framework

In this dissertation, a detailed framework was created to tackle the challenge of autonomous navi-

gation and position estimation using a monocular camera. A graphical representation of the algo-

rithm is shown on Figure 3.2.

This framework is devised into two parts:

• Hardware Side: The vehicle and all the data it provides (image and sensory data)

• Software Side: All the image processing methods.

Figure 3.2: The developed framework which bridges the gap between the hardware of the drone
and the external processing unit using an Wifi connection

3.2 Video Processing 27

In order to reduce the on-board payload data processing, the drone sends the acquired data to

an external processing unit.

Regarding the hardware side, the drone mechanism and stability, the camera input and the

medium through which the video feed is transmitted are considered. On the computer side a series

of algorithms and methods that process the video feed and output the drone commands are present.

Pre-Processing

In order to extract useful information from the provided video feed, a series of steps are imple-

mented. Beyond any doubt, the drone used for navigating in the corridors will be susceptible to

oscillations caused by either external and uncontrollable factors (e.g different airflows) as well as

internal factors such as its own dynamic. For this reason, the first module of the framework is

image stabilization and filtering:

• Video stabilization will be used to compensate for abrupt camera shifts and oscillations;

• Filtering will be responsible for smoothing the frames and reducing noise.

• In order to speed up the operations and reduce the processing load on the computer running

the software, each frame will be downscaled to a lower resolution. This operation by itself

will also contribute to lowering the noise and unwanted features in the captured scene.

Door Detection

The door detection module will be responsible for detecting the doors in the video feed provided

by the drone. Two different approaches will be used in order to develop a robust door detection

system. These two methods will use a master/slave modus operandi, one being the detector that

provides a better detection accuracy (recessed door detection) and the other the one (door contour

detection) which although does not provided such a high detection accuracy, detects doors using

an entirely different method. The conjugation of these two distinct detections will provide an even

higher door detection accuracy.

Navigation

The navigation module works as follows:

• First, it acquires the location of the vanishing point (detected in the video feed provided by

the drone);

• Then it creates adjustments that will correct the course of the drone.

• Finally, it sends these commands to the Drone.

A successful traversal of a corridor will be achieved if the drone can lock on the location of

the vanishing point and always keep its orientation aligned with it.

28 System Overview

Position Estimation

This module will use a set of data from different sources in order to estimate the position of the

drone and the doors that are part of the corridor.

• Pre-coded metric information about the floor in which the drone is navigating.

• The linear velocity of the drone.

• The output of the door detection module.

3.3 Methods Evaluation

Having in mind the nature of the problem that this project aims to solve, the various steps of each

method will be evaluated using quantitative and qualitative criteria:

• Quantitative Evaluation:

– Vanishing Point Detection

– Recessed Door Detection

– Door Contour Detection

• Qualitative Evaluation

– Video Stabilization

3.3.1 Quantitative Evaluation

"Vanishing Point Detection", "Recessed Door Detection" and "Door Contour Detection" are the

framework stages in which a metric evaluation can be used.

Vanishing Point Detection

The metric used to evaluate the vanishing point detection method will be based on the mean value

of all the detections that were made during each test flight.

For every test flight a manual annotation of the ideal vanishing point detected in each frame

was performed. As this point will have similar coordinates during the flight it is expected that as

more points are detected, they will be near the average value of all the points detected so far.

Therefore, using the manually detected vanishing point data, in each flight, the vanishing point

detection method will prove to be robust if the each new detection does not deviate from the mean.

3.3 Methods Evaluation 29

Door Detection

Both door detection methods, Recessed Door Detection and Door Contour Detection are evaluated

by simply comparing the instant of time at which this module reports a door detection with the

instant of time at which the drone actually passes next to a door.

Simply put, if the drone passes near a door and the method reports a door detection, and this

situation happens for every door in the corridor, then this will prove the robustness of the method.

3.3.2 Qualitative Evaluation

Video Stabilization

In the field of computer vision the quantitative evaluation of video stabilization is not easy and

trivial. Due to this fact, a qualitative evaluation using subjective criteria was performed based on

long term accuracy and efficiency.

3.3.3 Test Scenarios

In order to test the developed methods and their accuracy and robustness in corridors, a series of

videos were initially recorded with a 720p camera. The purpose was to cover different trajectories

and circumstances which an aerial vehicle would encounter in those same corridors. The plan was

to initially test the image processing stage of the framework and then, after developing the drone

navigation method, compared the results from the simulation with those obtainable from various

test flights in the same test environments.

The following three different corridors, all located on the electronics department at FEUP,

were used to test the framework:

• Corridor 13: This corridor is located on the ground floor. The trajectory starts at the north-

ern end of the corridor.

Figure 3.3: Beginning, middle and end of corridor number 1

• Corridor 24: This corridor is located on the ground floor and is the same as corridor number

one but the trajectory starts at the southern end of this corridor.

3https://youtu.be/znE0zcuQgqc
4https://youtu.be/uUZ6uwh6lLI

30 System Overview

Figure 3.4: Beginning, middle and end of corridor number 2

• Corridor 35: This corridor is located on the second floor. The trajectory stars at the northern

end of the corridor.

Figure 3.5: Beginning, middle and end of corridor number 3

3.4 Tools

A variety of tools were used during the implementation of this project and for latter experiments.

The Parrot AR. Drone was used to test the developed framework, the OpenCV in C++ was the

core processing library, and ROS with the ardrone_autonomy driver to bridge the communication

between the drone and the computer.

3.4.1 Robot Operating System(ROS)

The experiments conducted throughout this project and presented in this dissertation required the

use of the Robot Operation System (ROS) software framework as a link between the robot used

in this project, the Parrot AR. Drone, and the computer where ROS is installed and running the

developed algorithm.

ROS was originally developed in 2007 by the Stanford Artificial Laboratory as an operating

system for a variety of robots and hardware [37]. Several services are provided such as hardware

abstraction, process management, message passing, packet management and implementation of

commonly used functionalities for devices. This operating system is released under terms of BSD

license 6 and is freely available as a open source software for commercial as well as research use.

The usage of this software was influenced by the availability of drivers and support for the

Parrot AR. Drone. While ROS provides several features for message passing, monitoring and

5https://youtu.be/xQC2eku8FcI
6http://www.linfo.org/bsdlicense.html

3.4 Tools 31

visualization tools, only the message passing system and the node framework is used to bridge the

communication gap between the drone and the computer.

3.4.2 OpenCV

OpenCV is a famous computer library which provides tools focused around real-time computer

vision applications[38]. This library was officially launched in 1999 as an Intel Research Initiative

and made available initially in C programming language and later in C++ and Python programming

language as a cross platform suite. OpenCV possesses a BSD license, being available for both

commercial and research use as an open source solution.

OpenCV offers several state of the art implementations of useful computer vision algorithms

and applications. The functionalities provided by this open source library used in this project are

the following:

• Image processing (Hough Transform, Canny edge detector, etc)

• Video analysis

• 2D features framework

• Kalman Filters

This library also provides detailed information and various tutorials on its website7. OpenCV

is the library of choice for researchers which makes it a suitable choice due to the fact that it is

freely available and vastly used with a plethora of official8 and unofficial forums.

3.4.3 AR. Drone Driver for ROS

In order to establish data exchange and communication between the AR. Drone and the computer

where the developed method is running, a third-party driver custom made for this drone was used.

The reason for using a third-party driver rather than of a built-in driver is due to the fact that the

development team behind ROS has yet to build one. The Ardrone_autonomy9 is a ROS driver

based on the official AR. Drone SDK 2.0 [39], developed by Mani Monajjemi from the Simon

Fraser University10 among other contributors. This driver package also possesses a plenitude of

tutorials and documentation available on several official and unofficial forums.

For this project, the most useful control parameters provided by this driver are the following:

• Front camera;

• Take-off and landing;

7http://docs.opencv.org/
8http://answers.opencv.org/questions/
9https://github.com/AutonomyLab/ardrone_autonomy

10http://sfu.ca/ mmonajje

32 System Overview

• Flat trim: a service that calibrates the drone based on rotation estimates assuming that the

drone is on a flat surface;

• Linear velocity along the X,Y and Z axes;

• Linear acceleration along the X, Y and Z axes;

• Three-dimensional rotation along the X (left and right tilt), Y (forward and backward tilt)

and Z (orientation) axes.

All these parameters allow a favourable control over the drone from the software side of the

project which will be running as the pilot of the drone.

3.5 Summary

Having in mind the purpose of this project, a straightforward approach was chosen in order to pro-

cess the video feed from a vehicle traversing a corridor and respond with appropriate manoeuvres.

An important aspect worth mentioning is that the approach to the original problem was to

create and develop a modular framework, meaning that each module works independently from

one another. This also means that modules can be added and removed to and from this frame-

work without conditioning the overall performance of the system. This paves the way for future

improvements for this project.

The chapters that follow will describe and shed a light on the various stages of the framework

as well as the various challenges that emerged and the subsequent methods proposed to deal with

them.

Chapter 4

Vision Based Autonomous Navigation
and Position Estimation

In this chapter the methods developed to bring the designed framework to life will be presented and

explained. Some intermediary results will also be presented. As most indoor environments satisfy

the Manhattan World assumption [40], i.e., most planes lie in one of three mutually orthogonal

orientations, all the work developed made use of the this assumption. In other words, this work

is within the constrained space of Manhattan-world scenes (scenes consisting predominantly of

piece-wise planar surfaces with dominant directions).

4.1 Video Stabilization

When there is an undesired motion in a video feed, the need for video stabilization arises. In 1995,

Canon created the first stabilization system1 based on moving lens with a 16-bit microcomputer

controlling an ultrasonic motor. This approach proved to be quite expensive and not suitable for

the majority of cameras. For this reason, digital image stabilization is used instead, and it is widely

used for image registration methods[41] and the development of computational resources[42].

Essentially, this system requires camera stabilization in order to reduce strong oscillations that

might occur when a vehicle is traversing a corridor.

4.1.1 Proposed Method

The aim of the image stabilization method developed for this project was providing useful stabi-

lization for a forward-moving and panning video stream.

The first step is to find the transformation from the previous to the current frame. This trans-

formation is basically a rigid Euclidean transform and is achieved by using optical flow for all

frames.

1cpn.canon-europe.com/content/education/infobank/lenses/image_stabilisation.do

33

34 Vision Based Autonomous Navigation and Position Estimation

In order to detect corner feature points for optical flow tracking, the OpenCV implementation

of "goodFeaturesToTrack"2 was used. This implementation is based on the Shi-Tomasi corner

detector algorithm[43]. Retrieved feature points consist of 2D pixel locations that are matched

in consecutive frames and afterwords are tracked using the OpenCV Lucas-Kanade Optical Flow

implementation3.

The second step is getting the trajectory for x,y and the angle at each frame by accumulating

the frame-to-frame transformations.

The third step consists of smoothing the trajectory by using a sliding average window.

The final step consists of creating a new transformation and applying it to the current frame

from the video. This new transformation is obtainable as follows:

new trans f ormation = trans f ormation+(smoothed tra jectory− tra jectory) (4.1)

4.1.2 Results

As seen in Figure 4.1, the developed stabilization method sets out to perform as intended. When

the video suffers from a strong oscillation, this method compensates this undesirable motion.

(a) Example number 1 of the original frame (b) Example number 1 of the stabilized frame

(c) Example number 2 of the original frame (d) Example number 2 of the stabilized frame

Figure 4.1: Result of the Stabilization method when a strong oscillation occurs
http://youtu.be/clsiq7GzUjw

2docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=goodfeaturestotrack#goodfeaturestotrack
3http://docs.opencv.org/modules/video/doc/motion_analysis_and_object_tracking.html

http://youtu.be/clsiq7GzUjw

4.2 Filtering 35

4.1.3 Conundrums

The visible black border that appears in the frame when there is motion compensation could be

removed by simply increasing area that is cropped out when this situation occurs. However, by do-

ing so, a lot of visual information would be lost and the other methods (Vanishing Point Detection

and Door Detection) would not work properly.

For this reason, the amount of cropped area that was applied to the frames was obtained by

testing the algorithm in order to obtain the best cropping value that would not badly influence the

other methods.

4.2 Filtering

After video stabilization and before releasing the frame to the other modules, some relevant image

operation needs to take place.

First and foremost, in order to reduce the computational power required by the system to

process each frame independently, each frame is scaled down to a resolution of 640x360. This

resolution was chosen after testing the performance of the framework with different resolutions

and concluding that this was the minimal resolution with which the several methods still worked

properly. Bellow this value there were not enough features to be used/detected.

Even after obtaining the best resolution per performance ratio, in order to reduce some noise

in each frame, some image smoothing (blurring) was applied. This was done in two steps:

1. Applying a morphology operations know as Opening. This operation consists of dilating

and image after eroding it:

dst = open(src,element) = dilate(erode(src,element)) (4.2)

It is particularly useful for removing small objects in the frames from the video, therefore

providing a cleaner image to the other modules.

2. After applying a morphological operation to the current frame, a smoothing (blurring) by

Gaussian was still possible without deteriorating the performance of the other modules.

On the contrary, by applying a simple Gaussian blur, methods such as the Vanishing Point

Detection which resorted to the Hough Transform for line detection, were able to perform

even better.

The Gaussian filter used had the following characteristics:

• Size of the kernel (neighbours to be considered): [1, 1]

• Standard deviation of the Gaussian distribution:

– In X direction: 225

– In Y direction: 255

36 Vision Based Autonomous Navigation and Position Estimation

All these numerical values were obtained by visual inspecting the result of the several methods

of the framework.

4.3 Vanishing Point Detection

When traversing a corridor or a hallway, one can easily observe four lines drawn to the ends of

that corridor or hall. These four lines are formed by the intersection of the floor and the walls and

the subsequent intersection of these lines will be the vanishing point of that image.

The detection of the vanishing point in a video feed has been widely used in autonomous

navigation of aerial and ground vehicles in environments such as corridors and hallways[44, 45,

46]. Following the vanishing point will keep the vehicle, in this case the drone, aligned with the

centre of the path, consequently avoiding collisions with the walls.

4.3.1 Proposed Method

The process of detection the vanishing point in a corridor consists of the following steps:

• Step 1: Detecting the lines in the current frame.

• Step 2: Finding the slope of those lines.

• Step 3: Filtering out horizontal and vertical lines using the slope as a filter.

• Step 4: Filtering out unnecessary lines in order to obtain only diagonal lines.

• Step 5: Calculating the intersection of all the diagonal lines.

• Step 6: Obtaining the vanishing point which is the point with the highest number of inter-

sections.

This is achieved by using the Hough Transform in order to detect lines in each frame. Although

being a computationally expensive method for line detection, the Hough Transform is extremely

robust even when working in cases of occlusion and noise[4].

In order for the Hough Transform to work properly, the edges of the current frame must be

found and only then the Hough Transform should be applied to the matrix containing those edges.

This is accomplished by using the OpenCV implementation of the Canny edge detector4 which

finds the edges in a image using the Canny algorithm for edge detection[3].

It is important to mention that the threshold used in the Canny edge detector is not static. Using

a static threshold value would pose no problems if the purpose of this work was just to detect lines

in an image. However, it is important to take into account that it is a video feed that is being

processed which means that the threshold value used to detect the edges in a previous frame might

not be ideal to detect the edges in the current frame or even the one that follows. For this reason,

4http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghlines#canny

4.3 Vanishing Point Detection 37

a dynamic threshold value is used, meaning that this value will start off as a certain value, then it

will be reduced when the Hough Transform does not return enough lines to detect the Vanishing

Point. Figure 4.2 illustrates this particular situation.

(a) Higher Threshold: enough lines were detected
to acquire the vanishing point (the threshold value

therefore remains intact)

(b) Lower Threshold: not enough lines were
detected to acquire the vanishing point (the

threshold value therefore decreases)

Figure 4.2: Example of the dynamic threshold used in the Canny edge detector

In order to obtain the slope of the lines we convert the polar coordinates of a line in the Hough

space (ρ,θ) into Cartesian coordinates (m,b):

m =−cos(theta)/sin(θ) (4.3)

c = ρ ∗ (1/sin(θ)) (4.4)

After this conversion, to filter out the unnecessary lines, all the lines whose absolute value of

m (slop) is not within the interval [0.5;5] are discarded. This interval approximately corresponds

to:

(θ > 170o OR θ < 10o) AND (θ > 80o OR θ < 100o) (4.5)

The values were hand picked after various trial and error attempts at find the correct slope

interval to use as a filter. The Cartesian coordinates were used to filter out the lines since they

allowed for a higher level of precision.

Regarding the intersection of the detected lines, as mentioned above, the threshold value used

in the Canny edge detector is decreased when there are not enough lines to detect the vanishing

point in the current frame. Obviously, being the Vanishing Point the intersection of the detected

lines, the minimal number of lines that need to exist in order for this to work properly is 2. There-

fore, if the number of detect lines is lower than 2, the threshold used in the canny edge detector

is decreased and another attempt at acquiring enough lines for the vanishing point detection takes

place.

On the other hand, if there are enough lines (more than 2) then the intersection point is deter-

mined by this simple method:

38 Vision Based Autonomous Navigation and Position Estimation

• Acquiring the equation of the lines detected in each frame: y = mx+ c.

• Having in mind that at the point of intersection, the two equations will have the same values

of x and y, the following step is to set the two equations equal to each other. This results in

an equation that is solvable for x.

• Substituting the x value in one of the line equations and solving it for y results in the x and

y coordinates of the intersection.

Obtaining the point with the most intersection of the lines is not enough when processing a live

video feed. In some situations there might be a interference either by some physical destabilization

occurring in the vehicle, by some person walking in front of the vehicle or even by some posters

that might be on the walls. Due to this, some outliers might appear and so, they need to be

removed.

Outlier removal is achieved by simply using a Kalman filter, introduced in the early 1960’s

by Rudulf Emil Kalman[47], to maintain the vanishing point stable throughout the whole video

stream. This means that abrupt changes in the coordinates of the detected vanishing point will

be smoothed by the Kalman Filter. Basically, the Kalman filter that was used is a 2D tracker of

the coordinates of the detected vanishing point that is more immune to noise. For this reason, the

Kalman filter is set up with 2 dynamic parameters and 2 measurement parameters (no control),

where the measurements are the 2D location of the vanishing point. This also makes the transition

matrix simple.

Tracking with Kalman filters involves the initialization of the OpenCV CvKalman structure

and using the following sequence of operations:

• Predict by using cvKalmanPredict.

• Associate with a measurement.

• Correct using the measurement by calling cvKalmanCorrect

Initialization of the Kalman filter consists of constructing the transition matrix 4.6, the pro-

cess noise covariance matrix, the measurement covariance matrix and the measurement transition

matrix.
1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 (4.6)

When a new vanishing point is detected, the x and y coordinates of that point, the measurement

parameters are associated with the Kalman tracking structure.

In the end, instead of having the vanishing point widely oscillating in the video feed, the

Kalman filter estimates where the vanishing of the new frame is, leading to a much smother detec-

tion.

4.3 Vanishing Point Detection 39

4.3.2 Results

Figure 4.3 shows the result of this module. The vertical lines are only representations of the

acceptable limits in which the vanishing point is supposed to be placed.

(a) Vanishing point is on the left margin (b) Vanishing point is on the right margin

(c) Vanishing point is within the acceptable limits

Figure 4.3: Example of the vanishing point detection method
https://youtu.be/LoF001DMSoU

This information will later be used to order the drone to adjust its yaw to the left or to the right

depending on the location of the vanishing point:

• If the vanishing point is on the left margin, then the yaw is adjusted to the left;

• If the vanishing point is on the right margin, then the yaw is adjusted to the right;

• If the vanishing point is within the acceptable limits, then there is no need to adjust the yaw;

4.3.3 Conundrums

Since this method is strongly dependent on the Hough transform for line detection, when some

corridors have, for instance, boards, posters and, worst of all, boards with posters, some major

interference occurs in the detection of the vanishing point as seen in Figure 4.4.

However, thanks to Kalman filtering this situation does not present a real problem since the

these are sporadic events and the vanishing point is quickly restored to its stable position in the

following frames.

https://youtu.be/LoF001DMSoU

40 Vision Based Autonomous Navigation and Position Estimation

Figure 4.4: Example of a bad detection of the vanishing point due to the interference of a board
with posters

4.4 Door Detection

As a means to achieve localization estimation, the approach taken was that of detecting structural

elements of the corridors in which the drone would be navigating. From all the corridors at FEUP,

the only structural element that was a constant in all the corridors were doors. For this reason,

and since the drone would not be able to safely navigate in every corridor (as explained further in

section 5), in order to estimate the position of the drone, only doors were as a structural element

to be detected.

In order to detect the doors of a corridor while the drone is traversing it, a single detection

method was perceived as not being enough. The reason behind this is that, while traversing the

corridor, the front facing camera of the drone does not see the doors, but instead sees recessed

doors such as those in Figure 4.5

In order for a door detection method to detect this kind of doors and since the objective of this

project was to build a robust door detection module, the approach taken to solve this problem was

based on a dual validation system consisting of the following steps:

• Detecting the recess in the walls: This will indicate that a door or even another corridor

might be there.

• Detecting the contours in the corridor: The contour of a door is the largest rectangle

whose height is bigger than its width.

4.4 Door Detection 41

Figure 4.5: Example of two recessed doors as seen by the drone

• Assigning weights to each detection: Since the recessed door detection is more noise

resistant and robust than the door contour detection, the former was given a weight of 0.6

and the latter a weight of 0.4.

• Dual validation system: A validation system takes place when a recess is detected in either

the left or the right side of the frame. It was stipulated that the recessed door detection would

have a validation weight of 6 and after detecting a door, it awaits a valid contour detection

which has a validation weight of 4:

– If a contour is detected after a recess detection, than the door will be detected with

100% accuracy.

– Otherwise, if after a small period of time, the only detection that occurred was that

of the recess, than the door is detected with only 40% accuracy. When a recess is

not detected, hardly ever is a door contour detected, hence the lower validation weight

assigned to this method).

4.4.1 Recessed Door Detection Method

This method aims at detecting the recesses in the corridor which would mean that a door or even

a corridor was detected.

42 Vision Based Autonomous Navigation and Position Estimation

Implementation

In order to detect the left and right recesses in the corridor, this method was divided into two parts:

Floor Segmentation and Corner Detection. The objective was that of isolating the floor from the

rest of the frame and then detecting the recesses in the floor.

Segmentation

To achieve this, the watershed segmentation implementation of the OpenCV library was used5,

which performs a non-parametric marker-based image segmentation[10].

The basic concept of this algorithm is that a grayscale image can be considered a topographic

surface where a high and low intensities stand for hills and valleys respectively. Every isolated

valleys is a local minima and is filled with coloured water (labels). Water from different valleys

(different labels) will begin to merge when the water stars to rise, which is dependent on the hills

(gradients) nearby. In order to avoid merging the water from different valleys, a barrier must be

built in the location where the merge occurs. Continuously filling water and building barriers until

the hills are underwater will then lead to the segmentation result defined the barriers previously

created.

As the gist of this step is to segment the floor from the rest of the scene, a marker matrix

is created in which the desired regions that are going to be segmented are outlined. This means

that every region is represented as one or more connected components. In other words, this is an

interactive image segmentation in which different labels are assigned to the known objects in the

frame. Since the floor is the foreground and the rest of the frame is background, they are labelled

accordingly resulting in the marker that is going to be applied to the watershed algorithm. Figure

4.6 shows the markers used in order to segment the floor from the corridor.

(a) Markers (b) Markers on the corridor

Figure 4.6: Markers used to select foreground (floor) and background (everything else)

As seen in Figure 4.7, the floor is correctly segmented by applying the algorithm described

above.

Paying close attention to Sub-figure 4.7a, the recess of both doors (left and right) is present in

the form of a rectangle and is quite noticeable. For this reason, the next step is to find the vertex of

5http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html#watershed

4.4 Door Detection 43

(a) Floor Segmentation near the doors (b) Floor segmentation away from the doors

Figure 4.7: Examples of successful floor segmentations
https://youtu.be/3M78qyrev1k

those rectangles, meaning that the vertex in the far left and far right side of the frame corresponds

to the a recess in the left and the right side of the corridor.

Vertex Detection

The second part of this method is comprised of four steps.

The first step consists of applying a threshold to the image obtained in the previous step.

The second step consists of using the Hough transform[4] to detect horizontal and vertical

lines. Detected horizontal lines are considered to have a slope m within the interval [0;0.001] and

detected vertical lines are considered to have a slope m bigger than 1000. Therefore, by filtering

out all the lines whose slope m does not meet this criteria, only the horizontal and vertical lines

are left.

The third step consists of finding useful intersections using the method previously explained

in 4.3.1. Since the door detection is only useful when the drone is near a door, in order to prevent

a recessed door detection that is too far from the drone, only detections that occur below one

fourth of the frame are considered as valid. Figure 4.8 shows an horizontal line on the frame

(after segmenting the floor and applying a threshold) which separates the area where the useful

intersections will be located (below the line) from the area where the intersections will be ignored.

Figure 4.8: Floor segmentation, thresholding and the useful intersection area

https://youtu.be/3M78qyrev1k

44 Vision Based Autonomous Navigation and Position Estimation

In the final step, after acquiring all the useful intersections, only those that are the ones in the

far left and far right side of the frame are considered as being doors.

In the video feed, when the drone is approaching a door, several consecutive recesses are

detected. In order to refine the recessed door detection method, temporal information is used.

Figure 4.9 shows the algorithm that is used to detect recessed doors:

Figure 4.9: Recess door detection vertex temporal validation algorithm

If the absolute value of the difference between the X coordinates of the detected vertex previ-

ous one, is smaller than a stipulated value (DELTA_X) than this vertex is not considered a suitable

"recess candidate" being therefore discarded. Only after enough consecutive valid detections (that

value being adjustable depending on the desired precision) is a recessed door detected.

4.4 Door Detection 45

Results

As seen in Figure 4.10,which shows the results of the developed method,the vertexes of both doors

are successfully detected.

(a) Original frame (b) Floor segmentation (c) Successful detection

Figure 4.10: The various steps of the recessed door detection method
https://youtu.be/alToFq8htFk

Conundrums

Two different types of errors originate from this approach.

Figure 4.11 is an example of a vertex detection that does not correspond to a recess, hence

the need for temporal information in order to eliminate these faulty detections: accumulating

consecutive recess detections, and establishing a successful door detection based on a fixed number

of consecutive detections, instead of interpreting each detection as a success. The latter would lead

to many erroneous detections due to artefacts in the video stream.

Figure 4.11: Example of a sporadic invalid recessed door detection

Due to reflections on the floor, an invalid floor segmentation (using the watershed algorithm)

can occur as seen in Figure 4.12.

https://youtu.be/alToFq8htFk

46 Vision Based Autonomous Navigation and Position Estimation

(a) Original frame and markers (b) Invalid floor segmentation (c) Unsuccessful detection

Figure 4.12: Unsuccessful left recessed door detection due to floor reflections

An invalid segmentation due to reflections on the floor can have catastrophic outcomes when

it comes to recess detection. Figure 4.13 shows an example of an unsuccessful detection due to an

invalid segmentation.

(a) Original frame and markers (b) Invalid floor segmentation (c) Unsuccessful detection

Figure 4.13: Unsuccessful left recessed door detection due to floor reflections

However, it is important to point out that these problems caused by undesirable floor seg-

mentations do not affect the robustness of the developed method thanks once again to the use of

temporal information. This information consists of the coordinates of the valid detected vertexes

that are considered to be close to each other on consecutive frames. This means that, in order to

determine if a set of consecutive vertex detections are considered as a door, during a certain period

of time, if successive detections occur, each new detection is cross-validated with the previous one

and if the coordinates of the newly detected vertex are not within a certain range of the previously

detect vertex, it is considered a bad detection. Therefore, only consecutive vertex detections whose

coordinates form a diagonal line in the frame are considered valid detections, meaning that a door

was successfully detected. Figure 4.14 shows and example of valid consecutive vertex detections.

(a) First valid vertex (b) Second valid vertex (c) Third valid vertex

Figure 4.14: Example of a sequence of valid vertex detections

Another situation in which the recess detection does not work properly is when corridors have

4.4 Door Detection 47

doors with narrow recesses. Figure 4.15 shows what happens in this specific situation: even though

the recess detection works in some frames of the video feed, it does not detect the same recess in

enough consecutive frames in order for the temporal information to detect a recessed door.

(a) Example number 1 of a door with a small recess (b) Example of an unsuccessful recess detection

(c) Example number 2 of a door with a small recess (d) Example of successful recess detection

Figure 4.15: Result of the Stabilization method when a strong oscillation occurs

Nevertheless, as explained in chapter 5.1 this would only prove to be a problem during simu-

lations in these corridors since they did not met the conditions that would allow the drone to fly in

it.

4.4.2 Door Contour Detection Method

This method aims at detecting the contours of doors in corridors, filtering out the unnecessary

contours in order to detect only those who correspond to doors: those whose height is bigger than

its width.

Implementation

In order to find the contours of the doors in each frame, the following sequence of operations was

used:

• Apply a threshold to the current frame in order to obtain a binary image.

• Detect the edges in the current frame using the Canny edge detector[3].

• Retrieve the contours from the binary image using the algorithm [48]. This method retrieves

all of the contours and compresses horizontal, vertical, and diagonal segments leaving only

48 Vision Based Autonomous Navigation and Position Estimation

their end-points. This means that, for example a rectangular contour is encoded with 4

points.

• Approximate the contours to a rectangle, which will make the contour sides be a lot more

regular, using the Douglas-Peucker algorithm[49].

• Segment the rectangular contours using geometry. Since the contour of a door is a rectangle

whose height is bigger than its width, all the other rectangles are discarded. The remaining

rectangles are filtered out if a contour of a door has a width that is too low (the rectangle

would be to narrow), which would result in false door detections.

Resembling the recessed door detection method, the door contour detection method also uses

temporal information in order to avoid unreliable detections such as those show on section 4.4.2.

This is achieved by simply keeping a counter for booth left and right door contour detections.

When that counter reaches a specific value (which is adjustable depending on the desirable detec-

tion accuracy) a door is detected and the corresponding counter is reset.

Results

In the end, the contours of the doors in the video feed are detected properly as seen in figure 4.16

(the red line represents the detected contours outlines drawn into the frame using the OpenCV

method drawContours6).

(a) Before the detection (b) After the detection

Figure 4.16: Example of the door contour detection method
https://youtu.be/lhktcVTLNrg

Conundrums

Once again, posters and boards present a problem. This time around, shapes from these struc-

tures are wrongly identified as doors just because they meet the criteria sporadically. Figure 4.17

presents an example of this situation.

This emphasizes the fact that using only this method to detect doors is not enough: it is sus-

ceptible to errors such as those already mentioned. Although the erroneous detections are not that
6http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=drawcontours#drawcontours

https://youtu.be/lhktcVTLNrg

4.5 Position Estimation 49

(a) Invalid detection on the left (b) Invalid detection on the right

Figure 4.17: Example of problematic door contour detections

far off, using only this method would lead to errors in the position estimation of the vehicles as it

would be detecting doors out of place

4.5 Position Estimation

The final module of the developed framework is responsible for the position estimation of the

vehicle traversing the corridor.

4.5.1 Proposed method

In order to estimate the position of the drone in the corridor, the following data is used:

• The velocity of the drone.

• Precoded Map Information.

• The door detection information.

The velocity of the drone is either a real-time value provided by the vehicle being used, or,

assuming that the vehicle is moving at a steady pace, a constant value.

The precoded map information is a text file containing relevant metric data from the corridor

in which the drone will be traversing. Before each flight the framework loads the corresponding

floor map data containing the following information (all the measurements are in centimetres):

• Storey.

• Length of the corridor.

• Point of origin: the initial location (point of departure) of the drone. Can be either north or

south.

• Total number of rooms in the corridor.

• For each room: ID and distance to the point of origin.

50 Vision Based Autonomous Navigation and Position Estimation

Table 4.1 shows an example of data file used to load the framework with all the data from the

corridor.

Table 4.1: Example of a corridor data file

storey 0
length 2300
entrance north
rooms 6
left I006 500
right I011 500
left I007 1700
right I010 1700
left I008 2300
right I009 2300

The door detection information is obtainable from the door detection module.

After reading the floor information provided by the data file, a visual representation of the

floor map is created. Figure 4.18 shows a comparison between the representation of a map created

by the framework (using the data file shown in Table 4.1 and its original schematic7).

(a) Rendered Map (b) Original Schematic

Figure 4.18: Comparison between the rendered representation of a corridor and its schematic

7sigarra.up.pt/feup/pt/instal_geral.edificio_view?pv_id=1414&pv_num_piso=0

4.5 Position Estimation 51

The map itself never changes, however, two types of information are updated/drawn on the

map: the position of the drone and the location of the detected doors.

The position of the drone is updated depending on its current velocity and the initial point of

departure.

The location of the detected doors are drawn on the map when the current position of the

drone is near the location of a door and the door detection module actually detects a door. This

means that a confidence interval is used regarding the location of the door. For instance, using the

data from Table 4.1, if the position of the drone is known to be 600 centimetres from the initial

point of departure and a left door is detected, since there is a door at 500 centimetres, the drone

is considered to be near that door leading to a valid detection of the left door I006. Figure 4.19 is

representative of this situation.

Figure 4.19: Updating the position of the Drone and the detected door

4.5.2 Results

Using all the information provided by the precoded map data, the velocity of the vehicle and the

door detection module, the result of the this module, which uses all the previously developed

modules, can be seen in Figure 4.20.

4.5.3 Conundrums

Since this module is the final output of the framework, showing a graphical representation of the

result of the door detection, the problems and errors that cause an invalid estimation of the position

of the doors are due to the same errors that cause an invalid door detection as mentioned in 4.4.2.

In other words, the problems that surface from this module can be succinctly described as being

directly influenced by the behaviour of the door detection module as seen in Figure 4.21

52 Vision Based Autonomous Navigation and Position Estimation

Figure 4.20: Example of a successful door detection and position estimation
https://youtu.be/HfYTlzBVStk

Figure 4.21: Example of a not so successful door detection

4.6 Summary

All in all, the developed framework was built upon the principle of "divide and conquer" in that

each module provides separate and independent information that is later used either for navigation

or location estimation.

Overall, the video stabilization method worked as intended by simply compensating strong

oscillations occurring in the video feed while preserving the original video when no compensation

was required.

The vanishing point detection method works flawlessly which leads to a satisfactory navigation

orientation for the drone. Even in situations where an invalid vanishing point is detected, either

by external interferences (e.g posters hanged in the walls) or by the lack of visual information

available, this module is able to compensate these disparities by either using Kalman filters to

https://youtu.be/HfYTlzBVStk

4.6 Summary 53

smooth the oscillation of the detected vanishing point or evaluating the time period during which

the vanishing point is not detected: for safety reasons, if the detection is interrupted, the drone will

hover and wait for another set of valid detections and, if it takes too much time to do so, the drone

will land.

The door detection method works as expected, detecting the doors when they are in close

proximity to the drone. By making use of the information from both door detections methods as

well as temporal information to avoid invalid sequential detections, a robust and coherent door

detection module was created.

The position estimation module proved to work as intended by using all the information pro-

vided by the other modules and using it, alongside the pre-coded map, to estimate the position of

the drone as well as the detected doors.

Although some problems were detected with the different modules, which in some situations

would bleed through to other modules, precautions were taken so that the modules could work

even in the most unfavourable situations.

54 Vision Based Autonomous Navigation and Position Estimation

Chapter 5

Experiments and Discussion

In this section, the results of the experiments and simulations that were conducted are presented.

The videos used for simulating the trajectory of the AR. Drone were recorded with a video camera

similar to the one on-board the drone, while the actual AR. Drone was use in the experiments.

5.1 Experimental Setup

All the experiments were carried out inside the Department of Electrical and Computer Engineer-

ing1 in the Faculty of Engineering of the University of Porto2.

A laptop computer (Clevo P751ZM), connected over Wi-Fi to the AR. Drone, is used to control

the movement of the drone based on information processed from the video feed provided by the

drone itself. The technical specifications of the laptop are:

• Processor: Intel R© CoreTM i7-4790K quad-core Processor @4.0GHz

• Memory: 16 GB DDR3 @1600MHz

• Operating System: Linux Mint 17.1 Rebecca

• Wireless Card: Intel R© Dual Band Wireless-AC 7265

5.1.1 Aditional Considerations

Initially the drone was supposed to be able to navigate in two different corridor types: one wider

than the other. Figure 5.1 shows the difference between these corridors.

However after testing simple take-off, hover and navigation commands on the Parrot AR.

Drone, it was noticeable that it could not maintain a stable trajectory on the narrower corridor.

The reason for the loss of stability was due to different airflows:

• Originating from the various rooms behind the doors in the corridor.

1www.fe.up.pt/deec
2fe.up.pt

55

56 Experiments and Discussion

(a) Wider Corridor (b) Narrower Corridor

Figure 5.1: Two different types of corridor

• Caused by the rotors of the drone. Since the corridor is so narrow, the airflow caused by the

drone does not disperse uniformly causing the drone to destabilize.

In some situations, the AR. Drone would lean backwards at an alarming speed trying to com-

pensate for the airflow that was interfering with its ability to stabilized. Simple tasks such as

hovering were impossible and the drone would just hit the walls and crash.

Therefore, even though the narrower corridors were used to simulate the behaviour of the

developed framework in a real situation, it was not used when testing the framework with the

Parrot AR. Drone.

5.1.2 Corridor Dimentions and Charateristics

The corridor used to test the developed framework on the AR. Drone was the corridor on the

DEEC Ground floor. It has a length of 23 meters and 6 rooms: 3 on the left and 3 on the right (all

with recessed doors).

Two different trajectories were used as test scenarios:

• Northern entrance as the starting point.

• Southern entrance as the starting point.

The corridor which was used only for simulations was the one on the DEEC 2nd floor, using

the northern entrance as the starting point, having a length of 25 meters and 12 rooms: 8 on the

left and 4 on the right (only the latter were recessed doors).

Figure 5.2 shows the schematics of these two corridors.

5.2 Navigation and Position Estimation

All the simulations and the experiments were conducted in optimal conditions, meaning that:

• The corridor was empty, meaning that there were no people walking along the corridor.

5.3 Flight Experiments 57

(a) Ground Floor (b) 2nd Floor

Figure 5.2: Floor Schematics

• All the doors were completely shut in order to reduce airflow interference (only valid during

the experiments).

The following sections will present the results from both the simulation and the experiments

and compare them.

5.3 Flight Experiments

Several flight experiments were conducted to test the performance of the developed method and in

order to highlight both success and failure conditions.

In order to evaluate the behaviour of all the framework modules, a control window containing

the output of the different modules, is displayed in the laptop. In Figure 5.3 an example of this

control window can be observed.

As already mentioned, all the modules are displayed in this window.

• Position Estimation (Map).

• Video Stabilization.

• Vanishing Point Detection.

• Door Detection:

– Recessed Door Detection

– Door Contour Detection

58 Experiments and Discussion

Figure 5.3: Example of the control window provided by the framework

Several tests required a change in the temporal parameters of the door detection method,

namely the ones responsible for the minimal number of consecutive recesses and contour de-

tections (which lead to a valid door detection as explained in chapter 4).

For each experiment, several test runs were executed in order to validate the effectiveness of

the developed system.

5.3.1 Experiment 1

For experiment 1, the drone attempts to traverse the corridor located on the DEEC ground floor by

taking-off near the northern entrance and moving towards the southern entrance.

As seen in Figure 5.4, which shows both the result of the simulation and the experiment of this

particular test run, the drone was able to safely navigate from one point to the other while correctly

detecting all the doors.

If the drone was able to navigate from one point of the corridor to the other without hitting

the walls, it means that the vanishing point was successfully detected during the journey and the

movement of the drone was compensated in situations where the vanishing point would get out of

focus.

Figure 5.5 shows the coordinates of the vanishing point detected while the drone is traversing

the corridor. The results were the ones expected since the vanishing point converged near a certain

point, demonstrating that the developed method was working properly.

In order to emphasize the robustness of the vanishing point detection, table 5.1 presents both

the standard deviation (in pixels) and the mean value of the coordinates of the vanishing point

5.3 Flight Experiments 59

(a) Simulation
http://youtu.be/dFCO8Ow2EKg

(b) Experiment
http://youtu.be/xjIpChc9Oio

Figure 5.4: DEEC Ground Floor Framework Simulation and Experiment number 1

detected throughout this test run. It is observable that although the results from the manual anno-

tation, simulation and experiment are almost identical, which proves the precision of the developed

detection algorithm, the results from the flight experiment were the worst of the lot and the ones

that were manually annotated were the best. This is understandable since the data that was man-

ually acquired was done by a human being, which perceives the vanishing point in an image with

a lot more precision and the data from the simulation and the experiment was acquired by the

http://youtu.be/dFCO8Ow2EKg
http://youtu.be/xjIpChc9Oio

60 Experiments and Discussion

(a) Annotation (b) Simulation (c) Experiment

Figure 5.5: Vanishing Point dispersion map for flight experiment number 1

developed system. However, the overall result of the experiment did not substantially differentiate

from the ones obtained in the simulation and these were not far off from those acquired manually.

Table 5.1: Standard deviation and median value Vanishing Point from experiment 1

Mean Point Standard Deviation
Annotation [327;126] [10.64;11.39]
Simulation [325;123] [11.31;11.47]
Experiment [350;146] [11.47;10.88]

Table 5.2 shows the results of several simulations and test runs. From the starting take-off

point to the final landing site, the drone is supposed to detect all the doors from the corridor, 3 on

the left and 3 on the right.

Table 5.2: Door Detection data from simulation and experiment 1

#Run
Left Doors
Detected

Right Doors
Detected

Door Detection
Success Rate

Simulation

1 3 3

93.33 %
2 3 3
3 3 2
4 3 3
5 2 3

Experiment

1 3 3

86.67 %
2 2 2
3 2 3
4 3 3
5 3 2

During the simulations, only on two specific occasions did the door detection failed to detect

wall the doors. However the overall result was quite satisfactory. On the other hand, more failed

detections occurred during the several test runs in the corridor used for this experiment, leading

to a lower success rate. Nevertheless, both the simulations and the experiments scored above 80%

on the door detection test.

For each experiment several test runs were conducted in order to evaluate the success of the

developed navigation module that was developed. In Table ?? different results for each conducted

5.3 Flight Experiments 61

test run are presented.

Table 5.3: Navigation data from experiment 1

#Run Travel Time (s)
Number of

yaw corrections
Arrival

Arrival
Success Rate

Experiment

1 35 8 yes

80%
2 40 11 yes
3 33 6 yes
4 60 23 yes
5 15 2 no

The yaw corrections strongly varied from one test run to the other due to external interferences

like the airflow originating from the several doors and even the airflow caused by the rotors of the

drone.

Although the majority of the test runs proved that the navigation method works as intended,

the test run number 4 and 5 are due to some important observations:

• Test run number 4: During this test run, the lights of the corridor went off, causing the

drone to hover while awaiting to lock on a valid vanishing point. After the lights turned

back on, the drone resumed its trajectory and finished the course.

• Test run number 5: This was a failed test run caused by a strong oscillation in the drone

which the navigation module could not compensate. The yaw failed to be correctly adjusted

resulting in the drone bashing into a wall.

5.3.2 Experiment 2

For experiment 2, the drone attempts to traverse the corridor located on the DEEC ground floor by

taking-off near the southern entrance and moving towards the northern entrance.

Figure 5.6 shows both the result of the simulation and the experiment. Its important to notice

that while this corridor possesses 6 doors, the drone is incapable of seeing the first two, meaning

that only 4 doors were considered as valid for this experiment.

Resembling the previous experiment, a successful detection of the vanishing point provided

the navigation module with the right data to successfully guide the drone down the corridor. All

this while still managing to adjust the yaw of the drone in order to keep it aligned with the center

of the corridor.

Figure 5.7 shows the coordinates of the vanishing point detected while the drone is traversing

the corridor. The results were the ones expected since the vanishing point converged near a certain

point, demonstrating that the developed method was working properly.

Table 5.4 presents both the standard deviation (in pixels) and the mean value of the vanishing

point detected throughout this run. Similarly to the first experiment, it is noticeable that the results

from the manual annotation and simulation are mostly identical, being the experiment results the

62 Experiments and Discussion

(a) Simulation
http://youtu.be/luWOo-Jtles

(b) Experiment
http://youtu.be/FVnKTEFN89E

Figure 5.6: DEEC Ground Floor Framework Simulation and Experiment number 2

ones with the higher standard deviation. The overall result still allowed for a safe and collision-free

navigation.

In Table 5.5 the results of the simulations an test runs conducted for this experiment are dis-

played.

As mentioned before, only 4 doors (2 on the left and 2 on the right) were considered as being

part of the corridor since from its starting point, the camera of the drone cannot perceive the

http://youtu.be/luWOo-Jtles
http://youtu.be/FVnKTEFN89E

5.3 Flight Experiments 63

(a) Annotation (b) Simulation (c) Experiment

Figure 5.7: Vanishing Point dispersion map for experiment number 2

Table 5.4: Standard deviation of the Vanishing Point for experiment 2

Mean Point Standard Deviation
Annotation [306;137] [13.65;9.76]
Simulation [304;136] [15.14;10.29]
Experiment [290;194] [25.24;10.85]

Table 5.5: Door Detection data from simulation and experiment 2

#Run
Left Doors
Detected

Right Doors
Detected

Door Detection
Success Rate

Simulation

1 2 2

95%
2 1 2
3 2 2
4 2 2
5 2 2

Experiment

1 2 2

90%
2 2 2
3 2 1
4 2 2
5 2 1

existence of the doors right next to it. Only in one simulations did the door detection module

failed to deliver a complete detection of all the existing doors. However during the test runs, two

detections failed, both on the right side, which was mainly due to the reasons stated in chapter 4.4.

Nevertheless, the overall result was satisfactory as both simulations and test runs achieved above

90% of successful detections.

Like in the first experiment, Table 5.6 presents the results of all the test runs conducted for this

experiment.

Similarly and having in mind that the corridor used for this experiment was the same as the

one used for the previous one, the yaw corrections strongly varied between test runs due to the

different airflows.

Although these test runs proved that the navigation method works as intended, the test run

number 3 failed to accomplish a successful navigation. This was due to the back door of the cor-

ridor being wide open, which strongly contributed to destabilizing the drone. This destabilization

64 Experiments and Discussion

Table 5.6: Navigation Data from experiment 2

#Run Travel Time (s)
Number of

yaw corrections
Arrival

Arrival
Success Rate

Experiment

1 41 5 yes

80%
2 50 14 yes
3 27 3 no
4 38 10 yes
5 39 8 yes

was way beyond the ability of the navigation method to stabilized the drone and resulted in the

drone catastrophically bashing into the left wall and crashing (the protective hull even had to be

repaired as seen in Figure 5.8).

Figure 5.8: Repairing the external hull of the AR. Drone with a double sided adhesive tape

5.3.3 Experiment 3

As previously explained, due to the lack of conditions the drone was not able to fly in this corridor

and therefore only simulations were made. Figure 5.9 shows the result of the simulation.

Figure 5.10 shows the coordinates of the vanishing point detected while the drone is traversing

the corridor. Since there was no practical experiment in this corridor, only the dispersion map of

the manually annotated vanishing points and the simulation are shown.

Table 5.7 shows the standard deviation and the mean of the coordinates of the acquired van-

ishing point during the traversal of this corridor.

It is noticeable that there is a higher deviation in the simulation which is expected since this

corridor presents features that interfere with a stable detection of the vanishing point like poster

and boards.

5.3 Flight Experiments 65

Figure 5.9: Simulation
http://youtu.be/0Q-owmC5N4s

(a) Manual Annotation (b) Simulation

Figure 5.10: Vanishing Point Detection from the simulation and experiment 2

Table 5.7: Standard deviation of the Vanishing Point for experiment 3

Mean Point Standard Deviation
Annotation [317;139] [15.93;11.95]
Simulation [316;128] [18.61;16.91]

This corridor presented a challenge due to the format of its doors: all the doors on the right are

recessed doors whilst the doors on the right are not recessed doors. This lead to a not so accurate

door detection as seen in the results on Table 5.8.

http://youtu.be/0Q-owmC5N4s

66 Experiments and Discussion

Table 5.8: Door Detection data from simulation 3

#Run
Left Doors
Detected

Right Doors
Detected

Door Detection
Success Rate

Simulation

1 3 4

53.33%
2 2 4
3 2 3
4 4 4
5 3 3

In the majority of the test runs, almost all the recessed doors were detected while the same

could not be said about the remaining doors.

5.3.4 Discussion

In both the simulations and the flight experiments, the majority of the doors were successfully

detected. However, the main difference between them is the following:

• Simulation: the doors were detected by both methods (recess and contours) almost all the

times.

• Experiment: the door contour detection proved to be not so robust, leading to a door detec-

tion that was almost totally dependent on the recess detection module.

Despite these differences between simulation and experiment, the developed modules proved

to work accordingly and as desired although some incoherences were noticeable. In all the exper-

iments, the frame rate was around 26 frames per second. Table 5.9 provides a summary of the 3

experiments conducted.

Table 5.9: Summary of the experiments

Experiment Simulation
#1 #2 #3

Vanishing Point Standard Deviation [11.47 ; 10.88] [25.23 ; 10.85] [18.60 ; 16.91]
Door Detection Success Rate 86.67% 90% 53.33%
Arrival Success Rate 80% 80% N/A

The experiment with the best overall results was the first one due to its lower vanishing point

standard deviation and although having an apparent lower door detection success rate it is in fact

higher as the total number of detectable doors in this experiment is 6 in contrast to only 4 in the

second experiment. Sadly no real life data from the third experiment was able to be acquired as

previously explained, although even if the drone was able to fly in the narrower corridor, if the

simulation results are already the worst of the 3 simulations, the devised test runs for that corridor

would not be better. This assumption is based on the observation that for experiment number one

and number 2, the test runs always returned worst results than the simulation.

5.4 Summary 67

Also, in a vast majority of the experiments, the drone was able to keep aligned with the center

of the corridor without colliding with the walls. This proves that the navigation module that was

implemented was working properly by acquiring robustly the vanishing point of each frame and

keeping the drone aimed at it.

5.4 Summary

A satisfactory performance of the developed framework was observed for each and every experi-

ment carried out in this dissertation.

During the realization of the experiments it was possible to notice some influence of lighting

and texture conditions. The developed method was noted to have a better performance during the

day due to the presence of day light instead of artificial light from the lamps in the ceiling of the

corridors.

Regarding situations where the developed method is tested in narrow corridors a significant

contrast in performance is noticeable since there are less recessed doors and a lot of features that

interfere with the detection of the vanishing point. Also, due to the physical limitations of the

drone, only the simulations were carried out in that corridor, which lead to a lack of data in order

to test the performance of the framework with a real vehicle.

Therefore a failed run in experiment 3 shows that, while the method performs appropriately

when the video is previously recorded, the physical dimensions of the corridor and the limitations

of the drone take a toll on the result.

However, as it was observable in the simulations, the framework not only works with UAVs

but would also be perfectly suitable for ground vehicles in which the video feed would be the same

as the one used in the simulations.

68 Experiments and Discussion

Chapter 6

Conclusions

In this dissertation a solution for a real problem was developed and a framework with a modular

architecture was proposed. The main goal was to develop a solution which would allow for future

upgrades and improvements through the addition of yet more modules.

A deep research has contributed with several ideas and approaches to deal with the problem at

hand employing a diversity of existing methods and tools to conquer the challenge that originated

from the original problem. During this dissertation a closer look was given at methods such as

the Hough Transform and the Canny Edge Detector in order to develop a framework that strongly

detects the vanishing point and the doors of a video feed provided by an UAV.

6.1 Results

A series of flight experiments were conducted in order to infer strengths and weaknesses of this

solution and the results were satisfactory. Either using pre-recorded videos of a vehicle traversing

a corridor, or using a drone to traverse that same corridor, this project turned out to work properly

and as expected.

The main research question of this project was answered, as it was in fact possible to enable an

UAV to possess a system capable of providing a collision-free navigation, a door detection system

and a robust position estimation of both the vehicle and the doors in a floor plan.

Using only the vanishing point, the drone was able to fly with a wall collision-free navigation.

When the Drone initially takes-off it will hover indefinitely until it can lock on a stable vanishing

point. On the other hand, when in movement, the drone automatically starts hovering if the van-

ishing point has not been detected for a certain amount of time. This module is constructed so that

if the vanishing point is not detected during a certain period of time, the drone will hover and wait

until it can lock on the vanishing point once again. However, if that period of time expires, the

drone will land. This works as a safety precaution for when someone stands in front of the drone,

the lights go out or the drone is near the end of the corridor or facing a wall.

Doors with different formats were successfully identified thanks to the use of two different

detection methods, one that detected doors based on their geometric shape (a rectangle) and other

69

70 Conclusions

that detected doors based on recesses in the walls. The conjugation and fusion of the results of

both these methods led to a detection of different types of doors.

Both the position of the drone and the position of the doors in the floor map were estimated

with minimal errors and were quite satisfactory. Although some calibration problems lead in

some particular situations to the misplacement of some estimations, the overall performance was

favourable.

Issues with both the vanishing point and door detection caused by some existing objects and

features in the corridors were observed. However, no critical situations that could render the

developed framework useless and inappropriate were encountered.

6.2 Discussion

The developed framework is constructed in such a way that the inclusion of additional modules

would be a simple and accessible task. Since each module is independent of one another, sharing

just one video feed among each other, it would be as simple as switching a specific module on

or off. This feature enables the framework to have a considerable degree of flexibility as it is not

bound to a specific type of robot, being versatile to the point of working properly on either aerial

or ground vehicles.

All the simulations that were carried out could have been actual tests with a ground vehicle

since the video feed would be practically the same. A ground vehicle would have much more

stability and would not be susceptible to external interferences like airflows allowing for a more

steady and abrupt motion free video feed to be transmitted to the remote computer running the

developed framework. Furthermore, the main reason why the processing could not be done on-

board an UAV was due to its weight and autonomy limitations. By using a ground vehicle, such

constraints would not be met, removing the need for an immovable processing stations. This

would lead to a all-in-one on-the-go solution.

Concluding, the proposed method has proven to be flexible and versatile enough in order to be

considered a positive asset in applications such as: auto-pilot systems; mobile surveillance; traffic

management; domestic, industrial and military applications; and search and rescue missions.

6.3 Future Work

By improving the image processing and detection methods the developed framework will have

a better performance. For example, by refining the door detection and vanishing point detection

modules, the door detection success rate would increase for corridors without recessed doors and

the vanishing point detection would not be susceptible to errors in corridors with poster and boards

hanged the walls.

A list of additional features that can be researched in the future is presented bellow:

• Using a drone with a faster data exchange rate would speed up the video input stream pro-

cessing and therefore making and providing quicker navigation decisions.

6.3 Future Work 71

• Processing frames and image operations with the GPU instead of the CPU using Nvidia

CUDA technology [50] would lead to an improved performance.

• Adding a collision avoidance and person detector module would provide a secure and safe

navigation for both the drone and people walking on the same area.

• Using additional hardware (external or internal to the drone), such as range-finders, would

provide additional data regarding possible obstacles pillars, windows and foreign objects to

the area.

• Adding modules which would allow underwater reckon of shipwrecks and also navigation

and mapping using dead reckoning systems.

Conclusively, the developed method supports a variety of possible extensions which are not

restricted by applicability in any scenario.

72 Conclusions

Appendix A

List of QR Codes of the videos

List of QR Codes from the videos presented throughout this dissertation All the videos are hosted

on Youtube1 and can be seen directly on ant browser. The QR codes were created using qrickit2

and can be used to launch the videos from tablets or smartphones. Possible reader applications

include QR Code Reader3 for Android, QR Code Reader4 for iOS and QR Code Reader5 for

Windows Phone.

Figure A.1: QR code of Video Stabilization (figure 4.1)

Figure A.2: QR code of Vanishing Point Detection (figure 4.3)

1https://www.youtube.com/
2http://qrickit.com/qrickit_apps/qrickit_qrcode_creator_url.php
3https://play.google.com/store/apps/details?id=me.scan.android.client
4https://itunes.apple.com/us/app/qr-code-reader-by-scan/id698925807?mt=8
5https://www.windowsphone.com/en-us/store/app/qr-code-reader/e21dee2d-9c1c-4f25-916f-c93d25da8768

73

74 List of QR Codes of the videos

Figure A.3: QR code of Floor Segmentation (figure 4.7)

Figure A.4: QR code of Recessed Door Detection (figure 4.10)

Figure A.5: QR code of Door Contours Detection (figure 4.16)

Figure A.6: QR code of Position Estimation (figure 4.20)

Figure A.7: QR code of Simulation #1 (figure 5.4a)

List of QR Codes of the videos 75

Figure A.8: QR code of Flight Experiment #1 (figure 5.4b)

Figure A.9: QR code of Simulation #2 (figure 5.6a)

Figure A.10: QR code of Flight Experiment #2 (figure 5.6b)

Figure A.11: QR code of Simulation #3 (figure 5.9)

76 List of QR Codes of the videos

References

[1] Pierre-Jean Bristeau, François Callou, David Vissière, and Nicolas Petit. The Navigation and
Control technology inside the AR . Drone micro UAV. Proceedings of the 18th IFAC World
Congress, 2011, 18:1477–1484, 2011.

[2] Filipe Oliveira Ramos Trocado Ferreira. Video analysis in indoor soccer with a quadcopter.
2014.

[3] John Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, (6):679–698, 1986.

[4] Richard O Duda and Peter E Hart. Use of the hough transformation to detect lines and curves
in pictures. Communications of the ACM, 15(1):11–15, 1972.

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In
Computer vision–ECCV 2006, pages 404–417. Springer, 2006.

[6] Pezhman Firoozfam and Shahriar Negahdaripour. A multi-camera conical imaging system
for robust 3d motion estimation, positioning and mapping from uavs. In Advanced Video and
Signal Based Surveillance, 2003. Proceedings. IEEE Conference on, pages 99–106. IEEE,
2003.

[7] Hyondong Oh, Dae-Yeon Won, Sung-Sik Huh, David Hyunchul Shim, Min-Jea Tahk, and
Antonios Tsourdos. Indoor uav control using multi-camera visual feedback. Journal of
Intelligent & Robotic Systems, 61(1-4):57–84, 2011.

[8] Andrey Litvin, Janusz Konrad, and William C Karl. Probabilistic video stabilization using
kalman filtering and mosaicing. In Electronic Imaging 2003, pages 663–674. International
Society for Optics and Photonics, 2003.

[9] Yasuyuki Matsushita, Eyal Ofek, Weina Ge, Xiaoou Tang, and Heung-Yeung Shum. Full-
frame video stabilization with motion inpainting. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 28(7):1150–1163, 2006.

[10] Kari Saarinen. Color image segmentation by a watershed algorithm and region adjacency
graph processing. In Image processing, 1994. Proceedings. ICIP-94., IEEE international
conference, volume 3, pages 1021–1025. IEEE, 1994.

[11] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interactive foreground
extraction using iterated graph cuts. ACM Transactions on Graphics (TOG), 23(3):309–314,
2004.

[12] Liming Wang, Jianbo Shi, Gang Song, and I-fan Shen. Object detection combining recogni-
tion and segmentation. In Computer Vision–ACCV 2007, pages 189–199. Springer, 2007.

77

78 REFERENCES

[13] David G Lowe. Object recognition from local scale-invariant features. In Computer vision,
1999. The proceedings of the seventh IEEE international conference on, volume 2, pages
1150–1157. Ieee, 1999.

[14] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. Acm computing
surveys (CSUR), 38(4):13, 2006.

[15] Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on,
pages 593–600. IEEE, 1994.

[16] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. " O’Reilly Media, Inc.", 2008.

[17] Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern recog-
nition, 13(2):111–122, 1981.

[18] Futuhal Arifin, Ricky Arifandi Daniel, and Didit Widiyanto. Autonomous detection and
tracking of an object autonomously using ar. drone quadcopter. Jurnal Ilmu Komputer dan
Informasi, 7(1):11–17, 2014.

[19] John Illingworth and Josef Kittler. A survey of the hough transform. Computer vision,
graphics, and image processing, 44(1):87–116, 1988.

[20] Cooper Bills, Joyce Chen, and Ashutosh Saxena. Autonomous mav flight in indoor environ-
ments using single image perspective cues. In Robotics and automation (ICRA), 2011 IEEE
international conference on, pages 5776–5783. IEEE, 2011.

[21] Navigation Center general information on gps,
http://www.navcen.uscg.gov/?pageName=gpsmain, 2015-02-09.

[22] Gyroscopes uses for gyroscopes
http://www.gyroscopes.org/, 2015-02-09.

[23] Hartmut Surmann, Kai Lingemann, Andreas Nüchter, and Joachim Hertzberg. A 3d laser
range finder for autonomous mobile robots. In Proceedings of the 32nd ISR (International
Symposium on Robotics), volume 19, pages 153–158, 2001.

[24] Jakob Engel, Jürgen Sturm, and Daniel Cremers. Camera-based navigation of a low-cost
quadrocopter. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Con-
ference on, pages 2815–2821. IEEE, 2012.

[25] Kinect for windows, http://www.microsoft.com/en-us/kinectforwindows/, 2015-02-13.

[26] Stéphane Doncieux, Jean-Baptiste Mouret, Laurent Muratet, and Jean-Arcady Meyer. The
robur project: towards an autonomous flapping-wing animat. Proceedings of the Journes
MicroDrones, Toulouse, 2004.

[27] Robert C Michelson and Steven Reece. Update on flapping wing micro air vehicle research-
ongoing work to develop a flapping wing, crawling entomopter. In 13th Bristol International
RPV/UAV Systems Conference Proceedings, Bristol England, volume 30, pages 30–1, 1998.

[28] Guowei Cai, Kai-Yew Lum, Ben M Chen, and Tong Heng Lee. A brief overview on miniature
fixed-wing unmanned aerial vehicles. In Control and Automation (ICCA), 2010 8th IEEE
International Conference on, pages 285–290. IEEE, 2010.

REFERENCES 79

[29] Abraham Bachrach, Samuel Prentice, Ruijie He, and Nicholas Roy. Range–robust au-
tonomous navigation in gps-denied environments. Journal of Field Robotics, 28(5):644–666,
2011.

[30] Mohamad Farid bin Misnan, Norhashim Mohd Arshad, and Noorfadzli Abd Razak. Con-
struction sonar sensor model of low altitude field mapping sensors for application on a uav.
In Signal Processing and its Applications (CSPA), 2012 IEEE 8th International Colloquium
on, pages 446–450. IEEE, 2012.

[31] Tomáš Krajník, Matías Nitsche, Sol Pedre, Libor Přeučil, and Marta E. Mejail. A simple
visual navigation system for an UAV. In International Multi-Conference on Systems, Signals
and Devices, SSD 2012 - Summary Proceedings, 2012.

[32] Ariane S Etienne, Roland Maurer, Josephine Georgakopoulos, and Andrea Griffin. Dead
reckoning (path integration), landmarks, and representation of space in a comparative per-
spective. 1999.

[33] Alexandros Lioulemes, Georgios Galatas, Vangelis Metsis, Gian Luca Mariottini, and Fillia
Makedon. Safety challenges in using ar. drone to collaborate with humans in indoor envi-
ronments. In Proceedings of the 7th International Conference on PErvasive Technologies
Related to Assistive Environments, page 33. ACM, 2014.

[34] Markus Achtelik, Abraham Bachrach, Ruijie He, Samuel Prentice, and Nicholas Roy. Stereo
vision and laser odometry for autonomous helicopters in gps-denied indoor environments. In
SPIE Defense, Security, and Sensing, pages 733219–733219. International Society for Optics
and Photonics, 2009.

[35] Albert S Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Maturana, Dieter
Fox, and Nicholas Roy. Visual odometry and mapping for autonomous flight using an rgb-d
camera. In International Symposium on Robotics Research (ISRR), pages 1–16, 2011.

[36] James F Roberts, Timothy Stirling, Jean-Christophe Zufferey, and Dario Floreano. Quadro-
tor using minimal sensing for autonomous indoor flight. In European Micro Air Vehicle
Conference and Flight Competition (EMAV2007), number LIS-CONF-2007-006, 2007.

[37] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop
on open source software, volume 3, page 5, 2009.

[38] Learning OpenCV. Computer vision with the opencv library. GaryBradski & Adrian
Kaebler-O’Reilly, 2008.

[39] Mani Monajjemi. ardrone autonomy: A ros driver for ardrone 1.0 & 2.0, 2012.

[40] James M Coughlan and Alan L Yuille. The manhattan world assumption: Regularities in
scene statistics which enable bayesian inference. In NIPS, pages 845–851, 2000.

[41] Lucio Marcenaro, Gianni Vernazza, and Carlo S Regazzoni. Image stabilization algorithms
for video-surveillance applications. In Image Processing, 2001. Proceedings. 2001 Interna-
tional Conference on, volume 1, pages 349–352. IEEE, 2001.

[42] Marius Tico and Markku Vehvilainen. Image stabilization based on fusing the visual infor-
mation in differently exposed images. In Image Processing, 2007. ICIP 2007. IEEE Interna-
tional Conference on, volume 1, pages I–117. IEEE, 2007.

80 REFERENCES

[43] David Stavens. The opencv library: computing optical flow, 2007.

[44] Shih-Ping Liou and Ramesh C Jain. Road following using vanishing points. Computer
vision, graphics, and image processing, 39(1):116–130, 1987.

[45] Frank A Van Den Heuvel. Vanishing point detection for architectural photogrammetry. In-
ternational archives of photogrammetry and remote sensing, 32:652–659, 1998.

[46] Duncan P Robertson and Roberto Cipolla. An image-based system for urban navigation. In
BMVC, pages 1–10. Citeseer, 2004.

[47] Greg Welch and Gary Bishop. An introduction to the kalman filter. 2006. University of North
Carolina: Chapel Hill, North Carolina, US, 2006.

[48] Satoshi Suzuki et al. Topological structural analysis of digitized binary images by border
following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985.

[49] Mahes Visvalingam and J Duncan Whyatt. The douglas-peucker algorithm for line simplifi-
cation: Re-evaluation through visualization. In Computer Graphics Forum, volume 9, pages
213–225. Wiley Online Library, 1990.

[50] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. Real-time computer
vision with opencv. Communications of the ACM, 55(6):61–69, 2012.

