brought to you by 🗓 CORE ório Aberto da Universidad

# The water footprint of wine production in Portugal: a case-study on 'vinho verde'

## Leandro Pina<sup>a</sup>, Ana Cláudia Dias<sup>a</sup>, Belmira Neto<sup>b</sup>, Luis Arroja<sup>a</sup>, Paula Quinteiro<sup>a</sup>

<sup>a</sup>CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal

E-mail: acdias@ua.pt

<sup>b</sup>CEMUC, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal E-mail: belmira.neto@fe.up.pt

# Objective

•To quantify the water footprint (WF) of a specific Portuguese white wine: the 'vinho verde' and to identify the main sources of water consumption.

The white 'vinho verde' is produced at the northwest of Portugal.



The green, blue and grey water footprints were calculated using the methodology described by Hoekstra et al. (2009).

The collected data relate to the 2008-2009 winery campaign and

were provided by a Portuguese company (Aveleda) that produces almost 25 % of the Portuguese white 'vinho verde'.

WF<sub>Total</sub> = WF<sub>grape growing</sub> + WF<sub>wine production</sub>

White 'vinho verde' production system

**Green** water

**Blue water** 

The WF of a product is the sum of all water consumed along the product life cycle.

The WF of agro-industrial products is relevant as they are widely known for having a significant footprint on water resources.

Introduction

Agriculture is, by far, the largest consumer of freshwater, accounting for more than 70 % (UNEP 2007) of the worldwide freshwater withdrawals.

#### The WF is disaggregated into three components:

green water - is the volume of rainwater consumed through crop evapotranspiration and incorporated into a product

blue water - is the volume of surface or ground freshwater that is evapotranspirated, incorporated into a product, returned to a different catchment area, or returned to the same catchment area but during a different time period

grey water - is the volume of freshwater required to dilute pollutants in an extent that guarantees that the quality of the natural environment remains above the water quality standards.

## Methodology

## Functional unit

The white 'vinho verde' bottle, i.e. 0.75 L of wine.

#### System boundary

- The grape growing includes the stages of grafting, pruning, typing, interventions in green, sanitary treatments and grape harvesting. The plantation of the vine was excluded from the system as well as the period of about 3 years needed for vines to achieve maturation conditions.
- The wine production process involves three main stages: wine vinification, storage/preparation of lots and bottling.
- The production of electricity and other materials besides grapes, that are consumed in the grape growing and wine production processes (e.g. glass bottles, cork stoppers, packaging and fertilizers) as well as the corresponding transport were excluded from the study.

#### Sensivity analysis

onent

- sitivity analysis was performed to evaluate the effect of the variability of some input ters on the total WF
- rameters considered to be more uncertain have been taken from the literature (crop tent during the initial stage of the grape growing -  $K_{c,ini}$  critical depletion - p, the tration of the pollutant in the effluent -  $c_{effl}$  and the leaching fraction of fertilizers and des -  $\alpha$ ) or roughly estimated (effluent volume allocated to the wine production process -

| Blue water       | → Wine produ                            | nho  | Grey v                                                                                                                   | vater                                                          | <ul> <li>A sensitiv<br/>parameters</li> <li>The paran<br/>coefficient<br/>concentrat<br/>pesticides<br/>Effl).</li> </ul> |
|------------------|-----------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| r <sup>12%</sup> | Total water footprin                    | Res  | _                                                                                                                        | Contribution of e                                              | ach water compor                                                                                                          |
| 0.1%             | Green water<br>Blue water<br>Grey water |      | 400<br>Water foodprint<br>(Lwater per 0.75 L wine)<br>200<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 385<br>0.2 <u>11</u>                                           | Green water<br>Blue water<br>Grey water<br>42<br>0 0.01                                                                   |
|                  | on of each process                      | Para | Va                                                                                                                       | Grape growing<br>riation range for the<br>ected parameters (%) | Wine production<br>Sensivity and<br>Change in the calcul<br>overall water footprin                                        |
|                  |                                         |      |                                                                                                                          |                                                                |                                                                                                                           |

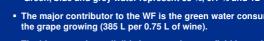
Grape growing 🛶 Grey water

| Contribution of each process     |             |                                   |  |                               |                                                 | Sensivity analysis                                   |
|----------------------------------|-------------|-----------------------------------|--|-------------------------------|-------------------------------------------------|------------------------------------------------------|
| 10 %                             |             | each process                      |  | rameters                      | Variation range for the selected parameters (%) | Change in the calculated overall water footprint (%) |
|                                  | <b>90</b> % | Grape growing     Wine production |  | $\mathbf{K}_{\mathrm{c,ini}}$ | -70 to +230                                     | -14 to +49                                           |
|                                  |             |                                   |  | p                             | -25 to +50                                      | -1 to +5                                             |
|                                  |             |                                   |  | α                             | -50 to +100                                     | -1 to +2                                             |
| otal: 438L water per 0.75 L wine |             |                                   |  | $\mathbf{c}_{\text{effi}}$    | -80 to +70                                      | -7 to +6                                             |
|                                  |             |                                   |  | Effl                          | -90 to +140                                     | -9 to +13                                            |

UNEP, 2007. Global environment outlook - geo 4: environment for development. United Nations Environment Programme, Valletta, Malta. Hoekstra, A. Y., Chapagain, A.K., Aidaya, M.M., Mekonnen, M.M., 2009. Water footprint manual: state of the art 2009. Water Footprint Network, Enschede

## Conclusions

- The total WF of the white 'vinho verde' is 438 L per 0.75 L of wine.
- Green, blue and grey water represent 88 %, 0.1 % and 12 % of the WF.
- The major contributor to the WF is the green water consumption during the grape growing (385 L per 0.75 L of wine).
- The blue water is negligible because the crop field is not being irrigated and the consumptive use of blue water is insignificant both at the grape growing and the wine production.
- The largest grey WF results from the wine production process.
- The grape growing contributes by 90 % to the total WF. The WF depends mainly on the climate and soil conditions and on the properties of the crop, which are not of easy control by the wine producing companies.
- The WF may be reduced only to a certain extent by reducing both the pollutant load in the wastewater produced during the wine production and the amount of fertilizers applied during grape growing.
- The sensitivity analysis show that  $K_{\rm c,ini}$  is the parameter that has the largest influence on the total WF and, particularly, on the green water use during the grape growing.


The authors would like to thank Aveleda S.A. for their collaboration in providing first hand information. The authors also gratefully acknowledge FCT (Science and Technology Foundation – Portugal) for the scholarship granted to Ana Cláudia Dias (SEBH/BPD/20363/2004).



theoria poiesis praxis

Centre for Environmental and Marine Studies

Universidade de Aveiro

