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Abstract 

The human upper airways anatomy consists of the jaw, tongue, pharynx, larynx, palate, 

nasal cavities, nostrils, lips, and adjacent facial structures. 

The interplay and connective movement between all the anatomical structures present in 

this region is complex, and basic physiological functions such as muscle activation patterns 

associated with chewing, swallowing, and speech production are not well understood. 

Specifically, one of the least studied organs in this region is the tongue, in which the tasks 

of imaging and quantification of its anatomy are of great relevance for further study and 

analysis of the anatomic and physiological mechanisms that govern it. Furthermore, new insight 

can be given on other applications such as surgical planning, post-operative rehabilitation and 

the study of new adaptations acquired upon possible changes in function of pathological origin, 

for example in the presence of tongue cancer, surgical intervention or aging. Magnetic 

Resonance imaging (MRI) is the state of the art methodology for visualization and study of soft 

tissues, since it provides the best image contrast of soft tissues such as the muscular tissue of 

the tongue. 

Under the scope of the Computational Vision field, an area that has over recent years 

allowed the development of new tools of analysis that can be applied to medical images, this 

dissertation aims to present computational algorithms for object detection and segmentation 

in images, suitable for application on objects such as the tongue. 

The proposed methodology includes a set of algorithms developed for human tongue image 

processing, in order to study morphology through the building of an Active Shape Model, that 

captures the shape variability of the anatomy during production of various European Portuguese 

sounds. The developed model allowed to simulate realistically the tongues shape capturing its 

variability in the production of different sounds. Subsequently, this model also allowed the 

building of a semi-automatic detection and segmentation algorithm of this structure. The study 

was carried out using midsagittal plane images, since this plane is the most representative in 

the depicting the overall tongue shape variability, which constitutes to be especially 

advantageous for speech assessment purposes.  The suggested model made it possible to obtain 

a realistic segmentation of the tongue as well as efficiently perform segmentation in new 

images. Furthermore, the use of such image analysis techniques allows quantitative measures 
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with higher precision and are particularly advantageous when speech therapists and imaging 

specialists need to analyze a large volume of data. 

In conclusion, the identification and analysis of human structures are complex tasks, since 

their shapes are not constant and vary through time. However, techniques of Computer Vision 

and objects modeling can assist in their achievement as is demonstrated throughout this 

dissertation. 
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Resumo  

A anatomia das vias aéreas superiores humanas é contituída pela mandíbula, língua, 

faringe, boca, fossas nasais, narinas, lábios e estruturas faciais adjacentes. 

Os mecanismos de interação combinada que se associam ao movimento conexivos entre 

todas as estruturas anatómicas presentes nesta região são complexos, e a sua funcionalidade 

inclui actividades fisiológicas básicas, tais como padrões de ativação muscular associados com 

a mastigação, deglutição, e produção da fala.  

Um dos órgãos menos estudados nesta região é a língua, e portanto as tarefas de 

imagiologia e quantificação da sua anatomia são de grande relevância para o estudo e análise 

mais aprofundado dos mecanismos anatómicos e fisiológicos que a regem. Mais ainda, este 

estudo poderia produzir novo conhecimento passível de ser utilizado em outras aplicações, tais 

como o planeamento cirúrgico, reabilitação em pós-operatório e estudo de adaptações 

compensatórias na produção da fala, adquiridas pela presença de cancro da língua, após 

intervenção cirúrgica ou envelhecimento.  

No âmbito da área de Visão Computacional, uma área que tem nos últimos anos 

permitido o desenvolvimento de novas ferramentas de análise que podem ser aplicadas em 

imagens médicas, esta dissertação tem como objetivo apresentar algoritmos computacionais 

para deteção e segmentação de objetos em imagens, adequado para aplicações em órgãos 

deformáveis tais como a língua. Para o estudo de tecidos moles, o estado da arte referente às 

técnicas de aquisição imagiólogica, a Ressonância Magnética (RM), uma vez que proporciona o 

melhor contraste de imagem de tecidos moles, tais como o tecido muscular da língua. 

A metodologia proposta inclui um conjunto de algoritmos desenvolvidos para 

processamento de imagem da língua humana, para o estudo morfológico através da construção 

de um Modelo de Forma Activa, que capta a variabilidade anatómica desta estrutura durante a 

produção de vários sons do Português Europeu. O modelo desenvolvidos permitiu simular de 

forma realista a língua na sua variabilidade de forma durante a produção dos diferentes sons. 

Seguidamente, este modelo permite ainda, uma produção de um algoritmo de deteção semi-

automática desta estrutura. O estudo foi realizado utilizando imagens do plano sagital médio, 

constituindo o plano mais representativo da variabilidade de forma da língua global, tornando-

se este estudo especialmente vantajoso para fins de avaliação dos mecanismos de produção da 

fala. O modelo sugerido tornou possível obter uma segmentação realista da língua, bem como 
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executar eficientemente a segmentação da mesma em novas imagens. Mais ainda, o uso de tais 

técnicas de análise de imagem pode permitir a obtenção de medições quantitativas, com uma 

precisão mais elevada e são particularmente vantajosos para a análise por especialistas em 

imagem ou em produção da fala, no sentido da análise de grandes volumes de dados. 

Em conclusão, a identificação e análise de estruturas humanas são tarefas complexas, 

uma vez que as suas formas não são constantes e variam ao longo do tempo. No entanto, as 

técnicas de visão computacional e modelagem de objetos podem ajudar na sua realização como 

é demonstrado ao longo desta Dissertação. 
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“We are just an advanced breed of monkeys on a minor planet of a very average star. 

But we understand the Universe and that makes us something very special“ 
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Introduction 

The tongue constitutes a unique anatomical structure among all the organs integrating the 

human body. 

It is a specialized organ located in the oral cavity, which plays an important role in 

mastication and swallowing (for digestion process), taste and speech production. Breathing and 

swallowing processes are closely interrelated in their central control at brainstem and are 

highly coordinated. Many muscles and structures of the aerodigestive tract have dual roles in 

these processes, namely the tongue. 

The ability to produce of fast and precise movements during the production of vocalic and 

consonant sounds, and doing so that there is an extensive variety of languages, each with its 

characteristic sounds, makes the study of the tongue of great interest and importance. The 

muscle components of the tongue have the unique purpose of contracting in order to deform 

the body of the tongue itself, and not simply function as most skeletal muscles in the human 

body. These act as a force generating organ for the movement and stabilization of attached 

body structures. 

In speech production the tongue deforms to modulate the flow and acoustic resonances of 

air through the vocal tract. The transport of the bolus through and around the appropriate 

surfaces through tongue movements, followed by its propulsion into the esophagus is the 

purpose of mastication and swallowing tasks, respectively. 

The functions of speech production and swallowing, can affect particularly the survival and 

quality of life. Therefore, for this process to occur, the tongue needs to be able to execute a 

sequence of organized and integrated motor events, mediated by neuro-motor stimulus, which 

can only be feasible if the anatomical and physiological integrity of this structure is preserved. 

All of these functions are controlled by highly evolved neuromuscular systems under both 

voluntary and involuntary control. 
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The purpose of this dissertation is to establish a semi-automatic segmentation tool of 

analysis for further understanding of how the tongue changes shape in response to muscular 

contraction, given that researchers have remarked that our knowledge of the tongue is 

extremely limited. 

1.1. Motivation 

The combined organs and tissues of the respiratory tract and the upper part of the digestive 

tract, called as aerodigestive tract, in all of the associated functionalities, represent a vital 

mean of survival for humans. Speech production is one of the processes secured by all these 

organs that constitute this tract, being the vocal tract one of the most important and complex 

structures.  

One of the most important structures of the upper airways, or also referred to, the 

aerodigestive tract, is the tongue, an organ controlled by complex neuromuscular mechanisms, 

capable of high deformations of its shape to conquer the physiological tasks in which it 

intervenes, in the modulation of the upper airway properties. The study of the full detailed 

anatomy if this organ has recently gained significant relevance, and the comprehension level 

towards the study of the complex system of tongue conformation during the various functions, 

and have proven to play a key role in its correct execution, where speech impairments, 

respiratory disturbances (e.g. obstructive sleep apnea), as well as other pathologic 

consequences need to be studied in further depth.  

Magnetic Resonance Imaging (MRI) is an imaging technique first discovered in 1952 by Felix 

Bloch (University of Stanford) and Edward Purcell (University of Harvard), for which they 

received the Nobel Prize in Physics. This technique revolutionized medical imaging, having been 

only comparable to the invention of the X-Ray by Wilhelm Conrad Roentgens, having been first 

applied to medical purposes in the 1970’s decade (Rinck, 2001).  

Emerging researches are being carried out addressing the study of the functional, 

mechanical and dynamic properties, whereas it is well established that targeting specifically 

the tongue is a matter of high relevance. 

 Currently, there are no tools or exams that allow the complete characterization or 

evaluation of tongue motion and its modulation of the upper airways, by a non-invasive way. 

 The study in a Computational Vision point of view is therefore, of high importance in this 

field, and the objective is the creation of Computer Aided-Diagnosis (CAD) tools of modelling 

and quantification. Many are the advantages that derive from tongue segmentation, but its 

extent goes from the adequacy of imaging acquaintance through MRI to the two-dimensional 

and three dimensional analysis needed to understand its conformation and dynamics.  

Accordingly, the diagnostics and surgery planning related to the structures included in the 

upper airways holds a gap that can be fulfilled through the development of Computer Aided 

Diagnostics tool. Furthermore, the pertinence of the study of the tongue, is in practical 
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appliance expressed by speech therapists and imaging specialists, that in order to perform 

qualitative studies of the tongue, proceed to manual segmentations, done pixel by pixel, which 

obviously stands as highly time-consuming and subject to human error. The understanding of 

the mechanisms that govern the tongue, need therefore to be studied through qualitative and 

quantitative analysis with adequate precision, and it is accordingly advantageous to be possible 

to do so, in adequately large volumes of data for study validation. 

1.2. Objectives 

For the extraction of the tongue shape from MRI images, three key aspects must be 

considered: 

• MRI images are usually very noisy, since this type of image is acquired through fourier 

transform reconstruction of the retrieved magnetic signals, that due to the presence of 

different tissues in each scan, are bound to present random noise; 

• The tongues shape is highly deforming and cannot easily be represented by a parametric 

model; 

• The study of 2D midsagittal tongue anatomies, would allow the performance of 

statistical studies of speech mechanisms; 

• These studies would furthermore, allow the statistical analysis of the mechanisms 

acquired in pathological subjects comparatively to the normal deformation mechanisms 

observed in healthy subjects; 

• The development of implementations with a certain automaticity, would be 

determinant to add value to the state of the art methodologies available. 

 

Having the previous problem key points in mind, for the development of this work the main 

goals are: 

 

• Development of the potential properties of magnetic resonance images for the analysis 

of the aerodigestive tract as to the 2D conformation and motion during speech 

production; 

• Description of Landmark-based geometric morphometrics; 

• Development of a semi-automatic segmentation process of the aerodigestive tract 

structure, specifically the tongue; 

• Development of a computational analysis of the properties of the structures, namely 

the tongue; 

• Demonstrate the viability of the segmentation results through quality measurements 

analysis; 

• Demonstrate the viability of this analysis for the application as a Computer-Aided 

Diagnosis System (CAD system). 
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In order to establish the most adequate methodology to achieve the cited results, this 

dissertation included an analysis of the medical problems, focused on the tongue, that need to 

be tackled in the sense of defining the type of information that is pertinent to be retrieved, 

the methodologies reported in the literature based on Computational Vision, and the modelling 

techniques of identification of soft tissues in MRI images. This study also involved the selection 

of the appropriate platform of implementation. 

1.3. Report Organization 

The comprehensive analysis of human tongues anatomy and functionality will be addressed 

over Magnetic Resonance imaging, and the various stages of image analysis addressed, cover a 

wide spectrum of fields. 

Chapter 2 presents an overview on the tongues full anatomy and functionality as well as 

the imaging technique used to acquire images of the complete aerodigestive tract. Regarding 

applications and previous works of computational analysis based in images the modelling and 

segmentation methods described in previous works are presented. An overview of the state of 

the art of tongue segmentation studies and techniques, from the very initial reports with poor 

description of the anatomy, which over the years was never very thoroughly described, and the 

perception that the complexity of its study has not been widely addressed. Only in recent years 

the developments of Computational Vision allowed that the studies address this organ with 

careful attention and the complexity of such anatomy as one of the most complex in the human 

body. 

Chapter 3 introduces the developed methodology, to the modelling of the tongue, 

describing the standard Active Shape Model building, that is based on a Statistical Shape Model 

and a Profile Model, that characterize the tongues shape and boundary intensities, respectively, 

based on a set of training images, the tongues shape and intensity distribution based on 

landmark labeling. 

Chapter 4 provides a thorough explanation of the developed segmentation methodology 

based on the building of an Active Shape Model, to segment the shape of the in new images, 

using the statistical models presented in the previous chapter, in new images. 

Conclusions and future perspective for the dissertation work are presented in Chapter 5. 

 

 

 



5 
 

 

  

Fundamentals and Related Works 

2.1. Human Aerodigestive Tract Anatomy 

The human aerodigestive tract is regulated by many complex mechanisms and organs that 

sustain important functions such as mastication and swallowing (fundamental for the digestive 

process), taste, respiration and speech production. The importance of tongues functionality for 

said abilities implies actions of (1) positioning of food in the whole vocal cavity, (2) along with 

the buccinator muscle maintaining food in position for the mastication tasks, (3) propelling of 

the food to the palate and posteriorly into the pharynx initiating deglutition, (4) change its 

conformation in order to alter the sounds produced during speech production. In addition, 

humans have taste receptors including in the upper surface of the tongue and the epiglottis. 

The anatomical structure of the vocal tract (Figure1) is well established, being the tongue a 

central organ of this system, which plays a crucial role for the correct functioning of the 

referred tasks. The development of the anatomical structure of the human vocal tract, 

continues to change after birth. Specifically, the position of the tongue changes gradually, 

whereas the newborn tongue is initially flat, positioned almost entirely in the oral cavity, and 

later, as it descends into the pharynx, acquires a posterior rounded contour, carrying the larynx 

down with it. Suprapharyngeal horizontal and vertical proportions undergo comparative growth 

that reaches maturity by the age of 6-8 years old (Lieberman et al., 2001). This is confirmed 

by Vorperian et al., (2009) based on a longitudinal study of 605 subjects using MRI and CT 

images.   

However, the anatomical study of this structure has been simply forgotten, since the actual 

knowledge and role in the execution of the referred tasks has only been attempted to be 

understood in very recent turn of investigations, being also aided by the application widening 

of the available imaging technics towards the characterization of this organ. In the literature, 

reported references that confer some extent of attention to the tongues anatomy are very 
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scarce. For instance, a gross anatomy of the tongue is, in very early anatomic discoveries, to 

be found in full human anatomy works (Gray (1918), Salter (1852)). 

2.1.1. Anatomy of the tongue 

The human tongue is an organ composed primarily by skeletal muscle and located in the 

oral cavity, occupying a major portion of its volume. It is attached to the oral cavity through 

its posterior structures, namely via tendons, and other neighboring muscles as well as to its 

pavement through the lingual frenulum fold.  

The tongue is attached to the support structure of bones of this region, specifically to the 

mandible, the hyoid bone and the styloid process of the skull. The styloid process and bone 

structure of the skull is shown in Figure 2, and the bone attachments of the tongue are depicted 

in Figure 3. 

 The posterior connection of the tongue is made by an attachment to the hyoid bone, which 

is suspended in the larynx structure, by muscles and cartilaginous tissue. Anteriorly, the tongue 

connects to the posterior aspect of the mandibular symphysis. The tongues base is connected 

by fascia to the supralaryngeal muscle that lies immediately inferior to the tongue and forms 

the muscular floor of the mouth, the mylohyoid. 

The tongues structure is composed by a complex arrangement of muscles whereas, the muscles 

can be grouped in two categories: intrinsic muscles, those that are actually part of the tongue, 

have no bone insertions and are responsible for shape changing, flattening and up-lifting 

abilities, and extrinsic muscles, those that are connected to the main structure and attached 

to bone, responsible for protrusion and retraction, lateral movement and shape modification 

abilities (Seeley et al., 2008).  

Figure 1 - MR midsagittal image (slice) indicating 

the vocal tracts structures (Ventura et al. (2011)). 
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The extrinsic muscles are genioglossus, hyoglossus, styloglossus, and palatoglossus. The 

remaining muscles, transversus, verticalis, superior longitudinalis, and inferior longitudinalis, 

are intrinsic to the tongue. 

A groove, named terminal groove, divides the tongue into two portions. The anterior portion 

relatively to the groove corresponds to 2/3 of the surface of the tongue being covered with 

taste buds, with taste receptor cells. The posterior third portion is, in contrast, deprived of 

taste buds, having only some taste terminal receptors on its surface, being occupied by little 

glands and a big agglomerate of lymphoid tissue belonging to the lingual amygdalae.  

The musculature of the tongue has been described as being composed by eight paired 

muscles, as illustrated in Figure 4. 

Genioglossus 

Genioglossus constitutes the main volumetric portion of the tongue posteriorly, having a 

fan or wedge-shape. It is fixated through a musculo-tendinous origin from the inner surface of 

the symphysis menti, continuing from root to tip. Its muscular anterior fibers are arranged in a 

curved antero-dorsal direction that culminates in the anterior fibers of the inferior longitudinal, 

hyoglossus, and styloglossus muscles. Its posterior fibers run horizontally and backwards to the  

Figure 2 - Side view of the skull. The styloid process is just posterior to the mandible 

(Georgia Highlands College, 2013) 
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Figure 4 - Extrinsic muscle of the tongue with styloglossus 

visible at center top (in red) (Gray, 1918). 

Figure 3 - Tongues attachments and neighboring 

structures in a sagittal anatomical view (Gray (1918)). 
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root of the tongue towards the anterior surface of the hyoid bone and anterior surface of the 

base of the epiglottis. Also, intermediate bundles of fibers diverge with different degrees of 

obliquity between the two mentioned portions. In parasagittal plane, it becomes possible to 

identify its orientation. 

Hyoglossus 

Hyoglossus radiates in a fan-shaped manner in its upper portion, having a quadrangular 

conformation in base. Anatomically, towards the other tongue muscles, it is positioned 

medially, between the inferior longitudinal and genioglossus muscles. It arises from the body 

of the hyoid bone and interdigitates at its origin with superficial and deep fibers of the 

geniohyoid. Fiber orientation in the posterior portion of the muscle consists in an antero-

posterior radiation. The anterior fibers run and terminate in an approximately longitudinal 

direction towards the tip of the tongue. The posterior portion lies therefore, under cover of 

styloglossus, terminating in a fusion to its fibers.  

Styloglossus 

Styloglossus departs from an insertion in the anterior and lateral surface of the styloid 

process, close to its apex, continuing in a descending and forward direction into the tongue. Its 

deep fibers interdigitate with the body muscle of the tongue. After inserting into the tongue, 

the fibers divide into two bundles. An anterior bundle continues anteriorly along the inferior 

surface of the inferior longitudinalis, laterally to the hyoglossus, finalizing in the tip of the 

tongue. A posterior bundle penetrates de hyoglossus and courses medially into the lingual 

septum.  

Transversus 

Transversus is part of the bulk of the tongue, along with the Verticalis. It is located between 

the superior longitudinal muscle, dorsally, the genioglossus and inferior longitudinal muscles, 

ventrally. The more superficial muscle fibers take a dorsal direction, and the deepest ones are 

disposed in a ventral direction. 

Verticalis 

 Verticalis is the other muscle that constitutes the thickness of the tongue, being in a tight 

joint surface with the Transversus muscle. Verticalis fibers are generally vertical, spreading at 

its superior and inferior portions. The Genioglossus, transversus, and verticalis partially overlap 

with one another. 
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Table 1 - Muscles of tongue movement (Seikel et al. (2009)). 

Elevate tongue tip Superior longitudinal muscles 

Depress tongue tip Inferior longitudinal muscles 

Deviate tongue tip 
Left and right superior and inferior longitudinal 

muscles for left and right deviation, respectively 

Relax lateral margin 

Posterior genioglossus for protrusion; superior 

longitudinal for tip elevation; transverse intrinsic for 

pulling sides medially 

Narrow tongue Transverse intrinsic 

Deep central groove 
Genioglossus for depression of the tongue body; 

vertical intrinsic for depression of central dorsum 

Broad central groove 

Moderate genioglossus for depression of the tongue 

body; vertical intrinsic for depression of dorsum; 

superior longitudinal for elevation of margins 

Protrude tongue 

Posterior genioglossus for advancement of body; 

vertical muscles to narrow tongue; superior and 

inferior longitudinal to balance and point the tongue 

Retract tongue 

Anterior genioglossus for retraction of the tongue 

into oral cavity; superior and inferior longitudinal for 

shortening of tongue; Styloglossus for retraction of 

tongue into pharyngeal cavity. 

Elevate posterior tongue 
Palatoglossus for elevation of sides; transverse 

intrinsic to bunch tongue. 

Depress tongue body 

Genioglossus for depression of medial tongue; 

hyoglossus and chondroglossus for depression of sides 

if hyoid is fixed by infrahyoid muscles. 
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Superior Longitudinalis 

Superior longitudinalis consists of a thin stratum muscle. Its fibers are directed 

longitudinally along the lamina propria, although this directionality is not clearly defined, being 

reported with disagreement in Anatomy bibliography. The muscle has a gradual reduction in 

thickness as it reaches the Styloglossus, hyoglossus and inferior longitudinal muscles, laterally 

in the tongue.  

Inferior Longitudinalis 

Inferior longitudinal is a narrow muscle that extends between the paramedian septum and 

the medial lamella of the lateral septum. It arises medially with the genioglossus muscle, having 

lateral attachment from the body of the hyoid bone. It is positioned medially with the  

hyoglossus muscle. In the middle body of the muscle, it blends with the genioglossus hyoglossus, 

and Styloglossus muscles forming the tip of the tongue. 

 

The whole description of the musculature existent in the tongue is based on the findings 

reported in (Abd-el-Malek, 1939). Takemoto, (2001) was able to describe and illustrate his 

findings on the relative positioning, especially well for the extrinsic muscles, stating the 

Figure 5 - Muscles of the tongue (Takemoto (2001)): GG - genioglossus, T - transversus, V - verticalis, HG 

- hyoglossus, IL - inferior longitudinalis, S - superior longitudinalis, PG - palatoglossus, SG - Styloglossus. 
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difficulties of distinction between the genioglossus, transversus and verticalis, and produced a 

three-dimensional tongue model based on impressions from his tongue dissections, depicted in 

Figure 5. Also, muscle tongue movement has been established for each constitutive muscle of 

the tongue, as indicated in Table 1. 

Despite the unclear definition of the myoarchitecture of anatomical fiber orientation and 

3D arrangement of the tongue, in the last ten years a new interest has been taken by the 

scientific community in the comprehensive analysis of this structure. To answer these 

disparities, the detailed study of the tongue, specifically of the lingual myoarchitecture has 

been collected with new recordings through diffusion tensor magnetic resonance imaging, or 

diffusion tensor imaging (DTI). This technique is very attractive for these types of studies since 

it enables fiber orientation imaging and analysis in vivo. Gilbert and Napadow, (2005) report 

imaging three human tongues statically, and Shinagawa et al., 2008 reports imaging from single 

sections of in vivo human tongues during rest and protrusion movement. Many techniques  such 

as electropalatography (EPG), X-ray imaging, ultrasound, and cine-MRI imaging have been 

reported in the study of lingual function (Shinagawa et al., 2008). However, the 

characterization and anatomy of the tongue are not well understood, in contrast to other 

neighboring structures such as, for instance, the hard palate. Other attempts of imaging the 

surface during movement and/or oral functions, new analysis of the activation of the tongue 

muscle fibers for deformation of its body, and a clear understanding of these mechanisms in 

vivo has only been in recent years considered a matter of deserving attention. 

2.1.2. Neurophysiological control of the tongue 

Neurophysiology is an advanced field that addresses the understanding of the mechanisms 

that govern the motor control system, especially at the level of last-order muscular output. 

Since the tongue is purely a muscular structure, the understanding of its complexity may 

address the neural complex mechanisms of activation that rule its functionality. This analysis 

is of preponderant importance since the neural control on tongue movement is crucial to the 

function of rhythmic tasks of respiration and swallowing, whereas disruptions of these 

mechanisms have even been associated with the highest mortality reported among the 

pathological problems that may arise (Sawczuk and Mosier, 2001).  

The neuromotor system is based on the activation of motor units. These consist of single 

motor neurons and an assortment of muscle fibers onto which it is connected. Through this 

connection, synapses occur, through electrical potential signals that are sent along the specific 

motor neurons innervating the muscle fiber bundles that need to be activated, producing a 

simultaneous contraction of said fibers. Motor units are organized in motor pools activated in 

a systematic stimulation, by the central nervous system. 

Tongue muscle movement, contractile properties and generator-produced rhythmic 

modulation derive all from the innervation of the hypoglossal motor neuron complex. The motor 

neurons are clustered in the hypoglossal nucleus, part of the brainstem, from which departs 
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the hypoglossal nerve, the twelfth cranial nerve XII. The system of motor neurons that innervate 

this group of muscles is astonishing, evidencing the remarkable complexity of such an important 

organ in all its functions. Although the actual number of neurons that intervene in this structure 

is reported with high disparity, placing, for instance, the total number of myelinated fibers in 

9,900 (Atsumi and Miyatake, 1987). In contrast, other muscles of higher dimensions, including 

biceps or rectus femoris, for instance, are innervated by an average of 441.5 and 609 motor 

units, respectively (Hamilton et al., 2004).  

Electromyographic studies have, on the other hand, been more recently carried out in order 

to comprehend the complete muscle activity involved. Recent studies report that the 

genioglossus is the primary upper airway dilator muscle, and its internal motion activation is 

inhomogeneous. The neuronal control has been vastly studied in the last ten years, and punctual 

conclusions have been established relatively to the phases of control of the Hypoglossus. EMG 

findings reveal that inspiratory neuronal activity begins approximately 250ms before the 

inspiratory process begins, whereas, during inspiration neuronal stimulus increases, and during 

expiration tonus level is maintained (Cheng et al., 2008).  

Although this basic neuronal source is established, the tongue is very uniquely characterized 

by a complex mechanism of activation that is not yet known, whereas the highest difficulty of 

the comprehensive process is straightly related to its anatomical complexity. In fact, the human 

tongue is not only of higher complexity relatively to other mammals, but its anatomical nerve 

activation and gross neuroanatomy are also lacking. The most extensively studied muscle among 

tongue muscles is the Genioglossus, responsible for protrusion and depression motion, which 

has been demonstrated to take part in most tongue movements carried out. 

It is hypothesized, in the literature, although it has not been directly reported, that neural 

control of the tongue may be done, as reported in other mammals for skeletal muscles control, 

by means of tissue composed of neuromuscular compartments (NMCs), that are morphologically 

and functionally activated by distinct neuromotor pools, defined as “smallest portion of a 

muscle to receive exclusive innervations by a set of motoneurons” (English et al., 1993).  In 

(Mu & Sanders, 2000) is demonstrated a compartmental organization of the canine tongue, 

specifically the innervation present in the genioglossus, where it is reported the presence of 

two compartments, with fibers horizontal and an obliquely oriented, as well as the branches 

subdivision departing from the main genioglossus nucleus. 

This mechanism is reported to base neuromuscular control of shoulder muscles (Wickham & 

Brown (2012), Lucas-Osma & Collazos-Castro (2009)); however, even in said anatomically 

simpler muscles NMCs boundaries are not completely defined.  

Unfortunately, no careful anatomical data is found in the literature describing the neuronal 

organization of the human tongue, compartmental or non-compartmental wise. 
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2.1.3. Speech Production, Respiration and 

Swallowing 

Speech production, respiration and swallowing are the three main activities that are carried 

out by the aerodigestive organs, with determinant aid of tongue motion. 

Among these functions, speech production is the area that has been more extensively 

studied by the scientific community, due to its multidisciplinary character. The human phonetic 

apparatus may be divided in organs responsible for sound production and organs of speech 

articulation. Sound production or phonation, is achieved through the vibration of the vocal folds 

into the airstream of the airway, a process named voicing, following their fixation into specific 

position that modulates the aerodynamics of airstream passage. The vocal tract acts as an 

acoustic filter for a source signal generated in the vocal folds within the larynx, whereas the 

process of speech production implies the complement of simple phonation with the execution 

of an extremely well-organized and integrated sequence of movements of the speech 

articulator organs (lips, mandible, tongue and palatal velum), shaping the resonant cavities of 

the vocal tract and consequently altering the resulting acoustic output (Seikel et al., 2009). 

Tongue deformation is directly related to vocalic sounds as well as palatal, velar and pharyngeal 

consonants sound production. Many are the studies that model tongue conformation, during 

production of specific sounds present in various languages worldwide, as shown in Figure 6 for 

vocalic sounds of Portuguese language. 

 Moreover, the cross-sectional area along the vocal tract, in its supralaryngeal section 

determines formant frequencies, whereas records of studies addressing the human tongue 

deformation during speech production, exist from over 150 years (Lieberman, 2012). The 

analysis of the resonance cavities involved in phonation is, as obviously understood by the 

scientific community that has undergone an extensive amount of research relevance to the 

study of speech production anatomy and mechanism, in this sense of extreme importance. In 

addition, more importantly for the understanding of how the mechanisms allow the diversity of 

Figure 6  - Tongue contour extracted from midsagittal images, during production of vocalic sounds 

present in Portuguese language (Ventura et al., 2008). 
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phonation capacity and how disturbances of pathological origin or otherwise to the structures 

involved may affect their functionality.  

Swallowing consists in the passage of a bolus of food through the mouth to the pharynx, 

and into the esophagus that will trigger a swallowing reflex as it passes into these regions. To 

this process be succeeds the larynx must elevate, and the epiglottis (attached to the root of 

the tongue) drops down to cover the aditus, avoiding choking or pulmonary aspiration can occur. 

Food bolus building was illustrated and explained in (Abd-El-Malek, 1955). His observation of 

subjects masticating nuts, gelatin and chewing gum led to the description of the following 

steps: 

a) Preparatory stage – acquires a pouch-like form, to collect the food on its dorsum; 

b) Throwing-stage - a twisting movement towards one side to deposit the bolus onto the 

molars; 

c) Guarding stage - tongue twists even more, making contact with the upper and lower 

teeth, in order to keep the bolus between the molars during mastication; 

d) Bolus building – after several chewing movements the cheeks move medially and the 

tongue moves side to side, mixing the bolus with saliva and coating it with mucus. 

e) Swallowing - the tip of the tongue is raised and pressed against the posterior surface of 

the front teeth and the anterior part of the hard palate, as to close the mouth and pharynx; 

 

These stages are illustrated in Figure 7. 

Muscle activation during this process is automatic, and important processes regard studying 

swallowing to assess the stiffness of the tongues surface, or the force that the tongue is able 

to exert on the hard palate. 

In humans, respiratory airway activity involves important tasks of patency maintenance. 

Substantial studies suggest that this function is provided by the tongues genioglossus muscle 

(GG). Airway patency is a matter of extreme importance, and delicate to control, since the 

human pharynx has no rigid support except at its extreme upper and lower ends where it is 

anchored to bone (upper extremity to hyoid bone) and cartilage (part of the larynx). Therefore, 

the airway depends on 20 skeletal muscles that dilate and keep the oropharynx open (Dempsey 

et al., 2010). 

During respiration, tongue deformation has been analyzed through tagged MRI, a technique 

that arose later as a modality of MR imaging, allowing quantification of physiological motion. 

Expiratory and inspiratory tasks create pressure differences in the airway and muscle tonus of 

the involved structures that define its need to be able to maintain the adequate compliance. 

Inspiration tasks generate a negative inspiratory pressure that manifests at epiglottis level, that 

has been directly correlated with neuronal firing of the genioglossus (Pillar et al., 2001). In 

Cheng et al. (2008) is reported that the muscle movements activated throughout the respiratory 

cycle. Genioglossus muscle analysis indicated posterior movement during expiration as opposed 

to an anterior movement during inspiration, and over the geniohyioid. Geniohyioid has 

presented very little movement during respiration. 
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2.2. Magnetic Resonance Imaging in the 

context of Aerodigestive Organs 

Since the development of novel imaging techniques of the tissues that the in vivo anatomy 

of living organisms has been made possible.  

Magnetic resonance imaging (MRI) is a diagnostic method that uses strong magnetic fields 

and radiofrequency (RF) waves to form images of the human body. This technique allows a non-

invasive imaging method that presents a wide range of potential clinical applications. 

MRI is therefore, nowadays a well-established imaging method used by physicians in the 

evaluation and characterization of soft tissues. The technique presents major advantages 

compared to conventional imaging methods: uses non-ionizing radiation, allows greater soft 

tissue contrast and also enables an analysis of the three-dimensional structures surrounding the 

upper airway. Analysis of images from MRI, relatively to other imaging techniques is 

characterized for being more informative in terms of output extent of data that can be 

(a) 

 

(b) 

 

(c) 

 
(d) 

 

Figure 7 - Abd-El-Malek (1955) illustration of the preparatory stage of mastication (a), 

throwing stage of mastication (b), guarding stage of mastication (c), initial stage of deglutition 

(d). 
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retrieved, allowing an analysis of the outputs to be oriented to the monitoring of the respiratory 

airway during sleep and the structures that play a determinant role in the study of normal 

functioning upper airway, relatively to the imaging of pathological aerodigestive tract. It allows 

therefore, the addition of tremendous value to screening, diagnostic, surgical planning and 

follow-up of patients, for a variety of pathologies developed in these organs. A particular case 

where this imaging technique is advantageous and necessary, precisely for the appearance of 

pathological scenarios during the developmental process in the aerodigestive tract, is when it 

is applied to children, to whom the usage of non-ionizing radiation is preferable. Despite the 

advantages presented, the use of MRI is not quite as common as it was idealized, being the 

main reason related to the high cost of the imaging technique.  

In this chapter, the physical principles in which this technique is based are described, as 

well as the variable aspects that affect its quality and adequacy, in order to better understand 

the adaptability and potential in the application of imaging the human tongue.  

2.2.1. Basic Principles in Magnetic Resonance 

Imaging 

The rotational movement of protons presented in the 1H atoms nucleus – spins – implies 

that each of them is associated with magnetic dipolar moment (m.d.m). The most abundant 

atoms present in tissues are 1H atoms, with spin =1/2, being more sensitive to magnetic fields 

applied in Magnetic Resonance (MR). When a magnetic field is applied to the spins, these go 

from a state of null magnetization, to a state of magnetization where the m.d.m’s tend to align 

themselves with the orientation of the referred field, in a given volume element, assuming a 

magnetization value different from zero. 

This alignment is done in its majority according to a parallel direction related to the field; 

however, a part of these spins does not respect this behavior and its movement is named 

precession movement that occurs with a given frequency, called Larmor frequency (Rinck, 

2001). An external pulse applied in form of oscillations of the magnetic field in the range of 

radiofrequencies at Larmor frequency of those spins, forces them to enter in phase precession, 

which originates a signal of image in RM.   

The phenomenon explained in terms of physical behavior, can be examined considering, 

where the magnetization vector is in the Z axis, and the precession phenomenon makes the 

spins rotate around that axis of magnetization with a deflection angle in the vertical plane 

containing said axis. Therefore, into an MR equipment, a given coil is positioned in the xy plane 

that detects a variable electromagnetic field, producing an oscillatory signal, which 

corresponds to the MR image signal. This method, consequently, intends to detect the energy 

released by the phenomenon of Relaxation, which occurs when the radiofrequency (RF) pulse 

ends and the spins start to relax to the minimum energy state. 
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2.2.2. Relaxation Times  

There are two types of relaxation of tissues, longitudinal or spin-lattice relaxation (T1 

weighted time), made through the Z component of magnetization 𝑀𝑧 after the application of 

magnetization in the xy plane, and transversal relaxation or spin-spin relaxation (T2 weighted 

time), that occurs by the additional effect of dephasing of magnetization induced by 

interactions between spins of neighbor protons, that when subjected to magnetic fields with 

slight differences, rotate at corresponding Larmor frequencies. This process of continuous loss 

of phase coherence, becomes gradually more prominent with time. The magnetization then 

implies that T2 relaxation time is always less than T1, and that the timeline of the process 

starts at a magnetization in xy plane that then tends to zero, followed by an increase in the 

longitudinal magnetization until equilibrium is achieved, in axis Z. T1 relaxation results from 

the interaction with the mesh of atoms in the tissue, and is characterized by a rate of 

magnetization Mz vector through time given by: 

𝑀𝑧 (𝑡)  =  𝑀(0). (1 − 𝑒−
𝑡
𝑇1)      (1) 

This equation describes a profile, where the recovery tends to a thermodynamic equilibrium 

state, for which Eq. (1) given t=T1 is [1-(1/e1)], meaning that T1 characteristic time is the time 

where the longitudinal magnetization recovers 63% of its equilibrium value (Rinck, 2001). 

2.2.3. K-space 

Spatial encoding of the image is another part of the mechanism, of acquisition that includes: 

- Slice selection – implies the positioning of a gradient in the perpendicular direction to the 

cut to be retrieved (in the Z plane for an axial slice), the position of slice is selected by the 

frequency of the pulse, and the thickness by its bandwidth. 

- Frequency encoding – applying a first signal according to a specific direction, the signal 

emitted by the different elements of volume, are characterized by different frequencies. 

- Phase encoding – applying a second signal according to a determined direction, the 

different elements of volume according to that direction will be characterized by different 

phases. 

Consequently, for an axial acquisition, the slice selection is done in the Z plane, the axis X 

and Y are responsible for the frequency and phase encoding. The two magnetic fields 

distributed, make for each orientation of the phase encoding gradient Gy correspondent to a 

line (y position), and the frequency encoding gradient dictates each columns value (x position) 

of that line, and in this way the (x,y) positions are stored in a matrix called K-space. Each 

combination is afterwards mapped in the image reconstruction to its position, and the 

amplitude into the corresponding intensity, by applying the Fourier transform to the 2D 

distribution (A. Bernstein et al., 2004). 
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The design of appropriate gradients, is preponderant so that k-space samples can be 

acquired and then inverse Fourier transformed to obtain an image of the magnetization M(x; 

y). K-space must be sufficiently sampled according to the Nyquist criterion to avoid object 

domain aliasing. The extent of k-space coverage determines the images resolution. 

2.2.4. Contrast and tissue signal in RM 

Contrast in MRI is due to the occurrence of specific relaxation phenomena in the different 

tissues, where it depends on the different times of relaxation T1 and T2, as well as different 

proton densities, which are characteristic and intrinsic of each type of tissue. The different 

tissues contain large numbers of chemical components that contribute to the measured 

magnetic resonance signal, and this composition characterizes each type.  

Image acquisition in MRI is made through specific sequences of pulses, of RF and orientation 

of the phenomena of relaxation where, given the dependence on time of these phenomena, 

contrast can be adjusted and chosen by applying specific combinations of temporal parameters 

of acquisition. In the conventional MRI acquisition, these phenomena will also be influenced by 

the technical factors of medical acquisition, or biologically extrinsic factors. These include the 

magnetic field strength and homogeneity, and are crucially determined by the pulse sequence 

contrast influencing components TR, TE, TI and FA. 

The main objective since the discovery of this technique relies in combining these 

parameters in order to emphasize certain contrast determining factors, or determining 

relaxation phenomena among others, or even a set of different factors. 

2.2.4.1. TR, TE and Pulse Sequences 

Pulse sequences of acquisition consist in a sequence of signals sent to the tissues, by MR 

machines. The pulse sequence consists in repeated RF pulses that cause a free induction decay 

(FID) characterized by a specific initial amplitude, mediated by the pulse sequence parameters. 

The two time parameters that determine this method are TR (repetition time) and TE (echo 

time) of the pulse sequences. TR is the time interval between two successive RF pulses, and TE 

is the time at which the echo signal, the signal produced by induction of the spinning protons, 

reaches the detector of the machine and is measured. TR can therefore determine the degree 

of relaxation of protons back into alignment of the magnetic field, whereas specific rates of 

relaxation of the tissues will imply having TR times shorter than what is needed for a full 

relaxation decrease the signal retrieved from the analyzed tissues. 
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2.2.5. Limitations and determinant 

considerations 

The growing interest in the tongues function over all its functionalities of taste, swallowing 

and speech production tasks has given rise to the importance of imaging the aerodigestive tract 

and its structures with the best imaging technique available; whereas for the correct imaging 

of such complex structures, a good contrast between tissues is fundamental to allow the 

differentiation of the different structures at its correct boundaries.  

These factors are of extreme importance for the development of the dissertation work 

proposed here. 

Therefore, the rigorous imaging of the structures at study is determinant for the correct 

function of the following computational tasks of retrieval of the target structural. 

In spite of the image quality conditionings referred above, MRI technique is considered as 

the best, a non-invasive, accurate method imaging modality available for the imaging of the 

muscular organ under study. 

2.3. Upper airway imaging and computational 

analysis 

Computational processing and analysis of medical images is a novel field that has gained a 

promising and relevant importance over the years, presenting astonishing developments in the 

areas of computer aided diagnostics, improving imaging technics, and imaging analysis 

processing of aspects that cannot be visualized and/or retrieved by plain image observation.  

Volumetric imaging techniques can be used to reconstruct three-dimensional structures 

from serial two-dimensional images. This section provides a conceptual overview of those 

techniques by illustrating the reconstruction of the aerodigestive organs. 

Segmentation of the target anatomical structures from MRI is still a challenging process. 

There are various reported methods of segmentation of static MR images/volumes (Balafar et 

al., 2010). Their applications to the particular segmentation of tongue, is reported in a scarce 

number of instances, highlighting the need of further studying this organ and the development 

of the adequate tools accordingly. 

The imaging study of the tongue is a very underdeveloped field that has limited the 

improvement of anatomical and functional characterization of this organ. The recent 

development of Computer Vision and Machine Learning fields of Image Analysis in recent years 

have provided the availability of new tools of image computer analysis regarding 3D volume 

segmentation and reconstruction. 

The first imaging reports of the tongue are made through ultrasound (US) imaging (Sonies, 

1981), and subsequent applications towards the analysis of swallowing and articulation tasks 
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using snakes in (Unser and Stone, 1992), and using scale space filtering for edge detection in 

(Kelch and Wein, 1993). The main applied studies that address specifically this structure are 

extensively reported in speech studies. Therefore, US imaging presented the best imaging 

characteristics for a dynamic acquisition of multiple frames during speech production exercises. 

First tongue 3D modelling and reconstruction were reported in (Watkin and Rubin, 1989), that 

describes a trigonometric transformation of the 2D coordinates into a volume, and latter, more 

advanced segmentation methods were described by Akgul et al. (1998) and more recently for 

segmented 2D motion analysis applying Markov random fields in Tang et al. (2012). 

Although the demonstrated applicability of US to tongue modelling, further study of its 

anatomy implies that a higher contrast and resolution imaging technique, such as MRI, prevails 

as more adequate in the intended study of the tongue. 

The first reports of tongue anatomy imaging through MRI were reported in (Lufkin et al., 

1983). 

The analysis of tongue anatomy and physiology has been reported in studies using both 

static volumetric MRI, standard imaging modality for 3D imaging, Cine-MRI and even tagged-

MRI imaging (another imaging modality that has been extensively used for temporal 

characterization of the tongues anatomy). Reported dynamic acquisition image analysis studies 

reinforce the necessity of a proper segmentation in 3D studies to the evaluation of the dynamic 

processes it is responsible for, such as swallowing and speech production (Lee et al., 2014). 

Other studies pretend to reinforce the study of the biomechanical modelling of this structure, 

and therefore, select a high resolution imaging modality such as static volumetric MRI (Harandi 

et al., 2014). 

The emerging interest in the study of the tongues deformation and functionality has 

established that the requirement for an automated method of image analysis of this kind of 

anatomic data is expected to gain a rapid eminent relevance (Woo et al., 2012).  

Reported studies on segmentation of the tongue, focus of the segmentation of static and 

dynamic acquisitions. Dynamic acquisition reveals to have obvious relevance in the study of 

tongue motion characterization. The processing needed is common since the format is usually 

based on 2D image segmentation. Vasconcelos et al. use statistical models to segment the 

tongues shape during the production of different sounds, in order to study speech production 

(Vasconcelos, Ventura, Tavares, & Freitas, 2009). 

Stone et al. (2010) is one of the first reports that focuses on the strict tongue segmentation, 

and establishes the relevance of this study for motion patterns during speech production. In 

this 2D study, the images were to simply be registered through a landmark based transformation 

algorithm and aligned, following principal component analysis for the motion study. 

The processes reported are usually divided into various basic phases: 1) Resolution wise 

pre-processing, 2) Segmentation, 3) Registration, 4) 3D Volume reconstruction.  

In Lee et al. (2014) is reported an isotropic volume super-resolution reconstruction from 

dynamic tagged-MRI images. The images were subjected to a super-resolution volume 

reconstruction, in order to address inter-slice resolution. It was attempted to surpass the 
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limitation, extensively mentioned throughout this report, of long acquisition time, through the 

acquisition of three images with 6.0 mm thickness, which obviously affected the resolution in 

the through-plane direction. An up-sampling in the through-plane direction was developed using 

a fifth-order B-spline interpolation. Registration, for inter-slice alignment is reported in various 

studies (Lee et al. 2014, Woo et al. 2012), where the application of the Mutual information (MI) 

similarity measure is reported for registration of sagittal with axial and coronal volumetric 

image stacks. After the registration, a final intensity correction is made using a local intensity 

matching algorithm, following the application of the Random walker (RW) segmentation 

algorithm. 

The Random walker algorithm, for segmentation of 3D super-resolution volumes was also 

cited in the literature for similar purposes, due to its attractive features in Woo et al. (2012). 

Tagged-MRI is not adequate, regarding preponderant implications on volume 

reconstruction, to be used in these studies since the image quality is very low to when compared 

to static volumetric MRI. 

A mesh modelling approach is reported in Harandi et al. (2014) whereas the registration 

technique departs from an initial source model of the tongue to whose vertices are applied 

external forces forcing it towards the target boundaries through a process dictated by local 

intensity profile registration and positions computed through normalized cross-correlation and 

finalized by shape matching. The advantage of this approach is that it allows user input to 

automatically correct the mesh nodes positioning. 

The most recent study published attempted to go further in the investigation of functional 

behavior, and describes a novel method of segmentation of individual tongue muscles 

(Ibragimov et al., 2015), specifically genioglossus and inferior longitudinalis. In their work, it 

was implemented an adaptation to muscle segmentation of the game-theoretic framework 

(GTF) algorithm, based on land-mark-based segmentation. 

2.3.1. MRI 3D volumes image segmentation 

techniques 

Computer-aided modelling of the aerodigestive organs is beneficial for 3D visualization, and 

for the understanding of the associated physiology. Medical imaging is retrieved in a universal 

format, organized according to a predefined standard.  

The studies that address image segmentation of the tongue are limited and therefore, an 

overview of this list of presented in the following points. 
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2.3.2. DICOM Standard Overview and Volumetric 

Data 

The process of imaging has become extensive, including a wide variety of formats, imaging 

technics, and post-acquisition procedures. For this reason, in addition to the creation of a 

communication system and network storage used, named Picture Achieving and Communication 

System (PACS), a common format that allows correspondence between station and safe data 

transference was created. 

A picture archiving and communication system (PACS) is essentially a network system for 

digital or digitized images from any modality to be retrieved, viewed and analyzed by an 

appropriate expert system, at different workstations. 

This communication is safeguarded by a pattern called DICOM - Digital Imaging and 

communications in Medicine, a standard for the communication and management of medical 

imaging information and related data (ISO 12052). The DICOM format was first released in initial 

versions of the ACR-NEMA - version 2.0 published in 1988 - created standardized terminology, 

an information structure, and file encoding, whereas the version 3.0 of the standard published 

in 1993 finally addresses the matters of a standardized communication of digital image 

information, developed by the American College of Radiology (ACR) and the National Electrical 

Manufacturers Association (NEMA) who in 1983 formed a working group with the objective of 

developing a model that would allow a fully digital workflow for image exchange. It is defined 

as a set of standards for treatment, storage and transfer of medical images and associated 

information, in an electronic format, and was created with the purpose of standardizing the 

formatting of diagnostic images allowing these to be exchanged among equipments, computers 

and hospitals (NEMA). The DICOM system has interest in a variety of medical fields, including 

cardiology, dentistry, endoscopy, mammography, ophthalmology, orthopedics, pathology, 

pediatrics, radiation therapy, radiology, surgery, etc. 

From the Scientifics community point of view, this standard enabled an open architecture 

for imaging systems, bridging hardware and software entities and allowing interoperability for 

the transfer of medical images and associated information between disparate systems (Dreyer 

et al., 2006). Furthermore, in the field of Computational Vision, the development of image 

processing and analysis tools is now possible to be standardized, without any format and 

organizational issues. 

The data structure of a DICOM file consists of a set of data elements. A header portion 

includes general data elements related to the image. Image data is also contained in one data 

element, or more data elements if there are more than one part image in this DICOM file. Each 

data element is stored as depicted in Figure 8. 

After the header a dataset follows, which represents the content of the file. The dataset 

can be an image, a presentation state, a structured report or another DICOM object. For reading 

procedures, the format implies that a system based on a data dictionary, which stores all kinds 
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of tag groups so that every data element can be read correctly. Information of each kind of 

image (CT - computer tomography, MR - magnetic resonance tomography) has an identifier as 

well as the instance of such a class. There is no definition of 3D data storage in DICOM standard. 

A volume is usually presented by an ordered series of 2D DICOM files, each of which may 

have multiple components of the same size and representation, which are the parallel slices of 

the volume. 

2.3.3. Image Segmentation 

Computational Vision includes tasks of image segmentation whereas the objective of 

segmentation algorithms is to partition an image into a finite number of important regions 

under the image scope, such as anatomical or functional structures in medical images. 

Image segmentation can be defined as the process of decomposing an image into various 

labeled regions that are characterized by some measure of homogeneity inside it, and 

heterogeneity among different regions is maximal. 

When it comes to airway contour delimitation, the process is complex due to eventual non-

identification of organs, anatomic parts or artificial inclusion of non-existing parts. Air-tissue 

boundaries of vocal tract are hard to extract due to the similarity of anatomic structures around 

it. High resolution MRI is known to provide good representation of muscle anatomy. However, 

a compromise of image quality for the acquisition of volumetric data is in many cases a balance 

to take into consideration upon the definition of the image acquisition protocol. This will lower 

boundary resolution and contract, since upon the acquisition pixel intensities are obtained, 

through an averaging process of signal over each TR time, over the space of the target volume. 

Figure 8- DICOM data set structure consists of several data elements. 
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As previously stated, one of the issues that arise from MRI acquisition, is the technical 

consequential issue created by the rather long times necessary for the retrieval of each 2D k-

space image. Volumetric MRI data consists of a series of 2D images corresponding to a given 

series of slices of tissues, and a determined thickness. Each slice is acquired consecutively, in 

a sequential series of acquisition, whereas the process of each acquisition is therefore, very 

sensitive to motion of tissue, that will practically inevitably cause some degree of inter-slice 

misalignment. 

Under the field of medical image processing and analysis this issue is currently covered by 

image registration, under which extensive research devotion and developments have been 

made over a time span of 25 years, and its relevance and attention given include applications 

with computed tomography (CT), magnetic resonance imaging (MRI), Positron emission 

tomography (PET), Single Photon Emission Computed Tomography (SPECT), and also a later 

increase of applications in Ultrasound (US) imaging. Registration is in many cases used to 

achieve the alignment or/and fusion of different types of images in order to retrieve and 

complement the information obtained from each one. Image registration is also used to correct 

for subject motion between acquisitions. Accurate registration is of great importance in this 

application because small perturbations in alignment can lead to visible artifacts after applying 

the MAP-MRF reconstruction algorithm (increases the variance of intensity values at each spatial 

location). Mutual information (MI) (Maes et al., 1997) is one of the most popular similarity 

metrics, whereas, reports show it as being successfully employed for non-rigid registration, 

although this metric presents also limitations.  

A registration method using a mesh-to-volume technic represents a different approach to 

landmark generation by adapting a deformable surface model to the target volume. This 

registration is used in Harandi et al. (2014), based on mesh nodes position calculation through 

local gradient intensity profiles and normal to the mesh surface. 

The problems of the segmentation of this structure may arise from the presence of poor 

muscle-neighboring structures interface visibility, intensity mismatches, blurring, blank 

regions, etc. 

2.4.  Related work 

As stated previously in this report image quality is a determinant factor for the success of 

computational analysis. The technical time limitations of MRI acquisition protocols, translate 

into resulting limited resolution images due to its high sensitivity to motion, which increases 

almost inevitably the probability of movement due to swallowing motion to occur, and will 

automatically condition negatively the images acquired. 3D acquisitions of upper airway (head 

and neck imaging) takes usually at minimum 4-5 minutes. Maintaining the tongue immobilized 

for such time span is likely to induce involuntary motion and/or swallowing. In Woo et al. 

(2012), methods for correcting this problem are proposed with super resolution volumes. Super 
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resolution algorithms can be categorized into being based on non-uniform interpolation, 

frequency domain, and spatial domain analysis methods. 3D MR images of the tongue can be 

produced from sets of orthogonal volumetric images, acquired at a lower resolution and 

combined using super-resolution techniques. The production of super resolution volumes may 

also imply adaptations of acquisition protocols in order to obtain, for instance, volumetric 

acquisitions with specific/target areas of super-resolution as reported in Ibragimov et al. 

(2015), as an adapted kind of orthogonal acquisition from (Woo et al., 2012). 

The success of this step of image processing will determine prominently the success of the 

following image segmentation steps. 

Supervised segmentation algorithms are based on an analysis of a training data as example 

and produces an inferred function that allows the mapping of new data. 

Supervised segmentation algorithms typically operate under one of two paradigms for 

guidance: 

1) Specification of a portion of the boundary of the target object; 

2) Specification of a small set of pixels belonging to the desired structure and (possibly) a 

set of pixels belonging to the image background. 

Therefore, supervised algorithms only use labeled information retrieved by any of the 

previous methods data. Particular variants are also relevant in this study, such as semi-

supervised algorithms that make use of unlabeled data for training, typically a small amount of 

labeled data with a large amount of unlabeled data (Xiaojin Zhu, John Lafferty, 2003). 

Among these categories, image segmentation can be based on seed growing approaches, 

which requires an operator/user to empirically select seeds and thresholds. Pixels around the 

seeds are examined, and included in the region if they are within the thresholds, sometimes 

adding the requirement that they are sufficiently similar to the pixels already in the region. 

Each added pixel then becomes a new seed whose neighbors are inspected for inclusion in the 

region. The random walker algorithm falls under this category. 

Random Walker segmentation algorithm 

The Random Walker (RW) algorithm was proposed in Grady (2006),  is being applied in 

several studies in the segmentation of the upper airway. This algorithm presents the several 

characteristics that confer the adequacy and suitability to this algorithm among others. It is 

characterized by having fast computation costs, flexibility, an easy user-interaction is required, 

and produces a very accurate segmentation with minimal interaction, through user-defined 

seeds.  

The algorithm is a K-way image segmentation and semi-automatic since it requires user-

defined regions correspondent to K structures. These are defined by the user, specifying a small 

number of pixels with user-defined labels as seeds (on the tongue and the vocal cavity). Also, 

the algorithm uses for graph representation, harmonic energy minimizing functions, whereas 

low energy corresponds to a slowly varying function over the graph has will be defined next 

(Zhu et al., 2003). 
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2.4.1. Modelization of deformable tissues 

Model-based deformable models that are able to fit to new data instances have great 

interest in computer vision. Within the spectrum of study that this area offers, statistical 

modeling of shapes includes many techniques. Beginning by its simpler version, there are Active 

Contours or Snakes (Kass, 1987), which are energy minimizing curves that deform according to 

internal and external forces, followed by Active Blobs (Isidoro & John, 1998), whereas the 

models deformation is based on physical properties such as stiffness and elasticity modeled by 

Finite Element Methods (FEM), and finally reaching the more complex methods of Active Shape 

Models (ASM) and Active Appearance Models (AAM). Active Shape Models (ASM) also known as 

Smart Snakes (Cootes & Taylor, 1992) are Point Distribution Models (PDM) or Statistical Shape 

Models (SSM), i.e. landmark based methods, where the variability of shape is learned offline 

using statistical evaluation through Principal Component Analysis (PCA), and allows model 

fitting of new shapes by combining a priori knowledge about how a shape deforms and 

evaluated texture information along normal scanlines, driving the shape model to a fast and 

very accurate model fitting. Finally, Active Appearance Models (AAM) (Cootes, Edwards, & 

Taylor, 2001) consist of an evolved version of ASMs, respective to in addition, including a 

complete texture mode, to the full model of shape used to fit to new images. 

The tongues anatomy has been modeled in a number of fields of study in previous works. 

Parametric representations of the tongue shape have been devised based on statistical methods 

by Badin et al. (Badin & Gérard, 1998), Engwall et al. (Engwall, 2000), and spline descriptions 

by Parent & King (Parent & King, 2001), Stone & Lundberg (Stone & Lundberg, 1996). A 

physiological representation is described by Takemoto . Dynamic models have been constructed 

using both mass-spring systems by Dang & Honda (Dang & Honda, 2004) and finite element 

methods by Gerard et al. (Gerard, Perrier, & Payan, 2006), Wilhelms-Tricarico (Wilhelms-

Tricarico, 1995). A recent survey by Hiiemae & Palmer (Hiiemae & Palmer, 2003) describes 

these representations and applications in detail. 

 Approaches based on generating point distribution models that captures the shape of the 

object of interest and then augmenting this model with intensities near landmarks in the case 

of Active Shape Modeling (ASM) falls within the supervised category of modeling and analysis of 

anatomical variations in images. Vasconcelos et al. applies precisely this type of models 

statistically describing tongues shape, in an analysis of speech production of vowels 

(Vasconcelos, Ventura, Tavares, & Freitas, 2009). In previous works, these methods were on 

another approach adapted to a game-theoretic perspective as was validated by Ibragimov et 

al. (2012), and applied to tongues individual muscles segmentation for the first time, by the 

same authors (Ibragimov et al., 2015). 

Game-theoretic framework for landmark based segmentation 

This algorithm is based on an adaptation of an Economics theory, the game theory, which 

studies the decision making of player that affects the other players during a game, that was 
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established in Neumann and Morgenstern (1947) into the landmark position search of the ASM 

segmentation. In this method, candidate points are defined for each landmark, and likelihoods 

that each candidate point represents a specific landmark are evaluated. The landmark 

detection is formulated mathematically as a game, considering landmarks as players, landmark 

candidate points as strategies, and likelihoods that each candidate point represents a landmark 

as payoffs. 

To the obtained combination of optimal candidate points follows the definition of the 

boundaries connection each pair of adjacent landmarks, formulated as an optimal path 

searching problem. Image intensities in the area between landmark and are filtered by a control 

intensity function that minimized the distance error training images to the ground truth 

boundary. 

 

Landmark-based atlasing using B-spline and Demons atlasing are other possible algorithms 

to be used for non-rigid segmentation, based on transformations to map/align the training-

defined landmarks to the landmarks identified in the new target image (Ibragimov et al., 2015). 

In 2000, a 3D tongue model was developed by Engwall et al. within the Kungliga Tekniska 

Hogskolan (KTH) 3D vocal tract project using manually extracted tongue contours from MR 

images of a reference subject producing 43 sustained Swedish articulations (Engwall, 2000). 

The extraction of the articulatory models parameters was done by decomposing the geometrical 

points of the tongue in linear components, through a Linear Component Analysis, where the 

factors to be extracted were imposed on the model using MR images articulatory measures. 

Two years later, in Badin et al., a database of 3D geometrical description of tongue, lips and 

face was established for a speaker sustaining a set of French allophones (Badin, et al., 2002). 

For this, data from MRI, along with a video with and without a jaw splint were used. An 

important finding of this research was that, most 3D geometry of tongue, lips and face could 

be predicted from their midsagittal contours, at least for speech assessment purposes. Indeed, 

the knowledge acquired from midsagittal data and from traditional 2D models is far from 

obsolete.  

2.4.2. Segmentation using Statistical models  

When it comes to specifically study 3D organs, the more sophisticated variances of 

statistical models described above in the found literature of tongue modelling are necessary. 

However these methods are based in an image quality achieved by image interpolation 

methodologies, and resolution improvement.  

On the other hand, for 2D studies, the dimensional reduction implies a direct simplification 

of the modelization. In real image segmentation, a specific SSM preserves the characteristics 

of an organs shape even if the image information is misleading or ambiguous. The study carried 

out by Vasconcelos et al. is a representative example of this (Vasconcelos, Ventura, Tavares, 

& Freitas, 2009). Although it should be noted that segmentation errors produced by for instance 



29                                                        Fundamentals and Related Works 

 
 

statistical shape models, cannot be exclusively accounted to the limited generalization ability 

or specificity, but also to deficiencies of the model-to-shape search algorithm, that is, the ASM. 

In particular, the results of this methodology may be influenced by the initial placement of the 

SSM, as well as by the search strategy adopted, which may fail to detect certain image features. 

The search algorithm therefore is key to the segmentation process: 

 local image feature search computes a set of candidate positions around each 

landmark.  

 An appearance model is used to assign a score to each candidate such that they can 

be ranked. 

The referred features can be 1D or 2D image features, to which many processing methods 

are available for ideal candidate choosing, by scoring the feature candidates, or classifier ideal 

candidate choosing, among others. Many studies use a wide range of search algorithm strategies 

that is susceptible to the structure boundary features (Heimann, Wolf, & Meinzer, 2006). 

Finally, M. Vasconcelos proved in a recent study that it is possible to segment the vocal 

tract, and capture its modulation variability upon the production of different sounds using 

Active Shape Models that capture the adequate variability it suffers upon the production of 

different sounds, including the variation of the tongue, vellum, pharynx tissue shapes. It 

includes the production of a variety of sounds, and the model captures the variability suffered 

upon the tongues dorsum and posterior wall (Vasconcelos, M., 2015). 

2.5. Conclusion 

Many are the applications that can profit by the study of the aerodigestive structures in 

images. The tongue appears to have still endless functional and physiological mysteries yet to 

be resolved. Its relationship with the neighboring structures is very complex and seems to be 

intrinsically related with other organs to the performance of the tasks that are under the vocal 

tracts responsibility. Various imaging methods have been reported in previous studies 

addressing the airway structural geometry including muscle activation, using specifically 

endoscopic imaging (Kuna, 2004), X-ray fluoroscopy (Wheatley et al., 1991), acoustic 

reflection, Computer tomography imaging (CT, in Teguh et al., 2011), optical coherence 

tomography (OCT, in Togeiro et al., 2010), as well as magnetic resonance imaging (MRI) (Woo, 

Murano, Stone, & Prince (2012), Moon et al. (2010), Arens et al. (2003)). 

Another important aspect that represents a current challenge in the clinical practice of 

physicians, takes into consideration that large numbers of target and normal tissue structures 

present in the head and neck, that require manual delineation. An example includes cancer 

patients, where the contouring is tedious and time consuming. Also, in certain courses of 

treatment, such as head-and-neck intensity-modulated radiotherapy, it is required accurate 

delineation of those structures, implying efficiency benefits from an economical perspective, 

besides obvious improvement to the patients treatment. 
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Furthermore, the available imaging systems, cannot yet take upon the adoption of more 

sophisticated imaging techniques and types of acquisition. This factor is important since multi-

stack 3D acquisitions are one of the latest and more sophisticated techniques for the analysis 

of the tongue anatomy in MRI. However, the available medical imaging procedures do not 

include these types of acquisitions as golden standard, implying only single plane imaging 

acquisitions, usually the sagittal plane, being the most representative of all the structural 

changes of the aerodigestive tract. 

It is preponderant to address the various health issues that still need to be studied further, 

as well as improve the imaging. Understanding speech disorders, understanding sleep apnea, 

planning and practicing surgery with computer models, and understanding problems in tongue 

movement following surgery are some of the examples of problems that could be addressed in 

further studies of the tongue. No instance of an automatic tongue segmentation framework was 

found in the literature, whereas only semi-automatic methods were found. This is extensively 

referred to be a difficult task, in a number of study, due to the imaging quality disadvantage, 

and the image features related to the structural environment in which this organ is inserted, 

being in close vicinity with other structures, and having boundary segments directly connected 

to neighboring structures. The insufficient image contrast between the structures to be 

segmented, such as the tongue and adjacent soft tissues at the periphery, makes the 

segmentation task challenging and the boundary detection techniques in the reported 

segmentation methodologies present limitations, that represents a concern especially upon the 

analysis of the lower boundary of the tongue. 

 



31 
 

 

  

 

Statistical Modeling of the tongue 

In this chapter, the methodology developed and all the algorithms constituting it will be 

thoroughly explored, as well as the image dataset used in this work. 

The goals of the proposed work were the development of a simple and objective system for 

a semi-automatic modeling and subsequent segmentation of the tongue. Always bearing in mind 

the medical barriers and clinical usefulness, several methods were combined to fulfil the 

proposed objectives and will be explained in detail in the current chapter, from the dataset 

construction to the set of computations to be applied. 

Active Shape Models (ASMs) are widely established has algorithms presenting adequate 

features, for the analysis of deformable objects. These models algorithm, is based on an image 

segmentation technique that takes advantage of the data derived from the training set. The 

model is built up from shape information obtained from analyzing points along object 

boundaries known as landmarks. ASMs are based on the combination of a Statistical Shape model 

- SSM (also referred as Point Distribution Model – PDM) plus a set of local image appearance 

models. In this work the appearance model is based on a Profile Model, which described the 

intensity distribution in the landmarks neighborhood. The SSM describes the shape variability 

of the template and the appearance models describe the image variability around each of its 

points. This forms the basis in searching unknown images for target shapes, where ASMs 

segmentation framework, combines precisely the shape and intensity information that is 

described by the two models to search matches of the objects shape in new images (Figure 9). 

This process is only achieved if the building of each of these models is adequate and 

furthermore, if the information described by each of these is fully understood. The analysis of 

the adequacy of the models built in the context of analyzing the tongue, was addressed in this 

Chapter as well as analyzed the information retrieved by each of the  of the models. 
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This chapter is divided in three main sections: describing the image datasets used and 

important Magnetic Resonance Imaging protocol details, an overview of the methodology of 

implementation of an Active Shape Model (ASM) for the study of the shape of tongue and 

appearance during speech production, and finally in the following two Sections each of the sub-

models of the ASM are described along with the basic equations and mathematical fundaments. 

The description of the classical Active Shape Model is presented in (Cootes & Taylor, 2004) and 

was the methodology followed for building said models. 

3.1. Image Dataset 

In order to build the statistical model of the tongue shape it was used a training set of MRI 

images collected during artificially sustained articulations of Portuguese sounds. 

For the analysis of the tongues configurations during sustained articulations of EP speech 

sounds, a dataset produced through MR 3T acquisition system was used, that comes from the 

original works in [Ventura 2012]. Image acquisition was performed using a Siemens Magneton 

Symphony 3 Tesla (3T) system and a head and neck array coil, with the subject lying in the 

supine position. The T2-weighted sagittal slices obtained have 3 mm thickness, by using Turbo 

Spin Echo Sequences, with the acquisition duration of approximately 10.6 s. Subsequently, this 

protocol has resulted from a compromise between the signal to noise ratio, the number of slices 

acquired and the time needed for subjects to sustain articulation successfully during image 

acquisition process.  

The dataset is composed by a total of 19 images retrieved by two subjects, one male and 

one female. The subjects were subjected to the same pre-imaging vocal training, and were 

imaged under the same equipment conditions. 

Active shape model

Statistical 
Shape 
model

Profile 
model

New 
image

Figure 9 - Active Shape model structure scheme. 
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From these images, it is possible to observe different vocal tract configurations for EP 

vowels production, as well as for some oral sounds. Oral sounds were chosen since the greater 

movement produced by the tongue for speech production is made upon the production of 

precisely this type of sounds. The dataset includes vowel production by simple production of 

the sounds and in other cases by the production of the vowel sound preceded by the occlusive 

bilabial consonant ‘p’. This second strategy was used to mark the initialization of the vowel 

sustentation, since it does not influence the production of vocalic sounds, and allowing the 

production of more natural sounds. 

Comparing the several morphological configurations of the subjects during the articulation 

of the EP sounds, individual differences of various organs involved in the upper airway 

morphology upon the production of said sounds are revealed, whereas a wide range of 

configuration variability of the tongue would be captured. 

So, the tongue moves from front-high positions to a central-low position on the oral cavity 

for the vowels [i, and a] and from this position to back-high positions for the vowels [u], 

respectively. Examples of the MR images from the datasets acquired are depicted Figure 10. 

3.2. Methodology 

In the present section it is describes the implementation of the models built for the study 

of the shape and appearance of the tongue. 

The algorithms to create the statistical deformable model were developed in MATLAB 

(http://www.mathworks.com), namely a Statistical Shape Model and a Profile Model, and latter 

the ASM presented in the next Chapter that combines the two. Therefore, the methodologies 

presented in the present Chapter, were conceived always bearing in mind the final purpose of 

building the Active Shape Model presented in Chapter 4.  

Using a number of images described in the previous section, each one contributes with two 

components to the models:  

Figure 10 - Examples of images from the 3.0T image dataset used, of imaging of the oral sounds a 
(A), i (B) and u (C). 
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1. A set of landmark points that will be aligned to the mean shape.  

2. A set gray-level profiles of the contour normals. 

  

The terms mean shape, indicating the mean of all landmark points in an entire set of 

annotated images, and mean gray level indicating the mean of all vectors obtained by sampling 

the gray levels along all contour normal, will be used throughout this document. 

The sets of landmark points was used to build a Statistical Shape Model, and the gray-level 

profiles to build a statistical gray-level model or Profile Model. The procedures for building the 

shape and gray-level models are very similar, whereas the key method is principal component 

analysis (PCA). 

The Statistical Shape Model is first trained on a set of manually landmarked images. By 

manually landmarked it is meant that a medical image professional had to mark all the images 

to allow a correct validation of the basis of the model to be produced.  

A Profile Model for each landmark, which describes the characteristics of the image around 

the landmark. The model specifies what the image is expected to “look like” around the 

landmark. During training, we sample the area around each landmark across all training images 

to build a profile model for the landmark. During search, we sample the area in the vicinity of 

each tentative landmark, and move the landmark to the position that best matches that 

landmarks model profile. This generates tentative new positions for the landmarks, called the 

suggested shape. 

After training we can use the Active Shape Model, the combined Statistical Shape and 

Profile Models, to an automatic search of this structure in a test image. The general idea is (1) 

try to locate each landmark independently, then (2) correct the locations if necessary by 

looking at how the landmarks are located with respect to each other. This resulting model will 

be presented in the next Chapter. 

3.3. Shape Model 

A shape model defines an allowable set of shapes. In this document, shape models have a 

fixed number of points and a matrix formula which specifies the relationship between the 

points. We will use Point Distribution Models, which learn allowable constellations of shape 

points from training examples and use principal components to build the model. A concrete 

example will be presented shortly. 

The application of statistical models, such as deformable and active models, to characterize 

and reconstruct the tongue during speech production was taken into consideration in the 

present work. The development of active models to represent the vocal structures from a global 

perspective is here presented.  
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The objective of a Point Distribution Model or Statistical Shape Model is to describe 

statistically the shape variations allowed by a shape described by a set of points of a non-rigid 

object. The overview of the steps for building a Statistical shape model is a four-step process 

Figure 11. The first step is to capture information from the training set, accomplished by 

labeling the images with landmark points. This is followed by alignment of these landmark 

points, that describe training shapes, into a common referential, and finally Statistical analysis 

is then performed on the aligned shapes, by Principal Component Analysis (PCA) that will allow 

the description of the set of landmark-based shapes by a non-linear combination of a mean 

shape and the statistical parameters produced. These steps are further discussed in the 

following subsections.  

The building process of such model begins with the selection and acquisition of the shape 

information from a set of images representing the object to be modelled, the training set of 

images. From each of said training images, the shape of the target object should be represented 

by a set of labeled landmark points, whose positions are required to be similarly and orderly 

defined so that the variations of the boundaries defining said object is possible to analyze in 

the following steps. In 2D images (𝑘 =  2), a shape defined by 𝑛 landmarks {(𝑥𝑖  , 𝑥𝑖) ∶  𝑖 =

 1, . . . , 𝑛}, define the 2𝑛 vector of coordinates: 

 

𝑐 = (𝑥1, 𝑥2… . , 𝑥𝑛−1, 𝑥𝑛 , 𝑦1, 𝑦2, … . 𝑦𝑛−1, 𝑦𝑛)    (2) 
  

 The model implies statistical comparison of the training shapes and with that in mind, the 

first step to build the model consists of aligning the shapes, centering them into a common grid 

of coordinates. The formulation of the problem is then made as a shape model consisting of an 

average shape and allowed distortions of the average form: 

𝑥̂ = 𝑥̅ + 𝑃𝑏      (3) 

 

𝑥̂ is the generated shape vector, containing all the shapes the object can acquire, and that 

are described by the model. 

𝑥̅ is the mean shape, produced by the averaging of each landmarks position. 

P is the matrix of the eigenvectors of the covariance matrix S of the training shape points 

obtained by: 

Training set

•n landmarks

•Vector of 
landmark 
points

Objects 
sampled •Generaliz

ed 
procrustes 
analysis

Shape 
alignment 

•Mean 
shape

•Variation 
modes

PCA

•𝒙 =  𝒙 + 𝑷𝒃

Statistical 
modeling

Figure 11 –Statistical shape model building scheme. 
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1

𝑛𝑠ℎ𝑎𝑝𝑒𝑠−1
∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)𝑇
𝑛𝑠ℎ𝑎𝑝𝑒𝑠
𝑖=1

    (4) 

     

B is the vector of eigenvalues correspondent to each eigenvector column in P. 

We can use Equation (3) to generate different shapes by varying the vector parameter b. 

By keeping the elements of b within adequate limits we ensure that generated shapes are within 

plausible instances. 

The relative size of the eigenvalues tells us the proportion of variation captured by the 

corresponding eigenvectors. We can capture as much variation of the input shapes as we want 

by retaining the appropriate number of eigenvectors. 

3.3.1. Landmarks 

The ASM is first trained on a set of manually landmarked images. Each shape from the 

training set was represented by a set of labeled landmark points, which usually represent 

important zones of the boundary or significant internal locations of the object. The manual 

process of labeling an object is normally the simplest one, however, this considers the premise 

that the user has a technical knowledge about the object involved in order to choose the best 

locations for the landmarks and consequently, be able to mark them correctly in each image of 

the training set. Images were annotated by a medical imaging specialist and further cross-

checked by the author, to detect possible inconsistencies or missed landmarks. In the labeling 

process, sixteen points were defined to characterize the tongue shape:  

 Two points in the lingual frenulum (anterior and posterior);  

 One point in the tongues tip;  

 One point in the tongues root;  

 Six points along tongues body;  

 Six points along the inferior surface of the tongue. 

 

A straightforward way to improve the fit is to increase the number of landmarks in the 

model. In this work the main landmarks retrieved were interpolated, spline interpolation by a 

factorization method, in order to improve this aspect of segmentation using MathWorks, 2015a. 

An algorithm was developed in order to allow the factorized increase of the number of 

landmarks, that vary by different factors to allow a study of the variation of the number of 

landmarks, since it is a priori knowledge that this factor influences the quality of the fitting 

result.  

3.3.2. Shape alignment 

In order to get statistical validity, it is crucial that all shapes are represented on the same 

referential. A shape can be aligned to another shape by applying a transform which yields the 
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minimum distance between said pair of shapes. For this purpose, it is suitable to remove the 

location, scale and rotation effects inherent to each of them in their image referential. 

Cootes and Taylor’s Appendix B gives methods to align two shapes by using a least-squares 

procedure (Cootes & Taylor, 1992). Accurate alignment may be deemed more important for 

certain points than for others, and points can be weighted accordingly during alignment. The 

classical solution of align two shapes is the Procrustes Analysis method. It align shapes with the 

same number of landmarks with one-to-one point correspondences, which is sufficient for the 

ASM standard formulation.  

3.3.2.1. Procrustes Analysis 

In this course of application, to align two shapes, 𝑓1 to 𝑓2, the process consists on finding 

the parameters of the transformation 𝑇, i.e. scale, 𝑠, rotation, 𝜃 and translation, (𝑡𝑥, 𝑡𝑦) that, 

when applied to 𝑓1 best aligns it with 𝑓2, minimizing the Procrustes distance metric: 

 

𝐷𝑝𝑟𝑜𝑐𝑟𝑢𝑠𝑡𝑒𝑠(𝑓1, 𝑓2) =  √∑ (𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 𝑛
𝑖=1    (5) 

with respect to 𝑠, 𝜃 and (𝑡𝑥, 𝑡𝑦), for 𝑛 corresponding landmarks of each shape. 

Step 1 consists on redefining the referential, by calculating both shapes centroids, and 

centering them into the origin: 

𝑥1𝑐 = 𝑥1 − 𝑥1̅̅ ̅      (6) 

with 𝑥1̅̅ ̅ being the centroid coordinates. 

Following by their normalization by isomorphic scaling: 

𝑥̂ =
𝑥1𝑐
‖𝑥1𝑐‖

      (7) 

 

This produces a matrix 𝑆 = [ 𝑥̂|𝑦̂] of size 𝑛𝑥2 with each pair of origin-centered landmark 

coordinates. From this point the statistical comparisons between the shapes can be performed 

correctly. 

Step 2, consists on calculating the rotation matrix to be applied, which is formulated 

considering a shape vectors 𝑆 a translation vectors as column vectors to which it is applied, as 

therefore is represented as: 

𝑅 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]     (8) 

And is calculated by: 

𝐸 = 𝑅𝑆2 − 𝑆1     (9) 

where 𝑆1 is the unaligned shape and 𝑆2 is the reference  shape, both represented in the 

form given by Equation (6). 

The optimal rotation matrix that aligns both shapes, minimizing the distances given by 

Equation (5), is given by using a Singular Value Decomposition (SVD) on matrix 𝑆2𝑆1, where: 
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𝑆𝑉𝐷(𝑆2𝑆1) = 𝑈𝑆𝑉𝑇     (10) 

And more specifically: 

𝑅 = 𝑈𝑉𝑇     (11) 

The aligned new shapes can be obtained by the calculated Tranformation through the 

following formula: 

𝑇 (𝑥
𝑦
) =  (𝑥𝑡𝑟𝑎𝑛𝑙𝑎𝑡𝑒

𝑦𝑡𝑟𝑎𝑛𝑙𝑎𝑡𝑒
) + (

𝑠 𝑐𝑜𝑠𝜃 𝑠 𝑠𝑖𝑛𝜃
−𝑠 𝑠𝑖𝑛𝜃 𝑠 𝑐𝑜𝑠𝜃

) (𝑥
𝑦
)    (12) 

Matlab offers a direct function of this approach through the Procrustes function (Mathworks, 

2015b) present in the Statistics and Machine Learning Toolbox. 

3.3.2.2. Generalized Procrustes Analysis 

The process of aligning various shapes present in the image dataset has been described to 

be successful through the method described in the previous section as an iterative optimization 

process, named Generalized Procrustes Analysis (GPA). The method consists in sequentially 

align the instances of the dataset shapes in pairs through Procrustes alignment, using a 

reference shape, the mean shape to which others are aligned. After the alignment a new 

estimate for the mean is recomputed and again the shapes are aligned to this mean.  

This procedure is performed repeatedly until there are no significant alterations to the 

recalculated mean shape. Algorithm described in Figure 12. 

3.3.3. Principal Component Analysis 

The Principal Components Analysis (PCA) is a statistical technique that allows data 

dimension reduction. This procedure searches for directions in the data that has largest 

variance and subsequently project the data onto it. Mathematically is defined as an orthogonal 

Input: set of unaligned shapes 

1. Choose a reference shape (usually the first shape) 

2. Translate each shape so that it is centered on the origin 

3. Scale the reference shape to unit size. Call this shape 𝑥̅0, the initial mean shape. 

repeat 

4. Align all shapes to the mean shape 

5. Recalculate the mean shape from the aligned shapes 

6. Constrain the current mean shape (align to x¯0, scale to unit size) 

until convergence (i.e. Euclidean distance between previous and present mean shape is 

minimal) 

Output: set of aligned shapes, and mean shape 

 

Figure 12- Generalized Procrustes Analysis algorithm outline. 
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linear transformation that projects data into a new coordinate system defined by the data 

variance axis. The dimension reduction is done by holding data that contribute more for the 

variance ignoring remaining, less important characteristics. 

Considering a dataset with N vectors: 𝑥𝑖 ∶  𝑖 =  1, . . . , 𝑁, where each 𝑥𝑖is a 𝑛 dimensional 

vector. It is required that the number of samples is greater that the number of dimensions (𝑁 >

 𝑛). 

A Principal Component Analysis is performed by: 

 Computing the 𝑁 vectors average: 

𝑥̅ =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1      (13) 

       

 The maximum likelihood estimation of the covariance matrix is given by: 

𝐶 =
1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)𝑇𝑁
𝑖=1     (14) 

 

The basic purpose of performing PCA is to find an orthogonal coordinate system for our data 

cloud, in such a way that the greatest variance lies on the longest axis (first principal 

component), the second greatest variance lies on the second longest axis, and so on. A way of 

calculating principal components is by computing the eigen-decomposition of the covariance 

matrix, resulting in eigenvectors and eigenvalues of the covariance matrix and sorting them by 

their corresponding eigenvalues magnitude. This was done using Mathworks, 2015c. 

3.3.4. Eigenvectors and eigenvalues 

The eigenvectors, 𝑃𝑖, and the associated eigenvalues 𝜆 of the covariance matrix are 

computed and ordered in such a way that 𝜆𝑖 ≥  𝜆𝑖 + 1. 

The principle to have in mind in this type of analysis is that the eigenvector which 

correspond to the highest eigenvalue, represents the direction of largest variation. The second 

eigenvalue corresponds to the largest variation in a direction orthogonal to the first. 

Some eigenvalues are very small, so they do not contribute much to the total variance and 

can be ignored. Therefore, the data can be approximated as a linear combination of the most 

relevant eigenvalues and corresponding eigenvectors that result in data compression (The 

remaining eigenvalues represent noise in the form of numerical errors). The analysis of the 

resulting eigenvalues must be pondered, since it is variable according to the nature of the data, 

and therefore, it influences the number of resulting eigenvalues, and also determine the 

presence or absence of an abrupt cutoff point in their magnitude. The relative size of the 

eigenvalues tells us the proportion of variation captured by the corresponding eigenvectors. 

We can capture as much variation of the input shapes as wanted, by retaining the appropriate 

number of eigenvectors. 
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Calculating the weights of each eigenvalue relatively to all others, it was possible to 

organize in descendent order of the relative retained variance, and therefore the model can 

be defined through the 𝑡 most important eigenvalues (t is the number of modes of variation). 

Any instance in the training set can be closer to the original data through Equation (3)  discussed 

in the section 3.1. 

The number of modes of variation to hold, t, usually is chosen in such a way that the model 

represents a user defined variance of the total data. Each eigenvalue, 𝜆𝑖, gives the variance of 

data in the direction of the correspondent eigenvector, Pi, and the total variance of the training 

data is given by the sum of all eigenvalues, 𝑉𝑁  = ∑ 𝜆𝑖𝑁
𝑖=1  . The 𝑡 higher eigenvalues are chosen 

in order that: 

∑ 𝜆𝑖𝑁
𝑖=1   ≥ 𝑝𝑉𝑇     (15) 

where p is a portion of the total variation registered in all shapes and ∑ 𝜆𝑖𝑁
𝑖=1  the vector of 

cumulative sums of the vector of eigenvalues. This vector here notated by 𝜆 corresponds to the 

vector 𝒃 in the notation used along this work. 

3.3.5. Representing a given shape by the shape 

model 

In the reverse direction, given a suggested shape 𝑥 on the image, we can calculate the 

parameter 𝒃 that allows Equation (3) to best approximate 𝑥 with a model shape 𝑥̂. This is 

achieved by seeking the 𝒃 and T that minimize: 

 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑇[ 𝑥̂ +  𝑃𝑏])    (16) 

 T is a similarity transform, that includes scaling, rotation and translation, which maps the 

model space into the image space. The transform is needed because the shape 𝑥 could be 

anywhere in the image plane, but the model works off scaled upright shapes positioned on the 

origin. Cootes and Taylor section 4.8 describes an iterative algorithm for finding b and T (Cootes 

& Taylor, 2004). After calculating 𝒃, we reduce any out-of-range elements 𝑏𝑖 to ensure that 

the generated shape conforms to the model, and yet remains close to the suggested shape. 

3.4. Profile Model  

A profile model for each landmark, which describes the characteristics of the image around 

the landmark was built. The model specifies what the image is expected to “look like” around 

the landmark. During training, we sample the area around each landmark across all training 

images to build a profile model for the landmark. This is needed so that during search, we 

sample the area in the vicinity of each tentative landmark, and move the landmark to the 
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position that best matches that landmarks model profile. This generates tentative new positions 

for the landmarks, called the suggested shape. 

This section is divided into the sub-sections regarding the pre-processing of the image for 

noise removal, and the profile model building methodology adopted. 

The objective of the profile model is to be used in the final Active Shape Model to take an 

approximate tongue shape and produce a better suggested shape by template matching at the 

landmarks. As suggested by Cootes & Taylor, the search model is started with the mean tongue 

shape from the shape model (Cootes & Taylor, 2004). This shape was aligned and positioned 

manually in this step of the study in order to allow the correct formulation of the model and 

model search method. In this step of the process the images quality and quality of the tissues 

represented has presented itself as a disadvantage of the localization of appropriate shapes, 

since the basic principle of the process lies in the correct detection of exactly the right 

boundaries of the object to be modelled. This detection is only based on the image intensities. 

As stated in the Literature Review section of this work, this is one of the major problems 

presented in the modelling of various structures presented in MRI imaging, specifically of 

structures represented in MRI of head and neck, whereas it is very difficult to discern the 

different tissues apart, since the corresponding intensities are very similar in the various 

structures, which is once more due to the compositions of said structures by the same or similar 

types of tissues. For the matter at stake, this translates into the principle disadvantage that 

the boundaries of said structures are difficult to detect. By simple analysis of any un-processed 

MRI image presented, it is possible to visualize this effect. This is obviously added to the fact 

that there is always inherent noise present in MRI images essentially due to the methodology 

and equipment used in the acquisition process. For these reasons it was necessary to apply 

image processing methods necessary to eliminate the noise inherent and improve the 

boundaries of the structures and image intensities of the tissue-tissue and tissue-air. It is 

common practice to assume the noise in magnitude MRI images is described by a Gaussian 

distribution with zero mean. The power of the noise is then often estimated from the standard 

deviation of the pixel signal intensity in an image region with no NMR signal. 

An appropriate pre-processing of the images is crucial in order to obtain appropriate results 

of the search model. This preprocessing focuses essentially in the image quality improving, 

since the original images contain a relevant amount of noise that for segmentation purposes, 

disturbs the definition of the boundaries of the structures present in the images. Therefore the 

objective was to obtain a clean boundary, to improve their gradient force to be well defined 

and therefore to be correctly identified. A number of filtering techniques have been studied in 

the literature including anisotropic diffusion, wavelet filtering, Non-local Mean (NLM), and 

many others (Buades, Coll, & Morel, 2005a).  Even though they may be very different in their 

approach formulation it must be emphasized that a wide class share the same basic principle, 

in which denoising is achieved by averaging at a local level. This implies a loss of finer details 

in the image. 
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3.4.1. Nonlocal Means Denoising  

Nonlocal means algorithm was first described in (Buades, Coll, & Morel, 2005a). The NLM 

algorithm was chosen due to its excellent performance. It presents the main characteristics 

that any denoising algorithm should include and it does not compromise fine details therefore, 

does not alter the original image objects and conformations. It has been reported to present 

good results for Gaussian additive and multiplicative noise (Tristan-Vega, Garcia Perez, Aja-

Fenandez, & Westin, 2012). 

 NLM is a nonlinear filter, based on a weighted average of the pixels inside a search window, 

whereas in the original formulation this includes the whole image, and hence explains the usage 

of the term nonlocal. It has however, the big downfall of implying heavy computational work, 

which is also the biggest and basically the only disadvantage comparing to other algorithms 

(Buades, Coll, & Morel, 2005b).  

In this works was used a more robust and computationally lighter algorithm described by 

Tristan-Vega et al., that uses a Weighted Average (WA) of pixel inside a search window, whose 

weights are defined by a quantification of the similarity, through Mean Squared Differences 

(MSD), of minor patches that surround the pixel being compared with the pixel of interest.  

Buades et al. (2005) introduced the work on full window areas instead of single pixels. The 

NLM algorithm compares the local area with patches all over the image to find reference values 

for the denoising. 

The main objective of the work developed in (Tristan-Vega, Garcia Perez, Aja-Fenandez, & 

Westin, 2012) was to accelerate the computational cost taken by the MSD distances between 

patches. 

The NL-means algorithm is defined by the simple formula: 

𝑁𝐿 𝑢̂(𝑥𝑖) = ∑ 𝑤(𝑥𝑖 , 𝑥𝑗). 𝑢(𝑥𝑗)𝑥𝑗∈𝛺𝑖
    (17) 

where Ω𝑖 is the search window centered at pixel x𝑖, and  𝑤(𝑥𝑖 , 𝑥𝑗) is the weight assigned to 

pixel 𝑥𝑗 with respect to the pixel of interest 𝑥𝑖. In an initial formulation of this method the 

search window was the entire image.  

The weighting filter is forwardly calculated through the similarity measure between the two 

patches centered respectively in the pixel of interest and the pixel compared, 𝑁𝑖 and 𝑁𝑗, 

respectively: 

𝑤(𝑥𝑖, 𝑥𝑗) =
1

𝑍𝑖
𝑒
− 

1
𝑁
‖𝑢(𝑁𝑖)−𝑢(𝑁𝑗)‖2

2

𝑎
ℎ2    (18) 

where 𝑍𝑖 is a normalizing constant so that ∑𝑤(𝑥𝑖 , 𝑥𝑗) = 1 over all the pixel 𝑥𝑗 of the patch 𝑁𝑖. 

and u(𝑁𝑖) denotes a vector with all the intensities 𝑢(𝑥𝑗) of size N. The distance between two 

neighborhoods is computed by a Gaussian weighted Euclidean distance. Parameter ℎ represents 

a statistical value, that regulates the decay of the weights according to the distance calculated. 
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Therefore, it needs to be proportional to the expected value distance between the patches, 

and therefore is related to the noise power present in the image 𝜎2 and a parameter 𝛽 ∈

 [0.8, 1.2], by the following equation: 

ℎ2 = 𝛽2. 𝜎2     (19) 

This parameter needs to be suitably estimated since it can over-smooth or under-denoise 

the image, if overestimated or underestimated. Therefore speed up of this method was ached 

through two approaches detailed bellow. 

Voxel preselection 

In this implementation the image is divided into overlapping blocks where all intensity 

vectors 𝑢(𝑁𝑖) are arranjed into one matrix, to which is applied Singular Value Decomposition 

(SVD) using (Mathworks, 2015d), based in the knowledge that the optimal representations of 

the patches of interest are those corresponding to the resulting largest Singular Values (SV) 

discarding dissimilar pixels. The acceleration comes from the elimination of the pixel from the 

WA weighting process. However this only provides some extent of computational unloading, 

which highly depends on the SNR present over the image, and therefore translating into 

unpredictable speedup. 

Weighted Average  

The problem still remains in the high computational cost related to the computations of the 

distance 𝑑(𝑥𝑖 , 𝑥𝑗) =
1

𝑁
‖𝑢(𝑁𝑖) − 𝑢(𝑁𝑗)‖2

2
. 

The main idea is, instead of accurately calculating the distances, to estimate them, having 

the knowledge that said distance can be estimated from a small number of features that 

describe the local structure of the patches, whose computational costs is significantly lower. 

The feature retrieval implies the conversion of the image inside the central patch of the 

pixel of interest 𝑁𝑖, as a local Taylor series expansion of type: 

𝑢(𝑠𝑗, 𝑡𝑗) = 𝑐0 + 𝑐𝑠𝑠𝑗 + 𝑐𝑡𝑡𝑗 +
1

2
𝑐𝑠𝑠𝑠𝑗

2 +
1

2
𝑐𝑡𝑡𝑡𝑗

2 +
1

2
𝑐𝑠𝑡𝑠𝑗𝑡𝑗 +⋯  (20) 

where 𝑐𝑠 and 𝑐𝑡 are the local gradient variances, 𝑐𝑠𝑠, 𝑐𝑡𝑡 and 𝑐𝑠𝑡 third order moments. 

𝑠𝑗 and 𝑡𝑗 are the offsets between there feature of each pixel 𝑥𝑗 with respect to 𝑥𝑖, that 

ultimately form a feature space. The problem can be formulated as a Least Squares (LS) 

problem:         

  [

1 𝑠1 𝑡1
1

2
𝑠1
2 1

2
𝑡1
2 𝑠1𝑡1

⋮        ⋮ ⋮      ⋮ ⋮       ⋮

1 𝑠𝑁 ⋯
1

2
𝑡𝑁 𝑠𝑁𝑡𝑁

]

[
 
 
 
 
 
𝑐0
𝑐𝑠
𝑐𝑡
𝑐𝑠𝑠
𝑐𝑡𝑡
𝑐𝑠𝑡]

 
 
 
 
 

= [
𝑢(𝑠1, 𝑡1)

⋮
𝑢(𝑠𝑁 , 𝑡𝑁)

] 𝑋. 𝑐 ≅ 𝑢  (21) 
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 The feature vector 𝑐 can be formulated as: 

𝑐 = (𝑋𝑇𝑋)−1𝑋𝑇𝑢          (22) 

And therefore each interpolated patch surrounding each 𝑥𝑖 pixel is obtained by: 

𝑢𝑖̃ = 𝑋. 𝑐𝑖      (23) 

Having this mathematical formulation established, the problem was simplified by computing 

this LS fitting instead of the actual pixels, whose MSD distance can be classically formulated 

as: 

𝑑̃(𝑥𝑖, 𝑥𝑗) =
1

𝑁
(𝑢𝑖̃ − 𝑢𝑗̃)

𝑇(𝑢𝑖̃ − 𝑢𝑗̃) =
1

𝑁
(𝑐𝑖 − 𝑐𝑗)

𝑇
𝑋𝑇𝑋(𝑐𝑖 − 𝑐𝑗)  (24)  

 

which is simplified when the polynomials order is 1, and 𝑋𝑇X is a diagonal matrix of  

 

Input. Noisy image v, filtering parameter h.  

Output. Denoised image  

1.  Set parameter t × t: dimension of the feature patches:  rc=[3,3]; 

2. Set parameter w × w: dimension of search zone: rs=[5,5] ; 

3. Set parameter ps of the preselection thresholding: ps=2; 

4. Compute the local features of the whole image, in every comparison patch of size 

txt: 

a. Gaussian filtering with size txt; 

b. Gradient patches computation with size txt; 

 

for similar patches, and for each pixel i  

5. Get the reference pixel i patch of features around it, of size w×w. 

6. Get the comparison pixel j patch of features;  

7. Calculate the distance: 

𝑑 = (𝑚𝑖 − 𝑚𝑗)2 + (𝑔𝑥𝑖 − 𝑔𝑥𝑗)2 ∗ 𝑓1 + (𝑔𝑦𝑖 − 𝑔𝑦𝑗)2 ∗ 𝑓2;   d =
d

h2
 

where 𝑓1 and 𝑓2 scale the feature offsets to the gradient. 

8. Preselect with threshold ps value, as maximal distance, ignoring above distances 

with zero weighting; 

9. Recover pixel intensity by:  

𝑢𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) ∗ 𝑢(𝑖, 𝑗) 

end  

 

Figure 13- Nonlocal Means Algorithm outline. 

 

Figure 36 - The profile model takes upon the normals to the boundaries of the shape, at a given 
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type: 

𝑑̃(𝑥𝑖, 𝑥𝑗) = (𝑐0𝑖 − 𝑐0𝑗)
2
+ (𝑐𝑠𝑖 − 𝑐𝑠𝑗)

2
𝑠2̅̅ ̅ + (𝑐𝑡𝑖 − 𝑐𝑡𝑗)

2
𝑡2    (25) 

 

The algorithm outline is described Figure 13. 

3.4.2. Forming a profile 

To form the profile vector f at a landmark, we sample image intensities along a one-

dimensional whisker. In this work it is denominated a whisker has a vector centered at a 

landmark point, which is orthogonal to a shape edge, therefore consisting of the intensities 

displayed along the normal direction of the shape contour it integrates (Figure 14).  

To describe the appearance of an object this approach uses statistical modeling analysis, 

usually learned for each landmark separately. Training features are extracted by sampling 

image features from the training images at the landmark positions. In the problem presented, 

it is assumed that a training example is an intensity vector 𝒇𝑖 ∈ |𝑅|2 and describes a one-

dimensional profile. In the classical approach described by Cootes and Taylor the Mahalanobis 

distance to the learned mean appearance 𝒇̅ is used to quantify the fitness of features. Note 

that this distribution can be learned from intensity profiles 𝒇 or gradient profiles 𝒈. In this work 

a different approach was also taken up into consideration, that analyses the profiles variability 

by a PCA based method similar to the one used to analyze the shape variability. 

During training, a model for each landmark is built by creating a mean profile 𝒇̅ and a 

covariance matrix 𝑆𝑓 of all training profiles, retrieved from each image, at each landmark 𝑖. 

The assumption is that the profiles are approximately distributed as a multivariate Gaussian, 

and thus can be described by their mean and covariance matrix. This process is in its simpler 

theorization, the process of looking along profiles normal to the model boundary through each 

model point. Expecting the model boundary to correspond to an edge, a tissue-air boundary, 

represented by a grey-black intensity variance profile, respectively, upon which we can simply 

Figure 14 - The profile model takes upon the normals to the boundaries of the 

shape, at a given landmark (Cootes & Taylor., 2004). 
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locate the strongest edge (including orientation if known) along the profile. The position of this 

gives the new suggested location for the model point. However, model points are not always 

placed on the strongest edge in the locality, and furthermore for the purposes of the structure 

in study in this work, they may represent a weaker secondary edge or some other image 

structure. The best approach is to learn from the training set what to look for in the target 

image. Suppose for a given point we sample along a profile k pixels either side of the model 

point in the 𝑖th training image.  

A normal of a surface, in this case defined by a 2D vector, is an object, in this case a vector, 

that is perpendicular to said surface. Considering the model landmark coordinates are known, 

each boundary normal is calculated taking into account the forward and backward boundary 

vectors.The shape can be interpreted as a set of vector and the normal to each vertex are 

influenced by the two vector that form that vertex of the shape. The calculations below lead 

to the simple calculation of each normal. 

In the following example (Figure 15), is considered a shape defined by three vertexes A,B 

and C, each defined by a pair of (x,y) coordinated. 

The process of calculating the normal direction of said example shape, in for instance the  

Normal direction of vertex A (this direction is depicted in Figure 15), considering each of the 

shape lines as vectors, is through the following calculations: 

The resulting normal is composed by its 𝑁. 𝑥  and 𝑁. 𝑦 components in the 2D space of the 

shape. This process was done for every shape model landmark of the training shapes. Having 

set the nomal unit vector that defined the normal direction, the study of the image in that 

Vector 1 = Vertex A - Vertex B  

Vector 2 = Vertex B - Vertex C 

Vector 3 = Vertex C - Vertex A 

 

N.𝑥𝐴=
𝑉𝑒𝑐𝑡𝑜𝑟1.∆𝑦+ 𝑉𝑒𝑐𝑡𝑜𝑟3.∆𝑦

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
,  

N.𝑦𝐴=-
𝑉𝑒𝑐𝑡𝑜𝑟1.∆𝑥+ 𝑉𝑒𝑐𝑡𝑜𝑟3.∆𝑥

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
 

 

 
 

𝑤ℎ𝑒𝑟𝑒 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = √(𝑉𝑒𝑐𝑡𝑜𝑟1. ∆𝑦 +  𝑉𝑒𝑐𝑡𝑜𝑟3. ∆𝑦)2 + (𝑉𝑒𝑐𝑡𝑜𝑟1. ∆𝑥 +  𝑉𝑒𝑐𝑡𝑜𝑟3. ∆𝑥)2 

 

A 

C B 

Figure 15- Example shape defined 
by vertexes A, B and C. 

 

Figure 47 - Example shape defined 
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direction is allowed. This is done by defining the number of intensity profile pixels, that was 

set to k=8 pixels inward and outward from the landmark (in the normal direction) and 

generating a profile length of 2 ∗ 𝑘 + 1 pixels. We have 2𝑘 + 1 samples which can be put in a 

vector 𝑓𝑖. 

 To reduce the effects of global intensity changes, varying image lighting and contrast, in 

some formulations of the profile model is appropriate to sample the derivative along the 

profile, rather than the absolute grey-level values. Heimann and Meinzer  have evaluated three 

different Gaussian appearance models for liver segmentation in CT scans, studying in particular, 

the vectors 𝒇𝑖 containing either intensities, gradients or normalized gradients, whereas the 

results led to concluding that the best results are obtained with normalized gradient profiles in 

this application (Heimann, Wolf, & Meinzer, 2006). 

The following algorithm describes the building of these profiles: 
 

 Interpolate the positions of each profile point in the image, along the directions of 

[−𝑘,+𝑘] ∗ 𝑁𝑖 + 𝑃𝑖, where P𝑖 is the landmark 𝑖 coordinates. 

 Replace each profile element by the intensity gradient. This is done by replacing the 

profile element at each position 𝑖 with the difference between itself and the element 

at position 𝑘 − 1.  

 Divide each element of the resulting vector by the sum of the absolute values of all 

vector elements - Normalization. 

Having the profiles defined, we will notate each gradient profile vector as 𝒈𝑖 ∈ |𝑅|2 relative 

the 𝑖th landmark, the training phase of this models building consists in collecting each set of 

profiles belonging to each landmark. This information is used to build correlation matrices for 

each landmark, similarly as the building method of the shape model, but describing the 

variation of the gradient profiles. By creating a mean gradient profile 𝒈  and a covariance matrix 

𝑺𝒈 of all training profiles at that landmark. The assumption is that the profiles are 

approximately distributed as a multivariate Gaussian, and thus can be described by their mean 

and covariance matrix. If there are 64 landmarks then there will be 64 separate mean gradient 

profile 𝒈𝒊̅̅ ̅ and 64 covariance matrixes 𝑺𝒈𝒊 that describe the profile variances, retaining 98% of 

cumulative variability. 

3.5. Results and Discussion 

In this chapter, all the experimental results obtained by the two models formulated by the 

approaches described in the methodology, are thoroughly explained, and their respective 

discussion is presented. The information retrieved by the statistical shape model results will be 

the first to be analyzed followed by the Profile model results obtained with and without the 

pre-processing stage highlighting the need of its implementation. 
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3.5.1. Landmark assignment 

The generated landmark constellation is represented in the example subject depicted in 

Figure 16. The user-generated landmarks mapped to the image, comprising a total of 16 

landmarks, positioned at key important anatomical limits that represent the tongue shape in 

this plane of view. In this constellation the landmarks were labelled into a numbering order 

whose correspondence to the anatomical structure is as follows: 

 Two points in the lingual frenulum: anterior and posterior, corresponding to landmarks 

1 and 2;   

 One point in the tongues tip: corresponding to landmark 3; 

 Six points along tongues body: corresponding to landmarks 4 to 9; 

 One point in the tongues root: corresponding to landmark 10; 

 Six points along the tongues inferior surface: corresponding to landmarks 11 to 16. 

This outline correspondence of the initial landmark constellation will allow the result 

observation in its correlation to the anatomy and the image features that describe it and will 

be mentioned thoughout the following discussion. 

This initial landmark outline was followed by a spline interpolation step, of factor 4, 

resulting in a total of 64 final landmarks. This step was necessary for the followed model 

contruction and fitting, not affecting the results of the ASM model obtained. The resulting 

flandmark connectivity outline is depicted in Figure 17. 

Following this step the dataset was centered to the origin  aligned through procrustes 

distance minimization methods, in order to validate the following statisticall analyis.  

A 

 

B 
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Figure 16 - Initial landmark map defined by hand representing the landmark connectivity (A), 
and in the image referential (B). 

 

Figure 56 - Initial landmark map defined by hand representing the landmark connectivity (A), 
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The initial shape dataset and the corresponding mean shape is depicted Figure 18-A 

whereas at the end of 3 iterations uppon which the minimal mean shapes euclidean difference 

threshold criteria is reached, and the shapes were aligned as depicted in Figure 18-B. The 

observation of the results leads to the comprehension of this step since only when this is 

achieved, the differences between the shapes can be evaluated. 

 

3.5.2. Statistical Shape model  

Eight modes of variation were identified with mode 1 accounting for half the total variance 

and mode 1 and 2 accounting for approximately 71% of total variance. This study highlights the 

Figure 17 - Interpolated landmark map, with 

interpolation factor 4, depicting the original 

landmark constellation points in green and the 

interpolated points in red. 

 

Figure 70 - Raw shapes (A) from dataset (blue) 

A B 

Figure 18- Raw shapes (A) from dataset (blue) and initial mean shape (red), and aligned, origin 

centered shapes through Generalized Procrustes Analysis (B), with final shape dataset (blue) and 

final mean shape (red). Images plotted in image referential. 
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potential of active shape modeling to advance understanding of factors underlying morphologic 

and pitch-related functional variations affecting vocal structures. 

The shape parameter vector 𝒃 is (as usual with active shape models) allowed to vary in the 

range of ±3 standard deviations, therefore in the range of −3√𝜆  ≤  𝑏 ≤ 3√𝜆. 

 We can observe that the first four modes of the shape model built could explain 92% of all 

shape variance of the tongue. The first six modes explain 95% of all shape variance and with 

eleven modes of variation it is possible to explain 99% of all shape variance of the tongue.  

Holding approximately 99% of the total variance of shape data, the final model produced, 

presents a total of eleven variation modes. From a first overall analysis of the resulting modes 

of variations of the model it is possible to conclude that, as expected, the first eigenvalues 

retain a higher extent information associated to the data, represented by the cumulative 

retained variation, which therefore is expected to cause a bigger movement between landmarks  

 

positions. Accordingly, the lower significative modes of variation cause a more local variation 

of the data. This is also observable, by the analysis of the decay of the total variance as a 

function of the associated eigenvalue, depicted in Figure 19. The first three eigenvalues 

describe approximately 89% of the total variance whereas the remaining 11% were distributed 

 

Table 2 - First seventeen modes of variation of the model obtained and their 

retained percentages, describing 99.9% of shape variation. 

Mode Retained (%) 
Cumulative Retained 

(%) 

𝝀𝟏 75.711 75.711 

𝝀𝟐 8.789 84.500 

𝝀𝟑 5.028 89.529 

𝝀𝟒 2.631 92.160 

𝝀𝟓 1.956 94.117 

𝝀𝟔 1.738 95.856 

𝝀𝟕 1.117 96.973 

𝝀𝟖 0.904 97.878 

𝝀𝟗 0.735 98.613 

𝝀𝟏𝟎 0.379 98.992 

𝝀𝟏𝟏 0.350 99.343 

𝝀𝟏𝟐 0.223 99.566 

𝝀𝟏𝟑 0.175 99.742 

𝝀𝟏𝟒 0.106 99.848 

𝝀𝟏𝟓 0.057 99.905 

𝝀𝟏𝟔 0.054 99.960 

𝝀𝟏𝟕 0.024 99.984 
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by the following 15 eigenvalues. From these 15 eigenvalues, the cut-off to the formulated 

model was set to 99%, i.e., in the eight eigenvalue, corresponding to the eleventh eigenvalue 

of the total model eigen-formulation, since the remaining eigenvalues represented residual 

variation modes. This is the advantage represented by statistical models, where a complex 

shape and almost all of the variations allowed is captured, being mathematically formulated 

by the combination of finite number of independent variables. The data would otherwise, only 

be represented by more complex methods and not hold the variable reduction achieved by PCA. 

This variable reduction refers to the reduction of the model into a finite number of eigenvalues 

and corresponding eigenvector that represent the shape variables, capturing a quantifiable 

total variance retained. 

As established before, any instance in the training set can be closer to the original data by 

the correct definition of Equation (3). 

The evaluation of the model in the sense of the variation captured can be assessed by the 

resulting model shape variability upon eigenvalue variation and was established by varying each 

eigenvalue individually along a suitable interval, that was defined, as reported in the literature, 

as [−3√𝜆𝑖, +3√𝜆𝑖]. The first seven variation mode are depicted in Figure 20 (A-F). 

By the observation of the eigenvalues variation individually, it was established that the 

variance to be kept to allow an adequate description of the shapes were the first eight 

eigenvalues and corresponding eigenvectors that describe the eight modes of variation of the 

model. The remaining eigenvalues, corresponded to residual shape variations.  

The first mode is associated to movements of the whole tongues body, associated with the 

rotation of its shape, and namely of the tongues frenulum and tip  upwards and downwards 

present in the different training shapes, withholding the greatest shape variations in these 

directions that influences the whole constellation of landmark. 

Figure 19 - Shape variance decay as the number of eigenvalues 

increases. 
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−𝟑√𝝀 ------------------------------------ 0 ------------------------------------   +𝟑√𝝀 

Figure 20 - Representation of the first six modes of variation plotted the model mean shape 

(blue) and the mean shape deformed by the model eigenvalues (red). 
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The second mode of variation, is associated with movements of the whole tongues body 

along the vertical and horizontal axis combined, specifically in the spreading and narrowing 

combined with upward and downward movements of the tongues upper boundary, present in 

the training set.  

In the third mode of variation, it is possible to observe the alterations to the movements of 

the upper section of the tongue, that is accompanied by a compensative opposite movement 

of the lower section of the surfaces of the tongue. This shape conformation comes for instance, 

from the production of the close back rounded vowel [u] from the Portuguese word /tu/ (you), 

that implies the upper posterior movement of the tongues dorsum and lower anterior movement 

of the tongues base. 

 In the fourth mode of variation, are captured the movements of the upper walls curvature, 

namely the rise and lowering of the tongues tip. 

The fifth mode of variation describes changes in the horizontal width of specifically the 

upper portion of the tongues that is associated with the horizontal spreading in the production 

of the open front unrounded vowel [a] in Portuguese words like casa (home), and on the other 

hand moves presents narrowing of the upper posterior wall for the pronunciation of the close 

front unrounded vowel [i] in Portuguese words such as riso (laghter). 

Finally, the sixth mode of variation, captured in the horizontal width of specifically the 

lower portion of the tongue, that complements the movements described in the third mode of 

variation, in minor pose details. 

The only similar study found in the literature was made by Vasconcelos et al. (Vasconcelos, 

Ventura, Tavares, & Freitas, 2009), where a statistical shape model similar was developed using 

an image dataset representative of oral vowels, consisting of a set of nine images from one 

subject, in which they were able to thoroughly characterize the speech production of said 

sounds, with a 7 modes of variation point distribution model, with 99% variability retention.  

Direct comparison with the model developed in this work is therefore possible, whereas a 

more variability was sought to be analyzed in the present work, with the usage of a dataset 

including a set of 19 images and the presence of female and male subjects, that confer 

anatomic variability, inherent to gender anatomy differences, that most relevantly are related 

to dimension of head and neck and proportional differences of the structures present, fat 

distribution in head and chin. Therefore, reducing the model into an eleven variation modes 

model is relatively positive in comparison to the study referred. 

3.5.3. Image processing 

In the present section, are presented the pre-processing results from the Non-Local means 

denoising algorithm, detailed in Section 3.3.1. The evaluation of the advantages this algorithm 

presents will be outlined. 

The choice of this algorithm, was based on the assumption it presents the ability to 

eliminating Gaussian noise while preserving adequately the edges of the structures present,  
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Figure 21 - Non-local means denoising results, respective the original 

image (A),  and denoised images with h parameter set to 0.05 (B), 0.1 (C) 

and 0.5 (D). 

 

Figure 86Figure 87 - Non-local means denoising results, respective the 

Figure 22- Example image of female (top row) and male (down row) subject 
before and after non-local means denoising, with h parameter set to 0.1. 
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which constitutes to be for this work, and to not eliminate image information and intensity 

homogeneity already present in the images. 

The Non-local Means (NLM) method averages neighboring parts of the central pixel but the 

averaging weights depend on the similarities between a small patch around the pixel and the 

neighboring patches within a search window. This search window was defined to be a 4x4 pixel 

window. The search window is a parameter that will influence the production of more 

homogeneous regions with similar intensities, whereas the larger searching window possibly 

allows more similar patches to be found and thus yield a filter that better preserves the 

features. The larger window will however produce loss of textures, and so an over-blurring was  

not the objective of this step of the work developed. The main idea was to confer homogeneity  

to background regions, specifically the vocal tract, and the tongues intensities. The search 

window was defined by balancing over-blurring and wanted homogeneity of image regions. 

The noise estimation approach was idealized for a Gaussian type of noise present MRI 

images, and significant image information was lost. 

Therefore, the results presented allow the evaluation of the resulting image as well as their 

Peak Signal to Noise Ratio (PSNR). PSNR is a calculative measure of the image quality of the 

images produced, and therefore allows comparison of the images produced relatively to the 

original ones, in terms of noise suppression. 

As previously stated, the success of the denoising result of this algorithm highly depends on 

the estimation of parameter h. For an initial evaluation of the algorithms power of noise 

elimination, the analysis of the influence of the parameter h in the images was studied and is 

presented in Figure 21, depicting a range of denoising runs with different h parameter values. 

It is possible to observe the blurring effects on the resulting image (Figure 21-D) when theres 

an overestimation of this parameter, and an underestimation leads to an insuffiecient denoising 

effect (Figure 21-B). 

The images were analyzed with h parameter fixed to 0.1, for the entire dataset. These 

results are presented in Figure 22 for one male and one female example image.  Furthermore, 

by means of image subtraction of the original and filtered image, whose result is depicted in 

Figure 23, it was intended to highlight that no edge details or important data from the images 

is lost by the application of this algorithm, and depicts the speckled noise removed, that 

implied intensity alterations that ranged from 0 to 0.06 in a scale of [0, 1]. Moreover, by image 

subtraction, it was observed that only in high overestimations of parameter h this effect is 

seen.  The computational load of the algorithm, was not sensed in this analysis since the image 

number of the dataset did not make this factor relevantly disadvantagous. 

The total computational cost of the pre-processing for the model contruction was of 28.34 

seconds with a mean processing of each image of 1.08 seconds. Signal to noise ratio values 

(Table 3) do not allow a very explicit comparison parameter between each denoised image, 

since the images obviously lose quality with the comparison to the original one with increase 

of the parameter value. Mean squared differences however, do translate the mean 

improvement in the images that indicates the resulting visual effect on the images. However, 
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this does not reflect the visual effect the objective of this method which was to produce cleaner 

images, homogeneous regions, which however lowers the peak intensities, and therefore PSNR 

values, with the increase of the parameter value. Even though the loss of texture is verified in 

these results, the results the method was chosen to be adequate for the purposes at stake, 

whereas the edges now present a direct dependence of the intensity differences between the 

tongues intensities and the background intensities, not being dependent of noise interferences. 

This was idealized for the correct functionalization of the search of local boundaries methods 

that will be detailed in the next Chapter.  

 

 Therefore the established ℎ parameter value for all images was 0.1, which revealed as 

suitable in terms of efficient denoising of the entire dataset. The results presented show that  

the NLM denoising method is a good approach for removing the noise in the image dataset and 

confer homogeneity to the features. Furthermore, the resulting effects of NLM denoising in the 

Profile Model, respectively the boundaries intensity distributions, will be presented in the 

following section. 

Table 3 – Mean peak signal to noise ratio (PSNR)  and mean square error (MSE) 
of denoised images with NLM algorithm using different h parameters. 

𝒉 PSNR (dB) MSE 

0.05 86.438 6.774e-04 

0.1 80.817 5.305e-04 

0.5 75.446 0.003 

Figure 23 - NLM denoised example image and binarized image subtraction 

image result. 
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3.5.4. Profile Model 

The model profiling was done for each of the 64 landmarks, producing a total of 64 

covariance matrixes and 64 mean profiles, characterizing the intensities variability present in 

each landmark. The normal to each landmark was profiled obtaining a 17 pixels long profile or 

whiskers for each of said landmarks, centralized in the landmark pixel. The profiling example  

 

Figure 24- A one-dimensional profile of each of the 16 initial hand-labeled landmarks of an 

example image of the training dataset. The blue line is the shape boundary. The red line are 

the whiskers, orthogonal to the boundary. 

 

Figure 25 – Mean intensity profiles of landmarks 1 through 3 in the initial landmark constellation, 

corresponding to each labeled number in interpolation constellation, correspond to the tongues 

frenulum (anterior-posterior ends) and the tongues tip. 
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on an example image is depicted Figure 24. The landmark is at the intersection of the shape 

boundary and the whisker. The inset shows the pixel positions along the whisker. In practice, 

the ASM uses the normalized gradient of the image intensity. 

The 64 mean profiles generated  can be critically analysed, and allow the characterization 

of the intensities along the surface that delineates the tongue and local neighbouring regions. 

Firstly, in order to analyse the results to the boundary intensities, in the generated profiles, 

an analysis of the original boudary profiles was also carried out to be compared against the 

Figure 26- Unprocessed (left column) and processed (right column) image 
profiles examples, of each of the anterior, top, posterior and lower bounds 

(from top to bottom rows, respectively). 
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ones retrieved after non-local means denoising. Four profile examples of the each os the walls 

of the tongue retrieved from the exact same location in noisy and denoised images are 

presented in Figure 26. The main objective of the pre-processing step of the images was to 

achieve homogeneity of the different regions that constitute the image, namely the tongue and 

background regions. This is done so that when profiling is performed, the boundary intensities 

or intensity gradients are sufficiently discriminant relatively to the pixel position to which it 

corresponds. What was achieved was a clear segmentation of the intensities of the profiles 

centered in the boundary pixel, the eighth pixel in the profiles shown. Relatively to the lower 

boundary it is possible to observe that the intensities in the section of the object have a lower 

range of intensity variability, and are influenced by the tongue and the immediate tissue that 

is bellow it. However, the homogeneity achieved in each if the sides of the profile relatively to 

the central pixel, confer a better discriminant intensity of the boundary location. 

Regarding the properties of the profiles generated regarding their correlation with the 

tongues regions, the analysis is made based on the results presented in Figure 25 representing 

the tongues frenulum (anterior and posterior ends) and the tongues tip, in Figure 27 the 

following tongues dorsum of the upper posterior boundaries, in Figure 28 related to the tongues 

root, and finally in Figure 29 related to the final 6 landmarks corresponding to the lower 

anterior boundaries.  

For the purpose of maintaining clarity in the results presented, specifically in the following 

intensity profiles analysis, said profiles were analyzed in the main hand-labeled 16 landmarks, 

as representatives of each profiling region of the shape contour, whose correspondent landmark 

number, in the interpolation generated landmark constellation, is presented in their labeling 

title. The profiles are used here as descriptors of the intensity profiles along the contours, and 

intuitively since these contours are supposed to be boudaries of the segmented structure their 

gradient profiles theoretically represent the highest magnitude in the central pixel or in their 

immediate vicinity pixels, with decreasing magnitude along each side of the profile. This is also  

basis for the simple boundary detection based on gradient magnitude, which when describing 

isolated objects in a distinct background works perfectly to just study the pixel intensity 

variability in the normal direction detecting their position. The analysis of the produced profiles 

shows that some do not represent a very discriminant direction of the boudary properties in 

that region, since their normal direction is in some cases extending to the insertion and/or 

intersection of the tongue with the neighbouring structures. This occurred almost sistematically 

in the profiling of, for instance landmark 15 in the initial constellation (landmark 57 in Figure 

29). This profiling information reveals the nature of the intensity environment of the lower  

boudary of the tongue where it clearly has a lower discriminant intensity profiles, which 

intuitively is expected to generate lower gradient magnitudes. This is very clearly visible when 

analysing these profiles in Figure 29, in contrast with the ones in Figure 27, correspondent to 

the upper boundary of the tongue and the vocal tract, whereas the range of the first set of 

profiles has maximum magnitude of 0.2 and the second maximum magnitude of 0.3. The vocal 

tract is an air-filled cavity and therefore is represented by lower intensities that the tongue,  
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and therefore the gradient along this boundary profile is represented by higher magnitudes. It 

should also be noted that the homogeneity presented in the profiles in Figure 29, of the 

following profiling values into low magnitudes, on profile pixels from 8 (central pixel) to 17, is 

related to the vocal tract low intensities, related to the cavity, which is observably more 

homogeneous that the tissue of the tongue, represented in the profiling pixels 1 to 7, where 

theres oscilations of intensities. This is also visible in the posterior end of the frenulum and 

tongues tip profiles. The gradient profiles obtained are only shown in Figure 30 with 

representative examples of each boudary walls of the tongue. Theoretically, the idel gradient 

profiling is a representative of the ideal magnitude descriptor of the boudary, consisting of  

 

Figure 27 – Mean intensity profiles of landmarks 4 through 9 in the initial landmark 

constellation, corresponding to each labeled number in interpolation constellation, 

correspond to the tongues dorsum, or upper-posterior boundary. 
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Figure 29 - Mean profiles of landmarks 11 through 16 in the initial landmark constellation, 

corresponding to each labeled number in interpolation constellation, correspond to the 

tongues dorsum, or lower and sub-frenulum-anterior boundary. 

 

Figure 28 - Mean intensity profile of landmark 
10, correspondent to the tongues root. 
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central pixel maximum magnitude with gradual decrease along the outward directions along 

the normal. However, this is not the case, whereas a lot of minor intensity inconsitensies 

produce inconsistent graduent whereas the maximum scoring is not in the central pixel or its 

vicinity, or is not discriminant considering the other gradient values in the profile. Therefore, 

analyzing the gradient profiles and intensity profiles presented, it is possible to observe the 

higher discriminant power the original boudary profiles have representing a better method for 

the search in the building of the active shape model discussed in the next Chapter. 

3.6. Conclusions 

In this chapter were described the statistical shape model and the profile model developed 

with an image dataset comprising a wide variability of tongues shape caused by different speech 

sounds production. The potential of this study is therefore widened in terms of range of future 

applications that go from speech imaging analysis to pathological anatomy analysis. The primary 

goal consisted on the analysis of the tongues shape during the articulation of European 

Portuguese sounds, and consists also as a preliminary study for the further application in the 

building of a Statistical Shape Model for semi-automatic segmentation of this organ. From the 

experimental results obtained, it is possible to conclude that the statistical deformable model 

built is capable of efficiently characterizing the behavior of the tongues shape modeled from 

Figure 30 - Gradient examples of each of the anterior, upper, posterior and lower walls of 
the tongue. 
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the MR images studied. Also, the modes of variation of the model built provide a partitioned 

explanation of the actual movements involved in the EP speech sounds considered. The model 

was also built in order to capture the optimal conditions to be applied in a following model 

application. The landmarks were augmented by spline interpolation methods in order to allow 

the appliance in the following search model step. 

The analysis of the resulting alignment results, allowed the study of the training shapes in 

a common referential, eliminating pose, or rotation variations that can be inherent to the 

original images, and therefore allowing the partition of the shapes into individual sets of 

movements described by each eigenvalue.  

The analysis of the model variables, allowed the assessment of an appropriate evaluation 

of the results, where the model was reduced to a finite number of variables that describe such 

a complex shape. Moreover, the resulting shape variations inherent to each eigenvalue are in 

accordance to the premise that eigenvectors are mutually orthogonal, a characteristic derived 

by the PCA properties. This premise translates into having subsequent eigenvalues describing 

shape variations in orthogonal directions. This is visible in the data retrieved, specifically in 

the variations described by the second and third eigenvalues, corresponding to vertical  and 

horizontal specific movements, respectively, or by the fourth and fifth eigenvalues with minor 

vertical and horizontal movements of the tongues tip and superior section boundaries, 

respectively. 

The model was trained with a number of different shapes that captured a sufficient extent 

of the variability this organ can acquire, and therefore offers all the conditions necessary so 

that it can easily be used to reconstruct the shape of the tongue in the articulation of speech 

sound, in new subjects. Furthermore, it is possible to conclude that the model built in this work 

allows a more clear understanding of the dynamic nature of the tongue in speech production 

events involved during sustained articulations. It also allowed the understanding of the 

boundary properties that delimit the organ at study and the regional diversity of their 

properties, relatively to the image features that describe them. 

https://en.wikipedia.org/wiki/Orthogonal
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Active shape modeling 

and segmentation of the tongue 

This chapter describes the Active Shape Model developed that result by the actual 

combination of the shape model and profiled intensities model information retrieved in the 

sub-models described in the previous Chapter. The produced information described by the 

shape model allows the production of plausible shapes of the structure to be segmented within 

a certain range of variability imposed by its shape parameters constraints. This characteristic 

reveals itself as the most important advantage in the segmentation process, where the model 

is used to constrain the set of feasible shapes to those which are statistically plausible with 

respect to the patterns extracted from the training shapes. Similarly, the intensity profiles 

present in each landmark that characterize the training images in each of their locations is 

statistically analyzed to select the positions within new image profiles that better fit the image 

characteristics locally, at each landmark.  The basic principle of the model consists in the 

building of an iterative search method, given a method for predicting the parameter correction 

needed to be made possible to achieve a better fit. The steps regarding the search of new 

shapes includes the initialization of the model, the search model variables, image feature 

search based on the appearance data retrieved from training and finally model fitting to the 

new landmark constellation produced based on the shape model produced from training. An 

algorithm scheme outline is presented in Figure 31. With the models already built up, it is now 

possible to find the desired shape in unknown images. This phase is generally known as the 

search algorithm. The process starts with positioning the model to an initial location in the test 

image. In the image the Profile model allows the estimation of the best movement locations 

for each model point, and from the mew shape points produced the model moves, rotates, 
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resizes and deforms until it finds the shape it was designed for, that is produced by the 

Statistical shape model. This is based in an iterative adaptation to the image that unites various 

factors to generate plausible segmentation results, and includes adequate methodologies that 

algorithm from collapsing, into unacceptable results.  In this chapter the methods and specific 

algorithm steps taken to the segmentation of the tongue using the global model framework will 

be presented and the segmentation results will be assessed by comparison with true boundary 

points hand-labeled. Model initialization appears to be a key aspect in this study, and the main 

objective of the methods developed in this section were to generate the best possible 

methodology, being this step the key to the development of a  semi-automatic segmentation 

algorithm. The performance the model developed will be accessed in the last section and 

therefore the adequacy of this methodology for purposes of analysis of tongue shape in MRI 

images, for speech studies. 

• Histogram equalization 

• NLM denoising algorithm 
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Figure 31 - Schematic model representing the final workflow of the Active Shape Model implemented, 
comprising the methods detailed in Chapter 3 and the present Chapter. 
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4.1. Search algorithm  

The ASM is an iterative algorithm for image segmentation, in which the two different kinds 

of models were employed: A shape model, which encodes prior knowledge about the objects 

shape, and a profile model, which describes the appearance of the objects boundary in images. 

The latter model is necessary to adapt the model points to the image. The algorithm outline is 

described in Figure 32, which formulates the Active Shape Model in a generic way. For each 

step, there exist various alternative approaches, which are discussed in the sections below. 

The algorithm starts with placing an estimate of the targets shape — usually the model mean 

shape — into the image (detailed in Section 4.2). In each iteration of the main loop, the 

appearance model is used to perform a local search in the vicinity of each landmark in order to 

search for optimal image features. The shape is then deformed by displacing the landmarks to 

the detected image feature. Since this deformed shape does not necessarily correspond to a 

plausible object instance, the deformed shape is constrained with the Statistical Shape Model. 

4.1.1. Multi-resolution search 

Regardless of which local search strategy is used, the capture range of the shape model is 

restricted by the size of the local neighborhood. A popular way for increasing the capture range 

while retaining robustness is to use a hierarchical adaption scheme with a multiresolution image 

pyramid (Cootes & Taylor, 1994). This strategy has been widely used in many ASM 

implementations (Heimann & Meinzer, 2009). Before the search begins, an image pyramid is 

built, and repeat the ASM search at each level, from coarse to fine resolution. Each image in 

the image pyramid is a down-scaled version of the image above it. The start shape for the first 

search (made in the coarsest image) is the shape initially generated the user interaction 

initialization steps algorithm. The start shape at subsequent levels is the best shape found by 

the search at the level below. Usage of multi-resolution approach is more efficient, more 

Input Place a valid instance of the shape model into the image (mean shape) 

1. Generate the start location of the shape  

repeat 

2. Suggest a new shape by profile matching around each shape point 

3. Adjust the suggested shape to conform to the Shape Model 

until convergence (i.e. until no further improvements in fit are possible) 

Output shape giving the (x,y) coordinates of the tongues landmarks 

 

Figure 32 - Search model algorithm outline. 
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robust, and converges correctly to the correct shape from further away than searching at a 

single resolution. Two pyramid levels were used in this step. 

4.1.2. Number of landmarks 

A straightforward way to improve the fit is to increase the number of landmarks in the 

model. This is based on the assumption that the error decreases as the number of landmarks 

increases according to previous studies. Although the computational time increases, especially 

in search time because search time is proportional to the number of landmarks, it is a penalty 

suffered by this methodology, however is a necessary feature to consider. Goodness of fit is 

intuitively improved if the profiling is made over more points of the surface, whereas a less 

number of landmarks implies a rougher estimation of the boundaries in the inter-landmark 

spaces. 

4.2. Model Initialization 

The ASM model is a local search algorithm with limited capture range. For robust and 

accurate segmentation, it is necessary to determine an initial position of the model in the 

image, that is, the model must be placed roughly onto the target structure. Model initialization 

can be achieved by two methods: 

1. By requiring user interaction, for example by letting the user define a set of relevant 

points. For instance, Kelemen et al. for the model-based segmentation of structures 

present in 3-D Neuroradiological image data, initializes the segmentation with user 

definition of anterior and posterior commissure (Kelemen, Székely, & Gerig, 1998). 

2. By computationally analyzing the image for domain knowledge or additional application 

specific information, such has locating relevant features, structures or points 

automatically. For instance, Toth et al. initialize their prostate segmentation algorithm 

for T2-weighted MRI scans by exploiting additional information from a second modality, 

Magnetic Resonance Spectroscopy (MRS) (Toth, et al., 2011). 

Having these two courses of analysis established, it is clear that the first leads to a semi-

automatic segmentation methods, which is the method used in this work, whereas the 

initialization is explained in the following section. This is of course in all cases that the accuracy 

of the actual segmentation is not affected and/or diminished. 

 

4.2.1. Manual initialization 

Firstly, the model was built and placed in action by manually placing the mean contour 

shape of the model into the image. Intuitively, this approach only requires the user to select a 
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central single position as possible into which the mean shape model central points is determined 

and from which the shape positions are defined relatively to the initial ones. This approach 

places the shape contours very closely distanced to the real contours and in most cases inside 

the tongues area, producing a fitting that produced dislocations of the points to outside the 

normal direction of each of the shape vertexes. This is followed by the selection of 4 points, 

into which the first iteration of the model fitting is made in their direction. The user selects 

the lowest point of the anterior wall of the tongue, the point of the tongues tip, the highest 

point of the tongues dorsum and finally the tongues root point (Figure 33). The search in these 

directions is enforced in all landmarks by portioning the influence of each, in the adequate of 

landmarks. 

This method is theoretically, expected to produce the fastest convergence to a fitting 

result, since it implies a user correct placement of a close boundary-to-shape distance.  

 

4.3. Image feature search 

The local image feature search computes a set of candidate positions around each 

landmark. The Profile model is used to assign a score to each candidate such that they can be 

ranked. Finally, one of the candidates is chosen as new position for the landmark. The obvious 

strategy which is employed in most ASM implementations is to select the candidate with the 

highest score. This approach was used since the distance to the true boundary is preserved in 

the profiling if initialization is made correctly, thus being the model at a relevant distance from 

the true boundaries. This is also compensated in each iteration, where even though at some 

extent the model cannot find the true boundary, it is enforced by neighboring landmarks 

reassignments their correspondent true boundaries and subsequent plausible shapes generation 

to dislocate into new possible locations that a priori will be closer to the true boundary onto 

which these last landmarks were able to locate and adapt towards. The features to be searched 

represent the normalized gradient profiles, similar to the technique used in the classical ASM 

Figure 33 - Points selected in the manual 
initialization of the model. 
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formulation made by Cootes et al., and the original intensity profiles, through the methods 

detailed in Section 3.3.1. However, two methods to defines the goodness of fit along the the 

profile pixels were used: profiling of the derivatives used a scoring based on the Mahalanobis 

distance and profiling of the original image intensities with PCA analysis was also carried out. 

Comparison of the results was and consequent segmentation shapes generated was analysed. 

This method was therefore, theoretically, designed to be minimally susceptible to assign the 

best score to image features that do not correspondent to the boundary. Such outliers of the 

profile model may degrade the robustness of the active shape model, and implies that the 

neighboring landmarks move inconsistently. This feature was evaluated in the results. 

4.4. Imposing shape constraints 

By imposing shape constraints with a statistical shape model, one can ensure that the shape 

of the segmentation results is similar to the training shapes. Thus, leaking of the object into 

neighboring structures can by this step, at least partially, be avoided. In the following, the 

methodology for imposing shape constraint is presented. 

Firstly, having present that the statistical shape model has been learned in Procrustes 

space, based on a affine transform calculation, including rotation, scale and translation 

components, it is important to know the deformed shape is in the coordinate system of the 

image and therefore, in order to impose shape constraints, pose parameters must be computed 

which define an affine transformation between these two coordinate systems. Usually, pose 

parameters are handled as external parameters. After this, the method adopted is once more 

described the one described by Cootes et al. (Cootes & Taylor, 2004): 

1. Pose parameters are estimated, and the deformed shape 𝑥̂ is mapped from the 

image to the model coordinate system.  

2. The deformed shape is projected into the principal subspace using the equation: 

𝒃 =  𝑃. 𝑇 (𝑥̂ − 𝑥̅)     (26) 

In another notation, we can calculate the parameter b that allows to best approximate 𝑥̂ 

with a model shape generated by Equation (3). We seek the 𝒃 and 𝑻 that minimizes: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥̂, 𝑇 (𝑥̅  +  𝑃𝑏)) 

3. Constraints are imposed on the bounds of the principal components 𝑏𝑖 computed, 

usually by enforcing that: 

−3 √ 𝜆𝑖  ≤  𝑏𝑖 ≤  3 √𝜆𝑖 for all 𝑖 =  1, . . . , 𝑡. 

4. From the constrained shape parameters in 𝒃, a plausible shape is generated by 

simply computing the result of Equation (3). 

5. The constrained shape 𝑥 is mapped back to the image coordinate system using the 

estimated pose parameters calculated in point 1. 
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4.5. Segmentation validation 

To validate the active shape models segmentation quality, the values of mean and standard 

deviation of the Euclidean distances between the landmark points of the final shape of the 

models and the desired segmentation shapes were calculated. 

4.6. Results and discussion 

To obtain a quantitative evaluation of the performance of the algorithm we trained a model 

on 19 hand labelled head and neck MRI images, and tested it on a different set of 6 labelled 

images.  

On each test image, it was defined by user interaction the central point of the tongue, in a 

rough manner, to which the model was dislocated, centralizing it in said position. Secondly, 

the labeling of the four landmarks of initialization, inferior point of the anterior wall, tongues 

tip, highest point if tongues dorsum and tongues root was carried out to which the landmarks 

were mapped onto, and an initial plausible shape with the horizontal and vertical dimensions 

adjusted by these points, was produced with the statistical shape model. At this point the initial  

shape is ready to be ran in the multi-resolution search.  

The search proceeded through the image pyramid, from a low resolution image to the 

original image resolution along two image scalings of 0.5 and 1 (Figure 34), that is applied to 

the image and initial shape, and is correlated to the profile produced in this pyramid range in 

the training step of the profile model building. 

Figure 34 - An image pyramid. The first level [128x128]px is a half of the 
resolution of the image above it [256x256]px.. 
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4.6.1. ASM Results with User-initialization 

This section presents the results of manual initialization and segmentation results of the 

workflow that includes it in the model Initialization step. The suitability of active models to 

segment the shape of the tongue in new images is analyzed in the present section. On each test 

image, it was defined by user interaction the central point of the tongue, in a rough manner, 

towards which the model was dislocated, centralizing it in said position.  

While this technique is very fast and easy to implement, it is also one reason for the limited 

flexibility and delineation accuracy of these types of models. This is because it partitions the  

shape space into two classes: allowed shapes and disallowed shapes. Allowed shapes are a 

subset of the set of all linear combinations of the training shapes that are inside the allowed 

constraints of the vector parameter b. They are necessarily elements of the affine PCA 

subspace, and must additionally be close to the mean. Conversely, any shape that cannot be 

expressed as a linear combination of the training shapes is disallowed. However, one cannot 

expect that all possible shape variations are present in the training shapes. 

Results from successful model fittings, as well as failures, will be showed. The model fitting 

procedure is run after the generation of the initial shape. 

Three key variables were tested in the result analysis of the active shape models produced: 

retained variance percentage, type of search and number of search profile pixels. Thus, two 

active shape models were built with 95% and 99% of retained variance and with search profiles 

of 7, and 17 pixels. It is important to state before any analysis that the two types of search, by 

gradient profiles combined with mahalanobis distance and the intensity profiles combined with 

PCA analysis, produced the similar segmentation results, whereas for robustness and 

consistency the final method used was the search fitting by PCA analysis of the original 

intensities.  

Afterwards, 6 MR images of 3 distinct EP speech sounds, and from two different subjects 

(one male and one female), which were not considered in the set of training images used, were 

segmented by the active shape models built. 

As stopping criterion of the segmentation process, a maximum of 10 iterations on the first 

resolution level and 15 iterations on the second. This was considered for all segmentation runs, 

whereas two resolution levels were used, summing to a total of 25 iterations performed in each 

test image. This maximum number of iterations was chosen due to its quality results obtained 

within the six test images. The initialization shapes will be demonstrated in the following result 

presentation. 

The final active shape model developed under this study adopted a gray level profile of 7 

pixels long, that is considering 3 pixels from each side of the landmark points. The profiling 

furthermore considers a search profile of 13 pixels long. This search outline, means that the 

search was measured moving the profile whisker of 7 pixels within 3 positions offsets in each 

direction. This profiling presented to be the best option for fitting, producing the best results 

of the study. 
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In Figure 35 is depicted an example of the segmentations obtained for one test image. In 

this figure it is possible to observe the initial shape localization indicated by user interaction 

and is followed by some of the iterations of the segmentation process by the active shape model 

built with 99% of retained variability: it starts with a raw estimation on the shape outline by 

forcing the first iteration of the profiling to adjust towards the correspondent landmarks 

selected by user interaction in the image (1st iteration), downwards each multiresolution level 

until converges into the final the final shape at the end of 25 iterations, where from that point 

on the shape does not present relevant statistical differences relatively to the one presented 

in the previous iteration. This figure demonstrates the difficulty of the model to converge into 

the tongues root and lower bounds, that is afterwards impeded by the shape constraint of the 

shape model. Nevertheless, this is an example of the model segmenting one of the most 

complex shapes in the test dataset, since it implies relevant dependence from a wide number 

of the modes of variation retained by this model. The performance of segmentation of this 

image with the model retaining 95% of variability significantly lower. 

 

 

Figure 35- Segmentation process (ASM with 99% of variability) with the initial 
position of the shape model built overlapped (A) and the results after the 22nd (B) 
and 25th (C) iterations of the of the segmentation process by the active shape model. 
In D the produced shape (red) is overlapped with the hand-labeled shape (blue). 
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 The other active shape model built consisted in a gray level profile of dimensions equal to 

17 pixels were also built. However, these active shape models were not able to segment 

successfully the modeled organ in the testing images. These results are rather intuitive in the 

sense that since the images used during the segmentation process, at each landmark point is 

considered a segment of 23 pixels long in the active search and therefore, it can easily contain 

intensities of neighboring structures with a better profile fit, which added to the contrast 

homogeneity that is caused by the homogeneity of the tissues of the various structures present 

in the head and neck, does not favor of clear discriminant analysis of the true edges, and 

consequently, the model built can easily diverge. 

 

Table 4 - Mean and standard deviation (mean ± std) errors of the shapes segmented by the deformable 

models built in each test image with 7 pixels long profiles. 

Image ASM  with 95% of variance ASM  with 99% of variance 

male_pa 4.238 ± 3.369 3.554 ± 1.024 

male_pu 5.520 ± 4.852 1.541 ± 2.786 

female_pu 4.870 ± 5.401 2.326 ± 3.450 

male_pi 1.987 ± 1.342 1.556 ± 2.786 

female_pa 3.652 ± 4.204 2.941 ± 3.244 

female_pi 7.987 ± 1.342 1.541 ± 2.005 

Table 5 - Mean and standard deviation (mean ± std) errors of the shapes segmented by the deformable 

model built in each test image with 17 pixels long profiles. 

Image ASM  with 95% of variance ASM  with 99% of variance 

male_pa 8.511 ± 6.352 4.369 ± 4.342 

male_pu 7.520 ± 4.778 8.671 ± 1.577 

female_pu 5.870 ± 4.401 5.684 ± 3.584 

male_pi  9.785 ±  3.657 6.684 ± 1.535 

female_pa 6.576 ± 4.293 7.565 ± 7.64 

female_pi 9.547 ± 4.576 9.684 ± 1.342 
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Furthermore, the size of the images considered, namely 256x256 pixels, is relatively small 

and contributes that long profiles will fall under the influence of neighboring structures which 

will difficult even further the correct detection of the true boundaries and as stated, diverge. 

An example of the segmentation obtained using profiles with 17 pixels long is depicted in Figure 

36. This example depicts the process of wandering of the model shapes produced by the 

adaptation into image intensities belonging to the palate. This type of model, is very sensitive 

to such results, when the profile length is not adequate, and furthermore, because the tissues 

present in the head and neck in these images, specifically the neighboring structures around 

the tongue present very similar intensities. 

 In Figure 37 it is possible to observe the limitations the Active Shape Model represents 

when segmenting a new instance structure shape. The modelling into the positions of the two 

frenulum end and tongues tip is visible but the shape constraint is not able to model the shape 

into fine variations presented in the local angle made between the 11 landmarks that form it. 

This example segmentation is however, a representative of a shape that even though was 

segmented with the 95% of retained variance model, the sound ‘pi’, is inherent to precisely 

shape variations captured by the first 6 modes of variation. Therefore this model presented 

particularly good results due to no variabilities were eliminated by the retention of lesser 

number of modes of variation. Nonetheless, is should be noted, also in this image that the 

vertical variability associated with the second mode of variation of the model, achieved its 

maximum bound in the attempt of segmentation of the shape and therefore that inaccuracy of 

the segmentation in the upper boundary of the tongue is due to the shape constraint. This fact 

means that the upward movement of the tongue in sustention of this sound was not so extensive 

in any instance of the training shapes, and therefore, constitutes an example of how the 

absence of a given shape in the training set of shapes will not allow the segmentation of said 

shape, because it will be constrained, i.e. considered implausible by the model. Therefore 

instances where the two ends of the frenulum are coincident, the model fails to adapt to this 

shape. Therefore, it is concluded that the model did not capture this variance, although one 

instance shape in the training dataset had similar properties. This is also observable by the 

results presented in the previous Chapter, where the shape variance captured by each mode of 

Figure 36 - Segmentation process with the initial position of the shape model built overlapped (A) and 
the results after the 2nd (B) and 12th (C) iterations. ASM using 17 pixels long profiles. 
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variation was evaluated separately, and where none presented to capture this shape. In Table 

4, the values of the mean and standard deviation in which it is possible to analyze the quality  

of the segmentation obtained in each test MR image by the active shape models built. In this 

table it is possible to compare the differences between the segmentation results of the Active 

Models using a search profile of 13 pixels long and profiles of 7 pixels. Regarding the differences 

of the segmentation results related to the number of profile pixels, the analysis can be made 

by the computation of the mean squared differences and standard deviations of the models 

using 17 pixels long profiles that are presented in Table 5. Establishing comparisons of the mean 

errors presented in two tables mentioned, confirm the results obtained in the latter case to 

not be acceptable, whereas the wandering of the model for other regions, implies bigger error 

of segmentation relating the segmented and true boundary positions. Inside each of the profile 

size cases presented the errors obtained with the 95% of retained variance models were in every 

case worse, which was expected, and verified by the resulting segmentations observations 

where in this case the segmentation quality is highly damaged by the shape constraints and 

variability captured in the model which contains a lesser number of modes of variation 

Figure 37 - Segmentation process with the initial position of the shape model built 

overlapped in image (A) and the results after the 2nd (B) and 12th (C) iterations of the 

of the segmentation process by the active shape model. In D the produced shape (red) 

is overlapped with the hand-labeled shape in the original image (blue). 

 

Figure 156 - Segmentation process with the initial position of the shape model built 

A 

C 

B 

D 
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4.7. Conclusion 

In summary, the ability of the Active Shape Model developed to segment properly the 

tongue represented in MR images was assessed in this Chapter. 

The primary goal consisted on the analysis of tongue that included a significant component 

of shape variability by the usage of MR acquisitions during articulation of European Portuguese 

sounds, followed by the evaluation of the results concerning the semi-automatic segmentation 

of the modeled tongue shape in new images. However for real-clinical purposes this study would 

have to widened to an image dataset that includes instances of resting tongue shape. The 

dataset is only representative and accuracy is only improved with the application of this 

methodology to a wider dataset. 

After the tests performed it was possible to conclude that the method developed is very 

sensitive to wandering off of the wanted segmentation needed. The profile whisker directions 

in the classical ASM, is determined by the order in which the landmarks are numbered. This is 

because the whisker direction is determined by the position of previous and next landmarks 

relative to the current landmark. This is rather arbitrary and is one of the reasons by which the 

model is very susceptible to lose the objective boundary.  

Nevertheless, the initialization process, when done correctly allows the model to adapt into 

the right boundaries, at the end of the chosen number of iterations. This is also achieved by 

the number of landmarks used in the production of the shapes, that allows the adaptation to 

the boundaries that are within the real boundaries enforcing their adjustment over the fewer 

number of landmarks that are positioned in location where there is no discriminant power in 

the whisker direction to set the adequate boundary pixels. 

This study can be useful for speech rehabilitation purposes, namely, to recognize the 

compensatory movements of the articulators during speech production. 
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Conclusion and Future Work 

This Dissertation aimed to present computational algorithms for object segmentation and 

analysis in images suitable for application in objects such as the human tongue in images. 

This work, thus needed two independent datasets: a training set for building and a test set 

for validation. The training is obviously, as it should, the largest, because the training set 

defines nearly all characteristics of the model. The validation and test sets should be big enough 

for the variance of the measured results to be acceptable. The unknown ideal sizes for these 

sets depend on the unknown complexity of the underlying function and amount of data noise. 

Moreover, the flexibility of this Models used in this work is highly dependent in the variability 

present in the training dataset, and these are automatically included in the produced results, 

meaning that the model can be adapted to various types of studies of the structure analyzed, 

the tongue. 

The models developed revealed that they could easily be used to reconstruct the shape of 

the tongue.  

5.1. Conclusion 

From the experimental results obtained, one may state that the point distribution model 

built can adequately extract the main characteristics of the movements of the tongue from 

magnetic resonance images, although with discrepant accuracy on different boundaries that 

constitute it. While active shape models consider the information around each landmark point 

of the modeled object, active appearance models use also the gray level information of the 

object. Consequently, the former type of models is more informative and possibly more 

efficient than the latter. However, the segmentation process taken into consideration focused 
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in the accuracy of boundary detection, and therefore was concentrated in the model boundaries 

candidate analysis methodology of Active Shape Models. Nevertheless, both active shape 

models obtained remarkable results, either in terms of translating the movements and 

configurations involved in the different shape conformations depicted, as well as in the 

segmentation of the tongue in new images. 

Based on the results obtained the performance could be assessed by the statistical 

Euclidean distance evaluation from true contours, defined for the test images, by professional 

anatomist. The studies results are promising and allow its inclusion in future works for an 

expansion of the study into a 3D analysis when combined with better image quality that needs 

the inclusion of a more sophisticated imaging acquisition model. Therefore, the model built 

can be accurate and efficient tools to be used towards the automatic study of the tongue from 

magnetic resonance images during speech production. 

It can also be used for several studies in articulatory phonetics and in the tongue modeling 

for speech synthesis, with applications to speech pathology, linguistics and artificial speech. 

This study was also meant to improve medical analysis of images, in the sense of being used to 

evaluate changes in the morphologic structure at study in healthy and diseased patients. 

5.2. Future work 

One of the premises for acquiring an efficient deformable model, and consequently 

obtaining good results concerning the segmentation of the modeled object, is extremely related 

to the quality of the images to be studied. In this study were used images taken from 3D 

acquisitions with high in plane resolution, however the through-plane fails to be sufficient for 

the building of 3D models, where the axial contour information is extremely lost and therefore 

accuracy would never be possible. Previous studies present solutions for this problem that 

include multi-plane stacks acquisitions with following interpolation. This study was restricted 

to a 2D approach due to the image quality needed for a 3D expansion. 

Regarding the 2D Active Shape Model described in this work, the following imminent course 

of development, would focus on the full automatization of the method, more specifically, the 

creation of a fully automatic initialization step, by the detection of auxiliary points of 

reference. The automatic initialization would comprise: frontal facial boundary detection, 

followed by mouth opening detection, airway upper and lower boundary detection using active 

contours, finalizing with initialization of the model shape using the lower boundary of the upper 

airway. This would produce an initial estimate of the tongues dorsum or upper and posterior 

boundaries, to which the model initial shape would be mapped into. The full automatization of 

the global framework of this study would allow the development of an image analysis software 

that would enable the study of the tongue and subsequently improve the professional practice 

of speech specialists among other medical professionals.  
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Another major improvement needed in this study concerns to the amount of data studied. 

The variability was sought by the inclusion of different anatomies and sound articulations, 

however it is merely representative. The further validity of this study would be achieved by the 

subjection to a higher dataset for analysis. 

As previously stated, while active shape models consider the information around each 

landmark point of the modeled object, active appearance models use also the gray level 

information of the object. Therefore the expansion of this model into the following Active 

Model would promisingly allow improvements in the segmentation and performance of the 

model. 

It can also be used for several studies in articulatory phonetics and in the vocal tract 

modeling for speech synthesis, with applications to speech pathology, linguistics and artificial 

speech. 

This study was also meant to improve medical analysis of images, in the sense of being used 

to evaluate changes in the morphologic structure at study in healthy and diseased patients. 

Furthermore, the demonstration of connections to other models such as jaw and airway, as 

well as the application of this model into the segmentation of other structure that play key 

roles in the tasks taken upon the aerodigestive tract, such as tonsils and the velum, within the 

framework could enforce the knowledge that models developed separately may be connected 

to build more complex biomechanical models towards a complete aerodigestive tract. 
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