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1. Summary 

Non-coding deoxyribonucleic acid (DNA) regions represent approximately 98% of the 

human genome and a relevant part of mitochondrial DNA (mtDNA). There is a clear contrast 

between coding and non-coding DNA regions considering the levels of genetic diversity, 

genomic architecture and distribution of regulatory elements. By using recently developed 

methodologies to analyse DNA, the unique features of coding regions and non-coding 

regions were accessed. For this purpose, four genetic models were used in this thesis: a) 

metallothioneins (MT), where specific mutational events converted a transcribed coding 

region into a non-coding region; b) Nicotinamidases (PNCs) and Nicotinamide 

phosphoribosyltransferases (NAMPTs) genes which presented critical structural hotspots 

related with the functionality of the respective proteins, and might have implications in the 

maintenance of expressed coding regions; c) non-coding mtDNA regions, and d) non-coding 

short tandem repeats (STRs). 

The contrasts between coding (protein genes) and non-coding region (pseudogenes) 

were focused using a phylogenetic analysis associated to duplicated genes (model a). 

Mammalian evolution history of post-duplication events was herein explored by the study of 

MT family members where different mutational events can determine the way to a new 

function or to pseudogenisation. 

Analysis of NAMPTs and PNCs (model b) homologous genes in different species was 

used to establish the relationships between mutations occurred during evolution and their 

consequences in metabolic pathways and pathologic conditions (e.g., cancer). The critical 

residues at active site and at the interaction with the substrate of invertebrate NAMPTs, 

nicotinamide, were maintained, considering both protein-docking analysis and expression. 

Nevertheless, additional hydrogen bonds and hydrophobic contacts were found in PNCs, 

what can be explained from complementary amino acid changes as a result of epistatic 

(compensatory) interactions. Structural conservation validated by expression experimental 

data was used to ascertain the current functional status and the evolutionary time depth of 

transcriptional loss of both NAMPT and PNC proteins in different species. This was useful to 

understand the molecular behaviour of specific chemical bonds (e.g., H-bonds) in proteins, 

which were also analysed in the DNA non-B conformations (model c and d) localized in the 

non-coding regions, even though they represent different types of molecules. By this way the 

computational molecular systems knowledge applied to proteins can be used to build the 

models for the DNA structures found in non-coding regions.  

The study of conformational structural changes in non-B DNA conformations is very 

important since, as in proteins, they can adopt different structures related with specific 

properties. Furthermore, the genome architecture (coding versus non-coding) led us to the 
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analysis of the specificities of non-B conformations formation in mtDNA complete genome 

and their implications in biological processes (model c). Non-coding regions were playing a 

critical role in the process of generating different mtDNA deleted molecules associated with 

disease. 

Ultimately, a new methodology for detection of secondary and tertiary DNA structures 

in non-coding regions was developed (model d). Available data for Y-chromosome short 

tandem repeats (STRs) was investigated by using software for structures prediction and new 

algorithms to identify non-B DNA conformations. Evaluation of these structures was 

attempted using molecular dynamics simulations and molecular mechanics Poisson-

Boltzmann surface area (MM-PBSA) calculations. Single-stranded and UNAFold predicted 

DNA conformations were analysed using chemical computational methodologies. Molecular 

structural features present in nuclear DNA (STRs) were inferred and correlated with different 

biological processes and diseases. Our analysis predicted hairpins that can arise in single-

stranded STRs. The occurrence of these non-B DNA conformations in non-coding regions 

might influence/regulate processes of transcription occurring in protein-coding regions, and 

processes that depend of specific folding potential as DNA replication. 

There was a clear contrast between protein-coding (model a and b) and non-coding 

genomes (model c and d). The possibility of these two different regions to generate or form 

three-dimensional structural molecules was accessed. The relevant DNA non-B 

conformations can adopt different conformations, as in proteins molecular systems, and was 

demonstrated in this thesis. In non-coding regions, the formation of DNA non-B 

conformations has implications in evolution, deletions, replication and disease (models c and 

d). 
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Sumário 
As regiões não-codificantes de ácido desoxirribonucleico (ADN) representam cerca 

de 98% do genoma humano e de uma parte relevante do ADN mitocondrial (ADNmt). Há um 

contraste claro entre as regiões codificantes e regiões não codificantes do ADN 

considerando os níveis de diversidade genética, a arquitetura genómica e de distribuição de 

elementos de regulação. Utilizando metodologias recentemente desenvolvidas para a 

análise de ADN, as características únicas de regiões codificantes e não-codificantes foram 

determinadas. Para este efeito, quatro modelos genéticos foram utilizados neste trabalho: a) 

metalotioneínas (MT), onde padrões específicos de mutação podem converter uma região 

transcrita em uma região não codificante, b) os genes codificando as enzimas, 

nicotinamidase (PNCs) e nicotinamida phosphoribosyltransferases (NAMPTs), que 

apresentam ‘hotspots’ estruturais críticos relacionadas com a funcionalidade das proteínas 

respetivas, o que tem implicações na manutenção das regiões codificantes expressas; c) as 

regiões não codificantes do ADNmt, e d) as regiões não codificantes repetitivas em 

microssatélites. 

Usando o modelo A, os contrastes entre as regiões codificante (genes) e não 

codificante (pseudogenes) foram analisados utilizando uma análise filogenética associada a 

genes duplicados. A evolução dos eventos pós duplicação dos genes MT nos mamíferos foi 

explorada pelo estudo de diferentes eventos mutacionais que podem determinar se um gene 

é ou não funcional. 

A análise dos genes homólogos NAMPTs e PNCs (modelo b) em diferentes espécies 

foi usada para estabelecer as relações entre os resíduos resultantes de mutações durante a 

evolução e as suas consequências para as vias metabólicas e condições patológicas (por 

exemplo, cancro). Os resíduos críticos do centro ativo e interações de NAMPTs com o 

substrato, a nicotinamida, foram mantidos, considerando tanto a análise de ‘docking’ como a 

expressão das proteínas. No entanto, ligações de hidrogénio e contactos hidrofóbicos 

adicionais foram encontrados em PNCs, o que pode ser explicado a partir de alterações de 

aminoácidos complementares, como resultado de interações epistáticas. A conservação 

estrutural validada pelos dados experimentais de expressão foi usada para avaliar o estado 

funcional e a profundidade do tempo evolutivo de perda de transcrição nestas proteínas. Isto 

foi útil para compreender o comportamento molecular de ligações químicas específicas (por 

exemplo, ligações de hidrogénio) em proteínas, que também foram analisadas nas 

conformações de ADN não canónicas (conformações do modelo c e d) e localizadas nas 

regiões não codificantes. Desta forma, o conhecimento de sistemas moleculares 

computacionais aplicados a proteínas pode ser usado para construir modelos para as 

estruturas de ADN encontradas em regiões não codificantes. 
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O estudo das alterações estruturais em conformações não-B de ADN é muito 

importante uma vez que, tal como nas proteínas, podem adotar diferentes estruturas 

relacionadas com propriedades específicas. Além disso, a arquitetura do genoma 

(codificação versus não-codificação) levou-nos à análise das especificidades da formação 

de não-B conformações no genoma mitocondrial completo e suas implicações nos 

processos biológicos (modelo c). Estas estruturas localizadas em regiões não codificantes 

parecem desempenhar um papel crítico no processo de geração de deleções em moléculas 

de genoma mitocondrial associadas com determinadas doenças. 

Por último, uma nova metodologia para deteção de estruturas de ADN não-B, em 

regiões não codificantes foi desenvolvido (modelo d). Os dados disponíveis para 

microssatélites do cromossoma Y foram estudados usando programas computacionais para 

a previsão de estruturas e novos algoritmos para identificar novas conformações não-B de 

ADN. A avaliação dessas estruturas foi tentada por meio de simulações de dinâmica 

molecular, de integração termodinâmica e cálculos MMPBSA (Molecular Mechanics – 

Poisson Boltzmann Surface Area). As características estruturais moleculares presentes em 

ADN nuclear (microssatélites) foram inferidas e correlacionadas com diferentes processos 

biológicos e doenças. Desta análise resultou a previsão da formação de estruturas 

específicas que podem surgir em ADN de cadeia simples. A ocorrência destas 

conformações não-B de ADN em regiões não codificantes pode influenciar/regular os 

processos de transcrição que ocorrem em regiões que codificam proteínas, ou processos 

que dependem de potencial específico de ‘folding’ como a replicação do ADN. 

Há uma clara associação entre as regiões que codificam proteína (modelo a e b) e 

regiões não-codificantes dos genomas (modelo c e d). A possibilidade de estas duas regiões 

diferentes, gerarem ou formarem arranjos moleculares tridimensionais foi estudada nesta 

tese. O ADN não-B pode adotar diferentes conformações, tal como em sistemas de 

proteínas, o que ficou demonstrado nesta tese. Embora existam características estruturais 

únicas das proteínas e das estruturas de ADN não-B, os dois diferentes sistemas 

moleculares podem adotar conformações tridimensionais. Em regiões não codificantes, a 

formação de conformações de ADN não-B tem implicações na evolução em geral, bem 

como especificamente em deleções, na etiologia de várias doenças, e na replicação do 

material genético (modelo c e d). 
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5. General Introduction 

 

5.1. Coding versus Non-coding DNA 

 

Although the molecular structure of DNA has been described long ago [4, 5] (Figure 

1), the comprehension of the genome structural architecture is rather difficult due to its 

sequence plasticity. Processes as DNA replication, recombination, mutation and retro-

transposition make difficult to disentangle cause and consequence in DNA structural local or 

global conformational behaviour. Several approaches have been used to reveal how these 

processes act and what kind of changes they can produce [6-8]. These studies have shown 

that several sections of the genome appear to be non-codifying regions without any 

relevance for living cells and therefore to organisms, with the exception of non-coding 

functional ribonucleic acid (RNA) and microRNAs. Classically, the non-coding regions 

represent the section of the genomes where transcription does not occur. Transcription is the 

first step of gene expression that converts a sequence of DNA is to a specific chemical 

molecule (messenger ribonucleic acid - mRNA) that then can be converted to protein. There 

are well organized sections of a gene delimited by the transcribed part (exons) and not 

transcribed (introns). Only exons are transcribed, but the intronic part has important roles in 

alternative splicing and other processes [9]. The mRNA->protein conversion, called 

translation, is a process where each three nucleotides in mRNA represent an amino acid in 

the protein. The transcribed gene can also represent non-coding molecules (e.g., ribosomal 

RNAs, micro RNAs). The highly organized architecture of coding regions, where genes are 

present and transcription occurs, was stated to be not present in large percentage of non-

coding regions and that part of genome was called “junk DNA”. Several articles had 

demonstrated that the so called non-coding regions are indeed relevant and play a role in 

many cellular mechanisms, from prokaryotes to eukaryotes [10-19]. Recently the 

Encyclopedia of DNA Elements (ENCODE) project studied transcription, transcription factor 

association, chromatin structure and histone modification, that revealed biochemical 

functional regions in almost 80% of the human genome [13-20]. The functional DNA detected 

does not match protein-coding regions (exome), still it play an important role in the regulation 

of the genome. The ENCODE database of functional elements might be used to better 

understand different type of diseases (e.g., cancer, rare genetic disorders, common diseases 

with a genetic component), and therefore used to elucidate the relationship between 

functional non-coding DNA and coding DNA. Herein the name non-coding will be used for 
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regions that are not protein-coding, but where the transcription process can occur, might 

regulate transcription processes in protein-coding regions (e.g., act like transcription factors), 

or might present a biochemical signature in the cell. This thesis mainly focus the non-coding 

regions that are not transcribed (mtDNA control region and STRs), but present a biochemical 

signature in the cell, and also the importance and relevance of mutation events in the coding 

regions (MT, NAMPT and PNC genes) to the understanding of non-coding genome. 

 

The proliferation of “selfish elements” (mainly segments of DNA called mobile 

elements) until it is prohibitive for the organism survival was suggested to support  non-

coding regions proliferation, but cannot explain spliceosomal introns, small repetitive DNAs 

and random insertions[21]. Others defend that non-coding DNA results from natural selection 

and genome size and should have a direct impact in nuclear volume, cell size and cell 

division rate [22]. 

There are approximately 250 full genomes from different prokaryotic species with 

350-8000 genes. Eukaryotic genomes are represented by 2455 species already sequenced 

and the number of genes present in each are higher than 13000 [23-26]. The coding DNA 

described for prokaryotic and eukaryotic organisms represent only part of the total genome. 

In Eukaryotes, the genome has a high variation in size but the percentage of coding regions 

in the genomes remains the same (C-paradox) (Figure 2) [23]. The increase or decrease in 

genome size results mainly from expansion of introns and mobile elements (non-coding 

regions). The variation in complexity is possibly explained considering differences in gene 

deployment: patterns of transcriptional regulation and alternative splicing [23, 27]. The data 

from ENCODE project corroborates that the differences in gene deployment and 

transcriptional regulation depend not only on coding segments of the genome, but are 

associated to non-coding functional elements that interact with gene regions [16, 19, 20]. 

Figure 1: Molecular structure of double-helix DNA showing the base-pairing between nucleotides 

and backbone conformation (figure generated with VMD[1, 2] software ). 
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Figure 2: C-value paradox in Eukaryotes: increase of genome size depends of the increase of non-coding elements 

(figure from Lynch 2007, “The origins of genome architecture”). 

In humans, coding regions (≈24000 genes) represent 1% of the genome. The non-

coding part, which includes non-coding functional RNA cis-regulatory elements, telomeres, 

introns, pseudogenes, repeat sequences, transposons and viral elements, represents about 

99% of the total genomes [13-17, 19, 23]. In this thesis different analysis of some of these 

non-coding elements (e.g., pseudogenes - model a, control region mtDNA – model c, repeat 

sequences – model d) and coding regions that can often became non-coding or non-

functional (model a, model b), were performed. Different gene regions that are transcribed 

into proteins were analysed, suggesting that they can become non-functional (by 

accumulation of critical mutations) in different model species. The relationships between 

different genomic regions and several biological processes (e.g., gene expression, gene 

pathways) were also accessed. Regions of genome that are transcribed can become often 

non-functional by mutational events, or even became non-transcribed elements in the 

genome (model a, model b). On the other hand, regions that are not subjected to 

transcription mechanism, therefore not under selective pressures, can have relevant roles 

associated with structural relevant features of DNA (model c, model d). The DNA regions 

prone to form any DNA conformation that is not the orthodox right-handed Watson-Crick B-

form (non-B DNA) play an important role in critical biological processes (e.g., replication, 

deletions, transcription) that are now been understood. In this thesis, the analysed structural 

features of DNA are the non-B DNA conformations (hairpin, cruciform, cloverleaf-like 

elements and other secondary structures). 

We have used four genetic models to address the questions related with non-coding 

regions: The metallothioneins (model a), NAD pathway relevant genes (model b), MtDNA 
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(model c), and nuclear short tandem repeats (model d). These models will be described 

briefly in chapter 5.3. 

 

 

5.2. Contributions to Articles. 

 

JC contribution to the article related with metallothioneins (model a) was the 

bioinformatics experiments and computational analysis of the data (e.g., phylogenetic 

analysis). JC had no participation in the RT-PCR and expressed sequence tag (EST) 

analyses. 

JC contribution to NAD pathway relevant genes article (model b) was the 

bioinformatics analysis (e.g., protein-ligand binding, calculations of active site interactions). 

JC did not participate in the laboratory experiments. 

In the mtDNA non-B conformations (model c) analysis, JC helped in the development 

of bioinformatics tools to analyse the data (e.g., python scripts for UNAFold, Circos diagrams) 

and helped in the interpretation of results. JC had no participation in collecting the data and 

in the statistical analysis. 

JC and ISM designed the experiments and analysed the data for the Y-STRs article 

(model d). All authors helped in interpretation of results and in writing the article. 

JC performed the design of the software and the implementation of algorithms in the 

SPInDel workbench article. All authors helped to write the article. 
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5.3. Genetic Models. 

 

5.3.1. Gene Families: The Metallothioneins 

 

Lineage-specific traits and development of novel biological functions may result from 

pre-existing genes [28-30]. The chance of occurrence of novel biological functions 

(neofunctionalisation) is expectedly lower than the chance of inactivation (pseudogenisation) 

[31]. By this way, adaptive changes are less frequent since most amino acid replacements 

are neutral or deleterious. Models like the mammalian metallothionein family (MT family) can 

be used to study particular pathways of neofunctionalisation, pseudogenisation or 

subfunctionalisation [32-34]. Since several genomes (mammalian genomes) are currently 

available the study MT clusters and the evolutionary steps underlying the expansion of this 

gene family is possible. MTs are metal-binding proteins involved in homeostasis and the 

transport of essential metals. They are also relevant in protecting cells against heavy metals 

toxicity [35, 36], having thus a critical role in many biological processes. The reconstruction of 

the evolutionary history of MT clusters, combined with the expression profile of MT genes 

and behaviour of structural interactions of specific residues can help us to understand the 

relevant features of non-coding regions that result from specific duplications in mammalian 

genomes. 
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5.3.2. NAD Pathway Relevant Genes: NAMPT and PNC. 

 

Several redox reactions (chemical reactions in which atoms have their oxidation state 

changed) occurring in the cells from prokaryotes and Eukaryotes use nicotinamide adenine 

dinucleotide (NAD) as a cofactor [37-42]. Regulation of metabolism and energy production 

are mediated by NAD and it can also act as substrate for NAD-consuming enzymes, such as 

poly (ADP-ribose) polymerases (PARPs) and sirtuins. NAD is involved in DNA repair,  

transcriptional silencing and cell survival [3]. 

The synthesis NAD was studied considering different routes that depend on 

alternative precursors. De novo pathways synthesize NAD from tryptophan or aspartic acid 

and the salvage pathways recycle NAD from nicotinamide (Nam), nicotinic acid (Na) and their 

ribosides [39] (Figure 3). 

In humans the major source of intracellular NAD results from the nicotinamide salvage 

pathways [38] but several microorganisms also need this pathway to grow [42-44]. 

Mammalian cells do not present nicotinamidases which makes them a target to the 

development of drugs for infectious diseases and anti-parasitic therapies [43-47].  

In yeast and invertebrates the nicotinamidase gene PNC1 has been described as 

biomarker of stress and regulator of sirtuin [37, 48]. There are studies that tried to correlate 

these enzymes with aging [49] and infection [43-45, 49].  

Inflammation and disease has also been associated to the functional homologue of 

nicotinamidase in vertebrates, nicotinamide phosphoribosyltransferase (NAMPT) [50, 51]. 

Nicotinamidase expression protects human neural cells but increase in PNC1 and sirtuin 

activity also protects against proteotoxic stress in yeast and C. elegans [52, 53]. 

Figure 3: Description of de novo pathways synthesize of NAD from tryptophan or aspartic acid and of the salvage pathways that recycles

NAD from nicotinamide (Nam), nicotinic acid (Na) and their ribosides (source figure from Revollo et al. [3]). 
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The two enzymes described before can be present in the same organism [40, 41], 

rising the question about which one of them is expressed in these species. 

 

5.3.3. MtDNA 

 

MtDNA is a circular stranded molecule with a length of approximately 16.569 base 

pairs (bp) in humans and is normally present in all animal nucleated cells. It is contained in a 

double-membrane intracellular organelle (the mitochondrion) that is responsible for the 

energy generating process of oxidative phosphorylation. The mtDNA usually encodes 

thirteen important polypeptides in respiratory complexes (NADH - ubiquinone 

oxidoreductase: NADH1-NADH6 and NADH4L for complex I; Cyt b - ubiquinolcytochrome c 

oxidase reductase for complex III; CO - cytochrome c oxidase: COI-III for complex IV; ATP - 

adenosine triphosphate: ATPase6 and ATPase8 for complex V), two ribosomal ribonucleic 

acid  (12S and 16S rRNA) and twenty two transfer RNAs (tRNAs)[54]. This genome has also 

a region known as the non-coding region, that is referred as the control region in the 

literature, with regulatory functions [55]. Two hypervariable regions can be identified (HVRI 

and HVRII) in the control region. 

The human mtDNA has a few unique characteristics, namely a) maternal inheritance 

[56-58], b) discrete origins of replication, c) intronless genes, e) absence of dispersed 

repeats, f) few intergenic DNA, f) polycistronic transcripts, g) different genetic code and h) 

high copy number per cell [55]. 

Previous studies have determined the importance of several non-B DNA 

conformations in the mtDNA [59]. 
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5.3.4. Short Tandem Repeats Model: Features and Mutation Mechanism 

 

Short tandem repeats (STRs) represent 3% of human genome [23]. Most are located 

in non-coding regions. It is assumed that they do not have a biological function so they are 

classified as “junk DNA”. However there are clues pointing to the influence of STRs in gene 

expression (e.g., [CA]n and [CT]n repeats near a gene), recombination, maintenance of 

chromatin spatial organization [60, 61]. The mutation rate of these sequences is lower than 

unique DNA sequences (Table 1) [60]. 

 

Table 1: Mutation rates of unique DNA sequences and STR sequences (order of magnitude). 

 
Mutation rate order of magnitude 

(nucleotides per generation) 

Unique DNA sequences 10-9 

STR sequences 10-2 to 10-6 

 

Y chromosome STRs are used in most studies (e.g., population genetics, evolution 

and forensics) as genetic markers [62-67]. The Y chromosome is one of the two sex-

determining chromosomes in most mammals, and is a good model to study the contrasts 

between non-coding and coding regions since there is no recombination, except for the 

pseudo-autosomal region. The Y-STRs used in our study were retrieved from National 

Institute of Standards and Technology (NIST) [68] and  are described in Table 2 . 
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Table  2:  Allele range, repeat motif, GenBank accession numbers and reference alleles of Y-STR locus. Repeat motif 

abbreviations A,T,G,C,W,Y,R,S correspond respectively to adenine, thymine, guanine, cytosine, weak (A or T), pyrimidine, 

purine, strong (G or C) following the International Union of Pure and Applied Chemistry (IUPAC). 

 

Marker Name Allele Range* (repeat 
numbers) 

Repeat Motif GenBank 
Accession 

Reference 
Allele 

DYS19 10-19 TAGA AC017019 15 
DYS385 a/b 7-28 GAAA AC022486 11 

DYS389 I 9-17  (TCTG) (TCTA) (TCTG) (TCTA) AC004617 12 
DYS389 II 24-34 (TCTG) (TCTA) (TCTG) (TCTA) AC004617 29 
DYS390 17-28 (TCTA) (TCTG) AC011289 24 
DYS391 6-14 TCTA AC011302 11 
DYS392 6-17 TAT AC011745 13 
DYS393 9-17 AGAT AC006152 12 

YCAII a/b 11-25 CA AC015978 23 
DYS388 10-18 ATT AC004810 12 
DYS425 10-14 TGT AC095380 10 
DYS426 10-12 GTT AC007034 12 
DYS434 9-12 TAAT (CTAT) AC002992 10 
DYS435 9-13 TGGA AC002992 9 
DYS436 9-15 GTT AC005820 12 
DYS437 13-17 TCTA AC002992 16 
DYS438 6-14 TTTTC AC002531 10 
DYS439 9-14 AGAT AC002992 13 
DYS441 12-18 TTCC AC004474 14 
DYS442 10-14 (TATC)2(TGTC)3(TATC)12 AC004810 17 
DYS443 12-17 TTCC AC007274 13 
DYS444 11-15 TAGA AC007043 14 
DYS445 10-13 TTTA AC009233 12 
DYS446 10-18 TCTCT AC006152 14 
DYS447 22-29 TAAWA  AC005820 23 
DYS448 20-26 AGAGAT AC025227 22 
DYS449 26-36 TTTC AC051663 29 
DYS450 8-11 TTTTA AC051663 9 
DYS452 27-33 YATAC  AC010137 31 
DYS453 9-13 AAAT AC006157 11 
DYS454 10-12 AAAT AC025731 11 
DYS455 8-12 AAAT AC012068 11 
DYS456 13-18 AGAT AC010106 15 
DYS458 13-20 GAAA AC010902 16 

DYS459 a/b 7-10 TAAA AC010682 9 
DYS460 (A7.1) 7-12 ATAG AC009235 10 
DYS461 (A7.2) 8-14 (TAGA) CAGA AC009235 12 

DYS462 8-14 TATG AC007244 11 
DYS463 18-27 AARGG  AC007275 24 

DYS464 a/b/c/d 11-20 CCTT X17354 13 
DYS481 20-30 CTT  22 
DYS485 10-18 TTA  16 
DYS490  TTA AC019058 12 
DYS495 12-18 AAT AC004474 15 
DYS497 13-16 TTA  14 
DYS504 11-19 TCCT AC006157 18 
DYS505 9-15 TCCT AC012078 12 
DYS508 8-15 TATC AC006462 11 
DYS520 18-26 ATAS AC007275 20 
DYS522 8-17 GATA AC007247 10 
DYS525  TAGA AC010104 10 
DYS531 9-13 AAAT  11 
DYS532 9-17 CTTT AC016991 14 
DYS533 9-14 ATCT AC053516 12 
DYS534 10-20 CTTT AC053516 15 
DYS540  TTAT AC010135 12 
DYS549 10-14 GATA AC010133 13 
DYS556  AATA AC011745 11 
DYS557  TTTC AC007876 16 
DYS565 9-14 ATAA AC010726 12 
DYS570 12-23 TTTC AC012068 17 
DYS572 8-12 AAAT  10 
DYS573 8-11 TTTA  10 
DYS575  AAAT AC007247 10 
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DYS576 13-21 AAAG AC010104 17 
DYS594 9-14 AAATA AC010137 10 
DYS607  [GAAG]15[GAAA][GAAG][GAAA][GAAG]  19 
DYS612  [CCT]5[CTT][TCT]4[CCT][TCT]25 AC006383 36 
DYS626  AAAG  18 
DYS632  CATT AC006371 9 

DYS635 (C4) 17-27 TSTA compound AC004772 23 
DYS641  TAAA AC018677 10 
DYS643 7-15 CTTTT AC007007 11 

Y-GATA-H4 8-13 (25-30) TAGA AC011751 12 
Y-GATA-C4 20-25 TSTA compound G42673 21 

Y-GATA-A10 13-18 (TCCA)2(TATC)13 AC011751 15 

  

Figure 4: Schematic view of strand-slippage replication mechanism (figure from Jobling et al.[69]). 

 

There are factors that influence in different ways STR mutations such as repeat 

number, repeat base composition, repeat size, flanking sequence, recombination, sex and 

age of the individual [60]. 

STR accurate replication depends of diverse cell machinery that is used during cell 

division, DNA repair and recombination. DNA polymerases are essential to keep the integrity 

of the genome at different stages of cell development [70, 71]. 

One of the models used to explain Y-STR mutation mechanism is the stepwise 

mutation model (SMM) [69, 72-78]. This model (Figure 4) assumes that only small changes 

(when assuming that the change is one repeat unit at time we call the model single SMM) in 

allele number occur, there are equal probabilities of increasing and decreasing of repeat 

number, the size of alleles is unlimited and there is independence of the rate and size of 

mutations from the repeat number [60, 69]. 
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The biological mechanism that seems to be involved and can explain the observed 

results for STR mutations is the strand-slippage replication [69, 79, 80] (Figure 3). This 

process occurs during replication. After DNA single strand template is generated in ‘origins’ 

points that are recognized by proteins (helicases) that separate the two strands, folding of the 

template or of the copied strand can occur and originate a final DNA fragment with one allele 

size difference (one step mutation) [69, 79-84]. The techniques that are used to detect 

differences in STRs allele size are the polymerase chain reaction (PCR) followed by an 

electrophoresis. The development of the PCR technique has significantly improved the 

efficiency of laboratorial diagnostic procedures by allowing the in vitro formation of a large 

number of DNA copies (amplification) using a specific genomic region as template [85]. 

STRs were characterized by different experimental approaches as nanoelectrospray 

mass spectrometry (nano-ESI-MS) and ion mobility spectrometry (IMS) [100], aside from 

different in silico approaches [101-103]. STR repetitive motifs can interfere in basic molecular 

mechanisms as DNA replication [70, 79, 104-110]. 
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5.4. Non-B DNA Conformations Prediction 

 
Primary nucleotide sequences are just the tip of the iceberg concerning the role of 

DNA in cellular processes [10,11, 86-89]. Little attention has been given to other levels of 

genetic information beyond primary DNA sequences. It has been shown that non-B DNA 

conformations (any DNA conformation that is not the orthodox right-handed Watson-Crick B-

form) can have important roles in DNA replication, transcription and recombination. The 

existence of conserved structural DNA stretches suggests that such local DNA conformations 

can be used to estimate phylogenetic relationships. In this regard, several methods have 

been proposed in the literature for phylogenetic inference from DNA primary sequences [90]. 

However, these methodologies usually rely in simple genetic distances [91] and/or models of 

nucleotide substitution [92] disregarding structural DNA information. 

By studying evolutionary constrains in secondary and tertiary DNA structures it is 

possible to have a glimpse of how selective pressures are modulating mutation patterns in 

DNA and their implications in understanding complex protein–nucleic acid interactions [87, 

93]. The study of non-coding DNA structures is facilitated by the large number of nuclear and 

mitochondrial genomes now available for many species (genomes of National Center for 

Biotechnology Information database, NCBI at 

www.ncbi.nlm.nih.gov/sites/entrez?db=genome). The quality of data concerning non-coding 

regions is improving exponentially, allowing good predictions of structural DNA parameters 

[10, 86, 87, 93].  

It has been shown that a main cause for mutagenic instability is the occurrence of 

non-B conformations stabilized by negative supercoiling [87]. Large genome rearrangements, 

deletions or structural polymorphic states could have relevant phenotypic consequences to 

the organism [86, 87, 94, 95]. For instance, DNA slipped structures play a prominent role in 

several hereditary neurological diseases (e.g., Friedreich’s ataxia, Huntington disease or 

myotonic dystrophy) and some mtDNA deletions syndromes [86, 87, 94-97]. It has been 

already described that DNA-binding proteins, phenotype-associated SNPs and predicted 

enhancers are functionally relevant [10, 98, 99]. 

There is a lack of studies incorporating structural mutagenic pattern in non-coding 

genomic regions. Databases as Research Collaboratory for Structural Bioinformatics (RCSB) 

Protein Data Bank (PDB) database and nucleic acids database (NDB) can be used to better 

understand DNA structural features considering different genomic regions (coding versus 

non-coding). Specific DNA non-B conformation structures (Hairpin, Pseudoknot, and 

Cruciform) were associated with errors occurring in replication [100].  
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5.4.1. Thermodynamics of DNA and UNAFold 

 

Thermodynamics parameters of DNA have been studied for a long time [101-104]. 

Dynamic programming algorithms for DNA secondary structure prediction were utilized in this 

thesis. UNAFold [105] is a software that can perform DNA secondary structures predictions 

for Watson-Crick (W-C) pairings, wobble and non-canonical states under a variety of salt 

conditions, empirical equations for monovalent and magnesium dependence of 

thermodynamics. Nearest neighbor energy rules for Watson-Crick base pairs, internal 

mismatches, terminal mismatches and dangling ends is used to calculate the predicted 

structures based in a experimentally free energy database that considers different motifs 

[106]. Energies are also assigned to loops (pseudoknots and base triplets are excluded). The 

final experimental energy values are assigned to internal, bulge and hairpin loops. Hairpin 

loop is an unpaired loop in the end of a structure that begins by a paired double helix of DNA. 

The UNAFold complete database of parameters for base pairs, mismatches, terminal 

dangling ends, terminal mismatches, coaxial stacking, and a variety of loop motifs including 

hairpins, bulges, internal loops, and multibranched loops was used. Methods for 

measurement of the thermodynamic parameters have been reviewed elsewhere [102, 107-

110]. Dependence equations are implemented in UNAFold to perform accurate non-B DNA 

conformations (e.g., secondary structure) calculations for different values of solution 

conditions, empirical sodium and magnesium. 

 

5.4.2. AmberTools: Molecular Dynamics of Nucleic Acids, NAB and MMPBSA.  

 

AmberTools [111, 112] is a set of tools that can perform different calculations (e.g., 

build molecular systems, solvate systems, neutralize systems, root-mean-square deviation 

calculations, end to end distances, hydrogen bonds (H-bonds) calculations, molecular 

mechanics Poisson-Boltzmann solvent accessible surface area) over three-dimensional (3D) 

models of proteins or DNA and read molecular simulation data resulting from Amber [111, 

112] molecular dynamics calculations. 

NAB [113, 114] is a programming language designed to generate models for 

“unusual" DNA and RNA as the ones predicted by UNAFold. DNA has almost an infinite 

number of possible conformations with a repeat unit (sugar) that contains seven rotatable 

bonds (flexible backbone) and a rigid planar base (nucleotide base) [112]. These DNA 

features difficult the accurate prediction of non-canonical structures (e.g., secondary 

structures) using refinement methods as molecular mechanics since there are no 3D 

structures with high homology to our predicted models. Using this high level programming 

language, residues, strands and molecules can be treated as objects and several routines 
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can be performed over these objects. Manipulation of axis systems, including rotation and 

translations, can be implemented with NAB. Different type of models can be built using 

distance geometry methods with an additional coordinate manipulation for specific 

constrained systems. Molecular dynamics simulations can be easily implemented using ab 

initio models with the AMBER [111, 112] force field. 

The prediction of free energies differences directly linked to conformational equilibria 

is usually vital to understand the molecular basis of crucial biological functions [115]. The 

different conformations of DNA that result from properties of the phosphodiester backbone 

and the nucleic base pairs can be analysed with computational methods, which are also able 

to determine the associated free energies. Therefore, methods such as molecular mechanics 

Poisson-Boltzmann solvent accessible surface area (MMPBSA) can be used to determine 

the free energy of the individual end-point of each DNA molecular system. The entropy and 

the enthalpy [Generalized Born (GB) and Poisson-Boltzmann (PB)] [116, 117] calculations, 

must be determined to calculate the contributions to the free energy. Typical contributions to 

the free energy include the internal energy (bond, dihedral, and angle), the electrostatic and 

the van der Waals interactions, the free energy of polar solvation, the free energy of nonpolar 

solvation, and the entropic contribution (TS): 

G_molecule= E_internal+E_electrostatic+ E_vdW+ G_(polar solvation )+ G_(non-

polar solvation)- TS       (1) 

For the calculations of relative free energies between closely related complexes, it is 

assumed that the total entropic term in equation 1 is negligible as the partial contributions 

essentially cancel each other [118]. The first three terms of equation 1 can be calculated with 

no cut-off. The nonpolar contribution to the solvation free energy due to van der Waals 

interactions between the solute and the solvent is usually modeled as a term dependent of 

the solvent accessible surface area (SASA) of the molecule [119]. 
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5.5. Python Programming in DNA Analysis 

A wide range of computer programs is now available to deal with the huge amount of 

genetic information generated in thousands of laboratories around the world. The appropriate 

choice of a program for a given task depends both on the data and on the goals of the 

experiment. For instance, many open and closed source programs are available to make 

phylogenetic and evolutionary inferences from genetic data [120, 121]. 

The first step to build a computer program for management and analysis of genetic 

information is to choose the appropriate programming language (e.g., Python, Java, Perl, 

and C++). Another important aspect that must be considered in a software development 

effort is the interface with the user. To build an easy-to-use program based on point-and-click 

action over windows buttons, an appropriated graphical user’s interface (GUI) must be 

developed [122]. Conversely, the GUI development is not needed if the main users of the 

program are familiarized with commands via prompt operating system (OS) console window. 

Thus, very important issues for the main core of a program are: the data to be analysed 

(input data), the implementation of algorithms to perform the calculations or simulations over 

the data and the format of final results (output data). Different input file formats are normally 

used to store molecular data like DNA or proteins, namely Phylip [123], FASTA, MEGA [124], 

NEXUS, GenBank and protein databank (PDB). These formats are commonly used as input 

or output formats in several programs (e.g., Phylip, MEGA, PAML[125], MrBayes [126], 

DnaSP, Bioedit [127]) and standard molecular databases (e.g., GeneBank, FASTA, 

eXtensible Markup Language-XML). Conversion between different input file formats is 

usually possible and extremely useful if the user wants to carry out different kind of analyses 

over the data. 
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5.5.1. Python 

 

Python (free available at www.python.org) is an object oriented language created by 

Guido van Rossum [128] that has gained attention in recent years. As other high 

programming language it can only be executed after processed by a computer. Although 

being slower than low programming languages, Python have some important advantages: a) 

a reduced programming time, b) a shorter and easier to read source code c) a high 

productivity and d) a multiplatform capability (Windows, Linux, and Mac). Different Python 

third-part modules can be installed for a large variety of tasks, including molecular data 

handling and analysis: BioPython[129], PyCogent [130] , Matplotlib, , GenomeDiagram [131], 

NetworkX, py2exe, NumPy , Psyco, SciPy , WxPython (Table 3). These packages have the 

same common terminology of Python language although with specific modules and built-in 

functions. An extensive documentation comes as part of Python distribution [128] or can be 

found in dedicated books and articles [132, 133]. 
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Table 3: Relevant Python modules in molecular data analyses. 

Module Functionality Requirements Documentation Major flaws 
BioPython -Parse bioinformatic files into Python for several 

formats 
-Management and manipulation of genetic and 
proteic data 
-Code to perform searches in common on-line 
bioinformatics databases destinations (e.g., 
NCBI) 

-Python 2.3 or 
later 
-Numerical 
Python 

-Good and well 
written 
documentation 

-Some bugs 
resulting for 
poor 
maintenance 
of some 
functions 

PyCogent 
- Same as BioPython 

-Python 2.4 or 
later 
 

-Good and well 
written 
documentation 

-Some bugs 

GenomeDiag
ram 

-Graphic representation of genomes and DNA 
sequences 

-Python 2.4 or 
later 

-Good 
documentation 

 

Pythia 
-Thermodynamic calculations 

-Python 2.4 or 
later 

-Bad 
documentation 

Some bugs 

Matplotlib 

-Plot and save graphics in different formats 
-Handle geographic maps 

-Python 2.4 or 
later 
-Numpy 1.1 
-Libpng 1.1 
-Freetype 1.4 
-Basemap 
0.99.2 

-Extensive 
documentation 
-Very good 
examples 
 

-Some 
problems with 
integration 
with other 
major 
modules, 
namely 
wxPython 

NetworkX 

-Construct phylogenetic relationships through 
networks design and visualization 

-Python 2.4 or 
later 

-Documentation 
not enough 
-Lack of good 
examples 
 

Bugs and 
lack of 
flexibility 
related with 
visualization 
and drawing 

NumPy -N-dimensional array object 
-Linear algebra functions 
-Basic Fourier transforms 

-Python 2.4 or 
later 

-Nice and 
exhaustive 
documentation 

- 

Psyco 
-Speed up the execution of any Python code 

-Python 2.4 or 
later 

-Bad 
documentation 

-Maintenance 
and updates 
very limited 

Py2exe -Converts Python scripts into executable 
Windows programs able to run without requiring 
a Python installation 

-Python 2.3 or 
later 

-Good 
documentation 
 

-Poor stability 
of 
executables 

SciPy 

-Language extension that uses numpy to do 
advanced math, signal processing, optimization, 
statistics 

-Python 2.4 or 
later 

-Very well 
organized 
documentation 
-A lot of 
cookbook 
examples 

- 

wxPython 

- Allows easy creation of robust, highly functional 
graphical user interface 

-Python 2.3 or 
later 

-Good wxPython 
reference 
documentation 
-wxPython demo 
with examples 
for the code 

-Slow 
performance 
-Does not 
include a 
rapid 
application 
development 
tool (RAD) 
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5.5.2. Python Language and WxPython: Code and Common Terminology 

 

As an object-oriented language the functionality of Python is based in objects. 

Objects can be primitive data (integer, float, Boolean and complex), collection data (string, 

list, tuple, set dictionary) or even more complex data structures (e.g., SQL databases) [128]. 

In Python language almost everything can be an object. Normally, a routine process in 

Python is compacted in a module (a Python file or files saved in plain text with extension 

*.py) that contains executable statements as well as definition of functions, classes and 

methods. These Python files are normally edited in an integrated development environment, 

such as IDE (e.g., VisualWX; http://visualwx.altervista.org/), Eclipse (http://www.eclipse.org/) 

or NetBeans (http://www.netbeans.org/). IDEs permit that common statements and built-in 

functions are easily identified in code. Another relevant feature of Python is the mandatory 

indentation that makes easier to read and write the code.  

WxPython is an interface for the C++ toolkit wxWidgets. Cross-platform applications 

can be created with the functionality of C++ Widgets and the simplicity of Python language 

[122]. The range of possibilities to build a GUI might be increased by additional widgets 

(Table 4) that are directly written in wxPython. 

 

 

Figure 5: Basic wxPython application structure [adapted from wxPython in Action [122]. 
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Table 4: Common widgets and dialogs implemented in wxPython. 

Name Features Type 

wx.Window WxWindow is the base class for all windows and represents any visible 

object on screen. It includes  controls and top level windows. 

Frame 

wx.FlexGridSizer Lays out its children in a two-dimensional table Sizer 

wx.StaticBoxSizer Rectangle drawn around other panel items to denote a logical grouping 

of items 

Sizer 

wx.Button Control that contains a text string Widget 

wx.ComboBox Displays static list with editable or read-only text field; or a drop-down 

list with text field; or a drop-down list without a text field. 

Widget 

wx.Grid WxGrid and its related classes are used for displaying and editing 

tabular data. They provide a rich set of features for display, editing, and 

interacting with a variety of data sources, namely genetic data. 

Widget 

wx.Notebook Manages multiple windows with associated tabs Widget 

wx.StaticText Displays one or more lines of read-only text Widget 

wx.TextCtrl A text control allows text to be displayed and edited; it may be single 

line or multi-line. 

Widget 

wx.FileDialog File chooser dialog Dialog 

wx.MessageDialog Dialog that shows a single or multi-line message, with a choice of OK, 

Yes, No and Cancel buttons. 

Dialog 

wx.ProgressDialog Dialog that shows a short message and a progress bar Dialog 

wx.SingleChoiceDialog Shows a list of strings and allows the user to select one Dialog 

 



34 FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease

 

 

5.5.3. BioPython, PyCogent, GenomeDiagram, and Pythia 

 

As described before, Python and wxPython are packages that implement in the main 

core of the software the routine operations and tools for GUI construction, respectively. It is 

then necessary to have a set of packages that could easily deal with most common 

operations required in molecular data manipulation. BioPython is a package that consists in a 

set of modules to read and manipulate molecular data (DNA and proteins). The most relevant 

functionalities of BioPython for computational molecular biology are: a) the capacity for 

parsing bioinformatic files into Python from several formats (Blast out, ClustalW, FASTA, 

Genbank, PubMed and Medline, Expasy, SCOP, UniGene, SwissProt); b) the incorporation 

of a code to perform searches in common on-line bioinformatics destinations (NCBI, Expasy); 

c) the easy management of sequence features (sequence translation, transcription, weight 

calculation, alignments) and e) the easy integration with BioPerl and BioJava modules 

through BioCorba [129]. To use DNA and proteins sequences as input data, it is not 

necessary to write the code since BioPython already has the SeqIO system that defines 

SeqRecord objects to manipulate this data and normally is very fast reading and 

manipulating sequences. BioPython module can be called by using ‘import BioPython’ in the 

beginning of Python file and specific functions are invoked using ‘from BioPython import 

‘function’ ’. Documentation for BioPython has many useful examples for all functions. 

PyCogent [130] is a python module that can perform all the functions implemented in 

BioPython but focused in genomic biology. GenomeDiagram [131] can make graphic 

representations of genomic data. Pythia (http://sourceforge.net/projects/pythia/) includes 

modules that can calculate DNA binding and folding energies of specific DNA sequences. 

 

5.5.4. Matplotlib, NumPy and SciPy 

 

The implementation of mathematical routines when developing software can be 

achieved by using a great number of external Python modules, although the most commonly 

used in software development are Matplotlib, NumPy and SciPy. With these modules it is 

possible to call mathematical functions, to represent the data graphically, to perform iteration 

over different numerical data and statistical analyses of data. Global statistics from a 

sequence or alignment, namely proportion of nucleotides and GC content can be calculated 

with this module. 
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5.5.5. SPInDel Workbench 

 

The SPInDel workbench is a computational platform developed in python object 

oriented language using BioPython (http://biopython.org/), SciPy (http://www.scipy.org/), 

GenomeDiagram (http://bioinf.scri.ac.uk/lp/programs.php), Matplotlib 

(http://matplotlib.sourceforge.net/), NumPy (http://numpy.scipy.org/), and 

PyCogent(http://pycogent.sourceforge.net/). It can import alignments of specific targeted 

genome regions (e.g., ribosomal RNA gene regions) showing regions of nucleotide 

conservation and variation. The variation introduces gaps in the alignment (-) that can be 

used as a source of information to characterize and classify different species. The 

classification of each species is based on the different length of the sequence in the 

alignment that results from insertion/deletion (indel) events. 

Theoretically, the discrimination of all Eukaryotic species on Earth (5-15 million) can 

be done using 6 hypervariable regions with 20 alleles each. The SPInDel analysis was based 

in ribosomal RNA gene regions but the analyses of other regions with the same pattern of 

sequence evolution (e.g., non-coding regions) is also possible. Different statistical 

approaches were implemented in this multi-platform software (Windows, Linux or compilation 

in other operating systems using the SPInDel Workbench source code) by using python 

algorithms and modules. The application of this software can be extended to other fields 

where the identification of species is relevant (e.g., ecology, forensics). 
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5.5.6. NABpy 

 

NABpy (NAB python implementation) is a python module that automatizes all the 

processes related with initial protein and DNA three-dimensional molecular systems (in 

vacuum or with explicit solvation) using Matplotlib, BioPython, PyCogent, UNAFold and 

AmberTools. Different functions are implemented in the module: 

 Create protein and DNA molecular systems taking in consideration specific 

unconstrained and constrained models. 

 Solvate systems with explicit water (WAT) and neutralization with sodium ions (Na+). 

 Generate input files to run AMBER [112] molecular dynamics (MD) simulation, 

including the *.prmtop (topology file) and *.mdcrd (simulation parameters file). 

 Calculate H-bonds along trajectories and calculate parameters for DNA base-

stacking. 

 Calculate the end-to-end distances of all atoms and backbone atoms 

 Run structural analysis of DNA molecular systems using Curves+ [134] and 3XDNA 

[135-137] (helical and backbone parameters). 

 Calculate free energy parameters using MMPBSA [112] and Delphi [138]. 

 Generate graphic representations of results using Matplotlib (e.g., RMSD values). 
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6. Research Questions and Objectives 

The main objective of this thesis is to study non-coding DNA regions in comparison 

with the already well-studied protein-coding regions and thus to infer which biological 

processes occur in non-coding genomic tracts of living cells. Using four different research 

models, the specific objectives of this work were: 

 Analyse the MT clusters duplicated genes considering their coding/non-coding status 

(model a). 

 Study NAMPT and PNC genes and respective functional proteins involved in NAD 

pathways, using different model species (model b). 

 Access the current functional status of NAMPT and PNC homologues genes, using a 

computational methodology with model organisms (model b). 

 Perform a protein-ligand docking using homology modelling structures of NAMPT and 

PNC (model b). 

 Detect and identify conserved structural patterns (non-B DNA conformations) in non-

coding DNA regions of mammalian mitochondrial (model c) and nuclear genomes 

(model d).  

 Evaluate the association between conserved non-B DNA conformations and specific 

types of non-coding regions such as mitochondrial control regions (model c) and 

STRs (model d). 

 Measure the degree of randomness of structural conservation across genomes using 

statistical methodologies to validate identified structures. Infer evolutionary constrains 

and mutagenic patterns in identified structures (model c, model d). 

 Identify secondary structures in mtDNA and their role in different biological processes 

(model c). 

 Determine the structural features of different regions in mtDNA (coding and non-

coding), and ascertained how these non-B DNA conformation might influence genetic 

disorders, replication and transcription (model c). 

 Implement a 3D structural analysis of DNA using python algorithms, UNAFold, and 

non-B DNA conformations database (model d). 

 Structural analysis of DNA using previously described computational methodologies, 

such as molecular dynamics (model d). 

 Correlate the size, localization and physical parameters of predicted structures with 

specific genomic features: replication origins, transcription and mutagenic instability 

(model d). 

 Design software able to use different regions of the genome (e.g., non-coding 

regions), in order to identify taxonomic groups at various levels (SPInDel workbench). 
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 Design software (NABpy) to automatize DNA molecular dynamics simulation and 

MMPBSA free energies analysis. 

 

Next chapters reflect the work that has been achieved in order to tackle the research 

questions and objectives focussed upon during this work. 
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7. Publication I: Gains, Losses and Changes 

of Function after Gene Duplication: Study 

of the Metallothionein Family 
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Abstract 

Metallothioneins (MT) are small proteins involved in heavy metal detoxification and 

protection against oxidative stress and cancer. The mammalian MT family originated through a 

series of duplication events which generated four major genes (MT1 to MT4). MT1 and MT2 

encode for ubiquitous proteins, while MT3 and MT4 evolved to accomplish specific roles in brain 

and epithelium, respectively. Herein, phylogenetic, transcriptional and polymorphic analyses are 

carried out to expose gains, losses and diversification of functions that characterize the 

evolutionary history of the MT family. The phylogenetic analyses show that all four major genes 

originated through a single duplication event prior to the radiation of mammals. Further 

expansion of the MT1 gene has occurred in the primate lineage reaching in humans a total of 13 

paralogs, five of which are pseudogenes. In humans, the reading frame of all five MT1 

pseudogenes is reconstructed by sequence homology with a functional duplicate revealing that 

loss of invariant cysteines is the most frequent event accounting for pseudogenisation. 

Expression analyses based on EST counts and RT-PCR experiments show that, as for MT1 and 

MT2, human MT3 is also ubiquitously expressed while MT4 transcripts are present in brain, 

testes, esophagus and mainly in thymus. Polymorphic variation reveals two deleterious 

mutations (Cys30Tyr and Arg31Trp) in MT4 with frequencies reaching about 30% in African and 

Asian populations suggesting the gene is inactive in some individuals and physiological 

compensation for its loss must arise from a functional equivalent. Altogether our findings 

provide novel data on the evolution and diversification of MT gene duplicates, a valuable 

resource for understanding the vast set of biological processes in which these proteins are 

involved. 
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Introduction 

 

When a particular gene is constrained to a specific function, the appearance of 

biological novelty demands genetic redundancy. Duplication of pre-existing genes may lead 

to the establishment of lineage-specific traits and to the development of novel biological 

functions [1,2,3,4,5]. However, the probability of widening biological functions 

(neofunctionalisation) is expectedly lower than the chance of inactivation (pseudogenisation) 

[6,7,8] as most amino acid replacements are more likely neutral or deleterious, rather than 

leading to any particular adaptive change. Although the majority of gene duplicates result in 

pseudogenes, many remain functionally active longer than it would be expected by chance. 

This observation led to the development of the subfunctionalisation model [9,10], according 

to which the accumulation of complementary loss-of- function mutations within regulatory 

segments of both members would facilitate their preservation while maintaining the original 

function. In case of preserving the parental function, duplicates may act as backup 

compensation copies to buffer against the loss of a functionally related gene [11,12]. 

The current availability of several genome sequences allows the study of the 

evolutionary steps underlying the expansion of a gene family by detailed characterisation of 

lineage-specific expansions. MTs are metal-binding proteins involved in homeostasis and the 

transport of essential metals, more specifically, in protecting cells against heavy metals 

toxicity [13,14], having thus a critical role in many biological processes. In mammals, four 

tandemly clustered genes (MT1 to MT4) are known. Although all genes encode for conserved 

peptide chains that retain 20 invariant metal-binding cysteines, MT3 and MT4 seem to have 

developed additional properties relatively to MT1 and MT2, such as protection against brain 

injuries [15,16] and epithelial differentiation [17], respectively. Finally, during the evolution of the 

lineage that led to modern humans, MT1 has undergone further duplication events that 

have resulted in 13 younger duplicate isoforms [18]. The co-existence of younger and older 

duplicates is thus an opportunity to reconstruct the evolutionary history behind the divergence 

of the MT family in mammals. 
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Materials and Methods 

Phylogenetic analyses 

Coding sequences annotated as orthologues of the human MT genes were 

extracted from the Ensembl database (www.ensembl.org, release 56: Sep 2009) [19]. The 

final set of sequences (Table S1) does not include shortened sequences and those 

annotated in non-human species as representing the orthologue of distinct human MT1 

genes. Codon sequences were aligned using MUSCLE [20,21] incorporated in Geneious 

software v5.1.3 (http://www.geneious.com). Coding MT sequences from four fish species 

(Danio rerio, Oryzias latipes, Tetraodon nigroviridis and Takifugu rubripes), two birds (Gallus gallus and 

Taeniopygia guttata) and a reptile (Anolis carolinensis) were used to outgroup the phylogeny. Two 

methods were used to reconstruct the tree topology: maximum likelihood (ML) and 

Bayesian. In both cases, the model of nucleotide substitution used was HKY+G as 

determined in jModelTest [22]. The program BEAST [23] was used to estimate the 

Bayesian phylogeny in two runs (50 million generations each) using a Bioportal at the 

University of Oslo (http://www.bioportal. uio.no). The resulting log file was analyzed in 

Tracer [24]. The tree was obtained in TreeAnnotator from the BEAST software using a 

threshold for clade credibility of 0.5. For all the statistics obtained, the effective sample 

size (ESS) was always within the recommended threshold. The ML topology (Figure S1) 

was obtained with PHYML (http://www.bioportal.uio.no) [25] using the 

transition/transversion ratio, the proportion of invariable sites and the gamma parameter 

estimated by the program. Bootstrap branch support was estimated using 1000 data sets. 

Tree visualization and final edition were performed in FigTree v1.3.1 

(http://tree.bio.ed.ac.uk/software/figtree). 

 
Organization of the human and mouse MT family 

The chromosomal organization of the MT family and flanking neighbours (BBS2 and 

NUP93) in humans and mice was performed using NCBI (Homo sapiens build 36.2 and Mus 

musculus build 37.1) [26] and Ensembl (release 56) genomic coordinates. 
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RT-PCR and expressed sequence tag (EST) analyses 

Total RNA from 15 human tissues was obtained from Ambion (FirstChoice Human 

Total RNA Survey Panel). The complementary DNA (cDNA) was synthesized with random 

hexamer primers from 2 mg of human total RNA using the RETROscrip First Strand Synthesis 

Kit (Ambion) according to the manufacturer’s instructions. PCR primers used for amplification 

of the MT2, MT3 and MT4 transcripts were: 5’ATCCCAACTGCTCCTGCGCCG3’ (for- 

ward) and 5’CAGCAGCTGCACTTGTCCGACG3’ (reverse), 

5’CTGAGACCTGCCCCTGCCCTT3’ (forward) and 5’TGCTTCTGCCTCAGCTGCCTCT3’ 

(reverse) and, 5’CCCCAGGGAATGTGTCTGCATGT3’ (forward) and 5’GGCACATTT- 

GGCACAGCCCGG3’ (reverse), respectively. Samples were amplified with Qiagen Master 

Mix for 35 cycles at 95°C for 30 sec, 62°C for 30 sec and 72uC for 45 sec after an initial 

denaturation at 95°C for 15 min and followed by a final extension step of 10 min at 72°C. PCR 

products were then purified with ExoSAP-IT (USB Corporation, Ohio, USA) by incubation at 

37°C for 15 min, followed by enzyme inactivation for 15 min at 85°C. The resulting purified 

fragments were sequenced using an ABI Big Dye Terminator Cycle Sequencing Ready 

Reaction kit (Applied Biosystems) and analysed in an ABI PRISM 3130xl (Applied Biosystems) 

for validation of the corresponding sequence. 

ESTs were extracted from Unigene [26] as counts per million transcripts for each of 

the given tissues and displayed as log2 of transcripts per million. A unique EST for human 

MT4 is annotated in Unigene (GenBank BF759140.1) but since it contains intronic sequence 

was removed before plotting the data set. The heat-maps were constructed with an in-

house tool using average linkage and the correlation of expression patterns as a measure of 

dissimilarity to build the hierarchical clusters. 

 

Polymorphic population data 

The Biomart tool [27] at the Ensembl database was used to assess the human 

polymorphic variability. Allelic and genotypic frequencies of Tyr30 (rs666636) and Trp31 

(rs666647) were extracted from the HapMap project (http://www.hapmap.org). Genotypes 

for each population were also retrieved and analysed to evaluate the linkage disequilibrium 

between variants. 
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Structural homology modelling and visualization 

 

The crystal structure of the mouse Mt2 [28] (PDB code 4mt2) was used to model 

[29] both human native and mutation-carrying MT4 proteins following a previously reported 

methodology [30]. All the structures were displayed with PyMol (www.pymol.org). 

 

Results 

 

Evolutionary history of the MT cluster in mammals 

The phylogeny of the MT family in mammals was reconstructed with Bayesian and 

maximum likelihood methods both approaches resulted in a similar topology (Fig. 1 and 

Figure S1) revealing the robustness of the inference. Tree topology, supported by high values 

of posterior probabilities (Fig. 1), point clearly to two rounds of duplication occurring at the 

MT family creating MT4 first and the ancestor of MT1/MT2/MT3. In a second round of 

duplication, MT3 diverged from the MT1/MT2 ancestor. These data are in agreement with 

previous observations [31] which concluded that MT duplication occurred before mammalian 

radiation. However, because MT genes from birds and reptiles group within the 

MT1/MT2/MT3 cluster, it is possible to consider a more ancient origin for MT4, and 

therefore, its loss in non-mammalian land vertebrates. An alternative explanation is that 

MT4 is thus a mammalian-specific gene which has been accumulating a pronounced 

number of replacements assigning its sequence to a basal position in both Bayesian and ML 

phylogenies. 

Extant mammalian genomes seem to carry a single copy of MT2, MT3 and MT4, 

while several MT1 copies are found in some species. The highest number of MT1 genes 

was found in the genome of primates indicating they have arisen in recent duplication 

events. The detailed genomic organization of the MT cluster in humans and mice provides a 

good example (Fig. 2). In both species, genes are oriented as cent-MT4-MT3-MT2-MT1- tel 

and flanked by BBS2 and NUP93, revealing an evolutionarily conserved arrangement of the 

cluster. Still, a marked difference distinguishes both genomes. While mt1 did not expand 

in mice, humans carry 13 arrayed duplicates (MT1A to MT1J, MT1L, MT1M and MT1X), 

five of which (MT1L, MT1J, MT1D, MT1C and MT1I) have been predicted to be no longer 

active forms. Overall, this corresponds to a genomic expansion of about 66 Kb in humans. 
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Characterisation and divergence of mammalian MT proteins 

Mammalian MTs are proteins with 20 invariant cysteines (Fig. 3A) which are 

responsible for the binding and sequestration of zinc (Zn), cadmium (Cd) and copper (Cu), 

among other metals. A total of 9 and 11 cysteines are required to form protein-domains that 

bind three and four ions (Fig. 3B). As documented previously [32,33] and illustrated here (Fig. 

3B), these residues are involved in metal binding through their thiol (-SH) moieties, which 

must be oriented towards the inside of the metal clusters whenever the ions are sequestered 

[34]. In humans and mice, MT1 and MT2 are 61- residue proteins (Fig. 3A). The MT3 holds 

an extra residue in the b domain (Thr5), which is important for its neuroinhibitory activity 

[35,36], and a six-residue long insertion in the a domain, whereas MT4 shares an additional 

residue in the b domain (Glu5) (Fig. 3A). 

In order to obtain a clear picture of the amino acid conservation between all pairs of 

active MTs, identity scores were calculated in human/mouse comparisons (Fig. 4). As shown, 

MT2, MT3 and MT4 orthologues share 86%, 87% and 94% of residue identity, respectively. 

Among human MT1 duplicates, MT1E showed the highest identity (85%) with the mouse 

Mt1. Protein identity scores for MT3 resembles that observed in MT1 and MT2 while MT4 

orthologues are strongly conserved in their amino acid sequences (94% of residue identity 

between human and mouse). Previously, it was suggested that the preservation of MT4 

sequence (only 4 out of 62 residues differed between human and mouse proteins) results 

from functional constraints [37] involved in epithelial cell differentiation [17]. Phylogenetic 

analyses (Fig. 1 and Figure S1) show that MT4 resulted from an old event of duplication and 

the high degree of sequence conservation between human and mouse orthologues strongly 

points to a role which seems to have been functionally important in mammalian evolution. 
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About the pseudogenisation incidents 

An important aspect related to the fate of a gene copy is the identification of the 

type of replacements leading to the pseudogenisation of functionally active genes. From its 

genomic sequence, we would be able to reconstruct the ancestral functional open reading 

frame and, at the same time, discern the panel of mutational events that have 

accumulated over time. To reconstruct the open reading frame of all the five MT1 

pseudogenes, the corresponding genomic sequences were aligned with each of the MT1E 

exons separately, followed by manual inspection of sequence homology (Fig. 5). Because 

any attempt to disclose the impact of nonsynonymous replacements is not straightforward 

unless complemented with additional functional assays, we focused our attention on obvious 

damaging mutations, such as (a) replacement of invariant cysteine residues, (b) 

introduction of aromatic residues, as well as (c) premature stop codons, indels and mutations 

at the consensus donor (GT) or acceptor (AG) splice sites. Because these are shared 

features among all functional genes, our inferences are not constrained by the functional 

template that could have been chosen to infer the reading frame of each pseudogene. 

We detected a total of 12 deleterious mutations within the predicted reading frame 

of MT1 pseudogenes, eight of which would result in the cysteine replacement and, in 

some cases, the inclusion of a premature stop codon (Cys5Tyr, Cys15Tyr, Cys24Tyr, 

Cys26X, Cys37Tyr, Cys41X, Cys50X, and Cys60Arg) covering MT1JP, MT1CP, MT1DP 

and MT1LP, three non-  cysteine codons that would encode for an aromatic residue 

(Gly11Phe, Ser18Phe and Ser35Phe) in MT1IP and MT1CP, and a 1-bp deletion at the C-

terminal domain in MT1IP. Since cysteine replacement either with tyrosine or with a stop 

codon involves only a single nucleotide substitution, these residues are expected to often 

contribute to MT pseudogenisation. 

Outside the coding sequence, two mutations were found at the donor and acceptor 

splice site of MT1CP and MT1IP, respectively. Regarding the number of mutations, MT1CP 

is the pseudogene harbouring the highest number of events (six in total), followed by 

MT1IP and MT1DP (with three mutations each), MT1JP (two mutations) and finally by 

MT1LP, which would encode a truncated protein due to a premature stop codon. 

 

Expression profile of the MT genes in humans and mice 

Since gene duplication often results in a diversified spatiotemporal pattern of 

expression of duplicate family members [38,39,40,41,42] we next examined the MT 

transcription pattern using EST data for 30 human and mouse tissues as a metric of basal 

expression for all functional genes. Previous data have shown that MT1 and MT2 are 

ubiquitously expressed in both species whereas MT3 and MT4 present a confined 

expression in human and mouse brain [43] and in mouse epithelial tissue [17] respectively, 
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although data regarding expression of MT4 in human tissues is still missing in the literature. 

The EST records were assembled in a diagram (Fig. 6A) that, in general terms, strongly 

overlaps the literature data. For instance, mouse mt1 and mt2 seem to be as widely 

expressed as the human MT2, a gene that has been proposed to have a housekeeping role 

for heavy metal homeostasis in every cell [44]. In humans, the expression pattern of MT2 

clusters with MT1E and MT1X, the two duplicates that reveal the most wide pattern of basal 

expression [45]. The remaining genes revealed a more confined pattern of basal 

expression. For instance, constitutive expression of MT1B seems to be restricted to 

connective and blood tissues, whereas MT1A is highly expressed in the intestine and 

adipose tissue and less in uterus, eye, liver and lung. This analysis also rank MT1H, MT1F 

and MT1G in an intermediate position, showing a pattern that is not as wide as that of 

MT1E and MT1X but not so restricted as that of MTB, MT1A and MT1M either. Although 

the lack of ESTs in particular tissues may indicate difficulties to distinguish between 

different MT1 transcripts or bias in tissue representation, these caveats do not necessarily 

challenge the tissue-specificity generally observed in most MT1 duplicates, possibly playing 

distinct roles in distinct cell types as was suggested before [44,46]. 

In contrast to MT1 and MT2, both MT3 and MT4 are constitutive tissue-specific 

isoforms that do not respond to metal- induction [17,44,47,48,49]. The EST data (Fig. 6) 

although supporting high expression of MT3 in human and mouse brain tissues also reveal 

abundant expression in other tissues as well. 

Concerning the MT4 profile, EST records agree with previous findings that 

documented the stratified squamous epithelium of digestive and reproductive systems as 

the main source of gene transcripts in mouse [17]. Thus far, no data exist on the expression 

of MT4 in humans (reviewed in [31]) and the EST surveillance has not detected expression 

in any tissue. These intriguing observations directed a more refined analysis concerning 

MT4 expression in humans that was here accomplished by RT-PCR in 15 human tissues. 

For comparative purposes we also assayed the expression of MT2 and MT3 in the same 

tissue collection (Fig. 6B). As expected, transcripts related with MT2 were observed in all 

tissues analysed. A similar scenario was observed for MT3 which is here demonstrated to 

be as ubiquitously expressed as is MT2. On the other hand, the detection of MT4 

transcripts was only possible in four tissues (brain, testes, thymus and esophagus), with an 

evident higher expression in thymus, whose medullar component is mainly composed of 

epithelial cells [50]. Although the RT-PCR itself cannot provide exact quantitative 

inferences, it is possible to infer that in all the tissues where MT4 transcripts were detected, 

the expression level resulted lower than that of MT2 and MT3 with the exception of thymus. 
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Human polymorphic variability at the MT cluster 

Although it is well established that functional MTs preserve a sequence with 20 

invariants cysteines, no studies have thus far established the polymorphic status of the 

remaining residues. To achieve such information, we retrieved the available information on 

all human active proteins regarding nonsynonymous replacements (Table 1). Several 

nonsynonymous variants were found in MT1 duplicates and in MT2, but none is documented 

for MT3. Although a link between any of these replacements and a functional perturbation is 

not straightforward without complementary experimental assays, it should be mentioned 

that, in most of the cases the conserved cysteine residues remain unchanged and the 

replacement does not introduce an aromatic amino acid. The exceptions were observed in 

MT1B and MT4. In the MT1B case, a putative deleterious Cys19Ser (rs61744104) is 

indicated as polymorphic in humans although no additional data concerning the allelic 

frequencies are available in the databases. In the MT4 case, two candidate deleterious 

mutations were detected, Cys30Tyr (rs666636) and Arg31Trp (rs666647), both of which 

result in the introduction of aromatic amino acids along with the substitution of a critical 

cysteine at position 30. Taking into account the functional requisites of MTs, any of these 

mutations would ultimately result in an impaired metal-binding protein. In contrast with the 

MT1B case, allelic frequencies for these two polymorphisms are available and were 

retrieved from the HapMap (Table 2). Allelic frequencies of Cys30Tyr (rs666636) and 

Arg31Trp (rs666647) in 11 populations are presented in Table 2. In European populations 

up to 8,5% of the individuals carry a putatively deleterious allele. Frequencies are even 

higher in African and Asian populations (up to 30%). Genotype evaluation in all the 

populations showed that every chromosome that contains the Trp31 allele also contains the 

Tyr30, but not vice versa, which points to Cys30Tyr as the oldest variant and Arg31Trp as 

appearing afterwards in the same background. 
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Discussion 

 

The history and fate of post-duplication events in the mammalian evolution was 

herein explored by the study of MT family members. After a duplication event, newly arisen 

genes can follow distinct evolutionary paths: if the parental gene is maintained active, 

redundant duplicates can escape purifying selection and start to accumulate loss-of-function 

mutations resulting in pseudogenisation; less frequently, particular replacements may direct 

new genes into novel functions. Subfunctionalisation can also occur if parental and 

duplicates retain function but become distinct and complementary in their spatiotemporal 

pattern of expression. 

Mammalian MT1 and MT2 are conserved proteins that play a critical role in heavy-

metal homeostasis and are transcriptionally induced by metal [51] and glucocorticoids [52]. 

While most of the mammals show a single MT1 and MT2 copy that evolved through a 

duplication event, primates harbor multiple MT1 copies (Fig. 1). In humans, MT1 expansion 

resulted in a total of 13 tandemly arranged genes, five of which are known or predicted to be 

pseudogenes, while the remaining eight are still functionally active (Fig. 2). The 

pseudogenisation process has occurred by the accumulation of loss-of-function mutations 

mainly by replacing critical metal-binding cysteines or incorporated aromatic amino acids in 

the protein sequence (Fig. 5). The most recently documented of these pseudogenes, MT1L 

[53], shows a unique mutation in which an invariant cysteine is replaced by a premature stop 

codon (Cys26Stop) resulting in a truncated protein. 

Since its discovery [54], MT3 has been frequently associated with the protection 

against neuronal injury [15,16]. The mammalian MT3 protein shows a characteristic insertion 

of six residues at the a-domain when compared to that of MT1 and MT2 (Fig. 3) and an extra 

residue in the b domain (Thr), which is responsible for neuron growth inhibitory activity in 

Alzheimer disease [35,36]. Although the expression of MT3 has been almost exclusively 

related to brain tissues, we demonstrate that MT3 is a ubiquitously expressed gene. These 

results would drive future investigations on the involvement of MT3 in other cellular 

processes. In this regard, it is worth mentioning that Mt3 associates with other proteins in 

mouse brains as part of a multiprotein complex [55] suggesting function diversification and 

involvement in various physiological processes. 

The most recently discovered family member, MT4, retains a high degree of 

conservation between humans and mice (Fig. 4), yet it shows the highest sequence 

divergence when compared with any  other MT family member. However, the detection of 

structurally disrupting mutations at polymorphic proportions (Table 1) predicts that MT4 is 

inactive in some individuals. If that is the case, might the role of MT4 be performed by 

another family member? To address this possibility, the metal binding properties of MT4 were 
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explored in the literature data. It has been shown that mouse Mt4 retains the capacity to bind 

Zn [17,37], Cd and Cu as the ubiquitously expressed Mt1/Mt2, although the affinity to Cu is 

higher [37,56]. Furthermore, it showed similar characteristic metal-thiolate clusters and 

solvent accessibility as Mt1 [57]. Extrapolating these properties to the human protein, for 

which no data of such detail are available, it is tempting to assume that the loss 

(pseudogenisation) of MT4 can be compensated by functional equivalents. In this context, 

MT1 and MT2 would be the most likely candidates for a number of reasons. First, the metal 

binding properties of Mt1 and Mt2 overlap that of Mt4 in mice [57]. Second, it has been 

demonstrated that some MT1 duplicates have cellular specificity [44,46] and some of them 

are expressed in epithelium. Third, previous experiments in Drosophila melanogaster 

demonstrated that the number of functional gene duplications correlates to the resistance to 

Cd [13,58] and Cu [13] as a direct consequence of the increased gene expression. Taken 

these data together, is thus possible that additional MT1 duplicates may have assumed the 

specialized role of the inactivated protein in humans. In such a case, it is likely that some 

MT1 genes may act as compensatory backup copies that replace MT4 in individuals carrying 

deleterious mutations. Accordingly, it is thus further possible to infer that the compensatory 

mechanism implies the regulation of gene expression as observed in D. melanogaster. 

Tracing the evolutionary history of a gene after duplication often leaves more questions than 

answers. Some of those answers are easily obtained by direct read of DNA or protein 

sequences while some other depend on additional information which was here gathered for 

the MT family. Data on phylogeny, expression and intra-specific polymorphic information are 

necessary to drive hypotheses regarding the gain, loss and change of function of duplicated 

genes. The application of such a network of information, as is the case of this study, is thus 

necessary to extend the knowledge about the evolutionary fate of genes originated by 

duplication events. 
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Figures and Tables 

 

Figure 1: Bayesian phylogenetic analysis of the MT family. The gene tree was constructed using coding sequences from the 

Ensembl database (Table S1). MT1/MT2, MT3 and MT4 clusters are represented in blue, red and green, respectively. Posterior 

probability values are given for branch support. Scale bar stands for the number of replacements per site. 
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Figure 2: Illustration of the MT family in humans and mice. In mice, the family comprises four functionally active genes 

(mt1 to mt4). In humans, the family harbours a single-copy of MT2, MT3 and MT4, and by a tandemly duplicated array of the MT1 

duplicates spanning about 66.6 Kb, where eight active genes (MT1A to MT1J, MT1L, MT1M and MT1X) and five pseudogenes (MT1L, 

MT1J, MT1D, MT1C and MT1I) are known. The direction of transcription for each active gene is indicated by an arrow. Genes are 

coloured as follows: MT1 (dark blue), MT2 (light blue), MT3 (red) and MT4 (green). Pseudogenes are represented by dashed boxes. 

Numbers corresponding to the sizes of gene and intergenic regions are given in Kb. 
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Figure 3: Sequence comparison and structural features of MT proteins. (A) Sequence alignment for human (Hs) and mouse 

(Mm) proteins. Residues spanning a and b domains are indicated as well as are the invariant metal-binding cysteine residues. 

Sequences were aligned with ClustalW [59] (B) Structural representation of the mouse Mt2 (PDB 4mt2) showing the two metal-

binding clusters and the detailed spatial organisation of the cysteine residues with the S-atoms oriented towards metal ions. Elements 

are coloured as follows: S (yellow), O (red), N (dark blue), Zn (purple) and Cd (orange). 

 

 

 
 

Figure 4: The amino acid identity matrix for human and mouse proteins. Amino acid identity for each pairwise comparison 

between a human and a mouse protein is given as percentage values. 
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Figure 5: The reconstructed open reading frame of MT1 pseudogenes. The reconstruction was performed using the 

genomic sequence of human MT1 pseudogenes to a homology-based comparison with the functional MT1E. Each exon is shown 

in a separate row. Amino-acids are represented in single-letter code above the corresponding codon. Strong deleterious 

mutation candidates (loss of invariant cysteines, gain of aromatic residues, indels and splice-site mutations) are underlined. 
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Figure 6: Expression profile of MT genes. (A) Expression of the MT genes in human and mouse tissues represented as log2 of 

EST counts by colour coding. (B) RT-PCR analysis of human MT2, MT3 and MT4 in 15 tissues using GAPDH as control. 
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Table 1. Nonsynonymous replacements at the human MT genes annotated in Ensembl database. 

 

Gene  Nonsynonymous variants

MT1E  Asn40Ser (rs12051120) Arg46Lys (rs34166523)

MT1M Thr20Lys (rs1827210) 

MT1A Thr27Asn (rs11640851) Lys51Arg (rs8052394) 

MT1B Cys19Ser (rs61744104) 

MT1F - 

MT1G - 

MT1H Gly17Arg (rs9934181) MT1X 

MT4 Cys30Tyr (rs666636) Arg31Trp (rs666647) Gly48Asp (rs11643815) 

 

 

Table 2 : Hapmap allelic frequencies of MT4 Tyr30 (rs666636) and Trp31 (rs666647) in human population. 

 

  
Population TYR30-A allele  TRP31-T allele 

     

African    

ASW 0.189 0.189 

LWK 0.303 0.244 

MKK 0.155 0.15 

YRI 0.161 0.124 

Asian    

CHB 0.298 0.298 

CHD 0.288 0.282 

JPT 0.267 0.265 

GIH 0.045 0.045 

European    

CEU 0.085 0.058 

TSI 0.034 0.034 

American    

MEX 0.05 0.05 

 
Population description as indicated in Hapmap: ASW, African ancestry in Southwest USA; CEU, Utah residents with Northern and 

Western European ancestry from the CEPH collection; CHB, Han Chinese in Beijing, China; CHD, Chinese in Metropolitan Denver, 

Colorado; GIH, Gujarati Indians in Houston, Texas; JPT, Japanese in Tokyo, Japan; LWK, Luhya in Webuye, Kenya; MEX, Mexican 

ancestry in Los Angeles, California; MKK, Maasai in Kinyawa, Kenya; TSI, Toscans in Italy; and YRI, Yoruba in Ibadan, Nigeria.  
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Supporting Information 

 

Figure S1: Maximum likelihood analysis of the MT family. The gene tree was constructed using coding sequences from the 

Ensembl database (Table S1). MT1/MT2, MT3 and MT4 clusters are represented in blue, red and green, respectively. Branch 

support was estimated by bootstrap. Scale bar: number of replacements per site. 

 

Table S1: Metallothionein gene transcripts annotated in the Ensembl database (release 56, Sep 2009) as human orthologues of 

MT1E, MT1M, MT1A, MT1B, MT1F, MT1G, MT1H, MT1X, MT2, MT3, and MT4 in mammals. MT sequences from fishes, birds 

and reptiles are shown at the bottom of the table. 

GENE  SCIENTIFIC NAME  COMMON NAME  ENSEMBL TRANSCRIPT 

MT1E  Bos taurus   Cow ENSBTAT00000046456 

  Pan troglodytes   Chimpanzee ENSPTRT00000063817 

  Homo sapiens   Human ENST00000306061 

  Callithrix jacchus   Marmoset ENSCJAT00000024529 

   

MT1M  Homo sapiens   Human ENST00000379818 

  Pongo pygmaeus   Orangutan ENSPPYT00000029425 

   

MT1A  Bos taurus   Cow ENSBTAT00000002092 

  Ochotona princeps   Pika ENSOPRT00000006730 

  Pan troglodytes   Chimpanzee ENSPTRT00000015005 

  Homo sapiens   Human ENST00000290705 

  Mus musculus   Mouse ENSMUST00000034215 

  Rattus norvegicus   Rat ENSRNOT00000038212 

   

MT1B  Pan troglodytes   Chimpanzee ENSPTRT00000015003 

  Gorilla gorilla   Gorilla ENSGGOT00000009888 

  Homo sapiens   Human ENST00000334346 
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  Pongo pygmaeus   Orangutan ENSPPYT00000009031 

  Tarsius syrichta   Tarsier ENSTSYT00000007085 

  Dipodomys ordii   Kangaroo rat ENSDORT00000003898 

   

MT1F  Pan troglodytes   Chimpanzee ENSPTRT00000015004 

  Gorilla gorilla   Gorilla ENSGGOT00000009872 

  Homo sapiens   Human ENST00000334350 

  Macaca mulatta    Macaque ENSMMUT00000039321 

   

MT1G  Pteropus vampyrus   Megabat ENSPVAT00000016198 

  Homo sapiens   Human ENST00000379811 

  Macaca mulatta    Macaque ENSMMUT00000022653 

   

MT1H  Tursiops truncatus   Dolphin ENSTTRT00000013550 

  Procavia capensis    Hyrax ENSPCAT00000013294 

  Otolemur garnettii   Bushbaby ENSOGAT00000008589 

  Pan troglodytes   Chimpanzee ENSPTRT00000014999 

  Gorilla gorilla   Gorilla ENSGGOT00000016717 

  Homo sapiens   Human ENST00000332374 

  Cavia porcellus   Guinea Pig ENSCPOT00000011224 

   

MT1X  Procavia capensis   Hyrax ENSPCAT00000007828 

  Pan troglodytes   Chimpanzee ENSPTRT00000067756 

  Gorilla gorilla   Gorilla ENSGGOT00000015825 

  Homo sapiens   Human ENST00000394485 

  Callithrix jacchus   Marmoset ENSCJAT00000023761 

  Pongo pygmaeus   Orangutan ENSPPYT00000002180 

   

MT2  Bos taurus   Cow ENSBTAT00000034373 

  Canis familiaris   Dog ENSCAFT00000014487 

  Ochotona princeps   Pika ENSOPRT00000001091 

  Pan troglodytes   Chimpanzee ENSPTRT00000014994 

  Gorilla gorilla   Gorilla ENSGGOT00000012065 

  Homo sapiens   Human ENST00000245185 

  Macaca mulatta    Macaque ENSMMUT00000031285 

  Pongo pygmaeus   Orangutan ENSPPYT00000008667 

  Loxodonta africana    Elephant ENSLAFT00000012833 

  Mus musculus    Mouse ENSMUST00000034214 

  Rattus norvegicus   Rat ENSRNOT00000067391 

   

MT3  Vicugna pacos  Alpaca ENSVPAT00000003704 

  Bos taurus   Cow ENSBTAT00000022460 

  Echinops telfairi   Lesser hedgehog tenrec ENSETET00000000091 

  Tursiops truncatus   Dolphin ENSTTRG00000013549 

  Myotis lucifugus   Microbat ENSMLUT00000005003 

  Dasypus novemcinctus   Armadillo ENSDNOT00000015796 

  Erinaceus europaeus   Hedgehog ENSEEUT00000003639 

  Ochotona princeps    Pika ENSOPRT00000006724 

  Oryctolagus cuniculus   Rabbit ENSOCUT00000016238 

  Equus caballus   Horse ENSECAT00000015904 

  Pan troglodytes   Chimpanzee ENSPTRT00000014993 

  Homo sapiens  Human ENST00000200691 

  Macaca mulatta    Macaque ENSMMUT00000010829 
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  Callithrix jacchus   Marmoset ENSCJAT00000024548 

  Pongo pygmaeus   Orangutan ENSPPYT00000008666 

  Tarsius syrichta   Tarsier ENSTSYT00000001126 

  Mus musculus   Mouse ENSMUST00000034211 

  Rattus norvegicus   Rat ENSRNOT00000025669 

  Tupaia belangeri   Tree Shrew ENSTBET00000016034 

  Monodelphis domestica  Opossum ENSMODT00000040198 

  Ornithorhynchus anatinus  Platypus ENSOANT00000029863 

   

MT4  Bos taurus   Cow ENSBTAT00000020072 

  Echinops telfairi   Lesser hedgehog tenrec ENSETET00000005977 

  Felis catus   Cat ENSFCAT00000008674 

  Canis familiaris   Dog ENSCAFT00000014504 

  Tursiops truncatus   Dolphin ENSTTRT00000013548 

  Pteropus vampyrus    Megabat ENSPVAT00000014588 

  Macropus eugenii   Wallaby ENSMEUT00000011205 

  Ochotona princeps   Pika ENSOPRT00000006718 

  Oryctolagus cuniculus   Rabbit ENSOCUT00000017267 

  Equus caballus   Horse ENSECAT00000014386 

  Pan troglodytes   Chimpanzee ENSPTRT00000014992 

  Homo sapiens  Human ENST00000219162 

  Macaca mulatta    Macaque ENSMMUT00000022652 

  Callithrix jacchus   Marmoset ENSCJAT00000024551 

  Pongo pygmaeus   Orangutan ENSPPYT00000008665 

  Dipodomys ordii   Kangaroo rat ENSDORT00000015428 

  Mus musculus   Mouse ENSMUST00000034207 

  Rattus norvegicus   Rat ENSRNOT00000025694 

  Ornithorhynchus anatinus  Platypus ENSOANT00000029863 

Fishes  

Danio rerio  Zebrafish ENSDART00000061007 
Oryzias latipes  Medaka ENSORLT00000019509 
Tetraodon nigroviridis Green putterfish ENSTNIT00000011862 
Takifugu rubripes  Putterfish ENSTRUT00000022487 

  

Birds  

Taeniopygia guttata  Zebra finch ENSTGUT00000006787 
Gallus gallus  Chicken ENSGALT00000023565 

  

Reptiles   

Anolis carolinensis  Anole lizard ENSACAT00000007496 
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Abstract 

Nicotinamide Adenine Dinucleotide (NAD) levels are essential for cellular 

homeostasis and survival. Main sources of intracellular NAD are the salvage pathways from 

nicotinamide, where Nicotinamide phosphoribosyltransferases (NAMPTs) and 

Nicotinamidases (PNCs) have a key role. NAMPTs and PNCs are important in aging, 

infection and disease conditions such as diabetes and cancer. These enzymes have been 

considered redundant since either one or the other exists in each individual genome. The co-

occurrence of NAMPT and PNC was only recently detected in invertebrates though no 

structural or functional characterization exists for them. Here, using expression and 

evolutionary analysis combined with homology modeling and protein-ligand docking, we 

show that both genes are expressed simultaneously in key species of major invertebrate 

branches and emphasize sequence and structural conservation patterns in metazoan 

NAMPT and PNC homologues. The results anticipate that NAMPTs and PNCs are 

simultaneously active, raising the possibility that NAD salvage pathways are not redundant 

as both are maintained to fulfil the requirement for NAD production in some species.  
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Introduction 

Nicotinamide Adenine Dinucleotide (NAD) is an essential molecule to cells. As a 

cofactor in redox reactions, NAD regulates the metabolism and energy production and, as a 

substrate for NAD-consuming enzymes such as poly(ADP-ribose) polymerases (PARPs) and 

sirtuins, NAD is involved in DNA repair, transcriptional silencing and cell survival [1]. To 

maintain adequate NAD levels, several routes are used for NAD synthesis that depend on 

distinct precursors: de novo pathways synthesize NAD from tryptophan or aspartic acid 

whereas salvage pathways recycle NAD from nicotinamide (Nam), nicotinic acid (Na) and 

their ribosides [2-4].  

The nicotinamide salvage pathway is the major source of intracellular NAD in humans 

[5,6] and is also required for growth in several microorganisms [7-10]. NAD salvage from 

Nam is a two- or four-step reaction, in which the rate-limiting enzymes and functional 

homologues are, respectively, nicotinamide phosphoribosyltransferases (NAMPTs) and 

nicotinamidases (PNCs) [11-13]. In humans, NAMPT is widely studied due to its involvement 

in inflammation and disease such as cancer [14,15]. In contrast, humans lack nicotinamidase 

but expression of the Drosophila Pnc protects human neuronal cells from death originated by 

oxidative stress [16]. Moreover, an increased Pnc1 and sirtuin activity confers protection to 

proteotoxic stress in yeast and C. elegans [17,18]. The yeast Pnc1 is a biomarker of stress 

and a regulator of sirtuin activity [11,18], and thus, most studies in yeast and invertebrates 

have focused in the link between these enzymes and aging [16,19]. Notwithstanding, despite 

their importance to major cellular processes, there is a poor functional characterization of 

nicotinamidases [20,21] and their role in infection has been less explored [7,8,22]. 

NAMPTs and PNCs act as regulators of enzymes from similar pathways, coordinating 

the overall metabolism and stress responses [23]. Moreover, both are pharmacologically 

relevant. NAMPT inhibitors are being used in clinical trials as anti-cancer agents [24-27] and 

nicotinamidases are attractive targets to the development of drugs for infectious diseases 

and anti-parasitic therapies [7,8,22,28-30].  

NAMPTs and PNCs do not co-occur in all organisms and, until very recently, lineages 

with both NAMPT and PNC had been only found in bacteria and algae [30-32]. NAMPT was 

thought to be absent from invertebrates but the discovery that NAMPT homologues are 

present in several invertebrate species and that some species have both NAMPT and PNC 

homologues [33] challenged the classical view that these enzymes are redundant and 

mutually exclusive [1], emphasizing the need for studies characterizing the structural and 

functional properties of these enzymes. 

Motivated by the lack of information for NAMPT and PNC homologues in relevant 

invertebrate species, which would render the biological meaning of simultaneous versus 

unique occurrence of these proteins more evident, we carried out an integrated study to 
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establish gene expression, amino acid conservation and structural comparisons. We provide 

experimental evidence that both genes are expressed simultaneously in key invertebrate 

species. In addition, evolutionary conserved patterns at the amino acid sequence and at the 

structural levels were detected. Also, using homology modeling and protein-ligand docking, 

we identify the amino acids that bind Nam in the active sites of invertebrate NAMPTs and 

PNCs. Taken together, the results suggest that invertebrate NAMPTs and PNCs are 

concurrently functional and, thus, that both NAD salvage pathways might not be redundant.  

 

 

Results 

 

Expression of invertebrate NAMPTs and PNCs 

NAMPT homologues have been previously found in the vibriophage KVP40 [34], 

bacteria [10,32], and the unicellular green algae Chlamydomonas reinhardtii [31], motivating 

the search for NAMPT homologues in invertebrates, some of which simultaneously have 

PNC sequences [33] (Table S1). No recognizable NAMPT homologue has been detected so 

far in representative species of the phyla Arthropoda or Nematoda, although NAMPT and 

PNC were found in more basal lineages such as the choanoflagellate Monosiga brevicollis 

and the sea anemone N. vectensis (Figure 1). Such phylogenetic distribution is consistent 

with a scenario where both genes were present in the Metazoa ancestor and were selectively 

lost in specific lineages, as evidenced by the different patterns in protostomes. Namely, both 

genes were found in lophotrochozoans that includes mollusks (Lottia gigantea) and annelids 

(C. teleta and Helobdella robusta), and the absence of NAMPT was observed in 

ecdysozoans such as nematodes and arthropods. In deuterostomes, which comprises 

chordates, hemichordates and echinoderms, both genes were likely present in early 

lineages, which is supported by the evidence from the extant B. floridae, Saccoglossus 

kowaleskii and S. purpuratus species, but NAMPT was secondarily lost in the urochordate 

Ciona intestinalis while PNC was lost in vertebrates (Figure S1). RT-PCR of selected species 

showed that both NAMPT and PNC genes are expressed in the adult forms of 

Branchiostoma floridae (Cephalochordata), Strongylocentrotus purpuratus (Echinodermata), 

Capitella teleta (Annelida) and Nematostella vectensis (Cnidaria) (Figure 1). In addition, 

available EST (Expressed Sequence Tag) data indicates that NAMPT and PNC genes are 

also co-expressed during developmental stages (Table S2), suggesting a widespread usage 

of both Nam salvage pathways across Metazoa. 
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Evolutionary divergence of NAMPTs and PNCs 

We have further characterized the evolutionary divergence of NAMPT and PNC 

homologues, measured as protein distances calculated from amino acid sequence 

alignments (Figure 2). The resulting matrix (Figure 2) showed that NAMPT is conserved, 

even when large evolutionary distances are considered. For example, the divergence 

between the human and cnidarian (N. vectensis) NAMPT homologues is about 50%, as 

much as when compared with amphioxus (B. floridae). Among invertebrates the sequences 

showing the smallest divergence are from N. vectensis and C. teleta (31.2%). Conversely, 

PNC sequences are highly divergent even in closely related species, as shown for the 

annelids C. teleta and H. robusta, or the basal chordates B. floridae and C. intestinalis. 

Curiously, the smallest divergence between PNC sequences was found for C. teleta and B. 

floridae (51.3%). This trend was also evident when we plotted protein distances taking 

implicitly in consideration the evolutionary divergence time between each pair of species 

studied (Figure S2 and Table S3). Analyses of protein distances (pd) indicated that NAMPT 

homologues are considerably more conserved (pd = 0.447±0.116) than PNC (pd = 

0.842±0.151) (mean±std), which is remarkable for species spanning over 1000 million years 

of divergence (Table S3). For PNC proteins, in addition to the larger values, no correlation 

with evolutionary distance was observed, while NAMPT distances were smaller and 

increased consistently with the evolutionary distance (ed) between species. The Kendall rank 

correlation coefficient was used to measure the dependence between pd and ed, showing no 

relevant dependence between both quantities for PNC (τ=–0.052). However, for NAMPT both 

quantities vary consistently (τ=0.413). 

 

Motif conservation in NAMPTs and PNCs 

We next used the previously constructed amino acid sequence alignments dataset to 

search for conserved motifs in NAMPT and PNC homologues. In line with the 

aforementioned results, analyses of NAMPT sequences (Figure 3A) revealed conserved 

amino acid motifs surrounding catalytic residues [24,25,35-37] Tyr18, Phe193, Asp219, 

His247, Asp279, Asp313, corresponding to the boxed amino acids in Figure 3. As well, 

Asp16 and Arg311, Gly353 and Asp354, and Gly384 that bind nicotinamide, ribose or 

phosphate, respectively, are preserved and the additional NMN interacting residues Arg196 

and Gly383 in rat NAMPT [25] are present in all sequences analysed. The amino acid 

stretches that represent the dimer interface are also conserved in invertebrate NAMPTs 

(Figure 3A and Figure S3), as previously shown for vertebrates [25].  

Similar analyses on PNC homologues showed that, while overall amino acid 

sequence identity is low (Figure 3B), motifs surrounding metal-binding and catalytic residues 

(boxed amino acids) show up. Indeed, all PNC sequences have conserved residues that 
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coordinate the metal ion (corresponding to Saccharomyces cerevisiae Asp51, His53 and 

His94) and the catalytic triad (S. cerevisiae Asp8, Lys122 and Cys167). The characteristic 

cis-peptide bond that has been identified in available nicotinamidase/pyrazynamidase 

structures also corresponds to conserved residues present in these species, namely Val-Ala 

in Pyrococcus horikoshii, S. cerevisiae, Leishmania infantum and C. intestinalis [7,38,39], Ile-

Ala in Mycobacterium tuberculosis, Acinetobacter baumanii, H. robusta and B. floridae 

[40,41], or Val-Leu in Streptococcus pneumoniae [42], and are preceded by a conserved 

glycine that has a role in catalysis [38,40,41]. Additionally, mutations that lead to M. 

tuberculosis loss of pyrazinamidase activity have defined residues that delineate the active 

site scaffold [38], corresponding to S. cerevisiae Glu10, Asp12, Phe13, Leu20, His57, Trp91, 

Gly123, Tyr131, Ser132, Val162, Ala163, Tyr166 and Thr171, and most of them are 

conserved in all invertebrate PNC sequences as well (Figure 3B and Figure S4).   

 

Genetic architecture conservation of NAMPT homologues 

Given the degree of conservation of both proteins, and taking into account the 

divergence times of over 1000 million years between the species considered here, we have 

investigated the conservation at the gene structure and genome organization levels. NAMPT 

retained microsynteny in chordates, as indicated by the conserved gene order between H. 

sapiens, M. musculus, D. rerio and B. floridae, and also showed macrosynteny conservation 

in some lineages, namely between Trichoplax adhaerens and either H. sapiens, N. vectensis 

or M. brevicollis (Figure 4 and Figures S5-S6). For PNC homologues, no syntenic regions 

were found. Although recent studies point to a higher level of microsynteny conservation in 

metazoans than previously estimated [43], these evidences are challenging in some lineages 

due to poor genome annotation and breakdown in small scaffolds. At the level of exon-intron 

structure, NAMPT is more homogeneous than PNC, considering the number and size of 

exons, and total gene length (Figures S7-S8). The exception is observed in N. vectensis, 

where NAMPT has many small exons spanning 14 Kb in the genome, while PNC has only 

two exons in less than 2 Kb. Using the information on conserved motifs and gene structure, 

we were able to successfully identify NAMPT and PNC homologues as well as predict the 

corresponding gene structures in the hemichordate S. kowaleskii, a phylogenetic informative 

species (Figure S9). 

 

Secondary structure conservation of PNC homologues 

Nicotinamidase sequences are poorly conserved even in closely related species 

(Figures 2 and 3). Yet, considering some structures determined for archaea (P. horikoshii, 

PDB id: 1IM5), bacteria (A. baumanii, PDB id: 2WTA) and fungi (S. cerevisiae, PDB id: 

2H0R), sharing only 30% protein identity (Figure 5A), the 3D structures are perfectly 
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superimposable (Figure 5B). Such structural conservation is observed across the three 

domains of life, as all PNC enzymes share a similar core fold (Figure S10), with a potential 

increase in complexity of the enzyme that is active as a monomer in P. horikoshii [38], dimer 

in A. baumanii [40] and heptamer in S. cerevisiae [39]. Thus, we have aligned PNC 

sequences based on secondary structure predictions and determined that invertebrate PNCs 

also show structural conservation (Figure 6). The regions corresponding to alpha-helices 

(red) and beta-sheets (yellow) are conserved at the structural level, even if the amino acids 

are not (Figure 6A). For instance, the alpha-helices of regions I, II and III comprise different 

amino acids while displaying a similar fold. To illustrate this, region II is shown in detail for P. 

horikoshii, A. baumanii and S. cerevisiae (Figure 6B). 

 

Modeling and docking analyses of invertebrate NAMPTs and PNCs 

To gain insight into the structures of invertebrate NAMPTs and PNCs, we have 

performed homology modeling and protein-ligand docking. To overcome limitations in the 

interpretation of results, we have used several templates to generate the models (Table S4). 

The LIGPLOT program was used to generate schematic diagrams between ligand 

(Nicotinamide, NCA) and receptor (NAMPT and PNC), which are shown in Figure 7. The 

prediction accuracy redocking test performed for the NAMPT (PDB 2E5D from H. sapiens) 

and PNC (PDB 3R2J from L. infantum), were in agreement with the ligand-receptor 

conformation in these X-ray structures. We obtained a similar active site ligand-receptor 

interaction for both NAMPT and PNC, which insure that the docking approach was accurate 

enough to be applied to the various molecular systems. 

In NAMPT protein active site, all species, except N. vectensis, maintained most of the 

ligand-receptor interactions when compared with the structure of human NAMPT (Figure 7A). 

The homologous NAMPT of B. floridae has a hydrogen bond network that stabilizes the 

active site with two H-bonds between the side-chain of Arg-293 and the oxygen atom of the 

ligand. A similar bonding network can be observed in the human protein (PDB 2E5D) where 

Asp-219 binds to the nitrogen atom of the substrate (NCA). Hydrophobic interactions are 

similar when compared with the human active site. In C. teleta, H-bond interactions between 

Arg-300 and NCA oxygen moiety and between Asp-209 and Asp-16 to both NCA nitrogens 

preserve the NCA conformation in the active site. Two hydrophobic interactions in C. teleta 

(Tyr-18 and Phe-183) with ligand atoms are not seen. In N. vectensis no H-bond interaction 

is present, but the most important hydrophobic interactions, Phe-182(B), Arg-298(B) and Tyr-

17(A), are preserved. The H-bond interaction network of S. purpuratus shows that Asp-

210(B) H-bond is maintained. Two other H-bonds, Tyr-19(A) and Glu-235(B), and 

hydrophobic interactions of the NCA ligand to Phe-184 (B) and Ala-233 (B) are also present. 

Globally, the NAMPT binding modes obtained by docking for the species analysed shared 
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the critical hydrophobic and hydrogen bonding interactions and, if not (e.g. N. vectensis), the 

conformational status of NCA was maintained. 

Next we also analysed the conformational changes of PNC active and catalytic sites 

(flexible residues) in the four species (Figure 7B). In the B. floridae PNC, Phe-22, Trp-110, 

Val-182 and Cys-183 hydrophobic interactions contribute to the binding status of NCA. The 

three hydrogen bonding interactions (His-113 to NCA oxygen atom, Asp-62 to NCA nitrogen 

atom and His-113 to Asp-62) sustain the conformational position of the ligand. The Zn2+ 

keeps the strong binding to the ligand that was also present in L. infantum PNC (PDB 3R2J). 

In C. teleta the Trp-110 (hydrophobic interaction) and Tyr-147 (H-bond interaction) are the 

residues from the active site that play an important role in the ligand-receptor interaction. As 

in B. floridae, the His-113 has a hydrogen bond connection with NCA. Two other H-bond 

interactions not present in L. infantum PNC (Ser-70 and Lys-108) appear to be important to 

ligand binding. The interaction between Zn2+ and ligand is maintained. Although no significant 

changes in ligand conformation were observed, hydrogen bonds in N. vectensis were not 

predicted. When compared to 3R2J, hydrophobic interactions Cys-21, Trp-99, Ala-169 and 

Cys-173 are kept for the active site residues. Hydrophobic interactions for the catalytic 

residue Cys-173 are present, as well as a newly arisen Phe-11 interaction with the ligand. In 

S. purpuratus, hydrophobic contacts between Tyr-106, Trp-143, Ala-175 and the ligand are 

retained. Catalytic site residues Asp-17 and Cys-179 also bind to the ligand through an H-

bond and a hydrophobic interaction. Two unique hydrogen bonds (Asp-57 and Leu-174) and 

hydrophobic contacts (His-109 and Phe-22) arise in the ligand-protein interaction. It can also 

be noticed that a conserved histidine (His-113 in B. floridae and C. teleta, and His-109 in S. 

purpuratus) maintains the interaction with the ligand.  

 

 

Discussion 

Nicotinamide phosphoribosyltransferases (NAMPTs) and nicotinamidases (PNCs) are 

the main NAD salvage enzymes and, until recently, were thought to occur in distinct lineages. 

Our data show that several Metazoa species have predicted homologues of both enzymes 

and that both genes are simultaneously expressed in B. floridae, S. purpuratus, C. teleta and 

N. vectensis. The distribution of NAMPT and PNC homologues points to the presence of both 

genes in early eukaryote evolution with selective gene loss and retention in different animal 

lineages. Interestingly, loss of either one of the genes was predominantly found in fast 

evolving lineages, namely D. melanogaster, C. elegans and C. intestinalis, while slow-

evolving species such as B. floridae retained both [44]. This is also reflected in genome 

architecture, with conserved NAMPT microsynteny in vertebrates and B. floridae. 
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We also highlight different conservation patterns in NAMPT and PNC homologues, at 

the protein amino acid sequence and at the 3D structural level. NAMPT sequences are highly 

conserved, as evidenced by small evolutionary divergences between species and long 

stretches of identical amino acids surrounding important catalytic and structural positions. As 

dimerization is required for NAMPT activity [25], in addition to active site residues that 

interact with the substrates and reaction products, amino acids that constitute the dimer 

interface are also conserved. For PNCs the sequence identity is lower, yet, critical amino 

acids are conserved and the overall fold is maintained in all the three domains of life. These 

are unifying features of nicotinamidases, even though there is a diversity of catalytic 

mechanisms described, with some exceptions concerning metal binding and metal ion 

coordination [7,20,21,29,41,42].  

Homology modeling and protein-ligand docking indicates that active site residues and 

interactions of invertebrate NAMPTs with the substrate, nicotinamide, are similar to what is 

described for vertebrate NAMPTs [24,25,35-37]. In invertebrate PNCs, most interactions are 

maintained while additional hydrogen bonds and hydrophobic contacts were found. These 

new interactions might derive from complementary amino acid changes as a result of 

epistatic interactions between residues [21,45], which is consistent with a structural 

conservation of PNCs. 

Our analyses validate invertebrate NAMPTs and PNCs, suggesting that both the two-

step and the four-step NAD salvage pathways are functional in these organisms. These 

findings imply that either these enzymes are not redundant, or that specific metabolic 

requirements call for increased NAD production in some species that only the presence of 

both enzymes would fulfil.   

 

 

Materials and Methods 

 

Sequence analysis 

The human NAMPT and the yeast PNC1 amino acid sequences were used as 

queries in BLAST searches [46], from National Center of Biotechnology Information, NCBI 

(http://www.ncbi.nlm.nih.gov/sites/genome) and Joint Genome Institute, JGI 

(http://genome.jgi-psf.org/) sequenced genomes. In organisms with multiple hits, the 

reciprocal best hit was selected for further analysis. All sequences retrieved in this process 

and further analysed are listed in Table S1. Estimates of evolutionary divergence between 

sequences were conducted in MEGA5 [47] and calculated as the number of amino acid 

substitutions per site. Analyses were conducted using the Poisson correction model [48] and 

involved 13 amino acid sequence homologues for each protein. Positions containing gaps 
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and missing data were eliminated, resulting in a total of 436 (NAMPT) and 167 (PNC) 

positions in the final dataset. Alignments were visualized in Geneious [49] v5.5.6 to generate 

logos. Structural alignments of PNC homologues were performed in Ali2D 

(http://toolkit.tuebingen.mpg.de/ali2d). Divergence times between species were estimated 

using Time Tree (http://www.timetree.org/) [50]. MATLAB version R2010b was used to 

generate 3D graphics (the input data is shown as Table S3) and calculate Kendall rank 

correlation coefficients. Correlations were measured against a reference function consisting 

of a monotonic increasing function of protein distances against evolutionary divergence (the 

hypothesis). Synteny was determined using the CHSminer software 

(http://www.biosino.org/papers/CHSMiner/) [51] and the JGI genome portal 

(http://genome.jgi-psf.org/). Saccoglossus kowaleskii BLAST searches were also performed 

as described above (http://blast.hgsc.bcm.tmc.edu/blast.hgsc?organism=20), the 

corresponding genome contigs (115790 and 40985) were retrieved and the NAMPT and 

PNC protein sequences were manually predicted, based on the conserved motifs identified. 

Exon predictions were then performed in Genescan (http://genes.mit.edu/GENSCAN.html). 

 

Molecular homology modeling 

Prime [52] was used to search homologous proteins in NCBI PDB database 

(http://www.rcsb.org/pdb/home/home.do) for PNC and NAMPT. PDB templates (Table S4) 

were selected considering lowest e-values (<1x10-6), and structures without many missing 

residues (gaps<20%). PNC and NAMPT sequences for the species B. floridae, C. teleta, S. 

purpuratus and N. vectensis were used to generate the alignments with homologue proteins. 

For secondary structure prediction the third-party program SSpro [53,54] was used and then 

all the templates re-aligned to the query sequence. The resulting alignment was used to build 

the protein models. The LigPrep [55] interactive optimizer (protein preparation wizard) with 

neutral pH was used to optimize the protein model. Finally hydrogens were added, bond 

order was assigned and selenomethionines were converted to methionines for the generated 

models. 

 

Molecular docking simulations 

The 3D-structures of ligands were obtained from the PDB structures. The protein-

ligand complexes were prepared with AutoDockTools [56,57]: hydrogen atoms were added 

for each protein and Kollman united atom charges assigned. Hydrogens were also added to 

the ligand (NCA) and charges were calculated by the Gasteiger-Marsili method. The 

rotatable bonds in the ligands were assigned with AutoDockTools. The Zn atom of PNC was 

assigned a charge of +2. AutoDock4.2 [56] was used to perform protein-ligand docking 

calculations. To insure the accuracy of our methodological approach we first have done 
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redocking of the two most recently available X-ray structures (NAMPT PDB 2E5D and PNC 

PDB 3R2J) and then applied it to the various predicted protein-ligand systems. Various grid 

sizes were tested using as structural criteria the similarity between our docked results and 

the X-ray structure of H. sapiens NAMPT (2E5D) and L. infantum PNC (3R2J). We have 

selected a cubic grid box of 30×25×40 Å for NAMPT and 35x35x40 Å for PNC, centered on 

the C2-C5 ligand atoms distance mean with a grid spacing of 0.375 Å as shown in Table S4. 

We considered the binding pockets described in the literature [7,36] (also shown in 

Table S5) to perform the flexible protein-ligand docking. The corresponding residues in the 

homology alignment are described in Table S5. We performed the docking simulations using 

100 independent Lamarckian genetic algorithm (LGA) runs, with the population size set to 

200, the number of energy evaluations set to 10 000 000 and the maximum number of 

generations set to 27 000. All other parameters were used as default [58,59]. The results 

were analysed clustering together the conformations within a RMSD of 2 Å. The cluster with 

lower energy and with a conformation similar to the X-ray structure of NAMPT (PDB id: 

2E5D) and PNC (PDB id: 3R2J) was selected for each species. 

 

H-bonds and hydrophobic interactions for ligand-receptor molecules 

Interactions between the ligand (NCA) and receptors (NAMPT and PNC) were 

calculated using LIGPLOT [60]. The hydrogen bonds were calculated using geometrical 

criteria [61] of protein-ligand complex (The used criteria is: H–A distance <2.7 Å, D–A 

distance <3.3 Å, D–H–A angle >90°, D–A–AA angle >90° and H–A–AA angle >90°, where A 

is the hydrogen acceptor, D is the hydrogen donor, AA is the atom attached to the hydrogen 

acceptor, and H an atom of hydrogen). LIGPLOT also calculates non-covalent bond 

interactions (hydrophobic interactions) by applying a simple cut-off of 3.9 Å. LIGPLOT 

diagrams were generated for each species. PyMOL [62] was used to generate the 3D 

images. 

 

Expression analysis 

B. floridae (whole organism), C. teleta (whole organism), S. purpuratus (gonad) and 

N. vectensis (whole organism) samples were obtained from Ocean Genome Legacy (OGL 

Accession ID numbers S13045, S13061, S13034 and S13115, respectively) [63]. RNA was 

extracted with the Illustra TriplePrep kit (GE Healthcare) and genomic DNA was removed 

from RNA preparations with an additional DNase treatment using DNase I, RNase-free 

(Fermentas, Thermo Fisher Scientific Inc.), according to the manufacturer’s procedure. 

Complementary DNA (cDNA) was synthesized from 1μg of total RNA using the 

RETROscrip® First Strand Synthesis Kit (Ambion) with oligo-dT primers according to the 

manufacturer’s instructions. Reverse-transcription PCR reactions were prepared using 



FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease 

77

 

 

HotStarTaq® Master Mix Kit (Qiagen) with 2μl of the synthesized cDNA in a 10μl final 

volume. Q solution was included in the reaction (10%) in NAMPT amplification in B. floridae 

and S. purpuratus. PNC and NAMPT were amplified with species-specific primers described 

in Table S6, with a final concentration of 0.2 µM. Thermocycling conditions were as follows: 

initial denaturation at 95°C for 15min, 40 cycles at 95ºC for 30sec, variable annealing 

temperatures ranging from 52ºC to 62ºC (Table S6) for 1min30sec, and 72°C for 1min, and a 

final extension step of 10min at 72°C. All amplification products were visualized on 1.5% 

agarose gels and were confirmed by sequencing. For that, PCR products were purified with 

ExoSAP-IT (USB Corporation) by incubation at 37°C for 15 min, followed by enzyme 

inactivation for 15 min at 85°C. The resulting purified fragments were sequenced using an 

ABI Big Dye Terminator Cycle Sequencing Ready Reaction kit v 3.1 (Applied Biosystems) 

and analysed in an ABI PRISM 3130xl (Applied Biosystems). 

Expressed Sequence Tag (EST) information was retrieved from available databases 

for B. floridae [64], S. purpuratus [65] and N. vectensis [66] and is detailed in Table S2.  
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Figures 

Figure 1: NAMPT and PNC homologues are co-expressed in invertebrates. RT-PCR analysis shows that NAMPT and PNC 

are simultaneously expressed in Branchiostoma floridae, Strongylocentrotus purpuratus, Capitella teleta and Nematostella 

vectensis.  

 

 

 

Figure 2: Evolutionary divergence between NAMPT and PNC homologues. The estimates of evolutionary divergence were 

calculated as amino acid substitutions per site between NAMPT (green) and PNC (orange) sequences for several species. Hs, 

Homo sapiens; Mm, Mus musculus; Dr, Danio rerio; Bf, Branchiostoma floridae; Ci, Ciona intestinalis; Sp, Strongylocentrotus 

purpuratus; Ct, Capitella teleta; Hr, Helobdella robusta; Lg, Lottia gigantea; Dm, Drosophila melanogaster; Ce, Caenorhabditis 

elegans; Nv, Nematostella vectensis; Ta, Trichoplax adhaerens; Sc, Saccharomyces cerevisiae; Mb, Monosiga brevicollis.  

  



FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease 

79

 

 

Figure 3: Amino acid motifs found in NAMPT and PNC homologues. The conserved amino acid motifs surrounding the 

active site residues (boxed) are shown as logos and displayed above the aligned sequences. NAMPT conservation is 

highlighted by the large blocks of identical amino acids that are found in the species analysed (A). In PNC homologues, 

although the overall amino acid identity is low, the presence of conserved motifs is still detected throughout the species 

analysed that range wide evolutionary distances (B).  

Figure 4: Syntenic organization of NAMPT homologues.  Gene order and organization are represented for several lineages, 

and show conservation of microsynteny in chordates. H. sapiens chromosome 7, M. musculus chromosome 12, D. rerio 

chromosome 4, B. floridae scaffold 633, N. vectensis scaffold 360, T. adhaerens scaffold 2 and M. brevicollis scaffold 7 are 

displayed and dots indicate intervals containing multiple genes (>4).   
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Figure 5: Structural conservation between PNC homologues. Alignment of sequences (A) and structures (B) of PNC 

homologues from P.horikoshii (yellow), A.baumanii (pink) and S.cerevisiae (blue). Although there is an increasing structural 

complexity from a monomer in Archaea, a dimer in Bacteria and an heptamer in Fungi and the amino acid identity of the 

sequences is around 30%, the 3D structural subunits of PNC homologues are superimposable. 
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Figure 6: Predicted secondary structure of PNC homologues. (A) Aligned amino acid sequences of representative PNC 

homologues are displayed in function of the secondary structure. Alpha-helices are shown in red, beta-sheets are in yellow and 

grey represents coiled regions. Regions of structural conservation are highlighted in colour even when the primary sequences 

are not conserved as demonstrated by the graphic bars above the sequences. 1, Saccharomyces cerevisiae; 2, Pyrococcus 

horikoshii; 3, Acinetobacter baumanii; 4, Drosophila melanogaster; 5, Ciona intestinalis; 6, Nematostella vectensis; 7, 

Branchiostoma floridae. (B) Alpha-helices I, II and III formed by groups of unrelated amino acids are structurally equivalent as 

shown by the 3D superimposition. In blue, S. cerevisiae; in pink, A.baumanii; and in yellow, P. horikoshii. 
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Figure 7: Hydrophobic interactions and hydrogen bonding network between the ligand (NCA) and the various 

receptors. NAMPT (A) and PNC (B) representations in LIGPLOT (upper panels) and PyMOL (lower panels) representations are 

shown for Branchiostoma floridae, Capitella teleta, Nematostella vectensis, and Strongylocentrotus purpuratus. The major 

binding determinants are represented in cyan stick. The Zn2+ atom is in blue vdW representation.  
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Supporting Information 

 

Figure S2. Evolutionary divergence between NAMPT and PNC homologues. Protein distances were plotted for each pair of 

species arranged accordingly to their respective divergence time. This plot shows that NAMPT is highly conserved across large 

evolutionary distances, while PNC is less conserved even in closely related species. Notice that in addition to being highly 

conserved, protein distances and evolutionary distances are correlated in NAMPT (quantified by the Kendall coefficient of 

0.413), as opposed to PNC (where the Kendall coefficient was -0.052). 
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Supplementary Table S1: Sequences of NAMPT and PNC orthologues. 

Species Genome source PNC NAMPT 

Cupriavidus metallidurans NCBI YP_584002.1 YP_587233.1 

Pyrococcus horikoshii NCBI NP_142913.1 -

Metanosphaera stadtmanae NCBI - ABC57157.1 

Saccharomyces cerevisiae EnsEMBL PNC1 (YGL037C ) -

Monosiga brevicollis JGI 33390 24677 

Trichoplax adhaerens JGI - 20412 

Nematostella vectensis JGI 94959 135670 

Caenorhabditis elegans EnsEMBL Y38C1AA.3a - 

Drosophila melanogaster NCBI NP_732446.1 - 

Lottia gigantea JGI 126851 218342 

Capitella teleta  JGI 144642 162451 

Helobdella robusta JGI 71646 67798 

Strongylocentrotus 

purpuratus  

NCBI XP_001201249.1 XP_782393.1 

Ciona intestinalis JGI 237751 - 

Branchiostoma floridae JGI 276559 288618 

Danio rerio EnsEMBL - ENSDARP00000069804 

Mus musculus EnsEMBL - ENSMUSP00000020886 

Homo sapiens EnsEMBL - ENSP00000222553 
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Supplementary Table S2: EST sequences of NAMPT and PNC. 

Species   ID Dev. Stage Source

B. floridae PNC bflv011j05 36 hr larvae  http://amphioxus.icob.sinica.edu.tw/ 

  NAMPT bfga038e11 gastrula, neurula http://amphioxus.icob.sinica.edu.tw/ 

S. purpuratus  PNC WHL22.88771.0 embryos, larvae 

(0-72 hr) 

http://www.spbase.org/SpBase/rnaseq/bin/query.html 

  NAMPT WHL22.521505.0 embryos, larvae 

(0-72 hr) 

http://www.spbase.org/SpBase/rnaseq/bin/query.html 

N. vectensis PNC Nve.21423  unfertilized eggs to 

primary polyps; 

whole embryo 

http://www.ncbi.nlm.nih.gov/unigene 

 

Supplementary Table S3: MATLAB input data. For each pair of species, mean divergence times are shown in million years as 

well as protein distances calculated from NAMPT and PNC amino acid alignments. . Hs, Homo sapiens; Mm, Mus musculus; Dr, 

Danio rerio; Bf, Branchiostoma floridae; Ci, Ciona intestinalis; Sp, Strongylocentrotus purpuratus; Ct, Capitella teleta; Hr, 

Helobdella robusta; Lg, Lottia gigantea; Dm, Drosophila melanogaster; Ce, Caenorhabditis elegans; Nv, Nematostella vectensis; 

Ta, Trichoplax adhaerens; Sc, Saccharomyces cerevisiae; Mb, Monosiga brevicollis.  

 

Species 
pair 

Divergence Time 
(MY) 

Protein distance 

NAMPT PNC 

HsMm 93.9 0.035 -100 

HsDr 413.7 0.119 -100 

HsBf 713.2 0.483 -100 

HsCi 732.8 -100 -100 

HsSp 742.9 0.509 -100 

HsCt 777.8 0.532 -100 

HsHr 777.8 0.589 -100 

HsLg 777.8 0.564 -100 

HsDm 777.8 -100 -100 

HsCe 960.3 -100 -100 

HsNv 891.8 0.505 -100 

HsTa 940 0.548 -100 

HsSc 1232.4 -100 -100 

HsMb 857.8 0.576 -100 

MmDr 400.1 0.114 -100 

MmBf 713.2 0.498 -100 

MmCi 722.5 -100 -100 

MmSp 742.9 0.509 -100 

MmCt 782.7 0.525 -100 

MmHr 782.7 0.58 -100 

MmLg 782.7 0.556 -100 

MmDm 782.7 -100 -100 

MmCe 937.5 -100 -100 

MmNv 891.8 0.502 -100 

MmTa 940 0.56 -100 
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MmSc 1215.8 -100 -100 

MmMb 857.8 0.576 -100 

DrBf 713.2 0.494 -100 

DrCi 722.5 -100 -100 

DrSp 742.9 0.505 -100 

DrCt 782.7 0.513 -100 

DrHr 782.7 0.597 -100 

DrLg 782.7 0.552 -100 

DrDm 782.7 -100 -100 

DrCe 937.5 -100 -100 

DrNv 891.8 0.49 -100 

DrTa 940 0.544 -100 

DrSc 1215.8 -100 -100 

DrMb 857.8 0.556 -100 

BfCi 710.5 -100 0.618 

BfSp 742.9 0.341 0.607 

BfCt 777.8 0.374 0.513 

BfHr 777.8 0.436 0.855 

BfLg 777.8 0.371 0.944 

BfDm 777.8 -100 0.664 

BfCe 960.3 -100 0.841 

BfNv 891.8 0.325 0.533 

BfTa 940 0.377 -100 

BfSc 1232.4 -100 0.898 

BfMb 857.8 0.367 0.749 

CiSp 742.9 -100 0.687 

CiCt 782.7 -100 0.749 

CiHr 782.7 -100 0.898 

CiLg 782.7 -100 0.991 

CiDm 782.7 -100 0.749 

CiCe 937.5 -100 0.898 

CiNv 891.8 -100 0.629 

CiTa 940 -100 -100 

CiSc 1215.8 -100 0.869 

CiMb 857.8 -100 0.749 

SpCt 782.7 0.367 0.736 

SpHr 782.7 0.494 0.787 

SpLg 782.7 0.394 0.898 

SpDm 782.7 -100 0.787 

SpCe 937.5 -100 0.944 

SpNv 891.8 0.397 0.736 

SpTa 940 0.443 -100 

SpSc 1215.8 -100 1.007 

SpMb 857.8 0.45 0.724 
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CtHr 506 0.443 0.913 

CtLg 560.2 0.335 0.944 

CtDm 594.8 -100 0.585 

CtCe 937.5 -100 0.913 

CtNv 891.8 0.312 0.675 

CtTa 940 0.367 -100 

CtSc 1215.8 -100 1.058 

CtMb 857.8 0.415 0.787 

HrLg 777.8 0.454 0.841 

HrDm 777.8 -100 1.007 

HrCe 960.3 -100 1.007 

HrNv 891.8 0.502 0.828 

HrTa 940 0.505 -100 

HrSc 1232.4 -100 1.04 

HrMb 857.8 0.505 0.814 

LgDm 624 -100 1.075 

LgCe 937.5 -100 1.007 

LgNv 891.8 0.364 0.855 

LgTa 940 0.415 -100 

LgSc 1215.8 -100 1.04 

LgMb 857.8 0.461 0.991 

DmCe 937.5 -100 0.991 

DmNv 891.8 -100 0.675 

DmTa 940 -100 -100 

DmSc 1215.8 -100 1.007 

DmMb 857.8 -100 0.652 

CeNv 891.8 -100 0.801 

CeTa 940 -100 -100 

CeSc 1215.8 -100 1.075 

CeMb 857.8 -100 0.959 

NvTa 940 0.377 -100 

NvSc 1215.8 -100 0.869 

NvMb 857.8 0.408 0.749 

TaSc 1215.8 -100 -100 

TaMb 857.8 0.454 -100 

ScMb 998.5 -100 1.093 
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Supplementary Table S4: PDBs used as reference and grid parameters for the docking calculations. 

Molecule Grid Center  

(mean of C2-C5 atoms 

distance ligand) 

Grid Size (Å) PDB id References 

NAMPT X=10.54 30x25x40 2E5D (H. 

sapiens) 

(Takahashi et al. 

2010)  Y=-9.25 

Z=38.78 

PNC X=25.127 35x35x40 3R2J 

(Leishmania) 

(Gazanion et al. 

2011) Y=−0.983 

Z=21.264 
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Supplementary Table S5: Residue positions for each species that correspond to the reference residues (NAMPT PDB id 2E5D 

and PNC PDB id 3R2J) of the alignment used to model the proteins. 

Reference molecule B. floridae C. teleta N. vectensis S. purpuratus 

NAMPT 2E5D: Active site 

Asp 16 (chain A) Asp 9 (chain A) Asp 16 (chain A) Asp 15 (chain A) Asp 17 (chain A) 

Tyr 18 (chain A) Tyr 11 (chain A) Tyr 18 (chain A) Tyr 17 (chain A) Tyr 19 (chain A) 

Phe 193 (chain B) Phe 176 (chain B) Phe 183 (chain B) Phe 182 (chain B) Phe 184 (chain B) 

Arg 196 (chain B) Arg 179 (chain B) Arg 186 (chain B) Arg 185 (chain B) Arg 187 (chain B) 

Asp 219 (chain B) Asp 202 (chain B) Asp 209 (chain B) Asp 208 (chain B) Asp 210 (chain B) 

Arg 311 (chain B) Arg 293 (chain B) Arg 300 (chain B) Arg 298 (chain B) Arg 301 (chain B) 

Active site (3R2J) 

Leu-20 Leu27 Met27 Leu16 Leu27 

Val-22 Val29 Ile29 Leu18 Leu29 

Trp-91 Trp110 Trp110 Trp99 Trp106 

Tyr-131 Tyr147 Tyr147 Tyr137 Tyr143 

Ala-163 Ala179 Ala179 Ala169 Ala175 

Tyr-166 Val182 Val182 Tyr172 Val178 

Ile-192 Val208 Val208 Ile198 Gln204 

Catalytic (3R2J) 

Asp-8 Asp17 Asp17 Asp6 Asp17 

Lys-122 Lys138 Lys138 Lys128 Lys134 

Cys-167 Cys183 Cys183 Cys173 Cys179 

 

Supplementary Table S6: Oligonucleotide sequences used for amplification of NAMPT and PNC from B. floridae, S. 

purpuratus, C. teleta and N. vectensis. 

Species Gene Forward primer Reverse primer AT 

(5’-3’) (5’-3’) (ºC) 

B. floridae PNC CTCATAGTGGTGGACATGCA CAGAATGCCGAGTAACTGTC 58 

NAMPT CATCACGGACTCCTACAAGG TTGCGATCGTGTCTGTCCC 59 

S. purpuratus PNC CCTCATAGCAGTAGATGTAC GCAGAATAGCTGTCGACATG 52 

NAMPT GACGGTTCTTACAAGGTCAC CCTGCTATGGTGTCTGTTCC 59 

C. teleta PNC ATTGGTAATCGTGGACGTGC AGAACGCTGAGTAGCTGTC 62 

NAMPT CCTATAAGGTGACCCATCAC CATAGTACTTGCGAGCCGTC 62 

N. vectensis PNC CCTGATAGTTGTTGATGTACA AGAAGGCAGAGTAGCTGTC 60 

NAMPT CGGATTCGTACAAGGTCTCC CAGCTATCGTGTCTGTGCC 62 
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Abstract 

Mitochondrial DNA (mtDNA) deletions are a primary cause of mitochondrial disease 

and are believed to contribute to the aging process and to various neurodegenerative 

diseases. Despite strong observational and experimental evidence, the molecular basis of 

the deletion process remains obscure. In this study, we test the hypothesis that the primary 

cause of mtDNA vulnerability to breakage resides in the formation of non-B DNA 

conformations, namely hairpin, cruciform and cloverleaf-like elements. Using the largest 

database of human mtDNA deletions built thus far (753 different cases), we show that site-

specific breakage hotspots exist in the mtDNA. Furthermore, we discover that the most 

frequent deletion breakpoints occur within or near predicted structures, a result that is 

supported by data from transgenic mice with mitochondrial disease. There is also a 

significant association between the folding energy of an mtDNA region and the number of 

breakpoints that it harbours. In particular, two clusters of hairpins (near the D-loop 3’ 

terminus and the L-strand origin of replication) are hotspots for mtDNA breakage. Consistent 

with our hypothesis, the highest number of 5’ and 3’ breakpoints per base is found in the 

highly structured tRNA genes. Overall, the data presented in this study suggest that non-B 

DNA conformations are a key element of the mtDNA deletion process. 
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Introduction 

 

It is undeniable that the complementary strands (named the L- and H-strands) of 

human mitochondrial DNA (mtDNA) are primarily organised into the canonical right-handed 

double-helical structure of B-form DNA. Unfortunately, our knowledge of the higher-order 

topology of mtDNA and its interaction with the mitochondrial environment remains quite 

limited. It is plausible that many deformations to the canonical B-form of DNA occur in the 

mitochondrial genome and have important biological consequences, as has been 

unequivocally shown in many other genetic systems (1-3). In recent years, several studies 

have demonstrated that non-B DNA structures (often called noncanonical, unusual, 

alternative or secondary DNA structures) (4-6) occur, at least transiently, in the mitochondrial 

genome. For instance, a stem-loop structure is required to activate the initiation of DNA 

replication in the L-strand origin of replication (OL) (7;8). DNA bending in the L-strand 

promoter (LSP) induced by the mitochondrial transcription factor A (TFAM) is necessary for 

transcription initiation (9;10), whereas DNA unwinding and base eversion at the tRNA-

Leu(UUA/G) gene by the mitochondrial transcription termination factor 1 (MTERF1) is critical 

for transcription termination (11). 

The formation of most non-B DNA structures is favoured by the local unwinding of the 

DNA double helix, which is associated with negative supercoiling (4;12;13). As is most DNA 

in vivo, mtDNA is believed to be predominantly negatively supercoiled (i.e., the torsional 

tension diminishes the DNA helicity and facilitates strand separation) and is subject to 

dynamic processes that constantly alter the canonical conformation of the double helix. 

Unlike nuclear DNA, mtDNA is continuously replicated and transcribed during the entire cell 

cycle and, according to the available models, a large portion of the mtDNA is single-stranded 

for a significant period of time during such processes (14-16). This phenomenon provides an 

opportunity for structures with intra-strand base pairing to form and to persist for a relatively 

long period. In addition, several proteins are continuously tracking through the mtDNA (e.g., 

the movement of an RNA polymerase during transcription), resulting in a redistribution of the 

local supercoiling characteristics, which can be counterbalanced by the action of 

topoisomerases or the formation of non-B DNA structures (17;18). The conformational 

flexibility of the mtDNA is also affected by the packaging factor TFAM, which induces 

negative supercoiling upon binding to mtDNA (10;19). Thus, the binding of proteins may 

restrict the transmission of the superhelical tension throughout the DNA, although this 

possibility remains to be determined for the mitochondrial genome. Similarly, stable and 

partially hybridised RNA molecules (R-loops) were found to be associated with the 

mammalian mtDNA and are thought to maintain the genome in a more open conformation 

(20). 
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The versatile nature of the mitochondrial genome is also evident in the multiple forms 

of gene organisation and structural diversity resulting from numerous genomic 

rearrangements that occur through insertions, deletions, duplications, inversions or 

translocations of DNA segments (21). Among the different types of rearrangements, the loss 

of a section of the mitochondrial genome (an mtDNA deletion) has attracted the attention of 

researchers. The reason for such concern is that mtDNA deletions are associated with the 

multifactorial aging process and with a variety of progressive disorders that cause substantial 

disability and can lead to premature death (16;22;23). The loss of mtDNA-encoded proteins 

and/or tRNA genes required for protein synthesis results in mitochondrial dysfunction and cell 

death due to their crucial role in energy metabolism. In order to cause mitochondrial 

dysfunction, a deleted species of mtDNA must accumulate above a critical threshold that 

varies from tissue to tissue based on energy requirements. The expansion of a deleted 

mtDNA molecule to the detriment of other variants might occur due to the genetic bottleneck 

for mtDNA transmission in the germline and the unequal portioning of molecules in daughter 

cells (mitotic segregation). The level of different types of mtDNA molecules within a cell 

(heteroplasmy) might change randomly (intracellular drift) and independently of the cell cycle 

by a process of relaxed replication (24-27).  

However, the exact mechanism(s) underlying the formation of mtDNA deletions 

remain elusive. What is undeniable is that most mtDNA deletions occur in the major arc of 

the mtDNA, between the two proposed origins of replication (OH and OL), and that they 

present sequence homologies at the boundaries of their breakpoints (28-30). In addition, 

several authors have noticed that mtDNA deletion breakpoints are often located in regions 

with the potential to adopt non-B DNA conformations, raising the possibility of a mechanistic 

role of alternative DNA structures in the generation of deletions (30-38). In this study, we 

describe a comprehensive survey of non-B DNA conformations across the complete human 

mitochondrial genome and provide multiple lines of evidence for their association with 

mtDNA deletions. Our study was prompted by the clear recognition that certain DNA 

sequences adopt structural configurations that are more prone to breakage (39-43) and the 

emerging understanding that non-B DNA structures are inherently hypermutable (1-3;44). 
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Material and Methods 

 

Mitochondrial DNA deletion breakpoints 

We started by collecting information about all of the available mtDNA deletions (5’ 

and 3’ breakpoints) from the MITOMAP (http://www.mitomap.org) and MitoTool (45) 

databases and from 83 peer reviewed papers published from 1989 to 2010 (Supplemental 

Fig. S1). The 929 different deletions that were initially retrieved have been identified in a) 

patients with an mtDNA deletion syndrome (chronic progressive external ophthalmoplegia, 

Kearns-Sayre syndrome or Pearson syndrome) or with a complex multi-system disorder that 

did not fit into any of the preceding categories; b) patients with autosomal disorders of 

mtDNA maintenance or mitochondrial nucleotide metabolism and c) post-mitotic tissues as 

part of normal aging. We decided to combine deletions from different sources because there 

is no evidence so far that different molecular mechanisms cause deletions in the different 

clinical scenarios that would justify a separate analysis. It has been suggested that a similar 

mechanism generates mtDNA deletions in all clinical situations (29). 

Each deletion was defined by a unique combination of two breakpoints and was only 

included once in our database. This procedure was used to avoid the ascertainment bias that 

is caused by the regular use of methods that only identify a restricted group of deletions, 

which would lead to an overrepresentation of some deletions in our database if frequency 

values were considered. Moreover, we attempted to minimise the noise inherent to the 

presence of the same deletion in different databases or publications (sometimes even with a 

different nomenclature) that would cause an artificial duplication of data. 

If different deletions shared the same breakpoint at one end, then the shared 

breakpoint was counted once for each deletion in most analyses. The deletion breakpoints 

were always numbered according to the conventional L-strand positions of the revised 

Cambridge reference mtDNA sequence (rCRS; NC_012920). We always considered, in this 

study, that ‘breakpoints’ are the mtDNA positions that are retained in the deleted mtDNA 

sequence and that flank the deleted region. In other words, 5’ breakpoints are upstream of 

the 5’ break and 3’ breakpoints are downstream of the 3’ break, considering the L-strand 

numbering. 

In several cases, we observed that mtDNA deletions are described in the literature by 

an interval of values as breakpoint positions. This type of nomenclature is used because of 

the existence of equal sequence motifs in the breakpoint areas (for example, 8,016-

8,019:15,516-15,519), which renders the precise identification of the break sites impossible. 

In such situations, we have retained the smallest number for each breakpoint in the interval 

(in the previous example, 8,016:15,516). With this correction, a few deletions were found to 

be repeated in our original database and were removed, leaving a total of 788 deletions. We 
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then generated the 788 deleted mtDNA sequences by removing the region between the 5’ 

and 3’ breakpoints in the rCRS, retrieved from the NCBI Entrez Nucleotide database 

(http://www.ncbi.nlm.nih.gov). Each deleted sequence was aligned with the full-length rCRS 

using python scripts (Python v.2.6; www.python.org/) from the 3rd party application ‘Muscle’ 

(46) available on the PyCogent v1.5 package (47). The existence of equal sequence motifs in 

breakpoint areas implies that different sequence alignments are possible for the same 

deletion: certain bases might be equally aligned upstream or downstream of the deletion 

area, in the equal sequence motifs (Supplemental Fig. S2). Therefore, we have corrected the 

limits of the deletion when necessary by keeping all possible matches at the 5’ breakpoint. 

This adjustment revealed that several deletions with different reported breakpoints were in 

fact equal. As a result, 753 unique deletions remained and were used in all of the analyses.  

In addition, we collected all of the available information on the mtDNA breakpoints of 

transgenic mice expressing an altered Twinkle mtDNA helicase (48). The breaking sites were 

plotted on the Mus musculus mtDNA reference sequence (NC_005089), positions 15,150 to 

15,469.  

  

Prediction of non-B DNA conformations 

In this work, we use four expressions to describe the predicted structural alterations 

to the orthodox right-handed Watson-Crick B-form of mtDNA: hairpin, cruciform, cloverleaf-

like elements and secondary structures. All of these terms refer to deviations from the 

conventional B-form of DNA, collectively known as non-B DNA conformations. A hairpin or 

stem-loop structure is a section of single-stranded DNA that folds back on itself to form a 

paired double helix that ends in an unpaired loop. The cruciform structure consists of a pair 

of hairpin structures in complementary DNA strands forming a four-way junction with a cross-

shaped configuration. The cloverleaf structure is a single-strand DNA arrangement with four 

stems and three terminal loops, usually used to describe the secondary structure of tRNA 

molecules. All other types of structural arrangements that do not belong to the preceding 

categories are designated here as ‘secondary structures’. The terms are used regardless of 

the length and folding energy of the stem and loop regions. It should be taken into 

consideration that other types of non-B DNA elements exist and were not addressed here 

(e.g., triplexes, G4-tetrad, slipped structures, left-handed Z-DNA, bent DNA and sticky DNA) 

(2). 

The folding prediction for single-stranded DNA was performed with the hybrid-ss-min 

core programme of the UNAFold software package (49). Python scripts were written to run 

automatic executables from UNAFold. The prediction is based on free energy minimisation 

using nearest neighbour thermodynamic rules and dynamic programming algorithms (50). 

The folding of the single-stranded DNA was carried out using the default parameters, 
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including predictions at a temperature of 37°C, sodium concentration of 1 M and magnesium 

concentration of 0 M. The hybrid-ss-min programme predicts the thermodynamically most 

stable secondary structure that a single-stranded DNA segment can form and calculates the 

variation in the free energy of the folding (∆G, expressed here in kcal/mol). The magnitudes 

of the ∆G values indicate the relative stabilities of the structures formed by each segment: 

the greater the variation in the ∆G value (more negative value), the more likely it is that a 

stable secondary structure will form. We always used the predicted lowest free energy 

structure (the structure with the most negative ∆G value) in the various analyses, although 

other suboptimal structures were sometimes predicted by the programme. The graphical 

representations of DNA secondary structures were obtained from the sir-graph programme, 

which belongs to the mfold-util software v4.6 (51). The circular maps of the human mtDNA 

were produced using the Circos software, version 0.52 (52). 

 

Statistical analyses 

The descriptive statistics for the different datasets, the Student's t-test (independent 

samples with separate variance estimates) and the Fisher´s exact test for contingency tables 

were obtained with the STATISTICA v7 software (StatSoft, Inc., Tulsa, OK). All reported p-

values are two-sided and a significance level of 0.05 was used. 

 

 



FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease 

107

 

 

Results 

 

Deletion breakpoints are not randomly distributed throughout the mitochondrial 

genome 

We started by collecting data from all of the available mtDNA deletions in public 

databases and peer-reviewed publications (Supplemental Fig. S1) that have been identified 

in pathological and non-pathological situations. The 753 unique mtDNA deletions that fulfilled 

our selection criteria (Supplemental Fig. S3; see Methods) are defined by 620 and 497 

different 5’ and 3’ breakpoints, respectively (1,117 different breakpoint in total). The number 

of breakpoints is lower than 1,506 (i.e., twice the total number of 753 deletions) because 

different deletions sometimes share the same breakpoint at one end. The distributions of the 

5’ and 3’ breakpoints across the mtDNA are clearly different from each other (Fig. 1; 

Supplemental Figs. S4, S5). This difference has been previously noted in smaller deletion 

datasets (28;30;53). 

The mean value of the distribution of the 5’ breakpoints is position 7,658 with a 

standard deviation of 2,296 (Supplemental Fig. S4). The mode is position 7,402 with a total 

of eight breakpoints, although it is not clearly distinct from the values at other positions (e.g., 

positions 5,787 and 8,032, with seven and six breakpoints, respectively). The histogram of 

the distribution of 5’ breakpoints suggests a multimodal distribution with major peaks around 

and within COX2 and in the WANCY cluster of tRNA genes (Fig. 1; Supplemental Fig. S4). 

The mean value of the distribution of the 3’ breakpoints is position 14,503, with a 

standard deviation of 2,185 (Fig. 1; Supplemental Fig. S5). There is a clear mode in the 

distribution: position 16,071 has noticeably the highest number of 3’ breakpoints, with 41 out 

of 753 total breakpoints (5.44%). The flanking sites of the 16,071 hotspot (positions 16,065 to 

16,080) harbour 25.09% of all of the 3’ breakpoints (189 out of 753 breakpoints) 

(Supplemental Fig. S6). The remaining deletions are mainly found in the ND5 and CYTB 

genes, although there is a sudden decrease in the number of 3’ breakpoints between them, 

in the region of the ND6 and tRNA-Glu genes (Fig. 1; Supplemental Fig. S5). Overall, the 

mtDNA deletions are not randomly distributed, and their breakpoints do not follow a normal 

distribution around any specific mtDNA position (Fig. 1). 

A completely different pattern would be expected if the deletions were random. As a 

simple way to estimate the frequency of deletions per site, we generated a dataset of 20,000 

random deletions with no restrictions. The distribution of mtDNA breakage hotspots in the 

real data contrasts with the distribution observed in simulated deletions. The most common 

breakpoints have frequency values [e.g., mtDNA positions 16,071 (5.4x10-2), 7,402 (1.1x10-

2), 5,787 (9.3x10-3) and 15,435 (8.0x10-3)] that are considerably higher than those estimated 

for 20,000 random deletions, where the highest breakpoint frequency at any site is 4.0x10-4 (8 
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occurrences out of 20,000 breakpoints) (Supplemental Fig. S7). The most frequent real and 

simulated breakpoints have a significantly different proportion in our datasets (p-value < 

1.00x10-4; Student's t-test): 8/753 = 0.011 and 41/753 = 0.054 for 5’ and 3’ breakpoints, 

respectively; 8/20,000 = 0.0004 for random deletions.  

 

The most frequent deletion breakpoints occur within or near predicted hairpins 

We started by investigating the locations of the ten main mtDNA breakage hotspots in 

the predicted secondary structure  of the 100-nt windows (L- and H-strands) enclosing each 

of these breakpoints (selected as window midpoints, i.e., each window extends 50 nt 

upstream and downstream of the break) (Fig. 2; Supplemental Figs. S7-S9). The free energy 

of folding of the 100-nt windows varied from -13.19 to -3.05 kcal/mol in the L-strand and from 

-14.47 to -1.34 kcal/mol in the H-strand. Although all of the 100-nt windows present at least 

one stem element, four of these regions (3,263, 5,787, 12,300 and 16,071) stand out as 

being highly structured, with several stem elements and a folding energy lower than -9 

kcal/mol in the L- and H-strands (Fig. 2). In most cases, similar hairpins were predicted for 

both mtDNA strands, which is compatible with the formation of cruciform structures. 

Cloverleaf structures were predicted for the mtDNA regions of breakpoints 3,263 (L-strand) 

and 16,071 (L- and H-strands).  Similar DNA structures were predicted using 300-nt windows 

(also with breakpoints as window midpoints), suggesting that short-distance interactions are 

more stable than long-distance base interactions (data not shown).  

The most frequent breakpoints are located in single-stranded regions, such as 

terminal loops, with the exception of breakpoints at positions 8,387 (L- and H-strand 

structures) and 7,402 (H-strand structure), which are located in stem regions (Fig. 2; 

Supplemental Figs. S8, S9). Nevertheless, when considering the 1,117 different breakpoints, 

we found that several breaks occur between bases that are paired in folded 100-nt sliding 

windows (Supplemental Fig. S10). The exact location of the 3’ breakpoint of the ‘common 

deletion’ (13,447) is impossible to ascertain due to the presence of a 13-nt direct repeat at 

the breakpoint regions. The 100-nt window around this breakpoint folds differently in L- and 

H-strands, with four and three hairpins, respectively. The breaking of the DNA might occur in 

a stem or loop element. Other structures predicted for the L- and H-strands also differ in the 

number and location of hairpins. For instance, the 7,402 and 8,032 breakpoints are located in 

hairpins elements predicted only for the H-strand (Fig. 2; Supplemental Figs. S8, S9). 

To verify whether the association between breakpoints and hairpins was not only a 

feature of human mitochondrial genome, we analysed the distribution of breakpoints in the 

mtDNA of transgenic mice with mitochondrial disease (48). The distribution of the deletion 

breakpoints in the Mus musculus mtDNA (position 15,150- 15,469) is biased towards 

hairpins, with all of the breakpoints occurring in this category of non-B DNA (Fig. 3). The 
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difference between the proportion of breakpoints located inside (13 breakpoints in a total of 

229 nt) and outside (0 breakpoints in a total of 91 nt) hairpins attains statistical significance 

(p-value = 0.023; Fisher’s exact test). 

 

Two stable clusters of hairpins are hotspots for mtDNA breakage 

The major mtDNA deletion breakpoint (16,071) is located in a 93-nt cloverleaf-like 

structure (positions 16,028 to 16,120) that we previously identified and named structure A 

(35). The central hairpin of this structure (16,060 to 16,082) is a hotspot of DNA breakage, 

with 189 reported 3’ breakpoints occurring in this short region (Fig. 4A). The central hairpin 

has a higher proportion of sites with breakpoints (16 sites out of 23) than the remaining 

structure (8 sites out of 70; p-value < 1.00x10-4; Fisher´s exact test). Of these 189 

breakpoints, 144 (19% of all 3’ breakpoints) are located on the 8-nt terminal loop (p-value < 

1.00x10-4; Fisher´s exact test). The 16,071 hotspot is located upstream of the trinucleotide 

stop point (16,104-16,106) for the premature arrest of the H-strand synthesis (D-loop 3’ end), 

according to the numbering of the mtDNA, or downstream according to the direction of the H-

strand synthesis. The 16,071 hotspot is not within the three-stranded D-loop structure (Fig. 

4A). It could be hypothesised that the 16,071 3’ breakpoint hotspot is overrepresented in our 

database by being associated with certain particular types of 5’ breakpoint in a narrow region 

of the mitochondrial genome. However, we observed that deletions with a 3’ breakpoint in the 

16,071 hotspot (16,075 – 16,080) have 5’ breakpoints in very different mtDNA regions 

(Supplemental Fig. S11). 

One of the most relevant 5’ breakpoint hotspots is located in the WANCY region (Fig. 

1, 4B). This region comprises a cluster of five tRNA genes (tRNA-Trp, tRNA-Ala, tRNA-Asn, 

tRNA-Cys and tRNA-Tyr) that is located between the ND2 and COX1 genes and that 

includes the OL. We found that this mtDNA segment (5,512 to 5,903) has a very high folding 

potential (∆G = -36.41 kcal/mol for the L-strand and ∆G = -40.49 kcal/mol for the H-strand), 

comprising several hairpin structures (Fig. 4B; Supplemental Fig. S12). We discovered that 

all of the 5’ ends of the deletions identified in this region (n = 27) are located in five of these 

hairpin elements (Fig. 4B; Supplemental Fig. S12). We observed that the difference in the 

proportion of breakpoints inside (16 in a total of 295 nt) and outside (0 in a total of 97 nt) 

hairpins is statistically significant (p-value = 0.015; Fisher´s exact test). In particular, 23 of the 

deletion breakpoints are located in a single stem-loop element predicted for positions 5,772 

to 5,803 in the tRNA-Cys gene. This element is only 5 bases downstream of the previously 

identified stem-loop structure that is associated with the origin of L-strand replication (7;8). 
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Mitochondrial tRNA genes are hotspots for mtDNA breakage 

We investigated the distribution of the deletion breakpoints according to the 

coding/non-coding features of mtDNA. The mtDNA regions with the highest number of 5’ 

breakpoints are the COX2 and COX1 genes, with 182 and 149 5’ breakpoints, respectively 

(Supplemental Figs. S13, S14). The control region (the largest non-coding region of mtDNA 

located between tRNA-Pro and tRNA-Phe genes) and the ND5 gene have the highest 

number of 3’ breakpoints (219 breakpoints each). When considering both 5’ and 3’ 

breakpoints, the control region is the location where more breaks occur (15.47% of the total 

breakpoints), followed by the ND5 (14.74%), COX2 (12.22%) and CYTB (11.82%) genes. 

Strikingly, when we take into account the lengths of the different coding or non-coding 

mtDNA regions, those with the highest number of 5’ and 3’ breakpoints per base (number of 

deletions/region length) are the tRNA genes (Fig. 5). tRNA-Ser(UCN) and tRNA-Cys are the 

genes with more 5’ breakpoints per base (0.406 and 0.348, respectively) (Supplemental Fig. 

S14). Although they have the highest absolute number of 5’ breakpoints, the COX1 and 

COX2 genes only have 0.097 and 0.266 5’ breakpoints per base, respectively. The tRNA-

Ser(UCN) gene has a higher proportion of sites with breakpoints than its adjacent COX1 

gene (p-value < 1.00x10-4; Student's t-test). Inside the minor arc, the tRNA-Leu(UUA/G) 

gene, which encodes the MTERF1 binding site, stands out as having a significantly higher 

number of 5’ breakpoints per base (0.147) than its flanking genes (RNR2 and ND1 with 0.013 

and 0.023, respectively; p-values < 1.00x10-4; Student's t-test). Similarly, the gene with the 

highest number of 3’ breakpoints per base is tRNA-Thr (0.318) (Supplemental Fig. S14). The 

other regions with the highest number of 3’ breakpoints per base are the control region 

(0.195) and the CYTB gene (0.152). Nevertheless, the proportion of sites with breakpoints is 

significantly higher in the tRNA-Thr gene than in the adjacent CYTB (p-value = 6.00x10-4; 

Student's t-test; Fig. 5).  

Overall, the tRNA gene sequences fold into structures quite different from the 

common tRNA cloverleaf structure with four stems and three loops (Supplemental Figs. S15, 

S16). In several cases, the predicted structures lack complete domains of the cloverleaf 

structure such as the acceptor arm (e.g., tRNA-Ala, tRNA-Arg or tRNA-Asn). The differences 

between structures are explained by the different folding proprieties of DNA and RNA 

molecules. We also found that the variation in folding energies among tRNA genes is not 

sufficient to explain the difference in the frequency of breakpoints (Supplemental Figs. S17). 

The mtDNA regions with more breakpoints per base (5’ and 3’) are the tRNA-Ser(UCN) 

(0.406), tRNA-Cys (0.348) and tRNA-Thr (0.318) genes (Fig. 5). These three breakpoint-

prone tRNA genes fold with the formation of at least two stem elements. The tRNA-Thr gene 

is one of the few cases that are predicted to form the classical cloverleaf structure 

(Supplemental Figs. S15, S16). 
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Deletion breakpoints are located in mtDNA regions with high folding potentials 

We performed a sliding-window analysis of the folding potentials (100-nt windows 

with 1 nt of overlap) throughout the entire mitochondrial genome (L- and H- strands) to 

capture the folding energy of all of the possible conformational transitions in which every 

mtDNA position is involved (Supplemental Fig. S18, S19). The mean ∆G value in the 16,569 

100-nt mtDNA windows is -5.504 kcal/mol (standard deviation of 3.387) for the L-strand and -

6.366 kcal/mol (standard deviation of 3.403) for the H-strand. There are marked variations in 

the folding energies across the mtDNA, with sudden increases and decreases in the ∆G 

values (Supplemental Fig. S19). The mtDNA region with the highest folding potential is the 

WANCY cluster of tRNAs, matching the second-highest peak in the number of 5’ breakpoints 

(and the 3rd of all breakpoints). 

To investigate how the local DNA sequence environment might contribute to the 

formation of deletions, we extracted and folded all of the 100-nt segments from both the H- 

and L-strands that enclosed a 5’ or 3’ breakpoint as the midpoint (Fig. 6A). The code used to 

identify each region is composed of a number (‘5’ or ‘3’) according to the type of breakpoint 

and a letter (‘H’ or ‘L’) for the mtDNA strand. The mean observed free energy values were -

5.66 (5L), -5.93 (3L), -6.58 (3H) and -7.01 (5H) kcal/mol (Supplemental Fig. S20). 

The distribution of free energies of folding along the mtDNA considering all breakpoint 

areas is represented in Figures 6B, 6C and Supplemental Figures S21, S22. In order to test if 

there is an association between the number of deletion breakpoints and the folding energy of 

the breakpoint area, we compared the two mtDNA segments where 5’ and 3’ breakpoints are 

more frequent with their upstream and downstream flanking segments with the same length. 

In both cases, we found that there is a significantly higher number of breakpoints and folding 

potential (more negative ∆G values) in the target region than in both flanking segments (Fig. 

7; Supplemental Fig. S23). For instance, the mean ∆G value (-6.76 kcal/mol) of the sliding 

windows with midpoints from positions 7,401 to 8,200 (the hotspot of 5’ breakpoints upstream 

and within COX2) is significantly lower than the estimated for its upstream (mean ∆G = -6.18 

kcal/mol; p-value = 4.21x10-5; Student's t-test) and downstream (mean ∆G = -4.26 kcal/mol; 

p-value < 1.00x10-17; Student's t-test) regions. A significant difference was also found 

between the 97-nt segment defined by the hairpin element around OL and the adjacent tRNA-

Cys gene (positions 5,730 to 5,826) and their flanking regions, for both ∆G and the number 

of 5’ breakpoints parameters (data not shown). Similarly, the 16,001-16,100 mtDNA region 

(around the 16,071 hotspot) has a significantly higher number of 3’ breakpoints (n = 201) 

than its upstream (n = 22; p-value = 7.05x10-3; Student's t-test) and downstream (n = 2; p-

value = 2.78x10-3; Student's t-test) regions, together with a significantly higher folding 

potential (Fig. 7; Supplemental Fig. S23). 
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We next detailed the relationship between the folding potential of each 100-nt mtDNA 

sliding window and the number of breakpoints that it harbours. For this purpose, we 

estimated the number of breakpoints in the window midpoint position, i.e., only position 50 in 

each 100-nt window was considered. The distribution of 100-nt windows according to the 

number of breakpoints at the midpoint position shows that a total of 1,114 window midpoint 

positions have at least one deletion breakpoint (6.7%). In general, windows with more 

deletion breakpoints have a significantly higher folding potential. For example, windows with 

more than 8 reported breakpoints have an average folding energy (mean = -11.15 kcal/mol) 

significantly different (p-value = 1.71x10-9; Student's t-test) from that of windows with no 

breakpoints (mean = -5.54 kcal/mol) (Fig. 8). Similarly, windows with 4 to 8 breakpoints in the 

midpoint positions have an average folding energy (mean = -8.14 kcal/mol) that is 

significantly different (p-value = 6.07x10-3; Student's t-test) from that of windows with no 

breakpoints (mean = -5.54 kcal/mol). The average folding energy of windows with 1, 2 or 3 

breakpoints are not significantly different from windows with no breakpoints. 
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Discussion 

 

Our analyses strongly suggest an important role for non-B DNA structures in mtDNA 

deletions. Several alterations to the canonical B-form of DNA might occur in the 

mitochondrial genome with no clear biological function as the simple outcome of particular 

DNA sequence patterns. However, other structures are important for regulation of replication 

and transcription (7-11). The structures with no clear biological function vary according to 

alterations in the primary DNA sequence in a random way and are only removed by purifying 

selection if their formation interferes with any relevant genomic function. In contrast, those 

structures with functional relevance are probably maintained under strong selective 

pressures as previously suggested (8;35). 

The non-random genomic distribution of the deletion breakpoints indicates that the 

root cause of mtDNA vulnerability to breakage resides either in specific characteristics of the 

local DNA sequence environment or in higher-order features of the genomic architecture. We 

found that the number of deletion breakpoints in a particular mtDNA position is associated 

with the folding capacity of the region where it occurs. The genomic regions with more 

breakpoints have a significant higher folding potential than regions with a low number of 

breakpoints (Figs. 7, 8). In agreement with this observation, we detected several mtDNA 

breakage hotspots (e.g., mtDNA positions 16,071, 7,402, 5,787 or 15,435), with cases of 

different deletions sharing the same breakpoint at one end (Figs. 1, 2; Supplemental Figs. 

S4, S5). This site-specific hypermutability is a well-known feature of base substitutions within 

mammalian mtDNA (54). Similarly, our data shows that site-specific breakpoint hotspots exist 

in the mitochondrial genome, as demonstrated by the significant difference of two orders of 

magnitude observed between the highest frequencies of breakage in real and simulated data 

(Supplemental Fig. S7). There is now abundant evidence showing that non-B DNA is more 

prone to DNA breaks than B-DNA (39-43). For example, the formation of secondary structure 

intermediates between DNA ends at translocation or gross deletion breakpoints is common in 

human inherited diseases and cancer (55) and non-B DNA-forming sequences are enriched 

in breakpoints of copy number variations (56) and chromosomal rearrangements (40-42). It is 

possible that such extruded bases are more prone to breakage by mechanical or chemical 

stress. Such conformations can also be the template for the action of trans-acting factors, 

such as structure-specific nucleases (57). 

Since the first reports of mtDNA deletions, scientists have noticed the presence of 

non-B DNA structures encompassing or in the vicinity of the breakpoints. Just one year after 

the first description of deletions in human mtDNA (58), Schon et al. (1989) called the 

attention to the fact that the human mtDNA contains long regions with the potential to form 

‘bent DNA’, including around and within the 13-nt repeats that flank the 4,977-bp ‘common 
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deletion’ (8,470–8,482 to 13,447–13,459). The authors noticed that polypyrimidine tracts and 

AT-rich regions around breakpoints may render such regions susceptible to the formation of 

single-stranded DNA on supercoiling. Consistent with these observations, we found that the 

3’ breakpoint of the ‘common deletion’ is one of the most frequent breaking sites (position 

13,447) of mtDNA and occurs within or near a stable hairpin (Fig. 2; Supplemental Fig. S9). 

No hairpin element has been detected associated with the 5’ breakpoint of the ‘common 

deletion’, although it has been shown by two-dimensional gel electrophoresis that this 

genomic region exhibits retarded mobility due to the putative formation of bent DNA 

structures (31;32). 

In the first description of an autosomal disorder causing multiple mtDNA deletions 

(38), a hotspot for deletion formation was identified near the D-loop 3’ termini (at position 

16,068 to 16,079). This region is now recognised as a preferential location of mtDNA 

breakage in both pathological and non-pathological conditions (30;59;60). In their pioneering 

study, Zeviani and colleagues identified two stable hairpins around this 3’ breakpoint hotspot. 

We have recently discovered that these hairpins are part of a highly conserved 93-nt 

cloverleaf-like structure (35). In fact, more than one quarter (201 out of 753) of all of the 3’ 

breakpoints occur at this cluster of hairpins, most of them at the 8-nt terminal loop (Figs. 2, 

3A). The preference for breakage at single-stranded regions exposed by stable stem 

elements is also common to other mtDNA regions (Fig. 2; Supplemental Fig. S8, S9). The 

deletion hotspot around position 16,071 is located near the trinucleotide stop point (16,104-

16,106) that is associated with the premature arrest of the H-strand synthesis that forms a 

three-stranded DNA structure known as D-loop or displacement loop (61) (Fig. 4A). Its 

location outside of the three-stranded D-loop structure, but still very close to its 3’ end, points 

to a possible relationship between the process of deletion formation and the 

functional/structural features of the D-loop. Indeed, the formation of the D-loop induces 

superhelical tension to the mtDNA in solution, at least in Xenopus laevis oocytes (62), which 

might cause distortions of the canonical B-DNA. The complete elucidation of the function(s) 

of the D-loop under normal physiological conditions will help to understand such potential 

relationships. Its involvement in mtDNA organisation, segregation and replication have been 

hypothesised (63;64). The mtDNA breakage hotspot at the D-loop 3’ end is not only a feature 

of human mtDNA. It has been repeatedly found in the homologous region of the mtDNA of 

transgenic mice with mitochondrial disease (48;65;66). We found that all breaks reported 

between the CYTB gene and the control region of this transgenic mice (48) occur in hairpin 

elements (Fig. 3). As suggested by Tyynismaa et al. (2007), our data also indicate that the 

general mechanism underlying multiple deletions with site-specific breakpoints is not due to 

the primary sequence itself but to its secondary structure or functional location. 



FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease 

115

 

 

The association between hairpin structures and breakpoints is also clear in the 

WANCY cluster of tRNAs that surrounds the main OL (Fig. 4B). Our different computational 

analyses demonstrated that this region stands out as having the highest folding potential of 

the mitochondrial genome (Figures 6B, 6C and Supplemental Figures S21, S22), with all of 

the reported 5’ deletion breakpoints occurring in hairpin elements (Fig. 4B; Supplemental Fig. 

S12). The genomic instability at the WANCY cluster is also perceptible when comparing 

vertebrate mitochondrial genomes: it is a hotspot of gene order rearrangements by tandem 

duplication and random loss of genes (67). In fact, the breakpoints of such rearrangements 

observed in different phylogenetic groups are often thought to involve  hairpin elements (68). 

Our large dataset revealed that deletion breakpoints are overrepresented in tRNA 

genes (Fig. 5; Supplemental Fig. S14). The structural elements of tRNA molecules, which are 

well known for playing important biological roles, explain the high folding potential observed 

in the DNA regions encoding them (e.g., ∆G = -5.1 kcal/mol predicted for the tRNA-Ser(UCN) 

gene). It is therefore likely that the formation of secondary structures at tRNA genes, for 

instance, during transcription or replication when the mtDNA is single-stranded, may 

contribute to the formation of the deletions, as previously suggested (33;34). The ability of 

tRNA genes to mediate genomic rearrangements is well documented in the mitochondrial 

and other genomes (68-70). A notable example detected in our study is the breakpoint-prone 

tRNA-Leu(UUA/G) gene, which has a significantly higher number of breakpoints than its 

flanking genes (Fig. 5). Although it is located in the minor arc, it surrounds one of the top ten 

mtDNA breakage hotspots, at position 3,263 (Fig. 2).  

The breaking of the DNA is only one of the many factors that shape the distribution of 

mtDNA deletions. There are several constraints to the formation of circular deleted mtDNA 

molecules and their subsequent proliferation in cells that might explain why genomic regions 

with very high folding potentials (and thus mutational prone) are devoid of detectable 

breakpoints. It is likely that many breakage sites in mtDNA are not detected just because 

they are not involved in the formation of circular deleted mtDNA molecules with an efficient 

replication capacity. Although other constraints might act on mtDNA deletions, the presence 

of homology at breakpoints and the removal or replication origins are believed to significantly 

influence their distribution (28-30). 

The presence of homology at the edges of mtDNA deletions, including both perfect 

and imperfect short repeats, is a well-known feature of this type of genomic rearrangement 

(30;33;37;71). In particular, two 13-nt direct repeats were found associated with most human 

mtDNA deletions (30). However, an important breakthrough was recently made by Guo et al. 

(28) by showing that deletion breakpoints coincide with distant segments of mtDNA that are 

capable of forming stable imperfect duplexes with each other, rather than with the presence 

of perfect repeats, as previously assumed. In other words, 5’ and 3’ deletion breakpoints tend 
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to have large regions of partial or interrupted homology with, at least, 100 nucleotides (28), 

which is possibly related with the joining of the distant mtDNA regions rather than with the 

breakage of the DNA strand. Therefore, only those breakage sites near regions with long 

stretches of high sequence homology are detected in mtDNA deletions. This feature might 

explain why some putative breakpoint-rich areas are not detected in deletions. For instance, 

the tRNA-Pro gene (devoid of breakpoints) is locate in a region that apparently forms 

unstable duplexes as suggested by the white or clear ‘stripes’ around position 16,000 that 

run across the matrix of free energies made by Guo et al. (28). It is possible that breakpoints 

in the tRNA-Pro gene remain undetectable just because they do not participate in the 

formation of circular deleted mtDNA molecules. The development of accurate methods to 

directly detect breakage sites in the mtDNA will clarify this issue.  

The mtDNAs without an origin of replication have a limited replication capacity that 

influences their likelihood of propagation and detection. This feature clearly influences the 

distribution of mtDNA deletions, which are mostly located inside the major arc (88.8% of the 

cases) without removing any origin of replication (Fig. 1). In fact, we only identified 71 

deletions (9.43% of all cases) without the OL and one deletion without the OH (0.13% of all 

cases), as defined by the strand-asynchronous model of mtDNA replication (14;72), even 

taking into account that we have designed our database to include deletions that were 

detected in post-mitotic tissues at low levels (e.g., from Kajander et al. (59)), the detection of 

which does not depend on an efficient replication capacity. It is probably because of its 

location inside the minor arc near OH that rRNA and some tRNA genes do not display a high 

number of breakpoints, meaning that large deletions with a breakpoint in this area are likely 

to remove an origin of replication. Moreover, the profile of folding energy across the rRNA 

genes is not different from that observed in the rest of the genome (Supplemental Figure 

S19). The highest folding potential is reached at the end of the RNR1 gene, with a ∆G of -

18.19 kcal/mol (L-strand sequence) below the folding capacity of the WANCY region (∆G of -

20.56 kcal/mol; window with midpoint at position 5,732). The rare presence of breakpoints in 

the rRNA genes might also be related with the mTERF-mediated molecular process for rRNA 

synthesis that postulated the looping-out of the rDNA region (73). The high rate of rRNA 

synthesis and the formation of a large DNA loop between termination and initiation sites 

might somehow interfere with the deletion process. Further work is necessary to uncover all 

the constraints to the distribution of deletions. Nevertheless, we were able to find a clear 

association with non-B DNA conformations even taking into account that many breakage 

hotspots might remain undetectable. 

Various hypotheses have been advanced in recent years to explain the formation of 

mtDNA deletions, each one giving a different prominence to the roles of DNA replication 

(60;71), recombination (33;37) and repair (29) in the deletion process. Despite the intense 
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debate, there is no compelling evidence unequivocally demonstrating which mechanism (if 

only one) generates deletions in the various physiological situations. The data presented 

here indicate that, whatever the process underlying deletions, non-B DNA conformations 

(intra-strand hairpins and cloverleaf-like elements) should be considered an important piece 

in the complex puzzle of mitochondrial genomic rearrangements. Unfortunately, our poor 

knowledge of the in vivo dynamics and organisation of mtDNA makes it very difficult to 

understand exactly how such alternative DNA structures cause deletions.  

It was recently suggested that mtDNA deletions are most likely to occur during repair 

of damaged mtDNA (29). The formation of non-B DNA might trigger this process by increase 

the rate of single and double-strand lesions (39-43). In alternative, several models posit that 

mtDNA deletions are a replication-associated phenomenon (60;71;74). Previous in vivo and 

in vitro experiments have shown that non-B DNA acts as a preferential pausing site for DNA 

polymerases (75;76), which may be an obstacle to fork progression or a target for nucleolytic 

attack, thus permitting DNA breakage and deletion formation (77-80). The preferential 

location of 5’ and 3’ breakpoints in the large arc between OH and OL suggests that the 

replicative process might somehow influence the generation of deletions. Consistent with this 

assumption, mice expressing a defective mtDNA polymerase display elevated replication 

pausing and breakage at fragile sites near OL (65;81). A different mechanism suggests that 

the formation of a transient DNA triple helix in pyrimidine-rich sequences might guide the 

slipped mispairing of the replication complex, causing mtDNA rearrangements (36). In 

addition, the accumulation of multiple mtDNA deletions in individuals with defects in the 

replicative helicase Twinkle and DNA polymerase γ have been used to support the idea that 

deletion formation might be induced by replication stalling (60). This process might be related 

to the breakpoint hotspot in the cluster of hairpins near the D-loop 3’ end (Fig. 2A), a putative 

replication fork barrier. 

The formation of hypermutable non-B DNA in certain regions of the mitochondrial 

genome might indeed be the link between the high incidence of deletions in individuals with 

defects in proteins that move, organise or replicate the DNA (which collectively control the 

mtDNA topology). The inefficient activity of the altered versions of such DNA-interacting 

proteins might induce considerable changes in the topology and supercoiled state of mtDNA, 

whose tensional stress might be released by the formation of non-B DNA and the breakage 

of DNA. In fact, even the normal movement of RNA and DNA polymerases through the 

mtDNA may generate regions of superhelical tension and other topological alterations, which 

may be associated with the genesis of mtDNA rearrangements (82). More detailed 

biochemical and computational studies are needed to verify all of these conjectures. 

Although the mechanisms remains elusive, our analyses suggest that DNA structure-induced 

genomic instability seems to be at the heart of the mtDNA deletion process. 
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Supplementary Data are available at NAR online: Supplementary figures S1-S23. 
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Figures 

 
 
Figure 1: Deletion breakpoints are not randomly distributed throughout the mitochondrial genome. (A) A circular representation 

of the human mtDNA with annotated tRNA (black), rRNA (brown) and protein-coding (green) genes (outer track). The central 

track depicts the location of 5′- (blue) and 3′- (red) breakpoints. The central lines indicate the deleted region in the 753 reported 

cases. (B) The distribution of 5′- (blue bars) and 3′- (red bars) deletion breakpoints in the human mtDNA. The locations of the 

mitochondrial genes are shown below the x-axis. 
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Figure 2: The most frequent deletion breakpoints occur within or near predicted hairpins. Five of the most frequent breakpoint 

sites (mtDNA positions 3263, 5787, 12300, 13447 and 16071) are indicated by a green arrow in the predicted structure (L-

strand) of the 100-nt flanking region (breakpoints were used as window midpoints). The blue and red arrows indicate less 

frequent 5′- and 3′-breakpoints, respectively. Highlighted in grey are the binding sites of the MTERF1, the 13-nt direct repeat at 

the 3′-breakpoint of the ‘common deletion’ and the D-loop 3′-terminus. 
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Figure 3: Breakage sites in the mouse mitochondrial genome are associated with hairpin elements. All of the deletion 

breakpoints described in transgenic mice with mitochondrial disease (yellow arrows) are indicated in the Mus musculus mtDNA 

L-strand reference sequence (NC_005089), from position 15,150 to 15,469. The secondary structures were obtained in the 

mfold-util software v4.6. 
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Figure 4: Two stable clusters of hairpins are hotspots for mtDNA breakage. (A) A total of 189 reported 3’ breakpoints occur in 

the central hairpin (black circles) of a large cloverleaf-like structure (enclosed image) predicted for a 93-nt stretch (positions 

16,028 to 16,120) of the control region near the Proline tRNA (L-strand). Inside the hairpin, 144 breakpoints (19% of all of the 3’ 

breakpoints) are located on the 8-nt terminal loop. This deletion hotspot is located near the trinucleotide stop point (16,104-

16,106; white circles) for the premature arrest of the H-strand synthesis responsible for forming a three-stranded DNA structure 

known as the displacement loop (D-loop). (B) All of the 5’ deletion breakpoints (n = 27) identified in the WANCY cluster of tRNAs 

are located in hairpin elements (L-strand). Most of them (n = 23) are located in a single stem-loop element predicted for the 

tRNA-Cys gene, downstream of the stem-loop structure that is associated with the origin of L-strand replication (OL). 
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Figure 5: Mitochondrial tRNA genes are hotspots for mtDNA breakage. The graph displays the number of deletion breakpoints 

per base (number of breakpoints/region length) according to the coding features of the mitochondrial genome (5’ and 3’ 

breakpoints in light and dark grey, respectively). The significance of the difference between the number of breakpoints in some 

tRNA and their flanking genes is shown (two-sided p-values; Student's t-test). 
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Figure 6: Genome-wide distribution of folding potentials in the breakpoint areas of mtDNA deletions. (A) The nomenclature and 

schematic representation of the location of the genomic region enclosing 5’ and 3’ deletion breakpoints. (B, C) Black and grey 

dots indicate the free energy of folding (kcal/mol) of 100-nt windows around the 5’ (B) and 3’ (C) breakpoints (black and grey 

dots for L-strand and H-strand segments, respectively). The blue (B) and red (C) lines indicate the distribution of 5’ and 3’ 

breakpoints, respectively (measured in 100-nt sliding windows with an overlap of 1 nt). The peak at the 16,071 hotspot reaches 

201 deletions but is not completely shown to facilitate the visualisation of smaller peaks. 
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Figure 7: The main hotspots of mtDNA breakage have higher folding potentials than adjacent regions. The two mtDNA 

segments where 5′- and 3′-breakpoints are more frequent (positions 7401–8200 and 16 001–16 100, respectively) were 

compared with their upstream and downstream flanking segments. We estimated for each segment the mean number of 

breakpoints per base (and the 95% confidence interval for the mean) and the average folding potential of the 100-nt windows 

with a midpoint position in that region. There is a significant higher folding potential (more negative ∆G values; top graphs) and 

higher number of breakpoints per base (bottom graphs) in the hotspot regions than in their flanking segments. The results of the 

statistical tests (Student’s t-test; two-sided P-values) to evaluate the differences in means (∆G values and number of 

breakpoints) between adjacent regions are indicated. 
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Figure 8: Deletion breakpoints are located in mtDNA regions with high folding potentials. The bar chart depicts the relationship 

between the mean folding potential (∆G values) and the number of breakpoints in the midpoint position of 100-nt sliding 

windows covering the entire mitochondrial genome. The results of the statistical tests (Student's t-test; two-sided p-values) 

shows that windows with more breakpoints have a higher folding potential than windows where breakpoints are rare. 
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Abstract 

Microsatellites, or short tandem repeats (STRs) represent about 3% of the human 

genome, with most of them located in non-coding regions. Although it was assumed that they 

might not have a biological function, recent studies showed the influence of STRs on gene 

expression, recombination, and maintenance of chromatin spatial organization. It remains to 

be determined how the number of repeats vary according to the stepwise mutation model 

(SMM), and what is the role that strand-slippage replication mechanisms have on the STR 

mutational process. In order to address these questions, we have performed molecular 

dynamics simulations in tetranucleotide motif STRs from the Y chromosome (Y-STRs). Our 

results indicate that different forms of hairpins are predicted without a clear association to 

any specific initial constraints, which suggests that formation of small hairpins can occur in 

any region of the STR and depends on specific conditions of the STR region (base 

composition, counterions, and water distribution). The hairpin presence (stem base pairing 

and loop) was associated to electronegative pockets of Na+ that were present near hairpins 

stems or loops (<10 Å). Each STR showed a specific folding potential which will influence 

STRs length variation resulting from replication errors (e.g., strand-slippage replication 

mechanism). 
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Introduction 

 

Non-coding regions represent almost 99% of the human genome[1]. It is now believed 

that they are important to the organization and evolution of the genome [2,3]. The ENCODE 

project [4-10] has recently demonstrated the importance of non-coding regions as regulatory 

elements. For instance, histones modifications and chromatin accessibility in these regions 

have important consequences to replication process and transcription [4,5,10]. A particular 

class of non-coding DNA corresponds to microsatellites or short tandem repeats (STRs), 

which represent nearly 3% of the human genome [1] and are assumed to be neutrally 

evolving. This class of elements is particularly dynamic and highly polymorphic due to a 

relatively high mutation rate that induces variation in the number of units of the repeated 

motif [11,12]. Therefore, STRs are widely used as genetic markers in population genetics, in 

forensics, and evolutionary studies [13-17]. In addition, they are also associated to several 

human diseases [18,19] that are believed to result from replication errors, repair errors and 

genomic instability, such as fragile X syndrome, Huntington's disease, myotonic dystrophy, 

and various types of spinocerebellar ataxias [20-25] The factors that influence the STR 

mutation rate have been under extensive investigation, including the variation in repeat 

number and size, base composition, flanking sequences, recombination, sex and age of the 

individual [16,19,26-32]. The variation in STRs length can produce alterations in the state of 

the chromatin conformation or promote the insertion of transposable elements, which will 

have consequences to genome architecture[33]. In this respect, the SMM has been proposed 

to explain the length heterogeneity in STRs [19,34]. The SMM model posits that most 

mutations correspond to single repeat unit additions or removals [35,36] and is based on the 

premise that the size of alleles is virtually unlimited and there is independence between 

mutation rate and repeat number. 

Molecular dynamics (MD) approaches to describe DNA helical systems, single-

stranded systems and other particular conformations have been used to better understand 

DNA behaviour in different environments [37-41]. MD has some limitations related with the 

force-field used to represent the molecular systems (e.g., quantum effects in some biological 

processes like changes in chemical bonding, cannot be modelled), the estimate of 

interatomic potentials, the size of the systems and the time scales that are appropriate to 

mimic biologically important processes [42-46]. 

The Unified Nucleic Acid Folding and hybridization package (UNAFold) [47] is a well-

established software that uses experimentally determined thermodynamic parameters to 

predict non-canonical RNA and DNA secondary structures. There is a clear association of 

these secondary structure predictions and biochemical processes [48-50]. We performed a 

MD simulation to mimic the DNA conformations in Y-STR taking into consideration the 
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UNAFold secondary structure predictions and their implications in replication mechanisms 

[48,51,52].Our new approach designed to explain the heterogeneity observed in STRs at the 

structural level demonstrates that fold/unfold states can occur frequently enough to increase 

the potential formation of hairpin structures in single-stranded STRs. The folding states 

observed in every conformational state where associated with specific environment of water 

and counterions [41,53-55]. Overall, our simulations demonstrate that hairpin conformations 

can occur and be maintained during 12 ns dynamics, are associated to specific water and 

counterion distributions, and can adopt supercoiled conformations. The results also suggest 

that the motif nucleotide composition has great influence in the maintenance of these small 

hairpins, and different molecular systems can maintain the initially constrained stems and 

loops.  

  

 

Methods 

 

Y-STR Homology Search in NDB 

We searched the Nucleic Acid Database (NDB) to retrieve Protein Data Bank (PDB) 

format files homologous to each Y-STR available at the Y-STR National Institute of 

Standards and Technology (NIST) database [56] and from Ballantyne et al. [11] 

(Supplementary Material Table SI1). A tailor-made python script was developed for this 

purpose. We started the search using the minimal allele length (1 repeat), and then 

increased the search until we reached the maximum allele length (e.g., DYS19A search was 

done with allele lengths ranging from 2 to 19 repeats). Identity scores for each search were 

saved. 

 

UNAFold Secondary Structure Predictions and NAB 3D Structures 

The accuracy of Unified Nucleic Acid Folding and hybridization package (UNAFold) 

was tested by using a database of 22 nuclear magnetic resonance (NMR) spectroscopy 

experimentally-determined single-stranded DNA structures (Table 1) with small hairpins. We 

compared these 3D structures with the secondary structure prediction of small hairpins of 

UNAFold. 

The UNAFold software was then used to predict the secondary structure for each Y-

STR. We have used NABpy python class (NABpy Python Supplementary File) to predict 

UNAFold secondary structures of all Y-STRs in NIST database using the following 

parameters: temperature of 37 Celsius (°C), sodium ion concentration (mol/L) of 0.05 and 

magnesium ion concentration of 0.002. Temperature and ion conditions were selected to 

mimic a PCR system at the starting temperature [57,58]. We used the PCR parameters as a 
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simplified model that represents the most important variables of the DNA single-stranded 

molecules present in in vivo replication process. 

DNA strands of each STR were built representing 3D molecular systems of single-

stranded and constrained conformations. The small hairpin presence and/or nucleotide base 

pairing were observed during MD. The initial constrained hairpin structures were predicted 

using thermodynamics parameters calculated by UNAFold and described elsewhere [47,51]. 

The base pairing geometry of experimentally determined structures implemented in NAB was 

used to build the stems of the 3D single-stranded DNA presenting small hairpins. In order to 

build the 3D models we selected three of the most common tetranucleotide Y-STRs from the 

complete NIST database considering: a) UNAFold secondary structure prediction with small 

hairpins (Figure 1A, Table 2 and Supplementary Material Table SI1); b) different nucleotide 

composition; c) motif length of 4 nucleotides; d) different middle range allele size (DYS19A: 

15 repeats, DYS391: 10 repeats, DYS531: 11 repeats). We produced for each STR several 

DNA macromolecules (5’ – 3’ strands) using the nucleic acid builder [NAB [59]] as 

implemented in NABpy: one structure with single-stranded Y-STR (SS), one with Y-STR 

UNAFold predicted small hairpin secondary structure constraints (UF) and others considering 

UNAFold predicted small hairpin with identical loop and same base pair connections in stem, 

but not located in the region of STR predicted by UNAFold (UFR) (Figure 1B and 

Supplementary Material Table SI2). The single-stranded DNA molecule was used as control 

for each STR. The UFR molecules were built to determine if the presence of small hairpins is 

dependent of the STR region where they occur. We also analysed each STRs (DYS19A, 

DYS391 and DYS531) considering 11 repeats molecular systems (single-stranded and small 

hairpins UNAFold constrained DNA), to ascertain if STRs with same length maintain the 

small hairpins during MD. We neutralized the molecular DNA systems with Na+ and solvated 

them with explicit TIP3P water molecules that extended 10 Å from any edge of the box to the 

DNA atoms. This specific solvent environment was selected to simulate PCR conditions. 

Explicit solvent MD of the single-stranded and UNAFold predicted DNA conformations 

resembling an in-vitro system were performed for 12 ns. The computational analysis to test 

the stem and/or loop presence in Y-STR was performed taking in consideration the 

secondary structure (small hairpins) formation implications in replication mechanisms 

[48,51,52]. 

  

Molecular Dynamics Simulation  

To model the UNAFold prediction of stable secondary structures, we performed MD 

simulations of the UNAFold prediction and linear molecules of DNA. For each model we 

created the topology and simulation parameters files to run the MD during 12 ns using the 

parm99SB Amber force field [60]. The systems were initially energy minimized to remove bad 
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contacts by steepest descent followed by conjugate gradient algorithms. Subsequently, they 

were subjected to 4 ns of heating procedure (in NVT ensemble) in which the temperature 

was gradually raised to 300 K, followed by 8 ns runs in the NPT ensemble. The Langevin 

thermostat [61,62] was used and the electrostatic interactions were calculated by using the 

particle mesh Ewald (PME) method [63]. Bond lengths involving hydrogen atoms were 

constrained to their equilibrium values using the SHAKE algorithm [64]. The equations of 

motion were integrated with a two fs time-step and the non-bonded interactions were 

truncated with a 10 Å cutoff. All computations for the simulation of the generated Y-STR 

molecular models using a solvated box TIP3P with 10 ångström (Å) of side were completed 

and analysed as described in Figure SI2 in Supplementary Material. Each nucleotide is 

referred using AmberTools [59,65] nomenclature: Adenine (DA), 3’ Adenine (DA3), Thymine 

(DT), 5’ Thymine (DT5), Guanine (DG) and Cytosine (DC). 

 

Root-Mean-Square-Deviation (RMSD) Graphs and End to End Distances 

We analysed the MD stability by calculating the RMSD values for all atoms and 

backbone atoms. All graphs were generated parsing the RMSD file with NABpy and plotting 

the data with Matplotlib (http://matplotlib.org/).The last 4 ns of every simulation were 

condensed into one trajectory file: Trajectory file 1 (RMS1) with ≈350 snapshots; the waters 

and ions were not removed. We also determined the distance of 5’ C1’ carbon atoms (first 

residue) and 3’ C1’ carbon atoms (last residue) and end to end distances graphical outputs of 

each molecular dynamics simulation in RMS1. 
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Hairpin States and H-Bond Trajectory Analysis 

The hairpin states in each molecular model were analysed by considering three 

regions of low free energy: 1) the native form (with 6–8 hydrogen bonds and around four 

stacked bases); 2) a partially folded state characterized by two hydrogen bonds and two 

stacked bases, and 3) the fully unfolded form with no native hydrogen bonds and a variable 

number of stacked bases [41]. The process of small hairpins formation is elsewhere 

described [41,66-68] and can result from different folding mechanisms. Hairpin formation 

involving loop nucleation of one base pairing connection followed by second base pairing 

connection results from fluctuations between closed and open hairpin states [68]. 

All functions to perform hydrogen bonds (H-bonds) analysis of trajectory files using 

AmberTools were implemented in NABpy. We detected the base-pairing occurring in 3D Y-

STR small hairpins by using ptraj in AmberTools. We used a mask for ptraj hbond function 

considering all possible hydrogen bond acceptors in each nucleotide (DA@N1, N3, N7; 

DT@O2, O4; DG@O6, N3; DC@N1, N3 , O2) and all possible hydrogen bond donors 

(DA@N6 :DA@H61, DA@N6 :DA@H62; DT@N3 :DT@H3; DG@N2 :DG@H21; DG@N2 

:DG@H22,DG@N1 :DG@H1; DC@N4 :DC@H41,DC@N4 :DC@H42) with a cut-off of 5 Å. 

Non-canonical H-bonds between base pairs were considered in this analysis. The water (cut-

off of 3 Å) and ions (cut-off of 5 Å) H-bonds were also analysed. We considered as hydrogen 

bond acceptors the phosphate groups (@O1P; @O2P) and oxygen atoms (@O3'; @O4'; 

@O5'). ). All results were compiled using NABpy and exported to Microsoft Excel. Graphical 

outputs were generated in STATISTICA v10 [69]. 

  

X3DNA Analysis and Curves+ Analysis 

We calculated an average coordinate file (saved as PDB) for each Y-STR model 

molecular dynamics for the RMS1. The X3DNA [70] software was used to determine the 

canonical base pairs connections occurring in the average PDB. The Curves+ software [71] 

was used to calculate the nucleotide parameters (backbone, inter and axis base pair 

parameters) of each Y-STR MD simulation of RMS1. Coordinate files (PDBs) corresponding 

to each snapshot were created and then analysed with Curves+. The results were compiled 

for each nucleotide in each STR using NABpy. The results were exported to Microsoft Excel 

and graphical outputs were generated in STATISTICA v10. 
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Results 

 

Sequence Homology Search 

The sequence homology search for all NIST database Y-STRs performed over 

Nucleic Acid Database [56] did not give any alignment (identity values>0.5) with NDB 

sequences, considering only one tetranucleotide repeat. For each single repeat unit we 

obtained alignment sequence identity values of 0.393 for DYS19A (TAGA repeat), 0.286 for 

DYS391 (TCTA repeat), and 0.386 for DYS531 (AAAT repeat). The alignment sequence 

identity for more than one repeat, using the reported allele range at NIST, was near zero for 

all the searched lengths, which means that no similar PDB data was available in NDB to build 

our models using homology. We could not obtain reliable PDBs (at least sequence identity 

>0.5) to build the three dimensional (3D) macromolecular models for the selected Y-STR 

sequences. Therefore, we built all molecular simulation models (Figure 1A and 1B, 

Supplementary Material Table SI1 and Figure SI1) using UNAFold (stem base pairing 

constrains), NABpy and NAB from the AMBER package. 

 

UNAFold Secondary Structure Predictions 

Since UNAFold predictions present some limitations to accurately determine some 

types of structures we have performed an accuracy test for small hairpin predictions. 

Considering the NMR 3D structures analysed to test the UNAFold accuracy we obtained an 

overall result that gives a high performance for the small hairpin prediction of UNAFold 

software. We have used a database of experimentally determined NMR structures of 22 

single-stranded DNA with hairpins (Table 1 and Figure 2, 

http://ndbserver.rutgers.edu/index.html) to test the accuracy of UNAFold to predict hairpin 

structures. We obtained 20 accurate loop predictions (90.9%), 18 accurate stem and loop 

prediction (81.8%). The only structures that UNAFold was unable to predict were 1EL2 and 

1ELN because these are complex 3D structures that fold over themselves. 

We obtained UNAFold small hairpin structures predictions for all 36 Y-STRs 

described in Supplementary Material Table SI1. These small hairpin structures were 

predicted to be just one per STR and located at 5’ end regions (Figure 1A), even when 

considering different allele lengths. The detected fold/unfold states of all tested models were 

predicted to be the main cause of allele heterogeneity (Figure 1C) since we had avoid the 

effect of recombination, which is one of the factors involved in the generation of variation, by 

using STRs located in the non-recombining Y chromosome. 

 

Molecular Dynamics: Limitations Considering the Initial Starting Structures 
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The MD simulations analysed here present limitations considering the starting 

structures used. Nevertheless current force fields can be used to model unusual DNA 

structures [60,72]. The fact that small hairpins with 10 nucleotides and two base pairing 

connections are been analysed, reduces the probability of errors related with changes in 

chemical bonding. Other limitation was the 12 ns time scale used in the MD simulations. The 

time scale for hairpin folding via MD (1000 ns) [41] observed in other single-stranded DNA 

systems was not achieved in this analysis but we properly modelled the single-stranded 

small hairpins in each STR for 12 ns. We could observe the presence, absence and 

maintenance of small hairpins in MDs and determine if there were high fluctuations in 

conformations for each molecular model tested. The methodology used here can be used for 

large time scales that can mimic biologically important processes. 

 

 

Molecular dynamics: RMSD 

The RMSD graphs of each Y-STR presented a similar behaviour for the backbone 

atoms and for all the atoms (Graphs SI1-SI29 of Supplementary Material and Figure 3). This 

result indicates that, for the analysed Y-STRs, changes in conformation during 12 ns are 

consistent both for DNA backbone structure and peripheral atoms. In all cases, a major 

conformational switch occurred in the first 4 ns with RMSD values from 12 to 18 Å. 

Stabilization of the RMSD values is achieved consistently in the last 4 ns of trajectory results 

(Figure 3). We also observed slight variations in conformation stabilization when comparing 

the UNAFold prediction conformations occupying other regions of the same STR. The RMSD 

values variation for different STRs is not as high as expected when comparing the single-

stranded models. We expected to have more differences considering the various repeats in 

each STR (DYS19A: TAGA, DYS391: TCTA; DYS531: AAAT) and the different allele lengths 

tested (DYS19A: 15 repeats, DYS391: 10 repeats; DYS531: 11 repeats). Even considering 

this fact the RMSD values were very high for all the molecular models tested. Different 

models for the same STR resulted in different RMSD variations, and therefore in very 

different conformations. This result is in agreement with the fact that the molecular systems 

were subjected to different constraints in the beginning of each simulation. 
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Molecular Dynamics: End to end distances 

To test the 5’ and 3’ conformational changes of each Y-STR molecular model during 

the MD simulation, we analysed the distance between the C1 atoms of the first and last 

nucleotide of the STR. The results are summarized in Table SI3 of Supplementary Material. 

The average distance between the Y-STR strand ends for the DYS19A models is 45.14 Å 

(maximum average of 56.49 Å; minimum average of 34.85 Å). The first nucleotide (1DT) to 

last nucleotide (60DA) distance average variation of DYS19A UNAFold predicted structure is 

25.26 Å, the lowest when compared with all the other tested models. Nevertheless, the 5’ 

and 3’ median distance is sufficiently high (≈45 Å) in all models to consider that the beginning 

and end of the DYS19A strand is sufficiently distant enough to validate the models (Figure 4 

and Supplementary Material Table SI3). The distance variation along last 4 ns of trajectories 

corroborates these results (Supplementary Material Graphs SI30-SI58).  

The DYS391 (40 nucleotide length) average distance between first residue (1-

DT5:C1’) and last residue (40-DA3:C1’) is 41.15 Å. The single-stranded molecular model was 

one of the systems where the average distance is lower (35.35 Å). The difference of the 

average distance value comparing the Y-STR DYS19A (60 nucleotides length) with the Y-

STR DYS391 (40 nucleotide length) is ≈4 Å. This result is mainly derived from the higher 

strand length of DYS19A. The average distance (41.36 Å) of the C1’ atoms of DYS531 (44 

nucleotide length) was in accordance with the DYS391 value that has almost the same 

length. 

The MD simulations are consistent among the three Y-STRs molecular models when 

the end to end distance between the first residue C1’ atoms and the last residue C1’ atoms 

are considered. An approximation of the 5’ and 3’ ends is not observed during the MD 

simulations. 

  

Molecular Dynamics: H-Bonds 

We found several differences in DYS19A when comparing the alternative Y-STR 

constraints hypothesis (Supplementary Material Tables SI4-SI14, Graphs SI59-SI69, and 

Graphs SI88-SI95). We obtained the lowest number of valid H-bond contacts between bases 

for the single-stranded 3D model of DYS19A Y-STR. During the last 4 ns of the STR MD 

simulation the number of preserved H-bond connections (canonical or non-canonical 

nucleotide interaction) was always higher for the molecular models submitted to different 

forced constraints (203-288 H-bond contacts). These conformational states are very stable at 

the 5’ end of the STR as determined by the UNAFold software. Nevertheless, upon the 

analyses of simulations where the hairpin was located at 3’ end of the STR, the number of H-

bond contacts was still higher than the simulation considering a single-stranded Y-STR 

molecule (Supplementary Material Tables SI4-SI14). In all these cases we obtained localized 
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H-bonds between nucleotides that were not contiguous (more than two bases distance). 

Spontaneous formation of several H-bonds (stacking or base-pairing interactions) can occur 

in DYS19A along the STR, which are mainly isolated base connections. When considering 

the UNAFold prediction (Table 3), in particular the specific region where constraints were 

forced in the beginning of simulation, we noticed an elongation of the stem formed between 

4<->13 and 5<->12 [only one 4<->12 H-bond in the form N7<->H62<->N6 (acceptor-

Hydrogen-donor)]. A new stem has arisen between 5<->12 and 6<->11 (DT<->DA and DA<-

>DG), which suggests that stem-loops in different positions at different times of the molecular 

dynamics can arise (Table 3). In the other molecular models tested for DYS19A (Table 4), 

the H-bond pattern was maintained with localized H-bonds in the regions where the initial 

constraints were present (stem base pairing and stacking). The two base pairing connections 

were not maintained in all UFR models tested, and in some cases only one connected base 

pair was maintained showing a loop nucleation. These results are in agreement with the 

hairpin closed and open states mechanism that where described by Goddard et al. [68] by 

comparing different stem-loops conformations using a thermal equilibrium analysis between 

closed and open conformations. 

The highest number of H-bond base pairing in DYS391 was observed in the single-

stranded DNA molecular system, while the lowest (almost half of single-stranded DYS391) 

was in the UNAFold constrained molecule (Figure 5, Supplementary Material Tables SI15-

SI22, Graphs SI70-SI77, and Graphs SI96-SI103). This result clearly contrasts with the STR 

previously analysed. The observed pattern may be explained by the inherent instability of 

these small hairpins that can fold and unfold in a few ns [41,66,68]. While the DYS19A 

UNAFold structure maintains localized H-bonds base pairing after initial constraints, DYS391 

has the same behaviour described by Orozco and co-workers as a trapped structure in a 

stable compact but non-native conformation that does not reach native minima [41]. For the 

DYS391 initially constrained structure (UNAFold prediction) we obtained partial folded form 

(1 hydrogen bond between nucleobases 4<->12 (DA<->DA); 3 hydrogen bonds between 

nucleobases 3<->11 (DT<->DT), which is localized one nucleotide away from initial H-bonds 

constraints). The DYS391 single-stranded molecule presents 6 H-bonds between 4<->10 

(DA<->DC) nucleobases with no consecutive nucleobases connections to form a stem. The 

UFR model with 8<->17 (DT<->DA) and 9<->16 (DT<->DA) base pairing, presented only 2 

H-bonds during the MD simulation (occupancy of 18.56 and 6.89). Therefore, the last 4 ns of 

simulation presented an unfolded conformation (no native H-bonds and variable number of 

stacked bases). We obtained no H-bonds between initial forced parameters in 16<->25 and 

17<->24 DYS391 UFR model. All the other UFR systems presented a stem but the 

connected nucleobases were not well defined, although the number of H-bonds was always 
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equal or higher than 4 (4-13 H-bonds) between the initial constrained base pairs or near 

nucleobases. 

We observed the different conformations described for the two previous STRs 

(unfolded and partially folded) when analysing the DYS531 (11 repeats) models 

(Supplementary Material Tables SI23-SI32, Graphs SI78-SI87 and Graphs SI104-SI111). 

The initial H-bonds present in UNAFold predicted conformation were all lost [0 H-bonds 

between 3<->12 (DA<->DT) and 4<->11 (DT<->DA) nucleobases], suggesting that the motif 

base composition (AAAT), has great influence in the maintenance and formation of these 

small hairpins. High number of H-bonds in single-stranded molecular model was observed in 

the region predicted to have a loop by UNAFold, but did not occurred in DYS391 and 

DYS19A. In addition, native non-canonical H-bond base pairing between nucleobases 4<-

>12 (DT<->DT) in the end of simulation was observed. In the UFR systems tested we 

obtained two (DYS531AAAT11-35b44b-36b43b-UFR and DYS531AAAT11-11b20b-12b19b-

UFR) with no initial constrained H-bonds maintained during the molecular dynamics. All the 

other UFR systems presented H-bond connections between initial base pairing nucleotides 

and/or near nucleotides, which demonstrates that different constrained systems can maintain 

the initial constrained hairpins. 

As discussed in other articles the H-bond between base pairs can represent 

significant variations in energetic values (-2 to -3 kcal/mol/H-bond), and if we consider the 

total interactions of a base pair, the binding energy value ranges from -5 to -47 kcal/mol [73-

75]. In DYS19A, we observed different number of H-bonds between the systems, considering 

the presence or absence of hairpins presence. Some models presented a super-coiled 

conformation associated with a compact 3D structure (Figure 6) related with 

relaxation/tension status in different regions of STR (folded regions alternating with stretched 

regions). The DYS391 free energies (h-bonds contribution presents also significant 

differences between the models) also presented high changes in free energetic values 

between models. The DYS391 UNAFold predicted model can be associated to a supercoiled 

conformation as mentioned in Figure 7. DYS531 presents a similar pattern. The pattern 

observed here is consistent with the presence of supercoiled DNA of the DYS531 models 

(Figure 8), except for the single-stranded model. 
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Molecular Dynamics: Counterions and Water Distribution 

We neutralized the DNA systems using Manning’s concept for the distribution of 

counterions in molecular DNA aqueous systems [76]. The anionic phosphates are 

neutralized by the counterion atmosphere of DNA, which promotes the electrostatic stability 

to the system. Water activity and ion distribution (composition and concentration) modulate 

the DNA structure. The water and ion distribution is even more critical considering that 

conformation abrupt changes (global or local) can occur during molecular dynamics of 

different types of DNA.  

We analysed Na+ distribution in the DYS19A MD simulations and observed that only 

the UNAFold predicted structure did not present Na+ atoms near DNA strand (5 Å cut-off) 

with high occupancy values (>30% occupancy). All the other models tested showed 

occupancy values >30% for one or more residues. The distribution in UNAFold predicted 

structure molecular dynamics was very uniform (Supplementary Material Graphs SI112-

SI122). We also observed an almost perfect fitting straight line by the distance weighted least 

squares method. When comparing the variation of Na+ distribution through specific regions 

of this STR in other models, we noticed the existence of high occupancy peaks of residues 

near the middle of the STR. Thus, the Na+ ions with high occupancy were not evenly 

distributed along the STR sequence in contrast with the low occupancy ones. In the single-

stranded DYS19A the Na+ counterions near residues 32 (DA) and 23 (DG) presented the 

highest occupancy values with 79.94% and 76.65% respectively. The Na+ counterions that 

were very close to nucleotides 34 (DA) and 14 (DA) in UNAFold predicted MD, presented 

lower occupancy values (25.75% and 20.66%, respectively). In general, the single-stranded 

model presented a total number of possible H-bond between Na+ and DNA strand of 55 (4 

with high occupancy) with a mean distance of 4.34 Å, while for UNAFold prediction system 

the total was 76 possible H-bonds with an equal mean distance but with low occupancy 

values for all counterions near residues. There was no specific association between initial 

constrained residues (hairpin stem base pairing) of each model and the residues found 5 Å 

distance from Na+ counterions in the final of each MD. This indicates that some of the folded 

regions observed and maintained in the last 4 ns of trajectories are not correlated with any 

particular Na+ environment considering a 5 cut-off, although we cannot state that Na+ 

molecules (10 Å cut-off, as described on DNA helical systems by B. Jayaram et al. [76]) can 

influence the process of fold/unfold of these hairpins. We observed electronegative regions 

near hairpins of almost all tested models, with three or more Na+ counterions with distances 

higher than 5 Å from the nucleotides (Figure 6 and 7).The presence of the observed specific 

counterion environment around stem or loops may be critical to folded/unfolded 

conformations of STRs. 
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The behaviour observed in DYS19A was not found in the DYS391 STR tested 

systems. The occupancy values were globally lower and the position of the closest Na+ 

atoms to the DNA strand was almost always in the beginning or end region (5’ and 3’) 

(Supplementary Material Graphs SI123-SI130). Single-stranded model presented 20 different 

hydrogen bond interactions between Na+ and nearby nucleotides, while UNAFold prediction 

model had 31 interactions in the last 4 ns of the MD simulation. The distribution for the high 

occupancy Na+ atoms of all the molecular systems was mainly unimodal with few high 

occupancy counterions. 

Analysing the results of Na+ distribution for DYS531 (Supplementary Material Graphs 

SI131-SI140), counterions with low occupancy values were located close to DNA strand for 

few picoseconds (ps), as previously described for the other STRs. However, we observed an 

increase of the number of Na+ atoms with high occupancy values (>50%). The single-

stranded molecular model presented six high occupancy counterions through the STR strand 

but not in the 5’ end and 3’ end regions. The UNAFold prediction system presented only one 

high occupancy counterion and a high decrease in the total number of Na+ and DNA 

interactions (18 H-bond interactions in total against 35 of the single-stranded DYS531 STR). 

These results are related with a medium sized hairpin (between position 15 and 30) observed 

in the central DYS531 UNAFold predicted model during the molecular dynamics simulation. 

Although the base pairing H-bonds, already described, were higher for the UNAFold 

prediction system (177 against a total of 155 H-bonds in the single-stranded system), the 

Na+ interactions were very low and outside the central region. This behaviour is due to the 

decreased accessibility of the medium size hairpin of the central region of the DNA strand. In 

spite of this pattern for Na+ atoms within 5 Å distance from DNA strand, there were 

electronegative pockets (three or more Na+ atoms) around the fully or partially folded stem-

loop structures (Figure 8). Therefore, Na+ distribution around DNA is important in the 

stabilization of these regions. Possible specific mobile counterions appear near DNA strand 

during short periods of time resulting in electronegative pockets [37] that can influence the 

formation of secondary structures (e.g., hairpins). We notice the presence of Na+ 

counterions, for a few ps, close to initial hydrogen bonding interacting residues that were 

maintained during the MD (Supplementary Material Graphs SI112-140). The Na+ presence 

within 5 Å was not detected in regions with stem-loops conformation, but near enough 

(between 5 Å and 10 Å) to influence folding and unfolding processes. These local 

conformations may have great relevance for biological mechanism such as replication, where 

polymerase enzymes [20,21,77,78] do not have total accessibility to interact with the DNA 

strand because of the folding status of specific STR regions. This can be extended to another 

already described processes related with replication and disease where formation of 
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conformational structures plays a role in large duplications of repetitive DNA segments 

[79,80]. 

Since the sugar-phospate backbone is especially sensitive to local environment, 

which means that variations in water distribution can determine significant changes in 

conformations [81,82], we have also analysed the water distribution around nucleotides. 

Water interacts with anionic, hydrophilic and hydrophobic constituents of DNA [76]. The 

distribution of waters molecules around the DYS19A single-stranded DNA (Supplementary 

Material Graphs SI141-SI151) was uniform in the tested molecular systems and the first 

hydration shell were maintained around the 3 Å. Water interactions are biased to oxygen-

phosphate and oxygen groups, excluding O2 and O6 (Supplementary Material Graphs 

SI170-SI213). The first water shell layer, taking in consideration the hydrogen bonding, was 

between 2.8 and 3.0 Å. Some DYS19A molecular systems (e.g., SS, DYS19A-20b29b-

21b28b-UFR, DYS19A-24b33b-25b32b-UFR) present water interactions with high occupancy 

values. 

The DYS391 molecular systems also presented a stable first water shell within the 3 

Å distance with a global number of valid H-bonds between 267 and 292 (Supplementary 

Material Graphs SI152-SI159). The atom groups maintaining these hydrogen interactions 

were mainly the oxygen-phosphate groups (O1P and O2P) and oxygen’s (O2, O3, O4, O5) 

as previously described for DYS19A (Supplementary Material Graphs SI214-SI241). 

The observed H-bond pattern in DYS531 was nearly identical to the other Y-STRs 

(Supplementary Material Graphs SI160-SI169). The first water shell was detected between 

≈2.8 Å and 3 Å distance. A few water molecules presented occupancy values near 100% 

during the MD simulations. The water interactions were mainly with oxygen-phosphate 

groups and oxygen’s (excluding O2) when considering H-bond acceptors (Supplementary 

Material Graphs SI242-SI281). 

The “spine of hydration” described in B-DNA minor groove molecular systems 

[37,39,76] is not observed in single-stranded molecular systems. The tested models do not 

show solvent peaks of hydration like the ones observed in minor groove double-helix DNA. 

Although there are no peaks of water molecules around these DNA strands, some specific 

water residues have high occupancy values during the MD simulation. 
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Molecular Dynamics: X3DNA and Curves+ Analysis  

We have analysed the status of canonical and non-canonical base pairing with two or 

more H-bonds during the last 4 ns of UNAFold prediction tested models. The relative offset of 

the two base origins in the mean base pair plane is defined by Shear and Stretch, and the 

angle between the two x-axes considering the average normal to the base pair plane is the 

Opening [70]. We noticed that the Shear, Stretch and Opening critical parameters were 

significantly different (using as comparison the DNA double-helix Watson-Crick base pairs) 

[83,84], which implies that base pair geometry is different from double-helix DNA strands 

base pairing. The base pairs occurred in different number for each Y-STR (Table 5) and were 

not associated with any specific region which supports the putative formation of hairpins in 

different regions of the STR (Supplementary Material Table SI33). We have also noticed that 

the A<->T and T<->A (UNAFold predicted interaction) base pairing was not the only 

interaction detected. The A<->G, G<->G, T<->G, C<->A, T<->C, and A<->A base pairings 

were also present. 

 

Molecular Dynamics: Same Length Y-STRs 

The hairpin presence in DYS19A, DYS391 and DYS531 molecular systems with 11 

repeats length were very similar when compared with the middle range tested alleles. Both 

RMSD and end to end distances shared a similar behaviour with the initial tested models. 

The small hairpins were maintained during the 12 ns MD simulation. There were some 

differences associated with the repeated motif of each STR (DYS19A:TAGA; DYS391:TCTA; 

DYS531:AAAT), mainly related with the stems localization. The overall results were in 

agreement with the previous reported results. The small hairpins present during the MD 

were, again, associated to electronegative pockets of Na+ that were present near hairpins 

stems or loops (<10 Å). 
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Discussion 

 

Our results indicate that different forms of hairpins are present during MD simulations 

without a clear association to any specific initial constraints (considering all tested models), 

which suggests that formation of small hairpins can occur in any region of the STR. We also 

found that the occurrence of folded hairpin structures depends on specific conditions of the 

STR region (base composition, counterions, and water distribution). Although these results 

cannot be extrapolated to predict the STR regions with more probability to form hairpin 

structures, it can be concluded that hairpin structure(s) occurs often along STRs in short 

periods of time (ps). The loop formation of this type of hairpin can happen after fast folding 

trajectories following a downhill-like or direct folding [67,85]. This model can help to explain 

why strand slippage occurs during DNA replication. For the structures predicted by UNAFold 

we observed that, upon some conformation rearrangement, stabilization was achieved and 

maintained during 8 ns. The predicted small stem-loops located at 5’ STR regions, when 

maintained during MD simulation, were very stable when compared with linear single-

stranded conformations. This result suggests that small loops can occur in these repetitive 

regions even when UNAFold stability prediction is low (near zero free energy values). The 

occurrence of these small hairpins is related with the strand-slippage replication (Figure 1C) 

mechanism and can influence the polymerase enzyme during replication [22-25,77,86]. 

The H-bond base-pairing analyses revealed that the hairpin structures predicted by 

UNAFold can occur, but the conformational behaviour of different STRs is dependent of the 

repeat sequence and length of the STR. We also observed hairpin structures in the single-

stranded systems, and that specific initial constraint (UNAFold predictions) does not 

influence significantly the putative occurrence of small hairpin structures. Strong base-pairing 

with correct geometric Watson-Crick interactions (canonical and non-canonical) was detected 

along each Y-STR between different nucleotides, which denotes that nucleotide interactions 

were not biased to A<->T and T<->A connections as predicted by UNAFold.  

In previous works, MD of DNA (mainly in B-DNA helix) treated water as a dielectric 

continuum ignoring its capacity for hydration, bonding, and solvation in different modes [76]. 

Here we have provided an in-depth analysis of local and global counterion and water 

distribution. A relatively stable first water shell was observed in all MD simulations which 

contributed to the equilibrium of DNA single-stranded molecules with hairpins. The 

counterion distribution showed that electronegative pockets of Na+ were present near 

hairpins stems or loops (<10 Å), which corroborates their importance to the process of hairpin 

formation (stem base pairing occurrence followed by loop nucleation). There was specific 

folding potential associated to each Y-STR (small hairpins presence) which probably will 

impact STRs length variation resulting from replication errors (e.g., strand-slippage 
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replication mechanism, Figure 1C). Since we are using Y-STRs, the folding potential that 

produces the hairpin structures is definitively the main cause of strand-slippage replication 

errors and consequently allele size variation, because recombination does not occur in these 

regions [15,34]. Although MD simulations have limitations, the conformations in single-

stranded and UNAFold predicted strands of DNA were consistent with previous studies [39-

42,46,55,87,88]. The particular conditions tested in silico with these simulations, mimicking 

DNA systems that are very close to in vitro conditions in PCR, showed the importance of 

local environments to the conformational status of DNA strands that are being replicated. 

Slipped-stranded DNA (S-DNA) conformation (hairpins structures or single-stranded 

loops) can occur in direct tandem repeats [89]. The repeated sequence of STRs can 

contribute to the mispairing of complementary repeats upon denaturing and renaturing 

(conditions simulated in the MDs of each STR). The release of DNA torsional stress can lead 

to formation of hydrogen bonds for some of the repeated units, leading to the occurrence of 

stable hairpins that result from loop nucleation. In these cases local DNA changes can lead 

to supercoiled relaxation because the supercoiling [90-92] is energetically unfavourable. We 

detected other conformations that were putatively associated with more stable hairpin 

structures, and characterized by a positive supercoiling. These positive supercoiled 

structures will tend to overtwist [89,92]. Different patterns were observed in the three different 

Y-STRs, and interchanging states between positive and negative supercoiled conformations, 

that might have implications in the influence of supercoiling in transcription [93,94] and 

replication [95] of STR genomic regions. The different types of torsion and tension observed 

in the DNA models tested may facilitate or block the action of topoisomerases and 

polymerases during replication, inducing errors like strand-slippage. 

The variation in STRs length may have impact in the genome architecture by altering 

the state of the chromatin conformation or by promoting the insertion of transposable 

elements [33]. Since STRs are widely spread throughout human genome and are involved in 

transcription and signalling pathways, our results can be used to analyse STR instability in 

other regions of the genome that are associated with disease (e.g., cancer, 

neurodegenerative disorders) [18,80,96,97]. Testing the behaviour of STRs is of great 

importance to understand instability of breakpoint regions linked to human disease. The 

model here proposed for the formation of small/medium hairpins in Y-STRs of four nucleotide 

motifs can easily be applied to understand the critical point that separates single step 

mutation patterns from large expansion occurring in some STRs regions [23,79,80,97-99], 

and even the binding properties of some specific repetitive sequences. Ultimately, these 

results may have implications in understanding neurodegenerative disorders and may as well 

explain why genomic repetitive segments are involved in these types of disease. These 

results helped to understand the evolutionary dynamics of these genomic regions, and can 
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be used to study the processes behind generation of disease-related expansions. Coding 

and non-coding STRs share mechanisms that can be used to explain the main features of 

human disease that result from STR expansions [100]. The process of largest expansion can 

result from the formation of largest hairpin structures and/or compact conformational states 

with high free energetic values in both non-dividing and dividing cells. 

 

Supplementary Data are available online: Supplementary Tables SI1-SI33, 

Supplementary Figures SI1-SI2, and Supplementary Graphs SI1-SI281. NABpy Python 

Supplementary File. 
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Tables 

Table 1: Accuracy results of UNAFold to predict hairpin structures using a database of experimentally determined NMR 

structures of 22 single-stranded DNA (ssDNA) with hairpins. 

PDB ID  3D structure type  UNAFold prediction (base 
pairing and loop) 

1AC7  SsDNA hairpin  Identical to 3D

1BJH  SsDNA hairpin  Identical to 3D 

1DGO  SsDNA hairpin  Identical to 3D 

1ECU  SsDNA hairpin  Identical to 3D 

1EL2  DNA complex telomeric structure (3 loops) Different from 3D

1ELN  DNA complex telomeric structure (3 loops)  Different from 3D 

1EN1  Primer binding site HIV ‐ssDNA hairpin  Identical to 3D 

1FV8  SsDNA heterochiral hairpin  Identical to 3D 

1IDX  SsDNA hairpin  Identical to 3D

1II1  SsDNA hairpin  Identical to 3D 

1JVE  AT‐Rich ssDNA with the GAA‐Hairpin Loop  Identical to 3D 

1KR8  SsDNA hairpin  Identical to 3D 

1LA8  SsDNA hairpin  Identical to 3D 

1LAE  SsDNA hairpin  Identical to 3D

1NGO  SsDNA hairpin  Identical to 3D 

1NGU  SsDNA hairpin  Identical to 3D (except 2 
residues in stem) 

1P0U  SsDNA triplet repeats hairpin Identical to 3D

1PQT  SsDNA hairpin  Identical to 3D 

1QE7  SsDNA hairpin  Identical to 3D 

1XUE  SsDNA hairpin  Identical to 3D only for loop 

1ZHU  Hairpin loop formed by the DNA triplet 
GCA. 

Identical to 3D

2M22  SsDNA hairpin  Identical to 3D 
 

Table 2: Sequence/structural data analysed in UNAFold for 3 tetranucleotide STRs of NIST database. The STR sequence is 
represented as (repeat motif) number of repeats. Connected bases correspond to stem connected nucleotides in hairpin 
structure. 

 Motif 

length 

STR Sequence UNAFold 

prediction 

Number 

of loops 

Stem 

lenght 

(bp) 

Loop 

size 

or 

Bulge 

Free 

energy 

(Kcal/mol) 

Connected 

bases 

DYS19A 4 (TAGA)3(TAGG)1(

TAGA)11 

YES 1 2 6 1.57 A<->T;T<->A 

DYS391 4 (TCTA)10 YES 1 2 4 1.44  A<->T;T<->A 

DYS531 4 (AAAT)11 YES 1 2 6 1.65 A<->T;T<->A 
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Table 3: H-bonds present during last 4 ns of molecular dynamics of UNAFold predicted stem region for DYS19A; Acceptor and 

donor represent hydrogen bond acceptor and donor respectively. 

Residue number 

acceptor 

Atom 

acceptor 

Residue number 

donor 

Hydrogen 

Atom donor 

Atom 

donor 

%occupied

4 N7 12 H62 N6 8.68 

5 O4 6 H61 N6 28.14 

12 N7 5 H3 N3 20.96 

6 N1 5 H3 N3 14.97 

5 O4 6 H62 N6 12.87 

12 N3 5 H3 N3 1.5 

12 N1 5 H3 N3 0.3 

5 O4 12 H61 N6 0.3 

6 N3 11 H22 N2 55.09 

6 N1 11 H22 N2 21.26 

7 O6 6 H62 N6 20.66 

6 N1 7 H1 N1 2.69 

6 N1 7 H21 N2 1.5 

6 N3 7 H22 N2 0.3 

6 N7 11 H22 N2 0.3 
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Table 4: Single-stranded H-bonds descriptive statistics of single-stranded Y-STR DYS19A molecular dynamics simulation from 
8 to 12 ns; UNAFold prediction H-bond global statistics of Y-STR DYS19A molecular dynamics simulation with UNAFold 
predicted constraints from 8 to 12 ns; H-bond global statistics of Y-STR DYS19A molecular dynamics simulation with UNAFold 
predicted constraints in the end of the DNA molecule (stem with base pair between 48<->57 and 49<->56) from 8 to 12 ns. 
Described values of H-bond percentage of occupancy during molecular dynamics (%occupied), distance (Å) of acceptor-donor 
H-bond (distance), angle of H-bond (angle), lifetime and maxocc as calculated by ptraj hbond function in the AMBER package 
[59]. 

Single-stranded 

 Valid H-

Bonds 

Mean Minimum Maximum Std.Dev.

%occupied 182 12.38 0.30 97.01 22.26 

distance 182 4.24 2.92 4.98 0.57 

angle 182 47.21 20.74 59.82 9.61 

lifetime 182 11.56 4.00 190.70 24.73 

maxocc 182 8.87 1.00 133.00 21.17 

UNAFold prediction 

%occupied 239 8.89 0.30 99.70 18.02 

distance 239 4.21 2.87 5.00 0.56 

angle 239 47.41 16.97 59.99 9.08 

lifetime 239 11.07 4.00 666.00 44.25 

maxocc 239 8.16 1.00 239.00 24.32 

UNAFold prediction 

(stem with base pair 

between 48<->57 

and 49<->56) 

%occupied 208 8.21 0.30 99.40 16.66 

distance 208 4.18 2.85 4.98 0.53 

angle 208 47.69 13.89 59.95 9.92 

lifetime 208 10.61 4.00 442.70 34.87 

maxocc 208 7.04 1.00 144.00 20.87 
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 Table 5: Local base-pair and helical parameters of DYS19A, DYS391 and DYS531 UNAFold predicted molecular systems 

(average PDB of last 4ns), as calculated by X3DNA software. 

 

  

Model Nucleotides Shear Stretch Stagger Buckle Prop-Tw Opening X-disp Y-disp h-Rise Incl. Tip h-Twist 

DYS19A 

UNAFold 

prediction 

A+G (2+15) -3.19 -7.42 1.31 24.73 -26.21 -170.69 0 0 0 0 0 0 

G+G (7+11) 3.62 7.41 -0.77 -32.3 -36.06 179.02 -5.86 -6.84 -1.11 -29.35 19.02 157.87 

T+G (13+19) -4.88 -0.7 -0.07 55.94 32.28 64.22 1.61 5.63 7.76 72.77 -16.81 -162.84 

T-A (17-32) -2.84 2.68 0.9 21.41 14.52 -99.59 -0.26 -7.88 -1.19 43.53 12.65 -171.64 

T+G (21+31) 0.12 -5.72 -0.43 -5.84 -20.15 -132.29 -1.81 -0.21 -3.6 1.87 -3.53 135.85 

A+T (48+53) 0.92 -3.35 -1.33 22.92 -3.64 68.96 30.35 0.14 12.35 37.73 -61.13 -83.71 

DYS391 

UNAFold 

prediction 

C-A (30-32) -1.29 -6.03 0.44 -28.93 24.67 154.87 0 0 0 0 0 0 

C-A (34-36) -2.86 -1.32 -2.27 -3.57 -17.22 174.98 4.6 -3.6 -6.02 -42.22 53.85 -151.76 

T-C (37-38) 3.08 4.99 -1.43 4.65 37.86 141.64 6.94 2.32 3.3 65.77 -22.58 -136.99 

DYS531 

UNAFold 

prediction 

A-A (6-7) 2.3 4.91 0.65 -40.09 28.03 150.52 0 0 0 0 0 0 

A-A (11-13) -5.4 0.21 -1.35 40.93 14.66 43.65 3.57 -5.62 2.62 60.19 -14.96 159.35 
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Figures 

 

 

Figure 1: A) UNAFold predicted conformations (UF) of DYS19A (15 repeats), DYS391 (10 repeats) and DYS531 (11 repeats); 

B) Hairpin conformations derived from UNAFold loop prediction (UF) in different regions (UFR) of the DYS391 Y-STR; C) 

Example of strand-slippage replication mechanism occurring in DYS391 10 repeat allele. 
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Figure 2: Molecular representation of single-stranded DNA hairpins for PDB ID 1EN1, 1LAE, and 1KR8 considering: A) 3D 

NMR single-stranded structures with small hairpins; B) UNAFold predictions using PDB sequence. 
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Figure 3: Root mean-square deviation values for backbone atoms: A) DYS19A single-stranded DNA molecule (left), DYS19A 

UNAFold prediction (middle), and DYS19A UNAFold predicted structure (identical loop with same base pair connections in 

stem) occupying different regions of the STR (right); B) DYS391 single-stranded DNA molecule (left), DYS391 UNAFold 

prediction (middle), and DYS391 UNAFold prediction in other region of STR (right); C) DYS531 single-stranded DNA molecule 

(left), DYS531 UNAFold prediction (middle), and DYS531 UNAFold prediction in other region of STR (right). 

   

DYS19A-SS DYS19A-4b13b-5b12b-UF DYS19A-32b41b-33b40b-UFR 

DYS391TCTA10-4b13b-5b12b-UF DYS391TCTA10-SS DYS391TCTA10-12b21b13b20b-UFR 

DYS531AAAT11-3b12b-4b11b-UF DYS531AAAT11-SS DYS531AAAT11-31b40b-32b39b-UFR 



164 FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease

 

 

 

Figure 4: First residue carbon (C1’) to last residue carbon (C1’) distances in Å of a representative snapshot of DYS19A (A), 

DYS391 (B), and DYS531 (C). Single-stranded molecule is represented in left and UNAFold predicted molecule in right. 
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Figure 5: Descriptive statistics of H-bonds (base pairing) in tested models of DY391 Y-STR. Described values of H-bond 

percentage of occupancy during molecular dynamics (%occupied), distance (Å) of acceptor-donor H-bond (distance), angle of 

H-bond (angle), lifetime and maxocc. 
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Figure 6: Supercoiled conformations of DYS19A-44b53b-45b52b-UFR (left) and DYS19A-48b57b-49b56b-UFR (right) 

complexes that are associated with high free energies and putatively more stable conformations [DT-light pink, DA- green, DG-

white, Solvent (blue) and Na+ counterion (purple)]. 
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Figure 7: Snapshots of DYS391 12 ns molecular dynamics considering: A) Tube representation of full or partial folded hairpin(s) 

[DT-white, DC-green, DA-light pink]; B) Solvent (blue) and Na+ counterion (purple) distribution. DYS391 UNAFold prediction is 

associated with a supercoiled conformation. 
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Figure 8: Snapshot of 12 ns molecular structures of: A) DYS531 single-stranded model tube representation of full or partial 

folded hairpin(s) (DT-white, DA-light pink); B) DYS531 UNAFold predicted model with median sized hairpin (DT-white, DA-light 

pink). The solvent (blue) and Na+ counterion (purple) distribution is represented in both models. 
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Supplementary Material 

 

 

Table SI1: Table SI1: Y-STRs used for secondary structure prediction using UNAFold. Allele range, repeat motif, 

Genbank accession numbers and reference alleles of Y-STR locus. Repeat motif abreviations A,T,G,C,W,Y,R,S 

correspond respectively to adenine, thymine, guanine, cytosine, weak (A or T), pyrimidine, purine, strong (G or C) 

following the International Union of Pure and Applied Chemistry (IUPAC). 

Marker Name Allele Range* (repeat 
numbers) 

Repeat Motif GenBank 
Accession 

Reference 
Allele 

Hairpin 
prediction 

DYS19A 10-19 (TAGA)3(TAGG)1(TAGA)12 AC017019 15 Yes 
DYS389 I 9-17  (TCTG) (TCTA) (TCTG) (TCTA) AC004617 12 Yes 
DYS389 II 24-34 (TCTG) (TCTA) (TCTG) (TCTA) AC004617 29 Yes 
DYS390 17-28 (TCTA) (TCTG) AC011289 24 Yes 
DYS391 6-14 TCTA AC011302 11 Yes 
DYS392 6-17 TAT AC011745 13 Yes 
DYS393 9-17 AGAT AC006152 12 Yes 
DYS388 10-18 ATT AC004810 12 Yes 
DYS425 10-14 TGT AC095380 10 Yes 
DYS426 10-12 GTT AC007034 12 Yes 
DYS434 9-12 TAAT (CTAT) AC002992 10 Yes 
DYS435 9-13 TGGA AC002992 9 Yes 
DYS436 9-15 GTT AC005820 12 Yes 
DYS442 10-14 (TATC)2(TGTC)3(TATC)12 AC004810 17 Yes 
DYS445 10-13 TTTA AC009233 12 Yes 
DYS447 22-29 TAAWA  AC005820 23 Yes 
DYS448 20-26 AGAGAT AC025227 22 Yes 
DYS450 8-11 TTTTA AC051663 9 Yes 
DYS452 27-33 YATAC  AC010137 31 Yes 
DYS454 10-12 AAAT AC025731 11 Yes 
DYS455 8-12 AAAT AC012068 11 Yes 
DYS456 13-18 AGAT AC010106 15 Yes 

DYS459 a/b 7-10 TAAA AC010682 9 Yes 
DYS460 (A7.1) 7-12 ATAG AC009235 10 Yes 

DYS462 8-14 TATG AC007244 11 Yes 
DYS485 10-18 TTA  16 Yes 
DYS495 12-18 AAT AC004474 15 Yes 
DYS508 8-15 TATC AC006462 11 Yes 
DYS520 18-26 ATAS AC007275 20 Yes 
DYS522 8-17 GATA AC007247 10 Yes 
DYS531 9-13 AAAT  11 Yes 
DYS533 9-14 ATCT AC053516 12 Yes 
DYS565 9-14 ATAA AC010726 12 Yes 
DYS573 8-11 TTTA  10 Yes 
DYS594 9-14 AAATA AC010137 10 Yes 

DYS635 (C4) 17-27 TSTA compound AC004772 23 Yes 
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Table SI2: Molecular dynamics models of Y-STRs: Single-stranded STR (SS); UNAFold predicted STR (UF); 

UNAFold predicted loop in different regions (UFR). The connected bases are represented by position number in 

STR like for example: “12b21b-13b20b” where there are base pairs between nucleotide 12 and 21, 13 and 20. 

Y-STR Sequence Allele length Models 
Total number 
of models 

DYS19A 
TAGA3TAGG1TAG
A11 

15 

DYS19A-SS (DYS19A-SS_min) 
DYS19A-4b13b-5b12b-UF 
DYS19A-12b21b-13b20b-UFR 
DYS19A-20b29b-21b28b-UFR 
DYS19A-24b33b-25b32b-UFR 
DYS19A-28b37b-29b36b-UFR 
DYS19A-32b41b-33b40b-UFR 
DYS19A-36b45b-37b44b-UFR 
DYS19A-40b49b-41b48b-UFR 
DYS19A-44b53b-45b52b-UFR 
DYS19A-48b57b-49b56b-UFR 

11 

DYS391 TCTA10 10 

DYS391TCTA10-SS (DYS391TCTA10-SS_min) 
DYS391TCTA10-4b13b-5b12b-UF 
DYS391TCTA10-8b17b-9b16b-UFR 
DYS391TCTA10-12b21b-13b20b-UFR 
DYS391TCTA10-16b25b-17b24b-UFR 
DYS391TCTA10-20b29b-21b28b-UFR 
DYS391TCTA10-24b33b-25b32b-UFR 
DYS391TCTA10-28b37b-29b36b-UFR 

8 

DYS531 AAAT11 11 

DYS531AAAT11-SS (DYS531AAAT11-SS_min) 
DYS531AAAT11-3b12b-4b11b-UF 
DYS531AAAT11-7b16b-8b15b-UFR 
DYS531AAAT11-11b20b-12b19b-UFR 
DYS531AAAT11-15b24b-16b23b-UFR 
DYS531AAAT11-19b28b-20b27b-UFR 
DYS531AAAT11-23b32b-24b31b-UFR 
DYS531AAAT11-27b36b-28b35b-UFR 
DYS531AAAT11-31b40b-32b39b-UFR 
DYS531AAAT11-35b44b-36b43b-UFR 

10 
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Figure SI1: Molecular dynamics simulation workflow. 

 

 



172 FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease

 

 

Figure SI2: Molecular Dynamics models analysis workflow. 
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Root-Mean-Square deviation (RMSD) graphs 
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DYS19A (Imperfect STR, 60 nucleotides, 15 repeats): 

Graphs SI1-SI11: RMSD graphs of backbone atoms for DYS19A MD simulation. 
 

  

DYS19A-4b13b-5b12b-UF DYS19A-SS 

DYS19A-20b29b-21b28b-UFR 

DYS19A-12b21b-13b20b-UFR 

DYS19A-36b45b-37b44b-UFR 

DYS19A-28b37b-29b36b-UFR DYS19A-24b33b-25b32b-UFR 

DYS19A-32b41b-33b40b-UFR DYS19A-40b49b-41b48b-UFR 

DYS19A-48b57b-49b56b-UFR DYS19A-44b53b-45b52b-UFR 
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DYS391 (perfect STR, 40 nucleotides, 10 repeats): 

Graphs SI12-SI19: RMSD graphs of backbone atoms for DYS391 MD simulation. 

 

 

  

DYS391TCTA10-4b13b-5b12b-UF DYS391TCTA10-SS 

DYS391TCTA10-12b21b-13b20b-UFR 

DYS391TCTA10-8b17b-9b16b-UFR 

DYS391TCTA10-28b37b-29b36b-UFR 

DYS391TCTA10-20b29b-21b28b-UFR DYS391TCTA10-16b25b-17b24b-UFR 

DYS391TCTA10-24b33b-25b32b-UFR 
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DYS531 (perfect STR, 44 nucleotides, 11 repeats): 

Graphs SI20-SI29: RMSD graphs of backbone atoms for DYS531 MD simulation.  

 

  

DYS531AAAT11-3b12b-4b11b-UF DYS531AAAT11-SS 

DYS531AAAT11-11b20b-12b19b-UFR 

DYS531AAAT11-7b16b-8b15b-UFR 

DYS531AAAT11-27b36b-28b35b-UFR 

DYS531AAAT11-19b28b-20b27b-UFR DYS531AAAT11-15b24b-16b23b-UFR 

DYS531AAAT11-23b32b-24b31b-UFR DYS531AAAT11-31b40b-32b39b-UFR 

DYS531AAAT11-35b44b-36b43b-UFR 
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Table SI3: End to end distance basic statistics (first residue to last residue carbon atoms). 

Y-STR model Median/[Å) Minimum/[Å) Maximum/[Å) 
Maximum 

- 
Minimum/[Å) 

Standard 
deviation/[Å) 

DYS19A-SS_min 38.53 27.61 51.73 24.12 4.64 

DYS19A-4b13b-5b12b-UF 25.26 19.52 31.18 11.66 2.9 

DYS19A-12b21b-13b20b-UFR 41.07 28.78 55.32 26.54 5.89 

DYS19A-20b29b-21b28b-UFR 53.23 41.73 63.04 21.31 3.50 

DYS19A-24b33b-25b32b-UFR 55.42 46.44 70.39 23.95 4.84 

DYS19A-28b37b-29b36b-UFR 53.01 44.55 62.27 17.72 3.37 

DYS19A-32b41b-33b40b-UFR 51.00 42.13 63.86 21.73 4.17 

DYS19A-36b45b-37b44b-UFR 48.20 38.28 59.91 21.63 5.41 

DYS19A-40b49b-41b48b-UFR 39.97 30.17 51.38 21.21 4.97 

DYS19A-44b53b-45b52b-UFR 52.92 42.52 61.41 18.89 4.94 

DYS19A-48b57b-49b56b-UFR 37.89 21.59 50.89 29.3 7.26 

 
45.14 

(Average) 
34.85 

(Average) 
56.49 

(Average) 
21.64 

(Average) 
 

DYS391TCTA10-SS_min 35.35 27.76 45.37 17.61 3.93 

DYS391TCTA10-4b13b-5b12b-UF 43.31 33.83 48.31 14.48 2.55 

DYS391TCTA10-8b17b-9b16b-UFR 45.45 25.45 60.41 34.96 8.48 

DYS391TCTA10-12b21b-13b20b-UFR 36.16 29.52 43.08 13.56 4.18 

DYS391TCTA10-16b25b-17b24b-UFR 44.19 35.74 50.56 14.82 3.68 

DYS391TCTA10-20b29b-21b28b-UFR 29.28 20.03 39.53 19.5 3.48 

DYS391TCTA10-24b33b-25b32b-UFR 50.92 41.72 58.17 16.45 3.26 

DYS391TCTA10-28b37b-29b36b-UFR 44.57 32.58 50.74 18.16 3.60 

 
41.15 

(Average) 
30.83 

(Average) 
49.52 

(Average) 
18.69 

(Average) 
 

DYS531AAAT11-SS_min 51.01 42.59 58.35 15.76 3.54 

DYS531AAAT11-3b12b-4b11b-UF 33.77 22.70 50.27 27.57 5.56 

DYS531AAAT11-7b16b-8b15b-UFR 51.66 37.83 62.99 25.16 5.02 

DYS531AAAT11-11b20b-12b19b-UFR 33.29 22.71 49.69 26.98 5.72 

DYS531AAAT11-15b24b-16b23b-UFR 33.07 16.55 46.24 29.69 8.01 

DYS531AAAT11-19b28b-20b27b-UFR 49.48 41.53 55.89 14.36 3.30 

DYS531AAAT11-23b32b-24b31b-UFR 42.48 33.57 52.03 18.46 4.20 

DYS531AAAT11-27b36b-28b35b-UFR 36.12 27.66 43.30 15.64 3.00 

DYS531AAAT11-31b40b-32b39b-UFR 34.34 23.01 45.88 22.87 6.02 

DYS531AAAT11-35b44b-36b43b-UFR 19.24 16.84 22.31 5.47 0.92 

 38.446 
(Average) 

28.499 
(Average) 

48.695 
(Average) 

20.196 
(Average)  
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Distance from first residue carbon 1(C1’ - 5’ STR) to last residue carbon 1 (C1’ - 3’ STR) along the last 4 ns 

of trajectories. 

Graphs SI30-SI40: End to end (C1’ atoms) distance along trajectory (8-12 ns) for DYS19A. 

 

  

DYS19A-4b13b-5b12b-UF DYS19A-SS 

DYS19A-20b29b-21b28b-UFR 

DYS19A-12b21b-13b20b-UFR 

DYS19A-36b45b-37b44b-UFR 

DYS19A-28b37b-29b36b-UFR DYS19A-24b33b-25b32b-UFR 

DYS19A-32b41b-33b40b-UFR DYS19A-40b49b-41b48b-UFR 

DYS19A-48b57b-49b56b-UFR DYS19A-44b53b-45b52b-UFR 
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Graph SI41-SI48: End to end (C1’ atoms) distance along trajectory (8-12 ns) for DYS391. 

 

 

 

  

DYS391TCTA10-4b13b-5b12b-UF DYS391TCTA10-SS 

DYS391TCTA10-12b21b-13b20b-UFR 

DYS391TCTA10-8b17b-9b16b-UFR 

DYS391TCTA10-28b37b-29b36b-UFR 

DYS391TCTA10-20b29b-21b28b-UFR DYS391TCTA10-16b25b-17b24b-UFR 

DYS391TCTA10-24b33b-25b32b-UFR 
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Graph SI49-SI58: End to end (C1’ atoms) distance along trajectory (8-12 ns) for DYS531.  

  DYS531AAAT11-3b12b-4b11b-UF DYS531AAAT11-SS 

DYS531AAAT11-11b20b-12b19b-UFR 

DYS531AAAT11-7b16b-8b15b-UFR 

DYS531AAAT11-27b36b-28b35b-UFR 

DYS531AAAT11-19b28b-20b27b-UFR DYS531AAAT11-15b24b-16b23b-UFR 

DYS531AAAT11-23b32b-24b31b-UFR DYS531AAAT11-31b40b-32b39b-UFR 

DYS531AAAT11-35b44b-36b43b-UFR 
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Tables SI4-SI14: Descriptive statistics of base pairing H-bonds in tested models of DYS19A Y-STR. 

Described values of H-bond percentage of occupancy during molecular dynamics (%occupied), distance (Å) of 

acceptor-donor H-bond (distance), angle of H-bond (angle), lifetime and maxocc as calculated by ptraj hbond 

function. Valid N corresponds to all H-bonds detected in the last 4 ns of the MD simulation. 

 

  

H-bonds DYS19A-4b13b-5b12b-UF
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

239 8.89 0.30 99.70 18.02
239 4.21 2.87 5.00 0.56
239 47.41 16.97 59.99 9.08
239 11.07 4.00 666.00 44.25
239 8.16 1.00 239.00 24.32

H-bonds DYS19A-SS_min
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

182 12.38 0.30 97.01 22.26
182 4.24 2.92 4.98 0.57
182 47.21 20.74 59.82 9.61
182 11.56 4.00 190.70 24.73
182 8.87 1.00 133.00 21.17

H-bonds DYS19A-20b29b-21b28b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

215 8.77 0.30 96.11 17.80
215 4.21 2.90 4.99 0.56
215 48.05 15.22 59.94 9.51
215 10.51 4.00 287.00 28.78
215 7.59 1.00 217.00 22.90

H-bonds DYS19A-12b21b-13b20b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

288 8.85 0.30 100.00 18.64
288 4.19 2.87 4.98 0.59
288 47.61 17.54 59.84 10.69
288 25.22 4.00 1336.00 123.08
288 12.23 1.00 334.00 40.98

H-bonds DYS19A-28b37b-29b36b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

249 6.95 0.30 100.00 15.06
249 4.20 2.93 4.98 0.57
249 47.05 14.89 59.72 9.66
249 13.19 4.00 1336.00 84.87
249 6.57 1.00 334.00 23.82

H-bonds DYS19A-24b33b-25b32b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

274 8.25 0.30 100.00 17.40
274 4.22 2.92 5.00 0.56
274 46.32 6.10 59.84 9.93
274 17.92 4.00 1336.00 114.18
274 8.97 1.00 334.00 34.67

H-bonds DYS19A-36b45b-37b44b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

231 4.94 0.30 77.25 9.65
231 4.20 2.87 4.98 0.52
231 48.59 16.06 59.93 8.75
231 6.95 4.00 86.00 8.37
231 4.26 1.00 53.00 8.61

H-bonds DYS19A-32b41b-33b40b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

245 7.74 0.30 97.60 15.22
245 4.28 2.75 4.99 0.55
245 46.38 20.16 59.84 10.22
245 10.26 4.00 326.00 25.63
245 8.07 1.00 253.00 25.76

H-bonds DYS19A-44b53b-45b52b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

207 6.82 0.30 99.10 15.28
207 4.31 2.96 4.99 0.51
207 49.42 17.21 59.90 8.28
207 8.75 4.00 331.00 26.55
207 6.22 1.00 193.00 22.60

H-bonds DYS19A-40b49b-41b48b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

203 5.84 0.30 92.51 13.57
203 4.22 2.98 4.99 0.52
203 48.18 20.28 59.97 8.65
203 8.99 4.00 538.00 38.16
203 4.48 1.00 137.00 14.13

H-bonds DYS19A-48b57b-49b56b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

208 8.21 0.30 99.40 16.66
208 4.18 2.85 4.98 0.53
208 47.69 13.89 59.95 9.92
208 10.61 4.00 442.70 34.87
208 7.04 1.00 144.00 20.87
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Tables SI15-SI22: Descriptive statistics of base pairing H-bonds in tested models of DYS391 Y-STR. 

Described values of H-bond percentage of occupancy during molecular dynamics (%occupied), distance (Å) of 

acceptor-donor H-bond (distance), angle of H-bond (angle), lifetime and maxocc as calculated by ptraj hbond 

function. Valid N corresponds to all H-bonds detected in the last 4 ns of the MD simulation. 

 

  

H-bonds DYS391TCTA10-SS_min
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

147 5.20 0.30 77.54 10.30
147 4.20 2.92 4.99 0.54
147 45.81 12.81 59.94 10.56
147 9.26 4.00 85.70 12.28
147 6.22 1.00 114.00 14.41

H-bonds DYS391TCTA10-4b13b-5b12b-UF
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

77 7.05 0.30 80.84 15.52
77 4.27 2.94 4.97 0.50
77 46.63 15.88 59.50 9.31
77 6.96 4.00 45.70 7.19
77 5.18 1.00 77.00 11.47

H-bonds DYS391TCTA10-8b17b-9b16b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

123 7.77 0.30 97.31 15.36
123 4.21 2.80 5.00 0.57
123 46.81 18.47 59.73 9.93
123 9.29 4.00 162.50 18.19
123 8.44 1.00 194.00 24.90

H-bonds DYS391TCTA10-12b21b-13b20b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

132 10.80 0.30 87.43 18.57
132 4.19 3.00 5.00 0.56
132 45.82 19.08 59.15 9.93
132 11.66 4.00 149.30 19.99
132 12.06 1.00 166.00 28.37

H-bonds DYS391TCTA10-16b25b-17b24b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

144 7.12 0.30 97.31 15.79
144 4.21 2.83 4.98 0.50
144 47.60 14.35 59.79 9.09
144 9.50 4.00 325.00 28.54
144 5.80 1.00 166.00 16.94

H-bonds DYS391TCTA10-20b29b-21b28b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

143 8.19 0.30 98.80 17.75
143 4.19 2.96 4.97 0.53
143 47.27 19.24 59.64 9.30
143 10.81 4.00 330.00 30.50
143 8.58 1.00 174.00 23.96

H-bonds DYS391TCTA10-24b33b-25b32b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

89 8.90 0.30 97.90 19.03
89 4.16 2.88 4.98 0.53
89 47.78 22.79 59.68 8.60
89 8.02 4.00 163.50 17.71
89 6.06 1.00 188.00 20.94

H-bonds DYS391TCTA10-28b37b-29b36b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

144 13.35 0.30 100.00 21.5
144 4.27 2.89 4.99 0.6
144 45.68 10.49 59.94 10.6
144 29.17 4.00 1336.00 157.6
144 14.56 1.00 334.00 46.5
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Tables SI23-SI32: Descriptive statistics of base pairing H-bonds in tested models of DYS531 Y-STR. 

Described values of H-bond percentage of occupancy during molecular dynamics (%occupied), distance (Å) of 

acceptor-donor H-bond (distance), angle of H-bond (angle), lifetime and maxocc as calculated by ptraj hbond 

function. Valid N corresponds to all H-bonds detected in the last 4 ns of the MD simulation. 

 

 

  

H-bonds DYS531AAAT11-SS_min
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

177 11.38 0.30 100.00 21.86
177 4.32 2.77 4.99 0.55
177 46.45 16.67 59.85 10.42
177 19.76 4.00 1336.00 105.27
177 12.63 1.00 334.00 41.68

H-bonds DYS531AAAT11-3b12b-4b11b-UF
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

152 5.35 0.30 91.92 12.32
152 4.22 2.87 4.99 0.51
152 48.12 7.60 59.62 9.71
152 6.74 4.00 136.40 11.42
152 4.04 1.00 133.00 12.06

H-bonds DYS531AAAT11-7b16b-8b15b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

162 8.66 0.30 84.43 14.66
162 4.24 2.99 4.97 0.52
162 45.98 9.76 60.00 10.55
162 10.08 4.00 202.00 20.48
162 7.32 1.00 110.00 16.68

H-bonds DYS531AAAT11-11b20b-12b19b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

168 5.39 0.30 97.31 12.02
168 4.22 3.11 4.99 0.54
168 47.07 20.17 59.99 9.1
168 7.34 4.00 144.40 11.77
168 4.07 1.00 91.00 9.0

H-bonds DYS531AAAT11-15b24b-16b23b-UFR

Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

113 8.15 0.30 90.72 16.08
113 4.21 2.83 4.99 0.53
113 49.61 18.45 59.95 8.79
113 6.54 4.00 88.30 9.21
113 3.69 1.00 54.00 7.53

H-bonds DYS531AAAT11-19b28b-20b27b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

175 8.81 0.30 99.40 18.30
175 4.25 2.80 4.98 0.53
175 46.93 17.59 59.66 9.22
175 13.88 4.00 442.70 51.72
175 8.82 1.00 304.00 31.56

H-bonds DYS531AAAT11-23b32b-24b31b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

177 7.54 0.30 100.00 13.02
177 4.17 2.98 5.00 0.53
177 47.02 17.89 59.60 9.86
177 18.14 4.00 1336.00 105.85
177 7.92 1.00 334.00 28.43

H-bonds DYS531AAAT11-27b36b-28b35b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

157 9.40 0.30 99.10 18.52
157 4.30 2.97 5.00 0.55
157 48.39 17.06 59.97 8.77
157 12.37 4.00 331.00 39.15
157 7.86 1.00 173.00 23.42

H-bonds DYS531AAAT11-31b40b-32b39b-UFR 
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

175 7.02 0.30 98.80 15.42
175 4.29 2.88 5.00 0.55
175 46.46 19.98 59.71 9.11
175 10.34 4.00 264.00 25.93
175 6.84 1.00 194.00 21.76

H-bonds DYS531AAAT11-35b44b-36b43b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

184 6.25 0.30 70.06 10.24
184 4.26 2.96 4.97 0.49
184 47.42 17.83 59.95 9.01
184 10.24 4.00 292.00 30.00
184 5.78 1.00 82.00 12.08
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Scatterplots of nucleotide against nucleotide (position number) - base pairing H-bonds 

 

Graphs SI59-SI69: Scatterplots of nucleotide against nucleotide (position number) - base pairing H-bonds of 
DYS19A; Histograms categories represent the number of observations for motifs of four nucleotides. 
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Graphs SI70-SI77: Scatterplots of nucleotide against nucleotide (position number) - base pairing of H-bonds of 

DYS391; Histograms categories represent the number of observations for motifs of four nucleotides. 
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Graphs SI78-SI87: Scatterplots of nucleotide against nucleotide (position number) - base pairing H-bonds of 

DYS531; Histograms categories represent the number of observations for motifs of four nucleotides. 

  



FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease 

191

 

 

 



192 FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease

 

 

 

  



FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease 

193

 

 

Graphs SI88-SI95: Histograms for hydrogen bonding residues and atoms (acceptors and donors) of DYS19A 

single-stranded and UNAFold predicted structure. Histogram of atoms considers the total number of H-bonds of 

the macromolecular model for each atom type. Histogram of residues considers the number of H-bonds of the 

macromolecular model for each residue. 
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Histogram of Donor Residue
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Histogram of Donor atom
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Histogram of Acceptor Residue
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Histogram of Acceptor atom
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Histogram of Donor Residue
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Graphs SI96-SI103: Histograms for hydrogen bonding residues and atoms (acceptors and donors) of DYS391 

single-stranded and UNAFold predicted structure. Histogram of atoms considers the total number of H-bonds of 

the macromolecular model for each atom type. Histogram of residues considers the number of H-bonds of the 

macromolecular model for each residue. 
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Histogram of Donor Residue
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Histogram of Acceptor atom
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Graphs SI104-SI111: Histograms for hydrogen bonding residues and atoms (acceptors and donors) of DYS531 

single-stranded and UNAFold predicted structure. Histogram of atoms considers the total number of H-bonds of 

the macromolecular model for each atom type. Histogram of residues considers the number of H-bonds of the 

macromolecular model for each residue. 
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Histogram of Donor Residue
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Histogram of Acceptor Residue
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Histogram of Acceptor atom
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Histogram of Donor Residue
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Graphs SI112-SI122: Scatterplots of counterions occupancy (Na+; cut-off 5 Å) near nucleotides (Residue 

position) for the last 4 ns of molecular dynamics of DYS19A tested models. A distance weighted least squares 

function is used to screen for proximity Na+ patterns in specific regions of DYS19A STR. 
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Scatterplot with Histograms of %occupied against Residue

DYS19A-4b13b-5b12b-UF
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Scatterplot with Histograms of %occupied against Residue

DYS19A-12b21b-13b20b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS19A-20b29b-21b28b-UFR
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Scatterplot with Histograms of %occupied against Residue

DYS19A-24b33b-25b32b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS19A-28b37b-29b36b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS19A-32b41b-33b40b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue
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Scatterplot with Histograms of %occupied against Residue

DYS19A-40b49b-41b48b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS19A-44b53b-45b52b-UFR
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Scatterplot with Histograms of %occupied against Residue

DYS19A-48b57b-49b56b-UFR
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Graphs SI123-SI130: Scatterplots of ions occupancy (Na+; cut-off 5 Å) near nucleotides (Residue position) for 
the last 4 ns of molecular dynamics of DYS391 tested models. A distance weighted least squares function is used 
to screen for proximity Na+ patterns in specific regions of DYS391 STR. 
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Scatterplot with Histograms of %occupied against Residue

DYS391TCTA10-4b13b-5b12b-UF
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Scatterplot with Histograms of %occupied against Residue

DYS391TCTA10-8b17b-9b16b-UFR

Scatterplot = Distance Weighted Least Squares

0

20

40

0 5 10 15 20 25 30 35 40

Residue

0

20

40

60

80

100

%
oc

cu
pi

ed

0 20 40

 
 

Scatterplot with Histograms of %occupied against Residue

DYS391TCTA10-12b21b-13b20b-UFR
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Scatterplot with Histograms of %occupied against Residue

DYS391TCTA10-16b25b-17b24b-UFR
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Scatterplot with Histograms of %occupied against Residue

DYS391TCTA10-20b29b-21b28b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS391TCTA10-24b33b-25b32b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS391TCTA10-28b37b-29b36b-UFR
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Graphs SI131-SI140: Scatterplots of ions occupancy (Na+) near nucleotides (Residue position) for the last 4 ns 

of molecular dynamics of DYS531 tested models. A distance weighted least squares function is used to screen for 

proximity Na+ patterns in specific regions of DYS531 STR.  
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Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-3b12b-4b11b-UF

Scatterplot = Distance Weighted Least Squares

0

10

20

0 5 10 15 20 25 30 35 40

Residue

0

20

40

60

80

100

%
oc

cu
pi

ed

0 10 20

 
 



210 FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease

 

 

Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-7b16b-8b15b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-11b20b-12b19b-UFR

Scatterplot = Distance Weighted Least Squares

0

20

40

0 5 10 15 20 25 30 35 40

Residue

0

20

40

60

80

100

%
oc

cu
pi

ed

0 20 40

 
 

Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-15b24b-16b23b-UFR
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Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-19b28b-20b27b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-23b32b-24b31b-UFR

Scatterplot = Distance Weighted Least Squares
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Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-27b36b-28b35b-UFR
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Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-31b40b-32b39b-UFR
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Scatterplot with Histograms of %occupied against Residue

DYS531AAAT11-35b44b-36b43b-UFR
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Graphs SI141-SI151: Scatterplots of water occupancy (WAT; cut-off 3 Å) near nucleotides (Acceptor Residue 

position) for the last 4 ns of molecular dynamics of DYS19A tested models. Valid N corresponds to all H-bonds 

detected in the last 4 ns of molecular dynamics simulation.  

DYS19A-SS_min
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

487 4.73 0.30 76.35 6.91
487 2.81 2.66 2.99 0.07
487 24.59 2.20 58.89 7.99
487 5.21 4.00 28.30 1.96
487 2.57 1.00 39.00 2.74

 
 

DYS19A-SS_min

0

300

600

0 10 20 30 40 50 60

Acceptor Residue

0

20

40

60

80

100

%
oc

cu
pi

ed

0 300 600

 
  



214 FCUP 
The Role of Non-coding Structural Information in Phylogeny, Evolution and Disease

 

 

 

DYS19A-4b13b-5b12b-UF
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

486 4.30 0.30 35.03 4.53
486 2.82 2.60 3.00 0.07
486 25.59 4.79 59.84 8.83
486 5.43 4.00 62.70 3.25
486 2.68 1.00 28.00 2.65
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DYS19A-12b21b-13b20b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

528 4.62 0.30 25.45 4.70
528 2.82 2.63 2.98 0.07
528 24.82 4.75 58.13 7.83
528 5.27 4.00 15.70 1.67
528 2.67 1.00 17.00 2.23
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DYS19A-20b29b-21b28b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

501 4.09 0.30 79.04 6.41
501 2.82 2.59 2.98 0.07
501 24.99 2.43 59.22 8.66
501 5.09 4.00 64.00 3.08
501 2.35 1.00 21.00 2.22
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DYS19-24b33b-25b32b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

497 4.56 0.30 93.41 6.58
497 2.82 2.65 2.99 0.07
497 24.51 3.50 58.77 7.78
497 5.16 4.00 59.40 2.78
497 2.55 1.00 63.00 3.28
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DYS19A-28b37b-29b36b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

488 4.34 0.30 97.01 7.55
488 2.82 2.61 3.00 0.07
488 25.01 2.15 59.24 8.52
488 5.20 4.00 81.00 3.90
488 2.60 1.00 91.00 5.16
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DYS19A-32b41b-33b40b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

509 4.12 0.30 86.83 5.95
509 2.81 2.63 2.99 0.07
509 25.10 4.93 58.84 8.41
509 5.19 4.00 21.50 1.94
509 2.45 1.00 35.00 2.62
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DYS19A-36b45b-37b44b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

521 4.16 0.30 43.11 4.58
521 2.82 2.66 3.00 0.08
521 25.16 10.36 57.11 7.63
521 5.16 4.00 19.30 1.81
521 2.51 1.00 24.00 2.45
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DYS19A-40b49b-41b48b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

501 3.84 0.30 77.84 5.60
501 2.82 2.56 2.99 0.08
501 24.63 4.73 59.12 8.53
501 5.27 4.00 26.00 2.22
501 2.53 1.00 53.00 3.08  
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DYS19A-44b53b-45b52b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

516 3.90 0.30 27.54 4.34
516 2.82 2.63 3.00 0.07
516 25.30 3.19 58.35 8.40
516 5.19 4.00 20.00 1.86
516 2.44 1.00 19.00 2.14  
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DYS19A-48b57b-49b56b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

515 5.11 0.30 100.00 7.85
515 2.82 2.57 2.99 0.07
515 25.16 4.58 59.62 8.16
515 5.29 4.00 29.60 2.73
515 2.83 1.00 54.00 4.46
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Graphs SI152-SI159: Scatterplots of water occupancy (WAT; cut-off 3 Å) near nucleotides (Acceptor Residue 
position) for the last 4 ns of molecular dynamics of DYS391 tested models. Valid N corresponds to all H-bonds 
detected in the last 4 ns of molecular dynamics simulation. 

DYS391TCTA10-SS_min
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

290 2.66 0.30 15.57 2.61
290 2.80 2.59 2.99 0.08
290 24.38 7.06 52.58 7.97
290 5.01 4.00 13.00 1.52
290 2.13 1.00 11.00 1.77
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DYS391TCTA10-4b13b-5b12b-UF

Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

268 3.69 0.30 61.08 5.42
268 2.81 2.65 2.99 0.08
268 24.61 4.10 56.68 9.15
268 5.90 4.00 78.00 5.51
268 2.96 1.00 47.00 4.29
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DYS391TCTA10-8b17b-9b16b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

272 3.05 0.30 58.98 4.45
272 2.80 2.55 2.99 0.08
272 24.23 8.93 58.03 8.61
272 5.47 4.00 49.20 3.69
272 2.49 1.00 50.00 3.54
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DYS391TCTA10-12b21b-13b20b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

275 3.60 0.30 108.38 8.56
275 2.80 2.59 3.00 0.08
275 25.02 2.04 58.93 9.38
275 5.49 4.00 53.60 3.62
275 2.94 1.00 159.00 9.73
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DYS391TCTA10-16b25b-17b24b-UFR

Variable Valid N Mean Minimum Maximum Std.Dev.

%occupied
distance
angle
lifetime
maxocc

292 3.21 0.30 18.56 3.21
292 2.80 2.49 3.00 0.08
292 23.81 3.09 57.36 8.74
292 5.41 4.00 24.00 2.46
292 2.62 1.00 25.00 2.76
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DYS391TCTA10-20b29b-21b28b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

281 2.53 0.30 18.26 2.53
281 2.81 2.60 2.99 0.08
281 25.19 2.56 57.52 8.72
281 5.46 4.00 28.00 2.42
281 2.40 1.00 16.00 2.34
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DYS391TCTA10-24b33b-25b32b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

282 3.77 0.30 99.40 9.50
282 2.81 2.63 2.99 0.07
282 25.26 4.72 58.57 9.16
282 6.80 4.00 442.70 26.17
282 2.87 1.00 185.00 11.04
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DYS391TCTA10-28b37b-29b36b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
maxocc
lifetime
angle
distance
%occupied

267 2.58 1.00 25.00 2.78
267 5.40 4.00 28.60 2.42
267 24.94 5.09 58.39 8.93
267 2.81 2.63 3.00 0.08
267 3.78 0.30 57.49 6.62
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Graphs SI160-SI169: Scatterplots of water occupancy (WAT; cut-off 3 Å) near nucleotides (Acceptor Residue 

position) for the last 4 ns of molecular dynamics of DYS531 tested models. Valid N corresponds to all H-bonds 

detected in the last 4 ns of molecular dynamics simulation. 

DYS531AAAT11-SS_min
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

327 3.26 0.30 23.35 3.51
327 2.82 2.67 3.00 0.08
327 25.17 6.11 59.12 9.25
327 5.13 4.00 20.80 1.93
327 2.28 1.00 15.00 2.00
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DYS531AAAT11-3b12b-4b11b-UF
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

360 3.94 0.30 86.23 6.84
360 2.82 2.52 3.00 0.08
360 24.38 3.76 54.38 7.90
360 5.17 4.00 23.50 2.12
360 2.53 1.00 33.00 3.05  
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DYS531AAAT11-7b16b-8b15b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

336 3.49 0.30 99.40 6.31
336 2.82 2.60 3.00 0.08
336 24.35 7.11 57.76 8.31
336 5.05 4.00 34.10 2.15
336 2.47 1.00 101.00 5.66
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DYS531AAAT11-11b20b-12b19b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

333 2.45 0.30 17.07 2.50
333 2.82 2.65 3.00 0.08
333 24.73 1.49 57.71 9.31
333 4.96 4.00 20.70 1.72
333 2.05 1.00 12.00 1.76
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DYS531AAAT11-15b24b-16b23b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

307 2.83 0.30 43.41 3.74
307 2.81 2.62 3.00 0.08
307 25.12 3.32 59.43 9.05
307 4.93 4.00 18.00 1.62
307 2.04 1.00 15.00 1.80
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DYS531AAAT11-19b28b-20b27b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

337 3.34 0.30 91.62 6.98
337 2.81 2.64 3.00 0.08
337 25.41 2.20 59.79 9.68
337 5.13 4.00 36.00 2.32
337 2.65 1.00 108.00 6.50
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DYS531AAAT11-23b32b-24b31b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

351 3.63 0.30 76.95 6.24
351 2.81 2.50 2.99 0.08
351 24.10 4.19 55.71 8.60
351 5.25 4.00 36.70 2.86
351 2.48 1.00 43.00 3.30
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DYS531AAAT11-27b36b-28b35b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

348 3.18 0.30 85.63 6.72
348 2.82 2.56 3.00 0.08
348 24.20 1.22 58.41 8.99
348 5.07 4.00 21.20 1.92
348 2.21 1.00 31.00 2.53
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DYS531AAAT11-31b40b-32b39b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

319 2.44 0.30 20.96 2.57
319 2.82 2.64 2.99 0.08
319 24.79 4.12 57.71 9.24
319 5.10 4.00 13.00 1.62
319 2.10 1.00 12.00 1.58  
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DYS531AAAT11-35b44b-36b43b-UFR
Variable Valid N Mean Minimum Maximum Std.Dev.
%occupied
distance
angle
lifetime
maxocc

339 2.90 0.30 16.47 2.78
339 2.82 2.53 3.00 0.08
339 24.91 5.01 59.05 8.76
339 5.17 4.00 20.80 2.00
339 2.20 1.00 19.00 1.95  
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Graphs SI170-SI213: Histograms of water H-bonds (WAT; cut-off 3 Å) near nucleotides (acceptor and donor 

residue positions) and H-bonds between water and specific atom types (oxygen-phosphate, oxygen and nitrogen 

atoms), observed for the last 4 ns of molecular dynamics of DYS19A tested models. 
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Histogram of Acceptor Atom
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Histogram of Donor Residue
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Histogram of Donor Atom
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Histogram of Acceptor Residue

DYS19A-4b13b-5b12b-UF
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Histogram of Acceptor Atom
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Histogram of Donor Residue

DYS19A-4b13b-5b12b-UF

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

Donor Residue

0

1

2

3

4

N
o 

of
 o

bs

 
 

Histogram of Donor Atom
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Histogram of Acceptor Residue
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Histogram of Acceptor Atom
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Histogram of Donor Atom
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Histogram of Acceptor Residue
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Histogram of Acceptor Atom
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Histogram of Donor Residue
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Histogram of Donor Atom
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Histogram of Acceptor Residue
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Histogram of Acceptor Atom
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Histogram of Acceptor Residue
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Histogram of Acceptor Atom
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Histogram of Donor Atom
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Histogram of Acceptor Residue
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Histogram of Donor Residue
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Histogram of Donor Atom
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Histogram of Acceptor Residue
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Histogram of Acceptor Atom
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Histogram of Acceptor Residue
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Histogram of Donor Atom
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Histogram of Donor Residue
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Histogram of Acceptor Atom
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Graphs SI214-SI241: Histograms of water H-bonds (WAT; cut-off 3 Å) near nucleotides (acceptor and donor 

residue positions) and H-bonds between water and specific atom types (oxygen-phosphate, oxygen and nitrogen 

atoms), observed for the last 4 ns of molecular dynamics of DYS391 tested models. 
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Histogram of Donor Residue
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Histogram of Acceptor Atom
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Histogram of Acceptor Residue
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Histogram of Donor Atom

DYS391TCTA10-8b17b-9b16b-UFR

WAT N3 N4 N6

Donor Atom

0

20

40

60

80

100

120

140

160

180

200

220

240
N

o 
of

 o
bs
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Histogram of Donor Residue
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Histogram of Acceptor Residue
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Histogram of Acceptor Atom
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Histogram of Acceptor Residue

DYS391TCTA10-24b33b-25b32b-UFR
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Histogram of Donor Atom
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Histogram of Acceptor Residue
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Histogram of Donor Residue
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Graphs SI242-SI281: Histograms of water H-bonds (WAT; cut-off 3 Å) near nucleotides (acceptor and donor 

residue positions) and H-bonds between water and specific atom types (oxygen-phosphate, oxygen and nitrogen 

atoms), observed for the last 4 ns of molecular dynamics of DYS531 tested models. 
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Histogram of Donor Residue
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Histogram of Acceptor Residue
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Histogram of Acceptor Atom
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Histogram of Acceptor Residue

DYS531AAAT11-7b16b-8b15b-UFR
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Histogram of Donor Atom
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Histogram of Donor Residue
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Histogram of Acceptor Atom
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Histogram of Acceptor Residue
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Histogram of Donor Atom
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Histogram of Donor Residue
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Histogram of Acceptor Atom
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Histogram of Acceptor Residue
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Histogram of Donor Residue
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Table SI33: Number of local base-pairs detected for DYS19A, DYS391 and DYS531 molecular models (average 

PDB of last 4ns), as calculated by the X3DNA software[136]. 

Molecular Dynamics model 
Number of base 
pairs detected 

Mean 

DYS19A‐SS  5 

5 
Std:2.07 

DYS19A‐4b13b‐5b12b‐UF  10

DYS19A‐12b21b‐13b20b‐UFR  6

DYS19A‐20b29b‐21b28b‐UFR  5 

DYS19A‐24b33b‐25b32b‐UFR  4 

DYS19A‐28b37b‐29b36b‐UFR  5 

DYS19A‐32b41b‐33b40b‐UFR  4

DYS19A‐36b45b‐37b44b‐UFR  2

DYS19A‐40b49b‐41b48b‐UFR  4

DYS19A‐44b53b‐45b52b‐UFR  3 

DYS19A‐48b57b‐49b56b‐UFR  6 

DYS391TCTA10‐SS  2 

2.5 
Std:0.74 

DYS391TCTA10‐4b13b‐5b12b‐UF  3

DYS391TCTA10‐8b17b‐9b16b‐UFR  2

DYS391TCTA10‐12b21b‐13b20b‐UFR  3 

DYS391TCTA10‐16b25b‐17b24b‐UFR  2 

DYS391TCTA10‐20b29b‐21b28b‐UFR  4 

DYS391TCTA10‐24b33b‐25b32b‐UFR  2

DYS391TCTA10‐28b37b‐29b36b‐UFR  3

DYS531AAAT11‐SS  7

2 
Std:1.87 

DYS531AAAT11‐3b12b‐4b11b‐UF  2 

DYS531AAAT11‐7b16b‐8b15b‐UFR  2 

DYS531AAAT11‐11b20b‐12b19b‐UFR  1 

DYS531AAAT11‐15b24b‐16b23b‐UFR  1

DYS531AAAT11‐19b28b‐20b27b‐UFR  2

DYS531AAAT11‐23b32b‐24b31b‐UFR  2 

DYS531AAAT11‐27b36b‐28b35b‐UFR  5 

DYS531AAAT11‐31b40b‐32b39b‐UFR  3 

DYS531AAAT11‐35b44b‐36b43b‐UFR  3 
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Abstract 

The majority of the available methods for the molecular identification of species use 

pairwise sequence divergences between the query and reference sequences (DNA 

barcoding). The presence of multiple insertions and deletions (indels) in the target genomic 

regions is generally regarded as a problem, as it introduces ambiguities in sequence 

alignments. However, we have recently shown that a high level of species discrimination is 

attainable in all taxa of life simply by considering the length of hypervariable regions defined 

by indel variants. Each species is tagged with a numeric profile of fragment lengths – a true 

numeric barcode. In this study, we describe a multi-functional computational workbench 

(named SPInDel for SPecies Identification by Insertions/Deletions) to assist researchers 

using variable-length DNA sequences, and we demonstrate its applicability in molecular 

ecology. The SPInDel workbench provides a step-by-step environment for the alignment of 

target sequences, selection of informative hypervariable regions, design of PCR primers and 

the statistical validation of the species-identification process. In our test datasets, we were 

able to discriminate all species from two genera of frogs (Ansonia and Leptobrachium) 

inhabiting lowland rainforests and mountain regions of Southeast Asia and species from the 

most common genus of coral reef fishes (Apogon). Our method can complement 

conventional DNA barcoding systems when indels are common (e.g., in rRNA genes) without 

the required step of DNA sequencing. The executable files, source code, documentation and 

test datasets are freely available at 

http://www.portugene.com/SPInDel/SPInDel_webworkbench.html. 

 

Keywords: species identification, insertions/deletions, numeric profiles, variable-length 
sequences, mtDNA, rRNA 

 

Introduction 

The identification of biological samples collected during ecological field work (e.g., 

wildlife species) is often a challenging task (Hebert et al. 2003; Steinke et al. 2005; Vences et 

al. 2005; Darling& Blum 2007; Pereira et al. 2008). In certain cases, scientists must 

investigate vestigial and highly degraded samples, such as carcasses, feces, bones, hair, 

teeth, eggshells, fur, feathers, stomach contents, seeds, and wood. Similarly, the emerging 

field of wildlife species identification is also dependent on the accurate identification of 

products made from protected animals (e.g., leather goods or medicinal powder) or crime 

scene evidence (e.g., bite wounds) (Coyle 2007; Rob Ogden et al. 2009; Amorim 2010; 

Linacre& Tobe 2011). 
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In certain circumstances, the only way to identify the species of origin of such 

vestigial samples is to apply molecular biology methods in the laboratory. However, many 

researchers conducting such investigations face limited laboratory equipment, and financial 

resources limit the use of DNA sequencing, microarrays or real-time PCR (McManus& 

Bowles 1996; Darling& Blum 2007; Pereira et al. 2008; Wells& Stevens 2008; Alacs et al. 

2010). We have recently shown that a high level of species discrimination is attainable in all 

taxa of life simply by determining and combining the length of hypervariable regions with 

indel variants (Pereira et al. 2010). The numeric profiles that identify each species can be 

assessed using diverse genotyping platforms, including those requiring low-cost equipment 

and reagents (e.g., conventional agarose or polyacrylamide gels). Our method enables inter-

laboratory comparison, providing a means to standardize methodologies. In our datasets, the 

levels of intraspecies variation are comparable to those detected by sequencing analyses 

(Pereira et al. 2010). Our method also permits the identification of species from admixtures 

and is appropriate for low-quantity and/or degraded DNA samples (very short amplicons can 

be used, for instance, shorter than 100 bp).  

It has been shown that genomic regions with multiple indels can be used for species-

identification procedures in animals [rRNA gene sequences (Steinke et al. 2005; Vences et 

al. 2005)], plants [chloroplast trnL (UAA) intron (Taberlet et al. 2007)], fungi [ITS; (Zinger et 

al. 2008)] and bacteria [rRNA; (Sogin et al. 2006)], with the same efficiency as using 

mitochondrial cytochrome oxidase subunit I (cox1). Moreover, because indels are less prone 

to recurrent and back mutations, the probability of misclassifications is greatly reduced. 

Several software tools are now available for indel detection in deep-sequencing data 

(Young& Healy 2003; Neuman et al. 2012), providing the necessary genetic information for 

the development of new indel-based identification systems. The SPInDel computational 

workbench described here can be used with sequence data from any genomic region and is 

a useful tool to help researchers in all steps of the species identification workflow. 

  

 

Features and basic usage 

The SPInDel computational platform (Figure 1) was designed to facilitate the planning 

and management of projects for the analysis of indel variability in sequence datasets. It was 

built using the high-level object-oriented programming language Python (Python 2.6, freely 

available at www.python.org) and other third-party packages (Supplementary Information S1 

and S2). A step-by-step description of the procedures for using the SPInDel workbench and 

the theoretical background on SPInDel calculations are presented in Supplementary 

Information S3 and Figure 2. 
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Multiple sequence alignments 

A FASTA-formatted file or an SQLite database with aligned DNA or RNA sequences 

(haplotypic data) can be uploaded to the SPInDel SQLite database (Supplementary 

Information S4). Sequence re-alignments can also be performed in the workbench with the 

PyCogent progressive alignment algorithm. The user can also select among different 

nucleotide substitution models (JC69, F81, HKY85 and GTR) and different rates of 

occurrence of indels. The main window plots an identity value for each nucleotide position by 

estimating the frequency of the most common nucleotide in the aligned sequences. This 

feature allows easy identification of conserved regions (highest conservation and lowest 

conservation are represented in green and red, respectively) that can be chosen directly in 

the alignment window using column selection.  

 

Numerical profiles of fragment lengths 

Conserved regions of multiple sequence alignments are used to delimit the target 

segments with indels (“SPInDel hypervariable regions”). The combination of sequence 

lengths on different SPInDel hypervariable regions produces unique numeric combinations 

for each sequence or group of identical sequences (a “SPInDel profile”). A function that 

computes the discriminatory power of all combinations of hypervariable regions can be used 

to identify the minimum number of regions for an accurate identification. The algorithm 

generates n-combinations without repetition, which are subsets of n distinct elements of the 

set of all possible regions. For each n-combination, the numbers of shared profiles (Nsp) and 

different profiles (Ndp) are displayed in tables and graphs. To avoid the design of 

complementary PCR primers at the same location, the ‘multiplex PCR option’ retrieves only 

n-combinations that do not share conserved regions. Diverse distance measures are 

implemented by the use of in-house developed Python algorithms. 

The identity of a numeric profile of unknown origin can be predicted with the ‘Search 

profile’ function by a k-nearest-neighbor method using a database of known profiles built with 

the SQLite3 Python SQL interface. This discrete metric was implemented using BioPython 

and an in-house developed function for the discrete distance metric. To test the accuracy of 

the classification, we implemented a leave-one-out cross validation using profiles from known 

species. 
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Step-by-Step Tutorial 

Here, we describe how to perform a basic SPInDel workbench analysis using the 

genera Ansonia as an example. The following steps can be adopted by the user (with small 

modifications) for other taxonomic groups: 

1. We retrieved mitochondrial rRNA gene sequences for Ansonia from the NCBI Entrez 

Nucleotide database. 

2. We then randomly selected one representative of each species in Ansonia and 

performed a multiple sequence alignment for the 22 mitochondrial rRNA gene sequences 

obtained using freely available software. 

3. A new SPInDel project was created using the ‘New project’ function in the top menu 

‘File,’ and the Ansonia FASTA-formatted alignment was imported to the SPInDel workbench. 

4. We identified 7 conserved regions in the multiple sequence alignment (top window), 

using as a guide the identity values (green regions with values higher than 0.95) in the 

bottom window. 

5. The numeric profiles for each species were calculated with the ‘Calculate profiles’ 

function. The profiles were analysed using diverse statistical methods (e.g., Region by 

Region, Mismatch distribution and Combinations functions). The frequency of species-

specific profiles is 1.00, indicating that all species have a unique SPInDel profile. 

6. The UPGMA tree and the principal component analysis (PCA) were used to display 

the overall relationship among the numeric profiles. 

7. We estimated the minimum number of regions for a complete discrimination of 

Ansonia species using the ‘Combinations’ function (in this case, 3 hypervariable regions were 

sufficient). 

8. We tested whether the PCR primers’ properties were in accordance with the Oligocalc 

(Supplementary Information S3) values for optimized PCR (standard or multiplex). 

9. The numerical profiles of each hypervariable region (hypervariable region length) and 

PCR primers’ properties were exported using the SPInDel exporter tools (to Excel using 

comma separated values files). This information could be used for the development of a 

laboratorial procedure for identification of Ansonia species. 

 

The application of the SPInDel concept to taxonomic groups of 

ecological value  

We have analysed 3 genera (Ansonia, Leptobrachium and Apogon) as 

representatives of two taxonomic groups (Amphibia and Actinopterygii) of great importance 

for ecological genetics studies. These genera were selected because they offered the 
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greatest number of available mitochondrial rRNA gene sequences in each group. The rRNA 

genes of mtDNA are particularly useful as targets of our approach due to the presence of 

multiple indels and highly conserved domains. A total of 173 sequences from the mtDNA 

region of the 12s rRNA, tRNA-Val and 16s rRNA genes (74, 61 and 38 sequences from 

Ansonia, Leptobrachium and Apogon, respectively) were initially retrieved from the NCBI 

Entrez Nucleotide database (http://www.ncbi.nlm.nih.gov). We then randomly selected one 

representative of each species in each genus and analysed the datasets in the SPinDel 

workbench (Table 1). 

All species from the 3 genera have different profiles, and the average numbers of 

pairwise differences among hypervariable regions are 4.37 (Ansonia), 3.04 (Leptobrachium) 

and 5.44 (Apogon) (Table 1). The discrimination of all species is possible with only 3 

(Ansonia) and 4 (Leptobranchium and Apogon) hypervariable regions. In general, our 

method was able to unambiguously discriminate closely related species in well-supported 

monophyletic clades (Mabuchi et al. 2006; Matsui et al. 2010a; Matsui et al. 2010b). To test 

the level of intraspecies variability, we ran a dataset including all sequences initially retrieved 

(i.e., including different sequences from the same species) (Supplementary Information S5). 

In Ansonia, only one shared profile was found between individuals of different species (A. 

platysoma and A. minuta). The remaining 16 profiles were found in individuals of the same 

species. Strikingly, two different profiles were found among A. spinulifer, in agreement with 

the previously observed maximum likelihood and Bayesian phylogenies. A similar result was 

found in the complete Leptobranchium dataset, with only one case of two species sharing the 

same profiles. The analysis of Apogon, the most species-rich genus of the reef fish family 

Apogonidae, revealed that all available species have unique profiles (Supplementary 

Information S5). Our method was able to clearly discriminate species with similar 

phylogenetic and morphological features (Mabuchi et al. 2006). Nevertheless, the 

identification of species in other taxonomic groups should be preceded by a detailed analysis 

of intra- and interspecies diversity levels, as recommended for any identification system. 

The SPInDel workbench also includes an extensive database with more than 1,800 

species-specific profiles from 18 major taxonomic groups. These groups include several 

critically endangered species, whose profiles can be used to design specific laboratory 

methods for their detection (e.g., the Bactrian camel, Sumatran orang-utan, kakapo, blue 

whale, Asian elephant, giant panda, tiger and bonobo). These data might be useful for 

improving the high-throughput analysis of samples in wildlife investigations, and the SPInDel 

workbench described here has all of the required tools to facilitate such procedures. 
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Table 1: General description of standard SPInDel profiles in 3 test datasets: Ansonia, Apogon and Leptobrachium. 

 
  

Taxonomic 
group 

Number of 
sequences 

(N) 

Number of 
conserved 

regions 

Number of 
hypervariable 

regions (n) 

Average 
number of 
pairwise 

differences 
(p ) 

Average number 
of pairwise 

differences per 
hypervariable 

region 

Number 
of 

species-
specific 
profiles 

(Nsp) 

Frequency 
of species-

specific 
profiles (fn

G) 

Number 
of 

species-
shared 
profiles 

 
Number of 
minimum 

hypervariable 
regions for  

discrimination of 
all species   

Eukaryotes           

Ansonia  
(Amphibia)  

22 7 6 4.37 0.73 22 1 0 3 

Apogon 
(Actinopterygii) 

36 9 8 5.44 0.68 36 1 0 4 

Leptobrachium 
(Amphibia)  

17 6 5 3.04 0.61 17 1 0 4 
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Figures 

Figure 1: Main frame of the SPInDel workbench: a) selection box of SPInDel projects, b) sequence alignment viewer and c) 

alignment identity and GC content tracks.  

Figure 2: Flowchart of SPInDel workbench information processing for species identification. 
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Data accessibility 
DNA sequences for analysis: Supplementary Information file. 
The source code, documentation, test datasets with results and executable files for Windows and 
Linux are freely available at http://www.portugene.com/SPInDel/SPInDel_webworkbench.html. 
 
Supporting Information 
Additional supporting information may be found in the online version of this article. 
Supplementary information: SPInDel workbench version 1.1 reference manual. 
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12. General Discussion 

 

12.1. Gene Families: The Metallothioneins (model a) 

 

The main topics of this thesis are the analyses of molecular structural information of 

specific non-coding regions and the correlation of these data with the coding genome. First, a 

gene family that evolved from a series of duplications during evolution was studied. MTs 

(model a) are important metal-binding proteins involved in homeostasis and the transport of 

essential metals [35, 36]. In Mus musculus all MT genes are functional and have one copy. 

The human MT2, MT3 and MT4 are represented by one copy but there is a tandemly 

duplicated array of the human MT1, comprising eight active genes (MT1A to MT1J, MT1L, 

MT1M and MT1X) and five pseudogenes (MT1L, MT1J, MT1D, MT1C and MT1I). Homo 

sapiens MT1 and MT2 are ubiquitous expressed in all tissues, which is in agreement with 

their function as housekeeping genes that regulate heavy metal homeostasis in every cell. 

Human expression of MT3 has been almost exclusively related to brain tissues, but our 

results demonstrated that it has a ubiquitous expression. Concerning MT4, although the 

degree of conservation of MT4 was high between humans and mice, the presence of 

prohibitive residues in human sequence indicated that this protein might no longer be 

functional. In that sense, considering that inactivation of MT4 occurred in some individuals, 

the role of the protein in epithelium where it is expressed was hypothesized to be assumed 

by MT1 and/or MT2. MT1 duplicates are good candidates to assume the function of the 

inactive MT4 gene since they have similar metal binding properties, cellular specificity 

expression, and resistance to Cd and Cu. The analysis of phylogenetic data and expression 

profiles was determinant to establish the status of active/non-active genes in the MT family. 

Specific mutational change that occurs in duplicated copies can determine the non-coding 

status of the DNA regions that are translated into proteins. This analysis can be applied to 

other important gene families to access the functional relevance of the expressed proteins 

and the real impact of loss of function in genes (pseudogenisation). The observed conversion 

that can occur between coding and non-coding region by mutational steps was the support to 

infer that non-coding regions can share some features with coding regions. In this case the 

background DNA sequences were shared for both coding (genes) and non-coding 

sequences (pseudogenes), even though they change through evolutionary time. This was 

demonstrated in the phylogenetic analysis. 

A deep understanding of the relationships between coding and non-coding regions 

was studied in models c and d. These non-transcribed non-coding regions (control region 
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mtDNA and STRs) can adopt non-B conformations that were analysed in order to see their 

influence in protein-coding genome.  
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12.2. NAD Pathway Relevant Genes: NAMPT and PNC (model b). 

 

The pseudogenisation process can convert a protein coding region in a non-

transcribed non-coding region (e.g., 5’ UTR mutations that impair transcription initiation, 

mutations that affect the termination codon and cause diseases, mutations at 5’ UTR 

secondary structures) [139, 140], but the consequences of mutations that do not influence 

transcriptional processes must be studied by protein models (model b). The gene that codes 

for a specific protein can be expressed but the protein can lose the functionality. Different 

computational methods (e.g., protein modelling, substrate-active site docking) supported by 

experimental data (expression assays) can be extensively used to predict the functional 

status of specific regions in the genome. Considering this, the expression of NAMPT and 

nicotinamidase genes (model b) was accessed. Some species had a simultaneously 

expression of both enzymes and NAMPT protein sequences were extremely conserved, 

while Nicotinamidases conservation was structural. Species conservation of the catalytic 

residues of both enzymes was preserved, suggesting that both can be concurrently active. 

The roles of NAD metabolic enzymes in metabolism or gene expression can be better 

understood using structural and functional characterization of NAD salvage enzymes. 

Additionally, as these enzymes are implicated in cancer, diabetes, cardiovascular or 

neurodegenerative disorders, and also parasitic and infectious diseases, knowledge of their 

conservation patterns can contribute to targeted drug design. The disruption that occurs in 

specific segments of a protein with functional relevance (e.g., active site) can also occur in 

DNA non-B conformations. At a fine-scale, protein systems share some features with non-

coding regions showing non-B conformations, including the possibility of mutations that 

changes the structure of the molecule and specific interactions as H-bonds between atoms. 

Considering this, the analysis of different interactions that are legible to form non-B DNA 

conformations (e.g., non-canonical and canonical base-pairing) was analysed at a structural 

level in two models (model c and d). 
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12.3. MtDNA Control Region (model c) 

 

Studying the protein-coding regions was of great importance when trying to analyse 

the non-coding regions. Different mutational signatures can disrupt both proteins and non-B 

conformations in non-coding regions. The hypothesis to prove was that structured features of 

coding genome were also present in the non-coding part (sometimes resulting from 

evolutionary origin out of coding regions, as in model a). The non-coding genome was 

assumed to present different structural forms (e.g., non-B DNA conformations). The initial 

step was to develop a method to analyse the putative influence of non-coding regions in 

coding sequences or important biological processes involved in protein coding mechanisms 

(e.g., replication, deletions). The focus of the second part of the thesis (model c and d) was 

the detection of non-B DNA conformations, in the mitochondrial genome [105, 141-144] 

(model c) and nuclear Y-STRs (model d). The presence of these structures is very difficult to 

ascertain and there are few accurate experimental procedures [142, 145-147] to elucidate 

their properties and role in biological processes and only recently the first in vivo DNA 

quadruplex structure was described [148]. Using predictive techniques and algorithms, a full 

genome annotation of these structures along mitochondrial genome was performed. Some of 

these structures are formed when mtDNA presents a single-stranded conformation, during 

replication and transcription. The mechanisms that are associated with already described 

deletions [94, 149] mainly located in the major arc of the mtDNA between the two proposed 

origins of replication (OH and OL), results from some specific secondary structures. It was 

clear that relevant non-B DNA conformations predicted by UNAFold were present both in 

protein coding and non-coding regions. The detected non-B DNA conformations were clearly 

associated with different diseases (e.g., chronic progressive external ophthalmoplegia, 

Kearns–Sayre syndrome or Pearson syndrome, complex multi-system disorder, autosomal 

disorders). In humans mtDNA control region, the cloverleaf structure at 16071 (Structure A) 

is supposed to have impact in mtDNA biological processes, what results in deleted molecules 

[94, 150-156]. Structure A central hairpin is the region of the cloverleaf structure with higher 

proportion of sites with breakpoints, which means that local specificities of different 

conformations have impact in the generation of breakpoint deletion patterns. This structural 

conformation was very stable in molecular dynamics simulations (data not published). 

The presence of non-B DNA conformations (e.g., hairpin structures) was not 

associated only to non-coding regions that are not transcribed, but also to transcribed ones 

like the WANCY region. This region with tRNA genes presented a free energy variation as 

high as -36.41 kcal/mol as consequence of formation of several hairpin structures. 

The predicted non-B DNA conformations were clearly associated to deletion 

breakpoints, and this association was demonstrated with statistical significant values 
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(random distributions versus observed distributions). Structure A [59] and WANCY[144] 

presented high free energetic folding potential that results in cloverleaf or hairpin structures, 

and the number deletions breakpoints located at these regions were the highest. Structure A 

location is outside the important three-stranded D-loop structure (formed in mtDNA 

replication process), but near enough to infer a putative link between deletion formation and 

the functional/structural features of the D-loop [157]. The implications of secondary structures 

can be extended to mechanisms occurring often in mtDNA, like segregation and replication 

[158]. The impact of the presence of secondary structures resulting from regions with high 

folding potential in single-stranded states, can have several implications to critical 

mechanisms in the cell (e.g., replication, transcription), depending on the local conformation 

adopted (e.g., one hairpin or several hairpins, cloverleaf structures), and in the region were 

they occur (e.g., functional relevant regions). 
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12.4. Short Tandem Repeats (model d) 

 

The extension of the non-B conformation analysis to other non-coding regions is 

further discussed. Small tandemly repeated DNA motifs (model d), known as STRs, in each 

replication cycle can increase or decrease the number of motifs in each locus although the 

mechanism is not well understood. Here, this issue was addressed by performing molecular 

dynamics simulations in tetranucleotide STRs from the Y chromosome. Overall, our results 

point to the formation of small hairpins (stem base pairing followed by loop nucleation) 

associated with nearby electronegative pockets of Na+ across the entire sequence of the 

STR with the exception of the 5’ and 3’ ends. Our analysis suggests that formation of small 

hairpins can occur in any region of the STR, and depends on specific conditions of the STR 

region (base composition, counterions, and water distribution). The process of hairpin 

formation was associated to electronegative pockets of Na+ that were present near hairpins 

stems or loops. Different folding potentials will influence STRs length variation resulting from 

replication errors (e.g., strand-slippage replication mechanism). 

Neurodegenerative disorders associated to genomic repetitive segments can be 

studied using the analysis here performed. The structural dynamics of these genomic regions 

can be also extended to the study of processes related to other disease-related expansions. 

 

12.4.1. Variation of Free Energy in STRs 

 

Evaluation of the conformational free energy differences along trajectories of each 

STR model using the MMPBSA was also made as implemented in AmberTools. As the 

internal dielectric constants is highly dependent of the system we tested three different 

values (Ɛ=2, 3 and 4). We have verified that the best results were obtained for Ɛ=2 (Table 5).  
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Table 5: Values of enthalpy variation (∆H), entropy variation (∆S), free energy variation (∆G), and free energy variation relative 
to single-stranded DNA (∆∆G) for tested molecular systems, calculated in Amber. *The reference is single-stranded DNA (SS). 

Molecular model analysed file 
∆H

(kcal/mol)
∆S

(kcal/mol)
∆G (kcal/mol) 

∆∆G*
(kcal/mol)

DYS19A-SS_complex.prmtop -9304.87 1508.48 -10813.36 0.00 

DYS19A-4b13b-5b12b-UF_complex.prmtop -9267.34 1517.03 -10784.37 29.03 

DYS19A-12b21b-13b20b-UFR_complex.prmtop -9323.93 1520.70 -10844.64 -31.24 

DYS19A-20b29b-21b28b-UFR_complex.prmtop -9054.55 1520.00 -10574.55 238.85 

DYS19A-24b33b-25b32b-UFR_complex.prmtop -9341.26 1524.16 -10865.41 -52.01 

DYS19A-28b37b-29b36b-UFR_complex.prmtop -9234.64 1521.49 -10756.13 57.27 

DYS19A-32b41b-33b40b-UFR_complex.prmtop -9290.29 1519.52 -10809.80 3.60 

DYS19A-36b45b-37b44b-UFR_complex.prmtop -9246.55 1541.13 -10787.68 25.72 

DYS19A-40b49b-41b48b-UFR_complex.prmtop -9209.61 1528.73 -10738.35 75.06 

DYS19A-44b53b-45b52b-UFR_complex.prmtop -7195.25 1529.31 -8724.56 2088.84 

DYS19A-48b57b-49b56b-UFR_complex.prmtop -7771.96 1523.36 -9295.32 1518.08 

DYS391TCTA10-SS_complex.prmtop -6066.25 1010.63 -7076.88 0.00 

DYS391TCTA10-4b13b-5b12b-UF_complex.prmtop -4531.9 1003.22 -5535.12 1541.76 

DYS391TCTA10-8b17b-9b16b-UFR_complex.prmtop -6031.47 1005.53 -7037.00 39.88 

DYS391TCTA10-12b21b-13b20b-UFR_complex.prmtop -5973.14 1004.93 -6978.07 98.81 

DYS391TCTA10-16b25b-17b24b-UFR_complex.prmtop -6047.91 1004.86 -7052.76 24.12 

DYS391TCTA10-20b29b-21b28b-UFR_complex.prmtop -5962.44 1005.28 -6967.72 109.16 

DYS391TCTA10-24b33b-25b32b-UFR_complex.prmtop -5986.24 1015.97 -7002.20 74.68 

DYS391TCTA10-28b37b-29b36b-UFR_complex.prmtop -6041.46 1003.89 -7045.35 31.53 

DYS531AAAT11-SS_complex.prmtop -2358.48 1102.36 -3460.84 0.00 

DYS531AAAT11-3b12b-4b11b-UF_complex.prmtop -6275.11 1127.10 -7402.21 -3941.37 

DYS531AAAT11-7b16b-8b15b-UFR_complex.prmtop -6261.37 1118.29 -7379.66 -3918.82 

DYS531AAAT11-11b20b-12b19b-UFR_complex.prmtop -4454.02 1106.91 -5560.93 -2100.09 

DYS531AAAT11-15b24b-16b23b-UFR_complex.prmtop -6111.17 1120.07 -7231.24 -3770.40 

DYS531AAAT11-19b28b-20b27b-UFR_complex.prmtop -6128.68 1108.11 -7236.79 -3775.95 

DYS531AAAT11-23b32b-24b31b-UFR_complex.prmtop -6225.21 1119.31 -7344.52 -3883.68 

DYS531AAAT11-27b36b-28b35b-UFR_complex.prmtop -4072.23 1097.84 -5170.07 -1709.23 

DYS531AAAT11-31b40b-32b39b-UFR_complex.prmtop -6243.22 1107.22 -7350.44 -3889.60 

DYS531AAAT11-35b44b-36b43b-UFR_complex.prmtop -6245.15 1117.96 -7363.11 -3902.27 
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The H-bond between base pairs can represent significant variations in energetic 

values (-2 to -3 kcal/mol/H-bond) [159, 160]. If we consider the total interactions of a base 

pair the binding energies range from -5 to -47 kcal/mol [159-161]. In the DYS19 we observed 

variations that represent the different number of H-bonds between the systems and/or hairpin 

presence (∆G between 29 kcal/mol to 75 kcal/mol). Nevertheless the DYS19A-44b53b-

45b52b-UFR and DYS19A-48b57b-49b56b-UFR complexes presented a higher deviation 

from the single-stranded DNA molecule (DYS19A-SS) that could not be explained by the 

change in the number of connected bases and respective H-bonds. These two models 

presented a super-coiled conformation where coexisting domains of extended and 

supercoiled DNA are present [162-169]. The DYS391 variation of free energies ranges from 

24.12 to 109.16, except for the UNAFold predict model. This model also presented a 

supercoiled conformation. DYS531 presents a different pattern from the other STRs. When 

comparing free energies of the models with the single-stranded DNA model, we obtained 

high free energy differences that were of order ≈4000 kcal/mol for five models and ≈2000 

kcal/mol for the others. The high variations in free energy were associated with drastic 

conformational changes between the different tested models when considering the same 

STR. The results for each STR demonstrate that the DNA single-stranded states can adopt 

very different relaxed and supercoiled domains but these energetic states cannot be 

measure accurately by MMPBSA because these are very different three-dimensional 

molecular systems. Nevertheless, the theoretical framework behind our computational 

analysis might be of interest for the analysis of DNA molecular systems and biological 

processes that can influence DNA mutational patterns. 
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12.5. SPInDel Workbench 

 

The analysis of specific DNA regions (e.g., non-coding regions) can be performed by 

different computational programs. Nevertheless, it is usual that a specific analysis of coding 

regions is performed in a software, and other software used to analyse non-coding regions. 

This limitation can be overcome and the SPInDel approach was designed using a concept 

where different regions of the genome and different species can be analysed if they possess 

a similar evolutionary behaviour. The main purpose was to obtain easy-to-use software with 

no charges to the user (open source). Using rRNA regions the discrimination of each species 

was implemented based in the indel variation observed in the alignment. The software can 

be easily applied to fields like forensics and ecology, since it is optimized for multiple 

platforms, demonstrates high performance, even with larger databases, and can be modified 

by the user to perform user custom functions. An extensive database with more than 1,800 

species-specific profiles from 18 major taxonomic groups was included in the software, with 

particular relevance for critically endangered species (e.g., the Bactrian camel, Sumatran 

orang-utan, kakapo, blue whale, Asian elephant, giant panda, tiger and bonobo). High-

throughput analysis of samples in wildlife investigations can be improved using the SPInDel 

workbench, and the analysed data can be extended to non-coding regions showing indel 

variation through the species alignments. 
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13. Concluding Remarks and Future 

Perspectives 

This work started to find shared features between protein-coding (model a and b) and 

non-coding genomes (model c and d). The putative conversion between the two regions 

(model a) [170, 171], and the presence of three-dimensional structures of DNA, as the ones 

occurring in protein systems (model b), was the starting point to address how the different 

structural DNA molecules behave in different parts of non-coding genome (mtDNA control 

region and Y-STRs). The relevant non-B conformations can adopt different conformations, as 

in proteins molecular systems, as demonstrated in this thesis. Although there are specific 

structural features of proteins (e.g., active site, amino acid residues H-bonds interactions) 

and of non-B DNA structures (e.g., hairpins, base pairing H-bonds interactions) the two 

different molecular systems can adopt three-dimensional conformations. In non-coding 

regions, the formation of non-B conformations has implications in evolution, deletions, 

replication and disease (model c and d). The role of non-coding structural features in 

evolution and disease was established for both mtDNA and Y-STRs. 

The non-coding structural features were analysed using the knowledge about protein-

coding regions molecular systems and the relationships observed between these two types 

of regions. The phylogeny and evolution of each of these DNA genomic regions 

demonstrated that the processes modulating the two are not so different. The biological 

signatures of non-coding regions were detected at the structural conformations observed in 

DNA sequences. The detected non-B conformations, both in mtDNA and STRs non-coding 

sequences, were putatively linked to specific processes as replication and deletions. The 

ENCODE project defined a functional element as a discrete genome segment that encodes a 

defined product (protein or RNA) or displays a reproducible biochemical signature (e.g., 

protein binding, or a specific chromatin structure) [20]. Here the definition was extended to 

specify non-coding DNA regions (e.g., mtDNA control region, STRs) with folding properties 

that can influence biological processes and by this way present biochemical signatures (non-

B DNA conformations), and might even influence gene regulation, replication, and 

transcription. The specificities of non-coding elements with regulatory properties (e.g., RNAs, 

transcription factors) that were associated with histone modifications, DNase I hypersensitive 

sites and DNA methylation, challenged the classical view of non-coding regions. The non-B 

DNA conformations here detected and analysed, can have impact in biological processes 

and present a biochemical signature, which means that they can be defined as a functional 

element, or at least influence processes related with functional elements. 
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By studying different functional elements of the human genome we have 

demonstrated that the boundary between coding and non-coding regions is small and 

depends on a large network of interactions related with different processes (e.g., active site 

binding, transcription, replication, mutational patterns, tissue specific expression, and, last 

but not least, the evolutionary time depth of transcriptional loss).The relationships between 

non-coding and coding genome are extensive and have critical importance to the processes 

described in  Figure 5. 

 

 

Figure 6: Interactions between coding and non-coding genome. 

 

Non-canonical DNA structures are prone to happen in non-coding regions and are 

highly relevant to diverse processes occurring in cells as demonstrated in this thesis. 

Moreover the structures present in each DNA genomic region analysed here can have 

multiple roles and present a diversity of conformations. Recently guanine‑rich regions that 

are over-represented in telomeres, mitotic and meiotic double-strand break sites, and 

transcriptional start sites, were characterized in vitro and have the potential to form G-

quadruplex structure [148, 172-175]. These findings have demonstrated the in vivo 

occurrence of non-canonical DNA structures in different regions of the non-coding genome, 

usually associated to DNA repetitive motifs. The exhaustive study of these repetitive regions 

in non-coding regions is of main importance to understand deeply the different mechanisms 

that regulate biological processes. Our future research will be focused in a global screening 
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of STR in both nuclear and mitochondrial genome to understand the different conformational 

changes of non-canonical structures formed in these regions. The topological flexibility of 

these regions prone to form non-canonical DNA structures can be studied by free energy 

calculations of the different adopted states at different times. The different conformational 

changes should be measured by thermodynamic integration or free energy perturbation 

calculations [176-179] of highly stable molecular systems. These results will be compared 

with the observed length heterogeneity in each STR.  

The highly stable structure A [59, 144] observed in human mitochondrial non-coding 

genome is also a good starting point to see how specific non-canonical structures behave 

during critical biological processes. Preliminary results from molecular dynamics simulations 

with explicit solvent shows the stability of the structure, and simultaneously the flexibility of 

some stems and loops. To test different stress conditions that result in structure A 

conformational changes, a steered molecular dynamics (SMD) [180-182] approach can be 

used. Each loop and stem can be subjected to different forces to ascertain the critical points 

of this non-canonical structure. On the other hand, the binding properties of structure A can 

give a new understanding of how specific regions of non-coding mtDNA control region 

interact with some proteins (e.g., polymerase) or transcription factors. These type of 

interactions were demonstrated by Eun-Ang Raiber et al. [183] with a non-canonical DNA 

structure that binds a transcription factor in vitro. Using SMD, the full protein-DNA binding 

landscape can be accessed [184, 185]. 
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14. General Introduction and Discussion 
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