
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Smart Reconfiguration of Distribution
Grids using Agent-based Technology

Matheus Macedo Lopes

FOR JURY EVALUATION

Dissertation conducted under the Master’s in Electrical and Computers Engineering
Program - Major Energy

Supervisor: Prof. Vladimiro Miranda , Ph.D.

Co-Supervisor: Prof. Diego Issicaba , Ph.D.

July 25, 2016

© Matheus Macedo Lopes, 2016

Resumo

As manobras de isolamento para reconfiguração em redes de distribuição de média tensão são
tradicionalmente manuais ou dependem de decisões tomadas pelos operadores de rede. A abor-
dagem proposta assume uma arquitetura onde os agentes interagem em um ambiente de rede de
distribuição simulado a partir do estabelecimento de metas projetadas seguindo o paradigma de
orientação mulit-agente. A aplicação é implementada de tal forma que agentes AgentSpeak in-
teragem entre eles através de uma comunicação baseada em ato de fala/comunicação, bem como
com um ambiente desenvolvido em linguagem JAVA.

Neste contexto, esta tese propõe a modelagem e verificação de soluções baseadas em agentes
para apoiar as operações de reconfiguração em redes de distribuição em nível de média tensão.
A metodologia foi utilizada para apoiar as actividades dos operadores de redes de distribuição
por meio de planos de restabelecimento de energia para ajudar em casos de falhas permanentes.
As abordagens empregadas para arquitetura de agentes para a reconfiguração foram baseadas em
modelo hierárquico e uma abordagem totalmente descentralizada. A capabilidade dos agentes
foram desenvolvidas prevendo as possiveis aplicações do sistema de distribuição com foco em
procedimentos de gestão des interrupções de service. As abordagens foram testadas em um ali-
mentador teste trifásico do IEEE de 123 nós. Os resultados são de interesse para a comunidade
acadêmica promovendo discussões científicas sobre os níveis de descentralização na entrega de
energia elétrica em nível de distribuição.

i

ii

Abstract

The isolation and switch state maneuvers for reconfiguration of distribution networks at medium
voltage levels are traditionally manual or dependent on decision makings devised by distribution
system operators. It assumes a architecture where agents interact within a simulated distribution
grid environment from the establishment of abstract goals to be achieved of agent intentions. The
integrated application is implemented such that AgentSpeak agents will interact through speech-
act based communication as well as with a shared environment coded in JAVA language.

In this context, this thesis proposes modeling e verifying agent-based solutions to support
power distribution reconfiguration operations at medium voltage level. The methodology was em-
ployed to assist activities of distribution system operators by means of energy reestablishment
plans to help with permanent-system failures. The agent-based reconfiguration approaches em-
ployed either a hierarchical and a fully decentralized approach. Agent capabilities have been de-
veloped envisioning distribution system applications focusing on outage management procedures.
The approaches have been tested on a IEEE 123 test feeder. Results are of interest for the scientific
community and foster discussions on levels of decentralization in distribution system delivery.

iii

iv

Acknowledgments

It is with deep appreciation that I extend this thanks to all those who help me achieve the comple-
tion of these work.

To my friends at FEUP and colleagues –
It is your camaraderie which makes the experience most meaningful and lasting.

To my supervisor, Dr. Vladimiro Miranda –
Who provided me with the opportunity of developing this thesis in Brazil, close to my family

My advisor, Dr. Diego Issicaba –
for your guidance, support and patience.

And to my mother & sisters, Liza & Nayara –
For your constant encouragement, unwavering support, and unconditional love.

Matheus Macedo Lopes

v

vi

“Defeating racism, tribalism, intolerance
and all forms of discrimination will liberate us all”

Ban Ki-moon

vii

viii

Contents

1 Introduction 1
1.1 Motivation and Subject background . 1
1.2 Objectives . 2
1.3 Document Structure . 2

2 State of the art 5
2.1 Power Distribution Systems . 5

2.1.1 Reconfiguration Problem . 7
2.1.2 Automation and IEC 61850 . 9

2.2 Agent-Based Systems . 10
2.2.1 Basic Concepts and Definitions . 12
2.2.2 The BDI Architecture and The Procedural Reasoning System 13
2.2.3 Agent Programming Languages and Development Environments 17
2.2.4 Agent Communication . 18
2.2.5 MAS applications to Power Engineering 19

2.3 Conclusion . 20

3 Developed Approach 23
3.1 System Component and MAS Modeling . 23

3.1.1 Distribution Grid Modeling . 24
3.1.2 The JaCaMo MAS Modeling . 29

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 35
3.2.1 MAS Structure for Automatic Configuration 36
3.2.2 Agent Plans for Automatic Reconfiguration 39

3.3 Final Remarks . 51

4 Simulation and Results Analysis 53
4.1 MAS Initialization and building phase . 53
4.2 MAS Reconfiguration Approach: Hierarchical Solution 60
4.3 MAS Reconfiguration Approach: Decentralized Solution 70
4.4 Conclusion . 76

5 Final Remarks 77
5.1 Conclusions . 77
5.2 Future Works . 77

A simulationCAll and dMS agents Main functions 79

ix

x CONTENTS

List of Figures

2.1 Example of an electric power system from generation to MV distribution level . 6
2.2 Simplified diagram of a power distribution feeder 7
2.3 Centralized Control . 8
2.4 SCADA Network . 10
2.5 IEC 61850-3 Substation device communication model 11
2.6 Functional programs . 11
2.7 Basic Agent system structure . 12
2.8 Typical structure of a multi-agent system . 13
2.9 Typical Goal-Based Agent structure . 14
2.10 The Procedural Reasoning System (PRS) . 16
2.11 Message passing between Two Agents . 19

3.1 OpenDSS stand-alone and COM simulation structure 24
3.2 IEEE123 Test Feeder . 25
3.3 Terminal Definition . 26
3.4 Wiring and bus representation . 27
3.5 OpenDSS Executive solution modes and features 27
3.6 API method explained . 28
3.7 JaCa approach . 29
3.8 JaCaMo approach . 30
3.9 Agent reasoning cycle . 34
3.10 Artifact Model . 34
3.11 Structural Specification UML diagram . 38
3.12 simulationCall structural specification UML diagram 39
3.13 Ag_15 process of creation . 41
3.14 busAgents final formation . 41
3.15 busAgents fault coordination . 46
3.16 dMS reasoning plan generator . 48
3.17 busAgents fault coordination . 49

4.1 JaCaMo framework console . 53
4.2 Summary of steady state simulation performed inside the framework 55
4.3 Sensing summary results for a busAgent . 56
4.4 Power grid created by Agent’s coordinated communication an active Agents . . . 57
4.5 Steady state Loss density . 58
4.6 Steady state bus Voltages per phases . 58
4.7 Steady state bus Voltages . 59
4.8 Steady state bus Voltages per phases . 59

xi

xii LIST OF FIGURES

4.9 Fault location at zone 2 . 60
4.10 Fault belief trigger directed to busAgent 62 . 60
4.11 Short-circuit analyses after dMS reasoning upon fault 62
4.12 Agents acknowledging changes in the environment over fault state 62
4.13 dMS reported state from busAgents . 63
4.14 Automatic zone isolation performed using agents speech act 63
4.15 dMS reasoning upon fault report . 63
4.16 Shortest path grid plan . 64
4.17 dMS reasoning upon fault report . 65
4.18 TIEEE123test feeder shortest path grid . 66
4.19 The reconfiguration achievement summary . 66
4.20 The reconfiguration shortest-path validation . 67
4.21 Short-circuit results . 68
4.22 Post zone isolation result . 68
4.23 Reconfiguration results . 69
4.24 Power flow results . 70
4.25 Fault perceptual belief Trigger form decentralized approach 70
4.26 Post faulted state . 72
4.27 Fault perceptual belief Trigger form decentralized approach 72
4.28 Grid state after first reasoning cycle . 74
4.29 Grid state after second reasoning cycle . 75
4.30 Final Grid state . 75

List of Tables

2.1 Bibliographic survey of multi-agent systems applied to power engineering problems 20

3.1 Switch Data table . 25
3.2 Grid Line codes . 26
3.3 Types of literals in plan context . 32
3.4 Types of triggering events . 32

A.1 simulationCall and dMS Agents Artifact List of Operation 80
A.2 Bus Agent Artifact List of Operation . 81

xiii

xiv LIST OF TABLES

List of Acronyms

AA Agents-Artifacts
ACSR Aluminium-conductor steel-reinforced cable
AOP Agent-Oriented Programming
API Application Programming Interface
AR Automatic Reconfiguration
BDI Believe-Desire-Intention
COM Component Object Model
CSV Comma-Separated Value
dll Dynamic-Link Library
HV High voltage
IDE Integrated Development Environment
IED Intelligent Electronic Devices
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
JCL Java Class Library
LAN Local Area Network
LV Low Voltage
MAS Multi-Agent Systems
MV Medium voltage
OpenDSS Open Distribution System Simulator
RTU Remote Terminal Units
SCADA Supervisory Control and Data Acquisition

xv

Chapter 1

Introduction

This chapter brings the overall motivation that entail the need for further studies toward Automatic

Reconfiguration (AR) solutions on distribution grids. The main objectives are stated and a revised

documentation structure is summarized herein.

1.1 Motivation and Subject background

Distribution power grids are designed to provide electricity with a certain level of adequacy and

security in order to assure service continuity and quality. Like most of the systems developed

by humanity, the electrical power grids evolve on the basis of drive sectors such as economical,

environmental and social.

Recently, initiatives especially concerned with these systems have been established and re-

ferred as "GRID 2030" [3], the IntelliGrid Initiative [18,21], and the European Smart Grids Tech-

nology Platform [26], among others [23, 25, 55] in which the main concerns are leaned towards

the power grid paradigm shift regarding the Smart Grids concept.

In short, these initiatives promote decentralized control implementations and management so-

lutions, the integration of renewable and distributed energy resources, as well the modernization

of the power grids. As a gradual process, the technical challenges embrace several power engi-

neering related fields of expertise as power electronics, communication, information technology,

and software engineering.

Distribution grid control and operation might be subjected to substantial changes under the

general terms of the listed initiatives. As a matter of fact, most of the supply interruptions oc-

currences are caused by problems at the distribution level, which lacks monitoring and control

devices in comparison with transmission grids.

Under this context, agent-based technology provides suitable a approach that allows a soft

transition from actual distribution grids to smart distribution grids approach. Therefore,this project

aims at modeling smart distribution solutions to grid reconfiguration using agent-based technology

assuming an architecture where agents interact with each other with the overall goal of improving

continuity, quality and security of supply, while maintaining electrical quantities within regulatory

limits.

1

2 Introduction

1.2 Objectives

This project aims at modeling smart distribution solutions to grid reconfiguration using agent-

based technology for cases of restoration. It assumes a architecture where agents interact within

a simulated distribution grid environment from the establishment of abstract goals to the achieve-

ment of agent intentions. The integrated application will be implemented such that AgentSpeak

agents will interact through speech-act based communication as well as with a shared environment

implemented in JAVA language.

The specific objectives of the work are the following:

• Representation of distribution grid in an agent simulation environment — A simulation

model must be designed to simulate the system operation and provide information regarding

steady-state and fault conditions. It requires modeling power distribution components as

computational objects in order to integrate system state transitions at the MAS simulation

model level.

• Design AgentSpeak models and operations upon grid components in order to control
behavior towards grid reconfiguration — by analyzing electrical quantities of buses and

lines under normal and abnormal conditions, agent reasonings and actions must be per-

formed to achieve goals towards grid reconfiguration.

• Implement, test and verify agent-based reconfiguration solutions, either following a
herarchical approach or decentralized approach — Reconfiguration solutions are tested

and analyzed considering a hierarchical approach where automatic decision making is cen-

tralized in an entity which solves the problem through a minimum-path algorithm, as well

a decentralized approach where grid self-organization is reached through interactive agents

widespread in the distribution grid.

1.3 Document Structure

This first part of the work presents the introduction, which explains the project context, problem

statement, objectives, as well as the outline of the thesis. The following chapters are structured as

follows:

Chapter 2 addresses a state the of art regarding the main topics involved in the proposed ap-

proach. Theories, information and literature review are discussed. Subtopics under this

chapter include information on distribution network reconfiguration and the definitions of

agent and MAS, emphasizing their design, concepts and implementation.

Chapter 3 discusses the methodology adopted to conceive the computational model, the stages

taken in order to represent distribution system components, the integration of a simulation

tool to the MAS framework, and the reconfiguration solutions.

1.3 Document Structure 3

Chapter 4 results and discussion about the work are thouroghly described.

Chapter 5 conclusion of the project followed by suggestions of future works are presented in

this chapter.

4 Introduction

Chapter 2

State of the art

In this chapter a summary of the state of the art is presented referring the known methods and so-

lutions related to this work. As introduced in the first chapter, this thesis involves knowledge about

particular topics of power engineering and computational sciences. Hence, the main objective of

this chapter is to provide a background and state of art of these two fields of study, emphasizing

directly to the subjects of interest.

The contents of this chapter cover topics which entail power distribution delivery, grid recon-

figuration as a problem of altering the state (open or close) of switching devices, as well consid-

erations toward automation. In this context, the MAS approach is placed to integrate a notion of

intelligence that supports system operation, contributing to the formalization of an idea of smart-

ness to be embedded in actual networks.

Therefore, in section 2.1, power distribution systems are described and contextualized along-

side their technical challenges for the purpose of reconfiguration. In section 2.2 and 2.3, au-

tonomous agents, MAS and applications to power distribution engineering are discussed.

2.1 Power Distribution Systems

A typical power system can be divided into three parts: generation, transmission and distribution,

as depicted in Fig. 2.1. In summary, generation and the transmission systems typically use high

voltage (HV) values for efficiency, transformers are responsible for boosting/bucking voltage val-

ues and are located in different parts of the system, and distributions systems deliver power to end

users (loads), either at medium voltage (MV) or in low voltage (LV) systems [51]. This paperwork

will be focusing on the MV systems and applications.

Transmission systems operate with the support of several monitoring and data acquisition

equipments [59], while distribution systems are more vulnerable to outages due to the fewer of

number these equipments. Power outages in most of the cases are temporary, meaning that the

continuity of supply can be shortly recovered by actuation of reclosers – a circuit breaker equipped

with a mechanism that can automatically close after it has been opened due to a fault [4]. Reclosers

are used on overhead distribution systems to interrupt temporary faults. However, the occurrence

5

6 State of the art

Figure 2.1: Example of an electric power system from generation to MV distribution level

of permanent faults in the electrical network is also a recurrent problem, for both, consumers and

power utilities [43, 59].

The majority of distribution grids are designed upon primary topology systems. Due to the

size of distribution grids, it is an often lower cost solution that intrinsically helps with managing

delivery of supply in fault occurrences, minimizing the impact of outages caused by permanent

faults in a segment of the grid. The utility considerations rely on: capacity of the grid, voltages

and sources, size of metering equipment, relaying requirements and station batteries [60].

The primary distribution system is made up of circuits called primary feeders or distribu-

tion feeders. These feeders include the main feeder, usually a three-phase, four-wire circuit, and

branches or laterals, which can be either three-phase or single-phase circuits [19]. In these sys-

tems, reclosers are used for both protection and for topology management. A schematic diagram

of a simplified primary circuit of a distribution system together with reclosing devices is shown in

Fig. 2.2.

Generally power distribution feeders provide power for both primary and secondary circuits,

in which the primary feeder usually adopts reclosing devices positioned along the feeder. This

arrangement minimizes the extent of time that primary feeders are out of service if a fault occurs.

Thus the reclosing of these devices is set to limit the outage to the smallest number of affected

loads. This can be achieved by coordinating all fuses and reclosers on the primary feeder [64].

Particuarly, when a feeder is subject to failure, a coordinated action of opening and clos-

ing switches can be performed, holding back permanent failure impacts. By reconfiguring the

switches and reclosers installed on the distribution feeders it is possible to quickly isolate a faulted

section and re-establish service to important customers. A reconfigurable grid is then considered

a system comprised of sensors and automated controls used to isolate faults and to reconfigure

the distribution network to minimize the outage impact to the customers. Grid reconfiguration

comprise a complex problem, one to be modeled and addressed in this work following a MAS

2.1 Power Distribution Systems 7

Figure 2.2: Simplified diagram of a power distribution feeder [19]

approach.

2.1.1 Reconfiguration Problem

The concept of reconfiguration was raised long ago [15], and recently has been implemented in

many places with the development of switch technologies [40,68,77]. Nevertheless, choosing the

right combination of opening/closing statuses of switches to optimize some performance or index

criteria while keeping a radial topology is still a challenge at distribution level.

Network reconfiguration in distribution systems is then possible by changing the status of

sectionalizing switches or reclosers, enabeling topology variation, and it is usually done with the

purpose of loss reduction, network overload mitigation, voltage profile improvement and service

restoration [6]. These very topics have been targets of research, with the usage of a variety of

methods, such as:

• Branch exchange procedures [6, 56] — for loss reduction and load balancing;

• Stochastics optimization [14] — probabilistic technique for approximating the global op-

timum, for network reconfiguration;

• Convex optimization [71] — Mixed-integer minimization with convex quadratic constraints

methods for network reconfiguration;

• Heuristics and metaheuristic [6,16] — Variable scaling hybrid differential evolution meth-

ods for solving network reconfiguration of distribution systems and genetic algorithms for

distribution systems loss minimum reconfiguration;

8 State of the art

• Mixed methods [41,45,50,57,70] — Reconfiguration of distribution network mixing fuzzy

logic, genetic algorithms, evolutionary algorithms, cloud theory, point estimate and stochas-

tic methods, and the list goes on according to what can be found in IEEE digital library.

Some of these approaches are extensively used due to their broad applicability, e.g. for black-

box models. Although every one of these techniques shows its practicality, for the most part, data

acquisition approach is used and the execution of its algorithms are made in centralized manner,

as depicted in Fig. 2.3.

Figure 2.3: Centralized Control [37]

In a centralized control model, one component of the system is designated as the controller

and is responsible for managing the execution of other components [37]. A clear example of that

model is the Supervisory Control and Data Acquisition (SCADA) systems that collect data from

devices and concentrate the analysis and processing of data in a control central station.

Since that centralized models in one hand have the role of decision maker and full control over

the organization and the decisions that the organization must follow, on the other hand, as far as the

system expands the larger an organization becomes, the more information has to comprehend and

consider, eventually achieving processing limits. Furthermore, even if arguably one of the primary

objective for power grid innovations are to improve service, whether or not it is decentralized and

to what degree, at distribution level, centralized mechanisms for ensuring in-system quality and

security are not easy to achieve nor affordable due its scale [42, 80].

When it comes to decentralization, systems achieve different dynamics, taking from the con-

ceptual logic action that allows local actuators to take control of specific functions of an organiza-

tion and easily convey information back and forth. It also allows for direct communication among

elements responsible of coordinate and regulate the system [66]. Also some of the differences

when compared to centralized system can be summarized:

• Scaling of the system are less costly processing-wise, that is, adding new equipment without

complication in algorithm design;

• Failing of an equipment would not result in the failure of the system;

2.1 Power Distribution Systems 9

• Better adaptability to environment;

• Less memory and processing requirements;

• Better options for exception handling.

The downside of a fully decentralized system is the coordination dependency, regarding the

system as a whole, as it can be hard to iterate on top of it since this also usually requires some

kind of consensus from remote monitoring and control equipments [17]. Effective decentralized

models usually have some intermediate devices who serves as a quasi-dictator to ensure progress

with a certain degree of quality.

DMS usually centralize operations command using traditional SCADA systems, which pro-

vide the capability and information to hanfle operations and maintenance, as well as increasing

system and staff efficiency. To ensure grids remain reliable over a wide range of operating condi-

tions, many power utilities focus on system that promotes productivity, aiming at reducing costs

and increasing customer satisfaction, though often involving upgrades on aging infrastructures.

Substation automation is a rapidly increasing area of interest and benefit to utilities, that may

include remote access to intelligent electronic devices (IEDs), relays, event data, diagnostic infor-

mation, video for security, metering, switching, volt/VAR management, and so forth.

2.1.2 Automation and IEC 61850

Transmissions system typically adopts a distributed network structure to achieve real-time mon-

itoring and control failure alarming and verification of protections values [27, 54]. Automation

systems have integrated telecommunication and relays remote monitoring controls to assure sta-

bility in power supply and load management, as shown in Fig. 2.4.

Figure 2.4 displays an overview of SCADA networked architecture, where of the remote sta-

tions represents a substation attached with other organization network on differing network seg-

ments. From the control station, by making use of the human machine interface (HMI), decisions

can be passed down towards HV/MV substations through SCADA communication protocols [38].

At the substation level, remote control is usually achieved either by hard-wired circuits to

remote terminal units (RTUs) and IEDs or through substation automation. The first solution is

explored by the form of exchanging control information and monitoring object values with the

control station through SCADA communication protocols. The second solution is explored by

establishing a local area network (LAN) within the substation using standard communication pro-

tocols, using the well known International Electrotechnical Commission (IEC) 61850 substation

automation standards.

The substation device communication model, as shown in Fig. 2.5, consists of an embed-

ded communication computer (DA-681) [52] that serves as a communication processor and uses

gateway protocol to handle multiple devices, which use different protocols for front-end data com-

puting (SCADA control station to substation) and protocol conversions. Throughout IEC 61850-3

communication protocols standards, device network is capable of providing protection against

10 State of the art

Figure 2.4: SCADA Network [13]

electrical surges and environmental threats. Also, it serves as a backed communication host and

central controller for data analysis, processing, transmission back to the control center.

To date, applying the same data acquisition and monitoring approach for distribution networks

is not easy or feasible. However, extensions of IEC 61850 regarding distribution automation have

been cited as the following approaches are suggested:

• IEC 61850-based feeder terminal unit modeling and mapping [33];

• Extending IEC 61850-7-420 for distributed generators with fault current limiters [74];

• Distributed energy resources (DER) object modeling with IEC 61850 [75];

• IEC 61499 open control architecture towards intelligent smart grid devices with IEC 61850

interoperability [76];

• Standard function blocks for flexible IED in IEC 61850-based substation automation [81].

In account of these propositions and looking into the solutions of automation and commu-

nications applied to power distribution delivery, agent-Based systems are considered an eligible

modeling and design tool to achieve decision making decentralization over distribution system

operation.

2.2 Agent-Based Systems

In order to better understand the overall concept behind the terms "Agents" and "Multi-Agent-

Systems" (MAS), let us first consider how agent systems can relate to other types of softwares.

2.2 Agent-Based Systems 11

Figure 2.5: IEC 61850-3 Substation device communication model [52]

Functional programs/programming are possibly the simplest type of software from the develop-

ment and engineering point of view [10].

In functional programming, programs are executed by evaluating expressions avoiding the

use of mutable state. Mathematically, we can think of them as functions from some domain of

possible inputs, source code programs for example, to some range of possible outputs (bytecode,

object code, etc), as depicted in Fig. 2.6.

Figure 2.6: Functional programs

From the standpoint of software engineering development, the established techniques of such

programs are typically straightforward to design and implement. In spite of that, according with

the nature of most of programs, the simply input-compute-output approach is not valid as opera-

tional structure. In particular, most of systems are based on long-term ongoing interaction with

their environment, i.e. they do not simply compute some functions of an input and then terminate.

That is, systems that works that way are designed as reactive system [10].

Hence, the agent programming structure stands as a subset of reactive systems in which it also

exhibits some degree of autonomy that the developer delegate in form of tasks. In turn, the system

itself determines how the best procedures to achieve this tasks based on the environment state.

12 State of the art

Figure 2.7: Basic Agent system structure

2.2.1 Basic Concepts and Definitions

One way to characterized agents are to consider them to be subsystems that are situated in some

environment. What defines their role is then the capability of sensing this environment via sensors

and have a repertoire of possible actions that they can perform via effectors or actuators in order

to modify the environment. The relationship between an agent and its environment is illustrated

in Fig. 2.7.

The questions raised over the view of agent systems lies along these lines: how to go from

sensor input to action output and how to decide what to do based on the information obtained via

sensors. The two concepts related to that are the percepts, an information received by some sensor,

and the agent constrained delegations, which is something that leads to plan of actions. The term

percept refers to the agent’s perceptional inputs at any given instant.

The environment that an agent occupies may be physical or a simulated environment where

decisions about actions are translated into actual actions usually achieved via some sort of appli-

cation programming interface (API). Thus, while agents can perform actions capable of changing

their environment, they generally cannot completely control it. Very often this is because of coor-

dination between agents who exhibit control over their sphere of influence of the environment.

Apart from the environment aspect, other properties are expected from rational agenst to con-

duct, such as [10]:

• Autonomy— Agents that reason upon delegated goals, and then decides how best to act in

order to achieve these goals;

• Proactiveness— meaning being able to exhibit goal-directed behavior;

• Reactivity— in the sense of being responsive to changes in the environment;

• Social ability— the ability of agents to cooperate and coordinate activities with other agents,

in order to accomplish their goals.

2.2 Agent-Based Systems 13

Agents occupying an environment in isolation, in practice, are rare. The more common case

is for agents to inhabit an environment which contains other agents, giving a multi-agent system

(MAS).

Figure 2.8: Typical structure of a multi-agent system

Each agent has internal sets mechanisms that allows it to reason upon his current “mental”

state and the environment. These sets mechanisms define the agent architecture. The next section

describes the belief-desire-intention (BDI) architecture and its associated procedural reasoning

system (PRS), both approached in this work.

2.2.2 The BDI Architecture and The Procedural Reasoning System

A MAS is composed of multiple interacting intelligent agents within an environment and can be

used to solve problems that are difficult or not possible for an individual agent to solve. [53].

An intelligent agent, for the artificial intelligence (AI) community, directs its activity towards

achieving goals. A simple agent program can be defined mathematically as a function [62], which

maps every perceptual sequence that leads to specific actions (f:Perceptsn→Action).

The agent function is an abstract concept that can possibly incorporate various principles of

decision making, such as, weighting the utility of individual options, deduction over logic rules,

fuzzy logic and so on [63].

The autonomous agent that carries out tasks on behalf of users differ from these single agent

reasoning and instead, maps every possible percept to an action. Based on their degree of perceived

intelligence and capability [62, pags. 46-54], it is possible to classify them into five classes:

• Simple Reflex Agents— The agents act relying on the current percept and the agent func-

tion is based on the condition-action rule: if condition then action.

14 State of the art

Figure 2.9: Typical Goal-Based Agent structure [62, pag. 52].

• Model-Based Reflex Agents— Agents maintain some sort of internal model that depends

on the percept history and thereby reflects at least some of the unobserved aspects of the

current state.

• Goal-Based Agents— Goal-based agents further expand on the capabilities of the model-

based, by using "goal" information. Goal information describes situations that are desirable.

• Utility-Based Agents— the actions for these type of agents are chosen in order to maxi-

mizes the expected utility of the action outcomes, that is, what the agent expects given the

probabilities and utilities of each outcome.

• Learning Agents— initially operate in unknown environments and slowly become more

competent than its initial knowledge alone might allow. The most important distinction is

the “learning element”, which is responsible for making improvements.

As an extension to the goal-based agent type, illustrated in Fig. 2.9, many agent architectures

adopted the Belief-Desire-Intention model, created by [11] to explain human intentional behavior.

The BDI model is presented as computer programs that have mental attitudes such as beliefs,

desires and intentions [48]. The architecture is closely associated with intelligent agents, but does

not ensure all the characteristics associated with them.

“Beliefs– are information the agent has about the world.

Desires– are all the possible states of the sequence of events that the agent might like

to accomplish. Having a desire, however, does not imply that an agent acts upon it: it

is a potential candidate of the agent’s actions.

2.2 Agent-Based Systems 15

Intentions– are the state sequence of events that the agent has decided to work to-

wards. Intentions may be goals that are delegated to the agent, or may result from

considering options: we think of an agent looking at its options and choosing be-

tween them.” [10, chap. 2,pag. 17]

Ultimately, the BDI software model is an attempt to solve a problem that has more to do with

plans and planning than it has to do with the programming of intelligent agents. Planning can be

viewed from different perspectives:

“Planning concerns the process by which people select a course of action – deciding

what they want, formulating and revise plans, dealing with problems and adversity,

making choices, and eventually performing some action.” [61, pag.1]

putting planning as two stages process (planning and control):

“We define planning as the predetermination of a course of action aimed at achieving

some goal. It is the first stage of a two-stage problem solving process. The second

stage entails monitoring and guiding the execution of a plan to a useful conclusion.”

[34, pag. 275]

BDI agent type architecture are then known by taking agent actions on the basis of the agent

goals desirability – a function that ranks alternatives according to their utility – together with the

cost of achieving them, weighted by the probability of success. The function helps agents choosing

actions and behave more adequately, or even rationally in the basis of the model, providing more

than a simple binary decision [62].

2.2.2.1 The Practical Reasoning of the BDI system

Given the introduction to the BDI model and knowing the key data structures of it (beliefs, desires

and intentions), the yet to be answer question is: how does an agent go from what he already have

to its actions.

The decision-making method underlying the BDI model is known as practical reasoning, the

process of figuring out what to do or reasoning directed towards actions. In terms of implemen-

tation, intentions are manifested by means of executing one or more plans, which are courses of

actions and may include triggers of additional plans.

Goals are desires that have been chosen to be actively pursued by the agent. Another central

concept regards event, generated internally or externally to the agent, in which are triggers that

may activate plans, update beliefs or modify goals.

Using this concepts, a practical reasoning system (PRS) model implies in adopting intentions

and decide how to act in order to achieve the adopted intentions. Viewed by the architectural point

of view, the PRS, originally developed at the Stanford Research Institute, was perhaps the first

agent architecture to explicitly embody the BDI model. This architecture is shown bellow.

16 State of the art

Figure 2.10: The Procedural Reasoning System (PRS) [10]

In the PRS agent architecture an interpreter manage beliefs, goals, plans and intentions. Basi-

cally what the interpreter do is update beliefs from observations of the environment, generate new

desires (tasks) on the basis of new beliefs, and select from the set of active desires some subset to

act as intentions. Hence, the interpreter must select an action to perform on the basis of the agent’s

current intentions and knowledge .

From the agent viewpoint no planning are made at first in a reasoning cycle . Instead, the PRS

is equipped with a library of pre-compiled collection of plans, top-level goals and initial beliefs.

The plans are manually constructed, in advance, by the agent programmer. Top-level goals are

redirected onto an intention stack, which is responsible to store all achievement pending goals

and the beliefs are represented as first-order logic atomic formulas, in which the precise form of

atomic formulas depends on the logic under consideration with respect to a given model [35, 36].

"In mathematical logic, an atomic formula (also known simply as an atom) is

a formula with no deeper propositional structure, that is, a formula that contains no

logical connectives or equivalently a formula that has no strict subformulas. Atoms

are thus the simplest well-formed formulas of the logic. Compound formulas are

formed by combining the atomic formulas using the logical connectives" [49].

The agent then searches through a plan library to see which plans have a goal on top of the

intention stack , some will have their pre-condition satisfied and then proceed to post-condition .

At this point, the process of selecting a particular plan is result of utility ordering, the chosen plan

is then executed. Whether a particular plan to achieve a goal fails, then the agent is able to select

another plan to achieve the associated goal from a set of candidate plans.

2.2 Agent-Based Systems 17

2.2.3 Agent Programming Languages and Development Environments

From the devising Agent-systems standpoint, the programming language play a fundamental role

to the project design and execution, in the sense of providing practical programming languages

and tools that are appropriate for the implementation of such systems [9], also for those who rely

on its interpretation and extensibility whatever the required field is.

Most agent programming languages rely on platform which implements its semantics. How-

ever, these frameworks are not embed with one specific programming language. Instead, they pro-

vide general techniques for relevant aspects such as agent communication and coordination [9].

Also, the languages that are in a mature state are aided and carried along by some Integrated

Development Environment (IDE), intended to enhance the productivity of programmers.

In spec of that, the basic requirements expected of agent-oriented programming languages rely

on managing the inherent complexity of MAS and helping with their development, the research

community has produced a number of methodologies [7]. To address some of the existing ap-

proaches situated along the lines of declarative, imperative, and hybrid infrastructures, the extent

to which researchers have contributed to their development [9] are shown as follows:

Declarative Languages are partially characterized by their strong formal nature, which focuses

on what the program should accomplish without specifying how the program should achieve

the result [69], some driven on logic others on formalism such as calculus. Languages that

fits the profile are: FLUX, Minerva, Dali, ResPect, CLAIM [9].

Imperative Languages is a type of imperative programming in which the program is built from

one or more subroutines or functions explicitly listing commands or steps that must be

performed. to agent-oriented programming spectrum [69], pure imperative languages are

not very common, mainly due most of the agent-oriented abstractions related to design be

declarative in nature. however to the non-agent oriented approach, imperative languages are

used to develop MAS. An example of an essentially imperative language that incorporate

agent-specific abstractions, is the language available with the framework JACK [9]

Hybrid Approaches Various well-known agent languages combine declarative and imperative

features (been declarative while at the same time providing some specific constructs allow-

ing the use of code implemented in some external imperative language). The languages that

somehow illustrate the hybrid approach are: 3APL, Jason, IMPACT, Go!, and AF-APL [9].

Consequently, by examining the alternatives provided by the survey [9], similar from the pre-

sented approaches but now focusing on the elements interrelated with environments development,

which must be associated to agent oriented programming and since we are interested in well-

defined BDI agents. As the programming languages definitions above suggests, an hybrid ap-

proaches shown to be a good candidate to be the utilized as middleware to conduct the premises

of this thesis.

Therefore, one alternative would be to explore Jason, an built-in framework for the Eclipse

Mars IDE which allows BDI modeling. In fact, the framework present itself as an open source

18 State of the art

interpreter of an extended version of AgentSpeak, which in terms is a declarative agent-oriented

programming language that applies the BDI model. If well-utilized, Jason allows a high-level

representation of the agent’s AgentSpeak reasoning at the same time make a sophisticated use of

object-oriented programming implemented in JAVA [38].Besides, Jason is the standard instance

utilized in the CArTAgO documentation [5], a singular and sophisticated common artifact infras-

tructure to model agent open environments.

The proper use of these two frameworks will be described further in Chapter 3, where Jason is

used to define speech acts in AgentSpeak and CArTAgO to interact with the power grid objects in

an environment.

2.2.4 Agent Communication

The BDI model abstracts the agent coordination at the environment level, action as a mechanism

that handles duplicated activities while preventing two processes simultaneously accessing the

same non-shareable resource.

Autonomous intelligent agents that interact within open, distributed, and decentralized en-

vironments need to regulate in a collaborative manner their activities in order to facilitate the

process of achieving conflicting tasks/activities [67]. Coordination, at the agent level, is the pro-

cess of managing these interactions by identifying and solving the interdependence between such

activities. That said, for a mechanism like BDI to work effectively within a systems, Agents need

to communicate.

For the ability of social interaction be achieved between agents, it then first necessary that the

agents use a common terminology to be understood by all those participating in the speech act. For

example, the request of closing switches of "switchAgents", those participating in the discussion

should know, for example, what means the term switch or its representation, so the switchAgents

knows why its necessary to close it. Meaning that the agents need to know a way to interpret their

messages and the means to answer it.

With the intent of standardize some aspects of MAS, including communication, the Institute

of Electrical and Electronics Engineers (IEEE) has decided to create an organization to take care

of all these details, and decided to call it the Foundation for Intelligent Phisical Agents (FIPA).

FIPA promotes agent-based technology by setting standards based on interoperability between

MAS and other technologies, dealing with Agent Communication Language (ACL) messages,

message exchange interaction protocols, speech act theory-based communicative acts and content

language representations [30].

The agent communication language (ACL) defined by FIPA is very similar to knowledge query

and manipulation language (KQML),"KQML is a programming language and protocol for com-

munication among software agents and knowledge-based systems" [29, pag. 456]. Code illustrated

bellow, source [28].

(ask-one
:content (PRICE IBM ?price)
:receiver stock-server
:language LPROLOG

2.2 Agent-Based Systems 19

Figure 2.11: Message passing between Two Agents [30]

)

ACL messages can be interpreted as objects (in terms of object-oriented languages, its per-

formatives can be viewed as a message class containing a number of parameters (attributes of the

message objec, e.g. achieve, ask-one, tell) [79]. Performatives can also be represented as tags

that provide a pre-description about the purpose of the communicative act. For example, when

an agent wants to report the result of some task to another agent, the performative Inform can be

used, but when you need a proposal, it is more convenient to send a message with performative

Call For Proposes (CFP).

Taking the code message exemplified above, the KQML performative is ask-one, the content

is (price ibm ?price), the a common terminology assumed by the query is identified by the token

nyse-ticks, the receiver of the message is a server identified as stock-server and the query written

language is LPROLOG.

All the speech acts, along with their description are found in [30]. Although, not always

the format shown is suitable or appropriate for exchanging messages between Agents or between

Agents and applications. In such case, the default ACL messages can be translated to a Extensible

Markup Language (XML) [31], a standard universally accepted structure that if adopted presents

no meaning loss.

2.2.5 MAS applications to Power Engineering

Although a complete review on all power engineering applications to MAS is out of the scope

of this work, it is important to emphasize that thoroughly literature revision on agent-based sys-

tems applied to power engineering has been found in [38], where a extensive analysis based on

surveys of the IEEE Power Engineering Society’s Multi-Agent Systems Working Group [46, 47]

were made, regarding conferences publications (Intelligent Systems Applications to Power Sys-

tems (ISAP) conferences), publications covering Journals of IEEE transactions, the Institution

of Electrical Engineers (IEE),the Institution of Engineering and Technology (IET), the Electric

Power Systems Research (EPSR) as well as International Journals of Electrical Power & Energy

Systems (IJEPES).

20 State of the art

Based on what has been stated and further analyzed in the document cited, until the year of

2012, the extent of work object of citation cover up to 100 publications related to MAS applied

on various sectors related to power Delivery, Generation, Transmission and Distribution. The

distribution portion reached 23 related documents, according to Table 2.1.

Table 2.1: Bibliographic survey of multi-agent systems applied to power engineering problems

ISAP ISAP ISAP IEEE/IEE EPSR/IJEPES
2001–2003 2005–2007 2009–2011 IET Journals Journals

Total

Generation
& Transmission

5 15 15 39 3 77

Distribution
1 5 6 8 3 23

Total 6 20 21 47 6 100

In comparison with other research fields, these figures suggest that the relationship between

agent technologies and power engineering is not yet at a mature state. This is probably related to

the inherently complexity of power engineering problems and how agent-based systems have con-

ceptually evolved in the past few years together. Also, it might be related to the interdisciplinary

requirements to building such MAS applications and the complexity aggregated to adding new

paradigms to power delivery.

Concerning the review, most of cited applications reinforced the use of decentralized systems.

Furthermore, the a great amount of work that explores decentralized approaches happens to be

featured by Multi-Agent-Systems. These efforts cover from specific solutions proposed to improve

the protection until abstract frameworks devised to manage entire power systems.

Amongst the applications to MAS, the works in [2, 10, 10, 38] were the main references uti-

lized in this work, where a block-oriented agent-based architecture is completely designed using

AgentSpeak and CarTAgO to the purposes of operation control.

2.3 Conclusion

A review about the current status of power grids as well as power distribution system operation and

control has been made, focusing on aspects from the distribution viewpoint that entails operation,

management, automation and reconfiguration. Regarding agent systems, it has been shown that

in order to develop such systems, it is necessary to consider functional particularities of agent

structures, agents reasoning systems as well as agent communication processes. It is important

to emphasize the BDI architecture, which is one of the options that enable viewing an agent as a

goal-directed entity that acts in a rational manner.

An introduction on how agent-based system can be implemented in terms of languages and

development environments has been briefly stated. This was discussed addressing some of the

exiting approaches and their corresponding platforms. The Jason declarative agent-oriented mod-

eling, or AgentSpeak, along with CArtAgO framework for agent systems modeling are introduced

as platforms that provides an integrated Agent architecture within an open simulated environment.

2.3 Conclusion 21

This brought up the potential utility for their applications, motivating the further developments

described in the next chapters

22 State of the art

Chapter 3

Developed Approach

This chapter introduces the modeling of the developed approach for AR using MAS coordination.

Reconfiguration solutions have been modeled either considering a hierarchical approach, where

decision making is centralized in an entity provided with a Dijkstra’s shortest paths algorithm

application, as well as a decentralized approach, where grid self-organization is reached through

agent interactive procedures.

For this accomplishment, a simulation model has been designed to simulate the system opera-

tion and provide information regarding steady-state and fault conditions. This required the model-

ing of network components as computational objects aiming at integrating system state transitions

at the MAS simulation model level. Then after, agent capabilities, plans of action and reason-

ings have been modeled using AgentSpeak formulations, while environment modeling has been

addressed through agent-artifacts representations. All these models have been included in a simu-

lation platform, where decentralized solutions can be tested and verified, and the independence of

agent/component processes is guaranteed by the JaCamo framework.

The chapter is organized as follows. In section 3.1, distribution grid modeling and MAS

modeling is thoroughly described, focusing on how components are represented, included and

integrated in the simulation platform. In section 3.2, MAS capabilities and planning procedures

are described with emphasis on how AR is modeled and achieved in the developed approach. In

section 3.3, conclusions and final remarks are outlined.

3.1 System Component and MAS Modeling

The global simulation model is constituted by a set of AgentSpeak plans that coordinate the speech

act and agent interactions within the environment imposed to it. Moreover, it includes a Java

Application Programming Interface (API) method elaborated and supported with a set of Java

based libraries allowing relations with external programming platforms chosen to perform grid

calculations. Lastly, it includes a built-in MAS framework platform.

As the MAS abstraction suggests, before creating the agent level representation of the problem,

an environment must to be defined. Being power distribution grids the object of study in this

23

24 Developed Approach

work, the adopted solution to fulfill this requirement was by making usage of an external power

grid simulation software and finding means to integrate it to the MAS framework. The choice was

for the Electric Power Research Institute (EPRI) freeware Open Distribution System Simulator

(OpenDSS) [24].

The Integrated Development Environment (IDE) used as basis to run the MAS development

workspace framework was Eclipse Mars 4.3 [73] and the framework chosen was JaCaMo [8], that

is essentially a MAS development tool consisting of a set libraries/classes that implement the BDI

model, the AgentSpeak coordination with the model, the environment and its features.

3.1.1 Distribution Grid Modeling

OpenDSS is a script-driven power grid simulation tool used in distribution planning and analysis of

multi-phase AC circuit systems [22]. The software can be executed as both stand-alone mode or be

called through an in-process Component Object Model (COM) server dynamic-link library (dll),

as shown in Fig. 3.2, that was designed to be driven from a variety of existing 3rd party analysis

program that can handle COM. Users commonly drive the engine with Mathworks MATLAB,

Python, C#, Java, and other programming languages platforms.

Figure 3.1: OpenDSS stand-alone and COM simulation structure.

The COM interface allows one to develop or abstract algorithms in another programming

platform and then drive the OpenDSS dll engine to do something that it is not implemented within

the main script. The external algorithms rely on the OpenDSS to represent the distribution system

behaviors while adjusting variables to be optimized.

In order to characterize the distribution power grid, the default OpenDSS script files for

IEEE123 test feeder were used to define the electrical and physical input data as well as the load

shape and wiring data and line codes, according to [20]. The power grid is shown in Fig. 3.2.

“The IEEE 123 node test feeder operates at a nominal voltage of 4.16 kV. While

this is not a popular voltage level it does provide voltage drop problems that must be

solved with the application of voltage regulators and shunt capacitors. This circuit is

3.1 System Component and MAS Modeling 25

characterized by overhead and underground lines, unbalanced loading with constant

current, impedance, and power, four voltage regulators, shunt capacitor banks, and

multiple switches. according to [20, pag.1].”

Figure 3.2: IEEE123 Test Feeder

From AR conceptual analyses, the series of switches and lines that composes the distribution

system are of crucial importance for modeling the MAS simulation environment. Therefore, the

problem itself holds them accountable for grid alterations and system behavior variations. Switch

starting status and basic considerations are represented according to Table 3.1.

Table 3.1: Switch Data table

Represented
in the the Model Three Phase Switches

Yes/No Node A Node B Normal

Yes 13 152 closed
Yes 18 135 closed
Yes 60 160 closed
Yes 61 610 closed
Yes 97 197 closed
Yes 150 149 closed
No 250 251 open
No 450 451 open
Yes 54 94 open
Yes 151 300 open
No 300 350 open

26 Developed Approach

Some non-representations of switches in the model is justified based on fundamental aspects

related to validation data, as if they were not worth of consideration for not presenting load shape

from the second end attached bus, or no load at all, as well as not presenting relevancy from the

radial circuit redundancy aspect. From a OpenDSS scripting language syntax that defines circuit

elements as shown in the algorithm 3.1, considerations on how switches are represented must also

be referred, in the sense that normally open and closed switches can be characterized as short lines

that after being stated can be enabled or disabled.

Algorithm 3.1: OpenDSS scripting language syntax for Switch /Line Definition

1 !example of line

2 New Line.L109 Phases=1 Bus1=109.1 Bus2=110.1 LineCode=9 Length=0.3

3 !example of switches definition as line

4 New Line.SW1 phases=3 Bus1=150 Bus2=149 r1=1e-3 r0=1e-3 x1=0 x0=0 c1=0 c0=0 Length

=0.001

Each electrical element in the distribution system has one or more terminals, associated to one or

more conductors. Each conductor conceptually contains a disconnect switch and a fuse, which

can be enabled or disabled, as shown in Fig. 3.3. Analyzing the OpenDSS grid model, the general

Figure 3.3: Terminal Definition [22]

bus wiring and line code vary according to the documented configuration model [20], described

as in Table 3.2 and represented in Fig. 3.4.

Table 3.2: Grid Line codes

Config. Phasing Phase Cond. Neutral Cond. Spacing
ACSR* ACSR* ID

1 1 2 3 N 336,400 26/7 4/0 6/1 500
2 3 1 2 N 336,400 26/7 4/0 6/1 500
3 2 3 1 N 336,400 26/7 4/0 6/1 500
4 3 2 1 N 336,400 26/7 4/0 6/1 500
5 2 1 3 N 336,400 26/7 4/0 6/1 500
6 1 3 2 N 336,400 26/7 4/0 6/1 500
7 1 3 N 336,400 26/7 4/0 6/1 505
8 1 2 N 336,400 26/7 4/0 6/1 505
9 1 N 1/0 1/0 510

10 2 N 1/0 1/0 510
11 3 N 1/0 1/0 510

ACSR* stands for Aluminium-conductor steel-reinforced cable

3.1 System Component and MAS Modeling 27

Figure 3.4: Wiring and bus representation [65]

As Java represents the main programming language of the overall MAS concept model, the

OpenDSS integrates the model supported by an API method. The API makes possible for ap-

plications like OpenDSS to run on top of a framework such as JaCaMo. That being stated, the

OpenDSS package API gives access to the program Executive and Circuit element models as

featured in Fig. 3.5.

Figure 3.5: OpenDSS Executive solution modes and features [22]

APIs are essentially developed to perform tasks which allow communication with services and

their integration to other services. Third-party programs can use API to take advantage or extend

the functionality of the existing services [12]. When an API is related to a software library, the

classes comprised inside it define the program behavior while the library is an actual implementa-

tion. Therefore, an exported or external package can define a specific API library class, containing

Java interfaces and classes, as it is shown in the following diagram Fig. 3.6.

From the OpenDSS API method perspective, the services in it are expressed as functionalities

related to the simulation tool intended to make part of the built-in MAS framework. In basic

28 Developed Approach

Figure 3.6: API method explained

terms, the API method sets the requirements that govern how the framework call-method can talk

to the simulation engine and designates what makes possible to move information between the

two platforms — for instance, by passing text commands and receiving return calls from delegated

DSS commands. The OpenDSS API executive initiation set is shown in Algorithm 3.2.

Algorithm 3.2: API engine initiation

1 package toll

2 import OpenDSS.*; // API library class package

3 public class artSimTool extends Artifact { ...

4 /**initializing API executive interface classes**/ ...

5 private static OpenDSS.IDSS dss = ClassFactory.createDSS();

6 OpenDSS.IText dssText = dss.text();

7 OpenDSS.ICircuit DSSCircuit = dss.activeCircuit();

8 OpenDSS.ILines DSSLine = DSSCircuit.lines();

9 OpenDSS.ICktElement DSSelementCk = DSSCircuit.activeCktElement();

10 OpenDSS.IDSSElement DSSelement = DSSCircuit.activeDSSElement();

11 OpenDSS.ISolution DSSSolution = DSSCircuit.solution();

12 OpenDSS.IBus DSSBus = DSSCircuit.activeBus();

13 OpenDSS.ISwtControls DSSSwt = DSSCircuit.swtControls();....

From the framework perspective, the act of passing command and retrieving oriented objects

data are shortly exemplified as follows:

Algorithm 3.3: API method directives

1 public void runSimulation(List<String>cmd,int sysChose) throws IOException{

2 /************ COM handling setting up directives ***************/

3 dss.dataPath(System.getProperty("user.dir"));

4 dss.allowForms(false); // disallow the engine GUI calling

5 /******** initialize simulation tool directives handling ********/

6 dss.start(0);

7 dssText.command("clear"); // clear buffer for new simulation

8 ...

9 pathFind = System.getProperty("user.dir").replace("\\", "/")+"/lib/";

3.1 System Component and MAS Modeling 29

10 String origin = pathFind + "123Bus/ieee123.dss"; // set dss script path

11 /******************** RUN simulation **********************/

12 dssText.command("compile ["+origin+"]");

13 //if solution is valid print the event log is Generated

14 if(DSSSolution.converged()) {

15 // Acessible Objects Power Flow solution

16 String V = Arrays.deepToString(((Object[]) DSSSolution.eventLog()));

17 int gridBusSize = DSSCircuit.numBuses();

18 dssText.command("Show Elements"); // Object String value

19 dssText.command("Export Voltages"); // Object String value

20 dssText.command("Export Currents"); // Object String value

21 ... }

22 }

Post-processing methods have also been created, fundamentally to task direct and redirect

outputs and exported command-generated files such as Comma-Separated Value (CSV) and text

files.

3.1.2 The JaCaMo MAS Modeling

The framework basis is a programming model named JaCa specifically created to implement the

BDI model of AgentSpeak. The model unites the two frameworks named upon the acronym

that stands for JAson-CArtago, Jason [10] is adopted as programming language to implement

and execute the agents model and CArtAgo [5] as the framework to program and execute the

environments.

A MAS designed based on JaCa principles is modeled as a set of agents which work and coop-

erate inside a common environment. Implementing the application means programming the agents

on the one side, including the actions control logic to be executed relying on the environment

changes, and on the other side the environment itself. That all stated, the notion of environment is

solely based on real world concept to be explored according to the user problematic [58], i.e. the

environment here is part of the software system to be developed .

Figure 3.7: JaCa approach [8]

30 Developed Approach

Figure 3.8: JaCaMo approach [8]

Now, a designed JaCaMo system is given by a Moise organization of autonomous BDI agents,

implemented in Jason, working in shared artifact-based environments implemented in CArtAgO,

as depicted in Fig. 3.8. Therefore, the JaCaMo framework approach establishes the coordination

between three models JAson-CArtago-MOise, in which each represents substantial contribution to

the framework as a whole, that is:

Jason library implements AgentSpeak development workspace and extends it by interpreting the

running code of Jason’s Agent language to be compiled by JaCaMo runnable file (. jcm).

Cartago library are responsible to define the environment and link to the Agents dimension

through Artifacts operation, using a proper set of commands to define each operation and

observable proprieties of the environment.

Moise library [39] used to orchestrate the organization between agents and environment observ-

able proprieties.

The JaCaMo MAS approach has been conceived by utilizing the default Moise organizational

model of autonomous BDI agents, and a set of Jason AgentSpeak language codes working in a

shared Artifact-based environment dimension created, implemented in CArtAgO artifact exten-

sions by the same means Java methods are implemented.

AgentSpeak is a discipline of computational sciences and some details in terms of approach,

at the modeling development, might differ from power engineering point of view as the process of

3.1 System Component and MAS Modeling 31

learning and implementing a MAS model goes. Therefore, as an attempt to introduce the reader

some of the details and basis of how the solutions are actually created, a brief explanation of the

Jason language and interpreter will be presented, skipping the complex issues for the ease of the

reader. For more information, a proper reference can be found in [10].

The main idea to be addressed when comes to model agents, is talk of computer programs

as if they have a “mental state”. Thus, when we talk about a BDI system, we are talking about

computer programs with computational analogues of beliefs, desires and intentions. Unlike in

classical logic, the concept to be learned here is of modalities of truth, rather than things that are

stated to be true in absolute terms. Therefore, the basic steps of an agent abstraction based on the

PRS model, outlined in Chapter 2, is the usage of deliberation and means-ends reasoning on the

basis of the control loop, in which an agent continually:

• Looks at the world and updates beliefs based on events that occur in it, Agents receive events

either external from the environment (perceptual data) or internally generated (beliefes);

• Deliberates to decide what intention to achieve, by tring to handle events by looking for

plans (desires) that match;

• Uses means-ends reasoning to find a plan to achieve this intention;

• Executes the plan.

Belief sets are then part of agents structure, in which represents a collection of literals, where

each one of them is represented by predicates in a symbolic form:

voltage(Phase1,1.02)[source(sel f)|source(percept)] .

This means that an agent with such belief, acquired either from what he is sensing of its

environment sphere of influence or what himself somehow concludes, determine as true “Phase1

has voltage 1.02 p.u.” until it changes – p.u. here is implicit and means voltage electrical quantity

per unit system. However, in the context of agents, this will never be known unless it is stated as

a belief. That is, the existence of the literal voltage in the agent’s belief base means that the agent

relate the internal terms that defines it as true.

The desires are previously devised by the MAS developer in advance, by giving the agent

information about how to respond to events and how to achieve goals. A desire structure then

comprehends: an event or trigger that the plan can handle, a context (rule) that defines the condi-

tion under which the plan can be used and a body (course of action) or the the actions to be carried

out if the plan is chosen, as follows:

+!triggering_event[source(percept|agentn|sel f)]: context <- body.

The triggering events are identifiable changes in beliefs or Goals, and such changes can trigger

the execution of plans. Contexts will then represents logical conditions which defines a plan

32 Developed Approach

applicability or not, i.e. candidate for execution, and bodies are the course of actions (actuation

commands). The different types of triggering events and context literals are shown in Tables 3.4

and 3.3.

Table 3.3: Types of literals in plan context

Notation Description

literal The agent believes literal is true
∼ literal The agent believes literal is false

not literal The agent does not believe literal is true
not ∼ literal The agent does not believe literal is false

“Goals: predicate formulae prefixed with "!" identify what the agent wants to do.

Whereas beliefs, in particular those of a perceptual source, express properties that

are believed to be true of the world in which the agent is situated, goals express the

properties of the states of the world that the agent wishes to bring about. Goals are

equivalent to method calls in object-oriented programming. The mapping is achieved

through the use of events and associated event handler, known as plan rules.” [10,

adapted from pag.40]

Table 3.4: Types of triggering events

Notation Description

+literal Belief addition/Variation
-literal Belief deletion

+!literal Achievement goal addition
-!literal Achievement goal deletion

In means-ends analysis, the Agents reasoning begins by envisioning the end, or ultimate goal,

and then determines the best strategy for attaining the goal in his current situation. Therefore, the

desires are represented as the set of plans that match the event or the possible options of executions

in with differentiate between them by triggering rules they carry. That said, the Agent will then

find a plan to achieve this intention by trying to handle events by looking for plans that match a

certain condition of the environment. An example of handling desires upon a belief perception of

the environment is devised as the algorithm suggests:

Algorithm 3.4: belief environment change percept illustrate

1 \\ belief triggered if environment percept changes and if its locate in Phase1

2 +voltage(A,B)[Source(percept)]: A == "Phase1" <-

3 .print("Testing Voltage Adequacy Phase:",A);

4 !testBelifadequacyVoltage(A,B). \\passing belief to a course of action

3.1 System Component and MAS Modeling 33

What the Agents perception of the environment creates when changed and if matched its pre-

conditions, for this particular case where the belief is triggered only if (A) condition relates with

"Phase1", basically is calling a desire loop – triggered when first called, passing from an idle goal

(false) to a active goal (true) – in which will further decide whats the best action to take.

Algorithm 3.5: Completion and retention of Agent possible intention

1 /*******Decisions Loop: ***********/

2 +!testBelifadequacyVoltage(A,B): true <- !testBelifadequacyVoltage(A,B).

3 +!testBelifadequacyVoltage(A,B): B>0.95 & B<1.05

4 <- .print("Report only: Voltage Levels whiting Regulatory Standard Range").

5 +!testBelifadequacyVoltage(A,B): B<0.95 | B>1.05

6 <- .print(">> FALT ALERT! voltage out of tolerance Range <> ",B);

7 handle_Situation_by_Calling_Actuator_internal_Function(A);

8 .send(dMS,tell,Occurrence(A,B)).

The process of actuating upon environment conditions, here handling a possible undervoltage

or overvoltage, is defined as context (desires conditions). That is, if B – the voltage value sensed

from the environment– are withing 0.95 and 1.05 (p.u.) the Agent choosing desire will be reporting

the environment current state, otherwise if B presents below or above the tolerable condition the

course of action to be taken will be the one in with deliberation orders to the agents actuator, by

calling its own fix routines and sending a message with Occurrence label to be interpreted by the

dMS Agent.

In very short terms, at every reasoning cycle of an programmed agent, the interpreter updates

the events list, which may be generated from perception of the environment, or from the execution

of intentions (when goals are specified in the body of plans). Beliefs are either updated from

perception or from plan controlled operations and whenever there are changes in the agents beliefs,

this implies the insertion of an event in the set of events. Check the PRS scheme illustrated in Fig.

3.9.

The Agent-Artifact Model

All elements beyond the scope of the Agents in a MAS application are typically considered to be

part of the environment. Such elements can be relented to databases, constructed communication

infrastructures, topology of a spacial domain and so on [78].

By definition, CArtAgO means Common ARTifact infrastructure for AGents Open, allowing

users to model and and execute virtual environments for Artifact-based MAS in open workspaces

were agents can join and work together. CArtAgO is based on the Agents-Artifacts (AA) multi-

agent systems environment modeling and designing abstraction. AA introduces agents as compu-

tational entities performing some kind of task or goal-oriented activity, and artifacts as resources

and tools dynamically constructed, used and manipulated by Agents to support their individual

and collective activities [1].

34 Developed Approach

Figure 3.9: Agent reasoning cycle. after [10, pag. 68]

Developers of MAS have then a simple framework to design and implement Agents compu-

tational environment [1]. Artifacts, as the encapsulated representation suggests in Fig. 3.10, have

been proposed as first-class abstractions to model engineer computational environments. Know-

ing that, environments can plays a fundamental role to the overall application, as Artifacts handles

responsibilities impacting on the design and development.

Figure 3.10: Artifact Model [78]

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 35

The workspace environment, portrayed as endogenous environment level in Fig. 3.8, can be

populated by one or more workspace entities (Artifact/Agent). These entities form the abstraction

layers that rely upon the observable environment proprieties or usage interface. Defining Artifact’s

usage interface means then setting observable properties and programming a set of operations that

mimic the user intended goal or actuation command. Operation or variability in the simulated

environment can generate updates to the observable properties and specific observable events. The

last entity concerning the environment dimension is the manual, an entity used for representing

the description of the functionalities provided by an Artifact.

The Application of the AA concept to the MAS developed, implicate in the creation of methods

that would help agents to coordinate communication and their behaviors, as the Algorithm 3.6

suggests.

Algorithm 3.6: Artifact Example

1 @OPERATION public void init(...) throws InterruptedException {

2 defineObsProperty("statusVolt", new Atom("Coud Not reach Voltage sensor"));

3 defineObsProperty("statusCurrent", new Atom("Coud Not reach Current sensor"));

4 defineObsProperty("zone", new Atom(Zone));

5 defineObsProperty("voltagePhase1", 0.00);

6 defineObsProperty("voltagePhase2", 0.00);

7 defineObsProperty("voltagePhase3", 0.00);

8 ...}

9 @OPERATION public void incSim() {}

10 @OPERATION public void getBusRealName(OpFeedbackParam<String> name) {...}

11 @OPERATION public void attachedTo() {...}

12 public double randDouble(double bound1, double bound2) {...}

13 public static String readLine(int line, String File){...}

14 ...

The artifcat modeling, illustrated inFig. 3.10, is defined by a set of observable proprieties

that are devised according with the characteristics of the problem and the environment observed.

Also, it includes a set of operations which can be either to actuate on the environment or to aid

agents to archive their tasks. This is possible since the operations and agents share the same level

of abstraction, and the ways operations are implemented depends only on how the user abstracts

its platform. This link between agents and operations is generally provided in case agents use

AgentSpeak (and proper agent language to communicate with their artifact) as well as artifacts

use Java language.

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration

Achieving an acceptable integration within the simulated tools required a considerable level of ab-

straction when it comes to specifying the goals –intentions– over the activities behind reconfigura-

tion operations. In this context, Jason AgentSpeak has been used to model the basis of agent-agent

communication and the interaction at agent-artifact level. CArtAgo has been first used to define an

36 Developed Approach

artifact that held the API method, which in turn links, initiate and drive OpenDSS via COM engine

inside JaCaMo framework. The artifact based library has been also applied to implement oper-

ations to be directed through the COM engine and operate on behalf of agents, supporting them

to achieve their goals. The API was written in native Java and the set of operation is modeled in

CarTAgO.

3.2.1 MAS Structure for Automatic Configuration

This section describes the MAS structure utilized for both hierarchical and fully decentralized AR

approaches. Such modling required the specific use of each JaCaMo libraries, which come with

the necessity of representing the external distribution grid environment. That stated, in order to put

the reconfiguration into perspective, simplification and certain assumptions to make the scenario

suitable are summarized as follows:

• Power flow snapshots have been utilized to model network voltages and currents in steady-

state;

• Short-circuit analyses have been utilized to model network voltages currents for falty con-

ditions;

• All switches have capacity to support short-circuit conditions and are able to be remotely

controled using utility communication systems. Also, fault passage indicators are provied

near each switch.

• A communication system is avaiable to support the operation procedures.

The agent types considered in the MAS are classified as:

• Ag_busNumber*: Represent at most each and every existing bus in the system, bus agents

will be responsible to be constantly reasoning upon their status and regarding failure it must

be capable of autonomously handle it. They can be modeled to handle operations in an

actual network bus or manage a set of buses in a zone.

• simulationCall Agent: Responsible to coordinate the simulation (using steady-state and

short-circuit analisis) and in build the MAS infrastructure (grid environment and bus Agents).

• dMS (Distribution Management System) Agent: responsible for management and simula-

tion delegations such as to ask for simulationCall to perform fault simulations and to reason

about grid health by constantly keep contact with busAgents, which in turn provide access

to electric quantities (voltage and currents).

In the agent-abstraction level, using JaCaMo layered structural approach (see Fig. 3.8), the

following considerations must be emphasized:

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 37

Cycle.1 The Exogenous Environment Characterization: The MAS framework integration with the

OpenDSS tool must be established allowing a simulated open workspace grid. Hence, the

environment is set by an agent created for this very reason – here referred as simulationCall

– and responsible for grid building and busAgents initialization. This is devised by:

• Phase 1: The initialization of the external simulation tool using an Java API;

• Phase 2: Building the distribution grid and run the steady-state simulations, whose

results are stored in text and CSV files.

Cycle.2 The Endogenous Environment Characterization: When integration is established and the

grid objects are observable, agents can now take place in the workspace where its objects

are. This cycle features 2 sub cycles:

• Phase 1: Each agent is responsible for at least a bus and an artifact-sensor, exempt

agents responsible for the simulations (Agents: simulationCAll and dMS). When ins-

tumentation is available, each agent must be capable of identifying:

(A) Voltages - Status Phases Phase 1, 2 and 3 ;

(B) Currents - Status Phases Phase 1, 2 and 3;

(C) Zone - 1, 2 ...;

(D) Switches zone status On/Off of the zone;

(E) Identifiable neighboring agents such that a bound amongst then is establhised by

communication act.

• Phase 2: Setting/coordinate sensorial analyses for bus agents, where each bus agent

must be capable of sensing corresponding voltages and currents and perform further

analysis upon its values such as:

(A) Voltages - Overvoltages or undervoltages, and so forth;

(B) Currents - Overcurrents, line overloading, and so forth;

(C) Zone - read zone and interpret switches positioning;

(D) Switches - capability of handling fault conditions either if zone switches are en-

ergized or not;

(E) In adversity, capacity of handling isolation and coordinate solution along side

neighboring agent.

Cycle.3 The Reconfiguration Characterization: If a fault condition for an section of the grid is as-

signed, the MAS system must be capable of autonomously adjust – locally and systemically

– handling zone and perform line isolation determining courses of action to reconfigure the

grid, assuring continuity of supply to loads and secondary feeders. These activities rely on:

• Phase 1: Perform fault isolation: after fault, a local busAgent must handle communi-

cating acts with busAgents attached to switches in order to isolate the zone.

38 Developed Approach

• Phase 2: Perform reconfiguration coordination: once the local faulted agent confirms

the zone is properly isolated, other agents start a coordinating to find ways to recon-

figure.

• Phase 3: Finalize the reconfiguration by reading bus status againi f reconfiguration is

performed adequately. Otherwise the system remains in a faulted state and looking for

solutions.

Having these structures in mind, a specification diagram using Unified Modeling Language

(UML) was developed to aid designing and visualizing the MAS. This diagram maps Agents

relation also giving specifications to the created MAS as shown in 3.11.

Figure 3.11: Structural Specification UML diagram

In the interactions shwon, proposed action plans approval by the dMS before any action is not

necessarily imposed or either reinforced. Agents are programmed to report all activities back to

the dMS, which has the possibility of overriding decisions. These directives might be of great rele-

vance to gathering data about the system operations, testing protection and control settings derived

from the executed plans, tuning and validating agent decisions, as well as improving its degree of

acceptance. The dependencies in the model are related to the necessity on acting toward grid

equipment state, and the fact that the dMS share the same simulation Artifact as simulationCall.

The simulationCall holds a communication role as well as goal-oriented activities to perform

distribution grid simulations, only possible due the link to an .asl file, that represents the main

Agent module and where algorithms run the Agent-Artifact concept through CArtAgO framework.

To give a more comprehensible insight to what the simulationCall does, a UML diagram of the

agent is presented in Fig. 3.12.

On the UML diagram it is possible to verify the design of simulationcall agent. In order to

build a grid environment in which practically all data can be acted upon through artifact operations,

agent-artifact main operations are the follwing: start(_) to start the runs steady-state simulation,

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 39

Figure 3.12: simulationCall structural specification UML diagram

setAgentNumber(_) to retrieve the number of buses in the grid, getAgentName(_) a list with the

bus names to assign to additional agents and stop(_) to stop simulation and start post processing

to create new agents to integrate the grid environment.

Predicates that comes with "+!" represents achievement goals and will be triggered by the

ones containing only "!", subsequently when the goal is complete the agent return to the previ-

ous achievement goal, following the main sequence: simulationCall initialization → !startSim-

ulation(_) → +! +!startSimulation(_) → !makeArtifactBuild(_) → +!makeArtifactBuild(_) ←
+!startSimulation(_)→ +!simulationStop(_)← +!startSimulation(_).

3.2.2 Agent Plans for Automatic Reconfiguration

To design the agent-based model, the fist step taken has been defining the Agents simulationCall

and dMS inside the framework, and a workspace layer to represents the environment space where

40 Developed Approach

grid elements and agents will be located. The code characterization of these step if shown in the

Algorithm 3.7.

Algorithm 3.7: Defining MAS workspace in JaCaMo

1 mas masReconfig{

2 agent simulationCall : simulationDSSSystem.asl

3 agent dMS : dms.asl

4 workspace grid_environment { agents : simulationCall, dMS }

5 class-path: lib, src/env, src/int/intAct/create_agent2.java

6 asl-path : src/agt, src/agt/inc

7 }

A MAS capable of automatic reconfiguration must have basic features to handle grid elements

with actuation orders. To perform that, the concept of Artifacts was explored to mimic actuating

(Opening and closing switches) and sensing grid element electric quantities such as Voltages,

currents and power flow. Furtmermore, as the problem suggests the agent simulationCall must be

responsible for providing an AA model for each busAgent that through artifact operations allows

access to some of the grid elements operations. Therefore, the MAS distribution grid initiation

can be conducted as follows:

1. Initializing the simulationDSSSystem.asl file giving "life" to simulationCall;

2. A previous devised achievement goal is initialized "!startSimulation (_,_,_).", and

simulationCall proceed to perceive the environment objects;

3. The previous goal plan written contains two sub-goals that are subsequently executed:

• !makeArtifactBuild(_,_,_) : responsible for creating the Artifact that holds

the OpendDSS API;

• !simulationStop(_,_): Cease the simulation and starts post possessing;

4. The system must be now ready to receive other agents and once the grid objects are identifi-

able, another sub-goal is ignited with the responsibility of creating, placing and initializing

busAgents within the workspace. This is achieved by the following speech act:

• .send(AgName,achieve,focus(ArtName)) : Order new busAgents to attach to the

workspace and bound to Artifact-sensor;

• .send(AgName,achieve,senseForThefirstTime(ArtName)) : Order new busAgents

to initiate sensing their bus objects, retrieved from the steady state results simulation

(voltages and currents);

By interpreting these architecture design guidelines, schema and descriptions, the agent capabili-

ties and plans of actions taken are illustrated in the Fig. 3.13. A complete list of operations used

to implement simulationCall and dMS Agents can be found in Appendix A.

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 41

Figure 3.13: Ag_15 process of creation

The afterwards results of the building phase consists of: for each bus (at most), there is a

busAgent and artifact-sensor, responsible for sensing the basic proprieties such as voltages, cur-

rents and power flows, as pictured in Fig.3.14. The bound with the sensor is established after a

communication order from the simulationCall to focus on its artifact and start handling data, as

explained before in subsection 3.2.2.

Figure 3.14: busAgents final formation

By definition, the referred agent capabilities are agent oriented “functions” related to agent

types and characterized by a set of associated plans. Altogether agents handle decisions towards

the grid state respecting the complexity and dynamism of the power distribution systems. Hence,

42 Developed Approach

simple but effective rules must represent the main contents of the plans. That is, excess of com-

plexity in plan designing is not considered to be directly related to smartness. Also, excess of

complexity might lure engineers related to the field out from implementing such systems.

The capabilities and plans have been designed aiming the balance between critical matters

to our purposes and the existing encapsulated schemes from the literature or currently being at

evaluation. Therefore, agent plans have been employed respecting the complexity and the certain

degree of dynamism imposed by the power distribution simulated environment.

The originated plans in this section are presented as a fragmented lower level abstraction of

the set of plans implemented in Jason syntax on the JaCaMo framework. The form in which plans

are introduced are inspired by the model of meta-plan proposed in [38, chap. 3 pag. 75]

3.2.2.1 Participant Bus Beliefs & Plans

Reinforcing the concept, beliefs in nature can be acquire from initial statement on belief base of

external stimulation (precepts), plans are course of actions that can or can not take place based on

Agents decision and they are stated whiting possible Achievement goals. That stated, the main

set of plans, or the more relevant ones, that define most of the busAgent interactions within the

environment and between agents are presented as follows:

The initial beliefs of a busAgents are:

Algorithm 3.8: Initial beliefs of busAgents

1 /** first term stands for the numerical representation of the Phase (1,2 or 3)

2 second term stands for the per unity correspondent voltage value [0.00, 1.99]*/

3 voltage(0,0.00).

4 /** first term is used as pointer to these belief

5 second term represents the possible circuit phase (1,2 or 3)

6 third term current value

7 4th and 5th terms represents atoms used to aid internal operations */

8 current(1,0,0.000,"null","null").

9 /** Boolean term used to define bus state 0 - normal state 1-faulted state */

10 simulationStatus(0).

11 /** integer term used to define bus zone [0-7] */

12 zone(None).

The perceptual beliefs along the busAgent code, are the ones that will be representing the over-

all "mindset" of these agent-type, refreshing at the end of each reasoning cycle, acquired either by

communication or perception of the grid elements within the sphere of influence of the Agent. All

represented in Algorithm 3.9:

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 43

Algorithm 3.9: perceptual beliefs of busAgents

1 \\acquired by the user or communication

2 +showConsole : true <-(...)//** used to show bus report of its acts

3 +sendResponse : true<-(...)//** uses dMS link to COM to show OPnenDSS bus plots

4 \\acquired by the user to perform fault simulation near related bus

5 +callFalt : true <- (...) /**decentralized solution- AgentSpeck solution*/

6 +callFalt2 : true <- (...)/**semi-decentralized solution, over of dMS approval*/

7 \\acquired by communication, used to receive and send messages amon}g busAgents

8 +voltage(_,B): B\==0 <- (...) **rection on environment changes*\

9 +current(1,0,_,C,_): C > 0.000 <-(...) **rection on environment changes*\

10 +senseAgain(...) : true <- (...) /** command sensors in each cycle */

11 +performPlan(...)[source(G)]:true <-(...)/**receive and execute plans(dMS)*/

12 +planForSWagent(...)[source(G)]:true<-(...)/**for busAgents with switch attached*/

13 +tellSwAgent(...) : true <- (...) /**for busAgents with switch attached*/

14 +gotActionGoingOnAg(...)[source(G)] : true <- (...)

15 +gotCommunicationFault(...)[source(G)] : true <- (...)

16 +gotCommunicationFaultResposta(...)[source(G)] : true <- (...)

17 +tickFalt(...):true<-(...)/** define speech act for reconfiguration coordination*/

18 +tickAt(...) : true <- (...) /** define bound between neighboring busAgents*/

The following plans represents the main set of Achievement goals and perceptual beliefs that

define busAgents features such as: how they use a Artifact-sensor on their behalf and how they

reason on the data handle by them. The first plan reflects the ideas of integrating an agent to an

open environment, in which there will be grid artifacts objects available to focus:

Plan 1: Achievement goal→ +!focus(_)
Description: Joins the workspace and establish bound between Artifact and busAgent
Context: The artifact have the operations that allow the busAgent perceive its objects of
interest, and using proper Java functions together with CArTaGo Artifact operations is
possible to read and write OpenDSS script files, CSV and text files with the simulations
results
Functionality: Equip Agents with pseudo sensors and actuator
Trigger: !focus(Artifact_id)
Outgoing messages: Confirmation of entering workspace dimension and Artifact-Agent
bound and print info action/msg on framework prompt
Actions: joinWorkspace(_,_), lookupArtifact(_,Artifact_id);
Used data: Artifact id passed on in the build phase by its creator
Produced data: command prompt printed messages of actions taken
Goal: focus(Artifact_id): internal Jason function
begin

- joinWorkspace("grid_environment",WspID1);
- lookupArtifact(A,ToolId);
- ?current_wsp(_,NameEnvi,_);
- .print(Msg)[artifact_id(ToolId)];
- focus(ToolId);

The plan that follows, Plan 2, give us an introduction to the perceptual beliefs used to update

44 Developed Approach

each busAgent state at different cycles/simulation that might occur.

Plan 2: Achievement goal→ +!perceiveData
Description: Start resoning upon the sensoring cycle
Context: At these point the busAgent already have information data of the bus atachet to him, its now his task
to analyze these values and take action
Functionality: Give Agent awerness on what is aceptable or not for a bus to function normally // Trigger:
perceiveData.
Incoming messages: analysys voltage values it self and repond back
Outgoing messages: send voltage values to dMS , Inform message from its own analyses and communication
with dMS, print info action/msg on framework prompt
Percepts: +voltage(1,_,_),+voltage(2,_,_),+voltage(3,_,_) +current(1,_,_,"Phase

1",_,_), +current(1,_,_,"Phase2",_,_), +current(1,_,_,"Phase 3",_,_)

Actions: .send("dMS",achieve,simulationStatus(H)).
Used data: Data acquired by Agent Artifact
Produced data: command prompt printed data aquried by data manupulation
Goal: !statusSystem(H)
begin

begin
- Trigger changes in belief:
- +voltage(_,_,_)
- +current(_,_,_,_,_,_)

- Establish communication with dMS by reporting Voltage values

Furthemore, in plan 3, it is explained how busAgents reason upon the data assigned to them.

Plan 3: Perceptual belief→ voltage(_,_,_) & current(_,_,_,_,_,_)
Description: Used to acknowledge busAgents if its Voltage and Current values are within regulatory standard
range. Also giving a hint to them of the grid state
Context: In order to change beliefs toward voltage an current obtained values, these agent type, use a
mechanism to test belief under voltage and current labels
Functionality: Used to change belief on Voltage and Current Values and subject them to test
Trigger: +voltage(_,_,_) & +current(_,_,_,_,_,_)

Actions: !testBelifadequacyVoltage(_,_,_), !testBelifadequacyCur(...)

Used data: Voltages and Currents data
Produced data: Log of the attempts
begin

+voltage(A,B,ToolId): B/==0 <- !testBelifadequacyVoltage(A,B,ToolId). +current(A,B,C,F,H,ToolId): C
> 0.000 <- !testBelifadequacyCur(A,B,C,F,H,ToolId).

Finally, in Plan 4 and 5, it is provided agent means to know believes corresponding to mea-

surements as current and voltage values.

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 45

Plan 4: Achievement goal→ +!testBelifadequacyVoltage(_,_,_)
Description: Decision loop used to test busAgents Voltage values
Context: Inherited plan solution from voltage belief changing state
Functionality: Chose a plan depending on Voltage values
Trigger: !testBelifadequacyVoltage(_,_,_)
Outgoing messages: Report on choosing plan
Percepts: +showConsole
Actions: Report state

Used data: Voltages data
Produced data: Log of the attempts
begin

-Decision loop:
+!testBelifadequacyVoltage(_,B,_): true <- !testBelifadequacyVoltage(_,B,_).
+!testBelifadequacyVoltage(_,B,_): B<0.95 | B>1.05 <- .print(ReportOnFalt); +showConsole.
+!testBelifadequacyVoltage(_,B,_): B>0.95 & B<1.05 <-.print(ReportOnAdequacy).

Plan 5: Achievement goal→ +!testBelifadequacyCur(_,_,_,_,_,_)
Description: Decision loop used to test busAgents Voltage values
Context: Inherited plan solution from current belief changing state
Functionality: Chose a plan depending on Voltage values
Trigger: !testBelifadequacyCur(_,_,_,_,_,_)
Outgoing messages: Report on choosing plan
Percepts: +showConsole
Actions: Report state
Used data: Voltages data
Produced data: Log of the attempts
begin

-Decision loop:
+!testBelifadequacyCur(_,_,C,_,_,_): true <- !testBelifadequacyCur(_,_,_,_,_,_).
+!testBelifadequacyCur(_,_,C,_,_,_):(C*1/6)<100.0 & (C*1/4) > 100.0 <- ...Report&act
+!testBelifadequacyCur(_,_,C,_,_,_):(C*1/4) < 100 & (C*1/6) < 100 & C > 10 <- ...Report&act

3.2.2.2 Reconfiguration Planning: Hierarchical Solution

In case of fault conditions, the agents start a coordination cycle to achieve reconfiguration by

exploring a hierarchical approach using a dMS to delegate toplans to be followed by busAgents in

order to achieve reconfiguration. The protocols, procedures and and strucuted interactions for this

case are examplified for a short-circuit near bus 60 of the network shown in Fig. 3.2:

In the figure 3.15, it is shown the moment the nearest busAgent acknowledges the occurrence

of a fault and starts action upon it. Using directional fault passage indicators, it is possible to iden-

tify the zone where the fault occurred. Basically, if the fault current has entered the zone, but not

get out of the zone, the busAgents can identify that the fault occurred inside the zone. Otherwize,

if the circuit is de-energized and the current got into and out the zone, then a fault occured in other

zone. With this reasonings, messages are conveyed to the agents attached to switches to negotiat-

ing to isolate the zone. At the same time the dMS also receives a de-energization messages and

starts reasoning on behalf of the other agents that reports the state back to dMS as well. Once the

46 Developed Approach

Figure 3.15: busAgents fault coordination

dMS receive the isolation zone confirmation it starts a subroutine to find ways to best reconfigure

the grid. When the plans for configuration are set the dMS delegates functions to agents to recon-

figure. When the process is done it is expected that the reconfiguration is achieved and plans for

calling crews are initialized to take care of the failed component.

The dMS agent runs a Dijkstra Shortest Path algorithm to find the best solution to achieve

reconfiguration aiming in reducing the number of non energized zones and buses. The criterion of

number of buses was chosen for the sake of the example, though other criterion could be specified.

Afterwards the dMS send plans to be followed by the busAgents.

Dijkstra Shortest Path is an algorithm for finding the shortest paths between nodes in a graph

and exists in many variants. The one used for the course of reconfiguration fixes a single node

as the “source” node and finds shortest paths from the source to all other nodes in the graph,

producing a shortest-path tree. The idea behind Dijkstra algorithm can be depicted assuming the

needed path is from agent A to B:

• Start with a message consisting of the name of an agent node A.

• Send a copy of this message along each line spreading from A.

• When a message reaches a node agent K, its name is add to the path.

• Along each line which spreads from node K and was not used yet, a copy of the message is

sent.

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 47

• The first message that arrives at node B (and any other node) contains the shortest path from

A to it.

The use of the algorithm here comes with the idea of finding the best path option from the

source bus to normally open switches in order to minimizing the impact of an possible permanent

fault. This can take into account several criteria, so for the sake of choosing one we aim to

maximize the number of nodes to be energized. By making use of the data obtained by the agents,

such as coordinates and length, and to implement an method that use these data, a Java - based

dynamic graphic library GraphStream [72] was chosen.

The basic usage of this class takes place in 4 steps [72]:

1. Definition of a Dijkstra instance with parameters needed for the initialization.

2. Initialization of the algorithm with a graph through the initiation(graph) method from the

Algorithm interface.

3. Computation of the shortest path tree with the compute(_) method from the Algorithm in-

terface.

4. Retrieving of shortest paths for given destinations with the getShortestPath(Node) method

for instance.

The creation of the Dijkstra instance is done with the dijkstra(Element, String, String) con-

structor by giving 3 parameters: First, the type of element that is consider for the computing of

shortest paths (Dijkstra.Element.node). Second, the key string of the attribute used for the weight

computation. The third parameter is the “id” of the source node the shortest tree will be constructed

for. The source of all these information along with the example of how to use the algorithm in the

library can be found in [32,72] and the devised algorithm for these approach can be found in [44].

The application of the algorithm is defined by an simple search for solution, consisting in

seating a fix node as source. For instance, in the IEEE123 test feeder the source node is bus

number 150. The basic solution is the find the shortest path from the source to all switches in the

grid. A post processing method was devised to read the list created with all shortest path assuming

all switches are in close state, by their names witch contains normally open (NO) or normally

(NC), the shortest path to a normal open switch define the plan form a closing to be closed by the

agent attached to it, as depicted in Fig. 3.16.

3.2.2.3 Reconfiguration Planning: Decentralized Solution

Although the hierarchical solution might present fair results, we also deployed the idea of a fully

decentralized solution where busAgents are responsible to the main reconfiguration procedures.

This reinforces the idea of a smart system that can handle adversities without a quasi-dictator dMS

agent. To achieve that the implemented functionalities were:

48 Developed Approach

Figure 3.16: dMS reasoning plan generator

Step1 Fault identification: Similarly to the hierarchical approach, the nearest bus react to fault

current indications initiating speech act actions in order to isolate the faulted zone. The

de-nergized zones are also isolated to aid reconfiguration.

Step2 The reconfiguration system: One by one, agents responsible for switches will are asked by

neighboring busAgents to close if they are neighbors of an energized zone, excluding the

faulted zone. This enables the full an decentralized solution.

Step3 The restoration: After a signal indicates the faulted component isrepaired, another procedure

is made in order to restore the system to its initial state.

The basic idea behind these approach is to find a simple but suitable solution for reconfigura-

tion. As shown in the Fig. 3.17, the starting point of the simulation represents the moment when

the nearest busAgent to fault acquire a belief of a fault state, and right after proceeds to commu-

nicate to other busAgent attached to switches, asking them to change status from normally close

to open. Afterwards, course of actions involve the other agents, that is, all busAgents will partic-

ipate of an speech acts in order to close switches attached to energized zones, one by one until

a reconfiguration is done and most of the custumers are supplied. The steps of the AgentSpeak

implementation are found in algorithm 3.10.

3.2 MAS Capabilities and Agent Plans Towards Reconfiguration 49

Figure 3.17: busAgents fault coordination

Algorithm 3.10: AgentSpeak for decentralized reconfiguration

1

2 /**(Step 1: From busAgent)**/ +callFalt2: true <- \\ perceptual belief triggered

3 getBusRealName(RealName)[artifact_id(S)]; getFaltLine(FaltLine)[artifact_id(S)];

4 ?zone(BusZone)[artifact_id(S)];

5 .print("**Falt simulation with in line",FaltLine," bus number: -->",RealName)

6 .send("dMS",tell,fautSimulation(RealName,FaltLine,BusZone));. \\ belief trigger

7 /**(Step 2: From simulation Agent)**/

8 +fautSimulation(BusFalt,LineOfFalt,BusZone)[source(G)]; \\ perceptual belief

9 \\run OpenDSS short-circuit simulation given the Bus and line of fault

10 .wait(5000); performFalt(BusFalt,LineOfFalt)[artifact_id(ArtId)];

11 .print("Falt occurency, reported location of falt by ---> Agent",G);

12 +statusSimulation(0,1); \\ changing belief --> Normal to Fault state

50 Developed Approach

13 .wait(3000); .print("**** OPENING ALL SWITCHES ****");

14 openALLsw[artifact_id(ArtId)]; ...

15 /**(Step 3:)**/ ...

16 .broadcast(tell,senseAgain(_)); \\ tell all bus Agent to acknowledge their state

17 .print("****Atempting Falt restoration by Agents speach Act coordination****");

18 .wait(5000); .broadcast(achieve,faltCommunication);

19 ...

20 /**(Step 4:)**/

21 .print("Reconfiguration Performed Successfully... Awaiting Restoration Agreement");

...

22 +procedReconfig_and_restoration(G) \\ trigger belief

23 +getPlots("1");

24 .send("Ag_1",tell,showConsole);.

Both solutions present fundamentally the same results and uses the same basis of Agent com-

munication though out speech acts. What essentially differentiates one from another is that in

the first solution the MAS is somewhat centralized, while the alternative solution presents a fully

decentralized approach.

The basic explanation on how agents manage to receive massages proceed the reasoning at ate

the same time that its sending messages, is due a the multi-threaded asynchronous nature adopted

in JaCaMo approach. One way to characterize that is comparing with other processing methods,

as below.

1 ---- : Time spend

2 A,B and C : Processes (receive, send, others...)

3 Synchronous (one thread):

4 thread -> |----A-----||-----B-----------||-------C------|

5 Synchronous (multi-threaded):

6 thread A -> |----A-----|

7 \

8 thread B ------------> ->|-----B-----------|

9 \

10 thread C ----------------------------------> ->|-------C------|

11

12 Asynchronous (one thread):

13 A-Start -- A-End

14 | B-Start --|--- B-End

15 | | C-Start -------------------- C-End | |

16 V V V V V V

17 1 thread-> |-A-|---B---|-C-|-A-|-C-|--A--|-B-|--C--|---A-----|--B--|

18

19 Asynchronous (multi-Threaded):

20 thread Agent A ---------> |----A-----|

21 thread Agent B ----> |-----B-----------|

22 thread Agent C ------> |-------C----------|

The next chapter will then expose the overall results obtained from both solutions.

3.3 Final Remarks 51

3.3 Final Remarks

Considerations toward the software and tools utilized to implement a MAS approach for recon-

figuration in the IEEE 123 test feeder are presented. Also, it was presented the model adopted to

conceive power grids on OpenDSS context as well as example of representations of line, switches,

busses and terminal were addressed. This was followed by the description of the approach to to

integrate the grid model and simulation with an MAS framework supported by the use of an API

package.

Concerning the MAS model, the JaCaMo approach for agent-based systems has been unfold,

addressing the main topics of its representations, the BDI structure and the model of AgentSpeck

adopted, all expressed in basic Jason modeling and the Agent-Artifact model supported by CArTaGo.

When comes to the application capabilities, it was developed schemes to devise a MAS capable to

simulate a power grid environment along with agent planing and methodologies to achieve recon-

figuration within the simulation platform. All this considered solutions for reconfiguration either

by a semi decentralize model using a dijkstra shortest path algorithm and a fully decentralized

model.

52 Developed Approach

Chapter 4

Simulation and Results Analysis

This chapter presents simulations and result analysis for the MAS approach to model AR, either

considering a hierarchical or fully decentralized control philosophy. The chapter is structured as

follows. In section 4.1, system initialization and building phase are presented for the purposes

of testing and validating environment and grid simulations. In section 4.2, simulation cycles are

presented in order to analyse reconfiguration solutions achieved using both control philosophies.

4.1 MAS Initialization and building phase

The JaCaMo framework console is a buit-in optional Graphic User Interface (GUI) used to present

the run-time simulation of the system also providing basic tools to aid the user in achieving a

compressible view over devised MAS solutions. JaCaMo’s console is illustrated in Fig. 4.1.

Figure 4.1: JaCaMo framework console
.

53

54 Simulation and Results Analysis

In JaCaMo framework console, Agent-Agent and Agent-Artifact interactions are can be de-

picted in particular window tab dedicated to a given agent, or in a common window where all

interactions are marked by console messages. The example below transcripts messages shown in

the window console:

begin
... [simulationCall] dMS FOUND and focusing on--> cobj_2 Artifact

[dMS]DMS Agent Initiated

...
The course of actions taken by the agents can be observable through out the run-time infras-

tructure as simulation goes. Also, log messages of each participant on the environment will be

accessible by a tab with the Ag_Nº tag, giving the user access to each action made either by the

Agent itself or its attached Artifact. In addition, some of the console buttons give the user the

power to direct interaction within the environment and the agents as well as the possibility of

adding new agents and triggering beliefs and goals externally.

In agent simulatiom, visualization is a matter of utmost importance. JaCaMo console allowed

validating the integration of OpenDSS with MAS platform, besides supporting modeling and im-

proving the applications. With direct link to OpenDSS, all its structures, including validated IEEE

data for test systems, can be used as object types. The customized console permited also verifying

and correcting problems during the building, where workspace and agent types are instantiated.

The building phase consists on running the JaCaMo file (.jcm), shown in algorithm 3.7, con-

taining the MAS initiation course. This works also as a form of validating each step taken in the

simulation, printing messages and log commands placed intentionally to aid verifying the evolu-

tion of simulation process and execution of internal/external functions.

Once the run button is pressed, the artifact created by simulationCall, named initSim, run the

API and start processing:

[initSim] ..Artifact responsible to Sense & Build the grid initiated..

Afterwards, the simulationCall Agent acknowledges its artifact ant takes he first actions:

1. Identify the workspace:

begin
[simulationCall] Workspace Dimension Created and Named: grid_environment

2. Trigger goals to perform stead-state simulation:

begin
[initSim] Runing Case: IEEE123 Distribution system

[initSim] »COM OpenDSS engine::: Running Simulation

4.1 MAS Initialization and building phase 55

3. Log the simulation summary, as shown in Fig. 4.2.begin

Figure 4.2: Summary of steady state simulation performed inside the framework

4. Start processing actions to filter and organize returned COM objects and external files: begin
[initSim] »>COM OpenDSS engine::: Retrieving Result Objects...

[initSim] Lines and switches : [l115, l1, l2, l3, l4, l5, l6,,sw1,sw2,sw3,sw4,sw5,sw6,sw7,sw8]

[initSim] Busses: [150,150r,149,1,2,3,7,4,5,6,8,12,9,13,9r,14,34,18,11,10, ...]

[initSim] Tranformer and regulators: [Trans f ormer.reg1a,RegControl.creg1a...]

[initSim]»>Post Processing Results ...

...

Coordinates , Bus: 88 X : 10813.263337 Y : 2171.336913

Coordinates , Bus: 89 X : 9833.451402 Y : 279.28628

Coordinates , Bus: 197 X : 11067.378502 Y : 6097.64203

...

56 Simulation and Results Analysis

5. After the artifact corresponding to simulationCall agent returned all required simulation

data, bus agents are created. The steady-state simulation allows sensoring artifacts to be

instantiated and associated to their interrelated bus agents, as depecited in Fig. 4.3.

begin
[simulationCall]»simulation ended successfully :)

[simulationCall]>Agent action terinated 00 hours, 00 mins, 52 seconds

[simulationCall] Exogenous Environment set for the Power Distribution Study System.....

Figure 4.3: Sensing summary results for a busAgent

6. After agent and artifact initiatlization, busAgents start interactions and communications in

order to try identifying its neighbours. This interactions are logged as shown below.

begin
[Ag_1] I am attachedTo [Ag_3]

[Ag_1] I am attachedTo [Ag_7]

[Ag_1] I am attachedTo [Ag_2]

[Ag_1] I am attachedTo [Ag_149]

[Ag_1] Message received From Agent {Ag_7} :

Reporting Executed Action/Or something —> Confirmed Attachment by tick ...

[Ag_1] Message received From Agent {Ag_3}:
Reporting Executed Action/Or something —> Confirmed Attachment by tick ...

[Ag_1] Message received From Agent {Ag_149}
Reporting Executed Action/Or something —> Confirmed Attachment by tick ...

[Ag_1] Message received From Agent {Ag_2}
Reporting Executed Action/Or something —> Confirmed Attachment by tick ...

4.1 MAS Initialization and building phase 57

Concurrently, similar processes are devied by the dMS that is initialized alongside its corre-

sponding artifact, and is included in the environment workspace.

As form of evaluation and registering, once the integration process is finished and all the

busAgents are placed in the environment, the dMS starts a subroutine that use the bus attachment

communication results to draw the grid. Fig. 4.4 exposes the resultant drawing which includes a

tab list of active Agents in the environment.

Figure 4.4: Power grid created by Agent’s coordinated communication an active Agents

Since actions inside the platform are linked to OpenDSS, then it is possible to plot steady-state

and fault analysis results inside the MAS platform, including voltages, Currents, Power flows and

losses. As examples, visualizations are shown in the figures ahead, including power losses through

components (Fig. 4.5), power flow through components (Fig. 4.6) and steady-state voltages (Fig.

58 Simulation and Results Analysis

4.7, Fig. 4.8).

Figure 4.5: Steady state Loss density

Figure 4.6: Steady state bus Voltages per phases

4.1 MAS Initialization and building phase 59

Figure 4.7: Steady state bus Voltages

Figure 4.8: Steady state bus Voltages per phases

These are resultant of a plotting script developed to present the plots the way its presented

herein. The method to set coordinates as well as the plot script can be found in [44].

60 Simulation and Results Analysis

4.2 MAS Reconfiguration Approach: Hierarchical Solution

The MAS reconfiguration has been tested in the IEEE 123 test feeder shown in Fig.3.2. This test

system is composed of 132 buses, 237 lines, 1 power transformers and 5 current regulators, and a

total of 3.4952 MW + j1.22033 MVAr customer load, their position and other useful information

are found in [20]. Due to its 8 switches, the test system can be divided in 5 zones. Reconfiguration

procedure have been tested for a large variety of outage locations. For the sake of an example,

results are shown for a given failure at bus 62 in zone 2.

The hierarchical approach, in which the dMS partially dictates the reconfiguration plan, starts

with zone isolation performed by busAgents independently. As shown in Fig. 4.9, the isolation is

performed by the nearest agent of affected lines.

Figure 4.9: Fault location at zone 2

An event/belief called callFalt, shown in Fig. 4.10 and unfold in Algorithm 4.1, triggers

a plan to handle a fault condition, starting communication between the agents within the zone.

Afterwards the dMS coordinates the plan to reconfiguration.

Figure 4.10: Fault belief trigger directed to busAgent 62

4.2 MAS Reconfiguration Approach: Hierarchical Solution 61

Algorithm 4.1: callFalt belief

1 +callFalt: true <-

2 /**For the record*/:

3 // actions preceded by dot (.) = .internal_JaCaMo_function

4 // actions without dot (.) = artifactOperation(devised, byMe)

5 .my_name(Me);

6 getBusRealName(RealName)[artifact_id(_)];

7 getFaltLine(FaltLine)[artifact_id(_)];

8 ?zone(BusZone)[artifact_id(_)];

9 .print("******Falt simulation with line Bus Agent ----->",RealName);

10 .print("sending DSM request for Plan Of Action of Falt in that zone");

11 .send("dMS",tell,getFalts(RealName,FaltLine,BusZone))

When the belief is acquired by busAgent 62, it proceeds to handle the isolation plan and sends

percep/belief to dMS allowing it to acknowledge the fault. The triggering belief is depicted in

Algorithm 4.2.

Algorithm 4.2: dMS perceptual fault belief

1 +getFalts(BusFalt,LineOfFalt,BusZone)[source(G)]: true <-

2 performFalt(BusFalt,LineOfFalt[artifact_id(ArtId)];

3 .print("Falt occurency, reported location of falt by --->",G);

4 +statusSimulation(0,1);

5 stop(_)[artifact_id(ArtId)]; .wait(300);

6 getBusData("1",_,_,_,_,BPstring)[artifact_id(ArtId)];

7 .broadcast(tell,senseAgain(BPstring));

8 +drawGridplotFalt(ArtId);

9 !procedReconfiguration(BusZone,Sw1,Sw2,ArtId,G,LineOfFalt)...

The agent dMS first actuates to perform short-circuit analysis and after triggers the status of

the grid belief from normal state to faulted state. Afterwards is proceeds by telling all bus agents

to acknowledge their state and reason upon it:

statusSimulation(0,0)[source(sel f)]→ statusSimulation(0,1)[source(self)]

.broadcast (tell,senseAgain(_))

The results of these course of action is shown in Fig. 4.11, 4.12 and 4.13, where the short-

circuit analysis is initialized. BusAgents perceptions, under the grid environmental, change fol-

lowed by the communication task and reporting their status to dMS.

62 Simulation and Results Analysis

Figure 4.11: Short-circuit analyses after dMS reasoning upon fault

Figure 4.12: Agents acknowledging changes in the environment over fault state

4.2 MAS Reconfiguration Approach: Hierarchical Solution 63

Figure 4.13: dMS reported state from busAgents

Although the course of action seems to be sequential, the execution timing for each participant

in the speech act has an asynchronous feature, meaning that the order of action was not a concern

when comes to implementing such systems, but rather a matter of acting upon conditions. There-

fore, the Ag_62 requests action on isolation to agents attached to switches in the faulted zone right

after sensing its short circuit current. This is achieved concurrently as shown in Fig. 4.14. The

dMS also receives a request to actuate upon fault as shown in Fig. 4.15.

Figure 4.14: Automatic zone isolation performed using agents speech act

Figure 4.15: dMS reasoning upon fault report

64 Simulation and Results Analysis

At the moment, the dMS receive confirmation of zone isolation, line switch 2 and 4 both open,

and their correspondent agent sends a message to dMS which confirms zone isolation. Afterwards

a sub-routing with the shortest path algorithm is responsible to find a solution for reconfiguration.

The reasoning goes like:

begin
[dMS] DMS awaiting switch agents completion of actions...

[dMS] Fault scenario completed...

[dMS] DMS Agent Calling graphic API to generate Plan of Action For reconfiguration

When the dMS initialize the algorithm API method, the graph shown in Fig. 4.16 is depicted

in a new window. The grasphstream library allows one to draw a dynamic node-based graph with

the obtained data from the building phase, including coordinates (x,y) of the nodes and the length

of the lines attached to them. The grid is interactive given a visual impression on how the decision

plan is created.

Figure 4.16: Shortest path grid plan

As the algorithm iterates as suggested below, the dMS reports the process of creating a plan

as shown in 4.17. Afterwards dMS proceeds by reasoning until the solution is found (4.16), as

indicated in Fig.4.19 by implementing/acting upon the generated plans, as shown in the Fig. 4.20.

4.2 MAS Reconfiguration Approach: Hierarchical Solution 65

begin
[dMS] Switch(s) found working/or that should be Working - Line.SW3 = 0

[dMS] Read Node multiMap->{Line.SW3=[0]}

[dMS] #Switch Plan1 : Got to be Close—-> Line.SW3

[dMS] —-> Geting NOT Energyzed Switch Zones...

[dMS]Zone ->1 Zone Swt with No Power found ->Line.SW4

[dMS]Zone ->2 Zone Swt with No Power found ->Line.SW5

[dMS]Zone ->3 Zone Swt with No Power found ->Line.SW2

[dMS]Zone ->5 Zone Swt with No Power found ->Line.SW6

[dMS] Zone Swt electrified found ->2 & not energized : 4

[dMS]Calculating Solution Using Dijkstra short path algorithm and Agents coordination...

[dMS]Setting source Node...Ag/Bus 150 —> Transformer

[dMS]Generation DMS plan for isolation NORMALY OPEN SWITCH coordination

Figure 4.17: dMS reasoning upon fault report

66 Simulation and Results Analysis

Figure 4.18: TIEEE123test feeder shortest path grid

Figure 4.19: The reconfiguration achievement summary

4.2 MAS Reconfiguration Approach: Hierarchical Solution 67

To this point, the plan is to close the SW7 and the other switches not including the ones of

faulted isolated zone. By default Line.SW7 is a normally open switch. The reconfiguration is then

achieved and the final result can be shown in 4.20. In order to analzyse the reconfigured grid

scenario, another power flow analysis is trigger for the agents to sense.

Figure 4.20: The reconfiguration shortest-path validation

The reconfiguration cycle is now complete, as a minimum number of customer nodes are non

energized. One way of evaluating the simulation cycles presented is by resorting to the plot results

generated by the OpenDSS. These evaluations are briefly put in the next topic.

The graph in figure 4.21 is refereed to the grid state right after the short-circuit simulation

and when busAgents start the course for reconfiguration reconfiguration in order to change that

state. Figure 4.22 is the second state of the simulation and when dMS start planing to reconfigure.

Figure 4.23 shows the voltage profiles in the of reconfigured grid and lastly in figure 4.24 it is the

power flow intensity depicted.

68 Simulation and Results Analysis

Figure 4.21: Short-circuit results

Figure 4.22: Post zone isolation result

4.2 MAS Reconfiguration Approach: Hierarchical Solution 69

Figure 4.23: Reconfiguration results

70 Simulation and Results Analysis

Figure 4.24: Power flow results

These figures represents all grid states the agents inside the framework were capable of sensing

and reasoning upon gird objects.

4.3 MAS Reconfiguration Approach: Decentralized Solution

The decentralized solution is taken following the same considerations as the hierarchic solution.

It is considered the case scenario in which a fault is simulated for a line near bus 62, as depicted

in Fig. 4.25. The only alteration in comparison to the previous case is the inclusion of agent-agent

interaction to avoid depending on plan executed by dMS.

Figure 4.25: Fault perceptual belief Trigger form decentralized approach

From the start, when a trigger event caring a signal of fault is acquired by agent 62, the imme-

diate response is to run a short-circuit simulation. The trigger is shown in Algorithm 4.3:

begin
[Ag_62]******Fault simulation with line attach to Bus —–>62

[Ag_62]——-*/-/-/– Falt Analysis processing for Bus/BusAgent nº: 62

[initSim]*Line Generated for falt simulation —->Line.L62

4.3 MAS Reconfiguration Approach: Decentralized Solution 71

Algorithm 4.3: callFalt2 belief

1 +callFalt2: true <-

2 .my_name(Me);

3 getBusRealName(RealName)[artifact_id(S)];

4 getFaltLine(FaltLine)[artifact_id(S)];

5 ?zone(BusZone)[artifact_id(S)];

6 .print("******Falt simulation with line Bus Agent ----->",RealName);

7 .send("simulationCall",tell,getFalts2(RealName,FaltLine,BusZone));

The subroutine generates the short circuit-scenario with the same simulation summary result as

shown in Fig. 4.11 page 62. The course of action taken in AgentSpeak is depicted in Algorithm

4.4.

Algorithm 4.4: callFalt2 belief

1 +getFalts2(BusFalt,LineOfFalt,BusZone)[source(G)]: true <-

2 performFalt(BusFalt,LineOfFalt)[artifact_id(ArtId)];

3 +statusSimulation(0,1);

4 stop(_)[artifact_id(ArtId)];

5 getBusData("1",_,_,_,_,BPstring)[artifact_id(ArtId)];

6 .broadcast(tell,senseAgain(BPstring));

A command action, such as ".broadcast(tell,senseAgain(_)) ", gives the agent the power to ac-

knowledge a fault state after short-circuit. What differentiates this approach from the previous one

is when a fault occur the busAgent 62 initiates a speech act between all the agents attached to nor-

mally close switches and ask them to open, instead of recurring to the dMS. The communication

occur as shown below, as illustrated in Fig. 3.17 page 49.

begin
[simulationCall] attempting to Fault restoration by Agents speech Act coordination [simulationCall]

Received request to open switch from [Ag_SW1]

[initSim] switching OFF :Line.SW1phases = 3Bus1 = 150rBus2 = 149...

[simulationCall] Received request to open switch from [Ag_SW2]

[initSim] switching OFF : Line.SW2 phases=3 Bus1=13 Bus2=152 Bus2=135..

[simulationCall] Received request to open switch from [Ag_SW3]

[initSim] switching OFF : Line.SW3 phases=3 Bus1=18 Bus2=135

[simulationCall] Received request to open switch from [Ag_SW4]

[initSim] switching OFF : Line.SW4 phases=3 ..

[simulationCall] Received request to open switch from [Ag_SW5]

[initSim] switching OFF : Line.SW5

[simulationCall] Received request to open switch from [Ag_SW6]

[initSim] switching OFF : New Line.SW6 ..

72 Simulation and Results Analysis

At this point, a suitable scenario is found where the agents achieve a reconfiguration, as illus-

trated in Fig. 4.26. Then after, the agents start communicating with its neighboring agents asking

if they are attached to energized switches. If the response is affirmative, the neighboring switch

is closed, assuming restrictions for the connection are none. These activities go until all possible

zones are energized as illustrated below.

Figure 4.26: Post faulted state

An example of the speech act is demonstrated bellow. It assumes busAgent 149 and 19 (ac-

cording to Fig. 4.27) are close to busAgents and attached to switches (busAgent 150R and 18).

For the first reasoning cycle, all agents ask their neighbors if they are attached to an energized

switch. Considering busAgent 20 close to the busAgent 19 asks if he is close to energized switch.

The cprresponding speech act is depicted as follows:

Figure 4.27: Fault perceptual belief Trigger form decentralized approach

4.3 MAS Reconfiguration Approach: Decentralized Solution 73

begin

[Ag_20] Asking {Ag_19} if neighbors Agents are close to energized switch

[Ag_20] Agent *{Ag_19}* Asked :Are you close to energized switch!?...

[Ag_20] ***Received answer From Agent {Ag_19} : no

Same reasoning circle for the busAgent 1:

begin

[Ag_1] Asking ∗{Ag_7}∗ if neighbors Agents are close to energized switch

[Ag_1] Agent {Ag_3} Asked :Are you close to energized switch!?...

[Ag_1] Agent {Ag_149} Asked :Are you close to energized switch!?...

[Ag_1] Asking ∗{Ag_2}∗ if neighbors Agents are close to energized switch

[Ag_1] Agent {Ag_7} Asked :Are you close to energized switch!?...

[Ag_1] ***Received answer From Agent {Ag_2} : no

[Ag_1] ***Received answer From Agent {Ag_7} : no

[Ag_1] ***Received answer From Agent {Ag_3} : no

[Ag_1] ***Received answer From Agent {Ag_149} : yes

[Ag_1] Asking to close...

[Ag_149] Asking to close...

[simulationCall] Received request to Change Grid state, CLOSE SWITCH, by Agent: {Ag_149}
[initSim] Got a request to close switch

[initSim] Restoring switch starting position> New Line.SW1 phases=3 Bus1=150r Bus2=149....

[simulationCall] »Action Performed Successfully

As the speech act interactions above suggests, the grid is restoring supply at a sequential

manner. Let us analyses what happens in the reasoning cycle where the agent 1 receives the

message that its neighbor is energized in one end of its attached switch. The resulted configuration

is shown in Fig. 4.28.

For the ongoing reasoning cycle the ideas is the same:

74 Simulation and Results Analysis

Figure 4.28: Grid state after first reasoning cycle

begin

[Ag_20] Asking {Ag_19} if neighbors Agents are close to energized switch

[Ag_20] Agent *{Ag_19}* Asked :Are you close to energized switch!?...

[Ag_20] ***Received answer From Agent {Ag_19} : yes

[Ag_1] Asking to close...

[Ag_19] Asking to close...

[simulationCall] Received request to Change Grid state, CLOSE SWITCH, by Agent: {Ag_149}
[initSim] Got a request to close switch

[initSim] Restoring switch starting position> New Line.SW1 phases=3 Bus1=18 Bus2=135....

[simulationCall] »Action Performed Successfully

The grid state at this point is the same illustrate in Fig. 4.29. This acts will continue until the

grid reaches its maximum reconfigurable state. The continuation of these acts will then result in a

reconfigured grid as shown in Fig. 4.30

4.3 MAS Reconfiguration Approach: Decentralized Solution 75

Figure 4.29: Grid state after second reasoning cycle

As the simulation goes, and given the same simulation scenario, the overall results regards the

grid final configuration can be compared to the results obtained in the previous solution, shown in

4.30.

Figure 4.30: Final Grid state

As final remarks one can observe that both approaches provide satisfactory solution either

following centralized or decentralized approach.

76 Simulation and Results Analysis

4.4 Conclusion

In the first section of these chapter, a brief review on the MAS framework basic user interface

functionalities and an idea of how it works. This is follow by an introduction to the MAS building

phase, regarding its first steps from the initiation to an simulated distribution grid environment.

This empathes how agent and artifact coordinate to achieve the integration.

In the following section, consideration on the grid to be analyzed have been made referring

its basic structural data. Proceeding to first simulation case, assuming a hierarchical approach, the

simulation has been conducted by analyzing the capabilities of the application to handle a fault

in a line of the grid environment, where the faulted nearest bus agent is responsible to initiate the

process of reconfiguration.

The ways the agents within the environment handles a fault isolation solution and further a

reconfiguration was by cooperation among busAgents and a dMS agent. The dMS was responsible

to generate a plan that better fits the scenario by utilizing an shortest-path algorithm, resulting in

reconfigured system minimizing the non-customer supply.

To the second solution a different approach is taken where the system no longer rely on a dMS

plan solution to achieve a reconfiguration. In the procedure, busAgents take the lead and do it by

themselves by communicating with neighboring agents, and achieve a reconfigured grid.

Chapter 5

Final Remarks

This chapter completes the thesis by stating its conclusions and giving a series of research topics

to be explored in the future.

5.1 Conclusions

This thesis has been conducted in a context which promotes the use of agent-based technology to

model a smart approach for the purpose of reconfiguration. For that matter, a framework for MAS

that combines three separate state of the art technologies was choosen to suit this purpose: Jason,

CArTaGo, Moise. Also an OpenDSS distribution grid model was integrated in the simulation

platform, including all structures responsible to represent a three-phase distribution grid.

The first proposed approach implemented a centralized model which uses a graph-theoretic

distribution restoration that applies the shortest-path algorithm search technique to find the net-

work topologies capable of minimizing the number of out of service loads. This provides an

optimal solution, that is a restoration plan with minimum switching operations for a restoration

course.

The second proposed approach provided a simple and effective method to handle outage man-

agement and was implemented based on a decentralized model for reconfiguration. The funda-

mental ideas implies on having agents widespread on the network which communicate to ask

permission for zone energization. Power flow calculations with detailed network model are per-

formed to ensure that the network topologies suggested either by the proposed algorithm or the

decentralized approach will be operated within the electrical and operation limits.

5.2 Future Works

This thesis scope is focused on outages and automatic systems, consequently in the followings

future research topics are described and discussed:

1. Aggregate other types of features such as, load shedding, islanding, voltage regulation, in-

tegrate photovoltaic and so forth;

77

78 Final Remarks

2. Another methods an algorithms can be combined with a load shedding scheme to enhances

system capabilities;

3. A comprehensive and detailed relaying system together with a communication system mod-

eling should be investigated in the future.

4. Integrate communications constraints to the model, concerning applied technology, be that

: optical fibber, wirelesses access points (WAPs) or other.

5. Integrate methods to represent a qualitative study of the solutions through service quality

indexes.

79

80 simulationCAll and dMS agents Main functions

Appendix A

simulationCAll and dMS agents Main
functions

Table A.1: simulationCall and dMS Agents Artifact List of Operation

Function Description
@OPERATION init() Initialize artifact operations
@OPERATION start() Instantiate the COM OpenDSS API and Power flow
@OPERATION cmd() Store OPendDSS command written in AgentSpeak
@OPERATION cmdView() Show MAS specific agent behaviour
@OPERATION cmdClear() Clear console
@OPERATION setAgentNumber() Post processing: return number of busses
@OPERATION getAgentName() Post processing: return bus name
@OPERATION getBusData() Post processing: return Bus data object
@OPERATION incSim() Increment simulation cycle
@OPERATION inc() Increment simulation fault count
@OPERATION incClear() clear inc
@OPERATION openALLsw() Open switch actuator
@OPERATION plotGrid() Plot grid
@OPERATION getActionForZone() Actuator: pass OpenDSS command
@OPERATION zoneIsolationActionFor() Actuator: pass OpenDSS command
@OPERATION lineIsolationActionFor() Actuator: pass OpenDSS command
@OPERATION performIsolationPF() Actuator: pass OpenDSS command
@OPERATION performReconPF() Actuator: pass OpenDSS command powerflow
@OPERATION callPlanAPI() Actuator: pass OpenDSS command Power flow
@OPERATION getActionSwtOpen() speech action
@OPERATION generatedPlan() speech action
@OPERATION reconfigurationPF() Actuator: pass OpenDSS command Power flow
@OPERATION performFalt() Actuator: pass OpenDSS command short-circuit
@OPERATION callForIsolationZonePlan() Speech act: for isolation
@INTERNAL_OPERATION void waitIngtime() Internal function to handle thread time internaly
runSimulation() method: post processing power flow simulation handling objects
readFalt() method: CSV file with fault analysis
readLine() method: read line of text file
getCordinate() method: read coordinates OpenDSS file
class LinesDrawing class that implement grid drawing
LinesReverseIsolation() method: restore dss files for new MAS simulation
SwitchConfig() method: handle switch OpenDSS file
SwitchAlloff() method: handle switch OpenDSS file
SwitchConfigRestore() method: restore dss files for new MAS simulation
readZones() method: read text file with zones
getLineOfFalt() method: set fault line
setLineOfFalt() method: get fault line

simulationCAll and dMS agents Main functions 81

Table A.2: Bus Agent Artifact List of Operation

Function Description
@OPERATION init() Initialize artifact operations
@OPERATION incSim() Increment agent fault reasoning cycle
@OPERATION getBusRealName() Increment agent simulation cycle
@OPERATION attachedTo() Actuator: implement speech act action
@OPERATION faltCommunication() Actuator: implement speech act action
@OPERATION isclosetosw() Actuator: implement speech act action
@OPERATION senseCurrents() Actuator: implement sensing feature
@OPERATION senseVoltages() Actuator: implement sensing feature
@OPERATION busPath() Actuator: implement post processing
@OPERATION incClear() clear incSim
@OPERATION inc() clear inc
@OPERATION getZone() Actuator: implement read zone in the environment
@INTERNAL_OPERATION void waitIngtime() Internal function to handle thread time internaly
SwitchRecon2() method: post processing from actuator
randDouble() method: post processing from actuator
readLine() method: read line of text file
readResultfileVolt() method: read line of CSV file
readResultfileCurr() method: read line of CSV file
getNodes() method: read line of grahp file

82 simulationCAll and dMS agents Main functions

Bibliography

[1] CArtAgO. URL: http://cartago.sourceforge.net/.

[2] cartago_by_examples.

[3] Transforming the Grid to Revolutionize Electric Power in North America Transforming the

Grid to Revolutionize Electric Power in North America. 2003.

[4] Amir Abiri-Jahromi, Mahmud Fotuhi-Firuzabad, Masood Parvania, and Mohsen Mosleh.

Optimized Sectionalizing Switch Placement Strategy in Distribution Systems. IEEE Trans-

actions on Power Delivery, 27(1):362–370, 1 2012. URL: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6072299, doi:10.1109/

TPWRD.2011.2171060.

[5] asanti aricci. CArtAgO By Example, volume 2.0.1. 2010.

[6] M.E. Baran and F.F. Wu. Network reconfiguration in distribution systems for loss re-

duction and load balancing. IEEE Transactions on Power Delivery, 4(2):1401–1407,

4 1989. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=25627, doi:10.1109/61.25627.

[7] Carole Bernon, Massimo Cossentino, and Juan Pavón. An Overview of Current Trends in

European AOSE Research. Informatica, 29(4):379–390, 2005.

[8] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea Santi.

JaCaMo Project. URL: http://jacamo.sourceforge.net/.

[9] Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-Seghrouchni, Jorge J.

Gómez-Sanz, João Leite, Gregory M. P. O’Hare, Alexander Pokahr, and Alessandro Ricci.

A Survey of Programming Languages and Platforms for Multi-Agent Systems., 2006.

[10] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming Multi-Agent

Systems in AgentSpeak using Jason. 2007. doi:10.1002/9780470061848.

[11] Michael E Bratman, John Broome, Sarah Paul, and Jeffrey Seidman. Intention, Practical

Rationality, and Self-Governance. Ethics, 119:411–443, 2009.

83

http://cartago.sourceforge.net/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6072299
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6072299
http://dx.doi.org/10.1109/TPWRD.2011.2171060
http://dx.doi.org/10.1109/TPWRD.2011.2171060
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=25627
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=25627
http://dx.doi.org/10.1109/61.25627
http://jacamo.sourceforge.net/
http://dx.doi.org/10.1002/9780470061848

84 BIBLIOGRAPHY

[12] PROFFITT BRIAN. What APIs Are And Why They’re Important. URL: http://

readwrite.com/2013/09/19/api-defined/.

[13] buraq group. scada network. URL: https://www.csiac.org/journal-

article/the-efficacy-and-challenges-of-scada-and-smart-grid-

integration/.

[14] Hong-Chan Chang and Cheng-Chien Kuo. Network reconfiguration in distribution

systems using simulated annealing. Electric Power Systems Research, 29(3):227–

238, 5 1994. URL: http://linkinghub.elsevier.com/retrieve/pii/

0378779694900183, doi:10.1016/0378-7796(94)90018-3.

[15] H.-D. Chiang and R. Jean-Jumeau. Optimal network reconfigurations in distribution sys-

tems. I. A new formulation and a solution methodology. IEEE Transactions on Power

Delivery, 5(4):1902–1909, 1990. URL: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=103687, doi:10.1109/61.103687.

[16] Chiou J Chang C Su C. Variable Scaling Hybrid Differential Evolution for Solving Net-

work Reconfiguration of Distribution Systems. IEEE Transactions on Power Systems,

2005. URL: ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

1425559, doi:10.1109/TPWRS.2005.846096.

[17] Gordon R. Clarke, Deon. Reynders, and Edwin Wright. Practical modern SCADA protocols

DNP3, 60870.5 and related systems. Elsevier, 2004.

[18] Consortium of Electric Infrastructure to Support a Digital Society (CEIDS).

Overview of IntelliGrid Architecture. URL: http://www.intelligrid.info/

IntelliGrid{_}Architecture/Overview{_}Guidelines/Frm{_}Overview.

htm.

[19] Edvard Csanyi. Important Primary Distribution (Radial and Loop) System Considerations.

URL: http://electrical-engineering-portal.com/author/edvard.

[20] Distribution System Analysis Subcommittee. IEEE 123 Node Test Feeder Letterhead.

[21] Don Von Dollen, Joe Hughes, and Paul Haase. INTELIGRID : A Smart Net-

work of Power. EPRI Journal, page 32, 2005. URL: http://mydocs.

epri.com/docs/CorporateDocuments/EPRI{_}Journal/2005-Fall/

1012885{_}IntelliGrid.pdf.

[22] Roger C Dugan. Reference Guide The Open Distribution System Simulator (OpenDSS).

2013.

[23] Venizelos Efthymiou, George Huitema, and et. al. The Digital Energy System 4.0.

ETP SG, page 72, 2016. URL: http://www.smartgrids.eu/documents/

http://readwrite.com/2013/09/19/api-defined/
http://readwrite.com/2013/09/19/api-defined/
https://www.csiac.org/journal-article/the-efficacy-and-challenges-of-scada-and-smart-grid-integration/
https://www.csiac.org/journal-article/the-efficacy-and-challenges-of-scada-and-smart-grid-integration/
https://www.csiac.org/journal-article/the-efficacy-and-challenges-of-scada-and-smart-grid-integration/
http://linkinghub.elsevier.com/retrieve/pii/0378779694900183
http://linkinghub.elsevier.com/retrieve/pii/0378779694900183
http://dx.doi.org/10.1016/0378-7796(94)90018-3
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=103687
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=103687
http://dx.doi.org/10.1109/61.103687
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1425559
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1425559
http://dx.doi.org/10.1109/TPWRS.2005.846096
http://www.intelligrid.info/IntelliGrid{_}Architecture/Overview{_}Guidelines/Frm{_}Overview.htm
http://www.intelligrid.info/IntelliGrid{_}Architecture/Overview{_}Guidelines/Frm{_}Overview.htm
http://www.intelligrid.info/IntelliGrid{_}Architecture/Overview{_}Guidelines/Frm{_}Overview.htm
http://electrical-engineering-portal.com/author/edvard
http://mydocs.epri.com/docs/CorporateDocuments/EPRI{_}Journal/2005-Fall/1012885{_}IntelliGrid.pdf
http://mydocs.epri.com/docs/CorporateDocuments/EPRI{_}Journal/2005-Fall/1012885{_}IntelliGrid.pdf
http://mydocs.epri.com/docs/CorporateDocuments/EPRI{_}Journal/2005-Fall/1012885{_}IntelliGrid.pdf
http://www.smartgrids.eu/documents/ETP{%}20SG{%}20Digital{%}20Energy{%}20System{%}204.0{%}202016.pdf
http://www.smartgrids.eu/documents/ETP{%}20SG{%}20Digital{%}20Energy{%}20System{%}204.0{%}202016.pdf

BIBLIOGRAPHY 85

ETP{%}20SG{%}20Digital{%}20Energy{%}20System{%}204.0{%}202016.

pdf.

[24] Electric Power Research Institute. Simulation Tool – OpenDSS. URL: http://

smartgrid.epri.com/SimulationTool.aspx.

[25] European Technology and Innovation Platform (ETIP). National and Regional Smart

Grids initiatives in Europe. European Technology and Innovation Platform (ETIP),

2(Second Edition):52, 2016. URL: http://www.smartgrids.eu/documents/

ETP{%}20SG{%}20National{%}20Platforms{%}20Catalogue{%}202016{%}20edition.

pdf.

[26] European Technology Platform. Smart Grids European Technology Platform. URL: http:

//www.smartgrids.eu/.

[27] M. Ferdowsi, A. Lowen, P. McKeever, A. Monti, F. Ponci, and A. Benigni. New mon-

itoring approach for distribution systems. In 2014 IEEE International Instrumentation

and Measurement Technology Conference (I2MTC) Proceedings, pages 1506–1511. IEEE,

5 2014. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6860997, doi:10.1109/I2MTC.2014.6860997.

[28] T. Finin. The KQML Language. URL: http://www.csee.umbc.edu/csee/

research/kqml/papers/desiderata-acl/section3.4.html.

[29] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML as an agent com-

munication language. In Proceedings of the third international conference on Information

and knowledge management - CIKM ’94, pages 456–463, New York, New York, USA,

1994. ACM Press. URL: http://portal.acm.org/citation.cfm?doid=191246.

191322, doi:10.1145/191246.191322.

[30] FIPA. FIPA Agent Communication specifications, 2016. URL: http://www.fipa.org/

repository/aclspecs.html.

[31] FIPA TC Agent Management. FIPA ACL Message Representation in XML Specification,

2002. URL: http://www.fipa.org/specs/fipa00071/SC00071E.html.

[32] project graphstream. Dijkstra’s Shortest Path Algorithm. URL: http://graphstream-

project.org/doc/Algorithms/Shortest-path/Dijkstra/1.0/.

[33] Guozheng Han, Bingyin Xu, and Jiale Suonan. IEC 61850-Based Feeder Terminal Unit Mod-

eling and Mapping to IEC 60870-5-104. IEEE Transactions on Power Delivery, 27(4):2046–

2053, 10 2012. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6293924, doi:10.1109/TPWRD.2012.2209685.

http://www.smartgrids.eu/documents/ETP{%}20SG{%}20Digital{%}20Energy{%}20System{%}204.0{%}202016.pdf
http://www.smartgrids.eu/documents/ETP{%}20SG{%}20Digital{%}20Energy{%}20System{%}204.0{%}202016.pdf
http://www.smartgrids.eu/documents/ETP{%}20SG{%}20Digital{%}20Energy{%}20System{%}204.0{%}202016.pdf
http://smartgrid.epri.com/SimulationTool.aspx
http://smartgrid.epri.com/SimulationTool.aspx
http://www.smartgrids.eu/documents/ETP{%}20SG{%}20National{%}20Platforms{%}20Catalogue{%}202016{%}20edition.pdf
http://www.smartgrids.eu/documents/ETP{%}20SG{%}20National{%}20Platforms{%}20Catalogue{%}202016{%}20edition.pdf
http://www.smartgrids.eu/documents/ETP{%}20SG{%}20National{%}20Platforms{%}20Catalogue{%}202016{%}20edition.pdf
http://www.smartgrids.eu/
http://www.smartgrids.eu/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6860997
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6860997
http://dx.doi.org/10.1109/I2MTC.2014.6860997
http://www.csee.umbc.edu/csee/research/kqml/papers/desiderata-acl/section3.4.html
http://www.csee.umbc.edu/csee/research/kqml/papers/desiderata-acl/section3.4.html
http://portal.acm.org/citation.cfm?doid=191246.191322
http://portal.acm.org/citation.cfm?doid=191246.191322
http://dx.doi.org/10.1145/191246.191322
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/specs/fipa00071/SC00071E.html
http://graphstream-project.org/doc/Algorithms/Shortest-path/Dijkstra/1.0/
http://graphstream-project.org/doc/Algorithms/Shortest-path/Dijkstra/1.0/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6293924
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6293924
http://dx.doi.org/10.1109/TPWRD.2012.2209685

86 BIBLIOGRAPHY

[34] Barbara Hayes-Roth and Frederick Hayes-Roth. A Cognitive Model of Planning*. Cog-

nitive Science, 3(4):275–310, 10 1979. URL: http://doi.wiley.com/10.1207/

s15516709cog0304{_}1, doi:10.1207/s15516709cog0304{_}1.

[35] Peter G. Hinman. Fundamentals of mathematical logic. A.K. Peters, 2005.

[36] Wilfrid. Hodges. A shorter model theory. Cambridge University Press, 1997.

[37] Ian Sommerville. Centralized Control, 2008. URL: https://ifs.host.

cs.st-andrews.ac.uk/Books/SE9/Web/Architecture/ArchPatterns/

CentralControl.html.

[38] Diego Issicaba, João Abel Peças Lopes, Mauro Augusto da Rosa, and Senior Researcher.

Block-Oriented Agent-Based Architecture to Support the Power Distribution System Opera-

tion System Design and Environment Model. 2013.

[39] J. F. Hübner, O. Boissier, and A. Ricci R. Kitio. Instrumenting multi-agent organisations

with organisational artifacts and agents: “giving the organisational power back to the agents.

Journal of Autonomous Agents and Multi-Agent Systems, 20(3):369–400, 2010.

[40] M.A. Kashem, V. Ganapathy, and G.B. Jasmon. Network reconfiguration for load balanc-

ing in distribution networks. IEE Proceedings - Generation, Transmission and Distribu-

tion, 146(6):563, 1999. URL: http://digital-library.theiet.org/content/

journals/10.1049/ip-gtd{_}19990694, doi:10.1049/ip-gtd:19990694.

[41] Abdollah Kavousi-Fard, Taher Niknam, and Mahmud Fotuhi-Firuzabad. A Novel

Stochastic Framework Based on Cloud Theory and-Modified Bat Algorithm to Solve

the Distribution Feeder Reconfiguration. IEEE Transactions on Smart Grid, 7(2):1–

1, 2015. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=7123178, doi:10.1109/TSG.2015.2434844.

[42] Johan Kensby and Rasmus Olsson. Building Automation Systems Design Guidelines for

Systems with Complex Requirements.

[43] Edwin Bernard Kurtz, Thomas M. Shoemaker, and James E. (Engineer) Mack. The lineman’s

and cableman’s handbook. McGraw-Hill, New York, 9th edition, 1997.

[44] Matheus Lopes. M. IEEE123testfederForAR, 2016. URL: https://github.com/

matheusmlopess/matheusmlopess/blob/master/IEEE123testfederForAR.

[45] Ahmad Reza Malekpour, Taher Niknam, Anil Pahwa, and Abdollah Kavousi Fard. Multi

objective Stochastic Distribution Feeder Reconfiguration in Systems With Wind Power Gen-

erators and Fuel Cells Using the Point Estimate Method. IEEE Transactions on Power Sys-

tems, 28(2):1492, 5 2013. URL: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6338327, doi:10.1109.2012.2218261.

http://doi.wiley.com/10.1207/s15516709cog0304{_}1
http://doi.wiley.com/10.1207/s15516709cog0304{_}1
http://dx.doi.org/10.1207/s15516709cog0304{_}1
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Architecture/ArchPatterns/CentralControl.html
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Architecture/ArchPatterns/CentralControl.html
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Architecture/ArchPatterns/CentralControl.html
http://digital-library.theiet.org/content/journals/10.1049/ip-gtd{_}19990694
http://digital-library.theiet.org/content/journals/10.1049/ip-gtd{_}19990694
http://dx.doi.org/10.1049/ip-gtd:19990694
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7123178
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7123178
http://dx.doi.org/10.1109/TSG.2015.2434844
https://github.com/matheusmlopess/matheusmlopess/blob/master/IEEE123testfederForAR
https://github.com/matheusmlopess/matheusmlopess/blob/master/IEEE123testfederForAR
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6338327
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6338327
http://dx.doi.org/10.1109.2012.2218261

BIBLIOGRAPHY 87

[46] Stephen D. J. McArthur, Euan M. Davidson, Victoria M. Catterson, Aris L. Dimeas, Nikos D.

Hatziargyriou, Ferdinanda Ponci, and Toshihisa Funabashi. Multi-Agent Systems for Power

Engineering Applications—Part I: Concepts, Approaches, and Technical Challenges. IEEE

Transactions on Power Systems, 22(4):1743–1752, 11 2007. URL: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4349106, doi:10.1109/

TPWRS.2007.908471.

[47] Stephen D. J. McArthur, Euan M. Davidson, Victoria M. Catterson, Aris L. Dimeas,

Nikos D. Hatziargyriou, Ferdinanda Ponci, and Toshihisa Funabashi. Multi-Agent Sys-

tems for Power Engineering Applications—Part II: Technologies, Standards, and Tools for

Building Multi-agent Systems. IEEE Transactions on Power Systems, 22(4):1753–1759,

11 2007. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4349107, doi:10.1109/TPWRS.2007.908472.

[48] Hugh J. McCann and M. E. Bratman. Intention, Plans, and Practical Reason. Noûs,

25(2):230, 4 1991. URL: http://www.jstor.org/stable/2215590?origin=

crossref, doi:10.2307/2215590.

[49] Elliott. Mendelson. Introduction to mathematical logic. CRC Press, 2010.

[50] Alexandre Mendes, Natashia Boland, Patrick Guiney, and Carlos Riveros. Switch and Tap-

Changer Reconfiguration of Distribution Networks Using Evolutionary Algorithms. IEEE

Transactions on Power Systems, 28(1):85–92, 2 2013. URL: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6203628, doi:10.1109/

TPWRS.2012.2194516.

[51] Jefferson Morais, Yomara Pires, Claudomir Cardoso, and Aldebaro Klautau. An Overview

of Data Mining Techniques Applied to Power Systems.

[52] Moxa Newsletter. Power Automation. URL: http://www.moxa.com/Event/Sys/

2009/IEC{_}61850-3/Application.htm.

[53] Muaz Niazi and Amir Hussain. Agent-based computing from multi-agent sys-

tems to agent-based models: a visual survey. Scientometrics, 89(2):479–499, 11

2011. URL: http://link.springer.com/10.1007/s11192-011-0468-9, doi:

10.1007/s11192-011-0468-9.

[54] James. Northcote-Green and Robert Wilson. Control and automation of electrical power

distribution systems. Taylor & Francis, 2007.

[55] Ricardo Pastor, Dag Eirik Nordgård, and et. al. Progress and Chal-

lenges on Asset Management for Future Smart Grids WORKING

GROUP 1: NETWORK OPERATION AND ASSETS 2016. ETP SG,

page 16, 2016. URL: http://www.smartgrids.eu/documents/

ETP{%}20SG{_}Asset{%}20Management{_}White{%}20Paper{_}2016.pdf.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4349106
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4349106
http://dx.doi.org/10.1109/TPWRS.2007.908471
http://dx.doi.org/10.1109/TPWRS.2007.908471
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4349107
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4349107
http://dx.doi.org/10.1109/TPWRS.2007.908472
http://www.jstor.org/stable/2215590?origin=crossref
http://www.jstor.org/stable/2215590?origin=crossref
http://dx.doi.org/10.2307/2215590
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6203628
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6203628
http://dx.doi.org/10.1109/TPWRS.2012.2194516
http://dx.doi.org/10.1109/TPWRS.2012.2194516
http://www.moxa.com/Event/Sys/2009/IEC{_}61850-3/Application.htm
http://www.moxa.com/Event/Sys/2009/IEC{_}61850-3/Application.htm
http://link.springer.com/10.1007/s11192-011-0468-9
http://dx.doi.org/10.1007/s11192-011-0468-9
http://dx.doi.org/10.1007/s11192-011-0468-9
http://www.smartgrids.eu/documents/ETP{%}20SG{_}Asset{%}20Management{_}White{%}20Paper{_}2016.pdf
http://www.smartgrids.eu/documents/ETP{%}20SG{_}Asset{%}20Management{_}White{%}20Paper{_}2016.pdf

88 BIBLIOGRAPHY

[56] Luciano L. Pfitscher, Daniel P. Bernardon, Luciane N. Canha, Vinicius F. Montagner,

Lorenzo Comasseto, and Maicon S. Ramos. Studies on parallelism of feeders for automatic

reconfiguration of distribution networks. In 2012 47th International Universities Power En-

gineering Conference (UPEC), pages 1–5. IEEE, 9 2012. URL: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6398413, doi:10.1109/

UPEC.2012.6398413.

[57] K. Prasad, R. Ranjan, N.C. Sahoo, and A. Chaturvedi. Optimal Reconfiguration of

Radial Distribution Systems Using a Fuzzy Mutated Genetic Algorithm. IEEE Trans-

actions on Power Delivery, 20(2):1211–1213, 4 2005. URL: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1413376, doi:10.1109/

TPWRD.2005.844245.

[58] A. Santi Ricci and M. Piunti. Action and perception in multi-agent programming languages:

From exogenous to endogenous environments. In In Proceedings of International Workshop

on Programming Multi-Agent Systems (ProMAS-8), 2010.

[59] Richard C. Dorf. The Electrical Engineering Handbook,Second Edition. CRC

Press LLC, 2 edition, 1997. URL: https://books.google.com.br/books?id=

qP7HvuakLgEC{&}redir{_}esc=y.

[60] David D P E Roybal. Primary and Secondary Electrical Distribution Systems Eaton Electrical

Cutler-Hammer Products. 2006.

[61] Daniel M. Russell. Planning and understanding: A computational approach

to human reasoning. Artificial Intelligence, 23(2):239–242, 7 1984. URL:

http://linkinghub.elsevier.com/retrieve/pii/0004370284900110,

doi:10.1016/0004-3702(84)90011-0.

[62] Stuart J. (Stuart Jonathan) Russell, Peter Norvig, and John. Canny. Artificial intelligence : a

modern approach. Prentice Hall, Upper Saddle River, New Jersey, 2nd edition, 2003. URL:

http://aima.cs.berkeley.edu/.

[63] Tomaas. Salamon. Design of agent-based models : developing computer simulations for

a better understanding of social processes. Tomas Bruckner, Repin, 2011. URL: http:

//www.designofagentbasedmodels.info/.

[64] Neil. Sclater and John E. Traister. Handbook of electrical design details. McGraw-Hill,

2003.

[65] Jason Sexauer and Opendss User. New User Primer The Open Distribution System Simulator

(OpenDSS). 2012.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6398413
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6398413
http://dx.doi.org/10.1109/UPEC.2012.6398413
http://dx.doi.org/10.1109/UPEC.2012.6398413
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1413376
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1413376
http://dx.doi.org/10.1109/TPWRD.2005.844245
http://dx.doi.org/10.1109/TPWRD.2005.844245
https://books.google.com.br/books?id=qP7HvuakLgEC{&}redir{_}esc=y
https://books.google.com.br/books?id=qP7HvuakLgEC{&}redir{_}esc=y
http://linkinghub.elsevier.com/retrieve/pii/0004370284900110
http://dx.doi.org/10.1016/0004-3702(84)90011-0
http://aima.cs.berkeley.edu/
http://www.designofagentbasedmodels.info/
http://www.designofagentbasedmodels.info/

BIBLIOGRAPHY 89

[66] R. O. Sinnott, D. W. Chadwick, T. Doherty, D. Martin, A. Stell, G. Stewart, L. Su, and J. Watt.

Advanced Security for Virtual Organizations: The Pros and Cons of Centralized vs Decen-

tralized Security Models. In 2008 Eighth IEEE International Symposium on Cluster Comput-

ing and the Grid (CCGRID), pages 106–113. IEEE, 5 2008. URL: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4534208, doi:10.1109/

CCGRID.2008.67.

[67] Ben Lithgow Smith, Valentina Tamma, and Michael Wooldridge. AN ONTOLOGY FOR

COORDINATION. doi:10.1080/08839514.2011.553376.

[68] D.M. Staszesky, D. Craig, and C. Befus. Advanced feeder automation is here. IEEE

Power and Energy Magazine, 3(5):56–63, 9 2005. URL: http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=1507027, doi:10.1109/MPAE.

2005.1507027.

[69] Michael Stevens. Programming paradigms and an overview of C - COMP3610 - Principles

of Programming Languages: Object-Oriented programming. Australian National University,

2011. URL: http://cs.anu.edu.au/.

[70] Ramadoni Syahputra, Imam Robandi, and Mochamad Ashari. Reconfiguration of dis-

tribution network with DG using fuzzy multi-objective method. In 2012 International

Conference on Innovation Management and Technology Research, pages 316–321. IEEE,

5 2012. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6236410, doi:10.1109/ICIMTR.2012.6236410.

[71] Joshua A. Taylor and Franz S. Hover. Convex Models of Distribution Sys-

tem Reconfiguration. IEEE Transactions on Power Systems, 27(3):1407–1413, 8

2012. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6153415, doi:10.1109/TPWRS.2012.2184307.

[72] graphstream Team. Graphstream, 2016. URL: http://graphstream-project.org/.

[73] The Eclipse Foundation. Eclipse Technology. URL: https://eclipse.org/.

[74] T. S. Ustun, C. Ozansoy, and A. Zayegh. Extending IEC 61850-7-420 for distributed gen-

erators with fault current limiters. In 2011 IEEE PES Innovative Smart Grid Technologies,

pages 1–8. IEEE, 11 2011. URL: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6167079, doi:10.1109/ISGT-Asia.2011.6167079.

[75] T.S. Ustun, C. Ozansoy, and A. Zayegh. Distributed Energy Resources (DER) object model-

ing with IEC 61850–7–420, 2011.

[76] Valeriy Vyatkin, Gulnara Zhabelova, Neil Higgins, Karlheinz Schwarz, and Nirmal-

Kumar C Nair. Towards intelligent Smart Grid devices with IEC 61850 Interoperabil-

ity and IEC 61499 open control architecture. In IEEE PES T&D 2010, pages 1–8.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4534208
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4534208
http://dx.doi.org/10.1109/CCGRID.2008.67
http://dx.doi.org/10.1109/CCGRID.2008.67
http://dx.doi.org/10.1080/08839514.2011.553376
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1507027
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1507027
http://dx.doi.org/10.1109/MPAE.2005.1507027
http://dx.doi.org/10.1109/MPAE.2005.1507027
http://cs.anu.edu.au/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6236410
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6236410
http://dx.doi.org/10.1109/ICIMTR.2012.6236410
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6153415
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6153415
http://dx.doi.org/10.1109/TPWRS.2012.2184307
http://graphstream-project.org/
https://eclipse.org/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6167079
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6167079
http://dx.doi.org/10.1109/ISGT-Asia.2011.6167079

90 BIBLIOGRAPHY

IEEE, 2010. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5484272, doi:10.1109/TDC.2010.5484272.

[77] J. Wang, Pedro M. S. Carvalho, and J. Kirtley. Emergency reconfiguration and distribution

system planning under the Single-Contingency Policy. In 2012 IEEE PES Innovative Smart

Grid Technologies (ISGT), pages 1–5. IEEE, 1 2012. URL: http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=6175678, doi:10.1109/ISGT.

2012.6175678.

[78] Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class abstrac-

tion in multiagent systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–30, 10

2006. URL: http://link.springer.com/10.1007/s10458-006-0012-0, doi:

10.1007/s10458-006-0012-0.

[79] Michael J. Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.

[80] Felix F Wu, Khosrow Moslehi, and Anjan Bose. Power System Control Centers: Past,

Present, and Future. doi:10.1109/JPROC.2005.857499.

[81] Lin Zhu, Dongyuan Shi, and Xianzhong Duan. Standard Function Blocks for Flexible

IED in IEC 61850-Based Substation Automation. IEEE Transactions on Power Delivery,

26(2):1101–1110, 4 2011. URL: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=5674123, doi:10.1109/TPWRD.2010.2091154.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5484272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5484272
http://dx.doi.org/10.1109/TDC.2010.5484272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6175678
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6175678
http://dx.doi.org/10.1109/ISGT.2012.6175678
http://dx.doi.org/10.1109/ISGT.2012.6175678
http://link.springer.com/10.1007/s10458-006-0012-0
http://dx.doi.org/10.1007/s10458-006-0012-0
http://dx.doi.org/10.1007/s10458-006-0012-0
http://dx.doi.org/10.1109/JPROC.2005.857499
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5674123
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5674123
http://dx.doi.org/10.1109/TPWRD.2010.2091154

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Subject background
	1.2 Objectives
	1.3 Document Structure

	2 State of the art
	2.1 Power Distribution Systems
	2.1.1 Reconfiguration Problem
	2.1.2 Automation and IEC 61850

	2.2 Agent-Based Systems
	2.2.1 Basic Concepts and Definitions
	2.2.2 The BDI Architecture and The Procedural Reasoning System
	2.2.3 Agent Programming Languages and Development Environments
	2.2.4 Agent Communication
	2.2.5 MAS applications to Power Engineering

	2.3 Conclusion

	3 Developed Approach
	3.1 System Component and MAS Modeling
	3.1.1 Distribution Grid Modeling
	3.1.2 The JaCaMo MAS Modeling

	3.2 MAS Capabilities and Agent Plans Towards Reconfiguration
	3.2.1 MAS Structure for Automatic Configuration
	3.2.2 Agent Plans for Automatic Reconfiguration

	3.3 Final Remarks

	4 Simulation and Results Analysis
	4.1 MAS Initialization and building phase
	4.2 MAS Reconfiguration Approach: Hierarchical Solution
	4.3 MAS Reconfiguration Approach: Decentralized Solution
	4.4 Conclusion

	5 Final Remarks
	5.1 Conclusions
	5.2 Future Works

	A simulationCAll and dMS agents Main functions

