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Abstract

Throughout the years, dilute magnetic semiconductors (DMS) have emerged as promising

materials for semiconductor-based spintronics. In particular, (Ga,Mn)As has become the

model system in which to explore the physics of carrier-mediated ferromagnetism in semi-

conductors and the associated spintronic phenomena, with a number of interesting func-

tionalities and demonstrated proof-of-concept devices. It constitutes the perfect example of

how the magnetic behavior of DMS materials is strongly influenced by local structure.

In this thesis, we address key aspects of the interplay between local structure and ferromag-

netism of (Ga,Mn)As. We unambiguously identify the lattice site occupied by interstitial Mn

as the tetrahedral interstitial site with As nearest neighbors TAs. We show, furthermore, that

the TAs is the most energetically favorable site regardless of the interstitial atom forming or

not complexes with substitutional Mn. We also evaluate the thermal stability of both inter-

stitial and substitutional Mn sites occupied by Mn for two representative Mn concentrations

(1% and 5%), and its influence on the material’s structure and magnetism. We show that

compared to the substitutional Mn, interstitial Mn becomes mobile at lower temperatures,

for both low (1%) and high (5%) Mn concentration. Moreover, the diffusion temperatures

are lower for the high concentration than for the low concentration case. These diffusion

temperatures are concentration dependent, with aggregation of impurities occurring for the

high concentration at lower temperatures than for the low concentration. These findings

translate into two key conclusions: at typical growth temperatures (200-300◦C) the inter-

stitial Mn is mobile for high concentration (5%) but not for low concentration (1%); and

substitutional Mn impurities become mobile in a temperature regime that is well below what

has been previously reported. We also observe a decrease in the activation energy for

the diffusion of both substitutional and interstitial impurities with increasing Mn concentra-

tion. This decrease has a different origin for each case: for substitutional diffusion, with

activation energies of 2.3-2.6 eV at 1% Mn to 1.9-2.0 eV at 5% Mn, a vacancy-assisted

mechanism occurs that is favored with increasing impurity concentration; for interstitial

diffusion, with activation energies of 1.5-2.1 eV at 1% Mn to 1.3-1.8 eV at 5% Mn, as

charge screening effects become stronger with increasing Mn (and consequently carrier)
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concentration, interstitial Mn defects are effectively “neutralized”, and therefore experience

lower migration barriers. Additionally, we conducted a comprehensive study of the local

structure and magnetism in the different diffusion regimes. We show that annealing at 200◦C

promotes the passivation of the interstitial Mn for 5% Mn (Ga,Mn)As, as an increase in TC

and magnetization is observed. No improvement is observed in the 1% Mn case, which

can be understood from the absence of interstitial impurities incorporated during growth for

this concentration regime. Annealing at 300◦C induces the precipitation of Mn into Mn-rich

regions for both concentrations studied, with no signs of ferromagnetism. Finally, annealing

at 600◦C led to the formation of well-defined secondary-phases in both concentrations,

consistent essentially of superparamagnetic MnAs nanoclusters of two types: zincblende

and hexagonal NiAs-type.

The results presented in this thesis are direct evidence for the complex interplay between

the local structure and the carrier-mediated ferromagnetism present in this DMS system.

It constitutes an important step in the understanding of the fundamental physics behind

(Ga,Mn)As, motivating a wider investigation of other dilute magnetic semiconductors within

the III-Mn-V family.

Key-words

Dilute magnetic semiconductors; GaAs; Mn; Emission Channeling; local structure; mag-

netism; ferromagnetism; superparamagnetism; secondary-phase; clusters; doping; im-

purities; lattice location; phase-segregation; diffusion; X-ray diffraction; extended X-ray

absorption fine structure; magnetometry.



Resumo

Ao longo dos anos, semicondutores magnéticos diluídos (DMS) aparecem como materiais

promissores para a spintrónica baseada em semicondutores. Em particular, (Ga,Mn)As

tornou-se o sistema modelo no qual explorar a física do ferromagnetismo mediado por por-

tadores de carga em semicondutores e entre outros fenómenos associados à spintrónica,

com uma panóplia de funcionalidades interessantes e dispositivos prototípicos. Este mate-

rial constitui o exemplo perfeito de como o comportamento magnético de materiais DMS é

fortemente influenciado pela sua estrutura local.

Nesta tese, abordam-se aspetos sobre a interação entre a estrutura local e o ferromag-

netism do (Ga,Mn)As. Em primeira mão, identifica-se inequivocamente a posição ocu-

pada pelo intersticial de Mn na rede cristalográfica como sendo uma posição intersticial

coordenada tetraedricamente por átomos de As TAs. Mostra-se, ainda, que esta posição

TAs é a posição mais energeticamente favorável, independentemente do interstitial formar

complexos com o substitucional ou não. Em segunda mão, averigua-se a estabilidade

térmica das impurezas de Mn em ambas as posições substitucional e intersticial para duas

concentrações representativas (1% and 5%). Verifica-se que os intersticiais de Mn tornam-

se móveis a temperaturas mais baixas que o substitucional, para ambas as concentrações.

Por outro lado, demonstra-se ainda que as temperaturas de difusão para a mais alta

concentração são inferiores às de menor concentração. Estas temperaturas de difusão

são então dependentes da concentração, verificando-se que a agregação das impurezas

ocorre a temperaturas inferiores para a maior concentração de Mn que para a menor. Duas

conclusões chave podem ser daqui retiradas: a temperaturas típicas de crescimento deste

material (200-300◦C) o Mn intersticial é móvel para a alta concentração (5%) contrariamente

à baixa concentração (1%); e o Mn substitucional começa a difundir num regime de tem-

peraturas bastante inferior ao relatado na literatura. Observa-se ainda um decréscimo na

energia de ativação com o aumento da concentração de Mn, para a difusão de ambas as

impurezas substitucionais e intersticiais. Este decréscimo tem diferentes origens: no caso

da difusão do Mn substitucional, com energias de ativação de 2.3-2.6 eV para 1% Mn e 1.9-

2.0 eV para 5% Mn, o aumento de concentração favorece a difusão assistida por lacunas
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de Ga; no caso da difusão do Mn intersticial, com energias de ativação de 1.5-2.1 eV para

1% Mn w 1.3-1.8 eV para 5% Mn, o aumento da concentração (e consequentemente dos

portadores de carga) favorece efeitos de blindagem elétrica (charge screening), em que

a energia de migração do Mn intersticial decresce devido à “neutralização” da sua carga.

Por último, realizou-se um estudo compreensivo sobre a estrutura local e o magnetismo

em diferentes regimes de difusão. Mostra-se que um recozimento térmico a 200◦C leva

à passivação do Mn interstitial no caso da maior concentração de Mn (5%), através do

aumento da TC e da magnetização. Tal aumento não ocorre para concentração de 1% de

Mn, devido à ausência de Mn intersticial incorporado durante o crescimento das amostras

neste regime de concentrações. Realizando um recozimento térmico à temperatura de

300◦C verifica-se uma precipitação das impurezas em regiões ricas em Mn em ambas

as concentrações estudadas, aniquilando o ferromagnetismo. Uma última temperatura

de recozimento térmico foi realizada a 600◦C, na qual se verifica a formação de fases

secundárias bem definas em ambas as concentrações. Estas fases secundárias consistem

essencialmente em aglomerados de MnAs superparamagnéticos de dois tipos: zincblende

e hexagonal do tipo NiAs.

Os resultados apresentados nesta tese são prova direta das complexas interações exis-

tentes entre a estrutura local e o ferromagnetismo mediados por portadores de carga pre-

sentes neste semicondutor magnético diluído. Consistem assim num passo importante na

compreensão dos princípios físicos fundamentais por detrás do (Ga,Mn)As e motivam uma

investigação mais abrangente direcionada a outros semicondutores magnéticos diluídos

semelhantes, dentro da família dos III-Mn-V.

Palavras-chave

Semicondutores magnéticos diluídos; GaAs; Mn; Emission Channeling; estrutura local;

magnetismo; ferromagnetismo; superparamagnetismo; fases secundárias; aglomerados;

dopagem magnética; impurezas; lattice location; segragação de fase; difusão; difração de

raios-X; espectrografia de absorção de raios-X; magnetometria.



Contents

Acknowledgments v

Abstract vii

Key-words (EN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Resumo ix

Palavras-chave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Contents xi

List of Figures xvi

List of Tables xvii

Glossary xix

Preface xxi

Introduction xxiii

1 Literature Review 1

1.1 Dilute Magnetic Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 History of dilute magnetic semiconductors . . . . . . . . . . . . . . . . 2

xi



xii CONTENTS

1.2 Structure and magnetism of Mn-doped GaAs . . . . . . . . . . . . . . . . . . 5

1.2.1 Ferromagnetic interactions in Mn-doped GaAs . . . . . . . . . . . . . 6

1.2.2 Compensation by interstitial Mn . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2.1 Lattice Location . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Mn aggregation and secondary phases formation . . . . . . . . . . . . 11

2 Objectives and outline 13

3 Experimental techniques 15

3.1 Synchrotron Radiation X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . 15

3.2 Electron Emission Channeling . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Angular resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.4 Data analysis procedures . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4.1 Manybeam calculations . . . . . . . . . . . . . . . . . . . . . 21

3.2.4.2 Fitting procedures . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4.3 Scattered electron background correction . . . . . . . . . . . 24

3.2.5 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Superconducting Quantum Interference Device magnetometry . . . . . . . . 25

4 Results and discussion 27

4.1 Identification of the interstitial Mn site . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Interstitial Mn site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.3 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3.1 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS xiii

4.1.3.2 Saturation magnetization and TC . . . . . . . . . . . . . . . . 33

4.1.3.3 Estimation of the interstitial fraction . . . . . . . . . . . . . . 34

4.1.4 Damage recovery upon annealing . . . . . . . . . . . . . . . . . . . . 35

4.1.5 Interstitial site stability: TAs vs. TGa . . . . . . . . . . . . . . . . . . . 36

4.2 Stability and diffusion of Mn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Lattice location and thermal stability . . . . . . . . . . . . . . . . . . . 42

4.2.2.1 Lattice location . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2.2 Thermal stability . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2.3 Secondary-phases and re-implantation . . . . . . . . . . . . 43

4.2.3 Diffusion of Mn impurities . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3.1 Interstitial diffusion . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3.2 Substitutional diffusion . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Implications on the understanding of the structure and magnetism of

(Ga,Mn)As . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Correlating local structure and magnetism . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Sample description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Structural characterization . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2.1 Synchrotron radiation X-ray diffraction (SR-XRD) . . . . . . . 56

4.3.2.2 Extended X-ray absorption fine structure (EXAFS) . . . . . . 58

4.3.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Ferromagnetic regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3.2 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3.3 Concentration dependence . . . . . . . . . . . . . . . . . . . 64



xiv CONTENTS

4.3.4 Secondary-phase regime . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4.2 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.4.3 Concentration dependence . . . . . . . . . . . . . . . . . . . 69

5 Conclusion 71

Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Publications 75

Bibliography 77



List of Figures

1.1 Number of publications per year in the DMS field . . . . . . . . . . . . . . . . 3

1.2 Impurity lattice sites in the GaAs host matrix . . . . . . . . . . . . . . . . . . . 10

3.1 Schematic representation of channeling and blocking effects for substitu-

tional versus interstitial electron emitter impurity . . . . . . . . . . . . . . . . . 18

3.2 Emission Channeling EC-SLI chamber schematics . . . . . . . . . . . . . . . 19

3.3 Simulated channeling patterns for 56Mn in substitutional and interstitial sites

in the GaAs zincblende structure . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Experimental β− emission patterns of experiment B after thermal annealing

and simulated patterns for 56Mn on both interstitial sites . . . . . . . . . . . . 30

4.2 Fractions of 56Mn atoms on SGa and TAs sites in experiments A and B; χ2 map 31

4.3 Mn dimers on the (001) GaAs surface . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Magnetization measurements on (Ga,Mn)As doped with 6% Mn . . . . . . . 34

4.5 Fractions of 73As impurity atoms in SAs sites in experiments C and D . . . . . 36

4.6 Experimental β− emission patterns of experiment C before thermal annealing

and best fits of theoretical patterns . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Representation of the relevant Mni sites and coordination . . . . . . . . . . . 38

4.8 Fitted fractions of implanted 56Mn and 73As probes on (Ga,Mn)As samples

doped with different concentrations of Mn . . . . . . . . . . . . . . . . . . . . 43

4.9 Different interstitial diffusion mechanisms . . . . . . . . . . . . . . . . . . . . 47

4.10 Substitutional diffusion mechanisms in (Ga,Mn)As . . . . . . . . . . . . . . . 52

xv



xvi LIST OF FIGURES

4.11 Reciprocal space maps near the (002) reflections in the 5% Mn (Ga,Mn)As

annealed at different temperatures . . . . . . . . . . . . . . . . . . . . . . . . 57

4.12 SR-HRXRD measurements around the (002) peak of GaAs on (Ga,Mn)As . . 58

4.13 SR-GIXRD measurements (Ga,Mn)As samples . . . . . . . . . . . . . . . . . 59

4.14 Fourier transform of the EXAFS spectra . . . . . . . . . . . . . . . . . . . . . 60

4.15 EXAFS analysis: Mn-As NN distance and DW factor . . . . . . . . . . . . . . 61

4.16 Magnetization measurements for as-grown and 200◦C air annealed 1% (Ga,Mn)As 63

4.17 Magnetization measurements for as-grown and 200◦C air annealed 5% (Ga,Mn)As 64

4.18 Magnetization measurements for as-grown and annealed at 200◦C (Ga,Mn)As 65

4.19 Magnetization measurements for 300◦C and 600◦C annealed 1% (Ga,Mn)As 68

4.20 Magnetization measurements for 300◦C and 600◦C annealed 5% (Ga,Mn)As 69

4.21 Magnetization measurements for 300◦C and 600◦C annealed (Ga,Mn)As . . . 70



List of Tables

4.1 Summary of the experimental details of experiments A, B, C and D . . . . . . 28

4.2 Saturation magnetization along four non-equivalent directions at 5 K in (Ga,Mn)As

annealed at 200◦C in air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Experimental details for 6% Mn (Ga,Mn)As as-grown and annealed at 200◦C 35

4.4 Estimated activation energies for interstitial Mn diffusion . . . . . . . . . . . . 49

4.5 Estimated activation energies for substitutional Mn diffusion . . . . . . . . . . 51

xvii



xviii LIST OF TABLES



Glossary

ADF Annular dark field

CERN Centre Européen pour la Recherche Nucléaire

DFT Density function theory

DMS Dilute magnetic semiconductor

DOS Density of states

DW Debye-Waller

EC Emission channeling

ESRF European Synchrotron Radiation Facility

EXAFS Extended x-ray absorption fine structure

FC Field cool

FET Field effect transistor

FM Ferromagnetic

FWHM Full width at half maximum

GIXRD Grazing-incidence diffraction

GMR Giant magnetoresistance

HDD Hard-drive disk

HRXRD High-resolution x-ray diffraction

IB Impurity band

LED Light emitting diode

LT-MBE Low-temperature molecular beam epitaxy

MIT Metal-to-insulator transition

MTJ Magnetic tunnel junction

NRA Nuclear reaction analysis

NN Nearest neighbor

PIXE particle-induce x-ray emission

RBS Rutherford backscattering

RKKY Ruderman-Kittel-Kasuya-Yosida

SQUID Superconducting quantum interference device

xix



xx Glossary

SP Secondary-phase

SPM Superparamagnetic

SR-XRD Synchrotron radiation x-ray diffraction

STEM Scanning transmission electron microscopy

TEM Transmission electron microscopy

XAFS X-ray absorption spectroscopy

XAFS X-ray absorption fine structure

XRD X-ray diffraction

ZB Zincblende

ZFC Zero-field cool



Preface

This thesis is the result of experimental research performed at the Instituut voor Kern-en

Stralingfysika of KULeuven and is the culminating point of the author’s Integrated Masters

on Engineering Physics, taught at the Faculty of Sciences of the University of Porto. It

was developed under the supervision of Dr. Lino Pereira (lino.pereira@fys.kuleuven.be),

Prof. Dr. João Pedro Araújo (jearaujo@fc.up.pt), and Prof. Dr. Kristiaan Temst (kristi-

aan.temst@fys.kuleuven.be), integrated in the joint research efforts of IFIMUP–IN in Porto,

Portugal and IKS in Leuven, Belgium.

In the first three chapters the field of diluted magnetic semiconductors is introduced, along

with an outline of the research performed in the framework of this MSc. Chapter 4 presents

the results obtained for this research and their subsequent analysis. At the end of the thesis,

a general conclusion summarizes the results and discusses their implications on the future

of the field.

xxi



xxii Preface



Introduction

“In a marriage of quantum physics, information theory, and nanoscale engineering,

quantum information science endeavors to build machines that can use the power

of quantum mechanics for practical purposes.”

– David D. Awschalom, 2013 [1]

Since the dawn of the humanity, information has been one of the main drives of evolution.

Sharing information has led to the creation of numerous languages over time, ever in the

way of improving communication between ourselves. For millenia communication between

us was of a short-range, requiring a message carrier in order to communicate over long

distances, eventually taking days or weeks to deliver a message. In the last century(ies)

we have reached a stage where communication has surpassed these physical boundaries,

nowadays enabling the sharing of incredibly vast amounts of information, accessible by a

simple touch. Digital communication has become a pillar of modern society.

Digital communication only became possible due to the technological advances on electron-

ics. The unceasingly increasing amount of transistors in the last 50 years, packed by billions

in very small integrated circuits or chips, led to the outstanding speed and performance

of every modern electronic device. Processing speed and integration density of silicon

chips has been increasing exponentially, doubling every eighteen months according to

Moore’s law. However, physical limits are being reached as currently used materials are

reaching their functional limits. In other words, the use of electron charge and its transport

in conventional electronics, the very same principles as in the first transistor created fifty

years ago, is reaching a cul-de-sac.

A possible solution comes in upgrading electronics by introducing an additional degree of

freedom, such as the electron spin. By using two fundamental properties of the electron

or simply by using spin alone, spintronics promises a new generation of devices with var-

ious advantages over conventional electronics: non-volatile and faster operating devices,

increased integration densities and reduced power consumption along with new ways of

xxiii
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processing information [2]. Some examples of spintronic devices are spin-polarized LEDs,

spin-field effect transistors (FETs), and spin-based qubits for quantum computing [1].

Spintronics first emerged in 1988, upon the discovery of the giant magnetoresistance

(GMR) effect in spin-valve structures by Albert Fert and Peter Grünberg, which earned

them the Nobel Prize in Physics in 2007. GMR-based spin-valves quickly made their

way into our daily lives in the form of read heads of hard-disks (HDD), revolutionizing

data storage technology. These GMR-based spin-valves were quickly replaced in the

read-heads of HDDs by magnetic tunnel junctions (MTJ), which are based on the tunnel

magnetoresistance effect. These systems are operated in a very close proximity to the

spin-valves, with a main difference of using a thin insulator spacer instead of a metallic one.

In spite of revolutionizing data storage technology, this first generation of spintronics (mag-

netoelectronics) has created a bottleneck in the way current devices manage information:

data is stored in metal-based magnetic devices, while data processing takes place in

semiconductor-based electronic devices. The data exchange between these two units

costs time and energy, which could be saved if data storage and processing would be

integrated in the same device. However, semiconductors currently used in integrated

circuits, transistors and lasers, consist mainly of silicon (Si), gallium arsenide (GaAs) and

gallium nitride (GaN) – which are non-magnetic materials – while, on the other hand, digital

storage devices resort to ferromagnetic materials such as iron (Fe), cobalt (Co) and nickel

(Ni) – non-semiconducting materials. Furthermore, combining the two types of materials

into a functional heterostructure has been proven to be difficult due to the different crystal

structures of magnetic materials and semiconductor materials [3]. The alternative is then to

use materials which combine ferromagnetic and semiconducting behavior [4], i.e. evolving

from metal-based to semiconductor-based spintronics.

Dilute magnetic semiconductors emerge as a pioneering development in semiconductor-

based spintronics: in a similar fashion to electrical doping in insulating or nearly insulating

materials to make them conducting, incorporating magnetic ions into non-magnetic semi-

conductors so that they become ferromagnetic. With already 30 years of an exciting history,

generation after generation of ever increasing Curie temperature, dilute magnetic semi-

conductors have captured the attention of the semiconductor and magnetism communities.

Promising and yet puzzling developments, with hundreds of publications every year, led the

field to be considered as one of the most controversial research topics in material science

and condensed-matter physics today.



1 Literature Review

This chapter introduces the field of dilute magnetic semiconductors (dms) and more specifi-

cally the properties of narrow-gap DMS (Ga,Mn)As. A short motivation and definition of the

field is presented in section 1.1.1, followed by an overview of the history of DMS research

motivating the work presented in this thesis (section 1.1.2). In the last section 1.2 we

describe the current understanding on structure and magnetism of (Ga,Mn)As.

1.1 Dilute Magnetic Semiconductors

1.1.1 Definition

Magnetic semiconductors are materials in which ferromagnetism coexists with semicon-

ducting behavior and have been studied since the 1960s. The first generation is considered

by most the true ferromagnetic semiconductors consisting of materials containing magnetic

elements in their chemical formula, in which the ferromagnetic order is established in the

magnetic (periodic) sublattice. These materials were extensively studied from late 1960s

to early 1970s, manifesting various interesting properties, such as red-shift of the bandgap

upon the onset of ferromagnetic order, but their crystal structures are incompatible with

conventional electronics. Additionally, the synthesis of these materials is rather unwieldy

and difficult to reproduce. The low Curie temperatures (TC < 100 K) make them of little

use in practical applications, which require a ferromagnetic behavior persistent up to typical

device operation temperatures (room temperature and above).

Dilute magnetic semiconductors (dms) are magnetic semiconductors in which ferromag-

netism is introduced by incorporating magnetic atoms into nonmagnetic semiconductors, in

similarity with electrical doping, which makes insulating materials conducting by incorporat-

ing donor and acceptor impurities. In these materials, magnetic impurities are distributed

randomly, substituting a few percent of the atoms in the host matrix of the nonmagnetic

semiconductor. Accordingly, a magnetic impurity is an atom or ion of an element which is

different from the host’s constituents and carries a non-vanishing magnetic moment. The

1
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magnetic moments may originate, e.g. in unfilled 3d or 4f shells of transition metals and

rare earths, respectively.

Dilute magnetic semiconductors can be divided into two classes: intrinsic and non-intrinsic.

These are dependent on two conditions that define the usefulness of the DMS material:

(i) the localized magnetic moments must order ferromagnetically and this ordering must

be attained up to typical operation temperatures (room temperature and above); (ii) the

ferromagnetic state is associated with spintronic functionality, e.g. spin-polarized carri-

ers and electric field control of magnetization. However, efficient spin-polarization of the

carriers requires that these must be involved in the order mechanism (carrier-mediated

ferromagnetism), automatically excluding materials in which the ferromagnetic order and the

semiconductor bands are independent of each other, as is the case of materials composed

of small ferromagnetic precipitates embedded in the semiconductor matrix.

Therefore, intrinsic DMS materials exhibits a random incorporation of magnetic impurities

while in non-intrinsic DMS materials these impurities segregate into impurity-rich regions or

even in secondary phases.

1.1.2 History of dilute magnetic semiconductors

The first generation of diluted magnetic semiconductors emerged in the early 1980s and

consisted of Mn-doped II-VI alloys of the form A1-xMxB, such as Cd1-xMnxTe and Hg1-xMnxTe

(cf. white region in figure 1.1 on the facing page). These materials were very attractive

for their easily tunable lattice and band parameters, suitable for heterostructure devices,

as well as their very efficient Mn-related electroluminescence, appealing for optoelectronic

applications [5]. Despite these alluring properties these materials were dominated by anti-

ferromagnetic superexchange, leading to antiferromagnetic or spin-glass ordering.

A decade later, in the early 1990s (highlighted light gray in figure 1.1 on the next page),

the development of nonequilibrium epitaxial growth using low-temperature molecular beam

epitaxy (lt-mbe) allowed to overcome the low solubility of transition metal impurities in III–V

semiconductors, leading to the first boom in the area of Diluted Magnetic Semiconductors.

This second generation of DMS materials consisted mainly of narrow-gap III-V semicon-

ductors, such as InAs and GaAs which are well established materials widely used in the

electronics and optoelectronics industries with a wide range of applications. In 1992, Ohno

et al. discovered ferromagnetism up to 35 K in Mn-doped InAs (In1-xMnxAs) grown by

LT-MBE [6] eventually leading to the development of Mn-doped GaAs (Ga1-xMnxAs), with

even higher Curie temperatures [7]. The Mn impurities introduced in these semiconductors
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Figure 1.1: Number of publications per year, obtained from "Web of Science" using
the keywords "magnetic" and "semiconductor" in the search field Topic (black curve)
and using "(Ga,Mn)As" and "dms" (dark-gray curve). The white region corresponds to
a period where the first generation of diluted magnetic semiconductors emerged. The
gray regions indicate the two following generations of DMS materials, with the rise of
narrow-gap and wide-gap DMS materials, respectively.

act as acceptors, substituting for the group III elements. With high Mn concentrations (up

to x ∼ 0.10), a high concentration of free holes is present, mediating the ferromagnetic

interaction between the localized Mn moments. This carrier-mediated ferromagnetism in

In1-xMnxAs and Ga1-xMnxAs opened the door to new studies on spin-based phenomena in

semiconductor devices, such as spin-polarized light emission [8] and electrical and optical

control of the magnetization [9, 10]. Furthermore, Ga1-xMnxAs is considered one of the

best candidates for technological implementation of DMS materials due to the strong tech-

nological background on GaAs, its higher Curie temperature (around 200 K) [11, 12, 13, 14]

compared to In1-xMnxAs (90 K) [15], and due to its diverse interesting functionalities deriving

from its carrier-mediated ferromagnetism and demonstrated in various proof-of-concept

devices [16]. Despite major development over the last (almost) 20 years, further increase

in Curie temperature faces difficult technical challenges [11, 17].

In the turning of the century, a new type of DMS materials turns up leading to the boom

highlighted in dark gray in figure 1.1. While narrow-gap materials such as Mn-doped

GaAs and InAs continued to be intensively studied, a third generation of DMS materials

emerged in the last decade with the prediction of high-temperature ferromagnetism in wide-
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gap oxides and nitrides, such as ZnO and GaN, doped with 3d transition metals. The

main difference between this new generation and the previous is the bandgap of the host

semiconductor: InAs and GaAs are narrow-gap semiconductors while ZnO and GaN are

wide-gap semiconductors. Based on the p-d Zener model, Dietl et al. predicted that highly

p-type Mn-doped ZnO and GaN could attain a TC above room temperature [18]. Soon after,

the first reports on high temperature ferromagnetism emerged, the first being Co-doped

TiO2 by Matsumoto et al. [19] and calculations of stable high-temperature ferromagnetism

in ZnO by Sato et al [20]. These materials were already intensively studied for their

exquisite properties as semiconductors and led to a wide array of applications in electronics

(e.g. transparent electrodes and thin film transistors), piezoeletronics (e.g. self-powered

nanofibers) and optoelectronics (e.g. LEDs, field emitters). The prediction that these same

materials would be suited to display high-temperature ferromagnetism was a surprise and

extended their range of applicability to spintronics, therefore propelling the research on

wide-gap DMS. Extensive investigations were performed by various groups in order to find

the conditions under which room-temperature ferromagnetism emerged leading to a rapidly

growing number of reports of wide-gap DMS materials at and above room temperature (cf.

reviews [21, 22, 23]), in particular, materials like Co- and Mn-doped ZnO and Mn- and Fe-

doped GaN which exhibited ferromagnetism even in the absence of additional doping and

are highly compatible with existing semiconductor heterostructure technology [24]. However

none of these findings have been confirmed and reproduced by other groups and none has

resulted in the demonstration of a device structure working at room temperature. Issues

of irreproducibility and instability became evident, with the origin of the ferromagnetism

highly debated, resulting in the identification of a number of non-intrinsic sources for the

observable room-temperature ferromagnetism: contamination [25, 26], measurement ar-

tifacts [25, 26], and formation of ferromagnetic precipitates [27, 28]. Moreover, various

comprehensive studies on carefully characterized materials with respect to phase purity

found only paramagnetism [29, 30], antiferromagnetic interactions [31, 32, 33, 34], or at

best ferromagnetic order with very low TC (e.g. TC < 10 K in Mn-doped GaN [35]).

On the present day, the DMS field can be divided between narrow- and wide-gap materials.

While narrow-gap DMS materials, such as Mn-doped InAs and GaAs, are widely accepted

to exhibit intrinsic carrier-mediated ferromagnetism, their Curie temperature remains well

below room temperature. Wide-gap DMS materials appear to exhibit ferromagnetic be-

havior at and above room temperature, but its origin and usefulness are highly contested.

Understanding and devising ways to improve the TC on narrow-gap DMS materials, while

understanding the origin and conditions under which high-temperature ferromagnetism in

wide-gap DMS materials constitute major challenges in the DMS field.
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A series of accomplishments in this field accounts, to a large extent, for spreading of

spintronic research over virtually all materials families, such as derivatives of FeAs-based

superconductors, e.g. (K,Ba)(Zn,Mn,Fe)2As2 [36], high Néel temperature semiconductors,

e.g. LiMnAs [37] and topological insulators, in which ferromagnetism might be mediated by

Dirac electrons, e.g. (Bi,Mn)2Te3 [38].

“ However, independently of the progress in achieving a high-TC system, (Ga,Mn)As

and related compounds (...) will continue to constitute an important playground for

exploring novel phenomena, functionalities, and concepts at the intersection of

semiconductor physics and magnetism.”

– Tomasz Dietl, Hideo Ohno, 2014 [39]

1.2 Structure and magnetism of Mn-doped GaAs

The ternary III–V semiconductor (Ga,Mn)As, combining semiconducting properties with

magnetism, has become a representative diluted magnetic semiconductor giving rise to

a possible integration of electronic and magnetoelectronic devices prospective for future

spintronic applications [39, 40, 41]. As one the most widely studied DMS, (Ga,Mn)As is the

perfect example of how the magnetic behavior of DMS materials is strongly influenced by

local structure.

In typical high Curie temperature (Ga,Mn)As thin films (several % Mn regime) the majority

of the Mn impurity atoms substitute for Ga atoms (Mns), while a minority fraction occu-

pies interstitial sites (Mni) [17, 42]. Substitutional Mn impurities provide both the localized

magnetic moment and the itinerant holes that mediate the magnetic coupling, whereas

interstitial Mn impurities have a twofold compensating effect: (i) magnetic, as there is an

antiferromagnetic coupling between Mni and Mns pairs through a superexchange interac-

tion, and (ii) electric, since double donor Mni compensates Mns acceptors [17, 43, 44, 45].

Another compensating impurity that may be present in high-TC (Ga,Mn)As thin films is the

Arsenic antisite (AsGa) [46, 47], where As atoms occupy Ga substitutional sites. This defect

is formed during growth by low-temperature molecular beam epitaxy (LT-MBE). The AsGa

antisites are stable up to ∼ 450oC [48], which is well above the transition temperature from

a uniform diluted magnetic semiconductor to a multiphase structure with metallic MnAs

and other precipitates. Therefore, the number of AsGa defects has to be minimized during

MBE growth, by precisely controlling the stoichiometry of deposited epilayers [47]. On the

other hand, the Mni impurity concentration can be significant in as-grown structures, with an
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increasing fractions for higher Mn concentrations [17, 44]. It has however, a higher mobility

than the antisites and can be removed by low temperature annealing [44, 49].

As we will see through out this thesis, the magneto-electronic behavior of (Ga,Mn) As is

defined mainly by the concentration of Mn impurities: the self compensation by Mni for a

given Mns concentration determines the hole concentration, the Fermi level and the effective

Mns concentration (of non-compensated Mns moments). The existence of such a crucial

role of Mni is clearly reflected in the effect of Mni concentration on the two figures of merit:

Curie temperature (TC) and magnetization [14, 17, 42]. However, the exact dependency is

still subject of debate [14, 39, 41, 42], which is directly linked to the debate on the basic

mechanisms of magnetic interaction in Mn-doped III-V DMS (valence-band p-d exchange

versus impurity-band d-d superexchange) [39, 41, 42, 50]. Ultimately, the balance between

Mni and Mns concentrations may in fact determine which of the two mechanisms dominates

in a given (Ga,Mn)As film.

1.2.1 Ferromagnetic interactions in Mn-doped GaAs

Two fundamentally opposing theoretical points of view have developed over the years of

researching (Ga,Mn)As: the mean-field Zener model and the impurity band model.

The Zener model was first proposed in 1951 by Clarence Zener [51] as a model for the role

of band carriers in promoting ferromagnetic ordering between localized spins in magnetic

metals. By the sp-d exchange coupling to the localized spins, the spin subbands split

forcing a redistribution of the carriers and thus lowering their energy allowing for ferromag-

netic ordering to emerge. In accordance to the Ruderman-Kittel-Kasuya-Yosida (RKKY)

quantum mechanical treatment, the sign of the resulting interaction between localized spins

oscillates with the spin-spin distance, indicating that the RKKY and Zener models are

equivalent within the continuous and mean-field approximation [52]. These approximations

are valid as long as the period of RKKY oscillations R = π/kF is large compared to an

average distance between localized spins. Hence, for DMS systems the mean-field Zener

model reveals itself as a simpler approach, as for these materials the distance between the

carriers is of the same magnitude as the distance between spins, i.e. p . xN0, where p

is the carrier density, x the impurity concentration and N0 the number of impurity atoms.

Microscopic models of the electronic structure of metallic (Ga,Mn)As assert a localized

character of the five Mns d orbitals forming a moment S = 5/2 and describe hole states

in the valence band using the Kohn-Luttinger parameterization for GaAs [53] and a single

constant Jpd which characterizes the exchange interaction between Mns and hole spins.
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The exchange interaction follows from hybridization between Mn d orbitals and valence

band p orbitals. Accordingly, and in particular in (Ga,Mn)As, holes are considerably more

efficient in mediating spin-dependent interactions between localized spins, due to a higher

density of states (DOS) and to larger exchange coupling to Mn spins. In other words,

by coupling with a localized Mn 3d5 moment, a 2p valence band hole will become spin-

polarized, and since holes are weakly localized in the (Ga,Mn)As lattice they’ll interact with

other Mn moments, leading to ferromagnetic ordering [18]. This approach was shown to

successfully describe a number of properties observed in ferromagnetic dms, in particular

in (Ga,Mn)As. These properties are the ferromagnetic transition temperature TC , predicted

to increase monotonically with effective Mn concentration xeff and with carrier density with

no fundamental limit to TC below room temperature, magnetization, spin polarization of the

hole liquid and magneto-crystalline anisotropy with its strain and temperature dependence,

amongst others (cf. reviews [16, 39, 41]).

In particular, the effect of strain on magnetic anisotropy in (Ga,Mn)As can be tuned by using

different substrates and buffer layers in (Ga,Mn)As films leading to an in-plane or out-of-

plane magnetic anisotropy [54]. In some cases, uniaxial anisotropy is also present in-plane

between the [100] and the [110] directions and even between crystallographically equivalent

axes ([110] and [110]) [55, 56].

The impurity band model states that the magnetism is mediated by localized impurity-

derived states [49]. In this picture, and within the relevant hole concentration range, the

impurity band and valence bands are not merged, and the Fermi level is located within

the impurity band (IB) and, therefore, TC will depend on the localization of these states:

states in the center of the IB are extended and maximize TC , while states towards the top

or bottom of the IB are more localized, reducing TC . In other words, the 3d holes that lie

in the IB hop between the localized Mn impurities, mediating the ferromagnetic ordering

between the latter. In this model, the Curie temperature is independent of the effective Mn

concentration while, ironically, the presence of interstitial Mn impurities is essential for the

localization of the Fermi level inside the impurity band.

In fact, Dobrowolska et al [42], by combining ion channeling measurements with magneti-

zation, transport and magneto-optical data, observed a non-monotonic variation of TC up

to a rather high nominal concentration of Mn in (Ga,Mn)As, consistent with the IB model.

However, this effect was only studied in the insulator side of the metal-to-insulator transition

(MIT) and was soon contested by other groups. In a more recent review, Wang et al [14],

armed with nearly the same analysis techniques, disputed the results of the latter report,

by demonstrating that the carrier density in annealed (Ga,Mn)As films can be compared
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to the substitutional Mn acceptor concentration, i.e. in weakly compensated systems, with

weakly confined holes, TC and electrical conductivity do not tend to zero. This report is not

consistent with the picture of a Fermi level located in an isolated impurity band, but with the

previously well established p-d Zener model.

1.2.2 Compensation by interstitial Mn

Despite this central role in understanding the magnetism in (Ga,Mn)As, and consequently of

Mn-doped III-V DMS materials, interstitial Mn is far from being a well understood defect. As

seen in the previous section, TC increases with effective Mn concentration, which takes into

account the balance between the fractions of Mn substituting for Ga (Mns) and on the inter-

stitial sites (Mni). Mns is responsible for the localized magnetic moments and the itinerant

holes that mediate the ferromagnetic coupling, whereas Mni has a two-fold compensation

effect: magnetic, as Mni couples antiferromagnetically with Mns, and electrical, since double

donor Mni compensates Mns acceptors. As a result, the effective concentration xeff of Mn

impurities that effectively contributes to the observable ferromagnetism in (Ga,Mn)As, is

smaller than the nominal concentration x by twice the Mni concentration xi, xeff = x− 2xi.

Accordingly, the hole concentration p should be smaller or of the order of this effective

concentration, p . x− 2xi.

Despite the Mn concentration that can be incorporated in high-quality (Ga,Mn)As has been

increased throughout the years up to 20%, TC saturates at ∼ 200 K for concentrations

x = 10% [57]. The highest TC and p values achieved in (Ga,Mn)As are obtained after

annealing close to growth temperature, around ∼ 200◦C [11, 58]. Transport measurements

have shown a partial activation by annealing that results from the out-diffusion of a com-

pensating defect with a low thermal stability, with an activation energy of Ea = 0.7 eV

[44]. This report was supported by ab initio calculations yielding similar activation energy

for Mni [17, 44]. In fact, by annealing around this temperature the Mni diffuses to the

surface where it is passivated, partaking in the formation of a antiferromagnetic MnO thin

film [13, 44, 59] or an MnAs monolayer, if the surface is capped with an As layer [60].

However, a significant fraction of the introduced Mn still remains inactive, as xeff < x and

p < x after annealing. It became generally accepted that Mni was the low temperature

diffuser, establishing the belief that pure substitutional Mn doping can be achieved by low

temperature (∼ 200◦C) thermal annealing. Since then, research focused on increasing the

concentration of magnetically active Mn in order to achieve TC above room temperature,

however facing technical challenges in achieving concentrations beyond x ≈ 0.10 with

maximum TC = 185 K [11, 14, 17].
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Overcoming this solubility limit with alternate growth and/or post-processing methods would

unlock the possibility of increasing TC above the current maximum, allowing for the realiza-

tion of possible room temperature ferromagnetism in Ga1-xMnxAs.

1.2.2.1 Lattice Location

There are several interstitial sites in the zincblende structure of GaAs – tetrahedral(T),

bond centered (BC), anti-bonding (AB) among others (cf. figure 1.2 on the following page).

Experimental techniques commonly used to identify lattice sites of impurities in crystalline

solids are either based on channeling of charged particles (ions or electrons) or on probing

the atomic environment of the impurity atom, e.g. in X-ray absorption fine structure (XAFS)

techniques.

The first reports on Mn impurities lattice location are on pure Ga-substitutional incorpo-

ration (by XAFS [61]) and mixed Ga-substitutional and T interstitial occupancy (by ion

channeling [62] and XAFS [63]), with the majority of the atoms in substitutional sites.

Although consistent with Mni occupying tetrahedral (T) interstitial sites, the measurements

did not allow to discriminate between the two nonequivalent T sites in zincblende GaAS:

coordinated by four Ga atoms (TGa) or by four As atoms (TAs) [64, 65]. More recently,

xafs experiments confirmed the mixed occupancy and identified the TGa interstitial site

[66, 67]. On the theoretical side, ab initio calculations yielded lower energy for Mn in

TAs sites compared to TGa [44], which is consistent with the expectation of having the Mn

cations coordinated by As anions. However, XAFS is not well suited to distinguish elements

with similar atomic numbers, as is the case for Ga and As, especially in cases of multi-site

occupancy (substitutional and interstitial) where the site to be identified is in fact the minority

one (interstitial). Transmission electron microscopy measurements using (002) diffracted

beam indicated that the Mni predominantly occupy the TAs site [46]. Pioneering work using

X-ray scattering techniques to probe dopant lattice location reported comparable TGa and

TAs occupancies [68, 69, 70]. Coexisting TGa and TAs occupancies would suggest that the

Mni lattice site depends on the presence of neighboring Mns atoms, i.e. that isolated Mni

and Mni in Mni-Mns pairs occupy different T sites. This is however in contradiction with

density functional theory (DFT) calculations which predicted that, for typical ferromagnetic

(Ga,Mn)As samples (where the Mns concentration is the large majority over that of Mni),

TAs is the most stable site for Mni regardless of being isolated, in Mni-Mns pairs, or even in

Mns-Mni-Mns triplets [71].

Solving this inconsistency would allow for a better understanding of the mechanisms of
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Figure 1.2: The {110} plane in GaAs zincblende lattice, showing the following sites: the
substitutional Ga (SGa) and As (SAs) sites; the tetrahedral interstitial sites with Ga (TGa)
and As (TAs) nearest neighbors; interstitial sites along the <111> direction, i.e. the
bond center (BC), antibonding Ga (ABGa), antibonding As (ABAs), and the hexagonal
site (H); and the interstitial sites along the <100> direction, in either Ga or As rows,
i.e. the split interstitials (SPGa and SPAs), the "C" sites with C2v symmetry (CGa and
CAs), and the "Y" sites (YGa and YAs). Along the <100>, <111>, <110> and <211>
directions, the rows of Ga and As atoms are indicated (lines), as the rows of the TGa
and TAs sites (dashed lines). Note that, along the <111> direction, the substitutional
(SGa and SAs) and tetrahedral interstitial (TGa and TAS) sites are all located on the same
row; along the <100> direction, SGa is on the same row as TAs, and SAs is on the same
row as TGa.

electric and magnetic compensation by Mni which, as introduced above, plays a central role

in the behavior of (Ga,Mn)As. Establishing the lattice location of Mn in (Ga,Mn)As requires

the use of a technique which can unambiguously distinguish the two T sites. In fact, the

Emission Channeling technique is uniquely suited to address this problem (cf. section 3.2

on page 16), and was used in a recent study on GaAs in the very low concentration regime

(x < 0.05 at. %) with different doping (undoped, p-type and n-type) [65, 64] to identify the

lattice location and thermal stability of Mn impurities. In these reports, the Mn impurities

were found to occupy mainly the substitutional site with a fraction on the TAs interstitial

site. This interstitial diffuses around 400◦C, by converting into substitutional Mn, a much

higher temperature than reported in literature [44, 17]. However, these experiments were
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performed on GaAs within the very low Mn doping regime (x < 0.05 at. %), which has a

different local structure than (Ga,Mn)As, i.e. the presence of a higher concentration of Mn

impurities might have a strong influence in the diffusion and stability of interstitial Mn.

1.2.3 Mn aggregation and secondary phases formation

As mentioned above, annealing Mn-doped GaAs at ∼ 200 ◦C typically increases TC . How-

ever, comparing TC after thermal annealing at temperatures between 160◦C and 220◦C, it

was found that TC actually decreases with increasing annealing temperature [11]. Further

increasing the annealing temperature (> 280◦C) eventually leads to an actual decrease

of TC . This is indicative of a second occurring process, with an activation energy slightly

above that of the out-diffusion of the compensating defect. This second process has been

suggested to be related to Mn aggregation (or segregation). It is however unclear what

type of aggregation it is, i.e. whether it is only chemical or also structural. Ion-channeling

experiments have shown that part of the substitutional Mn converts to a random fraction

at 282◦C, most likely due to cluster formation [62]. This indicates that phase segregation

starts already at relatively low temperatures. Ab initio studies on the substitutional Mn

diffusion have shown that Ga vacancies act as an efficient trap for Mns to diffuse and

that the clustering rate increases along temperature and/or Mn concentration, effectively

decreasing TC [72]. Furthermore, at large Mn concentrations clustering takes place already

during sample growth.

On the other hand, by annealing at relatively high temperatures (> 500◦C) the precip-

itation of Mn impurities onto a MnAs secondary phase becomes evident [73]. Based

on high-resolution X-ray diffraction (HRXRD) and grazing-incidence diffraction (GIXRD) it

was reported the co-existence of two different types of MnAs secondary phases [74] in

samples annealed at 700 ◦C (Ga,Mn)As: small, coherent with GaAs matrix, zincblende

(ZB) MnAs nanoclusters – chemical segregation – and bigger, lattice-distorting, NiAs–type

(hexagonal) MnAs nanoclusters – consistent with chemical and structural segregation. In

the following years, these two types of clusters have been extensively characterized [75, 76,

77, 78]. Transmission electron microscopy (TEM) experiments [77] and X-ray absorption

spectroscopy (XAS) [79] have shown that upon thermal annealing at 500 ◦C, only Mn-rich

zincblende (Mn,Ga)As clusters (∼ 3 nm) are formed which are coherent with the GaAs

matrix. These coherent (Mn,Ga)As nanoclusters were shown to be ferromagnetic above

room temperature, with a TC ∼ 360 K, as the local concentration of Mn reaches the expected

x ∼ 20%, that would allow for (Ga,Mn)As to be ferromagnetic at room temperature as

well. Annealing at 600◦C has been demonstrated to lead to the precipitation of well defined
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hexagonal NiAs–type MnAs nanoclusters [75, 76, 77, 78]. While these nanoclusters are

significantly bigger (20 – 45 nm) than the ZB nanoclusters (3 – 8 nm), they are strained in the

GaAs structure and also display ferromagnetism, however with a lower Curie temperature

(TC ∼ 300 K). Using aberration-corrected tem and aberration-corrected annular dark-field

(ADF) STEM it was shown that when annealing (Ga,Mn)As thin films at temperatures above

400◦C both ZB and NiAs–type nanoclusters form along with adjacent As nanocrystals and

voids [80, 81]. On another study, the presence of nanoclusters in (Ga,Mn)As was shown

to increase in two orders of magnitude the coercivity of the material without significantly

reducing TC [82].

All in all, in order to efficiently obtain high-TC (Ga,Mn)As thin films the growth temperature

must be decreased as Mn concentration increases [17, 83], in order to avoid secondary

phase formation.

“The case of (Ga,Mn)As is an optimistic reminder that the complex defect physics

of these systems is an opportunity not a warning. The magnetic properties of any

diluted magnetic semiconductor ferromagnet can be improved by understanding

and learning to control defects.”

– A. MacDonald, P. Schiffer and N. Samarth, 2005 [84]



2 Objectives and outline

This work addresses the current goals and challenges facing the narrow-gap DMS field,

and in particular the research on (Ga,Mn)As ferromagnetic thin films, which were described

in section 1.2. The objectives of this work and corresponding research approach are

summarized as follows.

(A) To determine the lattice location of interstitial Mn in (Ga,Mn)As. The goal is to

identify unambiguously the interstitial Mn site in ferromagnetic (Ga,Mn)As, using the

emission channeling technique (described in section 3.2). The results and implica-

tions on the understanding of the fundamental devices behind the compensation by

interstitial Mn in (Ga,Mn)As films are described in section 4.1 on page 27.

(B) To study the thermal stability and diffusion of Mn impurities in (Ga,Mn)As. The

objective is to investigate the thermal stability of Mn impurities in (Ga,Mn)As doped

with different Mn impurity concentrations (1% and 5%), and describe its diffusion

behavior upon thermal annealing at various temperatures. Results are presented

in section 4.2 on page 41.

(C) To investigate the structure and magnetism of annealed (Ga,Mn)As. The aim of is

to ascertain the different structural and magnetic properties of (Ga,Mn)As within the

ferromagnetic regime (as-grown and annealed at 200 ◦C) and within the secondary

phase regime (annealed at 300 ◦C and at 600 ◦C). Results are presented and

discussed in section 4.3 on page 55.

13



14 CHAPTER 2. OBJECTIVES AND OUTLINE



3 Experimental techniques

This chapter describes the experimental techniques used in this work. The (Ga,Mn)As sam-

ples were grown by low-temperature molecular beam epitaxy (LT-MBE) by the Nottingham

group (U.K.) [83]. Sample characterization was carried out using synchrotron radiation X-

ray Diffraction (SR-XRD) in order to determine the structure and secondary phase formation

(cf. section 3.1), Extended X-Ray Absorption Fine Structure (EXAFS) to probe the local

structure of Mn impurities, Electron Emission Channeling (EC) to study the lattice location

of Mn impurities (cf. section 3.2 on the following page) and Superconducting Quantum

Interference Device (SQUID) magnetometry to investigate the magnetic properties (cf. sec-

tion 3.3 on page 25).

Albeit in this chapter we present a description of the experimental setups, only for the

Emission Channeling technique a detailed description is given, as it is an unique and

unconventional technique. The experimental procedure and data analysis of the EXAFS

experiment is not given, since the experiments and subsequent analysis were not performed

by the author. The remaining techniques were applied following standard systems and

protocols and, therefore, only a small description is provided.

3.1 Synchrotron Radiation X-Ray Diffraction

The interaction of X-rays with the crystal lattice of a material allows us to extract information

on the lattice. Such is the purpose of X-ray diffraction (XRD) techniques. The most

commonly used technique is the θ-2θ scan in Bragg-Brentano geometry, where a sample is

tilted towards an X-ray beam over an angle θ and a detector is rotated over the angle 2θ so

that the Bragg diffraction criterion is fulfilled for planes that are parallel to the sample stage,

provided they have the correct d-spacing determined by the wavelength of the X-rays and

the 2θ angle of the detector through the Bragg rule 2d sin θ = nλ. However, it is important

to be aware of the limitations of this standard technique, as the used geometry will result

in a signal which only depends on the crystal planes parallel to the sample stage surface,

and thus any information on the occurrence or orientation of other planes is lost. In other

15
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words, in an epitaxial thin film the diffraction peaks of the substrate and of the film will

be much more intense than the peaks from a secondary phase with a random orientation.

For the study of materials which can be provided as a powder, this raises no problems,

as the statistical distribution of the plane orientations will be uniform (resulting in random

orientation of the crystal planes), but for epitaxially grown samples with a secondary phase

a lot of information will be missed.

In θ-2θ geometry the intensity of a diffraction peak is significantly influenced by the amount

of material contributing to the diffraction. In order to probe the orientation of an eventual

secondary phase on a single crystal thin film, the use of another diffraction geometry is

required. In this work we resorted to the grazing incidence X-ray diffraction (GIXRD) geom-

etry, where the sample is irradiated by X-rays at a small angle, so that these probe only the

thin film, effectively increasing the contribution of the thin film to the signal. An advantage of

GIXRD is that the electric field at the critical angle is amplified making the signal stronger.

In other words, for a single-crystal in GIXRD geometry the Bragg condition is not fulfilled for

the substrates peaks. The measurement results then solely on the contribution of diffraction

from polycrystalline secondary phases.

The XRD measurements presented in this work were performed on the BM20B-Rosendorf

beamline [85] at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France,

using an incident photon energy of 11.5 keV, corresponding to a wavelength of λ = 1.0789 Å.

A symmetrical θ-2θ scan was performed in the range 15◦-80◦, with a high resolution (HRXRD)

scan in the range of the first diffraction of the substrate peak, 20.5◦-22.5◦. Additionally,

asymmetrical GIXRD measurements were performed with an incident angle of 1.5◦. Both

measurements were recorded using a linear 1D Mythen detector with 1280 channels, with

a measurement resolution of 0.01◦.

3.2 Electron Emission Channeling

The electron emission channeling technique has been developed for the study of the lattice

site location of impurities in single-crystals and offers a number of advantages when com-

pared to other techniques. Because it relies on the direct comparison between experimental

and calculated (2-dimensional) patterns, it provides unambiguous and quantitative lattice

location superior to more conventional implementations of ion-channeling techniques such

as Rutherford backscattering spectrometry (RBS), particle-induced X-ray emission (PIXE)

and nuclear reaction analysis (NRA). Additionally, not relying on elastic recoil like the widely

used conventional RBS, it allows a better identification of impurity atoms lighter than the
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major constituents of the material, even in cases of multi-site occupancy, with much higher

sensitivity (down to 1012 at.cm−2), particularly suited for dilute systems, like the one studied

in this work.

3.2.1 Principles

The emission channeling technique makes use of the charged particles emitted by a de-

caying radioactive isotope. These particles are emitted isotropically during decay and are

channeled along the screened Coulomb potential of atomic rows and planes. Along low-

index crystal directions of single crystals, this anisotropic scattering results in well-defined

channeling or blocking effects. Because these effects strongly depend on the initial position

of the emitted particles, they lead to emission patterns which are characteristic of the lattice

sites occupied by the probe atoms.

Channeling was first introduced by Lindhard in 1965 [86] and is referred to as the mech-

anism by which atomic rows and planes steer energetic charged particles along major

crystal axis and planes. Because the motion of energetic charged particles in a solid is

mainly determined by their Coulomb interaction with the (screened) nuclear charges in the

lattice, one can expect that particle propagation is very different among these three types of

directions. The general principles described for the channeling of heavy, positive ions apply

to the channeling of electrons, which are lighter and negatively charged. Changing the

sign of the propagating particle’s charge is equivalent to changing the sign of the Coulomb

potential: negatively charged particles "see" as channels the rows of nuclear charges

instead of the space in between. However, although providing an intuitive insight in the

elementary phenomena, the classical approach of Lindhard does not describe quantitatively

electron emission channeling, in which quantum effects must be taken in account. Details

on the theoretical aspects of emission channeling can be found, for example, in [87].

The principle of emission channeling is slightly different than conventional channeling tech-

niques that rely on the use of an external ion beam and its interaction with the impurity

atoms in the host lattice, like RBS, PIXE or NRA, in the sense that the channeled particles

are emitted from within the crystal by a radioactive isotope of the impurity element under

study. The emission channeling technique can be applied using either α or electron (β−

or conversion electrons) emitters. In the latter case, the technique is known as electron

emission channeling, for which the requirement of stability 1 determines that the channeling

1The principle of stability requires that the particle does not approach the rows of atoms too closely,
otherwise, instead of a gentle steering via the interaction with the row of atoms, the particle experiences wide-
angle deflections in head-on collisions with individual atoms
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and blocking effects depend on the initial position and direction of the emitted particle with

respect to the lattice, which in turn depends on the lattice site occupied by the radioactive

impurity. Figure 3.1 illustrates how such electron channeling and blocking enable the

distinction between, for example, substitutional versus interstitial impurities.

substitutional
impurity

interstitial
impurity

electron
yield

Figure 3.1: Schematic representation of channeling and blocking effects for sub-
stitutional versus interstitial electron emitter impurity. The trajectories of channeled
(bound state) and blocked (free state) electrons are represented by solid lines and
dashed lines, respectively. The electron yield profiles as a function of emission angle
towards the crystal axis (1-dimensional angular scans) are represented on the right for
substitutional versus interstitial emitters.

The electron emission channeling experiments described in this worked were performed at

the on-line isotope separator facility ISOLDE at CERN [88] and can be summarized in four

steps:

1. The single crystal or epitaxial thin film is implanted with radioactive electron (β− or

conversion electrons) emitting isotopes, occupying certain lattice site(s) [89].

2. A fraction of the emitted electrons are channeled along the crystal axes and planes

and leave the sample surface describing anisotropic emission patterns which are

characteristic of the emission site and the channeling axis.

3. These anisotropic emission patterns are recorded using a position-sensitive detector

around selected crystallographic axes.

4. The lattice site(s) of the impurities is determined by fitting these 2-dimensional exper-

imental patterns with theoretical ones.

In the remainder of this section a short description of the experimental aspects of the
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electron emission channeling technique (steps 2 to 4) is presented. More details on the

experimental aspects of emission channeling can be found, for example, in [87, 90, 91, 92].

3.2.2 Experimental setup

Figure 3.2: Emission Channeling Short Lived Isotopes (EC-SLI) chamber horizontal
cross section: 1 – lead shield and rotatable disk with collimator holes; 2 – fixed aperture
removable collimator; 3 – fast Si pad (28 × 28 mm2) electron detector block mounted
on the DF17 flange; 4 – spare detector flange DF30; 5 – displaceable Faraday cup
mechanism; and 6 – cryogenic block, cryogenic shields, and cold finger. Taken from
[88].

Emission channeling experiments can be performed either on-line or off-line. In on-line

experiments, the emission channeling measurements are performed in-situ, i.e. in the

same chamber as the radioactive implantations. This is necessary for experiments involving

relatively short-lived isotopes, i.e. with half-lives of a few hours and below. In off-line

experiments, the sample is transferred to an emission channeling setup after implantation

with the (long-lived) probe isotope. The concept of such a setup is rather simple and relies

on the ability to detect, as a function of angle, electrons emitted from the sample in the

vicinity of a crystallographic axis. The three basic components are a high-vacuum cham-

ber, a goniometer to rotate the sample holder, and a position-sensitive electron detector

(figure 3.2).

Inside a vacuum chamber (< 10−5 mbar), the sample is mounted vertically, facing the
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detector, oriented in such a way that electrons emitted from the sample in the vicinity of a

selected crystallographic axis reach the position-sensitive detector. The geometry of the

chamber is such that it allows for the emission yield to be recorded as a function of angle

in the form of 2-dimensional (2D) patterns. A two-axes goniometer allows the sample to

be moved along the vertical direction and around two rotation axes (ϕ and θ) with a typical

angular precision of about 0.05◦-0.1◦. Note that, because 2D position-sensitive detectors

are used, the accuracy of the goniometer does not affect the angular resolution of the

measurements. The sample holder is equipped with a tungsten wire resistive heating

device, which allows for the measurements to be performed at elevated temperatures

and/or after in-situ vacuum annealing up to 900◦C [88]. The principle of operation of the

position-sensitive detectors is based on integrating an array of separate detector cells (pads

or pixels) on a single Si chip and individually contacting them on the surface by a pattern of

conducting and insulating layers. The square-shaped sensitive area is 28.6× 28.6 mm2 and

consists of 22× 22 pixels (thus each of 1.3× 1.3 mm2). The multiplexed readout of all pads

is triggered if the signal on the detector back plane, which is common to all pads, exceeds

an externally set lower threshold. This readout procedure limits the count rate of the device

to a maximum of about 4000 events/s.

3.2.3 Angular resolution

The experimental angular resolution is a key parameter in the quantitative analysis of

emission channeling patterns and is dependent on a series of parameters. For a position-

sensitive detection system, it depends on the distance d between sample and detector, the

position resolution of the detector, which may vary with energy and nature of the incoming

particles, and on the size and shape of the projected beam spot. Assuming that both

the position resolution of the detector and the projected beam spot distribution can be

approximated as two-dimensional isotropic Gaussian distributions with standard deviations

σd and σb, respectively, the total angular resolution is given by

σang ≈ arctan


√
σ2
d + σ2

b

d

 ≈
√
σ2
d + σ2

b

d
(3.1)

In most experiments, d is set to ≈ 30 cm in order to cover an angular range of 5◦-6◦, the

relevant range in typical emission channeling patterns. When the channeling effects are

very sharp, e.g. for high energy β− decays, and a higher angular resolution is thus required,

d can be set to ≈ 60 cm, which increases the angular resolution by roughly a factor of 2.

Since, in either case, the resolution is limited by the size of the pixels (∼ 1, 3 mm), it makes
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little difference to use a beam spot which is much smaller. As a trade-off between position

resolution and beam transmission, a 1 mm beam spot is typically used, which requires beam

collimation during implantation. Assuming that the standard deviations associated with the

beam spot (σb) and the pixels (σd) are about half of their sizes, the angular resolution σang

is approximately 0.16◦ for d = 30 cm and 0.08◦ for d = 60 cm.

3.2.4 Data analysis procedures

Quantitative lattice location of the radioactive probes is obtained by fitting the theoretical

patterns to experimental ones. In the following, we discuss the relevant input parameters

for the calculations and describe the fitting procedure.

3.2.4.1 Manybeam calculations

Using the manybeam program developed by Hofsäss and Lindner [87, 90, 91] and modified

by Wahl [92] the theoretical emission patterns can be calculated. This program calculates

the angle-dependent emission channeling yields for any emitter lattice position along any

crystallographic direction (typically for an angular range of 0◦ to 3◦ from the axes in steps of

0.05◦).

The starting point for a manybeam calculation is the crystallographic structure of the host

material. The 3-dimensional structure can be determined experimentally using X-ray diffrac-

tion and is well established for the materials used in this work. The manybeam formalism

uses the 2-dimensional projections with respect to the channeling axes, which can be

obtained from the 3-dimensional structures published in the literature. Another important

input parameter is the vibration amplitude of the crystal atoms. The one-dimensional

root mean square (rms) vibration amplitude u1 can be determined experimentally from the

Debye-Waller factors in X-ray absorption or diffraction experiments. Published values are

used as input for the manybeam calculations.

The actual displacement amplitudes are obtained from fitting the experimental patterns with

theoretical ones calculated for a set of different rms displacement values. Large deviations

(tenths of Å) from these reference values can be associated with static displacement of the

impurity due to lattice relaxation in its vicinity. Such lattice relaxation may be caused by

the impurity itself (a foreign atom that disturbs the crystal periodicity) or by the interaction

between the impurities and neighboring native defects (vacancies and interstitials), i.e.

impurity-defect complex formation. In principle, such impurity displacements are better
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described by a static displacement from the high-symmetry site. However, such relaxation

effects may displace the impurities in various directions and by various distances, depend-

ing on the specific local structure of each impurity. The measured emission pattern can thus

be a superposition of a distribution of sites in the vicinity of a high-symmetry site. In such

cases, the occupied site may be relatively well described by the high-symmetry site with an

rms displacement larger than the thermal vibration amplitude.

The output of the manybeam calculations, for a given material, channeling axis and im-

purity isotope, is a two-dimensional emission pattern for each impurity lattice site and

rms displacement u1. These patterns are smoothed using a Gaussian with σ ' 0.1◦ to

account for the contribution of the 1 mm beam spot to the experimental angular resolution

(see section 3.2.3). Higher values of σ may be used in order to account for, e.g., crystal

mosaicity and extended damage due to high fluence implantation. The size and shape of

the detector pads is taken into account by averaging over the simulated yield falling within

the angular range (0, 26◦ × 0, 26◦) of one pixel, resulting in the final theoretical emission

pattern χtheo(θ, φ). As an example, figure 3.3 on the facing page shows the simulated

emission patterns for 56Mn, in different sites of the GaAs zincblende structure, around

different crystallographic directions according to the sites described in figure 1.2 on page 10.

3.2.4.2 Fitting procedures

The FDD program was developed by Wahl [93] to perform the quantitative analysis of the

experimental 2D patterns χexp(θ, φ) by fitting a linear combination of the calculated yields

χtheo(θ, φ). The fitting routines allow up to n occupied sites according to:

χexp(θ, φ) = S

[
frand +

n∑
i=1

fiχ
theo
i (θ, φ)

]
(3.2)

where S is a scaling factor and fi denotes the fraction of emitter atoms occupying the

ith site. The random fraction frand accounts for emitter atoms which do not contribute

significantly to the anisotropy of the pattern. These can be either located on sites with very

low crystal symmetry or in heavily damaged (or even amorphous) surroundings or have a

random occupation of several minority lattice sites. Because the sum of all the fractions

must amount to 1, frand is given by

frand = 1−
n∑

i=1

fi. (3.3)
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Figure 3.3: Simulated channeling patterns for 56Mn, β− emitter, on substitutional Ga
sites (SGa), substitutional As sites (SAs), and the two T interstitial sites (TAs and TGa)
in the GaAs zincblende structure. Note that the patterns for all sites along the <100>
and <111> directions are identical because they are located within the same atomic
rows for these directions (cf. figure 1.2 on page 10).

Using non-linear least squares fitting routines, FDD determines the best fit values of S, fi,

x0, y0 and φ0 simultaneously. Parameters x0 and y0 are the coordinates of the channeling

axis on the detector plane (i.e. the “center” of the pattern) and φ0 is an azimuthal rotation

angle of the pattern with respect to the channeling axis. S, x0, y0 and φ0 are always allowed

to vary in order to provide correct normalization of the experimental spectra and to achieve

optimum translational and azimuthal orientation with respect to the detector. Typically only

up to three different sites are considered in the fit, as the fitting routine loses sensitivity with

increasing number of sites, i.e. with increasing number of fi degrees of freedom.
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3.2.4.3 Scattered electron background correction

In an emission channeling experiment, two types of electrons reach the detector: direct

and scattered electrons. Those with initial direction in the vicinity of the detection axis are

direct electrons. The number of direct electrons is roughly given by the ratio between the

solid angle Ω spanned by the detector relative to the beam spot and the full 4π solid angle

into which all the electrons are (almost) isotropically emitted, i.e. Ω/4π of the total number

of decays. However, the number of detected electrons is always larger than this estimate.

The additional scattered electrons are not emitted towards the detector initially, but still

reach it after being scattered. The scattering event may occur inside the sample, when an

electron is scattered by the host atoms, or outside the sample, by setup parts (including

backscattering from sample holder). These scattered electrons constitute an additional

isotropic background in the experimental emission yields, which is not taken into account

in the theoretical framework of channeling that is implemented in the manybeam program.

The problem is different for conversion electrons and β− particles:

Conversion electron decay. For a pure conversion electron decay, it is possible to deduce

the total scattering background from the experimental energy spectrum. While, for

direct electrons, the energy spectrum consists of a set of narrow peaks at well defined

energies, the scattered electrons form tails at lower energies due to the energy lost

in the scatter process. It is thus possible to correct for this scattering background by

estimating (integrating the counts in the tails) and subtracting it from the experimental

yields.

Beta decay Because such a simple estimate is not possible for β− decays, with continuous

energy spectra, De Vries [94] developed the computer program Pad based on the

Geant4 toolkit (a set of libraries and tools to simulate the interaction of energetic

particles with matter) [95, 96]. Using the Monte-Carlo method, Pad simulates the

propagation of electrons emitted from the sample and, among the ones that reach the

detector, distinguishes the direct from the scattered ones. This requires detailed input

information: the sample’s geometry and composition, the β− decay energy spectrum

(isotope-specific) and the exact geometry of the setup, i.e. the position, shape and

composition of the setup parts. From the Pad simulations it is possible to estimate the

background correction factor f as:

f =
total electrons

total electrons− scattered electrons
=

total electrons

direct electrons
. (3.4)
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This f factor can be used to correct the experimental patterns before the fitting or,

equivalently, as a rescaling factor of the fractions determined from it.

3.2.5 Experimental details

In this work, two different types of emission channeling experiments are presented: on-line

experiments with implantation of radioactive 56Mn and off-line experiments with implantation

of 73As. The on-line experiments where performed using the Emission Channeling – Short

Lived Isotopes (EC-SLI) setup and measured in-situ [88]. The radioactive decay mode for
56Mn is presented in equation (3.5).

56Mn→ 56Fe + β− + νe (3.5)

The off-line experiments were performed with the long-lived isotope 73As (decay mode in

equation (3.6)), with off-situ measurements. For these experiments the setup described in

ref. [97] was used, making use of a detector with a different sensitivity, adjusted to the decay

rate of 73As. The specific experimental details for each of the EC experiments performed

are presented in the following chapter 4, in the corresponding sections.

73As + β− → 73Ge + νe (3.6)

3.3 Superconducting Quantum Interference Device magnetome-
try

DMS materials are usually in the form of thin films (< 1 µm) or implanted layers, displaying

a small magnetic moment which is further decreased by the low concentration of magnetic

dipoles and their small magnetic moment (in many cases, only a fraction of a Bohr magne-

ton). The magnetic moment of a typical DMS sample is usually between 10−7 and 10−4 emu

(10−10 and 10−7 A m2), thus requiring the high sensitivity of a Superconducting Quantum

Interference Device (SQUID) magnetometry.

A SQUID magnetometer measures the magnetic moment of a sample by moving it through

a superconducting detector coils. The detector coils are connected to the SQUID through

superconducting wires, allowing the current from the detection coils to inductively couple

to a SQUID sensor (based on a Josephson junction). As the sample moves through the

detection coils, the magnetic moment of the sample induces an electric current in the

detection coils. The detection coils, the connecting wires and the SQUID input coil form
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a closed superconducting loop. Any change in the magnetic flux in the detection coils pro-

duces a change in the persistent current in the detection circuit, proportional to the change

in magnetic flux. Since the SQUID works as a highly linear current-to-voltage converter,

the variations in the current in the detection coils produce corresponding variations in the

SQUID output voltage which are proportional to the magnetic moment of the sample.

In a fully calibrated system, measurements of the voltage variation as the sample is moved

through the detection coils provide a highly accurate measurement of the magnetic moment

of the sample (with a resolution down to 10−8 emu). However, magnetic contamination and

measurement artifacts must be carefully taken into account in the range below 10−4 emu

range. In order for SQUID magnetometry to be used as a reliable tool for the detection

of ferromagnetism in DMS materials, it is necessary to develop methods and procedures

which ensure that the magnetic signal originating from contamination and other artifacts

can be reproducibly kept below a well defined value. Such methods are described in detail

in ref. [98].

The SQUID magnetometry measurements presented in this work were performed on rigor-

ously cleaned samples (according to [98]) and consisted mainly in magnetization measure-

ments (a) as a function of applied magnetic field and (b) as a function of temperature. In (a),

measurements were performed at 5 K and at room-temperature (300 K) along the easy axis

([100] direction) with applied magnetic fields between −2600 mT and 2600 mT. Saturation

magnetization was determined by performing a linear fit at high applied magnetic field. All

magnetization curves as a function of applied magnetic field presented in this work were

subjected to a fit and corrected to the diamagnetic background of the samples. In (b),

remanence and zero-field cool/field cool (ZFC-FC) curves were measured with increasing

temperature in the range 5-300 K. Remanence was measured at an applied field of 2 mT,

after cooling in a saturating magnetic field – this magnetic field was applied to compensate

an eventual negative residual field in the magnet of the SQUID; the ZFC-FC magnetization

curves were measured at an applied magnetic field of 10 mT, with the same magnetic field

for the field cooling.



4 Results and discussion

This chapter presents the results obtained in this work and their subsequent discussion. It is

divided in three parts: first, in section section 4.1, we deal with the identification of the lattice

location occupied by the interstitial Mn impurities in ferromagnetic (Ga,Mn)As; second, in

section 4.2, we study the thermal stability and diffusion behavior of both substitutional and

interstitial Mn impurities in two different concentration regimes – low concentration (1% Mn)

and high concentration (5% Mn); and third, in section 4.3, we perform the structural and

magnetic analysis of (Ga,Mn)As within the ferromagnetic and secondary-phase regimes

(also for 1% and 5% Mn).

4.1 Identification of the interstitial Mn site

As seen in section 1.2.2.1, the interstitial Mn impurities in ferromagnetic (Ga,Mn)As occupy

mainly T interstitial sites on the zincblende lattice of (Ga,Mn)As. There are, however,

two different T sites, coordinated by different nearest neighbor atoms, Ga or As, and the

occupancy of these sites by the interstitial Mn is ambiguous. Emission channeling is an

unique technique specially suited to tackle this ambiguity as it provides doubtless distinction

between TGa versus TAs sites in the GaAs (zincblende) lattice – a direct structural effect

related to the mirror-asymmetry of selected crystal axes (typically <211> or <110>) [65].

The EC technique has been previously applied to determine the lattice location of Mn in

GaAs in the ultra-low doping regime (< 0.05% Mn) [64, 65], showing a major occupancy

by the interstitial Mn impurities of the TAs sites when compared to the TGa. In this section

we address the first objective outlined in chapter 2, i.e. using the emission channeling (EC)

technique (described in section 3.2 on page 16), we pretend to determine the exact lattice

site occupied by Mni in ferromagnetic, high Curie temperature (Ga,Mn)As thin films.

27
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4.1.1 Experimental details

Two separate experiments were performed on the lattice location of radioactive 56Mn (half-

life t1/2 = 2.56 h) implanted into a (Ga,Mn)As thin film grown by molecular beam epitaxy

(MBE) [83]. Experiment A consisted of implanting a Ga0.94Mn0.06As thin film (25 nm thick,

grown directly on the GaAs substrate) with 56Mn to a fluence of 2× 1012 cm−2, at an energy

of E = 40 keV, and a beam angle of 60◦ with respect to the surface normal. The high

implantation angle was chosen in order to maximize the fraction of 56Mn probes implanted in

the (Ga,Mn)As thin film, i.e. minimizing implantation into the substrate. The near-Gaussian

depth profile simulated using SRIM-2008 [99] is characterized by a peak concentration

xp = 6.2 × 1017 cm−3 (≈ 0.003 atomic %, i.e. a negligible increase in Mn concentration),

a projected range (average depth) of Rp = 17 nm and a straggling of σ = 11 nm, with an

estimated < 27% of the 56Mn probes implanted into the GaAs substrate. Experiment B

consisted of implanting a Ga0.95Mn0.05As thin film (200 nm thick, grown on a 200nm AlAs

buffer layer, on a GaAs substrate) with 56Mn to a fluence of 7×1012 cm−2, with an energy of

E = 30 keV and an angle of 17◦ (resulting in a peak concentration of xp = 2.4× 1018 cm−3,

a projected range of Rp = 21 nm and a straggling of σ = 11 nm, i.e. with all the 56Mn probes

within the film).

In order to monitor the degree of disorder upon implantation of the radioactive probes and

subsequent annealing, we also determined the lattice location of As using radioactive 73As

(t1/2 = 80 d) – experiments C and D. These experiments consisted of implanting similar

samples as in experiment B with 73As to a fluence of 5 × 1013 cm−2, with an energy of

E = 50 keV and an angle of 10◦ (resulting in a peak concentration of xp = 1.5× 1019 cm−3,

a projected range of Rp = 26 nm and a straggling of σ = 13 nm, i.e. with all the 73As probes

within the film).

experiment ion annealing E [keV] θ [◦] Rp ± σ [nm] xp [cm−3]

A 56Mn 3 h air 40 60 17± 11 6.2× 1017

B 56Mn 10 min vacuum 30 17 21± 11 2.4× 1018

C 73As 3 h air 50 17 26± 13 1.5× 1019

D 73As 10 min vacuum 50 17 26± 13 1.5× 1019

Table 4.1: Summary of the experimental details of experiments A, B, C and D. E
represents the implantation energy, θ is the implantation angle, Rp and σ are the
projected range and straggling of the implanted ions respectively, xp is the peak
concentration of the implanted layer.

Emission channeling measurements were carried out in the as-implanted state and after

annealing at 200◦C: in air for 3 hours in experiments A and C; in vacuum (< 10−5 mbar) for
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10 min in experiments B1 and D. Experiments A and B (with relatively short-lived 56Mn) were

performed on-line while experiments C and D (with the longer-lived 73As) were performed

off-line. Table 4.1 on the facing page summarizes the experimental details for each of the

described experiments.

In experiments B, C and D, four axes were measured (<100>, <111>, <110> and <211>),

typical of emission channeling experiments on host semiconductors with cubic structure (cf.

e.g. [64, 65]). In experiment A, the measurements were limited to the <211> axis, which as

will be shown below is sufficient to unambiguously determine the site occupancy (at least

when combined with experiment B, where all four axes were measured).

The implantation parameters, film thickness and annealing time of experiment A were

carefully chosen to allow us to determine the lattice site(s) occupied by interstitial Mn

in a stage of annealing for which approximately half had been removed (correlated with

magnetic characterization below (cf. section 4.1.3).

4.1.2 Interstitial Mn site

As a representative example, in figure 4.1 on the next page, (a-h) shows the experimental

β− emission patterns of experiment B after thermal annealing (10 min in vacuum), along

the four measured directions (a–d), as well as the best fits of theoretical patterns (e–h).

Similarly, in figure 4.1 on the following page, (i-l) compares experimental patterns (i,j) and

best fit (k,l) for experiment A (only the <211> direction), both before and after annealing

(3 h in air). In figure 4.1 on the next page, (m-o) qualitatively illustrates how the mirror

asymmetry of the {110}-planar channeling measured in the vicinity of the <211> direction

(horizontal plane in the figure) allows us to distinguish between TAs and TGa sites: after

subtracting from the experimental data the fitted component occupying the substitutional

Ga SGa sites, the asymmetry of the residual {110}-planar channeling corresponds to that of

TAs, i.e. stronger channeling on the left versus right in (o) of figure 4.1, which is the opposite

of TGa.

Quantitative analysis is provided by numerically fitting the data to calculated patterns, as

described in section 3.2.4, from which the fractions of the 56Mn atoms in the different lattice

sites are obtained – compiled in figure 4.2 (a) for experiments A and B. Here we observe that

while the interstitial Mn fraction is unaffected by the 10 min vacuum annealing (experiment

1In this section we consider solely the as-grown and the 200◦C annealing step for the purpose of this
experiment. In the next section 4.2 we will consider the remaining annealing steps performed for the detailed
diffusion study.
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Figure 4.1: (a–d) Experimental β− emission patterns of experiment B after thermal
annealing (10 min, in vacuum), along the four measured directions, and best fits of
theoretical patterns (e–h). The best fit is obtained for 71% of the 56Mn atoms on SGa
(MnGa) and 25% on TAs (Mni) sites. (i-l) Experimental patterns (i,j) and best fit (k,l)
for experiment A (only the <211> direction), before and after annealing (3 h, in air).
The best fits are obtained for 64/77% of the 56Mn atoms on SGa (MnGa) and 25/15%
on TAs (Mni) sites before/after annealing. (m) Experimental pattern (j) after subtraction
of the fitted SGa component. (n,o) Simulated patterns for 56Mn on TGa and TAs sites,
respectively.

B), annealing for 3 hours in air decreases it by almost a factor of 2. This is consistent

with our magnetometry measurements (cf. next section 4.1.3), and with the Mni annealing

kinetics previously reported based on transport and magnetometry measurements [44, 17].

We also observe an increase in substitutional fraction upon annealing in both experiments A

and B, which we attribute to the recovery of disordered regions (created upon implantation),

rather than interstitial Mn being converted to substitutional. This is confirmed by experi-

ments C and D, where we see a comparable increase of the substitutional As fractions

(cf. section 4.1.4).

Figure 4.2 (b) illustrates the technique’s sensitivity specifically for the case of TAs versus

TGa occupancy, by showing for experiment A (after annealing) the error associated with the
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Figure 4.2: a) Fractions of 56Mn atoms on SGa and TAs sites in experiments A and
B. b) Error associated with the fit (χ2 − χ2

0, with χ2
0 being the value for the best fit),

for experiment A after annealing, as the fractions f on TAs and TGa sites are varied in
the vicinity of the best fit values f0 (15% for TAs and 0% for TGa), leaving all other fit
parameters free. The contour corresponds to χ2 − χ2

0 = 1.

fit (χ2) as the fractions on TAs and TGa sites are varied in the vicinity of the best fit values

(15% for TAs and 0% for TGa, with χ2
0), leaving all other fit parameters free. The contour

corresponds to χ2 − χ2
0 = 1, giving standard deviations of 2% for the TAs fraction and of

0.5% for TGa. Note that the percentages are with respect to all the 56Mn, i.e. even if there

is indeed TGa occupancy within the technique’s sensitivity, it is for all purposes negligible.

Vanishing TGa occupancy (with comparable standard deviation) is found both before and

after annealing, both in experiments A and B.

It is important to note that the determined site-fractions correspond to the implanted radioac-

tive 56Mn probes, which are not necessarily (and most likely are not) the same as those of

the stable 55Mn atoms incorporated during MBE growth. The goal of these experiments

was not to determine the absolute fraction of interstitial Mn in (Ga,Mn)As, but to evaluate

the stability of the possibly occupied interstitial sites, which we will discuss in section 4.1.5.
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4.1.3 Magnetic properties

It is well known from literature that the interstitial Mn (Mni) is a double donor [100, 62], with

self-compensating effects on (Ga,Mn)As: as a donor impurity it compensates holes created

by acceptor impurities and by coupling antiferromagnetically (AFM) with substitutional Mn

impurities, it compensates the overall magnetic moment [43, 45, 101], effectively reducing

the magnetization and Curie temperature (TC) of the material.

As seen in the previous section, by performing post-growth annealing at a temperature

around 200◦C, the Mni fraction can be reduced. In experiment A we observe a decrease

of the fitted 56Mn interstitial fraction by about a factor of two. In order to correlate this

reduction with the magnetic properties we performed SQUID magnetometry measurements

on the samples used for experiment A, i.e. on (Ga,Mn)As doped with 6% Mn as-grown and

annealed at 200◦C in air.

4.1.3.1 Magnetic anisotropy

In order to accurately estimate the interstitial fraction reduction, we first measured the

saturation magnetization of the annealed sample along four magnetically non-equivalent

directions: [100]/[010], [110], [110] and [001].

direction Msat [µB/Mn]

[100]/[010] 3.19
[110] 3.03
[110] 2.61
[001] 0.13

Table 4.2: Saturation magnetization Msat measured with applied magnetic field along
four non-equivalent directions at a temperature of 5 K in (Ga,Mn)As annealed at 200◦C
in air.

As shown in table 4.2, the axis in our annealed sample displayed the highest satura-

tion magnetization is the [100]/[010] (in-plane) while the hard axis is out-of-plane [001].

Anisotropy is also found in-plane (cf. sec. 1.2.1): we observe higher saturation mag-

netization along the [100] direction than the [110] direction. In addition we observe that

along two crystallographically equivalent axes we obtain different saturation magnetization

values – we observe a higher value for the [110] direction than for the [110] direction. A

possible explanation for this puzzling anisotropy between two crystallographically equivalent

directions is given in ref. [102].

Figure 4.3 on the next page depicts the nearest neighbor Mn dimers residing along a GaAs
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[110] 
[110] 

Ga 

As 

Mns 

Figure 4.3: Mn dimers on the (001) GaAs surface. If residing along the [110] direction,
are not bridged by an As atom. Such bonding exists for [110] dimers, resulting in the
formation energy.

(001) surface along the [110] and [110] axes. In the [110] case the two Mn ions are bound to

the same As atom, whereas for the dimer along the [110] axis they are connected to different

As atoms, implying that these two directions are not equivalent at the surface. In contrast,

for bulk dimers there is an As bridge for these two cases – one below, one above the dimer

plane. Since the Mn-Mn interaction is brought about by p-d hybridization (cf. section 1.2.1)

one can expect a higher binding energy for the [110] pair compared to the [110] case. Thus,

when growing (Ga,Mn)As films, if barriers for Mn diffusion along the surface are sufficiently

small, a nonvolatile asymmetry in the pair distribution will set in the whole film during the

epitaxy, giving rise to the observed magnetic anisotropy [103].

4.1.3.2 Saturation magnetization and TC

Determined the easy axis, we now proceed with a detailed magnetic characterization of our

as-grown and annealed samples. Magnetization measurements as a function of applied

magnetic field at a temperature of 5 K, and as a function of temperature, with an applied

field of 1 mT after a field cooling under a saturation field of 100 mT, were performed and are

presented in figure 4.4 on the following page. The data presented in this figure has been

normalized to the number of Mn atoms present in each of the samples (cf. section 4.1.3.3).

In figure 4.4 (a) we observe a clear increase in the saturation magnetization from the as-

grown to the annealed sample, which we will discuss next in terms of Mni. In addition,

the shape of the hysteresis loop changes, with a dramatic decrease in remanence and

coercive field in the annealed sample when compared to the as-grown sample which can be

attributed to a changing magnetic anisotropy [54, 103, 104]. In figure 4.4 (b) we represent

the measured magnetization as a function of temperature, with an applied field of 1 mT
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Figure 4.4: Magnetization data before (as-grown film) and after annealing for 3 h in
air (experiment B): (a) magnetization as a function of applied magnetic field at 5 K;
(b) magnetization as a function of temperature, with an applied field of 1 mT after field
cooling under a saturation field of 100 mT.

after field cooling under a saturation field of 100 mT. We observe a clear increase of

TC from the as-grown to the annealed sample, due to the partial removal of Mni. The

non-monotonic temperature dependence of the magnetization results from the different

temperature dependence of the different magnetic anisotropy contributions [54, 103].

4.1.3.3 Estimation of the interstitial fraction

Based on the magnetization data it is possible to estimate the interstitial fraction. In (Ga,Mn)As

the Mn impurity atoms occupy mainly substitutional sites, corresponding to a fraction fs, with

a fraction fi in interstitial sites. The substitutional Mn (Mns) fraction contributes to the total

magnetic moment of the material while the interstitial fraction compensates this by coupling

antiferromagnetically with it. Consequently we can consider that the magnetically active

fraction of the sample is then given by fa = fs − fi

The net magnetization of a sample, which we measure using e.g. SQUID magnetometry,

is M = Naµ where Na is the number of active substitutional Mn moments, i.e. not com-

pensated by interstitial impurities, and µ is the magnetic moment per Mn atom. Na is then

Na = Nf , where N is the total number of Mn atoms in the (Ga,Mn)As film. The value of N



4.1. IDENTIFICATION OF THE INTERSTITIAL MN SITE 35

for each sample can be estimated based on the number of Ga atoms NGa in the film2:

N = xNGa = xNA
m

MGaAs

Vfilm
Vsample

(4.1)

where, NA is Avogadro’s number, m is the sample’s mass, MGaAs is the molar mass of

GaAs, Vfilm and Vsample are the volume of the film and the sample respectively. The

ratio Vfilm/Vsample is given by the ratio of the film’s thickness vs. the sample’s thickness

hfilm/hsample.

Making use of the relation fs+fi = 13 we obtainM = µN(1−2fi), which can be transformed

into:

fi =
1

2

(
1− M

Nµ

)
(4.2)

Using the reported magnetic moment per uncompensated Mn impurity µ = 4 µB/Mn [105,

17], and the measured magnetization of the samples, we can obtain the estimated interstitial

fractions for the as-grown and for the annealed cases from equation (4.2).

sample Msat [µB/Mn] TC [K] fi [%]

as-grown 2.36 67 20

annealed 3.19 137 10

Table 4.3: Experimental details for 6% Mn (Ga,Mn)As as-grown and annealed at
200◦C for 300 hours. Saturation magnetization along the [100] direction Msat, Curie
temperature TC and estimated interstitial fraction fi

Table 4.3 summarizes the measured saturation magnetization, TC and estimated interstitial

fraction fi for the as-grown and the annealed sample. As expected, a significant increase

of the Curie Temperature from as-grown to the annealed sample is observed as well as

an increase in saturation magnetization, yielding a reduction of the interstitial fraction by a

factor of 2, in agreement with our emission channeling data (cf. section 4.1.2).

4.1.4 Damage recovery upon annealing

As mentioned in section 4.1.1, experiments C and D (73As emission channeling) were

designed to assess the degree of disorder induced upon implantation of the radioactive

probes and subsequent annealing, and therefore help the interpretation of experiments A

and B.

2Since the Mn concentration is quoted with respect to the Ga stoichiometry.
3Only substitutional and interstitial positions are occupied by the Mn impurities.
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Figure 4.5: Fractions of 73As impurity atoms in SAs sites in experiments C and D.

Figure 4.5 shows the fitted fractions of 73As impurity atoms in SAs sites in experiments C and

D. In both experiments, thermal annealing induces the recovery of damaged regions created

upon implantation, leading to an increase in substitutional 73As fraction. An analogous

increase was observed for the substitutional 56Mn fraction in experiments A and B, which

therefore can also be interpreted as due to lattice recovery, as mentioned in section 4.1.2.

Figure 4.6 (a-d) represents the experimental β− emission patterns of experiment C before

thermal annealing along the four measured directions, and best fits of theoretical patterns

(e-h). The best fit is obtained for 79% of the 73As atoms on SAs sites whether the reminder

21% is located in low-symmetry sites, most likely in disordered regions created upon 73As

implantation.

4.1.5 Interstitial site stability: TAs vs. TGa

The key finding in this section is that interstitial Mn occupies only TAs sites, with negligible (if

any) TGa occupancy, for essentially three thermal histories: (a) as-implanted 56Mn at room

temperature, (b) after 10 min annealing in vacuum, and (c) after 3 h annealing in air.

In terms of the local structure of Mni (in TAs sites), there are essentially three possible

situations to consider (cf. figure 4.7 on page 38): isolated Mni (coordinated by As and Ga

in the first and second neighbor shell), Mni-Mns pairs (with a Mns substituting one of the Ga

atoms in the second neighbor shell), and Mns-Mni-Mns triplets (with two Mns substituting

Ga atoms in the second neighbor shell).

Thermal stability (i.e. activation energy for diffusion Ea) increases from isolated Mn to Mni-
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Figure 4.6: (a-d) Experimental β− emission patterns of experiment C before thermal
annealing, along the four measured directions, and best fits of theoretical patterns (e-
h). The best fit is obtained for 79% of the 73As atoms on SAs sites whether the reminder
21% is located in low-symmetry sites, most likely in disordered regions created upon
73As implantation.
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Figure 4.7: Representation of the relevant Mni sites and coordination: in TAs and TGa
sites for isolated Mni, Mni-Mns pairs and Mns-Mni-Mns triplets. Our data shows that
regardless of the coordination, Mni always occupies TAs sites (top).

Mns pairs to Mns-Mni-Mns triplets [71]: Ea = Em for isolated Mn, with Em being the effective

migration barrier in a TAs-TGa-TAs path; Ea = Em + Eb for pairs and triplets, with Eb being

the binding energy of the complexes, which is larger for Mns-Mni-Mns triplets due to the

Coulomb interaction between ionized Mni donors and the Mns acceptors.

Since the 56Mn probes are randomly distributed upon implantation, and long range diffusion

of Mns and Mni is suppressed at room temperature, we can expect the largest fraction of

isolated Mni in the as-implanted state. However, at 200◦C Mni is mobile and, therefore,

isolated Mni and Mni in pairs progressively populate the triplet form (the dissociation of Mni

from Mns-Mni-Mns triplets is the limiting reaction in the long-range diffusion of Mni).

Considering that we observe vanishing TGa occupancy both before and after annealing, we

can conclude that the TAs site is the most stable site regardless of Mni being isolated, in

pairs or in triplets. In other words, regardless of the Mns coordination, the migration path of

Mni between neighboring TAs and TGa sites is asymmetric, with TAs being the lower energy

side. This picture is in qualitative agreement with previous ab initio calculations for the

different coordination configurations [71].

An experimental assessment of the different energy barriers at play requires a more detailed

investigation of the lattice location as a function of annealing temperature, which will be

detailed in section 4.2. TAs occupancy is consistent with the expectation of having the Mn
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cations (substitutional as well as interstitial) coordinated by As anions rather than charged

Ga cations. For Mni-Mns complexes, however, it could be that the Coulomb attraction

between oppositely charged MnGa acceptors and Mni donors counteracted the repulsion

between positively charged Mni and Ga cations, making the TGa site energetically favorable:

since the distance between neighboring SGa and TGa sites (2.45 Å ) is smaller than that

between neighboring SGa and TAs sites (2.83 Å ), the decrease in Coulomb energy by

decreasing the MnGa–Mni distance could compensate the increase in Coulomb energy of

changing the Mni coordination to Ga cations. Our data shows that this is not the case, i.e.

that the gain in energy associated with having the Mni cations coordinated by As anions

always dominates, irrespective of the Mns coordination.

In short, we have shown that interstitial Mn occupies only TAs sites both before and after

thermal annealing at 200◦C, which implies that TAs is the energetically favorable site regard-

less of the interstitial Mn atom being isolated or forming complexes with substitutional Mn.

This information is crucial for the understanding of electric and magnetic self-compensation

in (Ga,Mn)As, as well as the mechanisms of electric and magnetic activation by thermally

induced out-diffusion of interstitial Mn.
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4.2 Stability and diffusion of Mn

Following our work on the identification of the interstitial Mn site in ferromagnetic (Ga,Mn)As

we now address the diffusion of both Mns and Mni in the materials’ matrix in two different

concentrations: a low concentration, with 1% Mn, and a high concentration, with 5% Mn.

In order to perform such study we resort to the emission channeling (EC) technique (de-

scribed in section 3.2 on page 16), determining the lattice location and thermal stability of

implanted radioactive 56Mn probes at various annealing temperatures.

4.2.1 Experimental details

In this section we present two experiments on the lattice location and thermal stability of
56Mn (half-life t1/2 = 2.56 h) implanted into (Ga,Mn)As thin films with different Mn concen-

trations (1% and 5% Mn). The 5% Mn sample was the same as the one used in experiment

B described in section 4.1 on page 27 (200 nm thick, grown on a 200 nm AlAs buffer layer,

on a GaAs substrate) and the 1% Mn sample consisted of a (Ga,Mn)As film with a thickness

of 1500 nm grown directly on a GaAs substrate.

Both EC experiments were carried out with the same implantation parameters, i.e. implant-

ing 56Mn to a fluence of 7 × 1012 cm−2 with an energy of E = 30 keV and an angle of 17o

(resulting in a peak concentration of xp = 2.4× 1018 cm−3, a projected range of Rp = 21 nm

and a straggling of σ = 11 nm, i.e. with all the 56Mn probes implanted within the films).

As in our previously reported experiments (cf. section 4.1), a control experiment was

devised in order to monitor the degree of disorder upon implantation of the radioactive

probes and subsequent annealing, i.e. in order to inspect an eventual layer degradation

upon annealing. Accordingly, we determined the lattice location and thermal stability of

As using radioactive 73As (t1/2 = 80 d) implanted into a 5% Mn (Ga,Mn)As sample. The
73As radioactive probes were implanted at a fluence of 5 × 1013 cm−2, with an energy of

E = 50 keV and an angle of 10◦ (resulting in a peak concentration of xp = 1.5× 1019 cm−3,

a projected range of Rp = 26 nm and a straggling of σ = 13 nm, i.e. with all the 73As probes

within the film).

The emission channeling measurements were carried out in the as-implanted state and in

annealing steps of 50◦C (100◦C for the 73As experiment) starting at 100◦C. Each annealing

step was performed in vacuum (< 10−5 mbar) for 10 min. Angular-dependent emission pat-

terns were recorded along four crystallographic axes (<100>, <111>, <110> and <211>).
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4.2.2 Lattice location and thermal stability

4.2.2.1 Lattice location

As in our prior work on 56Mn lattice location in ferromagnetic (Ga,Mn)As (cf. section 4.1 on

page 27), the SGa+TAs double occupancy patterns give by far the best fit to experimental

data, showing that the probe atoms indeed occupy mainly the substitutional position with

only a fraction in the TAs position. Other possibilities for the lattice location of the implanted
56Mn impurities amount to negligible fractions in our fit (< 5% overall, <1% for TGa in

particular).

When investigating the lattice location of the 73As on 5% (Ga,Mn)As, we identified the

substitutional SAs site as the best fit to the experimental data, with very small fractions

(<5%) in other possible sites.

From these lattice site considerations we fitted all the experimental patterns with calculated

ones, determining the site fractions as a function of annealing temperatures. In figure 4.8

we compile the fitted fractions for 56Mn and 73As probes. The discontinuities reflect 56Mn

re-implantation (discussed in the following).

4.2.2.2 Thermal stability

Before proceeding to a detailed analysis of the EC experimental data it is important to note

that dechanneling of the emitted β− electrons is enhanced when the radioactive probes

diffuse deeper into the bulk of the material. On the other hand, when the radioactive probes

diffuse all the way to the surface, channeling breaks down and the β− emission becomes

isotropic. Both these phenomena contribute to an increase in the random fraction and a

decrease in the fitted fraction. Formation of secondary phases will also lead to dechanneling

of the emitted electrons, which also contributes to increasing the random fraction.

In figure 4.8 on the facing page we can see that the fitted fractions of the radioactive 73As

probes increase up to 300◦C. This increase in the substitutional fraction indicates a recovery

of the (Ga,Mn)As structure after the damage caused by implantation. A slight increase in

the fitted fractions of 56Mn for both concentrations probed in the same temperature range is

also observed.

Analogously to our prior experiments in section 4.1, this increase can therefore be attributed

to the increased crystallinity after thermal annealing rather than interstitial-to-substitutional
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Figure 4.8: Fitted fractions of implanted 56Mn and 73As probes on (Ga,Mn)As
samples doped with different concentrations of Mn. The squares represent the fitted
substitutional fractions and the circles represent the fitted interstitial TAs fractions on
the 56Mn-implanted samples. The triplets represent the fitted substitutional fractions
for the 73As-implanted sample. Filled symbols represent the same fitted fractions as
above after re-implantation of Mn.

conversion. This analysis puts us in a framework in which studying the stability of 56Mn

probes in (Ga,Mn)As becomes independent of the structure of the GaAs lattice, which

remains unchanged when annealed to temperatures up to 600◦C. In other words, the ob-

served phenomena detailed in the following are intrinsic of the Mn impurities in (Ga,Mn)As.

Turning our attention to the other two curves in figure 4.8, we observe that the fitted fractions

of implanted 56Mn probes decrease significantly after certain annealing temperature is

reached. For the lower concentration, the 56Mn probes occupying substitutional lattice

sites start diffusing at a higher temperature (around 400-450◦C in 1% Mn) than for the

higher concentration (around 200-250◦C in 5% Mn). The same behavior is observed for

the probes occupying the interstitial position. For the 1% Mn case the diffusion temperature

is around 300-350◦C and for the 5% Mn case around 200-250◦C. This diffusion behavior will

be discussed in more detail in section 4.2.3.

4.2.2.3 Secondary-phases and re-implantation

The dramatic decrease in the fitted fractions of the substitutional Mn impurities we ob-

serve in figure 4.8 indicates an increase in the random fraction. According to literature,
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(Ga,Mn)As forms nanoscale clusters when annealed at high temperatures [76, 77, 78, 81],

and therefore we can then assume that this increase in the random fraction is due to the

diffusion of substitutional Mn, eventually leading to the formation of secondary phases.

This interpretation is consistent with ref. [11], where an optimal annealing temperature

was identified (∼ 200◦C), above which TC decreases4. This was attributed diffusion and

aggregation of Mns. In section 4.3 on page 55 we address this question in depth.

The formation of secondary phases is further supported by the Emission Channeling data

at high annealing temperatures, after re-implanting radioactive 56Mn probes in a regime in

which the substitutional impurities have already precipitated into secondary phases. When

implanting new probes, these will experience a lower effective concentration of Mn (locally).

In other words, the local concentration of Mn impurities will be smaller which translates

into less efficient segregation of the newly implanted probes, eventually leading to a higher

substitutional fraction and a higher thermal stability (higher segregation temperature). This

effect is observed in figure 4.8 on the preceding page by discontinuities in the fitted fraction

above 450-500◦C, temperatures at which we re-implanted 56Mn.

4.2.3 Diffusion of Mn impurities

As seen in section 1.2.2.1, previous emission channeling work [64, 65] addressed the

diffusion of Mn in the ultra-dilute regime (<0.05%) in GaAs. In this regime, interstitial Mn (in

TAs sites) was found to be a free isolated interstitial, i.e. with no substitutional Mn (Mns) in

the first neighbor shell, becoming mobile above 400◦C with an estimated activation energy

of Ea = 1.7 − 2.3 eV. In the same studies, the substitutional Mn was found to diffuse at

annealing temperatures around 700◦C with an activation energy of Ea = 3 eV.

According to our EC experiments described previously, the diffusion of Mn in GaAs doped

with several % Mn is strikingly different than for the previously studied case [65]. For in-

creasing Mn concentration in (Ga,Mn)As we observe that both interstitial and substitutional

impurities start to diffuse at lower temperatures, with a noteworthy difference between the

two regimes under study. We can therefore extrapolate that the mechanism that drives the

Mn impurities diffusion is strongly dependent on impurity concentration.

In order to study the diffusion mechanisms in our samples, we estimated values for Ea for

the interstitial and substitutional Mn cases, following a model similar to the one used for the

ultra-dilute case [64, 65].

4The temperature for which the maximum TC is achieved without secondary phase formation
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4.2.3.1 Interstitial diffusion

Arrhenius model for thermally activated migration through interstitial positions

Within an Arrhenius model for the thermally activated migration, the change in fraction

f(T, t) of Mn on the TAs interstitial sites after an annealing step of duration ∆t at a tem-

perature T can be described by:
df(T, t)

dt
= −Nt

N
(4.3)

where Nt = ν∆t, with ν the jump frequency and ∆t the annealing time, and N the average

number of jumps a Mni atom must perform until it gets immobilized, i.e. until it does not

contribute to the site fraction anymore, by diffusing too close to the surface, into the bulk

of the material or by being trapped by a low crystallinity region, where dechanneling takes

place.

In order to jump from one interstitial site to a neighboring interstitial site, an atom must

overcome the potential energy barrier (or migration energy) Ea, as discussed in ref. [71]5.

At finite temperatures, the atom will have sufficient thermal energy to overcome a barrier Ea

during a fraction of the time exp(Ea/kBT ). The jump frequency is then given by:

ν = ν0 exp

[
− Ea

kBT

]
(4.4)

where ν0 is the attempt frequency, taken as 1012 s−1, i.e. of the order of the lattice vibrations,

kB is the Boltzmann constant and T is the annealing temperature. Applying (4.4) to (4.3)

and integrating over the annealing time ∆t, we obtain:

f(T,∆t) = f0 exp[−ν0∆t/N exp(−Ea/kBT )] (4.5)

where f0 is the site (TAs) fraction before the annealing step.

By taking f = f0/2, Ea can be estimated through the following expression:

Ea = − 1

kBT
ln

(
N ln 2

ν0∆t

)
(4.6)

Since no exact value for T when f reduces to f0/2 is directly extractable from our EC data,

a lower and upper bound for this value can be taken, leading to an interval for the activation

energy Ea. In eq. (4.5) there are two unknown parameters, N and Ea. These parameters

cannot be determined independently and therefore N has to be fixed in order to estimate

5For an isolated interstitial the limiting factor to its diffusion is a jump between two interstitial positions.
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Ea. N is estimated by taking into consideration various diffusion scenarios for interstitial

and substitutional impurities.

Diffusion mechanisms of Mn interstitials in (Ga,Mn)As

When a lattice contains at least two types of atoms A and B randomly distributed over

the lattice sites, a type A atom will be in a cluster of one, two, three or more A atoms

[106]. When growing (Ga,Mn)As samples in the dilute regime, with several % of Mn,

the Mn impurities occupy mainly substitutional positions while a small fraction occupies

interstitial positions [17]. With increasing Mn concentration, the probability for Mns–Mni

(pairs) and Mns–Mni–Mns (triplets) [44, 71] complexes to be formed increases, leading to

different diffusion mechanisms for interstitial Mn. In a concentration regime where both

these complexes are present and where sufficient thermal energy has been provided, the

interstitial Mn is likely to travel freely through interstitial sites, only becoming trapped when

captured by these complexes. This will lead to a hopping behavior of the diffusing Mn

between complexes which in turn leads to different activation energies for each trapping

mechanism, affecting the effectiveness of the thermal annealing. The number of jumps N

will then depend on the diffusion mechanism.

In the very low concentration regime [65], the interstitial Mn is predominantly a free inter-

stitial, and the number of jumps N is given by the number of interstitial sites the impurity

goes through until it is immobilized (cf. fig. 4.9a). At a few % Mn, the scenario changes

completely as a significant fraction of the interstitial impurities will be in a pair or in a triangle

[106] and the impurity will "hop" between these complexes, as demonstrated in figure 4.9b

and 4.9c.

When considering an interstitial diffusion in which the impurity hops between pairs, the

number of jumps N is given by the number of complexes the impurity goes through until it

becomes immobilized. We do not consider the jumps between interstitial sites because in

this scenario the energy required to dissociate a pair is much higher than for free interstitial

diffusion, i.e. the intermediate jumps between isolated interstitial sites can be neglected.

The same reasoning is applied to triplet complexes, as they are expected to have a higher

dissociation energy than a pair [71].
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Figure 4.9: The different diffusion mechanisms for an interstitial impurity. In blue are
the host lattice atoms and in red the impurity atoms. The number of jumps N is given
by the number of a) interstitial sites the impurity runs through until immobilized; the
number of "hops" between b) pairs and c) triplets until immobilized.
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Number of jumps for interstitial diffusion

Based on these diffusion mechanisms, the number of jumps N can now be estimated as

follows.

From ref. [106] we can obtain an estimate of the fraction of impurities in pairs (xpairs) and in

triplets (xtriplets), using the following expressions:

xpairs = (1− x)12 (4.7)

xtriplets = 12x(1− x)18 (4.8)

where x is the impurities concentration. Knowing these fractions one can determine the

distance between these complexes using:

di = 3

√
1

cMnxi
(4.9)

where cMn is the concentration of Mn, and i = (pairs, triplets). For a 3–dimensional random

walk, the root mean square (rms) distance from the origin after N jumps is given by

σ3,i =
〈
r2
〉1/2

=
√
Ndi (4.10)

Within the "thin-film" approximation, the impurity distribution is uniform along two of the

three directions, and therefore only the jumps in the last direction will contribute to a net

diffusivity, i.e. one third of the jumps N/3. Expression (4.10) then reduces to:

σ1,i =

√
N

3
di (4.11)

When performing the EC experiment the impurities are implanted at a projected range Rp.

Long-range diffusion of the impurities has a strong effect on the fitted fractions, due to

exponential dependence of β− dechanneling on the emitter (56Mn) depth. As stated in

section 4.2.2.2, the random fraction increases when the probes diffuse closer to the surface

or into the bulk. Accordingly, for our impurity probes we will take σ1,i equal to the projected

range Rp.

We can now estimate the number of jumps N for each diffusion mechanisms:

N ≈ 3

(
Rp

di

)2

(4.12)
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Activation energies

When considering the diffusion mechanisms stated above, the activation energy is given by

the sum of a binding energy Eb and a migration energy Em. The binding energy Eb is the

energy necessary to break the bond between the interstitial Mn and the substitutional Mn

in pairs or triplets. The migration energy Em is the energy barrier between interstitial sites

(TAs → TGa → TAs).

In the very low concentration regime, there is only isolated Mni (Eb = 0) and the interstitial

does not share any bond with a substitutional impurity. In this case Ea = Em [65]. At higher

concentrations, the increased amount of Mn impurities and the Coulomb attraction between

the Mni and Mns favors the formation of complexes. In this case the needed activation

energy diffuse the interstitial Mn is given by the binding energy Eb and the mobility energy

Em.

Ea = Em + Eb (4.13)

Through EC experiments it is not possible to determine Eb and Em independently, but it is

possible to estimate Ea and infer how the energies vary with different systems.

The estimation of activation energies Ea is, however, not so trivial as depicted above, as

other effects can take part in the energy barriers considered. Precipitation into secondary

phases will have an effect on the number of jumps the interstitial impurities will perform as

well as alter the local impurity concentration. Since an estimate for the number of jumps

until an impurity is immobilized by a secondary phase is not possible, we consider the limit

case N = 1 in our assessment for the activation energies.

Activation Energies Ea (eV)

% Mn TD (oC) Npairs Ntriplets Nlimit

1 350− 450 1.5− 1.7 1.6− 1.8 1.9− 2.1

5 250− 350 1.3− 1.5 1.3− 1.5 1.6− 1.8

Table 4.4: Estimated activation energies for interstitial Mn diffusion

In table 4.4 we compile the estimated values for the activation energy for the interstitial Mn –

considering the difference scenarios. We observe that for the 1% Mn sample the activation

energies range from 1.5 eV to 2.1 eV while for the sample with 5% Mn the activation energies

are 1.3 − 1.8 eV. For the isolated interstitial in the ultra-low concentration regime [65], the

activation energies are 1.7− 2.3 eV.

The different diffusion scenarios that may play a role in (Ga,Mn)As have strong implications
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in the magnetic properties of (Ga,Mn)As, and at higher concentrations (x > 5%) they can

be the limiting factor to the removal of interstitial by thermal annealing [11, 42, 44].

Impurity charge state and charge screening effects

A decrease in activation energy with increasing impurity concentration is observed and it is

a consequence of the different mechanisms interplaying in the diffusion of interstitial Mn.

As the impurities concentration increases, the interstitial Mn charge state changes [71] as

well as the charge screening effects in the host atoms.

Interstitial Mn is a deep donor with three possible charge states: neutral, singly charged

or doubly charged [49]. Based on refs. [44, 71] and our identification of the TAs lattice

site for the interstitial Mn, we expect that this impurity is doubly positively charged. The

charge state of the interstitial greatly influences its diffusion, as it determines the strength

of its interaction with the host atoms, i.e. the energy barrier for its diffusion is higher with

increasing charge state [71].

In the ultra-low concentration regime (x < 0.05%) [65], the isolated interstitial impurity is

doubly charged [44, 71] and has the highest activation energy (1.7 − 2.3 eV). As seen

previously, for this regime Ea = Em because Mni is isolated. In the 1% Mn samples this

scenario changes, as the formation of pairs and triplets with Mns will add Eb to the activation

energy, Ea = Em + Eb. However, we observe significant decrease in activation energy

(1.5−2.1 eV), further decreasing for the 5% Mn case (1.3−1.8 eV). Since the binding energy

Eb depends mainly on the atomic species involved, this decrease must be dominated by a

decrease in the migration energy, i.e. in the energy barrier interstitial Mn has to overcome.

Naturally, the charge distribution on the host atoms has a strong influence on the diffusion

of interstitial impurities and will be dependent on the impurity concentration. This effect can

be ascertained by calculating the Debye length, LD =
√
εkBT/e2p, where ε is the dielectric

constant, kB the Boltzmann’s constant, e the elementary charge and p the hole density. The

Debye length LD is the characteristic length beyond which a charged defect is effectively

screened.

Taking p determined by Hall-effect measurements [17], the Debye lengths for 1% Mn and

5% Mn are, respectively, 3.7 Å and 1.8 Å. These values are in the same order of magnitude

as the nearest neighbor (NN) distance between the TAs interstitial site and SAs site (2.45 Å),

which translates into strong charge-screening effects in these concentration regimes. In

other words, a diffusing Mni impurity has its charge screened, and therefore has a lower
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energy barrier to overcome. As a result, the migration energy Em is significantly reduced

and the activation energy Ea decreases.

Additionally, we observe that in the 5% Mn LD is smaller than the distance between TAs and

a SGa sites, which may lead to a smaller binding energy between pairs and triplets, further

reducing the activation energy.

4.2.3.2 Substitutional diffusion

The diffusion of the substitutional impurities in (Ga,Mn)As occurs at higher temperatures

and usually leads to the precipitation onto secondary phases. Under the same Arrhenius

model as in the interstitial diffusion (cf. sec. 4.2.3.1), the activation energy for substitutional

diffusion can be estimated.

The diffusion of substitutional Mn can be modeled by a Frank-Turnbull-like mechanism

where the substitutional atom "jumps" from the substitutional site to an interstitial site and

diffuses through interstitial sites away from the generated vacancy. For the concentration

regimes considered, when the substitutional Mn starts to diffuse the interstitial is already

highly mobile, and within the time interval that a substitutional atoms jumps to an interstitial

positions, there are many more jumps between interstitial atoms in interstitial positions.

Therefore, we can assume that only one jump is required (N = 1) to promote the diffusion

of substitutional Mn.

% Mn TD [oC] Ea [eV]

1 500− 550 2.3− 2.6

5 350− 400 1.9− 2.0

Table 4.5: Estimated activation energies for substitutional Mn diffusion

In table 4.5 we represent the estimated activation energies for substitutional diffusion. We

observe that the activation energy decreases significantly with increasing impurity concen-

tration. This has a strong influence on the thermal annealing procedures to reduce the

interstitial Mn for higher impurity concentration as well as it promotes the precipitation into

secondary phases at lower temperatures.

Diffusion mechanisms of substitutional Mn in (Ga,Mn)As

The decrease in activation energy for the diffusion of substitutional Mn seems counterintu-

itive at first as a substitutional impurity just needs to perform one jump to become mobile.
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However, the mechanism behind the substitutional impurity diffusion is more complex. In

1984, D. Mathiot and J. Pfister have developed a model based on combination of normal

vacancy/interstitial-assisted diffusion and diffusion in a percolation cluster formed by the

substitutional impurity atoms [107]. Later in 1993, A. Larsen observed and described

the same mechanism for impurities on heavily doped silicon [108]. When a substitutional

Isolated 

Not isolated 

a) 

b) 

Substitutional diffusion 

Figure 4.10: Schematic representation of the different diffusion mechanisms for a
substitutional impurity. In blue are the host lattice atoms, in red the impurity atoms
and in white the vacancies. In the a) isolated case the substitutional impurities are
far apart and the vacancy-impurity (V-Mns) system has minimum energy. In the b) not
isolated case the substitutional impurities are sufficiently close to start a percolation
cluster upon diffusion.

impurity jumps from its lattice site, a vacancy-impurity V-Mns pair is created with a certain

binding energy. This binding energy depends on the distance between the vacancy and the

impurity atom. With increasing impurity concentration the distance between substitutional

Mn impurities decreases. If substitutional Mn impurities are close enough, the vacancy

created when a Mn atom jumps will be attracted to different Mns, reducing the effective

binding energy in each V-Mns pair. Let us consider that for a substitutional impurity to

complete one diffusion step the vacancy must diffuse to at least the third-nearest neighbor.

If the concentration of substitutional impurity atoms becomes so high that there is a second

substitutional atom on a fifth-nearest neighbor position, then the third-nearest neighbor
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position, which the vacancy has to diffuse to in order to complete one diffusion step, is also

a second-nearest neighbor to a substitutional impurity atom. This results in a lowering of the

vacancy potential barrier height equal to the binding energy of the vacancy in the second-

nearest neighbor position to the substitutional impurity atom. When a sufficient number

of substitutional impurity atoms are connected this way, a percolation cluster will form.

Considering that the vacancy can freely diffuse and the energy barrier it has to overcome

is lowered, the substitutional impurity atoms will experience an accelerated diffusion via a

simple vacancy exchange mechanism.

We hypothesize that it is this impurity-vacancy assisted diffusion, illustrated in figure 4.10,

that leads to the observed decrease in the estimated activation energies for the diffusion of

the substitutional Mn. By increasing the Mn impurity concentration and reducing distance

between substitutional impurities, the energy barriers that vacancies have to overcome

decrease, consequently decreasing the energy needed to remove a substitutional impurity

from its lattice site.

4.2.4 Implications on the understanding of the structure and magnetism of

(Ga,Mn)As

We can conclude that the thermal stability of Mn impurities in (Ga,Mn)As is concentration

dependent. We observe that both the substitutional and interstitial fractions decrease at a

lower annealing temperature for the 5% Mn when compared to the 1% Mn. This result has

two essential consequences: (i) in 1% Mn, reduction of the Mni fraction only takes place

at an annealing temperature around 400◦C; and (ii) in 5% Mn, the substitutional fraction

decreases at lower annealing temperatures (slightly above 200-250◦C) than reported in

literature for secondary phase formation. (i) can be explained by the absence of interstitial

in 1% Mn MBE-grown (Ga,Mn)As. In fact, ab initio studies in Mni compensation [49] show

that this impurity is formed upon growth – Mn atoms adsorb on the growing surface and

diffuse into the sample. However, we observe that Mni is not mobile up to 400◦C, providing

evidence for the absence of interstitial Mn in (Ga,Mn)As thin films with less than 2% Mn

[11, 17]. (ii) represents an unexpected regime for Mn impurity aggregation, presenting

a scenario in which Mn impurities precipitate and aggregate at much lower temperatures

than reported in literature (above 500◦C [73]). Since this low temperature segregation may

be the reason why annealing at temperatures little above 200◦C leads to a decrease in

magnetization and TC of the material [11], it is important to investigate the properties of

(Ga,Mn)As in this new regime in order to further advance the understanding of this dilute

magnetic semiconductor.
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4.3 Correlating local structure and magnetism

As introduced in chapter 1, (Ga,Mn)As displays different structural and magnetic properties

depending on the annealing temperature. For instance, annealing close to the growth

temperature partly removes the Mni impurities, reducing the lattice constant and increasing

TC along with increasing saturation magnetization and hole density [13, 44, 58, 59, 109];

while annealing at higher temperatures will cause the precipitation of Mn into secondary

phases and superparamagnetic clusters [76, 77, 78, 81, 110].

In section 4.2 emission channeling experiments on 1% and 5% (Ga,Mn)As showed different

diffusion mechanisms for the interstitial and substitutional impurities with increasing post-

growth annealing temperatures. We observed that in 5% (Ga,Mn)As the substitutional Mn

(Mns) becomes mobile at annealing temperatures between 200◦C and 300 oC, while in

1% (Ga,Mn)As this mobility threshold lies between the 400◦C and 500◦C (cf. figure 4.8

on page 43, section 4.2.3). Below these temperature ranges the substitutional Mn does

not diffuse and the samples should be ferromagnetic while above it the precipitation into

a secondary phase will occur. It is however, important to note that his mobility threshold

is connected to the annealing time, through the Arrhenius equation (cf. equation (4.5) on

page 45).

The aim of these experiments is to study two different magnetic and structural regimes:

ferromagnetic regime (FM) and secondary-phases regime (SP). In the first regime we

investigate the existence of ferromagnetism at low temperatures while maintaining their

structure, and in the second we investigate the precipitation of Mn impurities.

In the following sections we will present and discuss these results, with a first section

presenting the main results from the experiments on the structure of our (Ga,Mn)As samples

(cf. sec. 4.3.2), laying the ground work for the following magneto-structural analysis of the

samples in the FM regime (cf. sec. 4.3.3) and in the SP regime (cf. sec. 4.3.4). Within each

regime we will analyze each concentration under study, the low concentration (1% Mn) and

the high concentration (5% Mn).

4.3.1 Sample description

In order to investigate magnetic and structural properties of (Ga,Mn)As in the regimes

previously mentioned, we prepared a series of the same thin film samples of (Ga,Mn)As

with 1% and 5% Mn (with the same specifications as in section 4.2.1) subjected to different

annealing temperatures.
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It is critical to note however, that the diffusion considerations taken in section 4.2 on page 41

were based on the restrictions that come with using radioactive 56Mn in an EC experiment,

i.e. the annealing step and subsequent measurements had to be short due to the relatively

short lifetime (t1/2 = 2.56 h) and in vacuum. Consequently, different annealing times

have different impacts on the diffusion of Mn in (Ga,Mn)As, as seen from equation (4.5)

on page 45 (cf. section 4.2.3.1). Annealing for a longer period of time will shift to lower

temperatures the observed diffusion, while annealing in different atmospheres will only

affect the passivation efficiency at the surface.

As a result, we studied a set of four samples of each of the concentrations considered in

our EC experiment. For each concentration we kept one as-grown sample and subjected

three others to thermal annealing at 200◦C and 300◦C for 100 hours in air, and at 600◦C for

10 minutes in vacuum.

4.3.2 Structural characterization

Based on our previous EC study of Mn impurity diffusion on (Ga,Mn)As, we expect the

structural properties of our samples to vary upon thermal annealing at different tempera-

tures [39, 84, 111].

To investigate these structural changes in (Ga,Mn)As we performed SR-XRD and EXAFS

experiments on each of the samples described in sec. 4.3.1. The experimental details of

these measurements are portrayed in chapter 3 on page 15.

4.3.2.1 Synchrotron radiation X-ray diffraction (SR-XRD)

Various measurements were performed on each of the samples:

High-resolution symmetric θ-2θ scans between 15◦ and 80◦ demonstrating the substrate

and film peaks with barely no distinction6 and θ-2θ scans in the vicinity of the (002)

peak of GaAs to investigate the film relaxation upon annealing;

Grazing Incidence asymmetrical scans to investigate secondary-phase formation upon

annealing.

Figure 4.11 on the facing page shows the reciprocal space maps near the (002) reflection

of GaAs, in 5% Mn (Ga,Mn)As as-grown and annealed at various temperatures. From this

6Only the relevant part of these measurements is shown
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Figure 4.11: Reciprocal space maps near the (002) reflections in the 5% Mn samples:
a) as-grown, b) annealed at 200 ◦C, c) annealed at 300 ◦C, and d) annealed at 600 ◦C.
The symbols X, * and S represent respectively the substrate, layer and secondary
phases peaks.

reciprocal map we can obtain the high resolution θ-2θ scans, shown in figure 4.12 on the

next page, for both concentrations – 1% Mn (left) and 5% Mn (right). In this figure, the

peaks S, L and SP denote respectively the substrate peak, the (Ga,Mn)As peak and the

secondary phases peak. This data will be detailed in sections 4.3.3.1 and 4.3.4.1.

Figure 4.13 on page 59 shows the GIXRD measurements with all the identified secondary

phases for the samples annealed at 600oC: MnAs in two distinct phases (zincblende and

hexagonal) and orthorhombic As. These secondary phases will be discussed in more detail

in section 4.3.4.1.
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4.3.2.2 Extended X-ray absorption fine structure (EXAFS)

The EXAFS experiment was carried out at BM26, ESRF, and consisted on the room-

temperature study of the X-ray absorption near the K-edge of the Mn impurities. Figure 4.14

on page 60 shows the Fourier transform of the isolated fine structure as a function of non-

phase corrected radial distance for Mn atoms in a (Ga,Mn)As matrix.

Figure 4.15 on page 61 summarizes the outcome of a 1st shell analysis, allowing us to

determine the Mn-As NN distance as well as the EXAFS Debye-Waller (DW) factor σ2,

which in turn gives us insight into the local structure of Mn impurities in (Ga,Mn)As, in

particular, on the local disorder in these systems.
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Figure 4.13: SR-GIXRD measurements (Ga,Mn)As samples with 1% Mn and 5% Mn
as-grown and annealed at 200oC, 300◦C and 600oC. The emergence of secondary-
phases peaks is evident for the samples annealed at 600◦C in the selected scan range
and is represented by triangles for NiAs-type MnAs nanoclusters and by squares for
zincblende MnAs nanoclusters. A peak corresponding to an orthorhombic As phase is
also present and represented with a circle. Only the region of interest is displayed with
no more peaks corresponding to secondary phases present in the remaining spectrum.

4.3.2.3 Remarks

The results presented in this section (4.3.2) set the ground work for a complete magneto-

structural analysis of (Ga,Mn)As with 1% Mn and 5% Mn annealed at various temperatures.

As is observable from these results, the structural changes in (Ga,Mn)As in the FM regime

are small, since the removal of the interstitial has little effect on the overall structure.

Stronger structural modification is observed for the samples annealed at 300◦C and 600◦C.

An increase in NN distance as well as in the EXAFS DW factor σ2 in the EXAFS analysis

(cf. fig. 4.15) indicate the formation of disordered Mn-rich regions at 300◦C and well defined

crystallized secondary phases at 600◦C. In the SR-XRD measurements we observe a

disappearance of the (Ga,Mn)As peak in the 1% Mn samples at 300◦C and 600◦C, and
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Mn concentrations.

an emergence of a secondary phase peak in the 5% Mn samples at 600◦C (cf. fig. 4.12).

These structural changes will be discussed in more detail in the following sections 4.3.3.1

for the ferromagnetic regime and 4.3.4.1 the for the secondary phase regime followed by

their implications on the magnetic behavior.

4.3.3 Ferromagnetic regime

In section 4.2 we saw that the diffusion of Mni occurs at lower temperatures than Mns.

Annealed below the diffusion temperature of Mns, (Ga,Mn)As should still be ferromagnetic,

with small structural changes from the as-grown state.

From a magnetic point of view, the interactions that allow the existence of ferromagnetism

in each concentration in this regime are different: in the low concentration (x < 1.5%) the

holes that mediate the magnetic interactions between Mns moments lie in an impurity band

[42, 50] while in the higher concentration regime (x > 1.5%) this impurity band is merged

with the valence band [50, 112], leading to a ferromagnetic p−d Zener exchange interaction.

This is however a controversial point in the DMS field, specifically for (Ga,Mn)As [50].

However, in both these regimes the Mn interstitial can be present and couple antiferromag-

netically with the substitutional impurities. Within the FM regime we intend to study the Mn
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interstitial removal by annealing close to growth temperature (200 oC) in both concentrations

and analyzing the material’s structure and magnetism. Therefore, in this section we will

distinguish samples by as-grown and annealed, where annealed refers to the samples

annealed at 200◦C in air for 100 hours.

4.3.3.1 Structure

Within the FM regime we already noted that the structural changes are minimal. However

it is worthy to evaluate these changes in order to draw a valid magneto-structural picture of

(Ga,Mn)As.

From our SR-XRD experiments we observe that the measurements of the as-grown and

of the annealed samples held similar results. The GIXRD measurements (figure 4.13 on

page 59) showed no secondary phase formation, with no additional peaks present in the

full scans, which was expected as in this temperature regime Mns is not mobile.

In figure 4.12 on page 58, however, small changes are observable at 5% Mn. In this

concentration we observe that the layer peak (L) becomes sharper upon annealing with

better defined interference fringes7. Also, the region where the apparent peak I resides

disappears within the fringes. These differences in the experimental curves between the

samples seem to indicate a small change in the structure of 5% (Ga,Mn)As when annealed

7These fringes are a result of the interference between the diffracted X-rays from the buffer layer with the
diffracted X-rays from the (Ga,Mn)As layer.
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close to the growth temperature.

As seen in section 1.2, interstitial Mn does not form when growing (Ga,Mn)As for concen-

trations below 2% Mn. Therefore, no change is expected in the material when annealed

at 200 oC. This is also visible in our HRXRD data, in figure 4.12 on page 58 where the

as-grown and annealed scans display the same peaks with similar intensities.

4.3.3.2 Magnetism

By performing SQUID magnetometry measurements we are able to analyze the magnetic

properties of our samples, most importantly the Curie temperature TC , saturation magneti-

zation, remanence and coercivity.

In order to determine these properties, we measured for each sample the magnetization as

a function of applied magnetic field at 5 K and at 300 K, the magnetization as a function of

temperature at an applied field of 10 Oe after cooling under a saturating field (remanence

curves), and magnetization as a function of temperature at an applied field of 100 Oe after a

zero-field cooling and a 100 Oe field-cooling at the same magnetic field. All measurements

were performed along the same direction as the applied magnetic fields, the [100]/[010].

For each concentration we obtained different results and accordingly we will divide the

analysis in low concentration (1% Mn) and high concentration (5% Mn).

Low concentration

In figure 4.16 we can observe the M-H and M-T curves measured for 1% Mn in the FM

regime. The as-grown sample as well as the annealed sample display ferromagnetic

behavior with a saturation magnetization of 3.5 µB, very close to the magnetization of

uncompensated substitutional Mn, 4 µB (cf. [49]).

Both the ZFC-FC curves and the remanence present a peak in magnetization at around

17 K. This may be due to a changing magnetic anisotropy, which has been shown to be

temperature dependent [102, 103].

No significant change is visible in the magnetic properties of 1% (Ga,Mn)As when com-

paring the as-grown with the annealed sample: the saturation magnetization remains the

same (Msat = 3.5 µB) as well as the Curie temperature (TC = 20 K) at which the paramag-

netic transition occurs. This further supports our emission channeling conclusion (cf. sec-

tion 4.2.4) that interstitial Mn impurities do not form upon growth for this concentration
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Figure 4.16: (a) Magnetization as a function of applied magnetic field; (b) ZFC-FC
curves and remanence (inset) as a function of temperature for as-grown and 200◦C air
annealed 1% (Ga,Mn)As.

regime8, and therefore no Mni impurities are there to be removed when annealing.

High concentration

Figure 4.17 displays the results of SQUID magnetometry on the 5% Mn samples in FM

regime. We observe a considerable increase in saturation magnetization from 2.4 µB to

3.6 µB from the as-grown to the annealed sample, accompanied by an enhancement of TC

from 50 K to 100 K (cf. figure 4.17b). This is due to the removal of Mni from the complexes

considered in section 4.2.3.1), leaving more substitutional Mn impurities isolated, which

in turn contribute to the net magnetization of the material. The coercive field as well as

the shape of the hysteresis loops change significantly, indicating the changing magnetic

anisotropy upon annealing.

As we can see in the metallic regime, post-growth annealing close to growth temperature

can effectively promote the out diffusion and passivation of Mni contributing to an activation

of the substitutional Mn and enhancing the magnetization and Curie Temperature.

8as it is not mobile at temperatures around 200◦C
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Figure 4.17: (a) Magnetization as a function of applied magnetic field; (b) ZFC-FC
curves and remanence (inset) as a function of temperature for as-grown and 200◦C air
annealed 5% (Ga,Mn)As.

4.3.3.3 Concentration dependence

In section 4.2.2 we saw that by annealing at a temperature around 200◦C the substitutional

Mn impurities are not completely mobile for both concentrations under inspection, i.e. while

in the 1% Mn samples the Mns is not mobile at 200◦C, in the 5% Mn samples some residual

precipitation may have already occurred.

We also note that, as seen in section 1.2.2, annealing at this temperature will promote the

diffusion of the interstitial Mn, passivating it at the surface and thereby we expect to see an

increase in the net magnetization of our samples as well as their Curie Temperatures.

In figure 4.18 we compare the obtained magnetization curves for both concentrations for

as-grown samples as well as for annealed samples within the FM regime. We observe that

the 1% FM samples have a comparable net magnetization to the 200◦C annealed 5% Mn

sample. As seen in sec. 4.2.4 and according to literature [17, 44], for Mn impurity concen-

tration below 2% Mn the interstitial impurity does not form. With no self-compensation by

the Mni impurities in the 1% Mn samples, the total magnetic moment per Mn impurity shall

be close to the theoretically predicted value of 4 µB [105]. However, in a low concentration

regime, where the sample is insulating, the amount of holes to mediate the ferromagnetism

is smaller than at higher concentrations, therefore limiting the net magnetization of the

sample. Also, the lower concentration of Mns defects results in a lower TC , as seen in

figure 4.18.
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Figure 4.18: Magnetization curves for 1% and 5% (Ga,Mn)As samples as-grown and
annealed respectively at 200◦C.

Another noteworthy observation is the anisotropy of the system in the two different concen-

tration regimes: along [100]/[010] the magnetic hysteresis is disparate for the 1% Mn sam-

ples from the 5% Mn samples. The different magnetic anisotropy properties of the samples

in both concentrations are mostly due to the different magnetic ordering mechanisms as

described in section 4.3.3.

4.3.4 Secondary-phase regime

4.3.4.1 Structure

While for higher temperature annealing temperatures (500◦-600◦C) it is generally accepted

that Mn precipitates into a secondary phase [76, 82], the low temperature regime (between

200◦C and 400◦C) is still poorly understood.

For the samples annealed at 300◦C, the GIXRD measurements did not reveal additional

peaks, and the HRXRD measurements show the disappearance of the film peak L in the

1% Mn sample when compared to the samples within the FM regime9. This is indicative

of a relaxation of the film to the GaAs lattice constant. Indeed, in figure 4.15 on page 61

we observe a slight increase in Mn-As NN distance, with a significant increase on the DW

factor σ2, which together indicate that the Mn impurities are forming disordered Mn-rich

9This measurement shows a higher background noise than all the others due to experimental difficulties
during alignment



66 CHAPTER 4. RESULTS AND DISCUSSION

regions when the material is annealed at 300oC, possibly without formation of a well defined

secondary phase.

In the 5% Mn sample, the L peak is present in all measurements, but this is not indicative

of the presence of the (Ga,Mn)As layer. Indeed, in the FM regime, this peak is due to the

presence of the (Ga,Mn)As layer but is as well due to the presence of the buffer layer of

AlAs. When the Mn impurities start to diffuse and form secondary phases, the intensity of

this peak will be reduced as the film relaxes and only the AlAs layer will contribute for its

intensity.

In samples annealed at 600◦C we observed well defined secondary phases in both sets of

samples (1% Mn and 5% Mn). On figure 4.12 a new peak (SP) has appeared on the left

side of the substrate peak S in the 5% Mn sample, in contrast with other measurements

on the same concentration. This new peak can be attributed to the formation of nanoscale

clusters of MnAs. According to literature [78], the (Ga,Mn)As lattice relaxes to the GaAs

lattice constant, with the Mn aggregation in nanoclusters with a smaller lattice parameter.

This translates to a shift of the peak to higher angles or smaller interplanar distances. This

peak SP has two possibilities consistent with literature: (a) it coincides with the peak {0111}

for bulk hexagonal α-MnAs (NiAs–type), with d = 2.793 Å; and (b) it coincides with peak

(002) of zincblende–type (ZB) MnAs. These small nanoclusters are strained relatively to the

bulk α-MnAs for (a) and for ZB–type MnAs, displaying a reduction in d-spacing of 0.88%

and −.34% respectively.

In the same figure, in 1% Mn such a peak is not visible, however the substrate peak

becomes broader when compared to the measurement of the 300◦C annealed sample.

This may indicate that the formed nanoclusters have a smaller size and therefore induce

less strain in the host lattice.

From figure 4.15, we observe that for an annealing temperature of 600◦C the Mn-As NN

distance is approximately dNN = 2.53 Å with a DW factor σ2 = 0.011 Å2, which is very close

to the Mn-As NN distance in bulk α-MnAs (dNN,MnAs = 2.57 Å). This unambiguously pro-

vides evidence for the formation of a MnAs secondary phase when subjecting (Ga,Mn)As

to a high temperature annealing of 600oC.

Furthermore, from our measurements in GIXRD we were able to identify the different

phases present in each of the studied samples. In figure 4.13, these phases are signaled

with shapes (square, triangle and circle) and can be investigated. In the 1% Mn sample,

we mainly were able to identify one MnAs secondary phase, corresponding to the {1012}

peak of NiAs–type MnAs clusters, i.e. nanoclusters of MnAs with hexagonal NiAs–like
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structure. The presence of zincblende (ZB) nanoclusters could not be confirmed as these

most likely have a direct epitaxial relationship with the GaAs host lattice, and therefore do

not appear in grazing incidence measurements (asymmetric scans). Making use of the

Scherrer equation, the size L of these nanoclusters can be estimated: L = K/β cos θ,

where K is dimensionless shape factor (0.94 for GaAs), λ the X-ray wavelength, β the

line broadening at half the maximum intensity (FWHM) and θ is the Bragg angle. For this

concentration we estimate an average size of 6.8 nm for the NiAs-type MnAs nanoclusters.

Other types of secondary phases were identified in the 5% Mn sample. Two peaks of

NiAs-type hexagonal nanoclusters are observed: the {1012} peak and the {0111} peak,

indicating the presence of nanoparticles with average sizes 3.2-5.5 nm. The presence of

ZB MnAs nanoclusters is also possible, however they are not directly visible in our GIXRD

measurements. Another phase was identified: a (110) peak of orthorhombic As (orange

circle in figure 4.13). This phase is in accordance with various literature reports [77, 80, 78,

81], in which the hexagonal MnAs nanoclusters are usually accompanied by an As cluster,

and sometimes voids.

4.3.4.2 Magnetism

When annealing above the substitutional Mn diffusion temperature the magnetic properties

of (Ga,Mn)As change considerably by forming nanoscale superparamagnetic MnAs clusters

[39, 73, 111, 113].

We will discuss these magnetic properties in the following sections by analyzing the SQUID

magnetometry measurements we performed on our samples.

Low concentration

In figure 4.19 on the next page we show the M-H curves for the (Ga,Mn)As samples

annealed at 300◦C and 600◦C. The latter curve is characteristic of a superparamagnetic

(SPM) system below the blocking temperature, which is confirmed by the ZFC-FC curves

(figure 4.19b).

As seen in the previous section (cf. section 4.3.4.1), in this sample the Mn atoms precip-

itated into a secondary phase, nanoscale superparamagnetic MnAs clusters. From the

ZFC-FC curves in figure 4.19b one can verify that these superparamagnetic nanoclusters

have a blocking temperature of Tb = 17 K.
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Figure 4.19: (a) Magnetization as a function of applied magnetic field at 5 K and at
300 K (inset); (b) ZFC-FC and remanence (inset) as a function of temperature for 300◦C
and 600◦C annealed 1% (Ga,Mn)As.

For the sample annealed at 300◦C we observe a great reduction in magnetization from the

sample annealed at 200◦C in the last section. However, some magnetization remains at

very low temperature, possibly residual FM from (Ga,Mn)As or FM/SPM in Mn-rich regions.

High concentration

As in the low concentration case the magnetic properties of (Ga,Mn)As annealed at higher

than growth temperature are those of a superparamagnetic system.

In figure 4.20 we observe typical M-T and M-H curves for these systems annealed at

the highest annealing temperature: ferromagnetic-like hysteresis with small remanence

and a ZFC-FC curve with a blocking temperature of Tb = 25 K and high TC . This is in

good agreement with the precipitation into nanoscale MnAs clusters as seen before (cf.

sections. 4.3.2 and 4.3.4.1).

For the sample annealed at 300◦C the magnetization as a function of applied field curves

display some superparamagnetic behavior, indicative of residual FM from (Ga,Mn)As or

FM/SPM from the Mn segregation into disordered Mn-rich regions, without formation of

nanoclusters with a well-defined structure.
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Figure 4.20: (a) Magnetization as a function of applied magnetic field at 5 K and at
300K (inset) ; (b) ZFC-FC curves and remanence (inset) as a function of temperature
for 300◦C air annealed and 600◦C vacuum annealed 5% (Ga,Mn)As.

4.3.4.3 Concentration dependence

In perfect agreement with our structural analysis in section 4.3.4.1 we observe for both

concentrations that by annealing at 300◦C in air for 100 hours, the ferromagnetism essen-

tially vanishes. Annealing at this temperature, where the Mns is mobile, does not allow the

existence of ferromagnetic ordering, as seen in figure 4.21. Also, there is little evidence for

formation of nanoscale clusters/disordered Mn-rich regions as superparamagnetic hystere-

sis loops appear for both concentrations (at low temperature), with no remanence for the

whole measured temperature range.

Distinctly, both 600◦C vacuum annealed samples display typical superparamagnetic be-

havior, with higher magnetization for the 5% Mn sample with about the same coercivity.

These results confirm the presence of nanoclusters as observed in the XRD data (cf.

sec. 4.3.4.1). As in various superparamagnetic systems with clusters or nanoparticles,

the blocking temperature of the ZFC-FC curves scales with the size of the clusters [114],

as magnetization reversal is proportional to the volume of the clusters. Therefore, one can

expect the average cluster size for the 5% Mn sample to be bigger than for the 1% Mn

sample, as the latter displays a lower Tb. We can also speculate that in the 5% Mn sample

the size distribution is larger, i.e. the clusters present a more size variety than in the 1%

Mn sample. In fact the type and size of the nanoclusters should have an effect on the

layer’s magnetic properties. Yokoyama et al [76] observed that the net magnetization per
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Figure 4.21: Magnetization curves for 1% and 5% (Ga,Mn)As samples annealed
respectively at 300◦C and 600◦C.

cubic centimeter as well as the Curie temperature TC of GaAs:MnAs of the NiAs-type is

higher than for the ZB–type. Accordingly, we expect that our samples contain clusters of

both types, with a smaller size distribution of mainly ZB nanoclusters for the 1% Mn sample

while the 5% Mn sample contains significantly more clusters of NiAs-type. This is in stark

contrast with our structural data, where the estimated cluster size for 1% Mn sample is

larger than for the 5% Mn. This can be explained by the formation of crystallites, which is

in fact what is measured in a GIXRD experiment. In other words, in the 1% Mn sample

the MnAs clusters of NiAs–type are several and with an average size larger than the one of

clusters in the 5% Mn sample. Combining these conclusions with our SQUID data we can

extrapolate that our 5% Mn sample has predominantly nanocluster of the NiAs-type while

the 1% Mn sample contains mainly ZB–type clusters.



5 Conclusion

This MSc thesis addressed three key aspects of the model DMS (Ga,Mn)As: (1) the identi-

fication of Mn interstitial site in ferromagnetic (Ga,Mn)As as well as (2) the thermal stability

of the different lattice sites occupied by Mn impurities for different Mn concentrations, and

(3) its influence on the material’s structure and magnetism.

Regarding the interstitial Mn site (1), we identified unambiguously it as the TAs site, both

before and after thermal annealing at 200◦C. The TAs site is therefore the energetically

favorable site regardless of the interstitial Mn atom being isolated or forming complexes

with substitutional Mn. This information is crucial for the understanding of electric and

magnetic self-compensation in (Ga,Mn)As, as well as the mechanisms of electric and

magnetic activation by thermally induced out-diffusion of interstitial Mn.

Regarding the thermal stability of Mn impurities in (Ga,Mn)As (2), our results show that

compared to the substitutional Mn, interstitial Mn becomes mobile at lower temperatures,

for both low (1%) and high (5%) Mn concentration. Moreover, the diffusion temperatures

are lower for the high concentration than for the low concentration case. Accordingly,

the activation energy for substitutional and interstitial Mn decreases with increasing Mn

concentration. For the substitutional we obtained an activation energy of 2.3-2.6 eV for

1% Mn and 1.9-2.0 eV for 5% Mn, and for the interstitial, 1.5-2.1 eV for 1% Mn and 1.3-

1.8 eV for 5%. These values reflect the complex diffusion mechanisms that interplay in

(Ga,Mn)As. For substitutional diffusion, the decrease of activation energy is associated

with a decrease of the binding energy of impurities to the substitutional site, i.e. increasing

impurity concentration leads to a decrease in distance between Mns, which enhances the

vacancy-assisted diffusion of the substitutional Mn. For the interstitial, the decrease relates

to charge screening effects, i.e. increasing impurity concentration, increases the metallicity

of the material and decreases the Coulomb interactions between the diffusing interstitials

and the host atoms. Consequently the charge of the diffusing species is screened, requiring

less energy to overcome the migration barriers between interstitial sites. These results can

be translated into two relevant findings: (i) at typical growth temperatures (200-300◦C) inter-

stitial Mn is mobile for high Mn concentration (5%) but not for low concentration (1%); and
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(ii) substitutional Mn impurities become mobile at lower temperatures than those previously

reported. Finding (i) sheds new light on the formation mechanism of interstitial Mn during

LT-MBE growth. It shows that interstitial Mn only forms for Mn concentrations at which it

is mobile during growth. As such, this finding constitutes strong experimental evidence for

a previously proposed (but never demonstrated) mechanism in which interstitial Mn is not

incorporated simultaneously with substitutional Mn but by diffusion of Mn atoms from the

sample surface into the bulk of the film (which can only occur if the interstitial is mobile in the

film bulk at the growth temperature). Finding (ii) uncovers an unexpectedly low temperature

regime in which the Mn impurities become mobile at high impurity concentrations, i.e.

annealing at temperatures as low as 200-250◦C induces Mn diffusion and segregation.

In (3) we conducted a comprehensive study of the interplay between local structure and

magnetism in the different annealing regimes considered in (2). Annealing at ∼ 200◦C

resulted in the reduction of interstitial Mn fraction only for the high Mn concentration, leading

to an increase in TC and magnetization, while for the low concentration no improvement in

ferromagnetic behavior is observed, further supporting the scenario in which the interstitial

Mn does not form during LT-MBE growth for Mn concentrations below 2%. Complementing

result (ii) in (2), annealing at ∼ 300◦C induced precipitation of Mn into disordered Mn-

rich regions for both concentration regimes, effectively annihilating the ferromagnetism.

Additionally, annealing at a temperature of 600◦C led to the formation of a well defined

secondary-phases, consisting of superparamagnetic MnAs nanoclusters of mainly two-

types: zincblende, coherent to the GaAs matrix, and hexagonal NiAs-type, strained and

not coherent with host matrix.

This comprehensive study revealed itself as a powerful complement to the emission chan-

neling technique in order to explore and investigate the structural and magnetic properties

of (Ga,Mn)As. This toolset of characterization techniques presents itself as a dynamic and

thorough investigation method for studying dilute magnetic systems, such as the case of

dilute magnetic semiconductors and oxides.

Outlook

The main implications of the results presented in this thesis concern the influence of the

local structure on ferromagnetic (Ga,Mn)As. For low impurity concentrations the impurities

are essentially substitutional, with high thermal stability allowing for a full activation of the

magnetic moments. Increasing concentration lowers the mobility threshold, increasing diffu-

sion, leading to the formation of interstitials upon growth, which compensate substitutional
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Mn both magnetically and electrically. Passivating the interstitial Mn by annealing at low

temperatures increases the magnetization and Curie temperature. However, with increasing

concentration, the temperature gap interstitial removal and Mn segregation narrows down

significantly, requiring a careful design of the activation annealing procedure (temperature

and duration).

This increased understanding of the complex interplay between local structure and ferro-

magnetism in (Ga,Mn)As has the potential to inspire new strategies to increase the substitu-

tional Mn concentration and consequently the Curie temperature of this model DMS system.

Such strategies may include development of improved sample preparation methods and/or

post-growth treatment for more efficient incorporation of Mn in substitutional sites as well as

minimization of interstitial Mn. Also, the intricate physics uncovered on this specific system

motivates a wider investigation of the III-Mn-V DMS family, where one can evaluate e.g. the

effect of the III-V band-gap, the position of the Mn acceptor level and the degree of hole

localization. Unraveling the interplaying mechanisms between the structural and magnetic

properties of these DMS materials constitutes an important step in the understanding of the

fundamental physics that lie behind them and the technological applications that lie beyond.

“It might be, therefore, expected that studies of magnetically doped semicon-

ductors (...) will continue to bring unanticipated and inspiring discoveries in the

years to come.”

Tomasz Dietl and Hideo Ohno, 2014 [39]
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ner, G. Bauer, M. Rovezzi, F. D’Acapito, M. Kiecana, M. Sawicki, and T. Dietl,

“Controlled Aggregation of Magnetic Ions in a Semiconductor: An Experimental

Demonstration,” Physical Review Letters, vol. 101, p. 135502, Sept. 2008.

[29] W. Stefanowicz, D. Sztenkiel, B. Faina, A. Grois, M. Rovezzi, T. Devillers,

F. D’Acapito, A. Navarro-Quezada, T. Li, R. Jakieła, M. Sawicki, T. Dietl, and

A. Bonanni, “Structural and paramagnetic properties of dilute Ga1−xMnxN,” Physical

Review B, vol. 81, p. 235210, June 2010.

[30] A. Ney, T. Kammermeier, K. Ollefs, S. Ye, V. Ney, T. C. Kaspar, S. A. Chambers,

F. Wilhelm, and a. Rogalev, “Anisotropic paramagnetism of Co-doped ZnO epitaxial

films,” Physical Review B, vol. 81, p. 054420, Feb. 2010.



80 BIBLIOGRAPHY

[31] S. Granville, B. J. Ruck, F. Budde, H. J. Trodahl, and G. V. M. Williams, “Nearest-

neighbor Mn antiferromagnetic exchange in Ga1−xMnxN,” Physical Review B, vol. 81,

p. 184425, May 2010.

[32] A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T. Kaspar, S. Chambers, F. Wilhelm,

and a. Rogalev, “Absence of Intrinsic Ferromagnetic Interactions of Isolated and

Paired Co Dopant Atoms in Zn1−xCoxO with High Structural Perfection,” Physical

Review Letters, vol. 100, p. 157201, Apr. 2008.

[33] P. Sati, C. Deparis, C. Morhain, S. Schäfer, and a. Stepanov, “Antiferromagnetic

Interactions in Single Crystalline Zn1−xCoxO Thin Films,” Physical Review Letters,

vol. 98, p. 137204, Mar. 2007.

[34] Q. Xu, S. Zhou, D. Markó, K. Potzger, J. Fassbender, M. Vinnichenko, M. Helm,

H. Hochmuth, M. Lorenz, M. Grundmann, and H. Schmidt, “Paramagnetism in Co-

doped ZnO films,” Journal of Physics D: Applied Physics, vol. 42, p. 085001, Apr.

2009.

[35] E. Sarigiannidou, F. Wilhelm, E. Monroy, R. Galera, E. Bellet-Amalric, A. Rogalev,

J. Goulon, J. Cibert, and H. Mariette, “Intrinsic ferromagnetism in wurtzite (Ga,Mn)N

semiconductor,” Physical Review B, vol. 74, p. 041306, July 2006.

[36] K. Zhao, Z. Deng, X. C. Wang, W. Han, J. L. Zhu, X. Li, Q. Q. Liu, R. C. Yu, T. Goko,

B. Frandsen, L. Liu, F. Ning, Y. J. Uemura, H. Dabkowska, G. M. Luke, H. Luetkens,

E. Morenzoni, S. R. Dunsiger, A. Senyshyn, P. Böni, and C. Q. Jin, “New diluted

ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to

the ’122’ iron-based superconductors.,” Nature communications, vol. 4, p. 1442, Jan.

2013.

[37] T. Jungwirth, V. Novák, X. Martí, M. Cukr, F. Máca, A. B. Shick, J. Mašek,
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