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HIGGS BUNDLES FOR THE NON-COMPACT DUAL OF THE SPECIAL

ORTHOGONAL GROUP

STEVEN B. BRADLOW, OSCAR GARCÍA-PRADA, AND PETER B. GOTHEN

Abstract. Higgs bundles over a closed orientable surface can be defined for any real reductive Lie
group G. In this paper we examine the case G = SO∗(2n). We describe a rigidity phenomenon
encountered in the case of maximal Toledo invariant. Using this and Morse theory in the mo-
duli space of Higgs bundles, we show that the moduli space is connected in this maximal Toledo
case. The Morse theory also allows us to show connectedness when the Toledo invariant is zero.
The correspondence between Higgs bundles and surface group representations thus allows us to
count the connected components with zero and maximal Toledo invariant in the moduli space of
representations of the fundamental group of the surface in SO∗(2n).

1. Introduction

Higgs bundles over a Riemann surface are intrinsically holomorphic objects. Their moduli spaces
can nevertheless be identified with representation varieties for the fundamental group of the surface
even if the target group for the representations, or equivalently the group defining the Higgs bundles,
is a real reductive Lie group. If the group, say G, is of Hermitian type, i.e. if the homogeneous
space G/H (where H is a maximal compact subgroup) is a Hermitian symmetric space, then the
associated G-Higgs bundles have especially rich structure. The real connected semisimple classical
groups with this property are SU(p, q),Sp(2n,R), SO(2, n), and SO∗(2n). In this paper we examine
in detail the case of G = SO∗(2n). In particular, we give proofs of the results that were announced
in [6].

The theory of G-Higgs bundles with G a real Lie group goes back to Hitchin’s seminal papers
[23, 24] in which split real forms were considered. Since then, the G-Higgs bundles for many other
real forms have been examined. Among the real groups of Hermitian type, Sp(2n,R) is special
because it is also a split real form and therefore a particular case of the situation studied by
Hitchin. Higgs bundles for the groups Sp(2n,R) and SU(p, q) have been studied (in chronological
order) in [18, 5, 17, 6, 7, 20, 14, 41] and also, most recently and from a different point of view
in [25, 34]. In the paper [6] we announced results on SO(2, n) and SO∗(2n); the recent preprint
[26] addresses some aspects of the SO∗(2n) case from a different point of view. Higgs bundles
for all the groups of Hermitian symmetric type, including the two exceptional cases found among
the real forms of E6 and E7, have also been studied in [33], where the first steps towards a unified
treatment were taken. The group SO(2, n) falls into the more general (but not in general Hermitian
symmetric) case of SO(p, q)-Higgs bundles, which were studied in [1, 2]. On the other side of the
correspondence between Higgs bundles and surface group representations, the groups of Hermitian
type have been extensively studied, notably recently in [9, 21, 3].
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2 S. B. BRADLOW, O. GARCÍA-PRADA, AND P. B. GOTHEN

In some ways the work described in this paper is one more in a series of case-by-case analyses
of G-Higgs bundles for different G. Adding to its interest, however, is the fact that the analysis of
SO∗(2n)-Higgs bundles unavoidably involves other reductive groups. Any discussion of SO∗(2n)-
Higgs bundles is thus a showcase for several types of G-Higgs bundles.

The most direct way that other groups enter the picture is through the structure of polystable
SO∗(2n)-Higgs bundles. In general (see Theorem 3.25) such Higgs bundles decompose as a sum of
G-Higgs bundles where G can be one of a number of different groups, including SO∗(2m) for m < n,
but also U∗(m),U(p, q), and U(m) for suitable values of m, p, q. At the level of Lie theory, these
are the groups which appear as factors in Levi subgroups of SO(2n,C) intersected with SO∗(2n).
Note that this list of groups includes both compact and non-compact real forms. In the latter case
the corresponding symmetric space may be Hermitian or not.

The group U∗(m) appears in a second way that depends on a key feature of G-Higgs bundles for
non-compact real forms of Hermitian type. In these cases a discrete invariant known as the Toledo
invariant can be defined. The invariant has several interpretations (see [29, 12, 11, 10, 6, 9, 26, 34])
but all lead to a bound that generalizes the Milnor inequality on the Euler class of flat SL(2,R)-
bundles. The G-Higgs bundles with maximal Toledo invariant all have special properties but these
fall into two categories, depending on whether the Hermitian symmetric space is of tube type or not.
In the tube cases, a correspondence emerges between polystable G-Higgs bundles with maximal
Toledo invariant and objects called K2-twisted G′-Higgs bundles, where G′ is a new reductive
group. We call this G′ K2-twisted G′-Higgs bundle the Cayley partner to the original G-Higgs
bundle. In the non-tube cases, the maximal G-Higgs bundles do not have Cayley partners but
decompose into two parts, one of which has a Cayley partner and the other of which corresponds
to a compact group. This imposes constraints which we refer to as ‘rigidity’ on the moduli spaces.
For G = SO∗(2n) we see both types of phenomena, depending on whether n is even or odd. In
the odd case, the group is not of tube type and we see rigidity (see Section 4.2). For n = 2m, the
group is of tube type and the Cayley partner to SO∗(2n) is the group U∗(n).

There is one more group that enters the discussion, namely Sp(2n,R). While the nature of
the relation between SO∗(2n)-Higgs bundles and Sp(2n,R)-Higgs bundles is more subtle than in
the case of the groups which appear in Levi subgroups, the comparison between the two cases is
instructive and unavoidable. In both cases the maximal compact subgroups are isomorphic to U(n),
and the complexified isotropy representations are

(1.1)

{

Λ2(Cn)⊕ Λ2((Cn)∗) for SO∗(2n)

Sym2(Cn)⊕ Sym2((Cn)∗) for Sp(2n,R)

These structural similarities between SO∗(2n) and Sp(2n,R) carry over to the theory of Higgs
bundles. In both cases a G-Higgs bundle over a Riemann surface is defined by triple (V, β, γ) where
V is a rank n holomorphic bundle, and β and γ are homomorphisms

β : V ∗ −→ V ⊗K and γ : V −→ V ∗ ⊗K.

The difference between the cases G = SO∗(2n) and G = Sp(2n,R) is that in the former case the
maps β and γ are skew-symmetric, while in the latter case the maps are symmetric. However in
both cases, the quadruple (V, V ∗, β, γ) defines a SU(n, n)-Higgs bundle.1 (see Section A.2.1, where

U(n, n)-Higgs bundles (V,W, β, γ) are defined. One has here the extra condition detW = (detV )−1

since the group is SU(n, n)). Indeed both types of Higgs bundles appear in the moduli space of
SU(n, n)-Higgs bundles as fixed points of involutions, namely

(V,W, β, γ) 7→ (W ∗, V ∗,±βt,±γt).
The similarities between the two cases mean that many of the details worked out in [14] for

Sp(2n,R)-Higgs bundles require only minor modification in order to be applied to SO∗(2n)-Higgs

1 This corresponds to the fact that both SO∗(2n) and G = Sp(2n,R) embed as subgroups in SU(n, n)
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bundles. However, we believe that the presentation in this paper naturally benefits from a more
systematic understanding of the theory. Our main results show that the outcomes in the two cases
are significantly different in at least two respects. First, the parity of n plays a role if G = SO∗(2n)
(but not if G = Sp(2n,R)), and second the moduli space of Higgs bundles with maximal deg(V ) has
just one connected component if G = SO∗(2n) but has several connected components distinguished
by ‘hidden’ topological invariants revealed through the Cayley correspondence in the case G =
Sp(2n,R).

We now describe the contents of the paper in a bit more detail. Let X be a Riemann surface
of genus g > 2. After some general definitions in Section 2, in Section 3 we describe the main
features of the groups SO∗(2n) and SO∗(2n)-Higgs bundles. We give structure results for stable
and polystable objects. As in the case G = Sp(2n,R), the moduli space of polystable SO∗(2n)-Higgs
bundles, denoted by M(SO∗(2n)), is not connected. The Toledo invariant, which in the case of
SO∗(2n)-Higgs bundles corresponds to the the degree of the bundle V , separates the moduli space
into components Md (where d = deg V ). In Section 3.7 we establish the bounds on this invariant,
namely

(1.2) 0 6 |d| 6 ⌊n
2
⌋(2g − 2) .

In Section 4 we study the case d = ⌊n2 ⌋(2g − 2) (the case d = −⌊n2 ⌋(2g − 2) is analogous). The
special feature in this maximal situation is that the component

γ : V −→ V ∗ ⊗K

of the Higgs field has maximal rank. Since γ is skew-symmetric, this means that it defines a
symplectic structure on either V ⊗K−1/2 (if n is even) or on a rank n− 1 quotient of this (if n is
odd). This leads to the Cayley correspondence we describe in Section 4.1 and to the rigidity result
in Section 4.2.

The moduli spaces of Higgs bundles come equipped with a natural function that can be used in a
Morse-theoretic way to detect topological properties. First described by Hitchin [23], this function
measures the L2-norm of the Higgs field. For each d, the function provides a proper map from Md

to R and thus attains its minimum on each connected component. In Section 5 we examine the
minima and show that they are precisely the polystable Higgs bundles in which β = 0 or γ = 0
(depending on the sign of d). This reduces the problem of the connectivity of the components to
one of the connectivity of the locus of minima. Unfortunately for most values of d this is itself a
difficult problem. The only exceptions are the cases where d = 0 or where |d| has its maximum
value. In Section 5 we also examine these exceptional cases and show the following.

Theorem 1.1. For d = 0 or |d| maximal, the components Md(SO
∗(2n)) of the moduli space of

polystable SO∗(2n)-Higgs bundles are connected.

In Section 6 we invoke the non-abelian Hodge theory correspondence between the moduli space of
SO∗(2n)-Higgs bundles over X and the moduli space of representations of the fundamental group of
X in SO∗(2n) to count the number of connected components of the latter in the zero and maximal
Toledo invariant cases, and to give a rigidity result for maximal representations when n is odd.

In Section 7 we examine some special features of SO∗(2n)-Higgs bundles and their moduli spaces
in the low rank cases, i.e. for n = 1, 2, 3. These features are mostly reflections of special low rank
isomorphisms between Lie groups, but they yield interesting relations between Higgs bundle moduli
spaces.

Finally, in the Appendix we summarize salient features of G-Higgs bundles for the groups other
than SO∗(2n) which come up in the discussion of the case G = SO∗(2n).

We conclude this introduction by pointing out that a number of works which appeared after the
first version of this paper was posted on the arXiv exploit an interesting complementary approach
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to G-Higgs bundles via the Hitchin fibration. These include [25, 26, 30, 34]. The comparison
between the two approaches is instructive and deserves further investigation.

Acknowledgments. The authors thank Olivier Biquard, Ignasi Mundet and Roberto Rubio for useful
discussions. The authors also thank the following institutions for their hospitality during various
stages of this research: Centre for Quantum Geometry of Moduli Spaces (Aarhus University), The
Institute for Mathematical Sciences (National University of Singapore), Centro de Investigación
en Matemáticas (Guanajuato) and the Centre de Recerca Matemàtica (Barcelona), University of
Illinois at Urbana-Champaign, Centro de Matemática da Universidade do Porto, and the Instituto
de Ciencias Matemáticas, Madrid.

2. G-Higgs bundles

The original notion of a G-Higgs bundle when G is a real reductive Lie group can be traced back
to [23, 24]. For the convenience of the reader we summarize the basic definitions and constructions.
These have appeared at various levels of explicitness in several places including [6, 14, 19].

2.1. Moduli space of G-Higgs bundles. Let G be a real reductive Lie group. By this we
mean2 that we are given the data (G,H, θ,B), where H ⊂ G is a maximal compact subgroup,
θ : g → g is a Cartan involution and B is a non-degenerate bilinear form on g, which is Ad(G)-
invariant and θ-invariant. The data (G,H, θ,B) has to satisfy in addition that

(1) the Lie algebra g of G is reductive,
(2) θ gives a decomposition (the Cartan decomposition)

g = h⊕m

into its ±1-eigenspaces, where h is the Lie algebras of H,
(3) h and m are orthogonal under B, and B is positive definite on m and negative definite on

h,
(4) multiplication as a map from H × expm into G is an onto diffeomorphism.

We will refer sometimes to the data (G,H, θ,B) as the Cartan data.
The group H acts linearly on m through the adjoint representation of G. Complexifying, we get

the isotropy representation ι : HC → GL(mC).

Definition 2.1. A G-Higgs bundle on X is a pair (E,ϕ), where E is a holomorphic HC-principal
bundle over X and ϕ is a holomorphic section of E(mC) ⊗ K, where E(mC) = E ×HC mC is the
mC-bundle associated to E via the isotropy representation and K is the canonical bundle of X.
The section ϕ is called the Higgs field. Two G-Higgs bundles (E,ϕ) and (E′, ϕ′) are isomorphic

if there is an isomorphism f : E
≃−→ E′ such that ϕ = f∗ϕ′ where f∗ is the obvious induced map.

More generally, replacing K by an arbitrary line bundle on X in the preceding definition, we
obtain the notion of a L-twisted G-Higgs pair on X.

Just as for vector bundles, there are notions of stability, semistability and polystability for G-
Higgs bundles (and more generally for L-twisted Higgs pairs). In this paper we consider only the
particular cases we need (cf. Section 3.2) and refer the reader to [15] for the general definitions.

Henceforth, we shall assume that G is connected. Then the topological classification of HC-
bundles E on X is given by a characteristic class

c(E) ∈ π1(H
C) = π1(H) = π1(G) .

2Our definition follows Knapp [27, p. 384], except that we do not impose the condition that for every g ∈ G the
automorphism Ad(g) of gC is inner, i.e. Ad(g) = Ad(x) for some x in the identity component of the adjoint form
of G. In fact this condition, which plays a role only if non-connected groups must be considered, is automatically
satisfied by the groups which appear in this paper.
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Definition 2.2. For a fixed d ∈ π1(G), the moduli space of polystable G-Higgs bundles

Md(G) is the set of isomorphism classes of polystable G-Higgs bundles (E,ϕ) such that c(E) = d.

The moduli space Md(G) has the structure of a complex analytic variety. This can be seen by
the standard slice method (see, e.g., Kobayashi [28]). Moreover, it is a consequence of the general
constructions of Schmitt [35, 36] that for all the groups which appear in this paper the moduli
space Md(G) is actually algebraic.

2.2. The Hitchin equation. In general, i.e. for any real reductive group G, the Hitchin equations
for a G-Higgs bundle, say (E,ϕ), can be regarded as conditions for a reduction of the structure
group of E. Recall that E is a principal holomorphic HC-bundle, where HC is the complexification
of H (a maximal compact subgroup of G). A reduction of structure group to H defines a principal
H-bundle, EH , such that E = EH ×H HC. Then, together with the holomorphic structure on E,
the reduction to EH defines a unique connection (the Chern connection) on E. We denote the
curvature of this connection by Fh. Assume now that G is a real form of its complexification GC,
and let τ : gC −→ gC denote the involution which defines the compact real form of GC. The relation
between τ , the involution which defines the real form G, and the Cartan involution on g, ensures
that the combination [mC, τ(mC)] takes values in h. Using the reduction E(gC) = EH ×H gC we
can extend τ to a bundle map τh : E(gC) −→ E(gC). Combined with conjugation on the canonical
bundle K this defines a bundle map (also denoted by τh) on E(gC)⊗K. Applying this map to the
Higgs field ϕ allows us to form a h-valued (1,1)-form [ϕ, τ(ϕ)].

Definition 2.3. If G is semisimple the G-Hitchin equation for a reduction of structure group to
H of a G-Higgs bundle (E,ϕ) is

(2.1) Fh − [ϕ, τh(ϕ)] = 0

where Fh and τh are as above.

The following result can be found in [15].

Theorem 2.4 (Theorem 3.21 in [15]). Let (E,ϕ) be a G-Higgs bundle. The bundle E admits a
reduction of structure group from HC to H satisfying the Hitchin equation for a G-Higgs bundle if
and only if (E,ϕ) is polystable.

2.3. Deformation theory of G-Higgs bundles. In this section we recall some standard facts
about the deformation theory of G-Higgs bundles (see [14] and [15] for more detail). We also take
care of issues that arise considering general reductive groups, rather than just semisimple ones. In
particular we introduce a reduced deformation complex which is relevant in analyzing smoothness
of the moduli space.

Definition 2.5. Let (E,ϕ) be a G-Higgs bundle. Let dι : hC → End(mC) be the derivative at the
identity of the complexified isotropy representation ι = Ad|HC : HC → Aut(mC). The deformation

complex of (E,ϕ) is the following complex of sheaves:

(2.2) C•(E,ϕ) : E(hC)
dι(ϕ)−−−→ E(mC)⊗K.

Proposition 2.6. The space of infinitesimal deformations of a G-Higgs bundle (E,ϕ) is naturally
isomorphic to the hypercohomology group H1(C•(E,ϕ)). The Lie algebra of Aut(E,ϕ), denoted by
aut(E,ϕ), can be identified with H0(C•(E,ϕ)).

Next we introduce two concepts which are important for understanding smoothness of the moduli
space (cf. Proposition 2.14 below).

Definition 2.7. A G-Higgs bundle (E,ϕ) is called simple if Aut(E,ϕ) = Z(HC) ∩ ker(ι) where
Z(HC) denotes the center. A G-Higgs bundle (E,ϕ) is said to be infinitesimally simple if the
infinitesimal automorphism space aut(E,ϕ) is isomorphic to H0(X,E(ker dι∩Z(hC)) where Z(hC)
denotes the Lie algebra of Z(HC).
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Thus a G-Higgs bundle is (infinitesimally) simple if its (infinitesimal) automorphism group is as
small as possible.

Remark 2.8. It is clear that a simple G-Higgs bundle is infinitesimally simple. If G is complex then ι
is the adjoint representation and (E,ϕ) is simple (resp. infinitesimally simple) if Aut(E,ϕ) = Z(G)
(resp. aut(E,ϕ) = Z(hC)).

Example 2.9. View a GL(n,C)-Higgs bundle a Higgs vector bundle (E,Φ) with Φ ∈ H0(X,End(E)⊗
K). Then (E,Φ) is simple if its automorphism group is Aut(E,Φ) = C∗ and infinitesimally simple
if its infinitesimal automorphism space End(E,Φ) = C. In this case the two notions coincide, but
this is not the case for all groups. Indeed, this phenomenon already occurs for principal bundles
without a Higgs field: as an example, let L be a line bundle of degree zero such that L2 6= O. Then
the SO(2,C)-bundle (V,Q) = (L ⊕ L−1, ( 0 1

1 0 )) has Aut(V,Q) = {±1} and aut(V,Q) = 0 so it is
infinitesimally simple but not simple.

In order to study smoothness of the moduli space in the general case of reductive groups (i.e. for
non-semisimple G), we introduce a reduced deformation complex.

Lemma 2.10 ([27, p. 388]). Let z be the center of g and zC be the center of gC. There are
decompositions z = (h ∩ z)⊕ (m ∩ z) and zC = (hC ∩ zC)⊕ (mC ∩ zC).

In view of this Lemma, we can decompose as H-modules

h = (h ∩ z)⊕ h0, m = (m ∩ z)⊕m0,

where we have defined
h0 = h/(h ∩ z), m0 = m/(m ∩ z).

Analogously we define hC0 and mC
0 and we have similar decompositions of hC and mC. Note also

that
[mC, hC ∩ zC] = 0, [mC

0 , h
C
0 ] ⊂ mC

0 .

We can thus define the following reduced complex.

Definition 2.11. Let (E,ϕ) be a G-Higgs bundle. The reduced deformation complex of (E,ϕ)
is the following complex of sheaves:

(2.3) C•
0 (E,ϕ) : E(hC0 )

ad(ϕ)−−−→ E(mC
0 )⊗K.

Remark 2.12. If G is semisimple the reduced deformation complex (2.3) coincides with the non-
reduced complex (2.2). If G is a complex reductive group, then the reduced complex C•

0 (E,ϕ) can
be identified with the (non-reduced) deformation complex for the PG-Higgs bundle associated to
(E,ϕ), where PG = G/Z(G).

Let (E,ϕ) be a G-Higgs bundle and assume that G is a real form of a complex reductive group
GC. Let

Ẽ = E ×HC GC

be the principal GC-bundle associated by extension of structure group. Note that

Ẽ(gC) = E(gC) = E(hC)⊕ E(mC).

Hence we can let ϕ̃ be the image of ϕ under the inclusion

H0(X,E(mC)⊗K) →֒ H0(X, Ẽ(gC)⊗K).

Definition 2.13. The GC-Higgs bundle (Ẽ, ϕ̃) is called the GC-Higgs bundle associated to the

G-Higgs bundle (E,ϕ).

Proposition 2.14. Let (E,ϕ) be a G-Higgs bundle.

(1) If (E,ϕ) is stable and ϕ 6= 0 then it is infinitesimally simple.
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(2) If (E,ϕ) is stable and simple and H2(C•
0 (E,ϕ)) = 0 then (E,ϕ) represents a smooth point

in the moduli space.
(3) If G is complex and (E,ϕ) is stable and simple then (E,ϕ) represents a smooth point in the

moduli space.
(4) Let (Ẽ, ϕ̃) be the GC-Higgs bundle associated to (E,ϕ). If (E,ϕ) is stable then (Ẽ, ϕ̃) is

polystable. If (E,ϕ) is stable, simple and stable as a GC-Higgs bundle then it represents a
smooth point in the moduli space.

Proof. (1) See [15, Proposition 3.11].
(2) If (E,ϕ) is simple, there are no singularities coming from automorphisms of the pair. There-

fore the obstruction to smoothness lies in H2(C•(E,ϕ)). Analyzing the Kuranishi model (as done
in Kobayashi [28] in the case of vector bundles on higher dimensional manifolds, cf. also Friedman–
Morgan [13, p. 301]), one sees that the image of the Kuranishi map in fact lies in the hypercohomolgy
of the reduced deformation complex, i.e., in H2(C•

0 (E,ϕ)) = 0. The point is that the Kuranishi
map is given by the quadratic part of the holomorphicity condition

0 = ∂̄A+Ȧ(ϕ+ ϕ̇) = ∂̄Aϕ+ ∂̄Aϕ̇+ [Ȧ, ϕ] + [Ȧ, ϕ̇],

which lies in Ω0,1E(mC
0 ). This leads to the result. (An alternative method of proof would be to go

through the proof of Theorem 3.1 of [4] and see that the vanishing of H2(C•
0 (E,ϕ)) = 0 is really

what is required in this case.)
(3) By stability we have the vanishing H0(C•

0 (E,ϕ)) = 0 and Serre duality of complexes implies
H2(C•

0 (E,ϕ)) = 0. The result now follows by (2).

(4) Stability of (Ẽ, ϕ̃) implies that it is infinitesimally simple, i.e., H0(C•(Ẽ, ϕ̃)) = Z(gC), where

C•(Ẽ, ϕ̃) : Ẽ(gC)
ad(ϕ̃)−−−→ Ẽ(gC)⊗K.

It follows that H0(C•
0 (Ẽ, ϕ̃)) = 0. Moreover,

C•
0 (Ẽ, ϕ̃) = C•

0 (E,ϕ) ⊕ C•
0 (E,ϕ)

∗ ⊗K

and hence, by Serre duality of complexes, we obtain the vanishing H2(C•
0 (E,ϕ)) = 0. Again the

result is now a consequence of (2). �

3. SO∗(2n)-Higgs bundles

3.1. Preliminaries: the group SO∗(2n). In this section we collect together some basic facts
about the group SO∗(2n) (see [22] for more details). We concentrate on the features that are
needed to describe SO∗(2n)-Higgs bundles and to understand their relation to G-Higgs bundles for
related groups such as SL(2n,C) and SU(n, n). The group SO∗(2n) may be defined as the the set
of matrices g ∈ SL(2n,C) satisfying

(3.1) gtJnḡ = Jn and gtg = I2n ,where Jn =

(

0 In
−In 0

)

.

It is thus a subgroup of SO(2n,C) which leaves invariant a skew-Hermitian form. The group is
connected, semisimple, and a non-compact real form of SO(2n,C). The maximal compact subgroups
are isomorphic to U(n). The choice Θ(g) = JngJ

−1
n of Cartan involution on SO∗(2n) gives the

Cartan decomposition
so∗(2n) = u(n) +m

with

(3.2)

u(n) =

{(

X1 X2

−X2 X1

)

| X1,X2 ∈ Matn,n(R),X
t
1 +X1 = 0,Xt

2 −X2 = 0

}

,

m =

{

i

(

Y1 Y2
Y2 −Y1

)

| Y1, Y2 ∈ Matn,n(R), Y
t
1 + Y1 = 0, Y t

2 + Y2 = 0

}

.
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Remark 3.1. It follows immediately from (3.2) that

u(n) + im =

{(

A B
−Bt D

)

| A,B,D ∈ Matn,n(C), A+At = D +Dt = 0

}

,

which can be identified with the Lie algebra of SO(2n). This shows that the real form SO∗(2n) is
the non-compact dual to the compact real form SO(2n) ⊂ SO(2n,C).

The complexification of the Cartan decomposition is

(3.3) so∗(2n)⊗ C = gl(n,C) +mC,

where

(3.4)

gl(n,C) =

{(

Z−Zt

2 −Z+Zt

2i
Z+Zt

2i
Z−Zt

2

)

| Z ∈ Matn,n(C)

}

,

mC =

{(

Y1 Y2
Y2 −Y1

)

| Y1, Y2 ∈ Matn,n(C), Y
t
1 + Y1 = 0, Y t

2 + Y2 = 0

}

.

It follows that if T is the complex automorphism of C2n defined by

(3.5) T =

(

I iI
I −iI

)

,

then

(3.6)

Tgl(n,C)T−1 =

{(

Z 0
0 −Zt

)

| Z ∈ Matn,n(C)

}

,

TmCT−1 =

{(

0 β
γ 0

)

| β, γ ∈ Matn,n(C), β
t + β = 0, γt + γ = 0

}

.

This reflects the following fact.

Proposition 3.2. With T defined in (3.5),

(3.7) TSO∗(2n)T−1 ⊂ SU(n, n),

where SU(n, n) ⊂ SL(2n,C) is the subgroup defined by

(3.8) SU(n, n) = {A ∈ SL(2n,C) | ĀtIn,nA = In,n, det(A) = 1}

with In,n =

(

In 0
0 −In

)

.

Proof. Using T̄ tIn,nT = 2iJ it follows that if g ∈ SO∗(2n) then A = TgT−1 satisfies ĀtIn,nA = In,n.
Also det(A) = det(g) = 1. �

Remark 3.3. If g ∈ SO∗(2n), i.e. g satisfies (3.1), and A = TgT−1 then a simple calculation shows
that AtIn,nJA = In,nJ . Combined with Proposition 3.2 we can thus identify SO∗(2n) ⊂ SU(n, n) ⊂
SL(2n,C) as the subgroup defined by the relation AtIn,nJA = In,nJ . This is the definition given
in [27].

3.2. SO∗(2n)-Higgs bundles and stability. When HC is a classical group we prefer to work
with the vector bundle V associated to the standard representation rather than the HC-principal
bundle. We take this point of view for SO∗(2n)-Higgs bundles, for which HC = GL(n,C) and V is
a rank n vector bundle. In view of (3.6), Definition 2.1 then becomes the following.

Definition 3.4. A SO∗(2n)-Higgs bundle over X is a pair (V, ϕ) in which V is a rank n holomor-
phic vector bundle over X, and the Higgs field ϕ = (β, γ) has components β ∈ H0(X,Λ2V ⊗K)
and γ ∈ H0(X,Λ2V ∗ ⊗ K). We will sometimes write ϕ = β + γ, where the sum is interpreted
as being in End(V ⊕ V ∗) ⊗ K, viewing β and γ as skew-symmetric maps β : V ∗ → V ⊗ K and
γ : V → V ∗ ⊗ L. We will also sometimes use the notation (V, ϕ) = (V, β, γ).
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In order to state the (semi,poly)stability condition for a SO∗(2n)-Higgs bundle we need to intro-
duce some notation.

Let V → X be a holomorphic vector bundle. Then there is an isomorphism V ⊗V ≃ Λ2V ⊕S2V .
Let U and W be subbundles of V . We define U ⊗A W to be the sheaf theoretic kernel of the
projection V ⊗ V → S2V restricted to U ⊗ V :

0 → U ⊗A W → U ⊗W → S2V.

Since U ⊗W is locally free and X is a curve, U ⊗A W can be viewed as a subbundle of Λ2V . We
define U⊥ ⊂ V ∗ to be the kernel of the restriction map V ∗ → U∗, i.e.

0 → U⊥ → V ∗ → U∗ → 0.

Definition 3.5. Let k be an integer satisfying k > 1. We define a filtration of V of length k−1
to be any strictly increasing filtration by holomorphic subbundles

V = (0 ( V1 ( V2 ( · · · ( Vk = V ).

Let λ = (λ1 < λ2 < · · · < λk) be a strictly increasing sequence of k real numbers. Define the
subbundle

(3.9) N(V , λ) =
∑

λi+λj60

K ⊗ Vi ⊗A Vj ⊕
∑

λi+λj>0

K ⊗ V ⊥
i−1 ⊗A V

⊥
j−1 ⊂ K ⊗ (Λ2V ⊕ Λ2V ∗).

Define also

(3.10) d(V , λ) = λk deg Vk +
k−1
∑

j=1

(λj − λj+1) deg Vj .

We say that the pair (V , λ) is trivial if the length of V is 0 and λ1 = 0. We say that the pair
(V , λ) is ϕ-invariant if ϕ = β + γ ∈ H0(X,N(V , λ)).

The general results of [15] allow us to express stability, semistability and polystability for
SO∗(2n)-Higgs bundles in terms of filtrations, as follows.

Definition 3.6. The Higgs bundle (V, ϕ) is semistable if for any integer k > 1, any filtration V

of length k − 1 of V and any strictly increasing sequence λ of k real numbers such that (V , λ) is
ϕ-invariant we have

(3.11) d(V , λ) > 0.

The Higgs bundle (V, ϕ) is stable if under the same conditions as above with the additional
condition that (V , λ) be non-trivial we have the strict inequality

(3.12) d(V , λ) > 0.

The Higgs bundle (V, ϕ) is polystable if it is semistable and for any integer k > 1, any filtration
V of length k − 1 of V and any strictly increasing sequence λ of k real numbers such that (V , ϕ)
is ϕ-invariant and d(V , λ) = 0 there is an isomorphism of holomorphic bundles

V ≃ V1 ⊕ V2/V1 ⊕ · · · ⊕ Vk/Vk−1

with respect to which

β ∈ H0(X,
⊕

λi+λj=0

K ⊗ Vi/Vi−1 ⊗A Vj/Vj−1)

and
γ ∈ H0(X,

⊕

λi+λj=0

K ⊗ (Vi/Vi−1)
∗ ⊗A (Vj/Vj−1)

∗).

We follow the convention that a direct sum of vector bundles over an empty indexing set is the
zero vector bundle.
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Remark 3.7. In general the notion of (semi,poly)stability depend on a real parameter related to
the fact that the center of the maximal compact subgroup of SO∗(2n) is isomorphic to U(1) (see
[14]). However, since our main interest is in relation to representations of the fundamental group,
we have the value of this parameter to be zero.

Following the same arguments given in [15] for the group Sp(2n,R), the stability conditions for
SO∗(2n)-Higgs bundles can be simplified. Before we give the simplified conditions are given in
Proposition 3.13 we need some preliminaries.

Definition 3.8. Let (V, ϕ) be a SO∗(2n)-Higgs bundle with ϕ = (β, γ). A filtration of subbundles

0 ⊂ V1 ⊂ V2 ⊂ V

such that

(3.13) β ∈ H0(X,K ⊗ (Λ2V2 + V1 ⊗A V )), γ ∈ H0(X,K ⊗ (Λ2V ⊥
1 + V ⊥

2 ⊗A V
∗)),

is called a ϕ-invariant two-step filtration.

Remark 3.9. It is important to note that the summands in the bundles Λ2V2 + V1 ⊗A V and
Λ2V ⊥

1 + V ⊥
2 ⊗A V

∗ intersect non-trivially, so they do not form a direct sum.

Remark 3.10. We allow equality between the terms of the filtration in order to avoid having to
consider separately filtrations that are length one or zero. For example the filtration 0 ⊂ V1 ⊂ V
is included as the two-step filtration in which V1 = V2.

It is sometimes convenient to reformulate the ϕ-invariance condition using the following lemma,
which is easily proved.

Lemma 3.11. Let (V, ϕ) be a SO∗(2n)-Higgs bundle with ϕ = (β, γ). A two-step filtration 0 ⊂
V1 ⊂ V2 ⊂ V is ϕ-invariant if and only if the following conditions are satisfied:

β(V ⊥
2 ) ⊂ V1 ⊗K, γ(V2) ⊂ V ⊥

1 ⊗K,

β(V ⊥
1 ) ⊂ V2 ⊗K, γ(V1) ⊂ V ⊥

2 ⊗K.

There is yet another useful interpretation of the ϕ-invariance of a two step filtration that will be
used later. To explain this, let Ωγ : V × V → K be the K-twisted skew-symmetric bilinear pairing
defined by γ as

Ωγ(u, v) := (γ(v))(u), for u, v ∈ V,

and denote, for a subbundle V ′ ⊂ V ,

V ′⊥γ := {v ∈ V | Ωγ(u, v) = 0 for every u ∈ V ′}.
The following lemma is immediate.

Lemma 3.12. For any filtration 0 ⊂ V1 ⊂ V2 ⊂ V , we have that γ(V1) ⊂ K ⊗ V ⊥
2 is equivalent

to V1 ⊂ V
⊥γ

2 . This is equivalent to V2 ⊂ V
⊥γ

1 which, in turn, is equivalent to γ(V2) ⊂ K ⊗ V ⊥
1 .

Similar statements apply to β.

The following simplified version of the stability conditions follows in the same way as the analogous
results for Sp(2n,R)-Higgs bundles (see [15]).

Proposition 3.13. A SO∗(2n)-Higgs bundle (V, ϕ) with ϕ = (β, γ) is semistable if and only for
every ϕ-invariant two-step filtration 0 ⊂ V1 ⊂ V2 ⊂ V we have that

(3.14) deg(V )− deg(V1)− deg(V2) > 0.

A SO∗(2n)-Higgs bundle (V, ϕ) with ϕ = (β, γ) is stable if and only if for every ϕ-invariant
two-step filtration 0 ⊂ V1 ⊂ V2 ⊂ V except the filtration 0 = V1 ⊂ V2 = V we have that

(3.15) deg(V )− deg(V1)− deg(V2) > 0.
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A SO∗(2n)-Higgs bundle (V, ϕ) with ϕ = (β, γ) is polystable if is semistable and for any ϕ-
invariant filtration 0 ⊂ V1 ⊂ V2 ⊂ V , distinct from the filtration 0 = V1 ⊂ V2 = V such that

deg(V )− deg(V1)− deg(V2) = 0,

there exists an isomorphism of holomorphic vector bundles

V ≃ V1 ⊕ V2/V1 ⊕ V/V2

with respect to which we have:

(a) V2 ≃ V1 ⊕ V2/V1,
(b) β ∈ H0(X,K ⊗ (Λ2(V2/V1)⊕ V1 ⊗A (V/V2)),
(c) γ ∈ H0(X,K ⊗ (Λ2(V2/V1)

∗ ⊕ V ∗
1 ⊗A (V/V2)

∗).

Remark 3.14. If β = γ = 0 then the semistability condition is equivalent to the requirements that
deg V = 0 and V is semistable.

3.3. The SO∗(2n)-Hitchin equations. Using the vector bundle picture, in which a SO∗(2n)-Higgs
bundle is specified by data (V, β, γ), we now make explicit the Hitchin equations in this case. A
reduction of structure group to H = U(n) corresponds to a choice of Hermitian metric h on the
holomorphic bundle V . The Hitchin equations now become

(3.16) F h
V + ββ∗ + γ∗γ = 0.

Here we denote the curvature for the Chern connection on V by F h
V and the adjoints are with respect

to the hermitian metric h (combined with complex conjugation dz 7→ dz̄ on the form component).
We refer to equation (3.16) as the SO∗(2n)-Hitchin equation. Theorem 2.4 thus becomes the

following.

Theorem 3.15. Let (V, β, γ) be a SO∗(2n)-Higgs bundle. The bundle V admits a metric satisfying
the SO∗(2n)-Hitchin equation (3.16) if and only if (V, β, γ) is polystable.

3.4. The moduli spaces. The topological invariant attached to a SO∗(2n,R)-Higgs bundle (V, β, γ)
is an element in the fundamental group of U(n) (see Section 2.1). Since π1(U(n)) ≃ Z, this is an
integer. This integer coincides with the degree of V . Under the correspondence between Higgs
bundles and surface group representations (see Section 6), this integer corresponds to the Toledo
invariant of a representation.3 Following Definition 2.2 we let Md(SO

∗(2n)) denote the moduli

space of polystable SO∗(2n)-Higgs bundles (V, β, γ) with deg(V ) = d. For brevity we shall
sometimes write simplyMd for this moduli space. We have the following result (cf. [15, Theorem 3.4
and Proposition 3.19]).

Proposition 3.16. Assume n > 2. The moduli space Md of SO∗(2n)-Higgs bundles over a compact
Riemann surface X of genus g > 2 is a complex algebraic variety of expected n(2n−1)(g−1) (where
g is the genus of X). The dimension is exactly n(2n− 1)(g − 1) if the stable locus is nonempty.

The reason for excluding n = 1 in the preceding proposition is that SO∗(1) ≃ SO(2) which is
not semisimple. In this case the dimension of the moduli space is g (cf. Section 7.1).

One has the following easily proven duality result.

Proposition 3.17. The map (V, β, γ) 7→ (V ∗, γ, β) gives an isomorphism Md ≃ M−d.

3It is interesting to note that this invariant has recently been interpreted in terms of fixed point data on the
spectral curve associated to the Higgs bundles - see [26]. This also sheds new light on the bounds described in
Proposition 3.27
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3.5. Structure of stable SO∗(2n)-Higgs bundles. The kernel of the isotropy representation

ι : GL(n,C) → Aut(Λ2(Cn)⊕ Λ2(Cn)∗)

for SO∗(2n) is formed by the central subgroup {±I} ⊂ GL(n,C). Moreover the infinitesimal
isotropy representation has injective differential: ker(dι) = 0. Thus Definition 2.7 specializes to the
following.

Definition 3.18. A SO∗(2n)-Higgs bundle (V, β, γ) is simple if Aut(V, β, γ) = {±I} and it is
infinitesimally simple if aut(V, β, γ) = 0.

Contrary to the cases of vector bundles and U(p, q)-Higgs bundles, stability of an SO∗(2n)-Higgs
bundle does not imply that it is simple. However, we have the following.

Theorem 3.19. Let (V, ϕ) be a stable SO∗(2n)-Higgs bundle. If (V, ϕ) is not simple, then one of
the following alternatives occurs:

(1) The bundle V is a stable vector bundle of degree zero and ϕ = 0. In this case Aut(V, ϕ) ≃ C∗.
(2) There is a nontrivial decomposition, unique up to reordering,

(V, ϕ) =
(

k
⊕

i=1

Vi,

k
∑

i=1

ϕi

)

with ϕi = βi+γi ∈ H0(X,K⊗ (Λ2Vi⊕Λ2V ∗
i )), such that each (Vi, ϕi) is a stable and simple

SO∗(ni)-Higgs bundle. Furthermore, each ϕi 6= 0 and (Vi, ϕi) 6≃ (Vj , ϕj) for i 6= j. The
automorphism group of (V, ϕ) is

Aut(V, ϕ) ≃ Aut(V1, ϕ1)× · · · ×Aut(Vk, ϕk) ≃ (Z/2)k.

Proof. The proof is precisely the same as for the corresponding result for Sp(2n,R)-Higgs bundles
(Theorem 3.17 in [14]). �

In view of Theorem 3.19 we can shift our attention to SO∗(2n)-Higgs bundles which are stable
and simple. Unlike in the case of G-Higgs bundles for complex reductive G, the combination of
stability and simplicity is not necessarily sufficient to guarantee smoothness in the moduli space.
Our analysis involves the relation between SO∗(2n)-Higgs bundles and G-Higgs bundles for various
other4 groups G. We begin by noting that a SO∗(2n)-Higgs bundle can be viewed as a Higgs bundle
for the larger complex groups SO(2n,C) and SL(2n,C).

Theorem 3.20. Let (V, ϕ) be a SO∗(2n)-Higgs bundle with ϕ = (β, γ). Let (E,Φ) be the SL(2n,C)-
Higgs bundle given by

E = V ⊕ V ∗, Φ =

(

0 β
γ 0

)

and let ((E,Q),Φ) be the SO(2n,C)-Higgs bundle given by E and Φ as above and with Q defined
by

Q
(

(v, ξ), (w, ζ)
)

= ξ(w) + ζ(v), for v,w ∈ V and ξ, ζ ∈ V ∗.

Then

(1) The following are equivalent:
(a) (E,Φ) is semistable (resp. polystable).
(b) ((E,Q),Φ) is semistable (resp. polystable).
(c) (V, ϕ)is semistable (resp. polystable).

(2) If (E,Φ) is stable then ((E,Q),Φ) is stable.
(3) If ((E,Q),Φ)is stable then (V, ϕ) is stable.

4See Appendix A for a summary of results for the relevant groups
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(4) If (V, ϕ) is stable and simple then

(a) (E,Φ) is stable unless there is an isomorphism f : V
≃−→ V ∗ such that βf = f−1γ;

(b) ((E,Q),Φ) is stable unless there is an isomorphism f : V
≃−→ V ∗ which is skew-

symmetric and with βf = f−1γ.

Proof. The equivalences in (1) can be proved in exactly the same way as done for Sp(2n,R)-Higgs
bundles in [14] (see Theorems 3.26 and 3.27). Although the equivalence analogous to the equivalence
between (a) and (b) is not explicitly stated in [14] in the case of semistability, it is implicit in the
proof of the equivalence analogous to the equivalence between (a) and (c).

The implication in (2) follows directly from the stability conditions.
For the implication in (3) note that a ϕ-invariant two-step filtration 0 ⊂ V1 ⊂ V2 ⊂ V gives rise to

an isotropic subbundle V1 ⊕V ⊥
2 of (E,Q) which, by Lemma 3.11, is Φ-invariant. These are exactly

the subbundles which enter the stability condition for SO(2,C)-Higgs bundles (see Proposition A.2).
Note that V1 ⊕ V ⊥

2 ⊂ E is non-zero and proper if and only if the filtration 0 ⊂ V1 ⊂ V2 ⊂ V is
distinct from the filtration 0 = V1 ⊂ V2 = V . Moreover,

deg(V1 ⊕ V ⊥
2 ) = deg(V1) + deg(V2)− deg(V ),

so the stability conditions coincide.
The statements in (4) can be proved in the same way as the analogous result for Sp(2n,R)-Higgs

bundles (see Theorem 3.27 in [14]). �

Remark 3.21. If deg V 6= 0, then it follows from (3) of Theorem 3.20 that (E,Φ) (and hence
((E,Q),Φ)) is stable if (V, ϕ) is stable and simple. Similarly, if the rank n is odd, then ((E,Q),Φ)
is stable if (V, ϕ) is stable and simple. On the other hand, in the situation described in Theo-
rem 3.19(2), the SO(2n,C)-Higgs bundle ((E,Q),Φ) is not stable, because Vi ⊕ V ∗

i ⊂ E = V ⊕ V ∗

is an isotropic ϕ-invariant subbundle of degree 0).

Proposition 3.22. Let (V, ϕ) be a SO∗(2n)-Higgs bundle which is stable and simple and assume

that there is no skewsymmetric isomorphism f : V
≃−→ V ∗ intertwining β and γ (i.e. such that

γ = (f ⊗ 1K) ◦ β ◦ f). Then (V, ϕ) represents a smooth point of the moduli space of polystable
SO∗(2n)-Higgs bundles. In particular, if d = degV is not zero or n is odd, then all stable and
simple SO∗(2n)-Higgs bundles represent smooth points of the moduli space Md.

Proof. By (3b) of Theorem 3.20 the SO(2n,C)-Higgs bundle corresponding to (V, ϕ) is stable and
hence by (4) in Proposition 2.14 it represents a smooth point in Md. �

It remains to analyze the case in which (V, ϕ) is stable and simple but admits a skewsymmetric

isomorphism f : V
≃−→ V ∗ intertwining β and γ. By (3b) of Theorem 3.20 this is equivalent to the

associated SO(2n,C)-Higgs bundle being non-stable. Furthermore d = degV = 0 and n is even.

Proposition 3.23. Let (V, ϕ) be a SO∗(2n)-Higgs bundle with ϕ = (β, γ) which admits a skewsym-

metric isomorphism f : V
≃−→ V ∗ such that βf = f−1γ. Then with ψ := βf , the data ((V, f), ψ)

defines a U∗(n)-Higgs bundle (as defined in Section A.2.2).
Let (V, ϕ) be stable. Then ((V, f), ψ) is stable. Assume moreover that (V, ϕ) is simple. Then

((V, f), ψ) is stable and simple and the corresponding GL(n,C)-Higgs bundle (V, ψ) is stable. Hence
((V, f), ψ) represents a smooth point in the moduli space of U∗(n)-Higgs bundles.

Proof. The fact that ((V, f), ψ) defines a U∗(n)-Higgs bundles follows directly from the definition
given in Section A.2.2. The argument to prove the stability result is similar to the one given in the
proof of Theorem 3.22 in [14]. The statement about simplicity follows directly from the fact that
for both SO∗(2n)- and U∗(n)-Higgs bundles simplicity means that the only automorphisms are ±
Identity. �

Notation. We shall, somewhat imprecisely, say that a SO∗(2n)-Higgs bundle of the form described
in Proposition 3.23 is a U∗(n)-Higgs bundle.
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3.6. Structure of polystable SO∗(2n)-Higgs bundles. A general structure theorem for poly-
stable G-Higgs bundles was given in [15], where it is shown that any strictly polystable G-Higgs
bundle admits a reduction to a stable G′-Higgs bundle for a uniquely determined reductive subgroup
G′ ⊂ G. Here we give an elementary argument in the case G = SO∗(2n), identifying explicitly this
reduction, without recourse to Lie theory. Our result is the following.

Proposition 3.24. A SO∗(2n)-Higgs bundle (V, ϕ) with ϕ = (β, γ) is polystable if and only if there
are decompositions

V = V1 ⊕ · · · ⊕ Vk,

ϕ = ϕ1 + · · ·+ ϕk,

such that each (Vi, ϕi) is a SO∗(2ni)-Higgs bundle i.e. ϕi = (βi, γi) with βi ∈ H0(X,Λ2Vi⊗K) and
γi ∈ H0(X,Λ2V ∗

i ⊗K), and is of one of the following mutually exclusive types:

(1) a stable SO∗(2ni)-Higgs bundle with ϕ 6= 0;

(2) Vi = Ṽi⊕W̃ ∗
i , with respect to this decomposition βi =

(

0 β̃i
−β̃ti 0

)

and γi =

(

0 −γ̃ti
γ̃i 0

)

where

β̃i ∈ H0(X,Hom(W̃i, Ṽi) ⊗K) and γ̃i ∈ H0(X,Hom(Ṽi, W̃i) ⊗K), and (Ṽi, W̃i, β̃i, γ̃i) is a

stable U(pi, qi)-Higgs bundle in which piqi 6= 0, deg Ṽi+deg W̃i = 0 and at least one of β̃i, γ̃i
is non-zero.

(3) ϕi = 0 and Vi is a degree zero stable vector bundle.

Proof. Suppose (V, β, γ) is polystable. If it is stable then the result is trivially true (with k = 1).
Suppose that (V, β, γ) is not stable. Then by Definition 3.6 we can find a non trivial filtration (i.e.
with l > 2) V = (0 ( V ′

1 ( V ′
2 ( · · · ( V ′

l = V ) and a sequence of weights λ = (λ1 < λ2 < · · · < λl)
such that

• ϕ ∈ H0(X,N(V , λ))
• d(V , λ) = 0
• there is a splitting of vector bundles

V ≃ V ′
1 ⊕ V ′

2/V
′
1 ⊕ · · · ⊕ V ′

l /V
′
l−1

with respect to which

β ∈ H0(X,
⊕

λi+λj=0

K ⊗ V ′
i /V

′
i−1 ⊗A V

′
j /V

′
j−1)

and
γ ∈ H0(X,

⊕

λi+λj=0

K ⊗ (V ′
i /V

′
i−1)

∗ ⊗A (V ′
j /V

′
j−1)

∗).

We can write the set of weights as a disjoint union

{λ1, . . . , λl} = I1 ∪ I2 ∪ I3,
where each of the sets, if non-empty, can be written as follows:

I1 = {0},
I2 = {µ1,−µ1, . . . , µr,−µr},
I3 = {η1, . . . , ηs},

where µi > 0 and ηi 6= 0 for all i, and |ηi| 6= |ηj| for i 6= j. In other words, I2 contains pairs of
non-zero weights ±µi and I3 contains non-zero weights that cannot be paired. Note that I2∪I3 6= ∅
since at least one weight is non-zero.

We can now rewrite the splitting of V as

(3.17) V ≃ U0 ⊕ (U−µ1
⊕ Uµ1

)⊕ · · · ⊕ (U−µr ⊕ Uµr )⊕ Uη1 ⊕ · · · ⊕ Uηs ,
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where Uν = V ′
i /V

′
i−1 if ν = λi for some i = 1, . . . , l and zero otherwise.

If I1 is not empty, let β0 be the component of β in H0(X,K ⊗ U0 ⊗A U0) and similarly define
γ0. If both β0 = 0 and γ0 = 0 then the vector bundle U0 is a U(n0)-Higgs bundle. Otherwise,
(U0, β0, γ0) defines an SO∗(2n0)-Higgs bundle, where n0 = rk(U0).

For each positive element µi ∈ I2, let β̃i be the component of β in H0(X,K ⊗Uµi ⊗A U−µi) and

similarly define γ̃i. If both β̃i = 0 and γ̃i = 0 then the vector bundles Uµi and U−µi are U(pi)- and
U(qi)-Higgs bundles respectively, where pi = rk(Uµi) and qi = rk(U−µi). Otherwise,

(Ṽi, W̃i, β̃i, γ̃i)) = (Uµi ⊕ U∗
−µi

, β̃i, γ̃i)

defines a U(pi, qi)-Higgs bundle, where pi = rk(Uµi) and qi = rk(U−µi). In order to see that

deg Ṽi + deg W̃i = 0, we note that we can write the decomposition (3.17) as

V = U−µi ⊕ V ′ ⊕ Uµi ,

where we have pulled out U−µi and Uµi and we denote the rest by V ′. Now consider the induced
filtration V ′ of V with the weights λ′ = (−1 < 0 < 1). Clearly ϕ ∈ H0(X,N(V ′, λ′)). Hence
semistability implies that

d(V ′, λ′) = deg(Uµi)− deg(U−µi) > 0.

Similarly, considering the filtration induced by V = Uµi ⊕ V ′ ⊕U−µi with weights (−1 < 0 < 1) we
obtain deg(U−µi)− deg(Uµi) > 0, and hence we conclude that

deg Ṽi + deg W̃i = deg(Uµi)− deg(U−µi) = 0

Finally, for each ηi ∈ I3, the vector bundle Uηi is a U(ni)-Higgs bundle and we see that deg(Uηi) =
0 by a similar argument, using the decomposition V = Uηi ⊕ V ′.

Altogether, this leads to a decomposition with summands of the type in the statement of the
Proposition. Now we show that each summand is polystable as a G-Higgs bundle, where G is
the appropriate group, i.e, G = SO∗(2n0), G = U(pi, qi) or G = U(ni). By Proposition A.5, it
follows that the U(pi, qi) and U(ni) summands are direct sums of stable ones. Suppose one of
the SO∗(2n0) summands is not polystable. Then there is a filtration and weight system violating
polystability of this summand. This filtration and weight system can be extended by adding the
remaining summands in V to each term and by taking the same weights. The resulting filtration
and weight system violates polystability for the original SO∗(2n)-Higgs bundle (V, ϕ). Moreover,
n0 < n because I2 ∪ I3 6= ∅. Hence we can iterate the procedure until all summands are stable.

Finally, we show that the three types are mutually exclusive. The conditions on ϕ clearly make
(1) and (3) mutually exclusive. Suppose that (Vi, βi, γi) is of type (2). Since it is stable, it must
have ϕi 6= 0 and hence cannot be of type (3). Suppose that (Vi, βi, γi) is also stable as a SO∗(2n)-
Higgs bundle. Then it is infinitesimally simple and thus aut(Vi, βi, γi) = 0. But if (Vi, βi, γi) is of
type (2) then C∗ ⊂ aut(Vi, βi, γi). Thus cases (1) and (2) are mutually exclusive. �

Notation. We shall write (V, ϕ) = (V, ϕ1) ⊕ · · · ⊕ (V, ϕk) for a SO∗(2n)-Higgs bundle of the kind
described in Proposition 3.24. Moreover, somewhat imprecisely, we shall say that a SO∗(2n)-Higgs
bundle of the form described in (2) of Proposition 3.24 is a U(p, q)-Higgs bundle (here n = p+q).

By Theorem 3.19 and Propositions 3.22 and 3.23, case (1) in Proposition 3.24 divides further
into two cases. The resulting refinement, given in the next theorem, will be essential for proving
our connectedness results in Section 5.

Theorem 3.25. A SO∗(2n)-Higgs bundles (V, ϕ = β + γ) is polystable if and only if there is a
decomposition (V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vk, ϕk) such that each (Vi, ϕi) is a SO∗(2ni)-Higgs bundle
of one of the following mutually exclusive types:

(1) (Vi, ϕi) is a stable and simple SO∗(2ni)-Higgs bundle with ϕi 6= 0 which is stable as an
SO(2ni,C)-Higgs bundle;
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(2) (Vi, ϕi) is a stable and simple SO∗(2ni)-Higgs bundle with ϕi 6= 0 which admits a skewsym-
metric isomorphism as in Proposition 3.23 and thus defines a stable U∗(ni)-Higgs bundle;

(3) (Vi, ϕi) is as described in (2) of Proposition 3.24) and thus defines a stable U(pi, qi)-Higgs

bundle where piqi 6= 0, deg Ṽi + deg W̃i = 0 and ϕi 6= 0;
(4) ϕi = 0 and Vi defines a degree zero stable vector bundle.

3.7. Bounds on d = deg(V ). In this section we give an inequality which bounds the number of
non-empty moduli spaces Md = Md(SO

∗(2n)). The inequality corresponds to the Milnor-Wood
inequality for surface group representations into SO∗(2n) (see Section 6).

Proposition 3.26. Let (V, β, γ) be a semistable SO∗(2n)-Higgs bundle. Then

(3.18) rank(β)(1 − g) 6 deg(V ) 6 rank(γ)(g − 1).

In particular,

(3.19) |deg(V )| 6 n(g − 1)

where deg(V ) = n(g − 1) if and only if γ is an isomorphism, and deg(V ) = −n(g − 1) if and only
if β is an isomorphism.

Proof. This is proved by first using the equivalence between the semistability of (V, β, γ) and the
SL(2n,C)-Higgs bundle (W,Φ) associated to it (see (1) in Theorem 3.20), and then applying the
semistability numerical criterion to special Higgs subbundles defined by the kernel and image of Φ
(see Section 3.4 in [5], and also [18]). �

Notice that since β and γ are skew-symmetric, they cannot be isomorphisms if n is odd. If
n = 2m+ 1 then 2m is the upper bound on rank(β) and rank(γ). Denote by

⌊

n
2

⌋

the integer part
of n

2 . As a corollary of Proposition 3.26, we obtain the following.

Proposition 3.27. The moduli space Md is empty unless

(3.20) |d| 6
⌊n

2

⌋

(2g − 2).

In view of this result, we say that d = deg(V ) is maximal when equality holds in (3.20).

4. The case of maximal d

4.1. Cayley correspondence for n = 2m. In this section we will assume that n = 2m is even
and we will describe the SO∗(2n) moduli space for the extreme value |d| = 2m(g − 1). In fact, for
the rest of this section we shall assume that d = 2m(g − 1). This involves no loss of generality,
since, by Proposition 3.17 there is an isomorphism between the moduli spaces for d and −d. The
main result is Theorem 4.3, which we refer to as the Cayley correspondence.

Let (V, β, γ) be a SO∗(4m)-Higgs bundle such that γ ∈ H0(X,K⊗Λ2V ∗) is an isomorphism. Let

L0 = K−1/2 be a fixed square root of K−1, and define W := V ⊗L0. Then ω := γ⊗ IL0
:W →W ∗

is a skew-symmetric isomorphism defining a non-degenerate symplectic Ω on W , in other words,
(W,Ω) is a Sp(2m,C)-holomorphic bundle. The K2-twisted endomorphism ψ : W → W ⊗ K2

defined by ψ := β ⊗ IL−1

0

◦ (γ ⊗ IL0
) is Ω-skewsymmetric and hence (W,Ω, ψ) defines a K2-twisted

U∗(2m)-Higgs pair (in the sense of Section A.2.2, suitably modified to incorporate a twisting by an
arbitrary line bundle), from which we can recover the original SO∗(4m)-Higgs bundle.

Definition 4.1. With (V, β, γ) and (W,Ω, ψ) as above, we say that (W,Ω, ψ) is the Cayley part-

ner to (V, β, γ).

Theorem 4.2. Let (V, β, γ) be a SO∗(4m)-Higgs bundle with d = 2m(g − 1) such that γ is an
isomorphism. Let (W,Ω, ψ) be the corresponding K2-twisted U∗(n)-Higgs pair. Then (V, β, γ) is
semistable (resp. stable, polystable) if and only if (W,Ω, ψ) is semistable (resp. stable, polystable).
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Proof. The proof is similar to that of Theorem 4.2 in [14], so we will just sketch the main arguments.
We will used the simplified stability notions given in Propositions 3.13 and A.7. We first show
that if (V, β, γ) is semistable then the corresponding U∗(2m)-Higgs pair is semistable. Suppose
otherwise, then there exists an isotropic ψ-invariant subbundleW ′ ⊂W such that degW ′ > 0. Let

V1 := W ′ ⊗ L−1
0 and let V2 = V

⊥γ

1 (see Lemma 3.12 for the definition of ⊥γ). We can check that
the filtration 0 ⊂ V1 ⊂ V2 ⊂ V is ϕ-invariant and deg(V ) − deg(V1) − deg(V2) < 0, contradicting
the semistability of (V, β, γ).

To prove the converse, i.e., that (V, β, γ) is semistable if the corresponding U∗(2m)-Higgs pair
is semistable, suppose that there is a ϕ-invariant filtration 0 ⊂ V1 ⊂ V2 ⊂ V such that deg(V ) −
deg(V1)− deg(V2) < 0. From this filtration we cannot immediately obtain a destabilizing isotropic
subbundle of the U∗(2m)-Higgs pair, but we can construct an appropriate filtration giving the
destabilizing subobject of the U∗(2m)-Higgs pair. To do this, we first observe that the ϕ-invariance

condition for γ (second condition in (3.13)) is equivalent, by Lemma 3.12, to V2 ⊂ V
⊥γ

1 . We define
two new filtrations as follows:

(0 ⊂ V ′
1 ⊂ V ′

2 ⊂ V ) := (0 ⊂ V1 ⊂ V
⊥γ

1 ⊂ V )

(we indeed have V1 ⊂ V
⊥γ

1 because V1 ⊂ V2 and V2 ⊂ V
⊥γ

1 ) and

(0 ⊂ V ′′
1 ⊂ V ′′

2 ⊂ V ) := (0 ⊂ V2 ∩ V ⊥γ

2 ⊂ V2 + V
⊥γ

2 ⊂ V ).

One can check (see Theorem 4.2 in [14]) that these two filtrations are ϕ-invariant and that one of
the two inequalities

deg V − deg V1 − deg V
⊥γ

1 < 0, deg V − deg(V2 ∩ V ⊥γ

2 )− deg(V2 + V
⊥γ

2 ) < 0

holds. These two filtrations give ψ-invariant isotropic subbundlesW ′ := V ′
1⊗L0 andW

′′ := V ′′
1 ⊗L0

such that either degW ′ > 0 or degW ′′ > 0, contradicting the semistability of (W,Ω, ψ).
The proof of the statement for stability is basically the same, observing that the trivial filtration

0 = V1 ⊂ V2 = V corresponds to the trivial subbundle 0 ⊂W . The proof of the equivalence of the
polystability conditions follows word by word the argument for Sp(2n,R) given in Theorem 4.2 in
[14]. �

Theorem 4.3. Let Mmax(SO
∗(4m)) be the moduli space of polystable SO∗(4m)-Higgs bundles with

d = 2m(g − 1) and let MK2(U∗(2m)) be the moduli space of polystable K2-twisted U∗(2m)-Higgs
pairs. The map (V, β, γ) 7→ (W,Ω, ψ) defines an isomorphism of complex algebraic varieties

Mmax(SO
∗(4m)) ≃ MK2(U∗(2m)).

Proof. Let (V, β, γ) be a semistable SO∗(4m)-Higgs bundle with d = 2m(g − 1). By Proposition
3.26, γ is an isomorphism and hence the map (V, β, γ) 7→ (W,Ω, ψ) is well defined. The result
follows now from Theorem 4.2 and the existence of local universal families (see [36]). �

Remark 4.4. Note that a maximal SO∗(2n)-Higgs bundle (V, β, γ) has β = 0 if and only if the
Cayley partner (W,Ω, ψ) has ψ = 0. Thus, in particular, Theorem 4.2 implies that a maximal
SO∗(2n)-Higgs bundle of the form (V, 0, γ) is polystable if and only if the corresponding Sp(n,C)-
bundle (W,Ω) is polystable. Hence, the isomorphism of Theorem 4.3 restricts to an isomorphism
between the subspace of SO∗(2n)-Higgs bundles with β = 0 in Mmax(SO

∗(2n)) and the moduli
space of polystable Sp(n,C)-bundles (note that there is only one topological class of such bundles,
since Sp(n,C) is simply connected.) This will be important in the proof of Theorem 5.2.

4.2. Rigidity for n = 2m + 1. In this section we consider the case in which n = 2m + 1 and
describe the SO∗(2n) moduli space for the extreme value |d| = 2m(g − 1). As in Section 4.1, we
assume without loss of generality that d is positive. The main result is the following Theorem5.

5Announced without proof as Theorem 4.8 in [6].



18 S. B. BRADLOW, O. GARCÍA-PRADA, AND P. B. GOTHEN

Theorem 4.5. Let Mmax(SO
∗(4m + 2)) be the moduli space of polystable SO∗(2n)-Higgs bundles

with n = 2m+1 and d = 2m(g−1). If m > 0 and g > 2 then the stable locus of Mmax(SO
∗(4m+2))

is empty and

Mmax(SO
∗(4m+ 2)) ≃ Mmax(SO

∗(4m))× Jac(X),

where Jac(X) is the Jacobian of X.

Proof. Let (V, β, γ) be a polystable SO∗(2n)-Higgs bundle with n = 2m + 1. The map γ : V −→
V ∗ ⊗K defines kernel and image sheaves:

(4.1) 0 −→ ker(γ) −→ V −→ im(γ) −→ 0.

The kernel ker(γ) is a subbundle of V , while im(γ) is in general a subsheaf of V ∗ ⊗ K. Let Wγ

denote the saturation of im(γ)⊗K−1 ⊂ V ∗, so that we have

(4.2) 0 −→ im(γ)⊗K−1 −→Wγ −→ T −→ 0,

where T is a torsion sheaf.
Let ker(γ)⊥ denote the annihilator of ker(γ), i.e. let it be defined by

(4.3) 0 −→ ker(γ)⊥ −→ V ∗ −→ ker(γ)∗ −→ 0

The skew-symmetry of γ implies the following:

ker(γ)⊥ =Wγ ,(4.4)

rank(γ) 6 2m(4.5)

Combining (4.4) with (4.3), we get

(4.6) deg(ker(γ))− deg(Wγ) = d

In addition, we get linear relations from (4.1) and (4.2), namely

(4.7) deg(ker(γ)) + deg(im(γ)) = d

and

(4.8) deg(im(γ))− deg(Wγ) = l(2g − 2)− t

where t = deg(T ) and l = rank(γ). The system (4.6), (4.7), (4.8) can be solved, giving in particular

(4.9) deg(ker(γ)) = d+ deg(Wγ) = d− l(g − 1) +
t

2
.

Consider now the subobject V ⊕Wγ ⊂ V ⊕ V ∗. This clearly satisfies

(1) W⊥
γ ⊂ V ,

(2) β(Wγ) ⊂ V ⊗K,
(3) γ(V ) ⊂Wγ ⊗K.

Thus, setting V1 =W⊥
γ and V2 = V , we get a filtration which is ϕ-invariant, i.e. satisfies condition

(3.13) in Definition 3.8. The semistability condition thus yields the inequality deg(W⊥
γ ) 6 0 or,

equivalently,

(4.10) d+ deg(Wγ) 6 0.

Combined with (4.9) this gives

(4.11) d− l(g − 1) +
t

2
6 0.

It follows immediately from (4.11) and (4.9) — and the non-negativity of t— that if d = 2m(g−1) =
l(g − 1) then T = 0, i.e. im(γ)⊗K−1 is a subbundle of V ∗, and deg(ker(γ)) = 0.
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By Theorem 2.4 the SO∗(2n)-Higgs bundle (V, β, γ) is polystable if and only if V admits a
Hermitian metric h satisfying the SO∗(2n)-Hitchin equations. As described in Section 3.3, these
equations take the form

(4.12) FV + ββ∗ + γ∗γ = 0

where FV is the curvature of the metric connection determined by h, and the adjoints β∗ and γ∗ are
with respect to h. Fix a local frame for V and take the dual frame for V ∗. With respect to these
frames, β and γ are represented by a skew-symmetric matrices. If the frame for V is compatible
with the smooth decomposition V = ker(γ) ⊕ V⊥, where V⊥ denotes the complement to ker(γ),
then the matrices have the form

(4.13) γ =

(

0 0
0 γ

)

, β =

(

β1 β2
−β2 β3

)

with respect to the decompositions V = ker(γ)⊕ V⊥ and V ∗ = (ker(γ))∗ ⊕ (V⊥)
∗.

The metric connection decomposes as

(4.14) DV =

(

Dker A
−ĀT D⊥

)

where A ∈ Ω0,1(Hom(V⊥, ker(γ))) is the second fundamental form for the embedding of the sub-
bundle ker(γ) ⊂ V . The corresponding decomposition of the curvature is

(4.15) FV =

(

Fker −A ∧ ĀT ∗
∗ FV⊥

− ĀT ∧A

)

.

Applying iΛTr to equation (4.12), and using (4.13) thus yields

deg(ker(γ)) + Π + ||β1||2 + ||β2||2 = 0(4.16)

deg(V⊥)−Π+ ||β2||2 + ||β3||2 − ||γ||2 = 0(4.17)

where Π = −iΛTr(A ∧ ĀT ). Notice that, since the second fundamental form is of type (0, 1), we
get that

(4.18) Π > 0 .

But if d = 2m(g − 1) and rank(γ) = 2m then deg(ker(γ)) = 0. It thus follows from (4.16) that
Π = 0 and also that β1 = β2 = 0. This immediately implies that the SO∗(2n)-Higgs bundle (V, β, γ)
decomposes as a sum

(4.19) (V, β, γ) = (ker(γ), 0, 0) ⊕ (V⊥, β3, γ).

Notice that with V1 = 0 and V2 = V⊥ we get a ϕ-invariant two-step filtration (see definition 3.8)
with

(4.20) deg(V )− deg(V1)− deg(V2) = 0

By Proposition 3.13 (V, β, γ) is thus not stable. Moreover, ker(γ) is a holomorphic line bundle,
while (V⊥, β3, γ) is a SO∗(4m)-Higgs bundle. The data thus define a Higgs bundle with structure
group

SO∗(4m)× SO(2) = SO∗(4m)×U(1) .

This completes the proof of Theorem 4.5. �

Remark 4.6. It follows from Theorem 4.5 that Mmax(SO
∗(4m + 2)) has dimension 2m(2m −

1)(g − 1) + g. Comparing with the expected dimension given in Proposition3.16 we see that
dim(Mmax(SO

∗(4m + 2))) is smaller than expected if g > 2 and m > 0. This explains why
we refer to Theorem 4.5 as a rigidity result.
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5. Connected components of the moduli space

5.1. The Hitchin functional and connected components of the moduli space. The method
we shall use for studying the topology of the moduli space goes back to Hitchin [23]. In the
following, we very briefly outline the general aspects of this approach, applied to the count of
connected components (more details can be found in, for instance, [24, 5, 6, 14]). We then apply
this programme (in Theorem 5.2 below) to show that Md is connected for d = 0 and the maximal
value of |d| (where Md = Md(SO

∗(2n), as in Section 3.4).
The method rests on the gauge theoretic interpretation of the moduli space (provided by Theo-

rem 2.4) as the moduli space of solutions to the Hitchin equations (2.1). Given defining data for
a SO∗(2n)-Higgs bundle, namely (V, β, γ), the solution to the equations is a Hermitian metric on
the vector bundle V . Thus it makes sense to define the Hitchin function

(5.1)
f : Md → R

(V, β, γ) 7→ ‖β‖2 + ‖γ‖2

where the L2-norms of β and γ are computed using the metric which satisfies the Hitchin equation.
The function f is proper and therefore attains a minimum on each connected component of Md.
Hence, if the subspace of local minima of f restricted to Md can be shown to be connected, then
it will follow that Md itself is connected.

Theorem 5.1. Let (V, β, γ) be a poly-stable SO∗(2n)-Higgs bundle.

(1) If d > 0, then (V, β, γ) represents a local minimum on Md if and only if β = 0.
(2) If d < 0, then (V, β, γ) represents a local minimum on Md if and only if γ = 0.
(3) If d = 0, then (V, β, γ) represents a local minimum on Md if and only if β = 0 and γ = 0.

Before giving the proof of this result (at the end of Section 5.2 below), we apply it to prove our
main theorem on the connectedness of M0 and Mmax.

Theorem 5.2. The moduli space Md is non-empty6 and connected if d = 0 or |d| =
⌊

n
2

⌋

(2g − 2).

Proof. Consider first the case d = 0. From (3) of Theorem 5.1 it is immediate that the subspace of
local minima of the Hitchin function on M0 consists of polystable SO∗(n)-Higgs bundles (V, β, γ)
with β = γ = 0. Furthermore, we conclude from Theorem 3.25 that such an SO∗(2n)-Higgs bundle
is polystable if and only if V is a polystable vector bundle. Therefore, the subspace of local minima
of the Hitchin function on M0 can be identified with the moduli space of polystable vector bundles
of degree zero, which is known to be connected. This completes the proof of the case d = 0.

Next we turn to the case |d| = ⌊n2 ⌋(2g− 2), i.e., the proof of connectedness of Mmax. By Propo-
sition 3.17 we may assume, without loss of generality, that d is positive. From (1) of Theorem 5.1,
we have that the subspace of local minima of the Hitchin function on Mmax can be identified with
the subspace of (V, β, γ) with β = 0. Suppose now that n is even. Then, using Remark 4.4, we have
that this subspace is isomorphic to the moduli space of polystable Sp(n,C)-bundles. This space
is connected by Ramanathan [31, Proposition 4.2] and hence Mmax is connected when n is even.
The connectedness of Mmax for odd n now follows from the rigidity result of Theorem 4.5 and the
connectedness of Mmax for even n.

Finally, non-emptiness of the moduli spaces follows from the non-emptiness of the subspaces of
local minima of the Hitchin functional, which in turn follows from the identifications given in the
course of the present proof. �

6Non-emptiness, also for non-maximal components, follows from the results of [26] which appeared after the present
paper.
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5.2. Minima of the Hitchin functional. The purpose of this section is to prove Theorem 5.1.
For this we need to show various preliminary results and, using these, we give the proof of the
Theorem at the end of the section.

The following result is completely analogous to [5, Proposition 4.5].

Proposition 5.3. The absolute minimum of the Hitchin functional restricted to Md is |d|. This
minimal value is attained at a point represented by (V, β, γ) (with deg(V ) = d) if and only if β = 0
(if d > 0) or γ = 0 (if d 6 0).

Proof. Using the Hitchin equation and Chern–Weil theory we get that

(5.2) d+ ‖β‖2 − ‖γ‖2 = 0

and hence the Hitchin function can be expressed as

(5.3) f(V, β, γ) =

{

d+ 2‖β‖2
−d+ 2‖γ‖2

The result follows immediately from (5.3). �

Of course not all local minima are necessarily absolute minima. We thus need to examine more
closely the structure of the local minima.

On the smooth locus of Md, the Hitchin functional f arises as the moment map of the S1-action
given by multiplication of the Higgs field ϕ by complex numbers of modulus one. Considering the
moduli space from the algebraic or holomorphic point of view, this action extends to the C∗-action
given by (V, ϕ) 7→ (V,wϕ) for w ∈ C∗. The moment map interpretation shows that, on the smooth
locus of Md(SO

∗(2n)), the critical points of f are exactly the fixed points of the C∗-action. On the
full moduli space, the fixed point locus of the C∗-action coincides with the locus of Hodge bundles
(this can be easily seen by arguments like the ones used in [23, 24, 37]), which are defined as follows.

Definition 5.4. A SO∗(2n)-Higgs bundle (V, β, γ) is called a Hodge bundle if

• there is a decomposition of V into holomorphic subbundles

(5.4) V =
⊕

i

Fi

and, with respect to this decomposition,
• β : F ∗

−i −→ Fi+1 ⊗K, and γ : Fi −→ F ∗
−i+1 ⊗K

Here F ∗
i ⊂ V ∗ is the dual of Fi.

The weight of Fi is i and the weight of F ∗
i is −i.

Thus, in view of (4) of Proposition 2.14, we have the following characterization of the critical
points of f .

Proposition 5.5. A simple SO∗(2n)-Higgs bundle, which is stable as an SO(2n,C)-Higgs bundle,
represents a critical point of f if and only if it is a Hodge bundle.

The deformation complex (2.2) for a SO∗(2n)-Higgs bundle (E,ϕ) is

(5.5)
C•(V, ϕ) : End(V )

ad(ϕ)−−−→ Λ2V ⊗K ⊕ Λ2V ∗ ⊗K .

ψ 7→ (−βψt − ψβ, γψ + ψtγ).

If (V, ϕ) is a Hodge bundle, then the decomposition (5.4) of V induces corresponding weight de-
compositions

End(V ) =
⊕

U+
k and Λ2V ⊕ Λ2V ∗ =

⊕

U−
k
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where

(5.6) U+
k =

⊕

j−i=k

F ∗
i ⊗ Fj , and U−

k =
⊕

i+j=k

Fi ⊗A Fj ⊕
⊕

i+j=−k

F ∗
i ⊗A F

∗
j .

Moreover, since the Higgs field ϕ has weight one, the deformation complex (5.5) decomposes ac-
cordingly as

C•(V, ϕ) =
⊕

k

C•
k(V, ϕ),

where we let C•
k(V, ϕ) : U

+
k

ad(ϕ)−−−→ U−
k+1 ⊗K. If we write C•

−(V, ϕ) =
⊕

k>0C
•
k(V, ϕ) we then have

the corresponding positive weight subspace

H1(C•
−(V, ϕ)) ⊂ H1(C•(V, ϕ))

of the infinitesimal deformation space. When (V, ϕ) represents a smooth point of the moduli space,
the hypercohomology H1(C•

−(V, ϕ)) is the negative eigenvalue subspace of the Hessian of f and so

(V, ϕ) is a local minimum of f if and only if H1(C•
−(V, ϕ)) = 0.

The key result we need for identifying the minima of f on the smooth locus of the moduli space
is the following ([6, Corollary 5.8]).

Proposition 5.6. Assume that (V, ϕ) is a SO∗(2n)-Higgs bundle which is stable as a SO(2n,C)-
Higgs bundle. Then (V, ϕ) represents a local minimum of f in Md if and only if it is a Hodge
bundle and

ad(ϕ) : U+
k −→ U−

k+1 ⊗K

is an isomorphism for all k > 0.

Using this result, we can prove the following lemma.

Lemma 5.7. Let (V, β, γ) be a simple SO∗(2n)-Higgs bundle which is stable as a SO(2n,C)-Higgs
bundle and assume that (V, β, γ) represents a local minimum of f on Md. Then, if d = deg(V ) > 0
the vanishing β = 0 holds and, if d = deg(V ) 6 0 the vanishing γ = 0 holds.

Proof. Let (V, β, γ) = (V, ϕ) be a minimum. Then Proposition 5.5 implies that (V, β, γ) is a Hodge
bundle. Moreover, arguing as in [14, Section 6], we see that (V, β, γ) being simple implies the
following: there is a decomposition of V into 2p + 1 non-zero holomorphic subbundles (for some
p ∈ 1

2Z), which is either of the form:

(5.7)

V = F−p+ 1

2

⊕ F−p+2+ 1

2

⊕ · · · ⊕ Fp−2+ 1

2

⊕ Fp+ 1

2

,

β : F ∗
p−2j+ 1

2

−→ F−p+2j+ 1

2

⊗K, for 0 6 j 6 p, and

γ : F−p+2j+ 1

2

−→ F ∗
p−2(j+1)+ 1

2

⊗K, for 0 6 j 6 p.

or of the form

(5.8)

V = F−p− 1

2

⊕ F−p+2− 1

2

⊕ · · · ⊕ Fp−2− 1

2

⊕ Fp− 1

2

,

β : F ∗
p−2j− 1

2

−→ F−p+2j− 1

2

⊗K, for 0 6 j 6 p, and

γ : F−p+2j− 1

2

−→ F ∗
p−2(j+1)− 1

2

⊗K, for 0 6 j 6 p.

Let k0 be the largest index such that U+
k0

6= 0. Since otherwise there is nothing to prove, we may

assume that k0 > 0. For definiteness, assume that the decomposition of V is of the form (5.7) —
a similar argument applies when V is of the form (5.8). Using (5.6), we see that k0 = 2p and thus
(by Proposition 5.6) we have an isomorphism

(5.9) ad(ϕ) : F ∗
−p+ 1

2

⊗ Fp+ 1

2

−→ Λ2Fp+ 1

2

⊗K.



HIGGS BUNDLES FOR SO∗(2n) 23

In this case, since γ = 0 on Fp+ 1

2

, the map ad(ϕ) is given explicitly by

x 7→ ϕ ◦ x− x ◦ ϕ = −x ◦ β,
where

(5.10) β : F ∗
p+ 1

2

→ F−p+ 1

2

for a local section x : F ∗
−p+ 1

2

−→ Fp+ 1

2

. Denote the ranks of Fp+ 1

2

and F−p+ 1

2

by a and b respectively.

Then (5.9) implies that ab = a(a−1)
2 and hence that

(5.11) a = 2b+ 1 > b.

But then the map β in (5.10) must have a non-trivial kernel and, therefore, the map

−x ◦ β : F ∗
p+ 1

2

−→ F−p+ 1

2

−→ Fp+ 1

2

vanishes on ker(β) for any local section x. Now, (5.11) implies that

a = rk(Fp+ 1

2

) > 2.

Hence there are non-zero antisymmetric local sections y of Λ2Fp+ 1

2

⊗K which do not vanish on the

kernel of β. This is in contradiction with the existence of the isomorphism (5.9). �

In order to show that certain singular points of the moduli space are not minima, we need the
following lemma (cf. Hitchin [24, §8]).
Lemma 5.8. Let (V, ϕ) be a polystable SO∗(2n)-Higgs bundle which is a Hodge bundle. Suppose
there is a family (Vt, ϕt) of polystable SO∗(2n)-Higgs bundles, parametrized by t in the open unit disk
D ⊂ C, such that (V0, ϕ0) = (V, ϕ) and the corresponding infinitesimal deformation is a non-zero
element of H1(C•

−(V, ϕ)). Then (V, ϕ) is not a local minimum of f on Md.

Using this criterion and Theorem 3.25, we can now extend the result of Lemma 5.7 to cover all
polystable SO∗(2n)-Higgs bundles.

Lemma 5.9. Let (V, β, γ) be a polystable SO∗(2n)-Higgs bundle and assume that (V, β, γ) represents
a local minimum of f on Md. Then, if d = deg(V ) > 0 the vanishing β = 0 holds and, if
d = deg(V ) 6 0 the vanishing γ = 0 holds.

Proof. Let (V, ϕ) = (V1, ϕ1) ⊕ · · · ⊕ (Vk, ϕk) be the decomposition given in Theorem 3.25. As
observed by Hitchin [24], the Hitchin function (5.1) is additive in the sense that

f(V, ϕ) =

k
∑

i=1

f(Vi, ϕi).

It follows that each summand (Vi, ϕi) represents a local minimum for the Hitchin functional on its
own moduli space.

If a summand (Vi, ϕi) is of type (1) in Theorem 3.25, then Lemma 5.7 shows that βi = 0 or
γi = 0. Similarly, if a summand (Vi, ϕi) is of type (3), then it is shown in [5, Theorem 4.6] that
βi = 0 or γi = 0. With regard to summands of type (2), it is shown in [16, Proposition 4.6] that
a stable U∗(ni)-Higgs bundle (Vi, ϕi) representing a local minimum on the corresponding moduli
space has ϕi = 0. Finally we note that the summands (Vi, ϕi) of type (4) have ϕi = 0.

Thus each of the summands (Vi, ϕi) of type (1) or (3) has either βi = 0 or γi = 0 and each of
the summands of type (2) or (4) has ϕi = 0.

To complete the proof, assume that there are summands (V ′, β′, γ′) and (V ′′, β′′, γ′′) with β′ = 0,
γ′ 6= 0, β′′ 6= 0 and γ′′ = 0, and that each of these summands is either of type (1) or of type (3). If
we can construct a family (Vt, ϕt) of polystable SO∗(2n)-Higgs bundles such that

(V0, ϕ0) = (V ′, β′ + γ′)⊕ (V ′′, β′′ + γ′′)
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and satisfying the hypothesis of Lemma 5.8, this proposition guarantees that (V ′, β′+γ′)⊕(V ′′, β′′+
γ′′) is not a minimum (on its own moduli space) and hence (V, ϕ) cannot be a minimum. In the
analogous case of Sp(2n,R)-Higgs bundles, such a family is constructed in Lemmas 7.2 and 7.3 of
[14]. Inspection of the proofs of these two lemmas shows that they are not sensitive to the symmetry
properties of β and γ and so go through unchanged in the present case of SO∗(2n)-Higgs bundles.
This completes the proof. �

Finally we are in a position to prove Theorem 5.1.

Proof of Theorem 5.1. The “if” part is immediate from Proposition 5.3. In the case |d| = ⌊n2 ⌋(2g−
2), the “only if” part follows from Lemma 5.9. In the case d = 0 the result follows from the
observation that if one of the Higgs fields β and γ vanishes, then polystability of (V, β, γ) forces
the other Higgs field to vanish. �

6. Representations of π1(X) in SO∗(2n)

Let X be a compact Riemann surface of genus g and let

π1(X) = 〈a1, b1, . . . , ag, bg |
g
∏

i=1

[ai, bi] = 1〉

be its fundamental group. By a representation of π1(X) in SO∗(2n) we mean a homomorphism
ρ : π1(X) → SO∗(2n). The set of all such homomorphisms,

Hom(π1(X),SO∗(2n)),

can be naturally identified with the subset of SO∗(2n)2g consisting of 2g-tuples

(A1, B1 . . . , Ag, Bg)

satisfying the algebraic equation
∏g

i=1[Ai, Bi] = 1. This shows that Hom(π1(X),SO∗(2n)) is a real
algebraic variety.

The group SO∗(2n) acts on Hom(π1(X),SO∗(2n)) by conjugation:

(g · ρ)(γ) = gρ(γ)g−1

for g ∈ SO∗(2n), ρ ∈ Hom(π1(X),SO∗(2n)) and γ ∈ π1(X). Recall that a representation is
reductive if its composition with the adjoint representation is semisimple. If we restrict the action
to the subspace Homred(π1(X),SO∗(2n)) consisting of reductive representations, the orbit space is
Hausdorff. By a reductive representation we mean one for which the Zariski closure of the image of
π1(X) in SO∗(2n) is a reductive group. Define the moduli space of representations of π1(X)
in SO∗(2n) to be the orbit space

R = Homred(π1(X),SO∗(2n))/SO∗(2n).

Since U(n) ⊂ SO∗(2n) is a maximal compact subgroup, we have

π1(SO
∗(2n)) ≃ π1(U(n)) ≃ Z,

and there is a topological invariant attached to a representation ρ ∈ R given by an element d =
d(ρ) ∈ Z. This integer is called the Toledo invariant and coincides with the first Chern class of
a reduction to a U(n)-bundle of the flat SO∗(2n)-bundle associated to ρ.

Fixing the invariant d ∈ Z we consider,

Rd := {ρ ∈ R such that d(ρ) = d}.
Proposition 6.1. The transformation ρ 7→ (ρt)

−1
in R induces an isomorphism of the moduli

spaces Rd and R−d.

As shown by Domic–Toledo [11], the Toledo invariant d of a representation satisfies the Milnor–
Wood type inequality:
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Proposition 6.2. The moduli space Rd is empty unless

|d| 6
⌊n

2

⌋

(2g − 2).

As a special case of of the non-abelian Hodge theory correspondence (see [15, Theorem 3.32]) we
have the following.

Proposition 6.3. The moduli spaces Rd and Md are homeomorphic.

From Proposition 6.3 and Theorem 5.2 we have the main result of this paper regarding the
connectedness properties of R given by the following.

Theorem 6.4. The moduli space Rd is non-empty and connected if d = 0 or |d| = ⌊n2 ⌋(2g − 2).

From Proposition 6.3 and Theorem 6.4 we also have the following rigidity result for maximal
representations.

Theorem 6.5. Let Rmax(SO
∗(4m+2)) be the moduli space of maximal representations in SO∗(2n)

with n = 2m+1 and d = 2m(g−1). If m > 0 and g > 2 then the locus of irreducible representations
of Rmax(SO

∗(4m+ 2)) is empty and

Rmax(SO
∗(4m+ 2)) ≃ Rmax(SO

∗(4m))×Hom(π1(X),U(1)).

7. Low rank cases

In this section we exploit well known Lie-theoretic isomorphisms to examine SO∗(2n)-Higgs
bundles for low values of n.

7.1. The case n = 1. The group SO∗(2) is isomorphic to SO(2) and hence, in particular, it is
compact. A SO∗(2)-Higgs bundle is thus simply a bundle (with zero Higgs field). Identifying the
maximal compact subgroup (in this case the group itself) with U(1), we see that a SO∗(2)-Higgs
bundle consists of a GL(1,C)-bundle, or equivalently, a holomorphic line bundle. Using the usual
identification GL(1,C) ≃ SO(2,C), we see that the associated SO(2,C)-Higgs bundle is equivalent
to the vector bundle L⊕ L−1 with the standard off-diagonal quadratic form.

Proposition 7.1. As a SO∗(2)-Higgs bundle, a line bundle L is semistable if and only if deg(L) =
0. Moreover, semistability implies stability for SO∗(2)-Higgs bundles.

Proof. We apply Proposition 3.13. The only two-step filtrations are:

0 ⊂ 0 ⊂ 0 ⊂ L

0 ⊂ 0 ⊂ L ⊂ L

0 ⊂ L ⊂ L ⊂ L

All are ϕ-invariant since the Higgs field is zero. Applying (3.14) to these filtrations in turn yields
deg(L) 6 0, 0 6 0, and deg(L) > 0. The first result follows from this. The second result is a
consequence of the fact that there are no ϕ-invariant two-step filtrations in which at least one of
the subbundles is proper. �

Remark 7.2. Since L and L−1 are isotropic subbundles of L ⊕ L−1, it follows that L ⊕ L−1 is
semistable as a SO(2,C)-bundle if and only if deg(L) = 0. This gives an alternative proof for
Proposition 7.1.

It follows that the moduli space of Md(SO
∗(2)) is non-empty only for d = 0, in which case we

can identify

M0(SO
∗(2)) ≃ Jac0(X)

where Jac0(X) denotes the Jacobian of degree zero line bundles over X.
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Remark 7.3. It may look paradoxical that we do not obtain the whole moduli space of line bundles
of arbitrary degree over X. This is because, as indicated in Remark 3.7, we are fixing the parameter
of stability to be zero. In order to obtain the other components of the moduli space we have to
consider stability for other integral values of the parameter.

7.2. The case n = 2. In this section we examine the SO∗(2n)-Higgs bundles (V, β, γ) in which
rank(V ) = 2. The low rank and the isomorphism

(7.1) so∗(4) ≃ su(2)⊕ sl(2,R)

lead us to descriptions that are more explicit than in the general case.

7.2.1. Stability conditions. If rank(V ) = 2 there are no two-step filtrations 0 ⊂ V1 ⊂ V2 ⊂ V
in which all the inclusions are strict. The two-step filtrations with at least one non-zero proper
subbundle are thus of one of the following types:

(1) V1 = 0 and V2 = L where L is a line subbundle, or
(2) V2 = V and V1 = L where L is a line subbundle, or
(3) V1 = V2 = L where L is a line subbundle.

The corresponding conditions in Lemma 3.11 for such two-step filtration to be ϕ-invariant are:

(1) β(L⊥) = 0 if V1 = 0 and V2 = L,
(2) γ(L) = 0 if V1 = L and V2 = V , and
(3) β(L⊥) ⊂ L⊗K and γ(L) ⊂ L⊥ ⊗K if V1 = V2 = L.

Remark 7.4. In case (1) the condition β(L⊥) = 0 implies that β : V ∗ → V ⊗K has rank less than
two. The skew symmetry of β thus forces β = 0. Similarly, in case (2), γ(L) = 0 implies that
γ = 0. In case (3), the skew symmetry of β and γ ensure that the conditions β(L⊥) ⊂ L⊗K and
γ(L) ⊂ L⊥ ⊗K apply for all line subbundles L ⊂ V .

The stability condition for SO∗(4)-Higgs bundles thus reduces to the following.

Proposition 7.5. A SO∗(4)-Higgs bundle (V, β, γ) with deg(V ) > 0 is (semi)stable if and only if
V is (semi)stable as a bundle and γ 6= 0.

A SO∗(4)-Higgs bundle (V, β, γ) with deg(V ) < 0 is (semi)stable if and only if V is (semi)stable
as a bundle and β 6= 0.

A SO∗(4)-Higgs bundle (V, β, γ) with deg(V ) = 0 is (semi)stable if and only if V is (semi)stable
as a bundle.

Proof. Suppose that (V, β, γ) is a (semi)stable SO∗(4)-Higgs bundle with deg(V ) = d. By (3.18),
if d > 0 then γ cannot be zero and if d < 0 then β cannot be zero. If d = 0 then ( see Remark
3.14) there is no restriction on β or γ. Any line subbundle L ⊂ V defines a ϕ-invariant two-step
filtration in which V1 = V2 = L. Applying Proposition (3.13) we see that if (V, β, γ) is semistable
then deg(L) 6 deg(V )/2, and the inequality is strict if (V, β, γ) is stable. This proves the ‘only if’
direction.

To prove the converse it remains to check that the inequalities (3.14) and (3.15) are satisfied by
ϕ-invariant two-step filtrations of the form (a) V1 = 0, V2 = L or (b) V1 = L, V2 = V . By Remark
7.4, the first case occurs only if β = 0 and hence, by (3.18), deg(V ) > 0. Thus in this case

deg(L) 6 deg(V )/2 =⇒ deg(L) 6 deg(V ).

Similarly, the second case occurs only if γ = 0 and hence deg(V ) 6 0. Thus

deg(L) 6 deg(V )/2 =⇒ deg(L) 6 0.

The requisite inequalities thus follow from the (semi)stability of V . �

From Proposition 3.24 we have the following.
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Proposition 7.6. A SO∗(4)-Higgs bundle (V, β, γ) is polystable if and only if

(1) it is stable with ϕ 6= 0, or
(2) V decomposes as a sum of two line bundles of degree zero and β = γ = 0, or

(3) V = L1⊕L∗
2 with deg(L1) = − deg(L2) and with respect to this decomposition β =

(

0 β̃

−β̃ 0

)

and γ =

(

0 γ̃
−γ̃ 0

)

.

Corollary 7.7. Let Md(2) denote the moduli space of rank 2, degree d semistable bundles and let
M s

d (2) ⊂Md(2) be the stable locus. There is a map

Md(SO
∗(4)) −→Md(2)(7.2)

[V, β, γ] 7→ [V ]

(1) If d > 0 then the image of the map is the locus of bundles for which h0(det(V )−1 ⊗ K)
is greater than zero. The fiber over [V ] ∈ M s

d (2) can be identified with OPs(1)⊕r where
r = h0(det(V )⊗K) and s = h0(det(V )−1 ⊗K).

(2) If d < 0 then the image is the locus of bundles for which h0(det(V ) ⊗ K) is greater than
zero. The fiber over [V ] ∈M s

d (2) can be identified with OPr(1)⊕s where r = h0(det(V )⊗K)
and s = h0(det(V )−1 ⊗K).

(3) If d = 0 then the map is surjective.

Proof. Everything is immediate from Propositions 7.5 and 7.6 except for the description of the
fibers.

Suppose that d > 0 and consider the fiber over a point in Md(2) represented by the bun-
dle V . The SO∗(4)-Higgs bundles (V, β, γ) are semistable for all (β, γ) ∈ H0(X,det(V ) ⊗ K) ⊕
(H0(X,det(V )−1 ⊗K) − {0}. However, since the points in Md(SO

∗(4)) are isomorphism classes
of objects, we need to consider when two objects, say (V, β, γ) and (V, β′, γ′), are isomorphic as
SO∗(4)-Higgs bundles. By definition the object are isomorphic if there exists a bundle automor-
phism f : V → V such that f∗(β′) = β and f∗(γ′) = γ. But if V is stable, then the only
automorphisms are multiples of the identity, say f = tI, and the induced map on β and γ is

(7.3) f∗(β) = t2β , f∗(γ) = t−2γ

The fiber over [V ] ∈Md(2) is thus given by (H0(X,det(V )⊗K)⊕(H0(X,det(V )−1⊗K)−{0}))/C∗

where the C∗-action is given by t(β, γ) = (t2β, t−2γ). The results follows from this.
The description of the fibers in the d < 0 case is similar. �

Remark 7.8.

(1) Brill-Noether theory shows that in fact the map is surjective for all d < (g − 1).
(2) If deg(V ) is odd thenMd(2) =M s

d (2), so all fibers are direct sums of copies of the degree one
line bundle over a suitable projective space. Note, though, that the number of summands
and the dimension of the projective space need not be constant.

(3) In the case d = 0, the fiber over a point [V ] ∈Md(2) is the quotient

(H0(X,det(V )⊗K)⊕H0(X,det(V )−1 ⊗K))/C∗ .

7.2.2. Simplicity and smoothness in Md(SO
∗(4)). Applying Theorem 3.19 to the case of SO∗(4)-

Higgs bundles yields:

Theorem 7.9. Let (V, ϕ) be a stable SO∗(4)-Higgs bundle. If (V, ϕ) is not simple, then V is a
stable vector bundle of degree zero and ϕ = 0. In this case Aut(V, ϕ) ≃ C∗.

Proof. Theorem 3.19 says that there are two alternatives for stable SO∗(2n)-Higgs bundle which
are not simple and we wish to show that alternative (1) occurs when n = 2. To exlude alternative
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(2) we note that it requires (V, ϕ) to decompose into two SO∗(2)-Higgs bundles with non-zero Higgs
fields. This is impossible since the Higgs field necessarily vanishes in a SO∗(2)-Higgs bundle. �

By Proposition 3.22 a stable and simple SO∗(4)-Higgs bundle (V, β, γ) represents a smooth point
in Md(SO

∗(4)) (where d = deg(V )) unless d = 0 and there is a skewsymmetric isomorphism

f : V
≃−→ V ∗ intertwining β and γ. By Lemma 7.11 such an isomorphism can exist only if det(V ) =

O. We thus get:

Proposition 7.10. (1) If d is odd then Md(SO
∗(4)) is smooth.

(2) If d is even and d 6= 0 then Md(SO
∗(4)) is smooth except possibly at points represented by

SO∗(4)-Higgs bundles (V, β, γ) of the form:

(7.4)

V = L1 ⊕ L∗
2, with deg(L1) = − deg(L2) and, with respect to this decomposition,

β =

(

0 β̃

−β̃ 0

)

and γ =

(

0 γ̃
−γ̃ 0

)

(3) If d = 0 then Md(SO
∗(4)) is smooth except possibly at points represented by SO∗(4)-Higgs

bundles (V, β, γ) such that
(a) β = γ = 0, or
(b) (V, β, γ) is of the form (7.4), or

(c) det(V ) = O and fβ = f−1γ where f : V
≃−→ V ∗ is a skew-symmetric isomorphism.

Proof. (1) If d is odd then all semistable and polystable Higgs bundles are stable, simple and do
not admit a skew-symmetric isomorphism intertwining the components of the Higgs field.

(2) If d is even and d 6= 0 then all stable Higgs bundles are simple and do not admit a skew-
symmetric isomorphism intertwining the components of the Higgs field. The non-smooth points
can occur only at points represented by polystable Higgs bundles.

(3) The cases (a)-(c) correspond to polystable Higgs bundles (cases (a) and (b)), stable but
not simple Higgs bundles (case (a)), or stable and simple bundles which admit a skew-symmetric
isomorphism intertwining the components of the Higgs field (case (c)). �

7.2.3. The even degree case. Notice that if V is a rank 2 bundle, then Λ2(V ) = det(V ). Furthermore
if deg(V ) is even then V can be decomposed as

(7.5) V = U ⊗ L , with

{

det(U) ≃ O
L2 = det(V )

.

Lemma 7.11. If U is a rank 2 holomorphic bundle then the following are equivalent:

(1) det(U) ≃ O,
(2) the structure group of U reduces to SL(2,C),
(3) U∗ ≃ U , with the isomorphism defined by a symplectic form Ω ∈ H0(X,Λ2U∗).

Proof. The equivalence of (1) and (2) is straightforward. The equivalence of (2) and (3) follows
from the fact that SL(2,C) ≃ Sp(2,C). �

Lemma 7.12. Let (V, β, γ) be a SO∗(4)-Higgs bundle with deg(V ) even. Let V = U ⊗ L as in
(7.5), and let Ω ∈ H0(X,Λ2U∗) be the symplectic form on U given by (3) of Lemma 7.11, with
induced symplectic form Ω∗ ∈ H0(X,Λ2U) on U∗. Then we can write

(7.6)
β = Ω⊗ β̃ , where β̃ ∈ H0(X,L2 ⊗K),

γ = Ω∗ ⊗ γ̃ , where γ̃ ∈ H0(X,L−2 ⊗K).

Proof. Immediate from Λ2V ≃ Λ2U ⊗ L2 ≃ L2 and the existence of the nowhere vanishing section
Ω of Λ2U . �
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Applying Definition 2.1 to the case G = SL(2,R), a SL(2,R)-Higgs bundle can be described as
a triple (L, β, γ) where L is a line bundle and β ∈ H0(X,L−2K), γ ∈ H0(X,L2K). We denote by
Ml(SL(2,R)) the component of the moduli space of polystable SL(2,R)-Higgs bundles in which
deg(L) = l.

The following result shows that SO∗(4)-Higgs bundles of even degree are intimately related to
SL(2,R)-Higgs bundles.

Proposition 7.13. Let (V, β, γ) be a SO∗(4)-Higgs bundle with deg(V ) even. Pick L such that
L2 = det(V ) and define U = V ⊗ L−1. Then

(1) U is a SL(2,C)-bundle and

(2) (L, β̃, γ̃) defines a SL(2,R)-Higgs bundle

where β̃, γ̃ are as in Lemma 7.12. The SO∗(4)-Higgs bundle (V, β, γ) is (semi)stable if and only if

U is (semi)stable as a bundle and (L, β̃, γ̃) is (semi)stable as a SL(2,R)-Higgs bundle.

Proof. Properties (1) and (2) follow from Lemmas 7.11 and 7.12, and the fact that a triple (L, β̃, γ̃)
(as in Lemma 7.12) defines a SL(2,R)-Higgs bundle. The statement about (semi)stability follows

from Proposition 7.5 and the fact that (semi)stability for a SL(2,R)-Higgs bundle (L, β̃, γ̃) with
deg(L) > 0 is equivalent to the condition that γ̃ 6= 0 (if deg(L) > 0). �

Remark 7.14. The isomorphism (7.1) is the infinitesimal version of a 2:1 homomorphism

(7.7) η : SU(2) × SL(2,R) −→ SO∗(4) .

Proposition 7.13 shows that if deg(V ) is even then the structure group of the SO∗(4)-Higgs bundle
lifts via η to SU(2) × SL(2,R). If deg(V ) is odd, then the structure group does not lift. The
obstruction to the lift can be viewed as an element of H2(X,Z/2). In fact, the homomorphism η
is induced by the homomorphism Spin(4,C) −→ SO(4,C). To see this, recall that

Spin(4,C) ≃ Spin(3,C)× Spin(3,C) ≃ SL(2,C)× SL(2,C).

Under this homomorphism, the real form SU(2)× SL(2,R) of SL(2,C)× SL(2,C) maps to SO∗(4).

7.2.4. The Cayley partner. Applying Proposition 3.26 with n = 2, we see that

|deg(V )| 6 2g − 2

and that γ is an isomorphism if (and only if) deg(V ) = 2g−2. As in Proposition 7.13 we write V =
U⊗L with det(U) = O and L2 = det(V ). In particular, if deg(V ) = 2g−2 then deg(L−2⊗K) = 0.
Moreover, since γ is an isomorphism, it follows that γ̃ is a non-zero section of L−2 ⊗K and thus
L2 = K. Proposition 7.13 thus becomes the following.

Proposition 7.15. Let (V, β, γ) be a SO∗(4)-Higgs bundle with deg(V ) = 2g− 2. Pick L such that
L2 = K and define U = V ⊗ L−1. Then

(1) U is a SL(2,C)-bundle and

(2) (L, β̃, γ̃) defines a SL(2,R)-Higgs bundle where γ̃ is a non-zero section in H0(X,O), and

β̃ ∈ H0(X,K2). In particular, (L, β̃, γ̃) defines a Higgs bundle in a Teichmüller component
of Mg−1(SL(2,R)).

Moreover, the polystability of (V, β, γ) is equivalent to the polystability of U .

Remark 7.16. With Ω as Lemma 7.12, the data (U,Ω; β̃) as in Proposition 7.15 defines a K2-
twisted U∗(2)-Higgs bundle. Indeed if (V,Ω;ϕ) is a L-twisted U∗(2)-Higgs bundle then we can
assume that Ω = J with respect to suitable local frames. Since, by definition of a U∗(2n)-Higgs
bundle, ϕtΩ = −Ωϕ, we get that ϕ = ϕ̃I with respect to the same frames. It follows that locally
ϕ = ϕ̃I, where ϕ̃ ∈ H0(X,L) (see Appendix A and [16] for details on U∗(2n)-Higgs bundles). The

polystability of the (U, β̃) as a K2-twisted U∗(2)-Higgs bundle is equivalent to the polystability of
U .



30 S. B. BRADLOW, O. GARCÍA-PRADA, AND P. B. GOTHEN

Remark 7.17. The ambiguity in the decomposition V = U ⊗ L corresponds, in this case, to the
choice of a square root of K. This is the same choice as the one which distinguishes the Teichmüller
component of Mg−1(SL(2,R)).

Combining Propositions 7.13 and (7.5) gives rise to a 22g : 1 map

T :M0(2)×Ml(SL(2,R)) −→ M2l(SO
∗(4))

([U ], [L, β̃, γ̃]) 7→ [U ⊗ L, β, γ](7.8)

where M0(2) denotes the moduli space of polystable rank 2 bundles with trivial determinant. This
is the Higgs bundle manifestation of isomorphism (7.1).

Proposition 7.18. For each 0 6 l 6 g − 1 the moduli space M2l(SO
∗(4)) is connected.

Proof. Under the map T , the 22g Teichmüller components inMg−1(SL(2,R)) are all identified in the
component M2g−2(SO

∗(4)). For 0 6 l < g − 1 the moduli spaces Ml(SL(2,R)) are connected. �

7.3. The case n = 3. The Lie algebra of SO∗(6) is isomorphic to su(1, 3), the Lie algebra of
SU(1, 3). The groups differ because they have different centers, with Z(SO∗(6)) ≃ Z/2 and
Z(SU(1, 3)) ≃ Z/4. Both groups are finite covers of PU(1, 3), the adjoint form of the Lie alge-
bra. The relationships among the groups SO∗(6),SU(1, 3), and PU(1, 3) leads to relations among
the corresponding Higgs bundles for the groups (see Proposition 7.29). As in the case of SO∗(4),
the relation can be explained in terms of the spin group. Namely, the 2 : 1 homomorphism
Spin(6,C) −→ SO(6,C) restricts to a 2 : 1 homomorphism Spin∗(6) −→ SO∗(6). But under
the isomorphism Spin(6,C) ≃ SL(4,C), one has the isomorphism of the corresponding real forms
Spin∗(6) and SU(1, 3).

The key to understanding the relation between the Higgs bundles is the isomorphism

Λk(V∗)⊗ Λn(V) −→ Λn−k(V).

where V is a vector space of dimension n > k, and the map is defined by the interior product. This
extends to exterior powers of vector bundles of rank n. In particular, if n = 3 and k = 2 we get
Λ2V ∗ ⊗ det(V ) ≃ V or equivalently

(7.9) Λ2V ∗ ≃ det(V )∗ ⊗ V ≃ Hom(det(V ), V ).

Hence sections γ ∈ H0(X,Λ2V ∗ ⊗K) and β ∈ H0(X,Λ2V ⊗K) define holomorphic bundle maps

γ̃ : det(V ) → V ⊗K and β̃ : V → det(V )⊗K by

(7.10)
γ̃(ω) = ιγ(ω),

β̃(v) = β ∧ v,
where ιγ denotes interior product.

Proposition 7.19. A SO∗(6)-Higgs bundle defines a U(1, 3)-Higgs bundle via the map

(7.11) (V, β, γ) 7→ (det(V ), V, β̃, γ̃)

where β̃ and γ̃ are related to β and γ as in (7.10).

Proof. This follows immediately from the definitions. In general, a U(p, q)-Higgs bundle is defined
by a tuple (V,W, β, γ) where V and W are bundles of rank p and q respectively, and β, γ are maps
β : V → W ⊗K and γ : W → V ⊗K (see [5] and Section A.2.1 for more details). �

Remark 7.20. We refer the reader to [5] and Section A.2.1 for more details but note here the
following key features:
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(1) The tuple (V,W, β, γ) represents a SU(p, q)-Higgs bundle if it satisfies the determinant
condition det(V ⊕W ) = O. In particular, SU(1, 3)-Higgs bundles are represented by tuples

(L,W, β̃, γ̃) with L a line bundle,W a rank three bundle, β̃ : W → L⊗K and γ̃ : L→W⊗K
and such that det(L⊕W ) is trivial.

(2) While a PU(p, q)-Higgs bundle is defined by a principal P(U(p) × U(q))-bundle together
with an appropriate Higgs field, the structure group of the bundle can always be lifted to
U(p) × U(q). Together with the Higgs field, the principal U(p) × U(q)-bundle defines a
U(p, q)-Higgs bundle. The lifts are defined up to a twisting by a line bundle.

(3) The notion of polystability and the corresponding Hitchin equations for U(p, q)-Higgs bun-
dles are described in Section A.2.1 and in [5]. The notions for SU(p, q) and PU(p, q) are
similar.

(4) (a) The components of the moduli space of polystable U(p, q)-Higgs bundles are labeled
by the integer pair (a, b) where a = deg(V ) and b = deg(W ). We will denote these
components by Ma,b(U(p, q)).

(b) For a PU(p, q)-Higgs bundle, the components of the moduli spaces are labeled by the

combination τ = 2aq−bp
p+q , where (V,W, β, γ) represents a U(p, q)-Higgs bundles obtained

by lifting the structure group. This combination, known as the Toledo invariant, is
independent of the lifts to U(p, q). We will denote the components with Toledo invariant
τ by Mτ (PU(p, q)).

(c) For SU(p, q)-Higgs bundles, for which deg(V ) = − deg(W ), the components of the
moduli space can be labeled by the single integer a = deg(V ). We will denote these
components by Ma(SU(p, q)).

Proposition 7.21. Let (V, β, γ) and (det(V ), V, β̃, γ̃) be a SO∗(6)-Higgs bundle and corresponding
U(1, 3)-Higgs bundle, as in (7.11). Then the following are equivalent:

(A) The bundle V admits a metric, say H, satisfying the SO∗(6)-Hitchin equation on (V, β, γ),
namely (see (3.16))

(7.12) FH
V + ββ∗H + γ∗Hγ = 0.

(B) The bundles V and det(V ) admit metrics, say K and k, satisfying the U(1, 3)-Hitchin

equation on (det(V ), V, β̃, γ̃), namely (see [5])

(7.13)
FK
V + β̃∗K,k β̃ + γ̃γ̃∗K,k = −

√
−1µIV ω,

F k
det(V ) + β̃β̃∗K,k + γ̃∗K,k γ̃ = −

√
−1µω.

In these equations

• the first terms denote the curvature of the Chern connection with respect to the indicated
metrics,

• the adjoints in (7.12) are with respect to H and the metric it induces on V ∗,
• the adjoints in (7.13) are with respect to K and k

• µ =

√
−1
∫

X Tr(FH
V )

2Vol(X)
=
π deg(V )

Vol(X)
,

• IV is the identity map on V , and
• ω denotes the Kähler form of the metric on the Riemann surface X.

The proof of Proposition 7.21 uses the following technical Lemma.

Lemma 7.22. Let (det(V ), V, β̃, γ̃) be a U(1, 3)-Higgs bundle, as in (7.11). Let H and h be any
metrics on V and det(V ) respectively. Let K be a metric on V which is related to H by a conformal
factor eu, i.e. K(ϕ,ψ) = euH(ϕ,ψ) for any sections ϕ and ψ of V . Similarly let k be a metric on
det(V ) which is related to h by the same conformal factor eu. Then (in the notation of Proposition
7.21, and denoting by ∗H,h adjoints with respect to H and h)
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(1) γ̃∗K,k = γ̃∗H,h,

(2) β̃∗K,k = β̃∗H,h,
(3) FK

V = FH
V −

√
−1∆(u)ωIV , and

(4) F k
det(V ) = F h

det(V ) −
√
−1∆(u)ω.

where in (3) and (4) ω denotes the Kähler form on X.

Proof. Let a be a point in the fiber of V over a point x ∈ X and let b be a point in the fiber over
x of det(V )⊗ K̄. Then

h(b, γ̃∗K,k (a)) =e−u(x)k(b, γ̃∗K,k(a))

=e−u(x)K(γ̃(b), a)

=e−u(x)eu(x)H(γ̃(b), a) = h(b, γ̃∗H,h(a)).

This proves (1). The proof of (2) is similar. The proof of (3) and (4) follows directly from the
definition of the Chern connection. Indeed, if metrics H1 and H2 on a holomorphic bundle E are
related by H1 = H2s where s is a (positive definite) automorphism of E, then the curvatures of the
Chern connections are related by

(7.14) FH1
= FH2

+ ∂̄E(s
−1D′

H1
(s))

where ∂̄E and D′
H1

are the antiholomorphic and holomorphic parts of the Chern connection for H1.

If s = euI then the second term reduces to −
√
−1∆(u)ω. �

We now prove Proposition 7.21 .

Proof of Proposition 7.21. Fix a local frame for V and use the dual frame for V ∗. Also, fix a local
complex coordinate on the base. Then γ, as a map from V to V ∗ ⊗K is given locally by a matrix
of holomorphic 1-forms, which we write as

(7.15) γ =





0 γ1 γ2
−γ1 0 γ3
−γ2 −γ3 0



 dz .

Using the induced frame for det(V ), the map γ̃ is then given by

(7.16) γ̃ =





γ3
−γ2
γ1



 dz .

Similarly, if β as a map from V ∗ to V ⊗K is given locally by a matrix of holomorphic 1-forms
of the form

(7.17) β =





0 β1 β2
−β1 0 β3
−β2 −β3 0



 dz .

then the map β̃ is then given by

(7.18) β̃ =
[

β3 −β2 β1
]

dz .

Given a metric, say H, on V , we can pick the local frame to be unitary with respect to h. Then
locally

(7.19) γ∗H =





0 −γ̄1 −γ̄2
γ̄1 0 −γ̄3
γ̄2 γ̄3 0



 dz̄ .
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The metric H induces a metric on det(V ), which we denote by h. With respect to the metrics H
on V and h on det(V ), the adjoint of γ̃ is given locally by

(7.20) γ̃∗H,h =
[

γ̄3 −γ̄2 γ̄1
]

dz̃ .

Using the metrics H and h, and taking into account that the entries in the matrix are 1-forms,
we get that

(7.21)
γ∗Hγ = γ̃γ̃∗H,h + γ̃∗H,h γ̃IV ,

ββ∗H = β̃∗H,h β̃ + β̃β̃∗H,hIV ,

and also

(7.22)
Tr(γ̃γ̃∗H,h) = −γ̃∗H,h γ̃,

Tr(β̃∗H,h β̃) = −β̃β̃∗H,h .

Suppose that V admits a metric which satisfies the SO∗(6)-Hitchin equations for (V, β, γ), namely
equation (7.12). Because of (7.21) this is equivalent to

(7.23) FH
V + β̃∗H,h β̃ + γ̃γ̃∗H,h = −(γ̃∗H,h γ̃ + β̃β̃∗H,h)IV .

Taking the trace of this, and using (7.22), we also get

(7.24) Tr(F h
V ) + γ̃∗H,h γ̃ + β̃β̃∗H,h = −(γ̃∗H,h γ̃ + β̃β̃∗H,h).

We can write the (1, 1)-form γ̃∗H,h γ̃ + β̃β̃∗H,h as

(7.25) γ̃∗H,h γ̃ + β̃β̃∗H,h =
√
−1tω = −(

3
∑

i=1

|γ̃i|2 −
3
∑

i=1

|β̃i|2)dz ∧ dz̄

where the last expression is in local coordinates. Notice that by (7.24) we get

(7.26) − 2
√
−1

∫

X
tω =

∫

X
Tr(F h

V ) = −2π
√
−1 deg(V ).

Since Tr(FH
V ) = F h

det(V ), equations (7.23) and (7.24) can thus be written as

(7.27)
FH
V + β̃∗H,h β̃ + γ̃γ̃∗H,h = −

√
−1tωIV

F h
det(V ) + γ̃∗H,h γ̃ + β̃β̃∗H,h = −

√
−1tω

where

(7.28)

∫

tω

Vol(X)
=
π deg(V )

Vol(X)
= µ.

Equations (7.27) differ from the required U(1, 3)-Hitchin equations only in that the right hand
side is not constant, but instead involves a function whose average value is the required constant.
Lemma 7.22 allows us to remove this discrepancy by rescaling the metrics on V and det(V ). Indeed
if we pick a function u such that it satisfies the condition

∆(u) = t− µ

and define metrics K = Heu on V and k = heu on det(V ) then

FK
V + β̃∗K,k β̃ + γ̃γ̃∗K,k = −

√
−1µωIV

F k
det(V ) + γ̃∗K,k γ̃ + β̃β̃∗K,k = −

√
−1µω

as required.
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Conversely, suppose that V and det(V ) admit metrics K and k which satisfy the U(1, 3)-Hitchin

equations on (det(V ), V, β̃, γ̃), namely (7.13). In general k will differ from the metric induced by
K on det(V ). Denoting the latter by det(K), we can write

(7.29) k = det(K)eu

where u is a smooth function on X. Now define new metrics on V and det(V ) which are related to

K and k by the conformal factor eu/2, i.e. set

(7.30) H = Keu/2 and h = keu/2.

Notice that det(H) = det(K)e3u/2 = h, where det(H) denotes the metric induced by H on det(V ).

Moreover, since both metrics are modified by the same conformal factor, the adjoints β̃∗ and γ̃∗

are unaffected (see Lemma 7.22). By parts (3) and (4) of Lemma 7.22 and the fact that K and k
satisfy the U(1, 3)-Hitchin equations, we thus get

FH
V + β̃∗H,h β̃ + γ̃γ̃∗H,h = −

√
−1(µ − ∆(u)

2
)ωIV = −

√
−1tωIV

F h
det(V ) + γ̃∗H,h γ̃ + β̃β̃∗H,h = −

√
−1(µ − ∆(u)

2
)ω = −

√
−1tω

where t = µ − ∆(u)
2 and h = det(H). Exactly as above (see equation (7.23)-(7.28) ) we find that

these two equations combine to yield

FH
V + ββ∗H + γ∗Hγ = 0

as required. �

Corollary 7.23. Let (V, β, γ) and (det(V ), V, β̃, γ̃) be as in (7.11). Then (V, β, γ) defines a

polystable SO∗(6)-Higgs bundle if and only if (det(V ), V, β̃, γ̃) defines a polystable U(1, 3)-Higgs
bundle. Moreover, the map (7.11) defines an embedding

(7.31) Md(SO
∗(6)) →֒ Md,d(U(1, 3))

where Md,d(U(1, 3)) denotes the component in the moduli space of polystable U(1, 3)-Higgs bundles
in which the bundles both have degree d.

Proof. The first part follows immediately from Proposition 7.21 because of the Hitchin-Kobayashi
correspondence for G-Higgs bundles, i.e. Theorem 2.4. The map defined by (7.11) is clearly injec-
tive, with image given by the subvariety in which the U(1, 3)-Higgs bundles are defined by tuples
(L, V, β, γ) in which L = det(V ). �

Remark 7.24. By Proposition 3.16 the dimension of Md(SO
∗(6)) is 15(g − 1), while the dimension

of Md,d(U(1, 3)) is 16(g − 1) + 1 (see [5]). The image of the embedding given by (7.31) thus has
codimension g in Md,d(U(1, 3)).

Proposition 7.25. Let (det(V ), V, β̃, γ̃) be a U(1, 3)-Higgs bundle in which deg(V ) is even. Pick
L such that L2 = det(V ) and define maps

(7.32)
β̃L = β̃ ⊗ 1L : V ⊗ L−1 → L⊗K

γ̃L = γ̃ ⊗ 1L : L→ V ⊗ L−1 ⊗K

where 1L : L−1 → L−1 is the identity map. Then (L, V ⊗ L−1, β̃L, γ̃L) defines an SU(1, 3)-Higgs
bundle and, with the same notation as in Proposition 7.21, the following are equivalent:

(A) The bundles V and det(V ) admit metrics, say H and h, satisfying

(7.33)
FH
V + β̃∗H,h β̃ + γ̃γ̃∗H,h = −

√
−1µIV ω

F h
det(V ) + β̃β̃∗H,h + γ̃∗H,h γ̃ = −

√
−1µω .
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(B) The bundles V ⊗ L−1 and L admit metrics, say K and k, satisfying

(7.34)
FK
V⊗L−1 + (β̃L)

∗K,k(β̃L) + (γ̃L)(γ̃L)
∗K,k = 0

F k
L + (β̃L)(β̃

∗K,k

L ) + (γ̃L)
∗K,k(γ̃L) = 0.

Proof. Since L2 = det(V ) it follows that

(7.35) det(L⊕ V ⊗ L−1) = det(V )⊗ L−2 = O .

and hence (L, V ⊗ L−1, β̃L, γ̃L) defines a SU(1, 3)-Higgs bundle.
Let h0 be the Hermitian-Einstein metric on L−1, so that the curvature of the corresponding

Chern connection satisfies F h0

L =
√
−1 deg(L)ω. Given metrics H and h which satisfy (A), define

K = H ⊗ h0 on V ⊗L−1 and k = h⊗ h0 on L = det(V )⊗L−1. Conversely, given metrics K and k
which satisfy (B), define H = K ⊗ h−1

0 on V = V ⊗L−1 ⊗L and h = k⊗ h−1
0 on det(V ) = L2. �

Remark 7.26. The equations (7.34) are not exactly the SU(1, 3)-Hitchin equations. If (L,W, b, c)
is any SU(1, 3)-Higgs bundle, the Hitchin equations for metrics k and K on L and W respectively
are equivalent to the condition

(7.36)

[

FK
W + b∗K,kb+ cc∗K,k 0

0 F k
L + bb∗K,k + c∗K,kc

]

0

= 0

where [A]0 denotes the trace free part of the matrix [A]. The pair (7.34) (for the SU(1, 3)-Higgs

bundle (det(V ), V, β̃, γ̃)) is equivalent to (7.36) together with the extra condition Tr(FK
V⊗L−1)+F

k
L =

0. In fact this condition can always be achieved by a simultaneous conformal transformation of the
metrics K and k, as in (7.30). As explained above, such conformal transformations affect only the
curvature terms in the equation but do not change the trace-free parts of those terms.

Remark 7.27. By defining V = W ⊗ L, any SU(1, 3)-Higgs bundle (L,W, β, γ) can be represented

by a tuple (L, V ⊗ L−1, β̃L, γ̃L), where the Higgs fields are maps β̃L : V ⊗ L−1 → L ⊗ K and
γ̃L : L→ V ⊗ L−1 ⊗K. Notice that

• L2 = det(V ), and hence

• β̃L : V ⊗ L−1 → L⊗K defines β ∈ H0(X,V ∗ det(V )⊗K) ≃ H0(X,Λ2V ⊗K),
• γ̃L : L→ V ⊗ L−1 ⊗K defines γ ∈ H0(X,V ⊗ det(V )∗ ⊗K) ≃ H0(X,Λ2V ∗ ⊗K).

Corollary 7.28. With notation as in Remark 7.27, the map

(7.37) (L, V ⊗ L−1, β̃L, γ̃L) 7→ (L2, V, β, γ)

defines a map

(7.38) Ml(SU(1, 3)) → M2l,2l(U(1, 3)) ,

and the map

(7.39) (L, V ⊗ L−1, β̃L, γ̃L) 7→ (V, β, γ)

defines a 22g : 1 surjective map

(7.40) Ml(SU(1, 3)) → M2l(SO
∗(6)).

Here l = deg(L), τ denotes the Toledo invariant, and the notation for the moduli spaces is as in
(4) of Remark 7.20.

Proof. The tuple (L2, V, β, γ) clearly defines a U(1, 3)-Higgs bundle with deg(L2) = deg(V ) = 2l,
while remark 7.27 shows that (V, β, γ) defines a SO∗(6)-Higgs bundle. In order to show that
the given maps induces maps between the indicated moduli spaces we need to show that the
maps preserve polystability. We do this by invoking the Hitchin–Kobayashi correspondences for
SU(1, 3)-, U(1, 3)-, and SO∗(6)-Higgs bundles, i.e. we show that the map preserves the conditions
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for existence of solutions to the Hitchin equations for the Higgs bundles. Moreover, by Proposition
7.25 together with remark 7.26, (L, V ⊗ L−1, β̃L, γ̃L) admits a solution to the SU(1, 3)-Hitchin
equations if and only if (L2 = det(V ), V, β, γ) admits a solution to the U(1, 3)-Hitchin equations;
and by Proposition 7.21, (det(V ), V, β, γ) admits a solution to the U(1, 3)-Hitchin equations if and
only if (V, β, γ) admits a solution to the SO∗(6)-Hitchin equations.

Finally, take any point in M2l(SO
∗(6)), represented say by (V, β, γ). For any L such that

L2 = det(V ), the SU(1, 3)-Higgs bundles (L, V ⊗L−1, β̃L, γ̃L) is in the pre-image of (V, β, γ) under
the map. This shows that the map is surjective. The multiplicity comes from choices of square
roots of det(V ). �

In addition to the maps (7.31), (7.38), and (7.40), we have the surjective map (see [5])

(7.41)
Ml,b(U(1, 3)) → Mτ (PU(1, 3)),

(L,W, β, γ) 7→ (P(L⊕W ), β, γ),

where l = deg(L), b = deg(W ), and τ = (3l − b)/2. Conversely, any PU(1, 3)-Higgs bundle in
Mτ (PU(1, 3)) is in the image of such a map, where the degrees (l, b) are determined only up to the
Z-action (l, b) 7→ (l + k, b+ 3k). This corresponds to twisting L⊕W by a line bundle of degree k.

These maps lead to the following relations among Higgs bundles for the groups SO∗(6),SU(1, 3),
and PU(1, 3).

Proposition 7.29.

(1) The composition of maps (7.41) and (7.31) defines a surjective map

(7.42) Md(SO
∗(6)) 7→ Md(PU(1, 3)) .

Moreover a PU(1, 3)-Higgs bundle in Mτ (PU(1, 3)) is in the image of such a map if and
only if τ is an integer.

(2) The composition of maps (7.41) and (7.38) defines a surjective map

(7.43) Md(SU(1, 3)) 7→ M2d(PU(1, 3)) .

Moreover a PU(1, 3)-Higgs bundle in Mτ (PU(1, 3)) is in the image of such a map if and
only if τ is an even integer.

(3) A SO∗(6)-Higgs bundle in Md(SO
∗(6)) lies in the image of a map of the form (7.40) if and

only if d is an even integer.

Proof. (1) The map to Mτ=d(PU(1, 3)) is surjective since PU(1, 3)-Higgs bundles with τ = d lift
to U(1, 3)-Higgs bundles of the form (L,W, β, γ) with 3 deg(L) − deg(W ) = 2d (see (7.41)). After
twisting with a line bundle if necessary, we can assume that deg(L) = deg(W ) = d. Furthermore,
we can assume that L = det(W ) since if not, then twisting by a square root of det(V ) ⊗ L−1 will
make it so. The assertion that τ must be an even integer is clear from the definitions of the maps
(7.41) and (7.38).

(2) As in (1), any PU(1, 3)-Higgs bundles with τ = 4d lift to U(1, 3)-Higgs bundles of the form
(det(W ),W, β, γ). Such a Higgs bundle is in the image of (7.38) if and only if deg(det(W )) is even.
This condition is satisfied precisely when deg(W ) = 2d.

(3) This follows from the fact that the map is defined by (7.39) in which det(V ) = L2 and hence
deg(V ) = 2deg(L). �

Expressed in terms of the corresponding surface group representations, Proposition 7.29 gives
conditions under which reductive surface group representations into PU(1, 3),SO∗(6) or SU(1, 3)
lift from one group to another.

Proposition 7.30.

(1) A reductive surface group representation into PU(1, 3) lifts to a representation into SO∗(6)
if and only if the Toledo invariant of the associated PU(1, 3)-Higgs bundle is an integer.
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(2) A reductive surface group representation into PU(1, 3) lifts to a representation into SU(1, 3)
if and only if the Toledo invariant of the associated PU(1, 3)-Higgs bundle is an even integer.

(3) A reductive surface group representation into SO∗(6) lifts to a representation into SU(1, 3)
if and only if the Toledo invariant of the associated SO∗(6)-Higgs bundle is an even integer.

7.3.1. Maximal components. By Proposition 3.27, the moduli spaces Md(SO
∗(6)) are non-empty

for |d| 6 2g−2. The maximal components are thus those with |d| = 2g−2 (and these are connected
by Theorem 5.2). We discuss here only the case d = 2g−2, but the case d = −(2g−2) is analogous.

By Theorem 4.5, the moduli spaces M2g−2(SO
∗(6)) exhibit a rigidity which leads to the factor-

ization

(7.44) M2g−2(SO
∗(6)) ≃ M2g−2(SO

∗(4)) × Jac(X)

given by

(7.45) (V, β, γ) = (V⊥, β, γ)⊕ ker(γ) .

(7.46) T4 :M0(2)×Mg−1(SL(2,R)) −→ M2g−2(SO
∗(4))

given by

(7.47) (U, (K1/2, β, 1K1/2)) 7→ (U ⊗K1/2,Ω⊗ β,Ω∗ ⊗ 1K1/2) ,

where β ∈ H0(X,K2), 1K1/2 denotes the identity map on K1/2, and Ω : U∗ ≃ U is as in Lemma
7.11.

We thus get a 22g-fold covering of M2g−2(SO
∗(6))

(7.48) T6 :M0(2)×Mg−1(SL(2,R)) × Jac(X) −→ M2g−2(SO
∗(6)) .

Remark 7.31. A choice of K1/2 defines a section for the map T4 — and hence for T6 — and picks
out a Teichmüller component of Mg−1(SL(2,R)).

We get a different description of the maximal components if we exploit the embedding of
M2g−2(SO

∗(6)) in M(2g−2,2g−2)(U(1, 3)) given by Corollary 7.23:

(V, β, γ) 7→ (det(V ), V, β̃, γ̃).

As shown in [6], the component M(2g−2,2g−2)(U(1, 3)) has maximal Toledo invariant for U(1, 3)-
Higgs bundles and, moreover, this moduli space itself exhibits a rigidity. Indeed (see Theorem 3.32
in [6]) the component M(2g−2,2g−2)(U(1, 3)) factors as

(7.49) M(2g−2,2g−2)(U(1, 3)) ≃ M(2g−2,0)(U(1, 1)) ×M2g−2(2),

whereM(2g−2,0) denotes the moduli space of U(1, 1)-Higgs bundles (L,M, β, γ) with deg(L) = 2g−2
and deg(M) = 0, and Md(2) denotes the moduli space of polystable rank 2 bundles of degree d.
The factorization is given by

(7.50) (L,W, β, γ) = (L,L⊗K−1, β, 1L)⊕Q

where W = L ⊗ K−1 ⊕ Q. Notice that L = det(W ) if and only if det(Q) = K. In that case,

for any choice of K−1/2 the determinant of Q ⊗ K1/2 is trivial and we can write Q = U ⊗ K1/2

with det(U) = O. The image of the embedding of M2g−2(SO
∗(6)) in M(2g−2,2g−2)(U(1, 3)) is thus

characterized by the condition that Q = U ⊗K1/2 with det(U) = O in (7.50). We define

(7.51) MK(2) = {Q ∈M2g−2(2) | det(Q) = K}.
The Toledo invariant is maximal for M(2g−2,0)(U(1, 1)) and hence, by Proposition 3.30 in [6] we can

identify M(2g−2,0)(U(1, 1)) with the moduli space of degree zero, K2-twisted C∗-Higgs bundles7,

7Note that C∗ = GL(1,C) so a K2-twisted C∗-Higgs bundle is a pair (L, β) consisting of a line bundle L and a
section β ∈ H0(X,K2)



38 S. B. BRADLOW, O. GARCÍA-PRADA, AND P. B. GOTHEN

i.e.

(7.52)
M(2g−2,0)(U(1, 1))

≃−→ Jac(X)×H0(X,K2),

(L,M, β, γ) 7→ (L, β ◦ γ).
Putting together (7.51), (7.52) and (7.49) we thus get an identification of the image ofM2g−2(SO

∗(6))
in M(2g−2,2g−2)(U(1, 3)) as

(7.53) M2g−2(SO
∗(6)) ≃ Jac(X) ×H0(X,K2)×MK(2).

Comparing (7.48) and (7.53) we see that the two descriptions match up via the map

(U, (K1/2, β, 1), L0) −→ (L0, β,Q = U ⊗K1/2).

The fibers of this map are the 22g points of order 2 in Jac(X).

We note finally that the dimension of M±(2g−2)(SO
∗(6)) can be computed from the isomorphism

(7.44). We find dim(M±(2g−2)(SO
∗(6)) = 7g − 6 whereas the expected dimension is 15(g − 1).

Appendix A. G-Higgs bundles for other groups

We collect here some basic results about G-Higgs bundles for groups other than SO∗(2n) which
play a role in our analysis of SO∗(2n)-Higgs bundles. The groups include three complex reductive
groups (GL(n,C), SL(n,C) and SO(n,C)) and two non-compact real forms (U(p, q) and U∗(2n)).
In all cases the basic definitions of stability properties follow from the general definition formulated
for G-Higgs bundles in [15].

A.1. The groups GL(n,C),SL(n,C) and SO(n,C).
We begin by recalling how the notion of G-Higgs bundle specializes when G is a complex group.

In this case, the complexified isotropy representation is just the adjoint representation of G on g.
Thus, a G-Higgs bundle for a complex group G is a pair (E,ϕ), where E → X is a holomorphic
principal G-bundle and ϕ ∈ H0(X,AdE ⊗K); here AdE = E ×Ad g is the adjoint bundle of E.
We shall use this observation for all three groups considered in this section.

Consider first the case of G = GL(n,C). A GL(n,C)-Higgs bundle may be viewed as a pair
consisting of a rank n holomorphic vector bundle E over X and a holomorphic section

Φ ∈ H0(X,K ⊗ EndE).

We refer the reader to [15] for the general statement of the stability conditions for GL(n,C)-Higgs
bundles. The notions of (semi-,poly-)stability in this case are equivalent to the original notions
given by Hitchin in [23] (see [15]). Denote by µ(E) = deg(E)/ rk(E) the slope of E.

Proposition A.1. A GL(n,C)-Higgs bundle (E,Φ) is semistable if and only if for any subbundle
E′ ⊂ E such that Φ(E′) ⊂ E′ ⊗K we have µ(E′) 6 µ(E). Furthermore, (E,Φ) is stable if for any
nonzero and strict subbundle E′ ⊂ E such that Φ(E′) ⊂ E′ ⊗K we have µ(E′) < µ(E). Finally,
(E,Φ) is polystable if it is semistable and for each subbundle E′ ⊂ E such that Φ(E′) ⊂ E′⊗K and
µ(E′) = µ(E) there is another subbundle E′′ ⊂ E satisfying Φ(E′′) ⊂ E′′⊗K and E = E′⊕E′′. As
a consequence (E,Φ) = ⊕(Ei,Φi) where (Ei,Φi) is a stable GL(ni,C)-Higgs bundle with µ(Ei) =
µ(E).

The group SL(n,C) is the subgroup of GL(n,C) defined by the usual condition on the determi-
nant. A SL(n,C)-Higgs bundle may thus be viewed as a GL(n,C)-Higgs bundle (E,Φ) with the
extra conditions that E is endowed with a trivialization detE ≃ O and Φ ∈ H0(X,K ⊗ End0E)
where End0E denotes the bundle of traceless endomorphisms of E. The (semi-,poly-)stability
condition is the same as the one for GL(n,C)-Higgs bundles given in Proposition A.1.

Finally we consider the case G = SO(n,C). A principal SO(n,C)-bundle on X corresponds to
a rank n holomorphic orthogonal vector bundle (E,Q), where E is a rank n vector bundle and
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Q is a holomorphic section of S2E∗ whose restriction to each fibre of E is non degenerate. The
adjoint bundle can be identified with Λ2

QE ⊂ End(E), the subbundle of End(E) consisting of

endomorphisms which are skew-symmetric with respect to Q. A SO(n,C)-Higgs bundle is thus a
pair consisting of a rank n holomorphic orthogonal vector bundle (E,Q) over X and a section

Φ ∈ H0(X,Λ2
QE ⊗K).

The general notions of (semi-,poly-)stability specialize in the case of SO(n,C)-Higgs bundles to
the following (see [1, 2]).

Proposition A.2. A SO(n,C)-Higgs bundle ((E,Q),Φ) is semistable if and only if for any isotropic
subbundle E′ ⊂ E such that Φ(E′) ⊂ K⊗E′ we have degE′ 6 0. Furthermore, ((E,Q),Φ) is stable
if for any nonzero and strict isotropic subbundle 0 6= E′ ⊂ E such that Φ(E′) ⊂ K ⊗ E′ we have
degE′ < 0. Finally, ((E,Q),Φ) is polystable if it is semistable and for any nonzero and strict
isotropic subbundle E′ ⊂ E such that Φ(E′) ⊂ K ⊗ E′ and degE′ = 0 there is a coisotropic
subbundle E′′ ⊂ E such that Φ(E′′) ⊂ K ⊗ E′′ and E = E′ ⊕ E′′.

Remark A.3. Recall that if (E,Q) is an orthogonal vector bundle, a subbundle E′ ⊂ E is said to
be isotropic if the restriction of Q to E′ is identically zero, and coisotropic if E′⊥Q is isotropic.

Remark A.4. For complex groups G, Definition 2.7 implies that a G-Higgs bundle (E,ϕ) is simple if
Aut(E,ϕ) = Z(HC). For G = GL(n,C) or SL(n,C) it is well known that stability implies simplicity.
This is not so for SO(n,C)-Higgs bundles. For instance it is possible for a stable SO(n,C)-Higgs
bundle to decompose as sum of stable SO(ni,C)-Higgs bundles (with Σni = n). In all cases though,
the Higgs bundles which are stable and simple represent smooth points in their moduli spaces (see
Proposition 2.14).

A.2. The groups U(p, q) and U∗(2n).

A.2.1. U(p, q)-Higgs bundles. The maximal compact subgroups of U(p, q) are isomorphic to H =
U(p) × U(q) and hence HC = GL(p,C) × GL(q,C). The complexified isotropy representation
space is mC = Hom(Cq,Cp) ⊕ Hom(Cp,Cq). A U(p, q)-Higgs bundle may thus be described by
the data (V,W,ϕ = β + γ), where V and W are vector bundles of rank p and q, respectively,
β ∈ H0(X,Hom(W,V )⊗K) and γ ∈ H0(X,Hom(V,W )⊗K).

The following proposition gives the simplified stability conditions for U(p, q)-Higgs bundles. It
can be proved using arguments similar to the ones for other real groups (cf. Section 3.2 and [15,
Section 4]).

Proposition A.5. A U(p, q)-Higgs bundle (V,W,ϕ = β + γ) is semistable if

µ(V ′ ⊕W ′) 6 µ(V ⊕W ),

is satisfied for all ϕ-invariant pairs of subbundles V ′ ⊂ V and W ′ ⊂W , i.e. for pairs such that

β : W ′ −→ V ′ ⊗K

γ : V ′ −→W ′ ⊗K.

A U(p, q)-Higgs bundle (V,W,ϕ) is stable if the slope inequality is strict whenever V ′ ⊕W ′ is a
proper non-zero ϕ-invariant subbundle of V ⊕W .

A U(p, q)-Higgs bundle (V,W,ϕ) is polystable if it is semistable and for any ϕ-invariant pair of
subbundles V ′ ⊂ V and W ′ ⊂ W satisfying µ(V ′ ⊕W ′) = µ(V ⊕W ) there is another ϕ-invariant
pair of subbundles V ′′ ⊂ V and W ′′ ⊂ W such that V = V ′ ⊕ V ′′ and W = W ′ ⊕ W ′′. As a
consequence there is a decomposition

(V,W, β, γ) =
⊕

(Vi,Wi, βi, γi),

where V =
⊕

Vi, W =
⊕

Wi, β = Σβi, γ = Σγi and (Vi,Wi, βi, γi) is a stable U(pi, qi)-Higgs bundle
with µ(Vi ⊕Wi) = µ(V ⊕W ).
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Remark A.6. In the case q = 0, the group is U(p) and hence ϕ = 0. Thus a U(p)-Higgs bundle is an
ordinary vector bundle. Proposition A.5 shows that in this case the U(p, q)-Higgs bundles stability
condition coincides with the usual one for vector bundles.

A.2.2. U∗(2n)-Higgs bundles. The group U∗(2n) is a non-compact real form of GL(2n,C) consisting

of matrices M verifying that M̄Jn = JnM where Jn =

(

0 In
−In 0

)

. A maximal compact subgroup

of U∗(2n) is the compact symplectic group Sp(2n) (or, equivalently, the group of n×n quaternionic
unitary matrices), whose complexification is Sp(2n,C), the complex symplectic group. The group
U∗(2n) is the non-compact dual of U(2n), in the sense that the non-compact symmetric space
U∗(2n)/Sp(2n) is the dual of the compact symmetric space U(2n)/Sp(2n) in Cartan’s classification
of symmetric spaces (cf. [22]).

The corresponding Cartan decomposition of the complex Lie algebra is

gl(2n,C) = sp(2n,C)⊕mC,

where mC = {A ∈ gl(2n,C) | AtJn = JnA}. Hence a U∗(2n)-Higgs bundle over X is a pair (E,ϕ),
where E is a holomorphic Sp(2n,C)-principal bundle and the Higgs field ϕ is a global holomorphic
section of E ×Sp(2n,C) m

C ⊗K.

Given a symplectic vector bundle (W,Ω), denote by S2
ΩW the bundle of endomorphisms ξ of

W which are symmetric with respect to Ω i.e. such that Ω(ξ ·, ·) = Ω(·, ξ ·). In terms of vector
bundles, we have that a U∗(2n)-Higgs bundle over X is a triple (W,Ω, ϕ), whereW is a holomorphic
vector bundle of rank 2n, Ω ∈ H0(X,Λ2W ∗) is a symplectic form on W , and the Higgs field
ϕ ∈ H0(X,S2

ΩW ⊗K) is a K-twisted endomorphism W →W ⊗K, symmetric with respect to Ω.
Given the symplectic form Ω, we have the usual skew-symmetric isomorphism

ω :W
≃−→ W ∗

given by

ω(v) = Ω(v,−).

The map f 7→ fω−1 defines an isomorphism between S2
ΩW and Λ2W . Hence we can think of a

U∗(2n)-Higgs bundle as a triple (W,Ω, ϕ) with ϕ ∈ H0(X,S2
ΩW ⊗K) or as a triple (W,Ω, ϕ̃) with

ϕ̃ ∈ H0(X,Λ2W ⊗K) given by

(A.1) ϕ̃ = ϕω−1.

The general (semi-,poly-)stability conditions for U∗(2n)-Higgs bundles are studied in [16], where
simplified conditions (similarly to the case of other groups) are given. We have the following ([16,
Proposition 3.6]).

Proposition A.7. A U∗(2n)-Higgs bundle (W,Ω, ϕ) semistable if and only if degW ′ 6 0 for any
isotropic and ϕ-invariant subbundle W ′ ⊂W .

A U∗(2n)-Higgs bundle (W,Ω, ϕ) is stable if and only if it is semistable and degW ′ < 0 for any
isotropic and ϕ-invariant strict subbundle 0 6=W ′ ⊂W .

The U∗(2n)-Higgs bundle (W,Ω, ϕ) is polystable if and only if it is semistable and, for any
isotropic (respectively coisotropic) and ϕ-invariant strict subbundle 0 6=W ′ ⊂W such that degW ′ =
0, there is another coisotropic (respectively isotropic) and ϕ-invariant subbundle 0 6=W ′′ ⊂W such
that W ≃W ′ ⊕W ′′.
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[14] O. Garćıa-Prada, P. B. Gothen, and I. Mundet i Riera, Higgs bundles and surface group representations in the

real symplectic group, Journal of Topology, 6 (2013), 64–118.
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Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Calle Nicolás Cabrera, 13–15, 28049
Madrid, Spain

E-mail address: oscar.garcia-prada@icmat.es
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