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Abstract

The question of how many outputs are needed and where to place them in order to fully observe a

linear system has been a fundamental and challenging problem in control theory and applications

of control systems. Structural system theory combined with graph theoretic tools has provided an

efficient framework to answer this question for an equivalent class of systems, where properties

are explored based on the structure of the system that corresponds to the location of zero and non-

zero values. This approach deals well with applications to large-scale systems, where the systems’

dimension has to be taken into account. Within this framework, for a given structure of the state

matrix of a large scale linear system, a fundamental problem is the design issue of the structure

of the output matrix such that overall the system is structurally observable with the restriction that

each output be dedicated, i.e., it can only measure directly a single state variable. In the present

work, we propose a novel approach to solve that problem based on matroid theory. Further, we

make the connection of the obtained results with graph theory and consequently provide an effi-

cient solution to find a minimum number of dedicated outputs that ensures structural observability.

Moreover, we demonstrate that if we additionally impose a performance restriction given by the

systems’ generic observability index, then the problem falls in the NP-complete class. Several

examples are presented that illustrate the derived results.
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Resumo

O problema relacionado com a seleção das variáveis de saída, quantas são necessárias e onde de-

vem ser colocadas, de forma a garantir observabilidade para um dado sistema linear continua a ser

um problema fundamental e desafiante em teoria de controlo, bem como em aplicações a sistemas

de controlo. A teoria estrutural aliada a ferramentas de teoria de grafos tem proporcionado um

enquadramento eficiente para dar uma resposta adequada a esta questão quando se considera uma

classe de sistemas, em que a propriedade de observabilidade é explorada tendo em consideração

apenas a estrutura do sistema, isto é, a localização de zeros e não-zeros. Esta abordagem permite

lidar com aplicações para sistemas de grande-escala, onde a dimensão do sistema é um factor a

ter em conta. Dentro deste contexto e para uma dada estrutura da matriz de estado de um sistema

linear de grande-escala, um problema fundamental consiste em projetar a estrutura da matriz de

saída de tal forma que o sistema resultante seja estruturalmente observável, com a restrição de cada

variável de saída ser dedicada, isto é, cada variável de saída pode medir apenas uma variável de

estado. No presente trabalho, é proposta uma nova solução baseada em teoria de matróides para o

problema mencionado. De seguida, é estabelecida a conexão entre os resultados obtidos e a teoria

dos grafos e, consequentemente, é proposto um algoritmo eficiente para encontrar uma configu-

ração de tamanho mínimo de variáveis de saída dedicadas que garantem observabilidade estrutural.

Uma outra contribuição é que é demonstrado que se se impuser uma restrição de performance adi-

cional, baseada no índice genérico de observabilidade, o problema torna-se NP-completo. Vários

exemplos que ilustram os resultados obtidos são apresentados.
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Chapter 1

Introduction

Over the last few decades, mankind has been experiencing an intensive and limitless desire to
build and to control ever larger and more sophisticated systems. These systems of large-scale arise
naturally in a variety of fields like biology [1], traffic systems [2] and wireless networks [3] to
name a few. Common to the design of these systems is the question of observability and its degree,
which provides a measure of how well internal states of a system can be inferred by knowledge
of its external outputs. When designing the system’s outputs, there are mainly two aspects to take
into account. First, one needs to consider the cost that is associated with the output placement.
Typically, we would like to use the lowest possible number of outputs to ensure observability.
Secondly, consideration has to be paid to the system performance, which may depend on how fast
the outputs can effectively observe the system. In this thesis, we will focus in those two problems.

When dealing with large scale systems, some aspects have to be taken into account. Since the
dimension of the system is large, approaches that in general lead to an increase of the complexity
of analysis and design have to be avoided. For instance, the verification that a given system
is observable leads to some known numerical issues [4]. Additionally, the problem of finding
the minimum number of inputs needed to control a linear system and, by duality, the minimum
number of outputs needed to guarantee observability, has recently been shown to be an NP-hard
problem [5].

In order to cope with the aforementioned difficulties, we will rely on structural systems the-
ory which briefly consists in explore the system properties based only on the sparsity pattern, i.e,
the zero/non-zero pattern of the state space representation matrices. The study of structural sys-
tems has started with Lin [6] when he first introduced the concepts of structure and structural
controllability and provided the necessary and sufficient conditions to verify structural controlla-
bility of single-input linear systems. Later on, Shields and Pearson [7] and Glover and Silverman
[8] extended Lin’s results to multi-input linear systems. Since, within this theory, the only infor-
mation kept is the zero/non-zero pattern, various system properties can be characterized in terms
of quite simple properties of graph theory. Analysis using structural systems provides system-
theoretic guarantees that hold for almost all values of the free parameters (the non-zeros) except
for a manifold of zero Lebesgue measure [9], which may be further characterized algebraically.
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2 Introduction

Figure 1.1: A representation of a large-scale network. There are various entities (col-
ored dots) that interact with each other (represented by a black line connecting the dots).
Source:http://www.nas.ewi.tudelft.nl/people/Dajie/images/randomgraph.gif

Furthermore, since many of the properties of the system can be translated into simple graph con-
ditions, the computational burden is low and allows to deal with large-scale systems, specially if
they are sparse.

Besides structural systems analysis, research work has also been made concerning system de-
sign. Systematic approaches to structured systems based design were investigated in different
application scenarios as in [10] and [11]. In this work, we study the constrained output place-
ment problem in which the outputs are dedicated, i.e, one output can only measure a single state
variable. In [12] a similar study is carried out when the authors investigate the minimal actuator
placement problem that arises from the control of biological complex networks. One of the prob-
lems addressed in that work is the question of finding the minimum number of dedicated inputs
needed to ensure structural controllability (equivalent, by duality, to the problem studied in this
thesis). However, the results in [12] hold only for the case in which the structural directed graph
representation is strongly connected. In [13], a methodology that incurs polynomial complexity
in the number of state variables to find the minimum number of dedicated outputs is proposed.
Those results are extended in [14] where it is considered that there exists a cost associated with
placing an output to a determined state variable and where the goal is to find the minimum number
of dedicated outputs for structural observability.

In this thesis, we propose a novel way to solve the constrained output placement problem based
on matroid theory. The concept of matroid was introduced by Whitney in 1935 to try to capture ab-
stractly the essence of independence [15]. This abstraction embraces a diversity of combinatorial
structures like graphs and zero-one matrices. Furthermore, matroid theory arises naturally in com-
binatorial optimization since matroids are precisely the structures for which the greedy algorithm
works [16]. Within structural systems theory, the matroid abstraction was used by Murota [17]
and Clark [18]. The former when dealing with state space representation matrices that may con-
tain three types of entries, namely fixed zeros and nonzeros divided into free parameters and fixed
nonzero constants. The latter when demonstrating that some problems within structural systems
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can be posed within a matroid optimization framework. Structural systems analysis lies on both
graph and matrices concepts. Due to its combinatorics nature, it seems plausible to try to apply
matroid theory to solve some problems in an efficiently manner. In the present work, the con-
strained output placement problem is reformulated as a matroid intersection problem. Within this
framework, the generalization to the case where there are costs associated with the output place-
ment is straightforward as the generalization of the matroid intersection algorithm to the weighted
matroid intersection.

Within structural systems theory, some questions related with the generic observability indices
remained open as noticed in [19] and [20]. Those questions are directly related with the notion of
how fast the initial state vector is recovered for a given network and it has enormous importance,
particularly when we would like to build systems with the ability of performing real-time monitor-
ing. In [21], the structural counterpart of the observability indices are introduced. In [22], a new
methodology is proposed for the characterization and computation of the controllability indices of
structured systems. An improved upper bound of the generic observability index is given in [23]
based on graph representations. However, there is a lack of methods concerning system design
when it is imposed a performance restriction translated by the systems’ generic observability in-
dex. In this work, we show that the problem of finding a minimum dedicated output configuration
such that the generic observability index is less than some given constant falls in the NP-complete
class.

Main contributions

The main thesis contributions are summarized below.

• We propose a novel way to solve the optimal constrained output placement problem for
large-scale structural linear systems based on matroid theory.

• We make the connection of the obtained results with graph theory and consequently simplify
the complexity of the matroid intersection algorithm.

• We show that the output placement problem with generic observability index constraint is
NP-complete.

• We illustrate the derived results through several examples: a 6-node network example, a
wireless sensor application, and simulations with 100-node random networks.

• We provide alternative proofs to some well-known results.

Organization of the Dissertation

The thesis is organized as follows. In chapter 2, we briefly review some fundamental concepts
from linear systems theory after which some important results are introduced. We also present an
algorithm to test structural observability and to compute the generic dimension of the unobservable
subspace when the system is not structurally observable.



4 Introduction

In chapter 3, the main problem is formulated. Then, we introduce some tools and concepts
from matroid theory that will be applied to the main problem. Next, we reformulate our problem
as an a intersection of two matroids. Finally, a new algorithm to find a minimum dedicated output
configuration that ensures structural observability is presented.

In chapter 4, the constrained output placement with generic observability index is precisely
formulated. After, we demonstrate that this problem is NP-complete.

Finally, in chapter 5, we start by illustrating the concepts regarding matroid theory with an ex-
ample. After that, the algorithm developed in chapter 3 to find a minimum-cost feasible dedicated
output configuration is applied to a spatially distributed sensor network. In the last section, some
simulation results are presented.



Chapter 2

Structural Systems Background

This chapter starts with a review of some fundamental concepts from linear systems theory taken
from [24] and [25], after which some important results on structural systems theory from [19] are
introduced. Only our own alternative proofs are presented.

2.1 Linear Systems

In many applications, dynamical systems can be modeled by a state space representation where an
intermediate state variable is introduced in the description of the relation between the input and
output variables. In what follows, attention will be paid to discrete linear time-invariant systems
(LTI), i.e, systems that can be represented by a discrete-time linear state space model of the form

x(t +1) = Ax(t)+Bu(t), (2.1)

y(t) =Cx(t)+Du(t), (2.2)

where the signals u ∈Rm, x ∈Rn, and y ∈Rp are the input, the state and the output of the system,
respectively, and t ∈ N is the iteration instant. The first equation expresses a relation between the
input and the state and it is called the state equation, while the second one is called the output
equation.

Following our motivation, attention will be paid to the scenario where there are no input signals
affecting the system. In that case, the matrices B and D are identically zero, yielding the pair of
equations

x(t +1) = Ax(t), (2.3)

y(t) =Cx(t). (2.4)

Matrix A from (2.3) is usually referred as the state matrix whereas matrix C from (2.4) is
commonly referred as the output matrix.

5



6 Structural Systems Background

Lemma 1 (Solution of the system (2.3)-(2.4)) The solution y(t) of the system described by (2.3)-
(2.4) with initial condition x(0) ∈ Rn is given by

y(t) =CAtx(0), ∀t ∈ N. (2.5)

�

Proof By induction one easily verifies that x(t) = Atx(0). Thus, y(t) =Cx(t) =CAtx(0).

Considering the system described by the equations (2.3)-(2.4), it is sometimes desirable to
obtain the initial state vector, x(0), from the output vector values y(t), for t ∈ N. In other words,
we would like to solve (2.5) for the unknown x(0)∈Rn. Initial state vectors that cannot be obtained
in this way are called unobservable. This is formalized in the following definition.

Definition 1 (Unobservable Subspace) Given a time instant t1 ∈ N, the unobservable subspace
at t1, UO(t1), consists of all states x(0) ∈ Rn for which

CAtx(0) = 0, ∀t = 0,1, . . . , t1.

�

Having all the output vectors from t = 0 until t = t1 one can write
y(0)
y(1)

...
y(t1)

= O(t1)x(0),

where O(t1) =


C

CA
...

CAt1−1

 is called the observability matrix at time instant t1. This provides us

with an alternative way of expressing the unobservable subspace since

UO(t) = ker O(t), (2.6)

where, given M ∈ Rn×m, ker M denotes the kernel of M, i.e, ker M = {v ∈ Rm |Mv = 0}.
It is possible to notice that the unobservable subspace for iteration instants t ≥ n, where n is

the size of the square matrix A, is equal to the unobservable subspace at iteration instant n. In
order to perceive this fact, one needs the following theorem.

Theorem 1 (Cayley-Hamilton Theorem) Let M ∈ Rn×n be a square matrix, In be the identity
matrix of size n, and p(λ ) = det(λ In−M) the characteristic polynomial of M, where det is the
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determinant operator. Then

p(M) = O.

�

Since p(λ ) = ∑
n
i=0 piλ

i for suitable values of pi ∈ R, i = 0, . . . ,n with pn = 1, p(M) = 0
means that Mn = −∑

n−1
i=0 piMi. This implies that the k-th power of a matrix M ∈ Rn×n, with

k≥ n, can be expressed as a linear combination of M0, . . . ,Mn−1. Thus, it follows that ker O(t) =
ker O(n), ∀t ≥ n. This motivates the following definition.

Definition 2 (Observable System) The system described by (2.3)-(2.4) or, equivalently, the pair
(A,C) is said to be observable if and only if the unobservable subspace at iteration instant n is
composed only of the zero vector, i.e.,

UO(n) = {0}. (2.7)

�

If the system is observable, then there is no ambiguity in determining x(0) from the output
values. This is equivalent to say that ker O(n) = {0} and that rank O(n) = n. Matrix O(n) is
called the observability matrix and it is simply denoted by O . Therefore, we can compute the rank
of the observability matrix in order to test whether or not the system is observable. However, there
are other ways to test observability.

Theorem 2 (Popov-Belevitch-Hautus test for Observability) The system described by (2.3)-(2.4)
is observable if and only if

rank

([
A−λ In

C

])
= n, ∀λ ∈ C. (2.8)

�

Example 1 Consider the following LTI system:

x(t +1) =

0 0 0
1
2 1 0
1
2 1 0

x(t),

y(t) =
[
0 1 0

]
x(t),

where x(t) ∈ R3 and y(t) ∈ R. The observability matrix is given by

O =

 C
CA
CA2

=

0 1 0
1
2 1 0
1
2 1 0

 ,
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and hence we have that rank(O) = 2, which allow us to verify that the system is not observable.
Furthermore, the unobservable subspace is

UO =

0
0
a

 , ∀a ∈ R.

With the Popolov-Belevitch-Hautus (PBH) test, the same conclusions can be drawn. In fact, for
λ = 1

rank

([
A−λ In

C

])
= rank




0 0 0
1
2 1 0
1
2 1 0
0 1 0


= 2,

which is less than n = 3.

Assuming, now, that the system described by (2.3)-(2.4) is observable, it is sometimes perti-
nent knowing how many iterations one has to wait until it is possible to recover the initial state
vector x(0) from the outputs. This question is directly related with the rank of the observability
matrix.

Definition 3 (Observability Index) Given a system described by (2.3)-(2.4), let µ be the smallest
iteration instant for which the observability matrix has full rank, i.e.,

µ = min {k ∈ N | rank[O(k)] = n}. (2.9)

Integer µ is called the observability index of the system. �

Assuming that the pair (A,C) is observable, one may also assume that the matrix C has rank
equal to p (full row rank). If it were not the case, then some row of C could be written as a linear
combination of other rows and by deleting that row (i.e, the effect of that output) observability
would not be affected.

If the observability matrix O has rank n, then it has n linearly independent rows. Let ci be the
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i-th row associated with output number i, i = 1, . . . , p. Then O can be written explicitly as

O =



c1
...

cp

. . .
...
. . .

c1An−1

...
cpAn−1



,

and the search of the linearly independent rows can be performed from top to bottom. Because of
the pattern of O , once ciAk depends on its top rows, the same will happen with ciA j, for j greater
than k. This means that once a row associated with ci becomes linearly dependent from the previ-
ous ones, then all rows associated with ci thereafter are linearly dependent from the previous ones.
The number µi of linearly independent rows associated with ci in O is called the i-th observability
index. Since O has rank n, one has that

p

∑
i=1

µi = n.

The set {µ1, . . . ,µp} is called observability indices set and one can easily verify that µ =

max(µ1, . . . ,µp) is the observability index. Therefore, the shortest possible µ occurs when µ1 =

µ2 = . . .= µp while the largest one occurs when all µi except one equals one. With that in mind,
it is easy to conclude that ⌈

n
p

⌉
≤ µ ≤ n− p+1, (2.10)

where, for x ∈ R, dxe is the smallest integer not less than x.

Example 2 Consider again Example 1. Another output variable can be added in order to guar-
antee observability of the system. For instance, adding the row

[
0 0 1

]
to the matrix C, which

means that now also the third state component is measured, yields

C2 =

[
0 1 0
0 0 1

]
.

Under the PBH criteria for observability (2), it can be concluded that (A,C2) is now observable.
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In fact

rank

([
A−λ I3

C2

])
= rank




−λ 0 0

1
2 1−λ 0
1
2 1 −λ

0 1 0
0 0 1



= 3, ∀λ ∈ C,

since rows 3, 4 and 5 are linearly independent for any choice of λ .
From inequality (2.10) one may conclude that for the pair (A,C2) the observability index µ

has to be 1 or 2. Since rank(C2) = 2 < 3, the state x(0) cannot be recovered by the new output
y(0). Thus, µ 6= 1 and hence µ = 2.

2.2 Structural Systems

As it was seen in the previous section, the methods presented that deal with the state-space model
assume full knowledge of the entries of the matrices that describe the relationship between the
variables. However, because of the nature of physical systems, experience shows that there is un-
certainty and variability when someone is faced with the task of modeling these systems. Addition-
ally, in the case of large-scale systems, the order of the matrices increases rapidly and, obviously,
this increase may lead to a high computationally burden.

The study of structural systems, started with Lin [6], tries to overcome the aforementioned
difficulties. It captures the generic properties of the linear systems because it no longer pays
attention to the numerical values of the entries of the matrices A, B, C and D in the state-space
model (2.1) -(2.2). Instead, each entry is either a fixed zero or a free parameter. It is a fixed zero if
there is no relationship between the corresponding variables and a free parameter, otherwise. That
is, for any real matrix M ∈ Rn×m, one can abstract from their numerical entries and consider only
the zero/non-zero pattern.

Definition 4 Given a matrix M ∈ Rn×m its structural counterpart M̄ ∈ {0,1}n×m is the zero/one
matrix that verifies

M̄i, j = 1 if and only if Mi, j 6= 0, ∀i, j.

Another matrix M2 ∈ Rn×m is said to be admissible realization to M if both belong to the same
equivalence class [M̄] defined as

[M̄] = {M ∈ Rn×m | Mi, j = 0 if M̄i, j = 0, ∀i, j}. (2.11)

�

In order to evaluate the qualitative properties of a LTI system it will be useful to consider only
the zero/non-zero pattern of the real matrices A and C from the pair of equations (2.3)-(2.4).
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Definition 5 (Structural System) Given a linear system as in (2.3)-(2.4), the corresponding struc-
tural system is obtained by replacing the matrices A and C by their structural counterpart, i.e by
Ā and C̄, respectively. �

Example 3 Consider the LTI system given in Example 1, its structural counterpart is given by

Ā =

0 0 0
1 1 0
1 1 0

 and C̄ =
[
0 1 0

]
.

Due to their nature, the properties of structural systems can be efficiently studied under a
combinatorics framework. In fact, the system information can be visualized with a directed graph
and many of the system properties can be translated into graph conditions.

Definition 6 (Directed Graph) A directed graph or digraph D = (V ,E ) consists of a finite set
V of elements called vertices and a set E ⊆ V ×V of ordered pairs called arcs. �

Definition 7 (Structural Directed Graph Representation) For a system described by (2.3)-(2.4)
and whose structural counterpart is given by Ā ∈ {0,1}n×n and C̄ ∈ {0,1}p×n, the associated
structural directed graph representation is obtained as

D(Ā,C̄) = (X ∪Y ,EX ,X ∪EX ,Y ),

where X = {x1, . . . ,xn} and Y = {y1, . . . ,yp} are the set of the state and output vertices, respec-
tively. The arc set is the union of the following sets:

EX ,X = {(x j,xi) | Āi, j = 1, ∀i, j = 1, . . . ,n},

EX ,Y = {(x j,yi) | C̄i, j = 1, ∀ j = 1, . . . ,n, ∀i = 1, . . . , p}.

�

Notice that there is a one-to-one correspondence between the structural system and its directed
graph representation. The edges set EX ,X and EX ,Y contain all the information about matrices
Ā and C̄, respectively.

Example 4 Consider the structural system with Ā and C̄ given by

Ā =

0 1 0
1 0 1
0 1 1

 and C̄ =

[
0 0 1
1 1 0

]
.

The structural directed graph representation D(Ā,C̄) can be seen in Figure 2.1.

Structural systems theory provides a useful framework to characterize generic properties of
linear systems. A property is said to hold structurally within the same equivalence class (see



12 Structural Systems Background

Figure 2.1: A structural directed graph representation. The state vertices are represented in blue
while the output vertices are represented in red. The blue arcs belong to EX ,X while the green
ones belong to EX ,Y .

Definition 4) if it holds numerically for almost all admissible numerical realizations, i.e, if P is the
property and M̄ a structural matrix that satisfies P , then the set {M ∈ [M̄] | M does not satisfy P}
has zero Lebesgue measure [9]. To give an example, the concept of generic rank is introduced next.

Definition 8 (Generic Rank) Given any structural matrix M̄ ∈ {0,1}n×m, the generic rank is
defined as

grank(M̄) = max
M∈[M̄]

rank(M). (2.12)

�

Example 5 For

M̄ =

0 0 0
1 1 0
1 1 0

 ,

it can be concluded that grank(M̄) = 2. In fact, the admissible realization

M =

0 0 0
2 0 0
0 10 0


has rank 2 and it is impossible to have a higher rank because of the null pattern of the first row.
All admissible realizations concerning the structure of M̄ can be written in the form:

M =

0 0 0
a b 0
c d 0

 ,

with a, b, c and d ∈ R. Thus, it is possible to conclude that the realizations that do not have rank
equal to 2 lie on a proper variety of R3×3 defined by the condition ad = bc.

Since attention had been paid only to the structure of the systems, it would be important to
introduce the structural counterpart of some of the concepts presented in the previous section.
One of these concepts, observability, has an intuitive generalization.
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Definition 9 (Structural Observability) The pair (Ā,C̄), Ā ∈ {0,1}n×n, C̄ ∈ {0,1}p×n, is said to
be structurally observable if and only if there exists an admissible pair (A,C), with A ∈ [Ā] and
C ∈ [C̄], such that (A,C) is observable.

Conditions for structural observability can be stated in terms of the matrix pair (Ā,C̄). To
formulate these conditions, the following definitions introduced by Lin [6] have to be presented.

Definition 10 (Form I) The structural pair (Ā,C̄),with Ā ∈ {0,1}n×n and C̄ ∈ {0,1}p×n, is said
to be reducible or to be in form I if there exists a permutation1 matrix P such that

PT ĀP =

[
Ā11 Ā12

0 Ā22

]
and C̄P =

[
0 C̄2

]
, (2.13)

where Āi j is an ni×n j matrix for appropriate i, j = 1,2, with 0 < n1 ≤ n and n1 +n2 = n, where
C̄2 is an p×n2 matrix. �

Definition 11 (Form II) The structural pair (Ā,C̄), with Ā ∈ {0,1}n×n and C̄ ∈ {0,1}p×n, is said
to be in form II if the inequality holds

grank

([
Ā
C̄

])
< n. (2.14)

�

Example 6 Consider the structural pair

Ā =


0 1 1 0
0 0 0 1
1 0 0 0
0 1 0 1

 and C̄ =
[
0 0 0 1

]
.

Let, for instance, P be the following permutation matrix:

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Then, we have that

PT ĀP =


0 1 1 0
1 0 0 0
0 0 0 1
0 0 1 1

 and C̄P =
[
0 0 0 1

]
.

1A permutation matrix is a square zero-one matrix that has exactly one non-zero entry in each row and each column
and zeros elsewhere.
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Therefore, the pair (Ā,C̄) can be reduced to form I. On the other hand,

grank

([
Ā
C̄

])
= 4 = n,

and, therefore, the pair is not in form II.

If the pair (Ā,C̄), after a suitable permutation, can be lead to one of the previous forms, one
may conclude that that pair is not structurally observable. In fact, sufficiency also holds [6], [7]
and [8].

Theorem 3 A pair (Ā,C̄) is structurally observable if and only if it has neither form I nor form II.
�

One may verify that forms I and II are purely structural forms concerning the distribution of
zeros and ones of the pair (Ā,C̄). Thus, these forms can be translated into graph conditions. This
helps to visualize the concepts regarding structural observability. Before stating the graph criteria
that will allow us to infer about the presence or absence of structural observability, it will be useful
to introduce some definitions.

Definition 12 (Path) Let D = (V ,E ) be a directed graph. A path P is a sequence of vertices
P = v1, . . . ,vk, with k ≥ 2, such that (vi,vi+1) ∈ E , ∀i = 1, . . . ,k−1. Vertex v1 is called the root of
the path, while vk is called the tip. If there exists a path between vi and v j, this will be represented
by vi→ v j. The size of the path is defined as the number of arcs used. If there exists a path of size
k between vi and v j, this is written as vi

k−→ v j. �

Definition 13 (Elementary Path) An elementary path is a path where the vertices are all distinct.
�

Definition 14 (Cycle) A cycle is path where all the vertices are distinct except for the first one
and the last one, which coincide. �

Definition 15 The pair (Ā,C̄) is said to be output-connected if in the associated digraph D(Ā,C̄)

there exists a path from every xi ∈X to some y j ∈ Y . �

The previous definition is directly related with form I (Definition 10) by the following propo-
sition.

Proposition 1 The pair (Ā,C̄) is output-connected if and only if it is not reducible, i.e., is not in
form I. �

Proof If the pair (Ā,C̄) is not output-connected, then the set X can be written as the union of two
disjoint sets

X = X1∪X2, with X1∩X2 = /0,
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(a) digraph with a contraction. (b) digraph without contractions.

Figure 2.2: A directed graph with a) a contraction and b) with that contraction removed.

where for every xi ∈X1 it is impossible to have a path for any y j ∈ Y , ∀ j = 1, . . . , p. After an
appropriate permutation, we may assume that X1 = {x1, . . . ,xn1} and that X2 = {xn1+1, . . . ,xn},
with n1 > 0. Considering the definition of X1: (xi,y j) 6∈ E , ∀xi ∈X1, ∀y j ∈ Y . Thus, if we
write C̄ as C̄ =

[
C̄1 C̄2

]
, with C̄1 ∈ {0,1}p×n1 and C̄2 ∈ {0,1}p×n2 , for n2 = n− n1, it must be

that C̄1 = 0. At the same time: (xi,x j) 6∈ E , ∀xi ∈X1, ∀x j ∈X2. Otherwise, since there is a path
from any x j ∈X2 to some ym ∈ Y , there would exist a path from xi ∈X1 to ym (by transitivity)
contradicting our assumption about X1. Thus, Ā can be written as:

Ā =

[
Ā11 Ā12

Ā21 Ā22

]
,

where Āi j ∈ {0,1}ni×n j and it must be that Ā21 = 0. Therefore, it is possible to reduce the system
to form I.

If the system is in form I, then with similar considerations it is possible to conclude that there
exists at least one xi ∈X such that there is no path between xi and y j, ∀y j ∈Y and, therefore, the
system is not output-connected. �

While the fact that the system cannot be reduced to form I means that there must exist a path
from each state variable to some output variable, form II deals with the distribution of the non-zero
entries in the observability matrix. In order to attain full rank, it must be possible to obtain one
non-zero entry per each column in a different row of the observability matrix. This is directly
related with the following definitions.

Definition 16 (Target Set) Considering the digraph D = (V ,E ), the target set of a vertex vi is
defined as

T (vi) = {v j ∈ V | (vi,v j) ∈ E }.

The definition can be extended to a set of vertices Vi ⊆ V in the following manner:

T (Vi) =
⋃

vi∈Vi

T (vi).

�

Definition 17 (Contraction) Let D(Ā,C̄) be the digraph associated with the pair (Ā,C̄). Then,
D(Ā,C̄) is said to have a contraction if there exists Xs ⊆X such that

|T (Xs)|< |Xs| . (2.15)
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Figure 2.3: A bipartite graph B = (V1,V2,E ) where V1 = {a1,a2,a3,a4} and V2 = {b1,b2,b3,b4}.
The edges are represented in blue and red. The red ones belong to a maximal matching.

�

Example 7 Figure 2.2 illustrates the contraction concept. The digraph represented on the left has
a contraction since |T ({x1,x2})|= |{y1}|= 1. Notice, also, that

grank

([
Ā
C̄

])
=


0 0

0 0
1 1


= 1,

which is less than n = 2. On the other and, if, for instance, a self-loop is added to the state vertex
x1, the contraction is removed. Notice that now the cardinality of the target set is |T ({x1,x2})|=
|{x1,y1}|= 2 and

grank

([
Ā
C̄

])
=


1 0

0 0
1 1


= 2.

In order to establish the relationship between contractions and the form II from Definition 11,
it will be useful to introduce some concepts regarding bipartite graphs and matching theory.

Definition 18 (Bipartite Graph) A bipartite graph B=(V1,V2,E)2 is an undirected graph whose
vertex set can be partitioned into two disjoint sets, V1 and V2, such that E ⊆ {(v1,v2) | v1 ∈
V1, v2 ∈ V2}. �

Definition 19 (Matching) Considering a bipartite graph B = (V1,V2,E), a matching M is a
subset of the edge set such that every edge in M shares no vertex with any other edge in M. A
matching M is maximal if for every other matching M′, we have |M| ≥ |M′|. A matching M is said
to cover V1 (or V2) if for every v1 ∈ V1 (respectively, v2 ∈ V2) there is an edge e ∈ M such that
e = (v1,v2) for some v2 ∈ V2 (respectively, for some v1 ∈ V1). �

When dealing with matchings on bipartite graphs, a pertinent question that may arise is if
a given bipartite graph B = (V1,V2,E) possesses or not matching that covers V1 or V2. As

2The variable E will be used to denote a set of arcs, i.e, oriented pairs of vertices, whereas the variable E will be
used to note a set of edges, i.e, non-oriented pairs of vertices.
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an example, it can be seen that the bipartite graph depicted in Figure 2.3 has a matching M =

{(a1,b1),(a2,b3),(a3,b2),(a4,b4)} that covers both V1 = {a1,a2,a3,a4} and V2 = {b1,b2,b3,b4}.
The following theorem provides necessary and sufficient conditions to guarantee that a bipartite
graph B = (V1,V2,E) possesses a matching that covers V1.

Theorem 4 (Hall Marriage Theorem) Consider a bipartite graph B = (V1,V2,E) and A⊆ V1.
Let

J(A) = {v2 ∈ V2 | (v1,v2) ∈ E for some v1 ∈ A}.

Then, a matching that covers V1 exists if and only if, ∀A⊆ V1:

|A| ≤ |J(A)| . (2.16)

�

Similar to the structural directed graph representation, one can build a bipartite graph associ-
ated with the structural pair (Ā,C̄).

Definition 20 (Structural Bipartite Graph Representation) For a system described by (2.3)-
(2.4) and whose structural counterpart is given by Ā ∈ {0,1}n×n and C̄ ∈ {0,1}p×n, the asso-
ciated structural bipartite graph representation is the bipartite graph B(Ā,C̄) = (X −,X + ∪
Y ,EX −,X + ∪EX −,Y ) where X − = {x−1 , . . . ,x−n }, X + = {x+1 , . . . ,x+n } and Y = {y1, . . . ,yp}.
The set of edges is the union of the following sets:

EX −,X + = {(x−j ,x
+
i ) | Āi j = 1, ∀i, j = 1, . . . ,n},

EX −,Y = {(x−j ,yi) | C̄i j = 1, ∀ j = 1, . . . ,n,∀i = 1, . . . , p}.

�

Now, we are ready to present the graph criteria equivalent to form II (Definition 11).

Proposition 2 The directed graph D(Ā,C̄) is free of contractions if and only if the pair (Ā,C̄) is
not in form II. �

Proof In order to prove this claim, consider the bipartite graph B(Ā,C̄) associated with the struc-
tural pair (Ā,C̄) and the structural directed graph representation D(Ā,C̄). If the digraph D(Ā,C̄)

is free of contractions, then ∀Xs ⊆X −: |Xs| ≤ |T (Xs)|. Considering the bipartite graph and
the Definition 16 of target set, one may write that ∀A ⊆ V1: |A| ≤ |J(A)| with J(A) defined as
in Theorem 4. Thus, with Hall Marriage Theorem in mind, it is possible to conclude that there
exists a matching in B(Ā,C̄) that covers X −. On the other hand, the existence of that matching
tell us that it is possible to find one non-zero entry per column in different rows of the composite
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Figure 2.4: A bipartite graph representation associated with the digraph represented in Figure 2.1.
The edges that belong to the maxmimal matching are represented by dashed lines.

matrix M =

[
Ā
C̄

]
. To see that, notice that if (x−j ,x

+
i ) or (x−j ,yk) belong to the maximal matching,

then Āi j = 1 or C̄k j = 1, respectively. Since, by definition of that matching, the whole set X −

is covered, for each column of M it is possible to find one non-zero entry such that two different
non-zero entries lie on different rows. Thus, it can be concluded that grank(M) = n and, therefore,
(Ā,C̄) is not in form II.

With analogous arguments, if (Ā,C̄) is not in form II, it is possible to see that B(Ā,C̄) has
a maximal matching and, again, with Hall Marriage Theorem, one concludes that the digraph
associated is contraction-free. �

With the previous results, the sufficient and necessary conditions for structural observability
can be stated with respect to the associated digraph.

Theorem 5 Consider the pair (Ā,C̄) and its directed graph representation, D(Ā,C̄). The pair
(Ā,C̄) is structurally observable if and only if D(Ā,C̄) is output connected and free of contractions.
�

Proof The proof follows immediately from Proposition 1, Proposition 2 and Theorem 3. �

Example 8 Consider again the structural system whose directed graph representation is depicted
in Figure 2.1. It can be seen that there is a path from every state vertex to some output vertex since
(x1,y2),(x2,y2) and (x3,y1) are edges of the digraph. To check whether the system is contraction-
free, one may construct its bipartite graph depicted in Figure 2.4. Since there exist a maximal
matching that covers X −, the system is free of contractions. In fact, only output y2 is needed to
guarantee structural observability. Notice that the edges that belong to the maximal matching do
not include y1 and there is a path from x3 to y2: x3→ x2→ y2.
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Structural Observability Test

The direct correspondence between the necessary and sufficient conditions to guarantee structural
observability and graph-theoretic conditions (see Theorem 5) makes suitable the design of an algo-
rithm to check whether a given system is structurally observable or not. First, output-connectivity
has to be verified. Second, one must conclude about the presence or absence of contractions.

Definition 21 (Out-Connected Sets) Let D(Ā,C̄) = (X ∪Y ,EX ,X ∪ EX ,Y ) be the directed
graph associated with a structural system given by the pair (Ā,C̄). Then, for each output compo-
nent y j ∈ Y and k, 1≤ k ≤ n, the corresponding out-connected set Ok

j is defined as:

Ok
j = {xi ∈X | xi

p−→ y j, p≤ k}. (2.17)

�

It is straightforward to see that a structural system is output-connected if and only if the fol-
lowing equality holds: ⋃

y j∈Y
On

j = X . (2.18)

Furthermore, the definition of out-connected sets is suitable for a recursive computation, since for
every y j ∈ Y , we have

O1
j = {xi ∈X | (xi,y j) ∈ EX ,Y }, (2.19)

Ok
j = {xi ∈X | (xi,xl) ∈ EX ,X with xl ∈ Ok−1

j }∪Ok−1
j , 1 < k ≤ n. (2.20)

In order to test for the existence of contractions, one constructs the associated bipartite graph
B(Ā,C̄) = (X −,X + ∪Y ,EX −,X + ∪EX −,Y ) and seeks for a matching that covers X −. This
can be done efficiently with the Hopcroft-Karp algorithm that takes as input a bipartite graph and
produces as output a maximum matching [26]. If that maximum matching includes all the vertices
in X − = {x−1 , . . . ,x−n }, then the system is contraction-free. Otherwise, a contraction must exist.

When the system is not structurally observable, the unobservable subspace and its dimension
vary as function of the system parameters. However, as Hosoe demonstrated, the unobservable
subspace dimension takes some constant value for all but an exceptional set of the free parameters
that lie on a proper variety of zero Lebesgue measure [27].

Definition 22 (Generic Dimension the Unobservable Subspace) Given a structural pair (Ā,C̄),
the generic dimension of the corresponding unobservable subspace, denoted by dU , is defined as

dU = n−grank




C̄
C̄Ā

...
C̄Ān−1


 3, (2.21)

3For two structural matrices Ā ∈ {0,1}n×m and B̄ ∈ {0,1}m×p, the product C̄ = ĀB̄ is a structural matrix C̄ ∈
{0,1}n×p such that C̄i j = ∨m

k=1(Āik ∧ B̄k j). The operations ∨ and ∧ stand for the usual boolean operations or and and.
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(a) The structural directed graph representation.
(b) The bipartite representation excluding vertices x5
and x6 since they do not belong to the out-reachable
sets. The dashes lines represents edges that belong to
a maximum matching.

Figure 2.5: Example 9: in the left, a structural directed graph representation and, in the right, the
bipartite graph representation constructed after STEP 2 of the Algorithm 1.

where n is the size of the square matrix Ā. �

Hosoe had proved the following theorem concerning the generic dimension of the unobserv-
able subspace [27].

Theorem 6 Let dU be the generic dimension of the unobservable subspace associated with the
pair (Ā,C̄), where Ā has size n. Assuming that (Ā,C̄) is not in form I:

dU = n−grank

([
Ā
C̄

])
. (2.22)

�

If the system is in Form I (10), one has:

grank




C̄
C̄Ā

...
C̄Ān−1


= grank




C̄2

C̄2Ā22
...

C̄Ān−1
22


 , (2.23)

which means that the problem of determining dU for (Ā,C̄) reduces to the same problem for
the irreducible system (Ā22,C̄2). With this in mind, it is possible to develop an algorithm that
tests if a given system is structurally observable and, if not, returns the generic dimension of the
unobservable subspace. It starts with the computation of the out-connected sets On

j for all y j ∈Y .
Then, it constructs the system (Ā22,C̄2) by eliminating the state vertices for which there is not any
path to some output variable, i.e, the ones that do not belong to

⋃
y j∈Y On

j . Finally, it proceeds to
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the construction of the bipartite graph of the pair (Ā22,C̄2) and computes a maximum matching. If
the size n′ of that matching equals the size n of Ā, the system is structurally observable. Otherwise,
the generic dimension of the unobservable subspace is given by n−n′.

Example 9 As an example to illustrate Algorithm 1, let us consider the structural system depicted
in Figure 2.5. After the first step, the computation of the output-connected sets O6

j , for j = 1,2,
allow us to conclude that

⋃
y j∈Y

On
j = {x1,x2,x3,x4} 6= X ,

and, therefore, the system is not structurally observable because it can be reduced to form I. Thus,
hereafter we work only with the irreducible system (Ā22,C̄2) formed by the state vertices x1,x2,x3

and x4, in order to compute the generic dimension of the unobservable subspace.
The next step consists in verifying the size of the maximum matching in the bipartite graph

constituted of the previously mentioned state variables. Figure 2.5 shows a maximum matching
with three edges. Thus, the conclusion is that dU is equal to 6−3 = 3.
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ALGORITHM 1: Algorithm for checking Structural Observability
Input: D(Ā,C̄) = (X ∪Y ,EX ,X ∪EX ,Y )
Output: TRUE if the system is structurally observable; n−dU , otherwise

STEP 1

for j = 1, . . . , p do
O1

j = {xi ∈X | (xi,y j) ∈ EX ,Y }
end for
for j = 1, . . . , p do

for k = 2, . . . ,n do
Ok

j = {xi ∈X | (xi,xl) ∈ EX ,X with xl ∈ Ok−1
j }∪Ok−1

j
end for

end for
X ∗←

⋃
y j∈Y On

j

STEP 2

Construct B = (V1,V2,E):

1. V1 = {x−1 , . . . ,x−n }

2. V2 = {x+1 , . . . ,x+n ,y1, . . . ,yp}

3. E = EX −,X + ∪EX −,Y

4. EX −,X + = {(x−j ,x
+
i ) | Āi j = 1 and xi,x j ∈X ∗}

5. EX −,Y = {(x−j ,yi) | C̄i j = 1 and x j ∈X ∗}

Find a maximum matching in B with the Hopcroft-Karp algorithm. Set V M
1 ⊆ V1 to the vertices

that belong to the matching.
if
∣∣V M

1

∣∣= |X | then
STOP and return TRUE

else
STOP and return n−

∣∣V M
1

∣∣



Chapter 3

Output Selection for Structural
Observability

In the previous chapter, some fundamental tools to verify structural observability were outlined.
In this chapter, we are concerned with the design. More precisely, for a given structural pattern of
the state matrix A, the goal is to construct the structural pattern of the output matrix C so that the
resulting system is structurally observable.

3.1 Problem Statement

Consider a network of n entities. Each entity, denoted by xi with i ∈ N = {1, . . . ,n}, updates its
dynamics at each iteration instant t ∈ N according

x(t +1) = Ax(t), (3.1)

where x(t) = [x1(t) . . .xn(t)]T is the state vector and A ∈Rn×n is a weighting matrix whose entries
are not precisely known. In fact, we just consider that the structural pattern Ā ∈ {0,1}n×n is
known, which, for a network system, is the same as saying that the communication topology is
known. This means that if x j is not allowed to communicate with xi, then the entry Ai j must be
zero, otherwise can be any real value.

Since the goal is to obtain structural observability, one has to start placing output variables
according to that constraint. Hereafter, we will consider the case where each output variable y j

measures one and only one state variable xi, i.e, is a dedicated output variable. The goal is then to
choose SO ⊂X = {x1, . . . ,xn} in order to obtain an output equation

y(t) =Cx(t), (3.2)

where y ∈ Rp is the output vector with p = |SO | and C ∈ Rp×n, so that the pair (A,C) is ob-
servable. Such a dedicated assignment SO of outputs to state variables will be called a feasible
dedicate output configuration (FDOC). As in above, we will concentrate first on the design of

23
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C̄, the zero/non-zero pattern of C, whereas the design of C will be performed after. The relation
between C̄ and SO is expressed by

C̄ = ISO
n , (3.3)

where In is the identity matrix of size n×n and ISO
n consists of the rows j1, j2, . . . , jp of the identity

matrix corresponding to the state components in SO , i.e, such that SO = {x j1 ,x j2 , . . . ,x jp}.
Obviously, SO = X is always a solution to the problem described. However, in practical

applications, there exists sometimes a cost associated with measuring a state component. With
that in mind, we would like to obtain structural observability but with the cheapest dedicated
output configuration. Having said that, our main problem can be formulated precisely as follows.

Output Selection Problem: Consider the system (3.1) and let X = {x1, . . . ,xn} be the set of
state variables, Ā ∈ {0,1}n×n the structural pattern of A and C : X → R+ a given cost function.
The problem is to find efficiently, i.e., with polynomial complexity in n, a set SO , with SO ⊆X ,
that solves the following optimization problem:

min ∑
xi∈SO

C (xi) (3.4)

s.t. (Ā, ISO
n ) is structurally observable

where ISO
n is defined as in (3.3).

Particularly, if C (xi) = 1 for all xi ∈X , the problem reduces to selecting a minimum number
of state variables to be measured in order to guarantee structural observability.

3.2 A New Approach via Matroid Theory

Matroids were introduced by Whitney in 1935 as a common generalization of graphs and matrices
[15]. Nowadays, matroids play an important role in combinatorial optimization. With the advent
of modern computation, the algorithmic complexity is a key factor. It is not enough to propose
a solution to solve a determined problem, we also have to guarantee computational efficiency. It
happens that matroids are exactly those structures where the greedy algorithm [16] provides an
optimal solution. Furthermore, as Edmonds [28] discovered, a set of maximum cardinality that
belongs to the intersection of two matroids can also be computed efficiently.

Structural systems analysis lies on both graph and matrices concepts. Due to its combinatorial
nature, it seems plausible to try to apply matroid theory to solve some problems in an efficiently
manner. In what follows, we provide a brief review of the fundamental concepts and results of
matroid theory based on [29], [30], [31] and [32]. After that, our main problem (3.4) is addressed
within the matroid framework.

Matroids Background

Matroid theory is an abstraction that is suitable to deal with the concept of independence both in
graphs and in matrices. As an abstraction, it is built on some properties; not too many but enough
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to prove nontrivial statements.

Definition 23 (Matroid) A pair (S,I ) is called a matroid if S is a finite set and I is a nonempty
collection of subsets of S satisfying the following axioms:

(i) if I ∈I and J ⊆ I, then J ∈I ,

(ii) if I,J ∈I and |J|> |I|, then there exists z ∈ J \ I such that I∪{z} ∈I .

�

The set S is called the ground set. For a given matroid M = (S,I ) and a set I ⊆ S, I is called
independent if it belongs to I , and dependent otherwise. The first axiom from Definition 23
is usually called the hereditary property and the second axiom the augmentation property. It is
possible to notice the equivalence of that axiom system with another one, that will reveal useful in
proofs.

Theorem 7 ([30]) Let S be a finite set and I a nonempty collection of subsets of S satisfying
the hereditary property of Definition 23. Then, the augmentation property is equivalent to the
following:

(ii’) if I,J ∈I and |I \ J|= 1, |J \ I|= 2, then there exists z ∈ J \ I such that I∪{z} ∈I .

�

Proof It is straightforward to see that the augmentation property from Definition 23 implies con-
dition (ii’). To prove the other implication, induction will be used on |I \ J|. Let I,J ∈I be such
that |J| > |I|. Assume that |I \ J| = 0. Then, I is a proper subset of J and there exists an element
z ∈ J \ I such that I ∪{z} ⊆ J. Due to the hereditary property, this implies that I ∪{z} ∈ I , and
hence (ii) holds in this case.

Assume, now, that (ii) holds for |I \ J| ≤ k and let I and J be such that |J| > |I| and |I \ J| =
k+1. Then, there exists x ∈ I \ J and |(I \{x})\ J| = k. By applying the induction hypothesis to
I \{x} and J, we find that there exists y ∈ J \ (I \{x}) = J \ I such that (I \{x})∪{y} ∈I . Now,
|J \ ((I \{x})∪{y})|= |J \ ({y}∪ I)| and the induction hypothesis can be applied to I \{x}∪{y}
and J to conclude that there exists y′ ∈ J \ ((I \ {x})∪{y}) such that I \ {x}∪ {y}∪ {y′} ∈ I .
Finally, using condition (ii’) on I and I\{x}∪{y}∪{y′}, we conclude that I∪{y}∈I or I∪{y′}∈
I , i.e, that axiom (ii) of Definition 23 holds for |I \ J|= k+1. �

We now provide some examples of matroids.

Proposition 3 Let S be the set of column labels of a m×n matrix A over R. For a subset X of S,
let AX denote the submatrix of A consisting of those columns indexed by X. Now, let

I = {I ⊆ S | rank(AI) = |I|}. (3.5)

Then, M = (S,I ) is a matroid. �
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Figure 3.1: An undirected graph where a graphical matroid is defined. The independent sets
correspond to the subsets of the edge set that do not contain any cycle.

Proof The hereditary property is trivially verified. In order to prove the augmentation property, a
fundamental result of linear algebra will be used. Consider I,J ∈ I with |J| > |I|. If AI and AJ

have full column rank, their columns span a space of dimension |I| and |J|, respectively. Therefore,
since |J|> |I|, there must exist a column of AJ , say column j∗, that is not in the span of the columns
of AI . Thus, rank(AI∪{ j∗}) = |I∪{ j∗}|, i.e, there exists j∗ ∈ J \ I such that I∪{ j∗} ∈I . �

Definition 24 (Linear Matroid) The matroid of Proposition 3 will be called a linear matroid. �

Example 10 Consider the following matrix

M =

[
1 0 0 1 1
0 1 0 0 1

]
,

and let the columns of M be labelled from left to right with 1,2, . . . ,5. Define S = {1,2, . . . ,5} and
let I be the collection of subsets of S for which the multiset of columns labelled by I is linearly
independent. Then, I = { /0,{1},{2},{4},{5},{1,2},{1,5},{2,4},{2,5},{4,5}} and it can be
seen that the pair (E,I ) is a matroid.

Another important class of matroids that usually arise in combinatorial optimization is the
class of graphic matroids, whose independent sets are those subsets of edges which are forests, i.e,
that do not contain any cycles.

Proposition 4 Consider an undirected graph G = (V,E). Let

I = {I ⊆ E | (V, I) does not contain any cycles} .

Then, M = (E,I ) is a matroid. �

Proof The hereditary property is easily verified since if the edges in I define a forest, surely a
subset of these edges will also define a forest. To prove the augmentation property, consider
I,J ∈I such that |J \ I|= |{ j1, j2}|= 2 and |I \ J|= |{i1}|= 1 . Let us assume that I∪{ j1} and
I∪{ j2} do not belong to I . If I∪{ j1} contains a cycle C1, surely that cycle must comprise both
i1 and j1. If it was not the case, then I or J would contain a cycle contradicting our assumption that
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I,J ∈ I . The same argument applies to I ∪{ j2}, that must contain a cycle C2. From C1 and C2

and considering that i1 = (a,b) one can easily construct two distinct paths in Gs = (V, I) between
a and b. But, if there are two distinct paths in Gs, then Gs should contain a cycle, contradicting
the initial assumption that I ∈I . Thus, I∪{ j1} or I∪{ j2} have to belong to I and the second
property follows from Theorem 7. �

Definition 25 (Graphic Matroid) The matroid of Proposition 4 will be called a graphic matroid.
�

Example 11 Consider the graph G = (V,E) depicted in Figure 3.1. Let S be the edge set associ-
ated with G and I the collection of edge sets for which the corresponding subgraph contain no
cycles. Then, M = (S,I ) is a matroid. Notice that {b,c,d} and {a,e} belong to I . One easily
concludes that {a,e,b} is also independent. This illustrates the situation of the second matroid
axiom.

Finally, there is a class of matroids suitable to deal with bipartite matchings: the partition
matroid.

Proposition 5 Consider a set S that is partitioned into l disjoint sets: S1, . . . ,Sl . Let

I = {I ⊆ S | |I∩Si| ≤ ki, ∀i = 1, . . . , l},

for some given parameters ki, with ki ∈ N,∀i = 1, . . . ,n. Then, M = (S,I ) is a matroid. �

Proof The hereditary property is trivially verified. Consider I,J ∈I . If |J|> |I|, then there must
exist i such that |J∩Si| > |I∩Si| which implies that we can add any element x in (J \ I)∩ Si to I
such that I∪{x} ∈I . Therefore, the augmentation property is also verified. �

Definition 26 (Partition Matroid) The matroid of Propostion 5 will be called a partition ma-
troid. �

As matroids abstract the concept of independence, it is not surprising that the following results
arise naturally.

Definition 27 (Base) Let M = (S,I ) be a matroid. For any U ⊆ S, a subset B of U is called a
base of U if B is an inclusionwise maximally independent subset of U, i.e., B ∈I and there is no
Z ∈I with B⊂ Z ⊆U. �

It is not difficult to see that in general a base of a given set U , U ⊆ S, is not unique. However,
distinct bases have the same size. In fact, let us suppose that B1 and B2 are bases of U but with
different sizes. Without loss of generality, it may be assumed that |B2| > |B1|. But, according
to axiom (ii) of Definition 23, there exists z ∈ B2 \B1 such that B1 ∪{z} ∈ I . Moreover, since
B1 ⊆U and B2 ⊆U , surely it will happen that B1∪{z} ⊆U . That contradicts the assumption that
B1 is a base. The common size of the bases of U is called rank of U and denoted by r(U). If
U = S, then a base of S is simply called a base and the common size of all bases is called the rank
of the matroid.
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Figure 3.2: The construction given in proof of Theorem 8. The set A is a maximal independent set
of U1∩U2 and it was augmented to create the set B, a maximal independent set of U1∪U2.

Theorem 8 ([32]) Let M = (S,I ) be a matroid. Then, for every U1, U2 ⊆ S, the following holds:

(i) 0≤ r(U1)≤ |U1|,

(ii) if U1 ⊆U2, then r(U1)≤ r(U2),

(iii) r(U1)+ r(U2)≥ r(U1∪U2)+ r(U1∩U2) .

�

Proof The proof of (i) and (ii) follows from the definition of rank. To prove (iii), consider the
construction depicted in Figure 3.2. Let A⊆U1∩U2 be a maximally independent subset of U1∩U2.
Applying successively the augmentation property to A, one can obtain the subset B⊆U1∪U2 such
that A⊆ B and B is a maximal independent subset of U1∪U2. From the figure, it is easy to see that
|B∩U1|+ |B∩U2|= |B|+ |A| since the elements of A are counted twice. Since B is independent,
so it is B∩U1 and B∩U2. Further, according to (ii), r(U1)≥ |B∩U1| and r(U2)≥ |B∩U2|. Thus,
r(U1)+ r(U2)≥ |B∩U1|+ |B∩U2|= |B|+ |A|= r(U1∪U2)+ r(U1∩U2). �

The third property of Theorem 8 is called submodularity and plays an important role in vari-
ous applications of matroids. Another important property is the association of matroids with the
greedy algorithm. As the name indicates, the greedy algorithm is an algorithm that follows the
heuristic of making the locally optimal choice at each step. Although this does not work to solve
every optimization problem, it will be seen that matroids are exactly the structures for which the
algorithm provides an optimal solution.

ALGORITHM 2: Greedy algorithm for selecting the max-weight independent set of a ma-
troid

Input: A matroid M = (S,I ), with S = {1,2, . . . ,n}, and a weight function w : S→ R
Output: An independent set I∗ ∈I such that w(I∗) = maxI∈I w(I), where w(I) = ∑i∈I w(i)
Relabel the elements of the matroid so that w(1)≥ w(2)≥ . . .≥ w(n).
I∗← /0.
for i = 1, . . . ,n do

if I∗∪{i} ∈I then
I∗← I∗∪{i}.

end for Return I∗.
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Figure 3.3: An undirected graph whose edges were attributed a cost. The edges in red represent a
maximum spanning tree.

Theorem 9 ([30]) Let I be a nonempty collection of subsets of S closed under taking subsets.
Then, the pair (S,I ) is a matroid if and only if for any weight function w : S→ R+, the greedy
algorithm returns a set I ∈I of maximum weight w(I). �

Proof To show sufficiency, let M = (S,I ) be a matroid and w : S→ R+ a weight function. The
solution of Algorithm 2 will consist of a maximum weight base. Then, it suffices to show that I
is always contained in a maximum weight base. Since I∗ starts with the empty set, the desired
property holds initially. Now, to prove the induction step, assume that I∗ is contained in some
maximum weight base, B, and let y be an element in S\ I∗ with w(y) as large as possible. If y ∈ B,
then I∗∪{y} ⊆ B. If y 6∈ B, then there exists a base B′ such that I∗∪{y} ⊆ B′ and B′ ⊆ B. Thus,
there exists z∈ B\ I∗ such that B′ = B\{z}∪{y}. Since I∗∪{z} ⊆ B, I∗∪{z} ∈I and since w(y)
was chosen maximum, w(y) ≥ w(z). Thus, w(B′) ≥ w(B) and therefore B′ is a maximum weight
base that contains I∗.
To prove necessity, let us consider that the greedy algorithm leads to a maximum weigh inde-
pendent set for any weight function w : S→ R+. Condition (i) of Definition 23 is satisfied by
assumption. Let us assume that condition (ii) of Definition 23 does not hold. Thus, there are
I,J ∈I with |J|> |I| such that I∪{z} 6∈I for all z ∈ J \ I. Let k = |I| and consider the following
weight function:

w(x) =


k+2 if x ∈ I,

k+1 if x ∈ J \ I,

0, otherwise.

(3.6)

Then, in the first k iterations, it will be I∗ = I. Since, by assumption, I∪{z} 6∈I for all z ∈ J \ I,
the weight of the output w(I∗) will be k(k+ 2). Notice, however, that w(J) = |J|(k+ 1) ≥ (k+
1)(k+1)> k(k+2) = w(I), contradicting our initial assumption. �

Example 12 Consider the undirected graph G = (V,E) depicted in Figure 3.3 and a weighting
function w : E → R+. A problem that usually arises in computer science is that of finding a
maximum weighted tree, where a tree is a connected graph without cycles. Since the original
graph G is connected, the problem is equivalent to that of computing the maximum weight forest.
If we define S = E and I = {I ⊆ E | such that (V, I) do not contain any cycles}, it follows from
Proposition 4 that M = (S,I ) is a matroid. Thus, we can apply the greedy algorithm. It turns out
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that this algorithm is equivalent to Kruskal’s algorithm to compute a maximum spanning tree for
a connected weighted graph. It starts by sorting the edges by decreasing weight. Then, a edge is
added if that addition do not create a cycle.

It happens that some relevant problems within the scope of combinatorics can be expressed
as the intersection of two matroids. Let M1 = (S,I1) and M2 = (S,I2) be two matroids. The
intersection is the collection of sets I ∈I1∩I2. However it is not generally the case that (S,I1∩
I2) is a collection of independent sets of a matroid on E and therefore the greedy algorithm
cannot be applied. In spite of this, Edmonds [28] showed that there exist efficient algorithms for
the intersection of two matroids. More precisely, he showed that it is possible to find a maximum-
weight common independent set in two matroids in strongly polynomial time.

Before describing the algorithm to compute a maximum-size common independent set in two
matroids, we first describe a min-max relation that will be used to prove the optimallity of the
algorithm. First, notice that given two matroids on the same ground set, M1 = (S,I1) and M2 =

(S,I2), with rank functions r1 and r2, respectively, one may write for any I ∈ I1 ∩I2 and any
U ⊆ S

|I|= |I∩U |+ |I∩ (S\U)| ≤ r1(U)+ r2(S\U),

since, by the first axiom, I∩U and I∩S\U are both independent in I1 and I2. If the maximum
over I and the minimum over U is taken, it is possible to write the inequality:

max
I∈I1∩I2

|I| ≤min
U⊆S

[r1(U)+ r2(S\U)] .

This inequality was proved first by Edmonds [28] and is known as the Matroid Intersection Theo-
rem, stated next.

Theorem 10 (Matroid Intersection) For any two matroids M1 = (S,I1) and M2 = (S,I2) with
rank functions r1 and r2 respectively, the following equality holds:

max
I∈I1∩I2

|I|= min
U⊆S

[r1(U)+ r2(E \U)]. (3.7)

�

The previous theorem provides the upper limit in which we may stop the algorithm to compute
a maximum-size common independent set in two matroids. However, one has to know what are
the steps to follow in order to obtain the desired result. Before we present the algorithm, some
technical results concerning bipartite graphs are presented.

Lemma 2 ([31]) Let G = (V,E) be a bipartite graph with bipartition V = V1 ∪V2, V1 ∩V2 = /0,
and suppose that G has a unique matching M that includes all the vertices of V1. Then there exists
an edge e = (v1,v2) ∈M, v1 ∈V1, v2 ∈V2, such that:

(v1,v′2) 6∈ E,∀v′2 ∈V2 \{v2}.
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�

For any matroid and an independent set I, one can define a bipartite graph that expresses the
changes that can occur in I so that it remains independent as follows.

Definition 28 (Bipartite Exchange Graph) Let M = (S,I ) be a matroid and I ∈I an indepen-
dent set. Then, the bipartite exchange graph GM(I) is the bipartite graph with partition I and S\ I
such that for any y ∈ I, x ∈ S\ I,

(y,x) is an edge of GM(I) if and only if I \{y}∪{x} ∈I .

�

The following lemma states that an exchange between two independent sets implies a perfect
matching in the bipartite exchange graph.

Lemma 3 ([31]) Let M = (S,I ) be a matroid with I,J ∈ I and |I| = |J|. Let GM(I) be the
bipartite exchange graph associated with I. Then, GM(I) contains a perfect matching between
I \ J and J \ I. �

A very useful partial converse also holds.

Lemma 4 ([31]) Let M = (S,I ) be a matroid with I ∈ I and GM(I) the bipartite exchange
graph. Let J ⊆ S with |J| = |I|. If GM(I) contains a unique perfect matching between I \ J and
J \ I, then J ∈I . �

Returning to the subject of matroid intersection, a structure similar to the bipartite exchange
graph can be constructed for a pair of matroids.

Definition 29 (Bipartite Exchange Digraph) Given two matroids defined over the same ground
set, M1 = (S,I1) and M2 = (S,I2), and any I ∈ I1 ∩I2, the exchange graph DM1,M2(I) is the
directed graph with bipartition I and S\ I such that for any y ∈ I, x ∈ S\ I,

(y,x) is an arc of DM1,M2(I) if and only if I \{y}∪{x} ∈I1,

(x,y) is an arc of DM1,M2(I) if and only if I \{y}∪{x} ∈I2.

�

Relying on the previous definition, it would be of interest to construct directed paths along
the bipartite exchange digraph that would result in augmenting the number of elements of I. To
that purpose, certain vertices in S \ I are termed sources while others are the sinks. A source
(respectively, sink) of DM1,M2(I) is a vertex x ∈ S\ I such that I∪{x} ∈I1 (respectively, I∪{x} ∈
I2). A source-sink dipath is a directed path that begins in a source and ends in a sink and the
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(a) Graphical representation of matroid M1. (b) Graphical representation of matroid M2.

Figure 3.4: This figure represents two undirected graphs in correspondence with two graphical
matroids. The edges in red belong to an independent set that belongs to both matroids.

definition includes the degenerate scenario where the path contains no edges, for which the source
and the sink are the same vertex. Then, the path P will have the vertex sequence x0,y1,x1, . . . ,yn,xn

where for all i, xi ∈ S \ I, yi ∈ I, and x0 is a source whereas xn is a sink. The source-sink dipath is
said to be augmenting if I′ = I \{y1, . . . ,yn}∪{x0,x1, . . . ,xn} is in I1∩I2. Notice that if V (P) is
the set that contain the vertices that comprise the path P, then I′ can be written as I′ = I4V (P).
Finally, the following lemma makes possible the task of finding an augmenting dipath.

Lemma 5 ([31]) Let M1 = (S,I1) and M2 = (S,I2) be matroids and let I ∈ I1 ∩I2. If P is a
shortest source-sink dipath in DM1,M2(I), then it is augmenting. �

Example 13 In order illustrate Lemma 5, consider the two graphical matroids depicted in Figure
3.4. The ground set is S = {a,b,c,d,e} and let M1 = (S,I1) and M2 = (S,I2) be the graphical
matroids associated with Figure 3.4a and Figure 3.4b, respectively. Since I = {b,d} do not contain
any cycle both in Figure 3.4a and Figure 3.4b, one must have that I ∈ I1 ∩I2. With I, M1

and M2, one can construct the bipartite exchange digraph DM1,M2(I), which is represented in
Figure 3.5. The set of sources is X1 = {x ∈ S \ I | I ∪ {x} ∈ I1} = {a} while the the of sinks
is X2 = {x ∈ S \ I | I ∪ {x} ∈ I2} = {e}. If any path between a and e is considered, there is
no guarantee that this path will correspond to an augmenting one. Indeed, take the directed
path P1, whose edges are painted red and orange in Figure 3.5. Then V (P1) = {a,b,c,d,e} and
I1 = I4V (P1) = {a,c,e} that although independent in I1 it is not in I2. On the other hand,
if we take the directed path P2 whose edges are painted green and orange and that corresponds
to a shortest path between a and e, then, by Lemma 5, we know that P2 is augmenting. In fact,
V (P2) = {a,d,e} and I2 = I4V (P1) = {a,b,e}, with I2 ∈I1∩I2 and |I2|> |I| .

With the previous lemma in mind, the following algorithm to compute a maximum-cardinality
set that is independent in any given two matroids comes out.

Theorem 11 (Correctness of the Cardinality Matroid-Intersection Algorithm) Let M1 =(S,I1)

and M2 = (S,I2) be matroids. Then the Cardinality Matroid Intersection Algorithm (3) returns
an independent set I∗ ∈I1∩I2 such that |I∗| ≥ |I|, ∀I ∈I1∩I2. �
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ALGORITHM 3: Cardinality Matroid-Intersection Algorithm
Input: Matroids M1 = (S,I1) and M2 = (S,I2)
Output: An independent set I∗ ∈I1∩I2 such that |I∗| ≥ |I|, ∀I ∈I1∩I2
1:I∗← /0.
2:Construct the set X1 = {x ∈ S\ I∗ | I∗∪{x} ∈I1}.
3:Construct the set X2 = {x ∈ S\ I∗ | I∗∪{x} ∈I2}.
if DM1,M2(I

∗) has an X1−X2 path then
Take the shortest such path P. I∗← I∗4V (P). Go to 2.

else
Return I∗.

Proof Consider that when the algorithm stops it returns the set I. Since I starts to be the empty set,
attending to Lemma 5, it is easy to see that in the end I is in I1∩I2. Thus, it remains to prove that
I has indeed maximum cardinality. To that purpose, we will rely on the following construction. Let
U = {x ∈ S | there is x− y path in DM1,M2(I), where y ∈ X2}. Taking into account the definition
of U and considering that there is no directed path between X1 and X2, one easily verifies that
U ∩X1 = /0, X2 ⊆ U and there is no arc entering U (see Figure 3.6). First, we will show that
r1(U) ≤ |I∩U |, where r1 is the rank function associated with M1. If r1(U) > |I∩U |, then there
exists x ∈ U \ I such that (I ∩U)∪ {x} ∈ I1. It must be that I ∩ {x} 6∈ I1, since x is not in
X1. Therefore, there must exist y ∈ I \U with I \ {y}∩{x} ∈ I1. Nevertheless, by definition of
DM1,M2(I), there is an arc from y to x, contradicting the fact that no arc enters U . In a similar
manner, it is possible to prove that r2(S\U)≤ |S\U |. Thus

|I|= |I∩U |+ |I∩ (S\U)| ≥ r1(U)+ r2(S\U),

and by Theorem 10 it is easy to see that I is a maximum-cardinality independent set resulting from
the intersection of the two matroids. �

Notice that the algorithm has polynomial complexity provided that the time required to test
if a given set I belongs (or not) to M1 or M2 is a polynomial function in the size of I. That is,
for matroids M1 and M2 there must exist a subroutine to test whether or not a set of elements is
independent. That subroutine is commonly referred as an independence oracle.

Figure 3.5: A bipartite exchange digraph associated with M1, M2 and I as defined in Example 13.
The vertex a is the only source whereas vertex e is the only sink. The directed path whose arcs are
in green and orange represent a shortest source-sink path.



34 Output Selection for Structural Observability

Figure 3.6: This figure depicts the construction of a set U with the conditions described in the
proof of Theorem 11.

Example 14 (Bipartite Matching) Let B = (V1,V2,E) be a bipartite graph. First, we note that
matchings in a bipartite graph do not form a matroid because in general the second axiom is not
verified. However, matchings can be regarded as an intersection of two matroids. For a given
vertex x ∈ V1, define σ(x) as the set of edges incident to x, i.e, σ(x) = {e ∈ E | there exists y ∈
V2 with e = (x,y)}. Then, E can be partitioned as E =

⋃
x∈V1

σ(x). This forms a partition since all
edges have precisely one endpoint in V1. Thus, we can define

I1 = {I ⊆ E | |I∩σ(x)| ≤ 1 , ∀x ∈V1}.

By Proposition 5, we know that M1 = (E,I1) is a partition matroid. Notice that a set of edges is
independent in M1 if it has at most one edge incident to every vertex in V1. In a similar fashion,
we can define

I2 = {I ⊆ E | |I∩σ(x)| ≤ 1 , ∀x ∈V2},

and construct another matroid M2 = (E,I2). Then, it can be concluded that I ∈I1∩I2 if and
only if I corresponds to a matching in B. Therefore, in order to compute a maximum matching,
one can resort to the matroid intersection algorithm.

We will consider now the weighted matroid intersection problem. Let M1 = (S,I1) and M2 =

(S,I2) be two matroids and let w : S→ R+ be a weight function. Suppose that we would like
to find an independent set I ∈ I1∩I2 with maximum weight. It turns out that Algorithm 3 can
be generalized in a straightforward fashion to the weighted case, where the only difference is in
finding the shortest source-sink directed path P. In computing P, one assigns weights to each
vertex x ∈DM1,M2(I) as w(x) if x ∈I and−w(x) when x 6∈I . Then, P should have the minimum
number of arcs among all the minimum length X1−X2 directed paths. The correctness of the
algorithm will not be demonstrated here. It can be found in [30].

3.3 The Solution of the Output Selection Problem

In this section, the solution to the Output Selection Problem (3.4) is presented. The key idea is to
formulate the problem as the intersection of two matroids, such that the necessary and sufficient
conditions of Theorem 5 to guarantee structural observability hold. That is, two matroids will
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be constructed over the set of the state variables: one to guarantee output-connectivity (cf. Def-
inition 15); and another one to guarantee that the resulting structural pair is free of contractions
(cf. Definition 17). Then, we will demonstrate that if dedicated outputs are assigned to the state
variables in SO , with SO ⊆X , then that assignment leads to structural observability if and only
if the set X \SO belongs to the intersection of that two matroids. Thus, the matroid intersection
algorithm can be applied to obtain a maximum-cardinality independent set I∗ that lies in the in-
tersection of the two matroids. Finally, X \ I∗ will correspond to a minimum feasible dedicated
output configuration.

Initially, attention will be devoted to the particular instance of the problem, when the cost func-
tion associated with the output placement is uniform. That is, the problem of finding the minimum
number and the corresponding location of outputs to attain structural observability. The general-
ization to the scenario where the cost function takes different values according to the specific out-
put follows from the generalization of Algorithm 3 to the problem of finding a maximum-weight
common independent set in two matroids.

In the previous chapter, the necessary and sufficient conditions to guarantee structural ob-
servability were outlined in correspondence to graph criteria (see Theorem 5). Briefly, the pair
(Ā,C̄) is structurally observable if and only if the directed graph representation D(Ā,C̄) is output-
connected (cf. Definition 15) and free of contractions (cf. Definition 17). With the structural
matrix Ā ∈ {0,1}n×n, one can associate the directed graph D(Ā) = (X ,EX ,X ), where X is the
set of the state variables and EX ,X = {(x j,xi) | Āi j = 1} describes the relations among them. Con-
sidering two sets X1 and X2, X1,X2 ⊆X , the set X1 is said to be completely connected to X2 if for
all xi ∈ X1 there exists a directed path from xi to some x j ∈ X2. This is denoted by X1

CC−→ X2.

Proposition 6 Let Ā ∈ {0,1}n×n be the structural pattern of some state matrix A and D(Ā) =
(X ,EX ,X ) its associated directed graph. Let OC = {I ⊆X | I CC−→X \ I}. Then, M = (X ,OC)

is a matroid. �

Proof The hereditary property is trivially verified. In order to prove the augmentation property,
consider I,J ∈OC such that |J|> |I|. Let xi ∈ J \ I. Since xi ∈ J, there exists at least one x j ∈X \J
such that there is a directed path from xi to x j. Now, there are two possibilities. If x j 6∈ I, then
we can add xi to I since x j remaining outside I will guarantee the path from xi to x j. On the other
hand, if x j ∈ I, then there exists another xk ∈X \ I such that x j→ xk and since xi→ x j, it must be
by transitivity that xi→ xk. Thus, I∪{xi} ∈ OC and the proposition is proved. �

Definition 30 (Output-Connected Matroid) The matroid of Proposition 6 will be referred as the
output-connected matroid associated with the structural state matrix Ā. �

Example 15 Consider the directed graph representation of a matrix Ā ∈ {0,1}4×4, depicted in
Figure 3.7, and whose vertex set is X = {x1,x2,x3,x4,x5}. Let OC = {I ⊆X | I CC−→X \ I}
be the collection of independent sets of the associated output-connected matroid. Notice that x2

cannot belong to any I ∈OC, because there is no state variable xi ∈X , with i 6= 2, such that there
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Figure 3.7: A structural directed graph representation associated with an output-connected matroid
M = (X ,OC) where OC = {I ⊆X | I CC−→X \ I}.

exists a directed path from x2 to xi. Furthermore, we may write OC as OC = {{x1}}∪ {XS ⊆
{x3,x4,x5} | |XS| ≤ 2}.

Another necessary condition to satisfy structural observability is that the directed graph D(Ā,C̄)

associated with the system must be free of contractions. Similar to the construction given in
Definition 20, one can associate with Ā the bipartite graph B(Ā) = (X ,X +,EX ,X +), where
X = {x1, . . . ,xn}, X + = {x+1 , . . . ,x+n } and EX ,X + = {(x j,x+i ) | Āi j = 1}.

Proposition 7 Let Ā ∈ {0,1}n×n be the structural pattern of some state matrix A and B(Ā) =
(X ,X +,EX ,X +) the associated bipartite graph. Let CF be the collection of subsets I of X for
which there exists a matching in B(Ā) that covers I. Then, M = (X ,CF) is a matroid. �

Proof Consider that I ∈ CF . Then, for every subset J of I there is also a matching that covers
J and therefore J ∈ CF . In order to prove the augmentation property, consider Theorem 7. Let
I,J ∈ CF with |J \ I|= 2 and |I \ J|= 1. We will apply induction on |I| to prove that there always
exists xi ∈ J\ I such that I∪{xi} ∈CF . For the basis, let I \J = I = {xα}. Since I ∈CF , there exists
an edge (xα ,x+α2

) for some α2 ∈ {1, . . . ,n}. Similarly, let J \ I = J = {xβ ,xγ}. Since J ∈ CF , there
must exist edges (xβ ,x

+
β2
) and (xγ ,x+γ2

) for appropriate β2,γ2 ∈ {1, . . . ,n} with β2 6= γ2. Notice that
α 6= β and α 6= γ . Considering, for instance, that β2 might be equal to α2 it is always possible to
add the edge (xγ ,x+γ2

) to the matching MI that covered I. Therefore, I ∪{xγ} ∈ CF . On the other
hand, if γ2 = α2, then I∪{xβ} must belong to CF . Finally, if both β2 and γ2 are different from α2,
then it is possible to add either {xβ} or {xγ} so that the augmented I remains independent.

For the inductive step, let |I|= k with k > 1. Then J is comprised of k+2 elements and again
we can consider that I \ J = {xα}, for α ∈ {1, . . . ,n}, with (xα ,x+α2

) an edge of the matching that
covers I. Let us take an edge (xβ ,x

+
β2
) from the matching MJ that covers J such that xβ ∈ J \ I

and x+
β2
6= x+α2

. Notice that such an edge must always exist since, by hypothesis, |J \ I| > |I \ J|.
The vertex x+

β2
may be covered or not by the matching of I. If x+

β2
is not covered, then surely

I∪{xβ} ∈ CF . On the other hand, if x+
β2

is covered by MI , then there exists an edge (xi,x+β2
) ∈MI

with xi ∈ I∩ J. Build the sets I′ = I \{xi} and J′ = J \{xβ} and remove the vertex x+
β2

from X +.
Then, |I′|= k−1 and |I′ \ J′|= 1 while |J′ \ I′|= 2. Thus, by the induction hypothesis, there must
exist x j ∈ J′ \ I′ such that I′ ∪{x j} ∈ CF . Notice that x j is either xi or xγ , where xγ is the other
element of J \ I. In the first case, we can add xβ to I′∪{xi}= I and we have I∪{xβ} ∈ CF . In the
second case, we can simply add xi to I′∪{xγ} and, therefore I∪{xγ} ∈ CF . �
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Definition 31 (Contraction-free Matroid) The matroid of Proposition 7 will be referred as the
contraction-free matroid associated with the structural state matrix Ā. �

According to the Output Selection Problem (3.4), an appropriate subset of state variables,
SO ⊆X , has to be selected in order to achieve structural observability. Remember that the output
configuration is dedicated. Thus, if SO = {x j1 , . . . ,x jp} then the matrix C̄ can be written as ISO

n

where the latter is the identity matrix of order n but only with rows j1, . . . , jp. Following the
results from Proposition 6 and Proposition 7, one can obtain the following.

Theorem 12 Let Ā∈ {0,1}n×n be the structural pattern of some state matrix A, X = {x1, . . . ,xn}
the set of state variables and SO ⊆ X a given dedicated output configuration. Additionally,
let M1 = (X ,OC) and M2 = (X ,CF) be the output-connected and contraction-free matroids,
respectively, associated with Ā. Then, the pair (Ā, ISO

n ) is structurally observable if and only if

X \SO ∈ OC ∩CF .

�

Proof Let SO = {x j1 , . . . ,x jp} be the dedicated output configuration. According to Theorem 5
the pair (Ā, ISO

n ) is structurally observable if and only if the directed graph D(Ā, ISO
n ) is output-

connected and free of contractions. Since outputs are placed in the state variables that belong
to SO , obviously there is always a directed path between any xi ∈ SO and some output vertex,
that is comprised of a single arc. Thus, testing for output-connectivity is restricted to the set
X \SO , which has to belong to OC such that the pair (Ā, ISO

n ) be output-connected. Regarding the
contraction condition, note that as it was seen in Proposition 2, the system is free of contractions
if and only if there exists a matching in the bipartite graph B(Ā,C̄) = (X −,X +∪Y ,EX −,X + ∪
EX −,Y ) that covers X −. In order to maintain the previously used notation, relabel each x−i ∈X −

to xi. Since C̄ = ISO
n , for any xi ∈ SO there is one and only one y j in Y such that (xi,y j) ∈

EX −,Y . Thus, xi can always be covered by the edge (xi,y j) and the existence of a matching that
covers X is equivalent to the existence of a matching in B(Ā) that covers the state variables in
X \ SO . Therefore, X \ SO must belong to CF . Notice that, by similar arguments, if X \ SO ∈
OC ∩CF , then we conclude that the pair (Ā, ISO

n ) is at the same time output-connected and free of
contractions. Therefore, by Theorem 5, the pair (Ā, ISO

n ) is structurally observable. �

With the previous theorem, all the feasible (in the sense that the system is structurally observ-
able) dedicated output configurations can be written as the intersection of two matroids. Algo-
rithm 4 and Algorithm 5 describe independence oracles associated with the output-connected and
contraction-free matroids, respectively.

At this point we are ready to solve the problem of, given the structural pattern Ā ∈ {0,1}n×n

of some state matrix A, find the minimum number of outputs and where to place them in order to
achieve structural observability. The idea is to apply the matroid intersection algorithm (Algorithm
3) to M1 = (X ,OC) and M2 = (X ,OF) and the returned value will be a set I∗ ∈ OC ∩CF of
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ALGORITHM 4: Independence Oracle for output-connected matroid M1 = (X ,OC)

Input: Matrix Ā ∈ {0,1}n×n and the set I, with I ⊆X = {x1, . . . ,xn}
Output: TRUE if I ∈ OC; FALSE, otherwise
Let X \ I = {xi1 , . . . ,xip}.
for j = 1, . . . , p do

O1
j = {xk ∈X | Āk,i j = 1}

end for
for j = 1, . . . , p do

for l = 1, . . . ,n−1 do
O l

j = {xk ∈X | Āk,r = 1 with xr ∈ O l−1
j }∪O l−1

j
end for

end for
if ∪1≤ j≤pO

n−1
j = I then

Return TRUE.
else

Return FALSE.

ALGORITHM 5: Independence Oracle for contraction-free matroid M2 = (X ,CF)

Input: Matrix Ā ∈ {0,1}n×n and the set I, with I ⊆X = {x1, . . . ,xn}
Output: TRUE if I ∈ CF ; FALSE, otherwise
Construct B = (I,X +,EI,X +):

1. X + = {x+1 , . . . ,x+n }

2. EI,X + = {(x j,x+i ) | Āi j = 1,∀x+i ∈X +,∀x j ∈ I}

Find a maximum matching in B with the Hopcroft-Karp algorithm. Let IM ⊆ I be the vertices that
belong to the matching.
if IM = I then

Return TRUE.
else

Return False.
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Figure 3.8: Example 16: a directed graph in which the weighted matroid intersection algorithm is
applied. The cost of placing an output in x1,x2 and x3 is 1,3 and 1, respectively.

maximum-cardinality. Since, by Theorem 12, SO ⊆X is a feasible solution if and only if X \
SO ∈ OC ∩CF , then a minimal feasible dedicated output configuration (FDOC) is surely X \
I∗. Furthermore, since the subroutines to test for independence in M1 (Algorithm 4) and M2

(Algorithm 5) have polynomial complexity, the overall algorithm is polynomial in time.

Corollary 1 Let Ā∈{0,1}n×n be the structural pattern of some state matrix A and X = {x1, . . . ,xn}
be the set of state variables. A minimal possible feasible dedicated output configuration SO ⊆X

to achieve structural observability can be found in polynomial time. �

Proof The correctness of the solution follows directly from Theorem 12 and Theorem 11. The
polynomial time complexity is consequence of the polynomial algorithms Algorithm 4 and Algo-
rithm 5. �

When there are costs associated with the output allocation, we just have to apply the weighted-
matroid intersection algorithm to the output-connected matroid M1 =(X ,OC) and the contraction-
free matroid M2 = (X ,CF). With similar arguments as the ones stated before, we can build a
feasible dedicated output configuration of minimum cost SO with SO = X \ I∗, where I∗ is a
maximum-weighted independent set in OC and CF .

Example 16 Let Ā ∈ {0,1}n×n be a structural matrix whose directed graph D(Ā) = (X ,EX ,X )

is depicted in Figure 3.8. Consider the problem of finding the minimum-cost feasible dedicated
output configuration, SO ⊆X , where the cost of placing an output in x1,x2 and x3 is 1,3 and 1,
respectively. The output-connected matroid M1 = (X ,OC) has a collection of independent sets
given by OC = { /0,{x1},{x2},{x3},{x1,x3},{x2,x3}}. It can be seen that all the independent sets
of OC belong to CF except the set {x2,x3}, where M2 = (X ,CF) is the contraction-free matroid.
Thus, OC∩CF = { /0,{x1},{x2},{x3},{x1,x3}} and the set I1 = {x1,x3} is a maximum-cardinality
set in OC∩CF , whereas the set I2 = {x2} is a maximum-weight set in OC∩CF . Therefore, X \I1 =

{x2} is a minimum feasible dedicated output configuration and X \ I2 = {x1,x3} is a feasible
dedicated output configuration of minimum cost.
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3.4 Interpreting the Matroid Intersection Algorithm for Output Se-
lection

Even though the matroid intersection algorithm (Algorithm 3) has polynomial time, for some cases
it can be simplified to reduce the overall complexity. For instance, in Example 14, the problem of
finding a maximum matching in a bipartite graph was reduced to the matroid intersection problem.
If we study carefully that algorithm when applied to the bipartite matching, it can be seen that
some steps can be simplified and the result will be a more efficient procedure to find a maximum
matching. In this subsection, a similar analysis will be performed on Algorithm 3 when applied to
the output-connected (Proposition 6) and contraction-free (Proposition 7) matroids.

The output-connected matroid deals with the presence of directed paths between vertices of a
given directed graph. Problems involving connectivity in a directed graph can be greatly simplified
by partitioning that graph into subgraphs with special properties. Within structural systems theory,
that decomposition is frequently used when dealing with structural observability [13]. Before we
pursue, we first present some useful notions from graph theory.

Definition 32 Let D = (V ,E ) be a directed graph. For any two vertices, vi, v j ∈ V , we say that
vi ∼ v j, i.e., that vi is equivalent to v j, if and only if there is a directed path from vi to v j and a
directed path from v j to vi. �

Notice that the previously defined relation is an equivalence relation. More precisely, it sat-
isfies the following three properties: for any vi ∈ V , vi ∼ vi (consider a directed path of zero
length). Symmetry also holds, directly from the definition, and it is straightforward to see that,
for vi,v j,vk ∈ V , if vi ∼ v j and v j ∼ vk, then vi ∼ vk (transitivity). Furthermore, it is possible to
partition V into equivalence classes, under the defined equivalence relation. If D = (V ,E ) is
strongly connected, i.e, every vertex in V is reachable from every other vertex, there will be only
one equivalence class, V . Each equivalence class will be called a strong connected component
(SCC).

Definition 33 (Strong Connected Component (SCC)) Let D = (V ,E ) be a directed graph. For
Vs⊆V , a subgraph Ds =(Vs,(Vs×Vs)∩E ) is a strong connected component of D if it is strongly
connected and there are no two vertices vi ∈ Vs and v j 6∈ Vs such that vi ∼ v j. �

Notice that the equivalence classes under ∼ and the strong connected components are equiva-
lent concepts. Furthermore, they induce a partition in the original digraph.

Definition 34 (Condensation) Let D = (V ,E ) be a directed graph and let {V1, . . . ,VN} be the
strong connected components of D . Define

V ∗ = {Vi | Vi is a SCC },

E ∗ = {(V j,Vi) | i 6= j and ∃v j ∈ V j,vi ∈ Vi such that (v j,vi) ∈ E }.

The digraph D∗ = (V ∗,E ∗) is called the condensation of D . �
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(a) a directed graph (b) a condensation.

Figure 3.9: A directed graph in a) and the associated condensation in b). The red circles are the
SCCs.

Example 17 Consider the directed graph D depicted in Figure 3.9 a), whose vertex set is V =

{v1,v2,v3,v4}. Since v1 ∼ v2 and v3 ∼ v4, the strong connected components are V ∗1 = {v3,v4} and
V ∗2 = {v1,v2}. Notice, for instance, that (v4,v1) is an arc of D . Therefore, (V ∗1 ,V

∗
2 ) is an arc of

the condensation of D , whose representation is given in Figure 3.9 b).

Theorem 13 Given any directed graph D = (V ,E ), its associated condensation D∗ is acyclic. �

Proof Suppose that there is a cycle in D∗ = (V ∗,E ∗). Then, there must exist Vi, V j ∈ V ∗ such
that there is a directed path from Vi to V j and a directed path from V j to Vi. By definition of D∗,
we know that exist vi1 ,vi2 ∈ Vi and v j1 ,v j2 ∈ V j such that vi1→ v j1 and v j2→ vi2 . But since vi1 ∼ vi2

and v j1 ∼ v j2 , it must be that v j1 → vi1 . Thus, vi1 ∼ v j1 contradicting the fact that vi1 and v j1 belong
to distinct SCC’s. �

The properties of the condensation digraph are well-suited to the study of connectivity in
directed graphs. In particular, from a structural directed graph, one can efficiently construct the
associated condensation using a depth-first search algorithm [33]. In fact, that condensation can
be applied only to the directed graph representation of the structural system matrix Ā ∈ {0,1}n×n.
Notice that for each output variable yi ∈ Y , the possible arcs are (xk,yi) with xk ∈X . Therefore,
each yi ∈ Y is a strong connected component.

Theorem 14 Let (Ā,C̄) be a structural pair and D(Ā,C̄) = (X ∪Y ,EX ,X ∪ EX ,Y ) its asso-
ciated directed graph representation. The digraph D(Ā,C̄) is output-connected if and only if its
condensation D∗ = (X ∗∪Y ∗,E ∗X ∗,X ∗ ∪E ∗X ∗,Y ∗) is output-connected. �

Proof If D∗ is output-connected, then for any Xk ∈X ∗ there must exist some Yj ∈ Y ∗ such that
Xi→Yj. Then, by definition of condensation, for every xi ∈Xk there exist a directed path to y j ∈Yj.
Therefore, D(Ā,C̄) is output-connected.

If D∗ is not output-connected, there must exist at least one Xi ∈X ∗ such that there is no path
from Xi to every Yj ∈ Y ∗. Therefore, by definition of condensation, no xk ∈Xi can reach an
y j ∈ Y and D is not output-connected. �
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Figure 3.10: A representation of a condensation of some structural directed graph. The circles
represent the strong connected components, where the green ones are non-bottom linked SCC’s.

With the previously presented tools in mind, one can perceive in a better way the structure of
the independent sets of the output-connected matroid M = (X ,OC). Let us recall that for a given
directed graph D(Ā) = (X ,EX ,X ), the collection of independent sets of the output-connected
matroid was defined as OC = {I ⊆ X | I CC−→ X \ I} (Proposition 7). In other words, I is an
independent set if it is possible to have a directed path in D(Ā) for each state variable in I to some
vertex that does not belong to I. Considering the condensation of D(Ā), the state variables set can
be partitioned into strong connected components

X = ∪k
i=1Xi,

where Xi∩X j = /0, for i 6= j. A SCC without outgoing arcs is usually denoted in literature, see
for instance [13], as a non-bottom linked SCC, i.e, Xi is a non-bottom linked SCC if (Xi,X j) 6∈
E ∗,∀X j ∈X ∗ (see Figure 3.10).

Proposition 8 Let D(Ā) = (X ,EX ,X ) be a structural directed graph representation for some
structural state matrix Ā ∈ {0,1}n×n. Additionally, let D∗ = (X ∗,E ∗X ∗,X ∗) be its associated
condensation digraph and M = (X ,OC) the output-connected matroid of Ā. Then, for I ⊆X , I
belongs to OC if and only if

|I∩Xi|< |Xi| , (3.8)

for all Xi ∈X ∗ such that Xi is a non-bottom linked SCC. �

Proof Let I ∈ OC and assume that there is some non-bottom linked SCC Xk such that Xk ⊆ I.
By definition of OC, for any xi ∈ I, there exists a directed path to some x j ∈X \ I. Take xi ∈Xk.
Notice that it is impossible to have a path from xi to another state variable in X \I, since xi belongs
to a non-bottom linked SCC Xk and the other state variables that might belong to the same SCC
are contained in I. This is a contradiction with the fact that I ∈ OC. Thus, I ∈ OC implies (3.8).
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On the other hand, let us take some I such that (3.8) is satisfied. Suppose that I 6∈ OC. Then,
there exists some variable xi ∈ I such that there is no path from xi to any x j 6∈ I. If xi is in a non-
bottom linked SCC Xk, then |Xk| ≥ 2 and surely there is another x j ∈Xk, with x j 6∈ I, such that
xi → x j what contradicts the initial assumption that I 6∈ OC. On the other hand, consider that xi

belongs to a SCC, other than a non-bottom linked SCC. Notice that, by definition of non-bottom
linked SCC, it is always possible to have a path from any xi ∈X , such that xi is not in a non-
bottom linked SCC, to some x j ∈X , with x j contained in a non-bottom linked SCC. Therefore,
since (3.8) is satisfied, we have again a contradiction. �

ALGORITHM 6: Minimum Sensor Selection for Structural Observability
Input: Directed graph D(Ā) = (X ,EX ,X ) associated with a structural state matrix Ā ∈ {0,1}n×n

Output: A minimum-size feasible dedicated output configuration SO ⊆X

STEP 1: Compute the condensation of D(Ā)

Build the condensation of D(Ā). Let D∗ = (X ∗,EX ∗,X ∗) be that condensation.

STEP 2: Find the non-bottom linked SCCs in D∗

SCCnBottom← /0
for j = 1, . . . , |X ∗| do

if outdegree(X j) = 0 then
SCCnBottom←X j

STEP 3: Build the weighted bipartite graph

Construct B = (V1,V2,E) and a weight function w : E→ N

1. V1 = {x1, . . . ,xn}

2. V2 = {x+1 , . . . ,x+n ,z∗1, . . . ,z∗i|SCCnBottom|
}

3. E = EX ,X + ∪EX ,Z∗

4. EX ,X + = {(x j,x+i ) | Āi j = 1}

5. EX ,Z∗ = {(xi,z∗j) such that xi belongs to the non-bottom linked SCC X j}

6. w(e) = 1 if e ∈ EX ,X +

7. w(e) = n+1 if e ∈ EX ,Z∗

STEP 4: Find a maximum-weight matching

1. Find a maximum-weight matching Mw in B

2. Set VM ⊆ V1 to the vertices covered by the matching

3. VM ←VM \{xi ∈X | (xi,z∗j) ∈Mw}

4. Return X \VM
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With the previous proposition, an efficient algorithm (see Algorithm 6) to find a maximum-
cardinality set that is independent in both the output-connected and contraction-free matroids can
be constructed. Recall that a set I ⊆ X belongs to the collection of independent sets of the
contraction-free matroid M2 = (X ,CF) if there exists a matching in B(Ā) = (X ,X +,EX ,X +)

that covers I. At the same time, we have to guarantee that I belongs to OC where OC is the
collection of independent sets of the output-connected matroid, which is equivalent to say that at
least one state variable per non-bottom SCC is left out of I (Proposition 8).

With the previously considerations in mind, we can construct the following bipartite graph.
Let B(Ā) = (X ,X +,EX ,X +) be the bipartite graph associated with Ā and let {X1, . . . ,Xk} be
the set of the the non-bottom SCCs resulting from the condensation of D(Ā). For each non-bottom
SCC Xi, we will introduce in B a dummy variable z∗i . Hereafter, we will consider the extended
bipartite graph B∗(Ā) = (X ,X + ∪Z∗,EX ,X + ∪EX ,Z∗) where Z∗ = {z∗1, . . . ,z∗k} and EX ,Z∗ =

{(xi,z∗j) | xi ∈Xi}. Additionally, we will consider the weight-function W : EX ,X + ∪EX ,Z∗ → N,
where w(e) = 1 if e ∈ EX ,X + and w(e) = n+ 1 if e ∈ EX ,Z∗ . In order to obtain a maximum-
cardinality set I∗ in OC ∩CF , one can compute a maximum-weight matching MW in B∗(Ā). Let
XM ⊆X be the state variables covered by MW . To obtain I∗, we remove the state variables that
are covered by an edge in EX ,Z∗ , i.e, I∗ = XM \ {xi | (xi,z∗j) ∈ MW for some z∗j ∈ Z∗}. In that
manner, we always force the removal of at least one state variable per non-bottom SCC and we
guarantee that the matching obtained is as maximum as possible.

Algorithm 6 can be easily modified in order to solve Problem 3.4, i.e., the problem of finding
a minimum-cost feasible dedicated output configuration for a given cost function C : X → N+.
The idea is to change the weight function in the third step. If e = (xi,x+j ) for some x+j ∈X +, then
w(e) = C (xi). On the other hand, w(e) = ∑

n
i=1 C (xi)+1 if e = (xi,z∗j) for some z∗j ∈Z ∗.



Chapter 4

Output Selection Problem with Generic
Observability Index Constraint

In this chapter we analyze the output selection problem when we include a performance restriction
given by the generic observability index. First, we will formulate the problem. Then, we will show
that it is NP-complete.

4.1 Generic Observability Index: Problem Formulation

Consider a network of n entities where each entity (denoted by xi) updates its data according to
the linear dynamics

x(t +1) = Ax(t), (4.1)

where A ∈ Rn×n is the state matrix and x(t) ∈ Rn is the state vector. The goal is to design the
output matrix C

y(t) =Cx(t), (4.2)

where y ∈ Rp is the output vector such that the pair (A,C) is observable.

In the previous chapter, we developed a polynomial-time algorithm to solve the structural
related problem (see Problem (3.4)) that consists of finding a minimum-size dedicated output
configuration SO = {xi1 , . . . ,xip} in order to guarantee structural observability. We could construct
the pattern C̄ of the output matrix with C̄ = ISO

n , where ISO
n is the identity matrix of size n with

rows i1, . . . , ip. Then, a numerical realization could be provided: A ∈ [Ā] and C ∈ [C̄] with (A,C)

observable, where [Ā] and [C̄] are defined in Definition 4.

Another far more difficult but more practical problem is when we also would like to impose
some performance observability constraint. For example, when it is important to recover the initial
state vector in the fewest iteration instant t ∈ N as possible (e.g, a critical real-time network). As
it was seen in Chapter 2, this constraint is directly related with the observability index µ , where µ

is defined as
µ(A,C) = min {k ∈ N | rank[O(k)] = n}, (4.3)

45
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where O(k) is the observability matrix at iteration instant k. Analogously, we can define the
generic observability index µG as

µG(Ā,C̄) = min {k ∈ N | grank[Ō(k)] = n}, (4.4)

where

Ō(k) =


C̄

C̄Ā
...

C̄Āk−1

 (4.5)

is the structural counterpart of the observability matrix at iteration instant k. Now, we can refor-
mulate problem (3.4) that includes a performance constraint as follows.

Output Selection Problem with Generic Index Constraint: Consider the system (4.1) and
let X = {x1, . . . ,xn} be the set of state variables and Ā ∈ {0,1}n×n the structural pattern of A. The
problem is to find, for a given k, with 1≤ k ≤ n, the set of feasible dedicated output variables SO ,
with SO ⊆X , that solves the following optimization problem:

min
I⊆{1,...,n}

|SO | (4.6)

s.t. µG(Ā, ISO
n )≤ k

where µG(Ā, ISO
n ) is defined as in (4.4).

Notice that for k = n (which is the same as for every k ≥ n) the problem is equivalent to find a
minimum feasible dedicated output configuration whereas for the case k = 1, the solution SO will
be the all set of state variables, X , which implies that we would have one output connected to
each state. However, as we will demonstrate in the next section, problem (4.6) is NP-complete,
notwithstanding the fact that some extreme cases are easy to solve.

4.2 Computational Complexity Analysis

A computational problem P1 is said to be polynomial-time reducible to another problem P2 if
there exists a procedure to transform P1 into P2 using a polynomial number of operations on the
size of its inputs. More formally, P1 polynomial reduces to P2, which we denote by P1 ≤P P2,
if P1 can be solved using a polynomial number of standard computational steps and a polynomial
number of calls to an oracle that solves problem P2.

In what follows we will consider for P1 the set covering problem, which is a classic NP-
complete problem in combinatorics and computer science, and is described as follows.

Set Covering Problem: Given a finite set U = {a1, . . . ,am} of m elements (called universe)
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and a collection S = {S1, . . . ,Sn} of n subsets of U such that

n⋃
i=1

Si = U , (4.7)

the set covering problem aims to determine a set of indices I ⊆ {1, . . . ,n} that solves the following
optimization problem:

min |I| (4.8)

s.t.
⋃
i∈I

Si = U

The following result will be used in order to demontrate the NP-completeness of problem
(4.6).

Lemma 6 ([34]) If problem P1 is NP-complete, problem P2 is in NP and P1 ≤P P2, then P2

is NP-complete. �

We will polynomial reduce the set covering problem to problem (4.6) in order to show the
NP-completeness of the latter. Mainly, this suffices since problem (4.6) is in NP, given that there
exists a polynomial algorithm to ascertain the satisfaction of the conditions on it. For that purpose,
consider the following definitions and results.

Definition 35 Consider an instance (U ,S) of the set covering problem where U = {a1, . . . ,am} is
the universe and S = {S1, . . . ,Sn} is the collection of subsets of U such that

⋃n
i=1 Si = U . Let k =

maxi |Si| and consider that k ≥ 2. With that instance, we define the directed graph DSCP(U ,S) =
(U ∪S∗∪Sk,EU ,U ∪EU ,S∗ ∪ES∗,Sk) given by

U = {a1, . . . ,am},

S∗ = {S∗1, . . . ,S∗n},

Sk =
n⋃

i=1

k−1⋃
j=1

{si j},

EU ,U = {(ai,ai) | ∀ai ∈U },

EU ,S∗ = {(ai,S∗j) | ai ∈ S j, ∀ai ∈U ,∀S j ∈ S},

ES∗,Sk = {(S
∗
i ,si1) | ∀Si ∈ S,∀si1 ∈ Sk}∪{(si j,si( j+1)) | i = 1, . . . ,n, j = 1, . . . ,k−2}.

�

Example 18 Consider the universe U = {a1,a2,a3,a4} and the collection of subsets of U given
by S = {S1,S2,S3} where S1 = {a1,a2,a3}, S2 = {a2,a4} and S3 = {a3,a4}. Notice that

⋃3
i=1 Si =

U . The construction given in Definition 35 is depicted in Figure 4.1.

The following results establishes the relationship between the set covering problem and prob-
lem (4.6).
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Figure 4.1: A directed graph representation associated with the Set Covering Problem instance
given in Example 18.

Lemma 7 Consider an instance (U ,S) of the set covering problem where U = {a1, . . . ,am} is
the universe and S = {S1, . . . ,Sn} is the collection of subsets of U such that

⋃n
i=1 Si = U . Let

DSCP(U ,S) be its associated directed graph as defined in Definition 35 and let I = {i1, . . . , il}
be a set of indices with I ⊆ {1, . . . ,n}. Additionally, let SO = {s11, . . . ,sn1,S∗i1 , . . . ,S

∗
il}. Then,⋃

i∈I Si = U if and only if µG(Ā, ISO
n ) ≤ k, where Ā is the structural matrix associated with DSCP

and k = maxi |Si|. �

Proof Consider the structural directed graph representation D1 depicted in Figure 4.2. Notice that
it suffices to place an output in x1 to ensure that the generic observability index µG is less or equal
than k. In fact, the structural pair (Ā1,C̄1) associated with D1 is such that

Ā1 =

[
0k−1,1 Ik−1

0 01,k−1

]
,

C̄1 =
[
1 01,k−1

]
,

where 0m,n is the m×n matrix of zero entries and Im is the identity matrix of size m. Therefore, it
is possible to see that

grank




C̄1

C̄1Ā1
...

C̄1Āk−1
1


= grank(Ik),

and that µG(Ā1,C̄1) = k.

Figure 4.2: A structural directed graph representation D1(Ā,C̄) for which µG(Ā,C̄) = k.
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Figure 4.3: A structural directed graph representation D2(Ā,C̄) for which µG(Ā,C̄) = k.

Consider now the structural directed graph representation D2 of Figure 4.3 and consider that
(Ā2,C̄2) is the associated structural pair such that

Ā2 = Ik,

C̄2 =
[
1 1 . . . 1

]
.

Therefore, we have that

grank




C̄2

C̄2Ā2
...

C̄2Āk−1
2


= grank(1k,k),

where 1k,k is the k× k matrix whose entries are all equal to 1, and µG(Ā2,C̄2) = k.
It is possible to see that any dedicated output configuration that ensures structural observabil-

ity of DSCP has to be comprised of the variables s1(k−1),s2(k−1), . . . ,sn(k−1) since those variables
constitute non-bottom linked SCCs. Furthermore, the outputs placed in each of those variables are
necessary and sufficient (see Figure 4.2) to ensure structural observability with generic index less
than k of the directed graph whose vertex set is V1 = S∗∪Sk and whose arc set is E1 = ES∗,Sk .

By comparison with Figure 4.3, notice that to guarantee structural observability of DSCP with
µG less than k, one has to start to add outputs in the variables in S∗. Furthermore, it may be easily
verified that

⋃
i∈I Si = U with I = {i1, . . . , il} if and only if the set of variables in S∗ indexed by

I is sufficient to ensure a generic observability index less than k of the directed graph with vertex
set V2 = U ∪ S∗ and arc set E2 = EU ,U ∪EU ,S∗ . Since DSCP = (V1 ∪V2,E1 ∪E2), the lemma is
proved. �

Theorem 15 The output selection problem with generic index constraint (problem (4.6)) is NP-
complete. �

Proof First, notice that problem (4.6) is in NP since for a structural pair (A,C) there exists a
polynomial procedure to compute the generic observability index [22]. Therefore, it remains to
show that there is a polynomial procedure that reduces the set covering problem to problem (4.6)
and, by Lemma 6, the theorem is proved.
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For that, consider the directed graph construction given in Definition 35 (see also Algorithm
7). First, we call a procedure that solves problem (4.6) for the structural state matrix Ā associated
with DSCP and let SO be a solution. We will show that from SO it is possible to construct a
solution with the same number of outputs and with variables s1(k−1), . . . ,sn(k−1) and variables in
S∗. If there is a si j ∈ SO with j 6= k− 1, then the set SO \ {si j} ∪ {S∗i } is certainly a solution
to problem (4.6). Further, for each ai ∈ SO , there must exist an S∗j 6∈ SO with (ai,SO) ∈ E and
with SO \ {ai}∪ {S∗j} a solution to problem (4.6). If this was not the case, then the number of
outputs would not be minimal, which is a contradiction. Therefore, it is always possible to, given
a solution SO , construct another solution S′O with variables si(k−1), i = 1, . . . ,n, and some variables
from S∗. Then, with Lemma 7 in mind, the theorem is proved. �

For instance, notice that in Example 18 if we call the procedure to solve problem (4.6), SO =

{s13,s23,s33,S∗1,a4} might be the returned value. Since (a4,S2) is an arc of the directed graph,
S′O = {s13,s23,s33,S∗1,S

∗
2} is also a solution of problem (4.6) and, therefore, I = {1,2} is a solution

of the Set Covering Problem.
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ALGORITHM 7: Reduction of the Set Covering Problem to Problem 4.6
Input: An instance of problem 4.8: an universe U = {a1, . . . ,am} and collection of subsets

S = {S1, . . . ,Sn} of U whose union is U .
Output: A set of indices I ⊆ {1, . . . ,m} that solves problem 4.8.
Let k be the size of the largest Si ∈ S, with i = 1, . . . ,n.
Build the directed graph DSCP = (U ∪S∗∪Sk,EU ,U ∪EU ,S∗ ∪ES∗,Sk), where
• U = {a1, . . . ,am}

• S∗ = {S∗1, . . . ,S∗n}

• Sk =
⋃n

i=1
⋃k

j=1 si j

• EU ,U = {(ai,ai) | ∀ai ∈U }

• EU ,S∗ = {(ai,S∗j) | ai ∈ S j, ∀ai ∈U ,∀ S j ∈ S}

• ES∗,Sk = {(S∗i ,si1) | ∀ Si ∈ S,∀si1 ∈ Sk}∪{(si j,si( j+1) | i = 1, . . . ,m, j = 1, . . . ,k−2}

Call a procedure that solves problem 4.6 for DSCP and k. Let SO be the solution.
I← /0
for si(k−1) ∈ SO do

SO ← SO \{si(k−1)}
end for
for si j ∈ SO do

SO ← SO \{si j}
I← I∪{i}

end for
for S∗i ∈ SO do

SO ← SO \{S∗i }
I← I∪{i}

end for
for ai ∈ SO do

Find j 6∈ I such that (ai,S∗j) ∈ EU ,S∗

SO ← SO \{ai}
I← I∪{ j}

end for
Return I
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Chapter 5

Illustrative Examples

In this chapter, we start by illustrating the concepts regarding matroid theory with an example.
After that, the algorithm developed to find a minimum-cost feasible dedicated output configuration
is applied to a spatially distributed sensor network. Finally, some simulation results are presented.

5.1 A 6-node Networked Example

In this section, we apply the matroid intersection algorithm (Algorithm 3) in order to obtain a
minimum dedicated output configuration that guarantees structural observability. Consider, for
instance, the structural state matrix

Ā =



1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0


, (5.1)

that represents the zero/non-zero pattern of some real-valued matrix A ∈ Rn×n, with n = 6. In
Figure (5.1), we provide the structural directed graph representation D(Ā) = (X ,EX ,X ).

When applying the matroid intersection algorithm, we have to consider the output-connected
matroid M1 = (X ,OC) and the contraction-free matroid M2 = (X ,CF). Recall that a set I ⊆X

belongs to OC if and only if I CC−→X \ I, i.e, if for any xi ∈ I, there exists a directed path from xi

to some x j ∈X \ I. On the other hand, I ∈ CF , if and only if there is a matching in the bipartite
graph B(Ā) = (X ,X +,EX ,X +) that covers I.

Let us take, for instance, the set XA = {x1,x2,x3,x4} of the right-covered vertices of Figure 5.2,
where we can see the bipartite graph associated with Ā and a maximum matching. By definition,
XA ∈ CF . If XA also belongs to the collection of independent sets of the output-connected matroid,
then surely XA is a maximum-cardinality set in OC∩CF since XA is covered by a maximum match-
ing. To test that possibility, we will rely on the independence oracle for M1 = (X ,OC) (Algorithm

53
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Figure 5.1: The structural directed graph representation of matrix Ā described in (5.1). The strong
connected components are represented by red dashed lines.

Figure 5.2: The bipartite graph representation of matrix Ā from equation (5.1). A maximal match-
ing is depicted with red-colored edges.
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Figure 5.3: The bipartite exchange graph for I = {x1,x2,x6}.

4). The output-connected sets OK
j for the variables in X \XA = {x5,x6} are initialized as

O1
5 = O1

6 = {x4} . (5.2)

Since

O l
j = {xk ∈X | Āk,r = 1 with xr ∈ O l−1

j }∪O l−1
j , (5.3)

we have that

On−1
5 = On−1

6 = {x3,x4}, (5.4)

and therefore ∪ j=5,6O
n−1
j 6= XA, which implies that XA 6∈ OC. The same conclusion can be drawn

from Proposition 8. Notice, that in the condensation of D(Ā), depicted in Figure (5.1), X ∗
1 = {x1}

and X ∗
2 = {x2} are two non-bottom linked strong connected components. Therefore, x1 and x2 do

not belong to any independent set of the output-connected matroid. If we remove x1 and x2 from
XA, we have XB = {x3,x4} that now lies on the intersection of OC and CF . Then, X \XB is a
feasible dedicated output configuration.

In order to obtain a minimum feasible dedicated output configuration, one may apply Algo-
rithm 3 to M1 = (X ,OC) and M2 = (X ,CF) with I = XB. Notice that the set of the sources
X1 = {xi ∈X \ I | I∪{xi} ∈ OC} is

X1 = {x5,x6}, (5.5)

since x3,x4,x5 and x6 are all in the same strong connected component. On the other hand, the set
of sinks X2 = {xi ∈X \ I | I∪{xi} ∈ CF} is

X2 = {x1,x2,x5,x6}, (5.6)

since all those variables (one at a time) can be added to I and we still have a matching in B(Ā) that
covers the extended I. Since x5 and x6 are simultaneously sources and sinks, the dipaths P = x5

or P = x6 are possible shortest source-sink dipaths. Therefore, I ∪{x5} and I ∪{x6} belong to
OC ∩CF and we can take, for instance, I = {x3,x4,x5}.
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In the second iteration of Algorithm 3, the set of sources is given by

X1 = {x6}, (5.7)

whereas the set of sinks is

X2 = {x1,x2}, (5.8)

since x5 and x6 cannot belong simultaneously to a set of vertices covered by a matching in B(Ā).
The bipartite exchange digraph DM1,M2(I) is represented in Figure 5.3. Since there is not any
directed path between x6 and x1 or x2, we conclude that I = {x3,x4,x5} is a maximum-cardinality
set in OC ∩CF . Therefore, SO is a minimum feasible dedicated output configuration where SO is

SO = X \ I = {x1,x2,x6}. (5.9)

Then, we may write C̄ = ISO
n , where ISO

n is the identity matrix of size n but only with rows 1, 2 and
6 and we have that

C̄ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 , (5.10)

which implies that the pair (Ā,C̄) is structurally observable. Finally, we can choose randomly the
real entries of matrices A ∈ [Ā] and C ∈ [C̄]. Since structural observability is a generic property,
there is a high probability that the pair (A,C), with numerical values randomly chosen, is observ-
able. Consider that the non-zero values of matrices A and C are chosen randomly from the uniform
distribution on the interval [0,1]. Then, we may have

A =



0.5470 0 0.4868 0 0 0
0 0.6256 0.4359 0 0 0
0 0 0 0.6443 0 0
0 0 0.3063 0 0.5502 0.2305
0 0 0 0.8116 0 0
0 0 0 0.5328 0 0


(5.11)

and

C =

4.302 0 0 0 0 0
0 0.4389 0 0 0 0
0 0 0 0 0 0.5079

 , (5.12)

and it can be seen that the pair (A,C) is observable.
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Figure 5.4: A set of spatially distributed wireless sensors. Each sensor belongs to a local area
(represented by a dashed black circle). Some sensors can communicate (bidirectional) with each
other in the same local area (blue lines). A node can transmit information to different local areas
(red arrows). The objective is to choose the set of sensors allowed to change information with the
central authority in order to recover the vector of initial measurements.

5.2 Wireless Sensor Application

Consider, as an application, a set of spatially distributed wireless sensors (Figure 5.4). The sensors
are divided between local areas and they are equipped with a short-range communication device
that allow them to communicate with some other sensors in the same local area in order to up-
date data. Additionally, some sensors can also transmit information to other sensors in different
local areas. The objective is to recover the vector of initial sensor measurements at some central
authority. To that purpose, a subset of sensors will be equipped with a long-range communica-
tion device. However, since the communication cost increases with distance and since the central
authority is far apart, it is desirable to install the long-range communication device in the fewest
possible sensors.

Each sensor node updates its data according to linear dynamics and maintains a state xi(t),
where t is the iteration instant. The state xi(0) corresponds to the field measurement collected by
the i-th sensor. The sensor communication is described by a dynamic system of the form

x(t +1) = Ax(t), (5.13)

where A ∈ Rn×n describes the state update dynamics. Matrix A has to respect the communication
graph structure, i.e, if sensor j is not allowed to transmit information to sensor i, then Ai j must
be zero. By other words, the structural pattern Ā ∈ {0,1}n×n of matrix A is given, in the sense
that if Āi j = 0, then it must be that Ai j = 0. For the sensor network depicted in Figure 5.4, the
structural directed graph representation D(Ā) is presented in Figure 5.5. Notice that if sensor i
can transmit information to sensor j and if they belong to same local are, then it is fair enough
to assume that j can also transmit information to i. Furthermore, each sensor has memory which
means that Āii = 1. The cost of place the long-range communication device at sensor i is given by:
C (x1) = 3, C (x2) = 10, C (x3) = 3, C (x4) = 15, C (x5) = 2, C (x6) = 5, C (x7) = 10, C (x8) = 2,
C (x9) = 5 and C (x10) = 1.
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Figure 5.5: A structural directed graph representation of the network depicted in Figure
5.4Ȧlthough not depicted, to ease the illustration, each node has a self-loop.

Notice that the present goal is to ensure that the central identity can use the dynamics and the
collection of measurements to recover the vector of initial sensor states x(0). Therefore, observ-
ability has to hold. If additionally we require that the cost of the dedicated output configuration
be as less as possible, then we can apply Algorithm 6 to obtain the correct subset of sensors SO in
which to place the long-range communication device.

STEP 1 In this step, the condensation D∗ of the structural directed graph representation is
computed using the Tarjan algorithm [33] (Figure 5.6). Notice that there are four strong connected
components, respectively X1 = {x1,x2}, X2 = {x3,x4,x5}, X3 = {x6,x7,x8,x9} and X4 = {x10}.

STEP 2 From the digraph D∗ = (X ∗,EX ∗,X ∗) represented in Figure 5.6, it can be seen that
X1 and X2 are the only SCCs for which there are no edged going out. Therefore, X1 and X2 are
non-bottom linked SCCs. Then, in the solution, there must exist at least one state variable from
X1 = {x1,x2} and one state variable X2 = {x3,x4,x5}.

STEP 3 In this step, the weighted bipartite graph representation is constructed and represented
in Figure 5.7. Since there are two non-bottom linked SCCs, two dummy variables z∗1 and z∗2 are
added to the bipartite graph B(Ā). Variable z∗1 is linked to x1 and x2 and z∗2 is linked to x3,x4 and
x5. The weigh of those edges is ∑

10
i=1 C (xi)+1 = 57. Each edge (xi,x+j ) has weight C (xi).

STEP 4 Finally, a weighted-maximum matching Mw is computed using the Hungarian algo-
rithm [?]. In Figure 5.7, the dashed edges belong to Mw. Set XM ⊆X to the state variables
covered by Mw. Then XM = X . Next, we have to remove those verices whose edges are incident
with z∗1 or z∗2. Since (x1,z∗1) and (x5,z∗2), then XM is update to X ′

M = XM \ {x1,x5}. Thus, a
feasible dedicated output configuration of minimum cost is SO = X \X ′

M = {x1,x5}. The cost of
this configuration is C (x1)+C (x5) = 3+2 = 5.
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Figure 5.6: Condensation of the structural directed graph representation of Figure 5.5. The strong
connected components are X1 = {x1,x2}, X2 = {x3,x4,x5}, X3 = {x3,x6,x7,x8,x9} and X4 = {x10}.

Figure 5.7: The bipartite graph construction of STEP 3. The edges in green correspond to the
connections between state variables and the associated non-bottom linked SCCs. The dashed
edges belong to a weighted-maximal matching.
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5.3 Simulation Results of Random Networks

In this section, we provide results of a set of MATLAB simulations in order to conclude about the
following

Q1: How does the presence/absence of zeroes in the structural pattern of some state matrix affect
the minimum number of dedicated outputs to obtain structural observability? Further, how
this conclusions change with the dimension of the system?

Q2: Is the presence of self-loops an important requirement to reduce the number of required
dedicated outputs to obtain structural observability?

To that purpose, the following experiment was simulated. To each entry of Ā ∈ {0,1}n×n the
value 1 was assigned with probability p, i.e., for each i, j = 1, . . . ,n

Āi j =

1 with probability p,

0 with probability 1− p.

Additionally, for each Ā constructed according to the previously manner, it was built two more
structural matrices: one, with forced self-loops, i.e, with Āii = 1 for i = 1, . . . ,n; and another with
zero self-loops, i.e, with Āi j = 0 for i = 1, . . . ,n.

For each value of p, with p ∈ {0.001,0.01,0.1,0,2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, the min-
imum number of dedicated outputs needed to ensure structural observability was computed for
n = 1, . . . ,100. The simulation was realized 100 times.

For small values of p (Figure 5.8 and Figure 5.9) the minimum number of dedicated outputs,
nO , increases with the size of the structural state matrix, n. For p between 0.1 and 0.8 (Figures
5.10, 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16) there is a peak that corresponds to the maximum value
of nO that occurs for values of n successively small until p = 0.8,0.9 (Figures 5.17 and 5.18) for
which that peak value is negligible. There is an abrupt decrease in nO between p = 0.001 and
p = 0.01 and between p = 0.01 and p = 0.1, and after that nO is always less than 6. Notice that
for p ≥ 0.2 and n ≥ 10, the minimum number of dedicated outputs needed to obtain structural
observability is approximately 1, regardless of the size of Ā. Furthermore, it can be concluded
that the presence of self-loops is significant only for p = 0.01 (Figure 5.9), where nO takes as
maximum approximately 45, whereas for the case with forced self-loops the maximum value of
nO is approximately 35. For values of p inferior and superior than 0.01, the blue, red, and green
curves almost overlap.
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Figure 5.8: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.001.
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Figure 5.9: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.01.



62 Illustrative Examples

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n

A
v
g
. 
N

u
m

b
e
r 

o
f 
O

u
tp

u
ts

p = 0.1

 

 

Unrestricted

Forced Self−Loops

Zero Self−Loops

Figure 5.10: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.1.
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Figure 5.11: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.2.
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Figure 5.12: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.3.
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Figure 5.13: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.4.



64 Illustrative Examples

0 10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

n

A
v
g
. 
N

u
m

b
e
r 

o
f 
O

u
tp

u
ts

p = 0.5

 

 

Unrestricted

Forced Self−Loops

Zero Self−Loops

Figure 5.14: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.5.
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Figure 5.15: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.6.
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Figure 5.16: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.7.
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Figure 5.17: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.8.
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Figure 5.18: The average number of minimum dedicated outputs needed to ensure structural ob-
servability for p = 0.9.



Chapter 6

Conclusions

Achievements

In this thesis, we reformulated the minimum feasible dedicated output problem (3.4) within a ma-
troid framework. We have shown that it was possible to reduce that problem to an intersection
of two matroids. Next, after established the connection of the obtained results to graph-theoretic
concepts, we provided a new algorithm to find a minimum feasible dedicated output configuration.
These results were easily extended to the scenario where costs associated with the output alloca-
tion were considered. We have also proved that the output placement problem with generic observ-
ability index constraint (4.6) was NP-complete by a polynomial reduction of the well-known set
covering problem to the first. By duality, the derived observability results can be readily extended
to the structural controllability and the corresponding input (actuator) design.

Future Work

As part of future research, we believe that the matroid framework should be deeply studied in
order to provide new results within structural systems theory. Another important future work is to
try to reduce problem (4.6) to a well-known NP-complete problem that have good approximation
algorithms. Thus, if the reduction is successful it would be possible to adapt such approximation
algorithms to solve the original problem. Since problem (3.4) was formulated as the intersection
of two matroids, perhaps problem (4.6) can be rewritten as an intersection of three matroids. It is
known that the matroid intersection problem becomes NP-hard when three matroids are involved,
instead of only two.
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Appendix A

MATLAB implementation of some
algorithms

A.1 Maximum-Cardinality Matroid Intersection Algorithm

1 f u n c t i o n [ I ] = m a x I n t e r s e c t M a t r o i d ( @oracle1 , @oracle2 , n ) ;
2 %I n p u t s :
3 % @oracle1 − I n d e p e n d e n c e o r a c l e o f t h e f i r s t m a t r o i d
4 % @oracle2 − I n d e p e n d e c e o r a c l e o f t h e second m a t r o i d
5 % n − s i z e o f t h e u n i v e s e r { 1 , . . . , n }
6 %O u t p u t s :
7 % I − A maximum−s i z e i n d e p e n d e n t s e t t h a t l i e s on t h e

i n s t e r s e c t i o n o f t h e
8 % two m a t r o i d s g i v e n by i n d e p e n d e n c e o r a c l e s @oracle1 and

@oracle2
9

10 I = z e r o s ( 1 , n ) ;
11

12 whi le ( 1 )
13 %C o n s t r u c t t h e s e t s X_1 and X_2
14 X_1 = z e r o s ( 1 , n ) ;
15 X_2 = z e r o s ( 1 , n ) ;
16 A = z e r o s ( n , n ) ;
17

18 f o r i = 1 : n
19 aux = z e r o s ( 1 , n ) ;
20 aux ( i ) = 1 ;
21 i f ( I ( i ) == 0)
22 X_1 ( i ) = o r a c l e 1 ( I + aux , n ) ;
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23 X_2 ( i ) = o r a c l e 2 ( I + aux , n ) ;
24 e l s e
25 f o r j = 1 : n
26 aux2 = z e r o s ( 1 , n ) ;
27 aux2 ( j ) = 1 ;
28 i f ( I ( j ) == 0)
29 A( i , j ) = o r a c l e 1 ( I−aux+aux2 , n ) ;
30 A( j , i ) = o r a c l e 2 ( I−aux+aux2 , n ) ;
31 end
32 end
33 end
34 end
35

36 B = z e r o s ( n + 2 , n + 2) ;
37 B ( 1 , 2 : n +1) = X_1 ;
38 B ( 2 : n +1 , n +2) = X_2 ’ ;
39 B ( 2 : n +1 , 2 : n +1) = A;
40

41 [ d p red ] = s h o r t e s t _ p a t h s ( sp ar se (B) , 1 ) ;
42

43 i f ( d ( n +2) == i n f )
44 re turn I ;
45 end
46

47 i = p red ( n + 2) ;
48 aux = 1 ;
49 whi le ( 1 )
50 i f ( i == 1)
51 break ;
52 end
53 i f ( aux == 1)
54 I ( p r ed ( i ) ) = 1 ;
55 e l s e
56 I ( p r ed ( i ) ) = 0 ;
57 end
58

59 aux = aux ∗ −1;
60 i = p red ( i ) ;
61 end
62 end
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63

64 end

A.2 Minimum-Size Output Selection

1 f u n c t i o n [ C , p ] = minimumOutput (A)
2

3 %I n p u t s :
4 %A − S t r u c t u r a l p a t t e r n o f some s t a t e m a t r i x
5 %O u t p u t s :
6 %p − Number o f o u t p u t s o f t h e minimum f e a s i b l e d e d i c a t e o u t p u t
7 % c o n f i g u r a t i o n a s s o c i a t e d w i t h A
8 %C − S t r u c t u r a l p a t t e r n o f t h e o u t p u t m a t r i x a s s o c i a t e d w i t h a

minimum
9 % f e a s i b l e d e d i c a t e o u t p u t c o n f i g u r a t i o n f o r A

10

11 n = l e n g t h (A) ;
12 %STEP 1 − COMPUTE THE CONDENSATION OF D( A )
13 SCC = scomponents (A) ;
14 ncomp = max (SCC) ;
15 R = sp ar se ( 1 : s i z e (A, 1 ) ,SCC, 1 , s i z e (A, 1 ) , ncomp ) ;
16 CG = R’∗A∗R ;
17 CG = (CG ~= 0) ;
18 CG = CG & (~ eye ( ncomp , ncomp ) ) ;
19

20 %STEP 2 − FIND THE NON−BOTTOM LINKED SCC’ S
21 SCCnBottom = z e r o s ( 1 , ncomp ) ;
22 k = 1 : ncomp ;
23 SCCnBottom = sum (CG( : , k ) ) == 0 ;
24

25 %STEP 3 − BUILD THE WEIGHTED BIPARTITE GRAPH
26 nBottom = sum ( SCCnBottom ) ;
27 A2 = z e r o s ( n + nBottom , n + nBottom ) ;
28 A2 ( 1 : n , 1 : n ) = A;
29 r = 1 ;
30 f o r k = 1 : ncomp
31 i f ( SCCnBottom ( k ) == 1)
32 A2 ( n + r , f i n d ( ( SCC == k ) , n ) ) = ( n +1) ;
33 r = r + 1 ;
34 end
35 end
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36

37 %STEP 4 − FIND A MAXIMUM−WEIGHT MATCHING
38 [ v a l mi mj ] = b i p a r t i t e _ m a t c h i n g ( A2 ) ;
39 mj = mj ( mi <= n ) ;
40 X_M = z e r o s ( 1 , n ) ;
41 X_M( mj ) = 1 ;
42 S_u = ones ( 1 , n ) − X_M( 1 : n ) ;
43 p = sum ( S_u ) ;
44 C = z e r o s ( p , n ) ;
45 S_u = f i n d ( S_u , n ) ;
46 f o r k = 1 : p
47 C( k , S_u ( k ) ) = 1 ;
48 end
49

50 end

A.3 Minimum-Cost Output Selection

1 f u n c t i o n [ C , p ] = minimumOutputCost (A, c o s t )
2 %I n p u t s :
3 %A − S t r u c t u r a l p a t t e r n o f some s t a t e m a t r i x
4 %O u t p u t s :
5 %p − Number o f o u t p u t s o f t h e minimum−c o s t f e a s i b l e d e d i c a t e

o u t p u t
6 % c o n f i g u r a t i o n a s s o c i a t e d w i t h A
7 %C − S t r u c t u r a l p a t t e r n o f t h e o u t p u t m a t r i x a s s o c i a t e d w i t h a

minimum−c o s t
8 % f e a s i b l e d e d i c a t e o u t p u t c o n f i g u r a t i o n f o r A
9

10 n = l e n g t h (A) ;
11 %STEP 1 − COMPUTE THE CONDENSATION OF D( A )
12 SCC = scomponents (A) ;
13 ncomp = max (SCC) ;
14 R = sp ar se ( 1 : s i z e (A, 1 ) ,SCC, 1 , s i z e (A, 1 ) , ncomp ) ;
15 CG = R’∗A∗R ;
16 CG = (CG ~= 0) ;
17 CG = CG & (~ eye ( ncomp , ncomp ) ) ;
18

19 %STEP 2 − FIND THE NON−BOTTOM LINKED SCC’ S
20 SCCnBottom = z e r o s ( 1 , ncomp ) ;
21 k = 1 : ncomp ;
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22 SCCnBottom = sum (CG( : , k ) ) == 0 ;
23

24 %STEP 3 − BUILD THE WEIGHTED BIPARTITE GRAPH
25 nBottom = sum ( SCCnBottom ) ;
26 A2 = z e r o s ( n + nBottom , n + nBottom ) ;
27 t o t a l C o s t = sum ( c o s t ) ;
28 f o r k = 1 : n
29 A( f i n d (A ( : , k ) , n ) , k ) = c o s t ( k ) ;
30 end
31 A2 ( 1 : n , 1 : n ) = A;
32 r = 1 ;
33 f o r k = 1 : ncomp
34 i f ( SCCnBottom ( k ) == 1)
35 A2 ( n + r , f i n d ( ( SCC == k ) , n ) ) = t o t a l C o s t + 1 ;
36 r = r + 1 ;
37 end
38 end
39

40

41 %STEP 4 − FIND A MAXIMUM−WEIGHT MATCHING
42 [ v a l mi mj ] = b i p a r t i t e _ m a t c h i n g ( A2 ) ;
43 mj = mj ( mi <= n ) ;
44 X_M = z e r o s ( 1 , n ) ;
45 X_M( mj ) = 1 ;
46 S_u = ones ( 1 , n ) − X_M( 1 : n ) ;
47 p = sum ( S_u ) ;
48 C = z e r o s ( p , n ) ;
49 S_u = f i n d ( S_u , n ) ;
50 f o r k = 1 : p
51 C( k , S_u ( k ) ) = 1 ;
52 end
53

54

55

56 end
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