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Abstract 

Breast cancer is the most common malignancy of women and is the second most 

common and leading cause of cancer deaths among them. At present, there are no 

effective ways to prevent breast cancer, because its cause is not yet fully known. Early 

detection is an effective way to diagnose and manage breast cancer can give a better 

chance of full recovery. Therefore, early detection of breast cancer can play an 

important role in reducing the associated morbidity and mortality rates. 

Mammography has proven to be the most effective tool for detecting breast cancer in 

its earliest and most treatable stage, so it continues to be the primary imaging modality 

for breast cancer screening and diagnosis. Furthermore, this exam allows the detection 

of other pathologies and may suggest the nature such as normal, benign or malignant. 

The introduction of digital mammography is considered the most important 

improvement in breast imaging. 

Computer-aided detection/diagnosis (CAD) has been shown to be a helpful tool in 

the early detection of breast cancer by marking suspicious regions on a screening 

mammogram, allowing thus to reduce the death rate among women with this disease. 

These systems use computer technologies to detect abnormalities in mammograms and 

the use of these results by radiologists for diagnosis play an important role, once 

characterize lesions through automatic image analysis. The CAD performance can vary 

because some lesions are more difficult to detect than others, this is because they have 

similar characteristics to normal mammary tissue. However, it is important to continue 

working in order to decrease the number of failures. 

The pectoral muscle represents a predominant dense region in medio-lateral oblique 

views of mammograms. Its segmentation has been considered an important factor for an 

adequate performance of automatic cancer detection methods. Mammograms images are 

hard to interpret because of the complex tissue morphology of the breast and the 

number of imaging parameters that affect mammogram acquisition. Classification of 

breast density is important for epidemiological studies investigate the relationship 

between mammogram density and the occurrence of cancer. For these reason, there is 

an increasing interest in using measurements of mammographic density patterns in 

computer aided-detection. 
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Resumo 

O cancro de mama é o mais comum nas mulheres e é a segunda principal causa de 

morte de cancro entre as mesmas. Até ao presente, não existem formas de prevenir o 

cancro da mama, pois a sua causa não é ainda totalmente conhecida. A deteção precoce 

é uma forma eficaz de diagnosticar e tratar o cancro da mama dando uma maior 

possibilidade de total recuperação. Assim, a deteção precoce do cancro da mama tem 

um papel importante na redução dos índices de mortalidade. 

A mamografia tem mostrado ser a ferramenta mais eficaz na deteção do cancro da 

mama numa fase precoce e mais facilmente tratável, continuando assim a ser a principal 

modalidade da imagiologia mais usada para diagnosticar o cancro da mama. Além 

disso, este exame permite detetar outras patologias e sugere a sua natureza, isto é, 

normal, benigna ou maligna. A introdução da mamografia digital é considerada o 

melhoramento mais importante na imagiologia mamária. 

A deteção/diagnóstico assistida por computador (DAC) tem sido vista como sendo 

uma ferramenta de ajuda na deteção precoce pela marcação de regiões suspeitas num 

mamograma permitindo, assim, reduzir as taxas de morte nas mulheres com esta 

doença. Estes sistemas usam tecnologia computacional para detetar anormalidades num 

mamograma, e o uso destes resultados por radiologistas para diagnóstico possui um 

papel importante, uma vez que caracteriza lesões através da análise automática da 

imagem. O desempenho da DAC pode variar porque algumas lesões são mais difíceis 

de detetar do que outras, isto acontece pois têm características semelhantes ao tecido 

mamário normal. Contudo, é importante continuar a trabalhar para diminuir o número 

de falhas.  

O músculo peitoral apresenta-se como uma região densa predominante nas 

incidências médio-laterais oblíquas dos mamograma, sendo a sua segmentação 

considerada importante para o desempenho adequado dos métodos de deteção 

automática de cancro. As imagens dos mamogramas são difíceis de interpretar porque 

possuem uma morfologia complexa do tecido da mama e o número de parâmetros de 

imagem que afetam a aquisição do mamograma. A classificação da densidade mamária 

é importante para em estudos epidemiológicos ser investigada a relação entre a 

densidade mamária e a ocorrência de cancro. Por esta razão, tem aumentado o interesse 

em usar medidas de padrões de densidade mamográfica no DAC.  

Palavras – Chave 

 Mama 

 Cancro 

 Imagem Médica 

 Análise de imagem 

 Mamografia 

 Patologias 

 Deteção assistida por computador 

 Músculo Peitoral 

 Densidade mamária



 

i 
 

Index 
 

CHAPTER I – Introduction........................................................................................................... 1 

1.1 Motivation ........................................................................................................................... 3 

1.2 Main Goals .......................................................................................................................... 3 

1.3 Report Organization ............................................................................................................ 3 

1.4 Contributions ....................................................................................................................... 4 

CHAPTER II – Breast and Mammography .................................................................................. 5 

2.1. Breast anatomy ................................................................................................................... 7 

2.2. Breast pathologies .............................................................................................................. 8 

2.2.1 Fibroadenoma ............................................................................................................... 8 

2.2.2 Mammary Dysplasia .................................................................................................... 9 

2.2.3 Mastitis and breast abscess ........................................................................................... 9 

2.2.4 Gynecomastia ............................................................................................................. 10 

2.3. Breast Cancer ................................................................................................................... 10 

2.3.1 Breast Cancer Lesions ................................................................................................ 10 

2.3.2 Types of Breast Cancer .............................................................................................. 13 

2.4 Breast Imaging Reporting and Data System ..................................................................... 14 

2.5 Breast Density ................................................................................................................... 15 

2.5.1 Classification of the breast according density ............................................................ 15 

2.6 Mammography Equipment ................................................................................................ 16 

2.7 Digital Mammography ...................................................................................................... 21 

2.8 Other technologies............................................................................................................. 22 

2.9 Summary ........................................................................................................................... 22 

CHAPTER III – Computer Aided Diagnosis (CAD) .................................................................. 25 

3.1 CAD History ..................................................................................................................... 27 

3.2 CAD Systems .................................................................................................................... 28 

3.3 CAD Evaluation ................................................................................................................ 29 

3.4 CAD in brain and retinal pathologies ................................................................................ 31 

3.5 CAD Algorithms in breast lesions .................................................................................... 31 

3.5.1 Microcalcifications ..................................................................................................... 32 

3.5.2 Masses ........................................................................................................................ 34 

3.5.3 Architectural Distortions ............................................................................................ 36 



 

ii 
 

3.5.4 Bilateral Asymmetry .................................................................................................. 37 

3.6 Summary ........................................................................................................................... 39 

CHAPTER IV – Methods and Implementations ......................................................................... 41 

4.1 Distinction between left and right breast ........................................................................... 43 

4.2 Distinction between CC and MLO projection ................................................................... 45 

4.3 Segmentation and extraction of pectoral muscle ............................................................... 45 

4.4 Features extraction ............................................................................................................ 49 

4.5 Classification ..................................................................................................................... 53 

4.5.1 Breast Density ............................................................................................................ 53 

4.5.2 Masses ........................................................................................................................ 55 

4.6 Summary ........................................................................................................................... 56 

CHAPTER V – Results and Discussion ...................................................................................... 57 

5.1 Distinction between left and right breast ........................................................................... 59 

5.2 Distinction between CC and MLO projection ................................................................... 63 

5.3 Segmentation and extraction of pectoral muscle ............................................................... 67 

5.4 Classification ..................................................................................................................... 73 

5.4.1 Breast Density ............................................................................................................ 73 

5.4.2 Masses ........................................................................................................................ 77 

5.5 Summary ........................................................................................................................... 79 

CHAPTER VI – Conclusions and Future Perspectives ............................................................... 81 

References ................................................................................................................................... 85 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

Figures Index 

 

Figure 1 – Sagittal section of female breast (from (MOORE, 2004)). .......................................... 7 

Figure 2 – (a) Original mammography image; (b) Correspondent ground truth (from MIAS 

Database). .................................................................................................................................... 11 

Figure 3 – BI-RADS standardized description of masses (from (Jatoi, 2010)). ......................... 12 

Figure 4 – Two malignant mass ROIs cropped from full-sized mammograms with their 

pathological characteristics specified (from (Digital Database for Sreening Mammography)). . 12 

Figure 5 – Inflammatory breast carcinoma (from (Dixon, 2006)). ............................................. 14 

Figure 6 – Mammograms with differing mammographic breast densities (a) predominantly fat; 

(b) fat with some fibroglandular tissue; (c) heterogeneously dense; (d) extremely dense (from 

(Moreira, 2012)). ......................................................................................................................... 16 

Figure 7 – Two distinct mammographic projections: (a) Cranio Caudal view; (b) Medio Lateral 

Oblique view (from (Kopans, 2007)). ......................................................................................... 17 

Figure 8 – Breast localization: (a) quadrants method; (b) nomenclature of each quadrant (from 

(Kopans, 2007; Moore&Agur, 2003)). ........................................................................................ 18 

Figure 9 – A typical mammography unit (from (Akay, 2006)). .................................................. 18 

Figure 10 – Schematic representation of a digital mammography system (from (Bronzino, 

2000)) .......................................................................................................................................... 21 

Figure 11 – Example of a ROC curve (from Sampat, 2005)). .................................................... 30 

Figure 12 – Example of a FROC curve (from (Sonka, 2000)). ................................................... 30 

Figure 13 – (a) Original Image; (b) Isolation of the border of the breast; (c) Approximation of 

breast edge to a parabola. ............................................................................................................ 44 

Figure 14 – Contour of the image and a straight line between the extremes of the contour. ...... 45 

Figure 15 – Block diagram of the procedure to segment the pectoral muscle. ........................... 47 

Figure 16 – (a)original image; (b) after reducing grey levels; (c) after closing by 

reconstruction(red arrow), following by morphologic opening (blue arrow). ............................ 48 

Figure 17 – Breast image after reducing for find the mass. ........................................................ 55 

Figure 18 – (a) Altered image with the masses; (b) Original image with the masses. ................ 55 

Figure 19 – Original images. ....................................................................................................... 59 

Figure 20 – Application of Gauss Filter to the originals images of Figure 19. ........................... 60 

Figure 21 – Application of Canny methods to the filtered images of Figure 19. ........................ 61 

Figure 22 – Graphic representation of quadratic regression and of the breast contour. .............. 62 



 

iv 
 

Figure 23 – (a) Image of the contour of the right breast image in MLO projection; (b) Superior 

half of the image; (c) Representation of superior half of the contour and straight line obtained.63 

Figure 24 – (a) Image of the contour of the left breast image in MLO projection; (b) Superior 

half of the image; (c) Representation of superior half of the contour and straight line obtained.64 

Figure 25 – (a) Image of the contour of the right breast image in CC projection; (b) Superior 

half of the image; (c) Representation of superior half of the contour and straight line obtained.65 

Figure 26 – (a) Image of the contour of the left breast image in CC projection; (b) Superior half 

of the image; (c) Representation of superior half of the contour and straight line obtained. ...... 66 

Figure 27 – (a) Original image; (b) Reduction to 9 gray levels; (c) Visualization of levels 4,5 

and 6; (d) Labeling of regions; (e) Pectoral muscle; (f) Original image without pectoral muscle.

 ..................................................................................................................................................... 68 

Figure 28 – (a) Original image; (b) Reduction to 9 gray levels; (c) Visualization of levels 4,5 

and 6; (d) Labeling of regions; (e) Pectoral muscle; (f) Original image without pectoral muscle.

 ..................................................................................................................................................... 69 

Figure 29 – (a) Labeling of regions; (b) Binarized image; (c) Original image without artifacts. 70 

Figure 30 – (a) Segmentation of pectoral muscle using splines; (b) Extraction of pectoral 

muscle. ........................................................................................................................................ 71 

Figure 31 – (a) Original image; (b) Reduction to 9 gray levels; (c) Visualization of levels 4,5 

and 6; (d) Labeling of regions; (e) Pectoral muscle; (f) Original image without pectoral muscle.

 ..................................................................................................................................................... 71 

Figure 32 – Comparison of pectoral muscle extraction: (a) Result of application of the 

algorithm; (b) Ground truth. ........................................................................................................ 72 

Figure 33 – Graphic representation of grid scheme: (a) best result; (b) worst result. ................. 76 

Figure 34 – (a) Original Image; (b) Images after processing. ..................................................... 77 

Figure 35 – (a) Image after processing with a mass; (b) Original image with a mass. ............... 78 

  

 

 

 

 

 

 

 



 

v 
 

Tables Index 

Table 1 – Grading of imaging reports of microcalcifications according to risk of malignancy 

(adapted from (Rovere, 2006)). ................................................................................................... 11 

Table 2 – BI-RADS report final assessment categories (adapted from (Jatoi, 2010)). ............... 14 

Table 3 –  Number of CAD papers related to seven different organs, presented at the Annual 

Meetings of the Radiological Society of North of America (RSNA) in Chicago from 2000 to 

2005 (from (Doi, 2007)) .............................................................................................................. 28 

Table 4 – Equations of statistical descriptors from the histogram. ............................................. 50 

Table 5 – Equations of statistical descriptors from the co-occurrence matrix. ........................... 51 

Table 6 – The seven invariant moments of Hu. .......................................................................... 52 

Table 7 – Distribution of density classes. ................................................................................... 54 

Table 8 – Index of x
2
 values of the quadratic regression. ........................................................... 62 

Table 9 – Slopes of the straight lines drawn over the outline and results of projections. ........... 67 

Table 10 – Accuracy results for MIAS database. ........................................................................ 73 

Table 11 – Accuracy results for IN Breast database. .................................................................. 74 

Table 12 – Confusion Matrix. ..................................................................................................... 75 

Table 13 – Accuracy results for two categories of density. ........................................................ 75 

Table 14 – Results of classification in normal breast and breast with masses. ........................... 78 

Table 15 – Results of classification in normal breast and breast with masses with the original 

image. .......................................................................................................................................... 78 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

Acronyms List 

ACR – American College of Radiology 

AEC – Automatic Exposure Control 

AUC – Are Under the Curve 

BI – RADS – Breast Imaging Reporting and Data System 

BPNN – Back Propagation Neural Network 

CAD – Computer Aided Diagnosis 

CC – Cranio Caudal 

DCIS – Ductal Carcinoma in situ 

DWT – Discrete Wavelet Transform 

FCC – Fibrocystic Change 

FFDM – Full Field Digital Mammography 

FN – False Negative 

FP – False Positive 

FPF – False Positive Fraction 

FROC – Free Response ROC curve 

FSM – Film Screen Mammography 

IBC – Inflammatory Breast Carcinoma 

ISSAC – Interactive Selective and Adaptive Clustering 

LCIS – Lobular Carcinoma in situ 

MIAS – Mammography Image Analysis Society 

MIC – Multiple Image Comparison 

MRI – Magnetic Resonance Imaging 

MLO – Medio-Lateral Oblique 

PCA – Principal Component Analysis 

RBF – Radial Basis Function 

RBST – Rubber Band Straightening Transform 



 

viii 
 

ROC – Receiver Operating Characteristic 

ROI – Region of interest 

SIC – Single Image Comparison 

SVM – Support Vector Machine 

TN – True Negative 

TP – True Positive 

TPF – True Positive Fraction 

UWT – Undecimated Wavelet Transform 

 

 

 

 

 

 



 

Rita Teixeira  1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

CHAPTER I – Introduction  

1.1 – Motivation 

1.2 – Main Goals 

1.3 – Report Organization  

1.4 – Contributions 



Automatic Analysis of Mammography Images: Classification of Breast Density  

 

Rita Teixeira  2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I – Introduction  

 

Rita Teixeira  3 

 

1.1 Motivation  

Breast cancer is the most common malignancy of women and cause many deaths. The early 

detection is the best solution in order to avoid mastectomy, reduce the probability to return, and 

decrease the rate of mortality.  

The mammographic exam allows to detect and characterize lesions in the breast, so it is 

important that women be awareness of this disease and do auto exams frequently, and after of a 

specific age it is recommended doing regularly mammography exams. There are many 

techniques for detect breast lesions, like ultrasonography and magnetic resonance imaging, but 

mammography is the more common choice. Mammography is a very useful exam; however, the 

similarity between normal and pathologic patterns may cause difficult diagnosis. 

Computer aided diagnosis systems intend to support the doctor and other technicians in 

detection of mammary lesions, giving, thus, a second opinion.  

Breast density is an important measure which shows the possibility for the detection of 

abnormalities in mammograms. Higher breast density usually indicates a higher possibility for 

the presence of malignant tissue. A human observer can distinguish different structures very 

well without the information of their overall brightness. In automatic breast density 

classification it is important to decide which parameters give the best division between 

categories. 

 

1.2 Main Goals 

The aim of this thesis is to develop a completely automated method to analyze and classify 

the mammographic images according to the density. In the future it can be used in a 

hierarchically CAD system that classify the images firstly according density, after indicates if 

there is a lesion and finally what kind of lesion is. 

 The developed techniques have been implemented in MATLAB ® and tested on real case 

studies. 

 

1.3 Report Organization 

The present thesis is organized and divided into six chapters. In the second chapter is 

explained the anatomy of the breast, as well as some pathologies that occur in the breast, and the 

main disease, the cancer in order to understand its imaging features. Also in this chapter some 

technical concepts and physics of mammography exam and equipment are explained.  

The third chapter explains the history of computer aided detection, evaluation, it application 

in other organs and a little state of art of developed algorithms to detect breast lesions.
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Afterwards, there is a full and detailed explanation of the steps developed since the 

distinction between directions and projections until the classification, including also the 

segmentation of pectoral muscle. The fifth chapter includes the experimental results and their 

evaluation. The last chapter presents the conclusions of this thesis where all work will be 

commented, as well as some future perspectives and tasks are proposed.  

 

1.4 Contributions 

This dissertation aimed to provide an initial study about breast and mammography. It 

provided also a review of computer aided detection algorithms in mammography and in other 

areas.  

An algorithm that detects what direction and projection of breast is in cause was developed, 

in order to avoid wasting time and solve the problems with the lack of standard nomenclature. 

An algorithm that detects segments and extracts pectoral muscle was developed thereby 

removing a portion of the image that can interfere with the results of the following steps. Once 

breast density has proved to be a very important factor in the analysis of mammography images 

because it can be a sign of cancer, in this dissertation a method was developed for the extraction 

and combination of features in order to classify breast density images of two image databases. 

As happened in this work does not always images are classified using the same system, then it is 

possible to classify an image as dense or non-dense. 

This dissertation allows the creation of a completely automatic system from the simplest 

steps to the most complex because it also allows identify a specific type of lesions in 

mammography images, the masses. After the calcifications these lesions are the most frequent.
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2. Breast and Mammography 

The fundamental knowledge of the breast structures and some breast pathologies is essential 

to understand the importance of breast cancer study. Breast cancer is a malignant neoplasia 

produced by a cellular division dysfunction.  

Mammography is a particular form of radiography, using radiation levels between specific 

intervals with a purpose to acquire breast images to diagnose an eventual presence of structures 

that indicates a disease, especially cancer. In case of mammary pathologies, their early detection 

is extremely important. The technological advances verified in imaging have contributed for the 

increase in the successful detection of breast cancer cases. In this area, mammography has an 

important role to allow detect lesions in initial stages and make a favorable prognosis. 

2.1. Breast anatomy 

 During the fetal period is created, by epidermis, a depression which forms a mammary pit 

on the local of mammary gland. The region where appear the mammary glands is located in left 

and right sides of the upper ventral region of the trunk. The breasts exist in woman and man, but 

the mammary glands are normally most developed in female, except in some particular 

circumstances related with hormonal problems. The nipple is a small conical prominence 

surrounded by a circular area of pigmented skin, the areola, which contains large sebaceous 

glands that are often visible to the naked eye. The base of the female breast, roughly circular, 

extends from the second rib above to the sixth rib below. Medially, it borders the lateral edge of 

the body of the sternum, and laterally it reaches the mid axillary line, Figure 1 (Moinfar, 2007; 

Moore, 2004). 

 
Figure 1 – Sagittal section of female breast (from (MOORE, 2004)). 
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At puberty, the female breasts normally grow according to the glandular development and 

increase of fat deposition; furthermore, also the nipples and areolas grow. The size and shape of 

breast depend of genetic, racial and dietary factors. During the pregnancy, the areola colour 

becomes dark, and after it keeps pigmentation. This colour diminishes as soon as lactation is 

over, but is never entirely lost throughout life (Gray, 2000; Moore, 2004).  

The breast consists of gland tissue, fibrous tissue, connecting its lobes and fatty tissue in the 

intervals between lobes. The breast contains 15 to 20 lobes of glandular tissue, which constitute 

the parenchyma of the mammary gland. These lobes give a shape characteristic to the breast due 

to a considerable amount of fat, and these are composed of lobules, connected together by 

areolar tissue, blood vessels and ducts. Each lobule is drained by a lactiferous duct, which opens 

independently on the nipple. Just deep to the areola, each duct has a dilated portion, the 

lactiferous sinus, which accumulates milk during lactation. The smallest lobules include also the 

alveoli, which open into the smallest branches of the lactiferous ducts (Dixon, 2006; Moinfar, 

2007; Moore, 2004).  

Many changes happen in the breast tissue during the menstrual cycle and pregnancy, due to 

hormones progesterone and estrogens. In a woman who is not pregnant or suckling, the alveoli 

are very small and solid, but during the pregnancy enlarge, and the cells undergo rapid 

multiplication. The mammary glands only produce milk when the baby is born, despite be 

prepared for secretion since mid-pregnancy. The first milk, colostrums, eliminates the cells in 

the centre of the alveolus that suffered fatty degeneration. In a woman who has given birth more 

than twice the breast become large and pendulous, and in elderly women, they usually become 

small because of the decrease in fat and glandular tissue atrophy. But, normally in young 

women the breasts are supported and keep in their position by the Cooper’s ligaments. These 

ligaments, particularly well developed in the upper part of the gland, help to maintain the lobes 

of the gland (Moore, 2004; Seeley, Stephens, & Tate, 2004). 

As referred previously, hormones influence alterations in breast. Estrogens stimulate growth 

of the mammary glands, deposition of fat and development of lobules and alveoli. Progesterone 

and prolactin promote the final growth and are responsible for the function of these structures 

(Guyton & Hall, 2000). 

 

2.2. Breast pathologies 

2.2.1 Fibroadenoma 

Fibroadenomas are the most common breast tumors in pubertal females, and there are three 

types of fibroadenoma classified as: common, giant and juvenile. These tumors are
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characterized by a proliferation of both glandular and stromal elements, have well-demarcated 

borders, are firm, rubbery, freely mobile, solid, usually solitary breast masses. There is not pain 

or tenderness due to fibroadenomas and their size do not change with the menstrual cycle. 

Women aged in their 20s and adolescents are the most common people affected with this 

disease. A rapid growth sometimes occurs, but usually that growth is extremely slow. A giant 

fibroadenoma should measure over 5 cm in diameter, but the average is 2.5 cm. These tumors 

may be return, approximately 20% recur, and women should be aware of this risk and make 

periodic examinations (Dixon, 2006; Moinfar, 2007). 

2.2.2 Mammary Dysplasia 

Mammary dysplasia also can be called as fibrocystic changes (FCC), fibrocystic disease, 

fibrous mastopathy or fibroadenosis cystic. In reality, these alterations not indicate a disease.  

This pathology is defined as being a benign alteration of the breast consisting of cystic 

dilatation of intralobular glands with or without stromal fibrosis. The age distribution of this 

lesion is between 20 and 50 years. Normally, fibrocystic changes are associated to the cyclic 

levels of ovarian hormones, because during ovulation and before menstruation, the hormone 

level changes often lead the breast cells to retain fluid and develop into nodules or cysts, which 

feel like a lump when touched. The texture of the breast is, in these cases, similar to the breast in 

pre-menstrual phase. The signs of fibrocystic changes include increased engorgement and 

density of the breasts, excessive nodularity, rapid change and fluctuation in the size of cystic 

areas, increased tenderness, and occasionally spontaneous nipple discharge. It can be unilateral, 

bilateral or just affect a part of the breast (Malik, 2010; Moinfar, 2007). 

2.2.3 Mastitis and breast abscess 

Inflammatory conditions of the breast, particularly acute mastitis and breast abscess are rare 

pathologies. Often these infections can happen in postpartum situations or after a lesion. There 

are two types of mastitis: acute and chronic. In acute mastitis, it is predominantly composed of 

neutrophilic granulocytes, seen mostly in lactating women. Chronic mastitis may be due to 

reinfection or a relapsed infection; the first case occurs sporadically and commonly is 

transmitted from the baby, and the second case means that eradication of the pathogen was 

failed (Jatoi, 2010; Moinfar, 2007).  

Breast abscess arises when mastitis was treated inadequately and exist milk retention. The 

most common diagnosis techniques used to treat include ultrasonography of the breast and 

needle aspiration under local anesthesia with a purpose of identify collections of fluid or pus 

(Jatoi, 2010; Moinfar, 2007). 
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2.2.4 Gynecomastia 

The male breast in some particular circumstances grows, and that disease is called 

gynecomastia. This pathology is benign and is defined as a potential reversible enlargement of 

the male breast with a proliferation of ductal epithelial and mesenchymal components. In 

general, gynecomastia occurs during the adolescence because of excessive estrogens related to 

testosterone or androgen deficiency. It is normal that this problem resolves spontaneously; 

however, it is a significant problem in men undergoing hormonal therapy for prostate cancer 

(Jatoi, 2010; Manni, 1999). 

2.3. Breast Cancer 

Cancer is a condition that affects people all over the world. Research in this area beginning 

since 1900 and cancer was a disease without cure. As other cancers, breast cancer arises when 

cells growth and multiply uncontrollably, which produces a tumor or a neoplasm. The tumors 

can be benign when the cancerous cells do not invade other body tissues or malignant if cells 

attack nearby tissues and travel through the bloodstream or lymphatic system to other parts of 

the body, spreading a cancer by a process known as metastasis (Alvin, 2006; Panno, 2005). 

The damage that cancerous tumors cause to various important organs in the body can lead to 

serious illness, so an early detection is important for a better treatment and recovery. The most 

common range of age attacked by breast cancer is between 40-50 years old and until the 

menopause, the breast cancer rate incidence increases dramatically. There are other risk factors 

that lead to the development of a breast cancer as like age at menarche and menopause, age at 

first pregnancy, family history, previous benign breast disease and radiation (Dixon, 2006). 

 2.3.1 Breast Cancer Lesions 
Breast cancer has some characteristic lesions such as microcalcifications, masses, 

architectural distortions and bilateral asymmetry.  

a) Microcalcifications 

Microcalcifications are small deposits of calcium of size from 0.33 to 0.7 mm and are 

slightly brighter than surrounding tissues. These lesions are difficult to detect in mammography 

because appear with low contrast due to their small size, although have high inherent 

attenuation properties. Associated with extra cell activity in breast tissue microcalcifications 

may show up in clusters or in patterns. A typical mammogram from MIAS database with 

microcalcifications is shown in Figure 2a) and its ground truth in Figure 2b) (Chang, 2005; 

Kavitha, 2007). 
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(a) 

 
(b) 

       Figure 2 – (a) Original mammography image; (b) Correspondent ground truth (from MIAS Database). 

 

A microcalcification cluster normally is more detectable than an isolated microcalcification, 

and contributes for the diagnosis of early stages of breast cancer. These clusters may have three 

or more microcalcifications present in a mammogram region with an area around 1 cm
2
. Once 

microcalcification may be a sign to malignancy it is important to be able to distinguish benign 

and malignant microcalcifications. Table 1 presents the grade, degree of suspicion and 

mammographic appearance (Kavitha, 2007; Rovere, 2006). 

Table 1 – Grading of imaging reports of microcalcifications according to risk of malignancy (adapted from (Rovere, 2006)). 

Grade Degree of suspicion Mammographic 

appearance 

1 Normal No abnormality seen 

2 Consistent with a benign 

lesion 

Popcorn, ring, micro cystic or 

diffuse bilateral calcification 

3 Atypical or indeterminate but 

probably benign 

Localized cluster of round, 

fine or punctuate 

calcification 

4 Suspicious of malignancy Localized cluster of granular 

calcification 

5 Consistent with malignancy Comedo calcification 

 

 

b) Masses 

Masses are lesions more difficult to detect in mammograms than microcalcifications because 

the features of a mass bear semblance to those of the normal breast parenchyma. In general, 

mass shape can be round, oval, lobular or irregular, and margins can be from circumscribed to 

spiculated, Figure 3.  
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Figure 3 – BI-RADS standardized description of masses (from (Jatoi, 2010)). 

 

When a mass is detected it is difficult to distinguish if is benignant or malignant but there are 

differences in the features of shape and texture between them. Benign masses are typically 

smooth and distinct, and their shapes are similar to the round. On the other hand malignant 

masses are irregular and their boundaries are usually blurry, Figure 4. A mass with regular 

shape has a higher probability of being benign whereas a mass with an irregular shape has a 

high probability of being malignant (Saki, 2010; Sun, 2010; Zhao, 2011). 

 

c) Architectural distortions 

The anatomy of the breast included several linear structures that cause directionally oriented 

texture in mammograms, so a way to detect architectural distortions is the change of normal 

texture of the breast. Architectural distortion could be categorized as malignant or benign; the 

 
 

Figure 4 – Two malignant mass ROIs cropped from full-sized mammograms with their pathological characteristics 

specified (from (Digital Database for Sreening Mammography)). 
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former, includes cancer, and the latter, includes scar and soft-tissue damage due to trauma. Due 

to its subtle appearance and variability in presentation, architectural distortion is the most 

commonly missed abnormality in false negative cases (Ayres, 2003; Banik, 2011). 

d) Bilateral Asymmetry 

Bilateral asymmetry of breast means a difference between corresponding regions in left and 

right breast and can be classified into global asymmetry and focal asymmetry. The first, 

happens when a greater volume of fibroglandular tissue is present in one breast compared to 

another in the same region. The latter, corresponds to a circumscribed area of asymmetry seen 

on two views, and usually is an island of healthy fibroglandular tissue that is superimposed with 

surrounding fatty tissue (Bozek, 2009; Li, 2009). 

 

2.3.2 Types of Breast Cancer 

Breast cancer can be classified into invasive/infiltrating or non-invasive/in situ, and both 

have characteristic patterns by which they can be classified. The noninvasive breast cancer is 

divided into ductal and lobular types and as the names induce ductal carcinomas arise from 

ducts and lobular carcinomas arise from lobules and do not destroy other tissues (Jatoi, 2010). 

Ductal carcinoma in situ (DCIS) is the most common form of noninvasive carcinoma. The 

most common mammographic manifestation of DCIS is microcalcifications, and usually it is 

more easily to diagnose microcalcifications than masses, and thus is more effortlessly to detect 

DCIS than infiltrating carcinoma. This carcinoma is characterized by the proliferation of 

malignant mammary ductal epithelial cells that line the breast milk ducts, without evidence of 

invasion beyond the basement membrane. Once is important the size and extent of a DCIS to 

determine optimal surgical management and mammography had difficulties, some studies 

demonstrate most interest in other modalities, such as magnetic resonance imaging (MRI) that is 

more sensitive than mammography (Dixon, 2006;Jatoi, 2010; Moinfar, 2007). 

Lobular carcinoma in situ (LCIS) arises in milk glands, and generally occurs before the 

menopause. This type of carcinoma it is hard to detect in mammography and when the woman 

does palpation. May be due to the difficulty to diagnosis LCIS, between 25 and 20% of women 

presenting this kind of tumor develop an invasive breast cancer (Dixon, 2006; Jatoi, 2010).  

There exist other types of breast carcinomas, but with lower incidence, such as inflammatory 

breast carcinoma (IBC) and Paget’s disease. Inflammatory breast carcinoma, Figure 5, are 

uncommon and characterized by brawny, redness, warmth, swelling, and erythematous skin 

changes and have the worst prognosis of all locally advanced breast cancers. 



Automatic Analysis of Mammography Images: Classification of Breast Density  

 

Rita Teixeira  14 

 

 

The IBC is produced by dermal lymphatic obstruction, and the diagnosis of this kind of 

cancer is done in advanced stages. The survival to this carcinoma it is reduced to 25-50 % after 

five years of evolution, due to an existence of the early lymphatic invasion (Dixon, 2006; Jatoi, 

2010). 

Paget’s disease consists in a chronic eczematoid lesion of the nipple associated with an 

underlying breast malignancy. This disease can be due to a carcinoma in subareolar ducts 

(Dixon, 2006; Moinfar, 2007). 

 

 

2.4 Breast Imaging Reporting and Data System 

Several classifications have been used for classify the breast lesions and, although all of 

them are similar, the more accepted is the classification proposed by American College of 

Radiology (Breast Imaging Reporting and Data System – BI-RADS), Table 2. 

 

Table 2 – BI-RADS report final assessment categories (adapted from (Jatoi, 2010)). 

 
Figure 5 – Inflammatory breast carcinoma (from (Dixon, 2006)). 

Category Definition Recommendation 

0 Incomplete assessment Additional imaging workup 

1 Negative Routine screening 

2 Benign finding(s) Routine screening 

3 Probably benign Short term follow-up 

(6 months) 

4 Suspicious abnormality Biopsy 

5 Highly suggestive 

of malignancy 

Appropriate action 

should be taken 

6 Known (biopsy – proven) 

cancer 

Appropriate action 
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2.5 Breast Density  

Breast density is a strong indicator for breast cancer, which shows the possibility for the 

detection of abnormalities in mammograms. There is a great difficulty in detect tumors in the 

initial stage in density breasts, because it tends to mask the abnormal tissue. To minimize this 

problem, the main recommendation is the execution of periodic exams. The breast density 

decreases with the woman’s age, reflecting the gradual substitution of fibroglandular tissue by 

fat tissue. 

The relationship between mammographic density and the risk of development breast cancer 

was studied by Byng et al. They presented a tool that could be helpful during the preventive 

monitoring. The first step of this work was detect breast edges dividing the mammary structure 

and the background of the image, and then identify density region (Byng, 1998). 

Other researchers also proposed the classification of mammograms by density through 

computation techniques. The classification presented considers local statistics and texture 

measures to divide the mammograms in fat or dens (Hajnal, 1993; Taylor, 1994). 

The mammographic characteristics and the risk of breast cancer also was been studied by 

Byrne et al. The researchers affirmed that in nearly 2000 cases analyzed the risk almost 

duplicate when the woman presents some density in the breast. For women with a density above 

75% the risk increases to more than four times.  

Many studies have been done to prove that the density should be include as a criteria of 

selection in women for screening programs and to determine how often is needed to take exams.  

 

2.5.1 Classification of the breast according density 

The mammary density is not perceptible by palpation but it is related with the fact of the x-rays 

penetrate the different types of breast tissues, so the relative amounts of fat, connective and 

epithelial tissue determines the radiographic appearance of the breast on a mammogram. Light 

(non-radiolucent) areas on the mammogram represent the fibrous and glandular tissues in the 

breast, whereas, the dark (radiolucent) areas are mostly fat (Ursin, 2009; Yaghjyan, 2011).  

 It was necessary create a method of classification of density patterns, so Wolfe’s 

classification has been traditionally used in clinical practice and research. That classification 

had four breast parenchyma patterns or six category classification system based on the visual 

estimation of the percent density. The American College of radiology introduced a little 

modification in Wolfe’s classification known as Breast Imaging- Reporting and Data System 

(BI-RADS) classification. The four categories of this density system are: BIRADS-1 indicates a 

predominantly fatty breast; BIRADS-2 scattered fibroglandular densities; BIRADS-3 a breast
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that is heterogeneously dense and BIRADS-4, the highest level, an extremely dense breast that 

could obscure a lesion (Yaffe,2008; Yaghjyan,2011). Examples of these breast types are shown 

in Figure 6. 

 

 Other measure that is related with density is sensitivity, because with high mammographic 

density we have a reduced ability of detecting an existing cancer. It is very difficult locate ill-

defined cancers within an opaque uniform background. Thus, as mammographic breast density 

is a strong predictor of breast cancer the first step of image and processing analysis of 

mammogram is the density classification. 

2.6 Mammography Equipment 

Mammography is an imaging procedure for examination of the breast that gives information 

about breast morphology, anatomy and pathologies. It is used for detection and diagnosis of 

breast cancer, as well as evaluates mass lesions in breast. The early detection of breast cancer is 

an important factor to treat this disease with success.  

This procedure is similar to the other X-Rays, however, are used low doses, presenting a high 

quality that leads to high contrast and resolution and low noise (Sivaramakrishna, Gordon, 

1997). The breast is sensitive to ionizing radiation, so it is desirable to use the lowest radiation 

dose compatible with excellent image quality. 

Mammography is more sensitive and specific in assessing fatty breasts than dense breast. 

Dense breast tissue is particularly difficult to assess in young women. Mammography is also 

used in assisting needle core biopsies and for localization of non-palpable lesions (Chinyama, 

2000). In screening mammography the uniform compression of the breast is important to ensure 

image contrast, thus these tools have to be highly sensitive, identifying as correctly as possible

 

 

   

(a) (b) (c) (d) 
Figure 6 – Mammograms with differing mammographic breast densities (a) predominantly fat; (b) fat with 

some fibroglandular tissue; (c) heterogeneously dense; (d) extremely dense (from (Moreira, 2012)). 
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those tumors that could be malignant. On the other hand, diagnostic mammography is usually 

more time consuming, expensive and provides higher radiation dose to the patient that screening 

mammography, so diagnostic tools must have a great specificity in order to really detect those 

tumors that are malignant (Perez, 2002). 

In order to assess differences in density between the breast tissue image acquisition is done 

using two views: a cranio caudal (CC) and mediolateral oblique (MLO). Generally, on MLO 

view, more breast tissue can be projected than on the CC view because of the slope and curve of 

the chest wall. On CC projection, Figure 7a, must be included all breast tissue with the 

exception of the axillaries portion. During the positioning is important to make sure that is 

included the upper and posterior breast tissue, through the elevation of breast within the limit of 

its natural mobility. The projection MLO, Figure 7b, should include as much breast tissue as 

possible. The image should include the free margin of the pectoral muscle to ensure that the 

patient is as far over the detector as possible and that the tail of the breast is imaged (Kopans, 

2007; Engeland, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Once localized lesions are needed methods for divided the breast in small areas. The method 

of the quadrants divides the breast using the nipple as reference. Figure 8 shows two forms of 

represent this method.  

 

 

 

(a) 

 

(b) 

Figure 7 – Two distinct mammographic projections: (a) Cranio Caudal view; (b) Medio Lateral Oblique view 

(from (Kopans, 2007)). 
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(a) 

 

(b) 

Figure 8 – Breast localization: (a) quadrants method; (b) nomenclature of each quadrant (from 

(Kopans, 2007; Moore&Agur, 2003)). 

 

The essential components of the mammographic imaging system are a mammographic X-ray 

tube, a device for compressing the breast, an anti-scatter grid, a mammographic image receptor, 

and an automatic exposure control (AEC), as shown in Figure 9. 

 
Figure 9 – A typical mammography unit (from (Akay, 2006)). 
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X-ray tube 

An important difference in mammographic tube operation compared with conventional 

radiographic tube operation is the low operating voltage, typically below 35 kVp. The X-ray 

tubes are formed by a glass ampoule under vacuum, where there is an internal filament, a 

cathode and a target, the anode, having a window through which passes the useful beam. The 

electric current passing through the cathode produces electrons that are accelerated by the 

potential difference between cathode and anode (Akay, 2006; Webster, 2006). The voltage 

applied to cause the potential difference between cathode and anode, determines the maximum 

photon energy which will be transmitted for the breast. So, it is necessary the existence of a 

collimator and filters to limit and direct the output of radiation. The low voltages applied in the 

tube, there will cause a reduction in the energy beam produced, also reducing the dose received 

by the patient. The focus used to establish the image is provided by two filaments contained in 

the x-ray tubes, the large focus with 0.3 mm and the thin focus with 0.1 mm. These filaments 

must be made of a material having a high melting, usually made of tungsten, molybdenum or 

rhodium (Webster, 2006; Bronzino, 2000). 

Compression Unit 

During the image acquisition process, it should be avoided the loss of resolution caused 

by the patient movement, for that the patient must be hold breath, using the lowest exposure 

time possible and immobilizing the breast by compression. As seen previously, the uniform 

compression decreases the thickness of breast, allowing a better penetration of the X-ray beams. 

This procedure minimizes superimposition and geometric unsharpness, while resolution is 

improved as the distance to the object of interest is decreased. Furthermore, it is important to 

ensure that the area of concern is included in the field of view, because lesions can “roll” or 

“squeeze” out. It also improves the image contrast and minimizes superposition from different 

plans (Bronzino, 2000; Cardenosa, 2004 ). 

Anti-Scatter Grid 

These grids are composed of linear lead (Pb) separated by a rigid interspace material and 

placed between the breast holder and the cassette slot. The absorption grid is projected with 

adequate width and spacing with the purpose of absorbing mainly the scattered radiation 

without interfering on primary radiation. Anti-scatter grids are used to avoid an image contrast 

decrease produced by scattered radiation when reaches the image receptor. The static grids have 

thin slices with a low resolution compared with the system in order to not to be displayed in the 

image (Akay, 2006; Bronzino, 2000). 
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Image Receptor 

The fluorescents screens in conjunction with single coated radiographic film allow that X-

rays pass through the cover of a light-tight cassette and the film to impinge upon the screen. The 

cassettes guarantee a good contact between the screen and film. The crystals absorb the 

phosphor energy and produce light with an isotropic distribution. Higher sensitization of the 

film velocities is related to reducing the radiation dose to the patient. However, faster films tend 

to be noisier. The sensitization velocity is related to the film thickness; thinner films tend to be 

slower, but have better resolution. More recent films in mammography have higher qualities 

resolution, velocity and low noise. However, the scattering of light from the fluorescents 

screens reduces the resolution of the system. The radiographic films needs of chemical 

processes that absorb most of the light and display the image (Bronzino, 2000). 

Automatic Exposure Control (AEC) 

These devices of AEC compensate automatically the variations of absorption generated by 

the breast anatomy, reducing the final dose of radiation and avoiding repetitions. The sensors 

allow conjugate time exposure with the density and thickness of the tissues (Akay, 2006). 

Noise 

The doses in mammography are kept as low as possible because of health effects. However, 

X-ray quantum noise becomes more apparent in the image as the dose is lowered. This noise is 

due to the fact that there is an unavoidable random variation in the number of x-rays reaching a 

point on an image detector. The quantum noise depends on the average number of X-rays 

striking the image detector and is a fundamental limit to radiographic image quality. The 

granularity of the film is another source of noise and increases the higher the speed of film used. 

Hence, there is a necessity to adjust the speed to maintain a high image quality. The grain of the 

film is finite in size, and if the film image is enlarged, the inhomogeneity of the film grain 

becomes apparent (Bronzino, 2000; Kopans, 2007). In mammography, high image quality is 

essential because most of the relevant information of the mammogram corresponds to small 

details, such as microcalcifications, which can only be identified with a high spatial resolution 

image (Akay, 2006). 
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2.7 Digital Mammography  

Digital mammography is the most recent significant development in mammography, which 

uses essentially the same conventional mammography system, but the screen film system is 

replaced by a detector, which produces an electronic signal that is digitized and stored, Figure 

10. This technique has many practical advantages over film screen mammography (FSM), but 

only when its performance reaches the standards of FSM this new technology can be fully 

justified. Screening mammography has been shown to be effective in reducing breast cancer 

mortality. Full field digital mammography (FFDM) is increasingly used in the clinical setting, 

with a number of advantages resulting in better detection of breast cancer. With FFDM, the 

processes of image acquisition, processing, and display are decoupled or separated. This allows 

an optimization of each process (Bluekens, 2010; Pisano, 2004). 

 

 
Figure 10 – Schematic representation of a digital mammography system (from (Bronzino, 2000)) 

. 

In digital mammography, some of the limitations of FSM are overcome. The detected X-ray 

photons are converting directly to numeric values. The digital images can be processed by a 

computer, displayed in multiple formats, and fed directly to computer aided detection (CAD) 

software. Moreover, this technique allows the adjustment of the magnification, orientation, 

brightness and contrast of the image, after the exam (Bronzino, 2000; Tartar, 2008).  

Digital images are sampled images, generated instantly after the exposure and have lower 

noise than SFM because of reduction in quantum mottle and elimination of granular artifacts 

from film emulsion. Digital mammography provides a broader dynamic range of densities and 

greater contrast resolution in dense breasts (Nees, 2008; Pisano, 2004). 

In image processing, the contrast and brightness may be changed and enlarge part or entire 

breast. Post-acquisition processing may compensate for problems of underexposure or over 
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exposure. Image display systems for diagnosis include one or more high resolution monitors, a 

computer and image display software. For interpretation of image annotation and measurement 

tools are available, including linear, area and angle measurements. Sometimes, it is important to 

invert the gray-scale used for a better view of microcalcifications. Digital storage is able to store 

images in DICOM, it allows a rapid mode to access a large amount of data, but that requires a 

lot of computer memory. It is important that these systems be carefully designed to ensure that 

data are not lost, and personnel has to be trained to maintain the storage systems and retrieve 

new data for interpretation and prior exams for comparison (Hashimoto, 2008; Nees, 2008). 

Although in some aspects, the digital mammography having a best performance than SFM, it 

is more expensive. It is necessary still working and does some improvements in order to reduce 

the disadvantages that this technique has. 

2.8 Other technologies  

The ultrasound is another promising technique in breast imaging, and it is especially benefic 

to distinguish between cysts and carcinogenic masses without calcification. Dynamic, contrast-

enhanced Magnetic Resonance Imaging (MRI) of the breast has been shown to be extremely 

sensitive in the detection of invasive breast cancer and is not limited by the density of the breast 

tissue. However, this technique did not present enough resolution for identify pathological 

masses and calcifications as the conventional mammography. In proper situations, use MRI 

with other methods could have benefits. In terms of molecular imaging of the breast, a method 

is scintimammography which consists on use of gamma camera to obtain a breast image of a 

patient injected with radioisotopes. It is useful for patients who have dense breasts and suffered 

mammary surgery. The other method, galactography/ductography, is a specific exam using 

contrast radiologic agents for imaging the breast ducts. This technique can help diagnosing the 

cause of a discharge of abnormal nipple and diagnosing intra ductal papillomas. 

2.9 Summary 

The breast is studied by clinicians to understand better and make more easily the detection of 

breast pathologies, but cancer has a special attention due to their fatality in women. Different 

types of lesions can indicate breast cancer, such as microcalcifications, masses and architectural 

distortions. Furthermore, breast cancer can be classified according to the extent of the spread 

and the breast tissue where was originated. Some other diseases have patterns similar to the 

breast cancer, which difficult the diagnosis. A breast imaging reporting data system is used to 

classify the suspicion of breast cancer. Ever more the density of the breast is taken into account 

in the analysis of mammography images has been considered a risk factor for the development 

of breast cancer. 
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Mammography is very important for detect breast lesions when they are asymptomatic and 

when they are invasive and are in advanced stages. 

This technique is an X-ray imaging procedure for examination of the breast that gives 

information about breast morphology, anatomy and pathologies. The main structures present in 

a mammogram is an X-ray tube, an anti scatter grid, a breast compressor, an image receptor and 

finally, an automatic exposure control to adjust the amount of radiation. 

The digital mammography improved some aspects that the conventional mammography 

cannot. In order to try getting best results than mammography other methods such as Magnetic 

Resonance Imaging and ultrasound are also used in this area. 
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3. Computer Aided Diagnosis (CAD) 

Computer aided detection or diagnosis (CAD) is an important application of pattern 

recognition, computer science and image processing and analysis techniques, aiming at assisting 

doctors in making diagnostic decisions. Once the data are often not easily interpretable the CAD 

systems help doctor detecting subtle lesions and reducing the probability of failure. These 

computational systems are promising in detection of suspect cases and for helping in the 

diagnostic decision as a “second opinion”. Thus, in the past several years, CAD systems and 

related techniques have attracted the attention of both research scientists and radiologists 

(Marroco, 2010; Tang, 2009). 

3.1 CAD History 

The idea of using a computer to help in diagnosis started in 1960. In 1963, (Lodwick et al, 

1963) investigated the use of a computer in diagnosing bone tumors. One year later, (Meyers et 

al, 1964) propose a system for distinguish, automatically, normal and abnormal chest 

radiographs. Winsberg et al (Winsberg, 1967) developed an automated method to diagnosis 

breast cancer in mammograms by means of optical scanning. However, this method was largely 

unsuccessful, like other pioneer studies. A computer system for breast cancer detection was 

designed to classify breast lesions on X-radiographies by Ackerman and Gose (Ackerman, 

1972). Several years later, 1990, a new study conducted by Chan et al consisted in analyzes 

mammogram without and with the computer aid. This study contributed considerable for the 

growing of this field. Chan et al (Chan, 2008) found a statistically significant improvement in 

the performance of radiologists when they used the computer aid (Webster, 2006). 

The 1998 year was very important because Food and Drug Admnistration (FDA) approved a 

commercial CAD system for screen mammography, ImageChecker
TM

. In 2002 and 2004, 

respectively, FDA also approved iCAD and Eastman Kodak’s Health Group for mammography. 

In breast ultrasonography, the software was designed to analyze breast ultrasound images by 

automatically segmenting and analyzing shape and orientation characteristics of suspicious 

lesions in user selected regions of interest (ROI). Today, it is estimated that more than 5000 

mammography CAD systems are in current use in hospitals, clinics and screening center in the 

U.S. (Fujita, 2008). 

The number of papers related to CAD research presented at the RSNA meetings from 2000 

to 2005 is listed in Table 3. The majority of these presentations were concerned with three 

organs: chest, breast, and colon, but other organs such as brain, liver, and skeletal and vascular 

systems were also subjected to CAD research (Doi, 2007). 
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Table 3 –  Number of CAD papers related to seven different organs, presented at the Annual Meetings of the 

Radiological Society of North of America (RSNA) in Chicago from 2000 to 2005 (from (Doi, 2007)) 

 
 

3.2 CAD Systems 

CAD systems have been developed for the detection of a variety of cancers, including breast 

and lung cancer as well as colonic polyps. Less usual, but when expert human observers are not 

available, these systems can be used in emergency situations. CAD systems generally perform 

automatic assessments of patient images and present to radiologist areas that they have 

determined as having the appearance of an abnormality. It is important have awareness that in 

different contexts CAD can have different performance, so it needs to be adjusted to produce the 

most accurate result (Chan, 2008; Paquerault, 2010).  

It is clearly that CAD systems are very useful for health professional. These professionals 

have repetitive tasks, they observe many images in one day, and these systems allow for 

automate processes. There is another obvious advantage, related with the ability to observe and 

work with 3D and even 4D images. Two main types of CAD approaches are possible, the first is 

called CADe and identify suspicious regions in the image, and the second is CADx that 

classifies the suspicious regions. Sometimes, CADe is associated with computer aided detection 

and CADx with computer aided diagnosis. It is believed that CAD could be an effective and 

efficient solution for implementing double reading, which provides double perception and 

interpretation. As the name of these systems suggests, just an aid is given, and radiologists take 

the final decision (Doi, 2007; Webster, 2006). 

The mainly goal of CAD systems is to improve the accuracy and efficiency of radiologists. 

These technicians can be attracted by some features and miss a lesion; this can occur when they 

are focused on identifying some suspect disease. In mammography, the variability between 

radiologists can be very large, and sometimes when a radiologist analyzes a same case with a 

spaced time he gives a different interpretation. The CAD systems read images faster without 

reducing accuracy, what not happens with radiologists, but medical community needs to be 

confidant in the results (Webster, 2006). 
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3.3 CAD Evaluation 

The performance of CAD systems is variable and depends on the organ, disease, type of 

image finding, and so on. In general, CAD systems tend to err on the side of caution, presenting 

images with a large number of false positive (FP) marks. The CAD systems can be classified as 

true positive (TP), false positive (FP), true negative (TN) and false negative (FN) in the context 

of detecting the presence or absence of abnormality. In this classification, positive/negative 

refers to the decision made by the algorithm and true/false refers to how the decision agrees 

with the actual clinical state. The result false positive may put the patient in delicate and fragile 

position but, with the help of complementary exams, this result can be excluded. However, 

when in the results are a false negative, is a more worrying situation once the person has the 

lesion but the algorithm does not detect (Boyer, 2009; Sonka, 2000). 

The performance of a CAD system can be limited to the detection of obvious cancers with a 

moderate sensibility and a relative good specificity. These metrics are based on true/false, 

positives/negatives metrics. The sensitivity refers to how often the algorithm used reports that 

an abnormality exists in the instances where it actually exists, and is also called true positive 

fraction (TPF) (Boyer, 2009; Sonka, 2000): 

            
  

       
 (1) 

On the other hand, specificity refers to how frequently the algorithm correctly reports normal 

when no abnormal exists, and False Positive Fraction (FPF) is the same as (1- specificity): 

 

            
  

       
 (2) 

 

Conversely, CAD systems can be oriented toward high sensibility without regard for 

decreasing specificity. The developers of CAD systems can choose whatever the system will 

have high specificity or high sensibility. At present, CAD systems have a sensitivity of detection 

around 88 to 92% in mammography. However, despite the software improvements, masses have 

the highest rate of false positives (Boyer, 2009). 

The space of possible tradeoffs between sensitivity and specificity are summarized in a receiver 

operating characteristic (ROC) curve, Figure 11. The ROC curve is typically plotted with the 

TPF (sensitivity) on Y axis and the FPF (1- specificity) on the X axis. Thus, the ROC curve 

produced allows the detection of massive lesions with predictable performance. In the ROC, the 

ideal operating point is the upper left corner, with TPF=1 and FPF=0 (Sampat, 2005; Sonka, 

2000). 
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Figure 11 – Example of a ROC curve (from Sampat, 2005)). 

 

It is common to use the area under the ROC curve (AUC) as a performance measure for 

evaluating the goodness of the curve. An algorithm that decides by random guessing will 

generate a curve that is a diagonal line, and will have an AUC of 0.5. The greater the area under 

the curve much higher the probability of making a correct decision. One ROC curve is globally 

better than another ROC curve if it has a greater AUC. However, since the AUC is an overall 

measure, it may hide important details (Sampat, 2005; Sonka, 2000). 

To evaluate true-positive detection, sometimes is also required the localization of the tumor. 

The Free Response ROC (FROC) curve, Figure 12, is appropriate when the goal is to identify 

all instances of abnormalities in an image. In this scenario, as the algorithm can make an 

arbitrary number of false detections in an image, the number of FP is in principle unbounded. 

Since the maximum possible number of FP responses is not fixed, the x dimension of the FROC 

represents the average number of FP per image. The FROC represents the space of tradeoffs 

between the sensitivity and the generalized specificity of an algorithm. Two FROC curves may 

still be compared using the areas under the curves over the same range of FP (or TP) (Sampat, 

2005; Sonka, 2000). 

 
Figure 12 – Example of a FROC curve (from (Sonka, 2000)). 

 



Chapter III – Computer Aided Diagnosis  

 

Rita Teixeira  31 

 

3.4 CAD in brain and retinal pathologies  

The prevention of brain diseases is of paramount importance. MRI is very useful for the 

early detection of cerebral and cerebrovascular diseases. Lacunar infarcts, unruptured 

aneurysms, and arterial occlusions can be detected using MRI, and it is very important to detect 

them. However, visualization of these structures is not always easy for radiologists and 

neurosurgeons. CAD systems can assist neuroradiologists and general radiologists in detecting 

intracranial aneurysms, asymptomatic lacunar infarcts, and arterial occlusions and in assessing 

the risk of cerebral and cerebrovascular diseases (Doi, 2007). 

Retinal fundus images are useful for the early detection of a number of ocular diseases, if left 

untreated, can lead to blindness. Examinations using retinal fundus images are cost effective and 

are suitable for mass screening. In view of this, retinal fundus images are obtained in many 

health care centers and medical facilities during medical checkups for ophthalmic examinations. 

The increase in the number of ophthalmic examinations improves ocular health care in the 

population, but it also increases the workload of ophthalmologists. Therefore, CAD systems 

developed for analyzing retinal fundus images can assist in reducing the workload of 

ophthalmologists and improving the screening accuracy (Doi, 2007). 

3.5 CAD Algorithms in breast lesions 

The most computer-aided detection and diagnosis computational algorithms in 

mammographic image analysis consist of the following typical steps: segmentation, feature 

extraction, feature selection and classification. But, before that, image enhancement is usually 

needed. The aim of the segmentation step in mammographic image analysis is to extract regions 

of interest (ROIs) containing breast abnormalities from the normal breast tissue. Another aim of 

the segmentation is to locate the suspicious lesion candidates from the region of interest. 

Following the segmentation, feature extraction consists in determine the characteristics of the 

region of interest. The input of this stage is a set of lesion candidate regions that are 

characterized by a number of features extracted from those regions. Some of the features 

extracted from the regions of interest in the mammographic image are not significant when 

observed alone, but in combination with other features, they can be significant for classification. 

The best set of features for eliminating false positives and for classifying lesion types as benign 

or malignant are selected in the feature selection step. The features extracted and selected in the 

previous steps are used to classify them into lesion non-lesion state aiming at substantially 

reduction of the false positives. Further classification can be considered, identifying different 

types of lesions, particularly if they benign or malignant. 
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3.5.1 Microcalcifications 

The detection of microcalcifications in breast imaging has always been the role of 

mammography. The computer system should process the mammograms as digitized images for 

the detection of suspicious points as being microcalcifications. Then, microcalcifications have 

to be separated through a classification process and grouped into clusters. Finally, the obtained 

microcalcification clusters have to be classified as indicative of benign breast tissue or 

malignant, a sign of breast cancer. 

A high contrast is always required to differentiate very fine structures with slight differences 

in density, such as microcalcifications, so enhancement is the first step in the process of 

microcalcification detection and classification. The methods of computer assisted enhancement 

emerged as consequence of the difficulty of radiologists in detection of small microcalcification 

clusters. However, the computer assisted programs often generate many false positives, thus it 

was necessary to reduce that. In 1995, an algorithm called Issac (Interactive Selective and 

Adaptive Clustering) had been developed that reduced the number of false positives and 

improved the diagnosis results. As referred previously, this algorithm comprised two parts, the 

first part identified sensitive sample domains in the feature space reducing the number of false 

positives. The second part was an interactive adaptation in which the radiologist or other user 

can improve the results by interactively identifying additional false positive or true negative 

samples. This tool was very useful in the sense that it helped radiologists bring their attention to 

possible microcalcification malignancy regions for a closer examination (Estevez, 1995). 

Wavelet transform has been very used in computer analysis of mammographic images. Yu et 

al (Yu, 1996) enhance the microcalcifications using an undecimated wavelet transform (UWT). 

Once exists a similarity between high frequency noise and microcalcifications, UWT with their 

multiresolution capacity allows enhance microcalcification and suppress noise. Therefore, the 

input image are decomposed into different resolution levels that are sensitive to different 

frequency bands, and then is chosen an appropriate wavelet which will allow separate 

microcalcifications and high frequency noise into different resolution levels. By choosing the 

right resolution level can effectively enhance microcalcifications. This technique had the 

potential to become a useful method in detecting microcalcification (Yu, 1996). 

Strickland et al. proposed a discrete wavelet transform (DWT) with bi-orthogonal spline 

filters. Four dyadic and two additional interpolating scales are extracted by introducing binary 

thresholds in every scale (Strickland, 1996). Laine et al. applied a wavelet-based enhancement 

methodology utilizing redundant transformation and linear/nonlinear mapping functions with 

Laplacian or gradient wavelet coefficients (Laine, 1995). 

Fractal and fuzzy logic methodologies are also approaches resulting in sophisticated 

enhancement techniques. Li et al. proposed a fractal modeling scheme. The breast background 
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tissue results in high local self-similarity, but the presence of microcalcifications reduces it. 

Microcalcifications were enhanced based on the difference between the original and the 

modeled image (Li, 1997). Cheng et al. proposed a fuzzy logic contrast improvement 

methodology resulting in the enhancement of con tours and fine details of the mammographic 

structures. Local contrast values are improved by the utilization of the maximum fuzzy entropy 

principle and global information that are extracted by histogram analysis (Cheng, 1998). Jiang 

et al. applied a fuzzy enhancement operator restructuring the mammograms in fuzzy domain 

aiming on the detection of microcalcifications. The utilization of maximum fuzzy entropy 

principle results in the identification of regions with high local fuzzy contrast values which 

corresponds to microcalcifications (Jiang, 2005). 

Wirth et al. enhance the contrast of microcalcifications based on morphological analysis. The 

suppression of background artifacts and the isolation of the breast region are the first steps. 

Then the perspicacity of microcalcifications is improved using morphological enhancement. 

This method allows the preservation of small details that were eliminated when they used 

traditional enhancement techniques. Moreover, it is able to enhance microcalcifications without 

noise emphasis or the over accentuation of background tissue (Wirth, 2004). 

Segmentation is also an important step for detection and classification of microcalcifications. 

Chan et al. describe an algorithm for the segmentation of microcalcifications. The gray value 

resolution of their images is 10-bit. They work with disk-shaped simulated calcifications 

superimposed on a normal mammographic background. The authors state that the shape is not 

well reproduced. In one group, there are always eight to ten calcifications with a constant 

contrast of thirty gray levels relative to the background, and they are all smaller than 0.5 mm in 

diameter. The group is localized arbitrarily. These assumptions are questionable in the light of 

real mammograms, where neither the number of calcifications in a cluster, nor their contrast to 

the background is constant. For the segmentation, the difference between the signal-enhanced 

and the signal-suppressed image is calculated. Unless their method is tested with real images, its 

relevance remains doubtful (Chan, 1987). 

Wróblewska et al. developed a method that has more than 90% of efficiency in 

microcalcification detection. Initially, they segment the individual objects, i.e., potential 

microcalcifications by applying opening by reconstruction top-hat technique and image 

thresholding based on approximation of an image local histogram with probability density 

function of Gauss distribution (Wróblewska, 2003). 

Chan et al. and Wu et al. implement segmentation techniques based on local thresholding for 

individual pixels using the mean pixel value and rms noise fluctuation in a selected square 

region around the thresholded pixel. The threshold for a pixel is set as the mean value plus the 

rms noise value multiplied by a selected coefficient. A structure is segmented by connecting 

pixels that exceed the threshold. This method allows detect single or clustered 
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microcalcification because if a microcalcification is close to another or bright structure, the 

window used to compute the rms noise value around the first microcalcification will include the 

other bright structures, the noise rms may be overestimated, and the threshold may be set too 

high ( Chan, 1987; Wu, 1992). 

An extensive process of segmentation was done by Dengler et al. They use several steps that 

include high pass filtering, difference of Gaussian filtering, four computations of the standard 

deviation of the image, a smoothing, an opening, as well as an iterative thickening process with 

two erosions, two intersections and a union operation in each iteration (Dengler, 1993). 

Yu and Guan have proposed a CAD system automatic detection of clustered 

microcalcifications in digitized mammograms. Using mixed features the potential 

microcalcification clusters are segmented, and then the individual microcalcification cluster is 

segmented using 31 features. The discriminatory power of these features is analyzed using 

general regression neural networks via sequential forward and sequential backward selection 

methods (Yu, 2000). 

Netsch and Heinz-Otto, uses the Laplacian scale-space representation of the mammogram. 

First, possible locations of microcalcifications are identified as local maxima in the filtered 

image on a range of scales. For each finding, the size and local contrast are estimated, based on 

the Laplacian response denoted as the scale-space signature. A finding is marked as a 

microcalcification if the estimated contrast is larger than a predefined threshold which depends 

on the size of the finding (Netsch, 1999). 

Kim and Park proposed a three layer Back Propagation Neural Network (BPNN) for 

automatic detection of microcalcification clusters. Texture features are extracted to classify the 

ROI containing clustered MC and ROI containing normal tissues (Kim, 1999). 

 

3.5.2 Masses 

Very different approaches have been applied for mass detection, and researchers have 

applied a number of distinct processing techniques to prompt masses on mammograms. Li et al. 

extracted suspicious areas by adaptive thresholding followed by a modified Markov random 

field model-based method (Li, 1995). Petrick et al. identified potential mass regions with a 

density weighted contrast enhancement segmentation combined with an object-based region 

growing technique. They merged morphological and texture features in a linear discriminant 

analysis classifier to discriminate suspicious regions as either mass or normal breast tissue 

(Petrick, 1999). Zheng et al. implemented a Gaussian band pass filtering technique for 

segmenting potential masses. A rule-based multilayer topographic feature analysis was then 

utilized to classify suspect regions. With the same purpose, but in a different way some 

investigators have developed mass detection algorithms based on the analysis of gradient 
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orientation maps (Zheng, 1995). Karssemeijer et al. proposed a statistical analysis of a map of 

pixel orientations to detect stellate patterns (Karssemeijer, 1995). Brake et al. followed the same 

approach to detect all types of masses at different scales (Brake, 1999). Kobatake et al. 

developed an iris filter to detect malignant masses on mammograms. The filter was intended to 

enhance malignant tumors with very weak contrast to their background; features extracted from 

the border of the enhanced areas were used to eliminate false- positive detections (Kobatake, 

1999).  

Usually, segmentation methods used for classification of mammographic masses can be 

manual, semi-automated or fully automated. Mudigonda et al. used hand-segmented mass 

boundaries to extract gradient-based features and texture measures from a ribbon surrounding 

the mass, and used the features in a stepwise discriminant analysis classifier (Mudigonda, 

2000). Bruce et al. used multiresolution features to quantify mass shapes that were segmented 

manually by a radiologist (Bruce, 1999). Pohlman et al. segmented masses using an adaptive 

region growing algorithm. If a mass could not be segmented after repeated manual adjustments 

of the region growing algorithm, it was excluded from the data set. They found that in the task 

of differentiating invasive cancer and benign lesions, their tumor boundary roughness feature 

achieved classification accuracy comparable to those of two experienced radiologists who 

specialized in mammography (Pohlman, 1996). Kilday et al. extracted mass shapes using 

interactive gray-level thresholding. Masses that were not successfully segmented were excluded 

from analysis. Morphological features and patient age were used to classify the masses into 

cancer, cyst, and fibroadenoma categories (Kilday, 1993). Huo et al. used a fully automated 

region growing algorithm with a multiple transition point technique to segment the masses. 

Features extracted from the margin, and the density of the masses was used in a two-stage 

hybrid classifier consisting of a rule-based stage and an artificial neural network stage (Huo, 

1998). 

In order to extract and calculate features of the region of interest, Huo et al. developed a 

technique that analyzes patterns and quantifies the degree of speculation present. This study was 

divided into two steps, where the first consists in use region growing for automatic lesion 

extraction, and the second allows feature extraction using radial edge gradient analysis. Sahiner 

et al., introduced a new concept for characterize masses as malignant or benign, rubber band 

straightening transform (RBST). The RBST implies the transformation of a band of pixels 

localized around a segmented mass onto the Cartesian plane, and is obtained the RBST image. 

The border of a mammographic mass appears approximately as a horizontal line, and possible 

speculations resemble vertical lines in the RBST image (Sahiner, 1998). Similar to what 

happens in microcalcifications, wavelets are also used in mass detection. Qian et al. used 

multiresolution and multi-orientation wavelet transforms analyzing the influence of WTs on 

image feature extraction for mass detection. Moreover, is compared the discriminant ability of
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features extracted with and without the wavelet-based image preprocessing using computed 

ROC (Qian, 1999). Based on temporal changes is possible extract features that allow the correct 

classification of masses. Hadjiiski et al. take current and prior mammograms automatically 

segmented by active contour method and from each mass extract several characteristics. The 

feature space was obtained using four main combinations of features. Stepwise feature selection 

and linear discriminant analysis classification were used to select and merge the most useful 

features (Hadjiiski, 2001). 

Feature selection is important because of this step depends the choose of the best set of 

features for eliminating false positives and for a correct classification. In this stage, genetic 

algorithms are very useful, so Sahiner et al. implemented a method for feature selection that 

allows the differentiation mass / normal tissue (Sahiner, 1996).  

Nandi et al. developed a technique called genetic programming, where several features 

related with edge sharpness, shape and texture were computed and, for refine the set of features 

available to the genetic programming classifier, they used features selection methods. This 

approach had a good evaluation because the accuracy and the success rate were incredibly high 

(Nandi, 2006). 

 

3.5.3 Architectural Distortions 

The breast contains several piecewise linear structures, such as ligaments, ducts, and blood 

vessels, that cause directionally oriented texture in mammograms. The presence of architectural 

distortion is expected to change the normal oriented texture of the breast. Characterization of 

such subtle changes from a pattern recognition perspective is the goal of many approaches. 

Mudigonda and Rangayyan proposed the use of texture flow-field to detect architectural 

distortion, based on the local coherence of texture orientation. Only preliminary results were 

given, indicating the potential of the technique in the detection of architectural distortion 

(Mudigonga & Rangayyan, 2001). Matsubara et al. used mathematical morphology to detect 

architectural distortion around the skin line and a concentration index to detect architectural 

distortion within the mammary gland. The authors reported a sensitivity of 94% with 2.3 false- 

positives per image, and 84% with 2.4 false-positives per image, respectively (Matsubara, 

2003). Evans et al. investigated the ability of a commercial CAD system to mark invasive 

lobular carcinoma of the breast: the system correctly identified 17 of 20 cases of architectural 

distortion (Evans, 2002). Birdwell et al. evaluated the performance of a commercial CAD 

system in marking cancers that were overlooked by radiologists; the software detected five out 

of six cases of architectural distortion (Birdwell, 2001). However, Baker et al. found the 

sensitivity of two commercial CAD systems to be poor in detecting architectural distortion: 

fewer than 50% of the cases of architectural distortion were detected (Baker, 2003).
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Banik et al. presented methods based in Gabor filters, phase portrait modeling, fractal 

analysis, and Haralick’s texture features for architectural distortions detection. There exist a 

phase for detect candidates and for each ROI detected fractal dimension, and Haralick’s texture 

features were computed (Banik, 2009). These authors introduced some improvements in this 

approach and also introduced a novel method for the analysis of the angular spread of power 

and Law’s texture energy measures derived from geometrically transformed regions of interest. 

Thus, they reduce the number of false positive per image and increase the sensitivity (Banik, 

2011).  

 

3.5.4 Bilateral Asymmetry 

Asymmetrical breasts could be reliable indicators of future breast disease in women, and this 

factor should be considered in a woman's risk profile. Asymmetries of concern are those that are 

changing or enlarging or are new, those that are palpable and those that are associated with 

other findings, such as microcalcifications or architectural distortion. Nishikawa et al. analyzed 

asymmetry densities to detect masses by performing a non-linear subtraction operation between 

the right and the left breast (Nishikawa, 1994). Katariya et al. assumed a conic shape from the 

using the CC view (Kataryia, 1974). The study by Kalbhen et al. has used both view and 

information recorded from breast compression using volumes of 32 breast specimens. They 

determined the most accurate method of calculating the volume of the breast. Assuming a half 

elliptic cylinder shape for the compressed breast for the CC view, the result reported better-

measured volume than those assumed on the MLO view (Kalbhen, 1999).  

Lau and Bischof used detection of structural asymmetries between corresponding regions in 

the left and right breast to detect breast tumors. They used a set of measures related to the 

mammographic appearance of tumors but without characteristics of specific tumors. They 

developed measures of brightness, roughness, brightness-to-roughness and directionality. The 

method was evaluated using a set of 10 pairs of mammographic images where structural 

asymmetry was a significant factor in the radiologist's diagnosis. These mammographic images 

contained a total of 13 suspicious areas. Final test results revealed sensitivity of 92% with 4.9 

false positives per pair of mammographic images (Lau, 1991). Méndez et alsubtracted left and 

right mammographic images and applied a threshold to obtain a binary image with the 

information of suspicious areas. The suspicious regions or asymmetries were delimited by a 

region growing algorithm. The method was tested on a set of 70 pairs of digital mammographic 

images and obtained a true positive rate of 71% with 0.67 false positives per image (Méndez, 

1998).  
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Stamatakis et al. proposed two methods for the comparison of left and right breast. The first 

method, Single Image Comparison (SIC), involved finding the corresponding areas whose 

intensities differed more than a preset threshold. The second method, Multiple Image 

Comparison (MIC), involved generating eight pairs of images from each original pair of left and 

right images. These eight pairs of images were then bilaterally compared, and the resulting 

images were recombined into one pair of images. A set of 10 features was calculated from the 

suspicious areas detected by the comparison process. Stepwise discriminant analysis was used 

to select 5 features for final feature set. The results were tested on a data set of 50 pairs of 

mammographic images. The SIC method obtained 86.8% accuracy with 4.9 false positives per 

image and MIC method obtained 89.2% accuracy with 4.3 false positives per image 

(Stamatakis, 1996). 

Georgsson proposed two methods for differential analysis of bilateral mammographic images. 

The first method was based on the absolute difference between the registered images, and the 

second method was based on the statistical differences between properties of corresponding 

neighborhoods. He tested both methods on 100 mammographic images obtained from the MIAS 

database. The absolute difference method achieved a detection rate of 18 with 10 false positives, 

and statistical method achieved detection rate of 21 with 10 false positives (Georgsson, 2003). 

Good et al. developed a method which performs feature-based analysis of local and global 

differences between mammographic images. The extracted features are assumed to be relatively 

invariant with respect to breast compression. After the registration of the images with a 

template, they applied a series of global and local feature filters to characterize the image 

properties of interest. Features are placed into feature vector and appropriate comparison of 

feature vectors reveals differences between image properties (Good, 2003). Miller and Astley 

used anatomical features for detection of breast asymmetry. Using texture analysis, they 

segmented mammographic images into regions of fat and nonfat tissue that presents glandular 

disc. Glandular discs in left and right breast were compared using properties of their shape and 

grey-level distribution. They tested the proposed method on a data set of 30 pairs of 

mammographic images and achieved classification accuracy of 86.7% with false positive rate of 

16.7% (Miller, 1993). In another work, Miller and Astley compared glandular discs in left and 

right breast using shape, brightness and topology features. Measurements of shape were used to 

detect architectural distortion of the glandular disc, and brightness distribution was used to 

detect masses and focal densities and topological features specified other suspicious 

asymmetries. The method was tested on the data set of 104 pairs of mammographic images and 

obtained classification accuracy of 74% (Miller, 1994). 

Tahmoush and Samet proposed the use of image similarity to determine asymmetry. They 

filtered the mammographic images to find the contextually similar suspicious points that could 

be malignant. Their similarity or asymmetry analysis used comparison of the values of the sets 
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of suspicious points using modeling and supervised learning of model parameters. They used 

Bayes' Theorem to incorporate asymmetry into CAD system. Their method properly classified 

84% of images in their test set. The method correctly classified 97% of cancerous cases and 

42% of non-cancerous cases (Tahmoush, 2006). Ferrari et al. developed a method for the 

asymmetry analysis based on the detection of linear directional components using a 

multiresolution representation based on Gabor wavelets. They segmented the fibroglandular 

disc and decomposed the resulting image using a bank of Gabor filters. The Gabor filter 

responses for different scales and orientation were analyzed using Karhunen-Loève (KL) 

transform and Otsu's thresholding method. For quantitative and qualitative analysis of the 

oriented patterns, the rose diagrams were used. Their method obtained classification accuracy of 

up to 74.4% (Ferrari, 2001). Rangayyan et al. extended the method of Ferrari et al. by including 

morphological measures and geometric moments of the fibroglandular disc related to density 

distributions. Directional features were obtained from the difference in rose diagrams and 

additional set of features, including Hu's moments, eccentricity, stretch, area and average 

density were extracted from the segmented fibroglandular discs. The differences between the 

pairs of the features for the left and right mammographic image were used as measures for the 

analysis of asymmetry. They obtained the overall classification accuracy of 84.4% (Rangayyan, 

2007).  

3.6 Summary  

Computer-aided diagnosis has become a part of clinical work because it is a useful tool for 

diagnostic examinations but is still in the infancy of its full potential for applications to many 

different types of lesions obtained with various modalities. CAD is a concept based on the equal 

roles of physician and computer, and thus is distinctly different from automated computer 

diagnosis. 

The CAD evaluation tools are based on their values of false positives and negatives and true 

positive and negatives, and thus on the sensitivity and specificity. CAD can help to decrease 

errors of detection of cancers, notably those that manifested, as microcalcifications in 

mammography. 

CAD systems have a typical design that includes pre-processing, detection, classification and 

evaluation. Processing stage aiming at normalizes image size and intensity and reduces image 

noise in order to allow more robust systems to acquisition changes. It is in this stage that it is 

defined the region of interest to be processed in subsequent stages. The detection stage, 

introduced for enhancement the lesions in order to facilitate the detection. The output of this 

stage is first indication of lesion location, most likely with many false positives. Finally, 

classification stage aims at reducing the number of false positives by measuring local features at 
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the detected locations and uses those features for classification in lesion and non-lesion 

locations. An evaluation about the performance of CAD system allows the comparison of 

results with ground-truth. 

During years many researchers dedicated themselves to study intensively breast cancer 

lesions. Some of them invested in work in only one or two stages, and others created a complete 

CAD system giving one more advance in this area. Microcalcifications and masses are the most 

common lesions of the interest for researchers may be because the challenge exists in this 

problem. However, there exists some literature related with architectural distortions and 

bilateral asymmetries. Hence, the development of new breast cancer computer-aided detection is 

an active research field, particularly regarding the detection of subtle abnormalities in 

mammograms.
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4. Methods and Implementations 

This chapter presents a description about the different methodos implemented, as well as 

exemplifications of their results. The techniques have been implemented in Matlab® (R2012b) 

in a computer with CPU T2390 with 1.86 GHz and 2GB RAM memory. 

All the mammographic images correspond to real cases obtained from mini MIAS Database 

(Suckling, 1994), which contains MLO views of both left and right breasts. The images in the 

database were digitized at a resolution of 50 µm per pixel with 1024x1024 pixel size at 256 gray 

levels. The images are in the grayscale file format (.pgm). The other image database is INBreast 

which contains MLO and CC views of left and right breasts. The image matrix was 3328x4084 

or 2560x3328 pixels, depending on the compression plate used in the acquisition, and the 

images were saved in the DICOM format, with pixel size of 70 µm and 14-bit contrast 

resolution. Once in this work pretend do the classification of breast density it is important to say 

that MIAS database just have three categories to classify density, on the other hand the INBreast 

database use the most common classification that have four categories, as seen previously in 

chapter II. 

 

 

4.1 Distinction between left and right breast 
 

The first step of this work consists in doing the distinction between left and right breasts, 

because it is important do a diagnosis fast that allow an early detection of any malignancy in 

order to avoid mastectomy, reduce the probability to return, and decrease the rate of mortally. 

So, the initial work developed was to create a mechanism that was automatic from the simplest 

procedures to the most complex. The goal of this tool is to avoid errors in the image observation 

during the diagnosis, preventing the use of unnecessary therapies. 

Therefore, it is proposed an algorithm that by isolation of the border of the breast allows 

obtaining an approximation to a parabola, Figure 13, to determine if is a left or a right breast. 
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Firstly the image was read and submitted to a median filter, smoothing it and preventing the 

loss of details that could be important for the following steps. Another way to smooth the image 

and also tested consisted of using a Gaussian filter in order to verify if could influence the final 

results.  

After that the image is binarized, so the next step can easily extract the contour through the 

variations in intensity. To obtain the contour of the image is applied the edge function of Matlab 

using the Canny operator. 

In order to distinguish between the left and right breast it was used a linear iterator with the 

direction of the x-axis, which ran all the lines of the output image and save the coordinates(x,y) 

of the pixels belonging to the border of the breast in a vector. Through polifit function it was 

performed a quadratic regression which returned the parabola corresponding to the entered 

 

(a) 

 

(b) 

 

 (c) 

 

Figure 13 – (a) Original Image; (b) Isolation of the border of the breast; (c) Approximation of breast edge to a 

parabola. 
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values. From the results obtained it was possible to distinguish the left and right breast through 

of quadratic index of the function           . In the right cases this index must be 

positive otherwise it is a left breast. 

 

4.2 Distinction between CC and MLO projection 

 
To determine the projection that is associated with the image analysis were developed and 

tested several methods among which stood out for its high accuracy rate that will be presented 

in this section. 

The method chosen to distinguish between projections uses part of the algorithm developed 

to distinguish the left and right breasts presented in the previous section. The starting point is 

the image with the contour obtained by applying the Canny operator. The image is reduced 

approximately to half with the goal of draw a line between the extremes of the contour, Figure 

14. According to the research done it is known that the slope of a line belonging to the MLO 

projection is more pronounced than in the CC projection. Thus, it is possible to distinguish the 

projections taking into account on the absolute value of the slope of the line. A straight line was 

traced between the start and end points of the contour of the breast for a left breast this line must 

have negative slope, and for right breast a positive slope. 

 

 

 

 

 

 

 

 

 

4.3 Segmentation and extraction of pectoral muscle 
 

In a mammographic image there are structures which are not part of the breast as 

background, identification labels, and pectoral muscle. The segmentation of pectoral muscle is 

very useful in many areas of mammographic analysis, once this muscle presents characteristics 

 

 

 

Figure 14 – Contour of the image and a straight line between the extremes of the 

contour. 
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of textures similar to mammary parenchyma, that means the results of the imaging processing 

methods cannot be the corrects in automatic detection of cancer. 

There are several processes which depend of the location and segmentation of pectoral 

muscle: 

 

 Evaluation of the position of the breast during the exam (Naylor, 1999); 

 Location of clusters of microcalcifications (Pimentel, 2004); 

 Combination of information’s from pairs of mammograms (Yam, 2001) 

 Determination of density patterns of the mammary tissue (Karssemeijer, 1998); 

 Suppression of pectoral muscle for not interfere in methods of mammograms 

processing(Karssemeijer, 1998;Hatanaka, 2001;Raba, 2005) 

 

There are some works that approach the edge of the pectoral muscle by a straight line as a 

first step in the processing (Karssemeijer, 1998; Yam, 2001; Kwok, 2004; Ferrari, 2004). The 

region growing (Raba, 2005), the Hough transform (Karssemeijer, 1998; Yam, 2001; Ferrari, 

2004) and the local adaptive thresholding are some different techniques that can determine this 

approach. Masek et al. applied an algorithm that using the calculation of the minimum cross-

entropy threshold in areas around the pectoral muscle to determine several thresholds as a 

function of area size (Masek, 2001). In 2005, Bajger et al developed a method to identify the 

pectoral muscle based in minimum spanning trees and the active contour. This technique was 

applied in 84 images of MIAS data, and as result were obtained 1,64% of false-positives and 

12,03% of false- negatives (Bajger, 2005). 

As previously mentioned the technique of region growing is very used in this works. Raba et 

al. segmented the pectoral muscle applying this methodology and tested in 320 of these images 

were correctly segmented. The evaluation of the results was done by a radiologist (Raba, 2005). 

The detection of this muscle is an important task to aid the diagnosis, mainly when is being 

developed an automatic system. The morphologic operators are not yet very tested in this field 

and never were used specifically to detect the pectoral muscle. 

As seen previously the extraction of the pectoral muscle it is an important step to classify 

breast density because sometimes can induce wrongly the level of density. An algorithm to 

solve this problem was developed and the different steps to segment the pectoral muscle are 

presented in the following block diagram, Figure 15. 
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Figure 15 – Block diagram of the procedure to segment the pectoral muscle. 

 
 

A preliminary study was done to investigate empirically the grey levels which are related to 

the edge of the pectoral muscle. To study the grey levels it was decided reduce the image to nine 

levels (0 to 8) in original image. So, in this way the breast present eight levels (1 to 8) and the 

zero was reserved to background. In general, the pectoral muscle can be related to levels 5 to 8, 

and the other grey levels are related to the breast edge (1, 2 and 3) and part of mammary tissue 

(4). 

After reducing the grey levels, each level was binarized and for 5, 6, 7 and 8 it was applied 

the closing by reconstruction, to join regions of the same grey level and smooth the edge of the 

structures. Then the opening operator allowed eliminates small structures in image, as 

exemplified in Figure 16. For that it was used a structural element in the form of disc with a 

diameter of 20 pixels. 
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(a) (b) (c) 
Figure 16 – (a)original image; (b) after reducing grey levels; (c) after closing by 

reconstruction(red arrow), following by morphologic opening (blue arrow). 

 
 

The pre processing is important to eliminate some elements that are not connecting to the 

region of interest, so the next step consisted in use labels to solve this problem. In this algorithm 

just the entire breast interest, therefore using labels allow say that the labels which have more 

points is the breast and any other artifact is retired of the image. 

The last step of this procedure is selecting the correct level or levels that allow exclude the 

pectoral muscle of the image. After a lot of experimental work it was perceptible that if were 

used the levels 5, 6, 7 and 8 the result of segmentation would be inadequate. Thus, the 

conclusion was that the most suitable levels to use for pectoral muscle extraction were 6, 7 and 

8. However, after select these three levels can obtain just the pectoral muscle or other regions 

with the same grey levels but which are mammary tissue. Here was used the algorithm to 

identify if the image analyzed it was left or right because if it was a left image the algorithm 

chose the first label of the image, if not the algorithm chose the last label and delete all the 

points to the image. Note that this process is iterative in order to obtain a satisfactory contour. 

Every iteration will repeat the thresholding in eight levels, then the opening operator with a 

structural element of 20 and finally the extraction of the contour using labels. 

Once are working with two data images, all images of MIAS data were the firsts tested with 

this algorithm, just because this data only have MLO projection. There is no ground truth 

elaborated by a specialist in order to compare the results. Also INbreast images were tested, but 

just the MLO images that correspond to 201 of 410 the images. In this case we have a ground 

truth done by a specialist. However, the ground truth correspond a XML file with a few points 

of the pectoral muscle. So, it was necessary implement a small code to join these points using 

splines and also the methodology to distinct between left and right breast. Thus it was created a 

new set of MLO images without pectoral muscle which later would serve to compare with the 

results obtained.  
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4.4 Features extraction 
 

The definition of a set of features able to describe how density the tissue breast is, it is a 

challenging task for the development of a CAD system, especially if want to create a completely 

automated methodology. It is not very easy analyze visually the mammography and classify into 

one of the four types more usual of density, because sometimes it is a little questionable and 

therefore the automatic algorithm can help to decide what level of density is.   

The texture of such region can help to distinct between different tissues and can be 

represented by statistical descriptors extracted from the histogram of the image intensities or the 

co-occurrence matrix, besides structural and spectral descriptors. 

To obtain the best representation of the breast tissue density were combined various sets of 

features: 

 Statistics texture descriptors from the histogram of the image intensities; 

 Statistical texture descriptors from the co-occurrence matrix; 

 Texture descriptors from the Fourier spectrum; 

 Invariants Hu moments; 

 PCA on the matrix image vectored; 

 2DPCA on the image array; 

 2DPCA on the co-occurrence matrix; 

 

In respect of statistical descriptors were extracted nine. The average intensity of the image 

where the more dense tissue has the higher average intensity. Other measure used was the 

standard deviation that are related with the irregulariry of the texture.  It was also important 

calculate the smoothness that is low to regular intensity, and the uniformity that is higher in soft 

textures. Also asymmetry, kurtosis, average histogram, modified standar deviation and modified 

asymmetry were calculated and extracted (Subashini,2010). The formulas for all of these 

measures are presented in Table 4 . 
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However, the descriptors based on the histogram do not contain information about the 

positioning of pixels in relation to other pixels. In order to preserve the spatial information of 

the pixel intensity, statistics from the co-occurrence matrix of intensity levels were extracted. 

The most common descriptors were used in this work, so correlation evaluates how a pixel is 

related to its neighbor and contrast evaluate the contrast of intensity in this relation. The other 

measures are maximum probability, uniformity, entropy and homogeneity (Woods, 2004). The 

equations of statistical descriptors from the co-occurrence matrix are shown in Table 5.

Table 4 – Equations of statistical descriptors from the histogram. 
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Table 5 – Equations of statistical descriptors from the co-occurrence matrix. 

 

Correlation   
               

    

 

   

 

   

 

Contrast            

 

   

 

   

 

Maximum probability           

Uniformity     
  

 

   

 

   

 

Entropy               

 

   

 

   

 

Homogeneity   
   

      

 

   

 

   

 

 

 

The spectral approach is mainly used to identify the global frequency of an image by 

identifying high peaks of energy spectrum and based on the properties of Fourier spectrum. The 

spectrum is very useful because it has three characteristics, the first relates to the fact that 

prominent peaks in the spectrum providing the direction of the texture patterns. Moreover the 

fundamental spatial period is provided by standards position of the peaks in the frequency plan. 

And lastly, when the periodic elements are eliminated through the process leaves the filtration 

elements in the periodic image, which can be described by statistical techniques.The spectrum is 

generally adapted to describe the direction of standards periodicals in an image (Woods, 2004). 

In computer vision the moment of an image is a certain specific weighted average of the 

intensity of image pixels and are usually chosen because they contain some attractive properties. 

These can be applied to various aspects of image processing that can go from the invariant 

pattern recognition until the image encoding to represent an estimate. 

Hu moments are invariant to translation, scale change and also rotated. Hu developed two 

different methods for describe the invariant moments (Hu, 1962). The first called main axis, 

which however failed when it was found that the images are not contained a single major axis 

such images are described as symmetric with respect to rotation. The second method is the 

absolute time invariant. Hu derived expressions of the algebraic invariants applied to the 

moment of the function generated from a rotation transformation. These groups consist of 

nonlinear expressions centered moments. The result is a set of orthogonal absolute moment’s 
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invariants which can be used to identify patterns invariant to scale, rotation and position 

(Shutler, 2002). Based on normalized central moments in Table 6 are presented the seven 

moments invariants. 

Table 6 – The seven invariant moments of Hu. 
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Usually tends to choose the attributes that best describe the properties of the components of 

the image, this is necessary because one of the major problems inherent in the process of 

identifying regions in images is the large dimensionality of the feature vector, because it 

compromises the performance and accuracy classifier. The reduction of the dimensionality 

consists in decrease the set of characteristics, this being possible because some features may not 

be relevant for the decision, and so it is possible to identify the minimum number of 

characteristics that is enough to describe a region of an object or identify the image (Duin, 

2000). 

There are two approaches to reduce the dimensionality which are the extraction and feature 

selection. The first creates new characteristics from combinations or changes in the original set
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while the selection of characteristics is to determine a subset of characteristics that discriminate 

objects through previously established rules. 

According to Kendall, the PCA can be used for various tasks of which highlights the 

simplification of the data set, which consists in finding a simplified representation of the 

universe of study, that may occur through the transformation being a linear combination or not a 

set of independent variables in another set of autonomous and inferior dimension (Kendall, 

1980). 

Differently, 2DPCA is a technique developed for image feature extraction based on 2D 

matrices, in order to solve the problem of transform the matrix of the images in one-dimensional 

vector which make difficult analyze the co-variance matrix. So, in this algorithm it is more 

easier evaluate the co-variance matrix and consequently it is necessary less time of processing to 

determine the eigenvectors (Yang, 2004). 

 

4.5 Classification  
 

 4.5.1 Breast Density 

 

As explained earlier, the diagnostic step is performed from the sets of characteristics 

extracted previously, which is submitted to the evaluation of a classifier, which, from a previous 

training, tells, in this case, what levels of density the breast has. After selected the main features 

the following phase it is classification, but first it was necessary to be added to the array with 

the main characteristics the respective value of class to which image belongs. 

The support vector machines (SVMs) have been successfully applied in various areas of 

research. The basic idea of SVM is that it projects data points from a given two-class training 

set in a higher dimensional space and attempts to find a maximum-margin separating hyper 

plane between the data points of these two classes. The training data for SVMs should be 

represented as labeled vectors in a high dimensional space where each vector is a set of features 

that describes one case. This representation is constructed to preserve as much information as 

possible about features needed for the correct classification of samples (Taylor, 2000). 

To ensure the accuracy of the results there are two ways of choose what set is for training 

and for test. In the simple validation, the training samples labeled are randomly divided into two 

parts, one is used as training set to adjust the parameters of the classifier and the other validation 

set is used to estimate the generalization error. The cross validation method used in this work 

was the K-fold in which the model is trained with all subsets except for one that will be used as 

the validation set. The process is repeated K times, each time with a different subset as the 

validation set (Haykin, 1999). 



Automatic Analysis of Mammography Images: Classification of Breast Density  

 

Rita Teixeira  54 

 

The SVM can be described for a binary classification and the hyper plane generated is 

determined by a subset from the two classes, called support vectors. However, sometimes the 

data set cannot be precisely separated by a hyper plane, so a function called kernel is used 

instead. In this case the main goal is classify the breast density that according ACR has four 

categories, but in case of MIAS database only exists 3 categories, so it is a multi-class problem. 

There are two basic approaches about this kind of problem, the first divides into types one 

called one against all reduces the problem of multiple classes to a set of binary problems, and 

the other separate classes two by two, it is called one against one. The second approach is a 

generalization of the binary classification to more than two classes (Crammer, 2000; Hsu, 

2002). 

Relatively to this work the SVM approach was based on the implementation provided by the 

LibSVM toolkit using a C-SVC SVM model and Radial Basis Functions (RBF) where the 

parameters C and gamma were individually calibrated for different combination of features 

tested using a grid search scheme, minimizing the classification error. Generally, the radial 

kernel is a reasonable choice when the relation between class labels and attributes is nonlinear.  

It is possible do a grid-search using a function of LibSVM where all pairs (C,γ) are tried and the 

one with the best cross-validation accuracy is selected.  The disadvantage of that it is the high 

computational cost. The classifier’s training/testing processes was performed using a 10-fold 

cross validation that allowed obtaining statistically meaningful results (Chang, 2011).  

The mammograms used to classify have different labels of density, as referred previously the 

MIAS database is divided into three classes and the INbreast in the four BI-RADS standard 

classification. Table 7 shows the distribution of the instances used in this work. 

Table 7 – Distribution of density classes. 

 

 

Class MIAS INBreast 

1 104 136 

2 104 146 

3 112 99 

4  29 
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4.5.2 Masses 

 

According to BI-RADS, a mass is defined as a three-dimensional structure demonstrating 

convex outward borders, usually evident on two orthogonal views. The presence of a mass is the 

most important mammographic sign of cancer. An initial study on the detection of masses was 

started, since this computed aided system can also include the detection of lesions and 

identification of same. In this case, were used the images of the base INBreast that has 65 

normal images and 108 with masses, but only 27 images include exclusively the masses. In the 

developed algorithm the image is transformed in double format and after several experiments 

was found a value that allows getting only part of the image where the mass is, Figure 17. 

 

In INBreast documentation there is also a .XML file with the points of the lesions in every 

image. As can be seen in Figure 18 (a) the part of the image obtained contain the masses, 

sometimes not all points are in the selected area but help the technician or doctor because 

captures their attention to a small region of the image. 

 

Figure 17 – Breast image after 

reducing for find the mass. 

 
 (a) 

 
(b) 

Figure 18 – (a) Altered image with the masses; (b) Original image with the masses. 
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For now it is important to say that this method is very simplest but it is a beginning for 

promising results in the detection of masses and other lesions. However while this CAD system 

do not have a more complex technique, this can be a good help. 

 

4.6 Summary  
 

This chapter introduced some new techniques for the breast density classification. It explains 

detailed each step taken to achieve the distinction between directions and projections, the 

pectoral muscle segmentation, the features extraction and finally the classification. 

Firstly, it shows the type of images used in this work and the classification in right or left 

breast and then the classification in CC or MLO projection. 

The pectoral muscle segmentation and extraction is an important step of all work because the 

correct breast density classification can depends of that. Having done that, the following steps 

consist in extract and select the features to classify density. 

In the end, to solve a multi class problem it was used SVM where training/testing processes 

was performed using a 10-fold cross validation that allowed obtaining statistically meaningful 

results. 
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5. Results and Discussion 

In this chapter are presented the results of all the steps explained in the methodology. It is 

shown some of the best and worst results performed by the algorithm. The main objectives are 

classify correctly the largest possible number of images, according to density. But first it is 

important to distinguish between the direction and the projection of the breast and then remove 

the pectoral muscle that can influence the results. Finally, one can distinguish normal breast and 

one with injuries, specifically masses. 

  

5.1 Distinction between left and right breast 

For all the images of MIAS and INBreast data base was applied the algorithm based in 

quadratic regression referred in the previous chapter in order to evaluate their performance. In 

this work will be presented four images that represent the two projections in each breast, Figure 

19.  

 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
Figure 19 – Original images. 
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As mentioned in methodology the first step consists in smooth the original image using a 

median filter or a Gaussian filter. The last one present better result and the images obtained for 

every projection are presented in Figure 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be verified the changes for these four images are not very clearly, once the images 

are of good quality there is practically no noise, furthermore the labels / tags that are usually 

present in the images of the MIAS database here do not exist. But, in certain cases the 

application of this linear operator can be very useful and make a difference in the final result. 

The extraction of the contours it is an important step, so the images reproduced by the 

application of edge filter are reflected in the images of Figure 21. 

 
 

(a) 

 
 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 

 
(c) 

 
(d) 

Figure 20 – Application of Gauss Filter to the originals images of Figure 19. 
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Considering that the resultant images of this operation do not have noise and the contours 

were extracted correctly can be applied the next step. After all that the main decision will be 

made from a quadratic regression that defines if it is a left or right breast according to the 

concavity of the parabola and the contour of the breast obtained in the previous step. Using the 

contour and applying the quadratic regression are obtained the images of the Figure 22. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 21 – Application of Canny methods to the filtered images of Figure 19. 
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(a) 

 
(b) 

 
 (c) 

 
(d) 

Figure 22 – Graphic representation of quadratic regression and of the breast contour. 

 

As can be observed in Figure 18, the red line represents the parabola with the points of the 

vector of quadratic regression and the blue line represents just one parabola.  Through a research 

previously done about the functioning of the quadratic regression concluded that the distinction 

between the two breasts is given by the value correspondent to the quadratic index of the 

function (x
2
).  Thus, when this index is superior to zero it is a right breast, otherwise it is a left 

breast. The values of this index to these four images are presented in Table 8. 

Table 8 – Index of x2 values of the quadratic regression. 

Imagem a) da Figura 

19 

Imagem b) da Figura 

19 

Imagem c) da Figura 

19 

Imagem d) da Figura 

19 

Mama direita MLO Mama esquerda MLO Mama direita CC Mama esquerda CC 

5.4804e-04 -4.3209e-04 0.0018 -0.0019 

 

Accordingly these four images where the algorithm works correctly the goal were achieved 

with success. However, when tested for the three hundred and twenty two images of MIAS 

database using a Gaussian Filter the accuracy rate is 85% corresponding to two hundred and 

seventy five correct decisions. For all four hundred and ten images of INBreast database the 

algorithm classify correctly the right and left breasts, that means an accuracy rate of 100%.  

Until now the investigations are mainly related with the analysis of mammograms, especially 

with the segmentation of breast calcifications and not with the incidence and projection of the 
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image of the breast. This algorithm has low computational cost would be higher in the case of 

the median filter present better results, but the Gaussian filter helps reduce the runtime. Note 

that this process is independent of the projection, but as we will see below this is not true in 

distinguishing projections. 

 

5.2 Distinction between CC and MLO projection 

 

The technique developed to distinct the two most commonly used projections is dependent of 

the results obtained in the distinction made previously. So, will be used the same images that 

utilized will use the same images that are used in the algorithm to distinguish between left 

breast and right breast, Figures 23, 24, 25, 26. 

 

 
(a) 

 
(b) 

 

 
 (c) 

Figure 23 – (a) Image of the contour of the right breast image in MLO projection; (b) Superior 

half of the image; (c) Representation of superior half of the contour and straight line obtained. 
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(a) 

 
(b) 

 

 
(c) 

Figure 24 – (a) Image of the contour of the left breast image in MLO projection; (b) Superior 

half of the image; (c) Representation of superior half of the contour and straight line obtained. 
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(a) 

 
(b) 

 
 (c) 

Figure 25 – (a) Image of the contour of the right breast image in CC projection; (b) Superior half 

of the image; (c) Representation of superior half of the contour and straight line obtained. 
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 (c) 

Figure 26 – (a) Image of the contour of the left breast image in CC projection; (b) Superior half 

of the image; (c) Representation of superior half of the contour and straight line obtained. 

 
(a) 

 
(b) 
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In Table 9, it is clear that the technique worked correctly hitting the projection of the image 

in analysis. As said in methodology the slope of MLO projection is a little bit higher than in CC 

projection and for right breasts the slope is positive otherwise the slope is negative. 

 

Table 9 – Slopes of the straight lines drawn over the outline and results of projections. 

Images Image a) of the 

Figure 15 

Image b) of the 

Figure 15 

Image c) of the 

Figure 15 

Image d) of the 

Figure 15 

Values of the 

slopes 

1.8492 -1.7927 1.0442 -1.2654 

Final result Right breast-

MLO projection 

Left breast-MLO 

projection 

Right breast-CC 

projection 

Left breast-CC 

projection 

 

Once this technique is dependent of the result of the distinction between left and right breast 

the success rate is compromised. Thus, can say that for the MIAS images have 100% of 

accuracy rate but only if the distinction between left and right breast were made correctly. So, as 

the hit rate is just 79% for the methodology of right or left breast this methodology has the 

same. It is important remember that MIAS database only have images of MLO projections, 

hence for a more reliable result the 410 images of INBreast base were tested, 203 had CC 

projection and obtained an accuracy rate of 95%. Although theoretically the values of CC 

projections are close to the expected, the values of the images MLO have fallen short of 

expectations it should be much higher than the CC. 

5.3 Segmentation and extraction of pectoral muscle 

 

Once the work was done take into account two databases of images, in this section firstly 

explain the segmentation and validation of pectoral muscle of MIAS images. Note that only 

MLO projections have pectoral muscle, so all the 322 images were submitted to this 

methodology. 

In the following images of Figure 27 are presented all steps of this algorithm in a 

mammography of left breast, which are explained in the methodology.  Also an example of 

segmentation and extraction of pectoral muscle in a right breast is presents in Figure 28.
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(a) 

 
(b) 

 
(c) 

 
 (d) 

 
(e) 

 
(f) 

Figure 27 – (a) Original image; (b) Reduction to 9 gray levels; (c) Visualization of levels 4,5 and 6; (d) Labeling 

of regions; (e) Pectoral muscle; (f) Original image without pectoral muscle. 
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(a) (b) (c) 
 

 

 

 

The last image shows that it is necessary eliminate some artifacts that can interfere in the 

breast density classification. As was used in previous steps, the use of labels allows eliminate 

those artifacts and Figure 29 presents the final result. 

(d) 

 
(e) 

(f) 
 

Figure 28 – (a) Original image; (b) Reduction to 9 gray levels; (c) Visualization of levels 4,5 and 6; (d) Labeling 

of regions; (e) Pectoral muscle; (f) Original image without pectoral muscle. 
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 (a) 

 
(b) 

 
(c) 

Figure 29 – (a) Labeling of regions; (b) Binarized image; (c) Original image without artifacts. 

 

 

 

 

Once the database do not have a ground truth for the extraction of pectoral muscle and 

according to a radiologist technician that evaluate the images the accuracy is approximately 

76%. The criteria of Doctor Sandra Ventura was to consider that the algorithm failed when there 

were at least 0.5cm or more muscle tissue still present in mammogram. The teacher thinks that 

the images are technically poor executed (for bad positioning, poor contrast and the presence of 

artifacts) may be condition the effectiveness of the algorithm. The advice given was to choose a 

set of images well executed because these factors will be relevant in measuring breast density, 

which is one of the goals of this work.  

Hereupon, were used the images of INBreast database which had MLO projection that 

correspond to 201 images. This database has a specific fold about pectoral muscle where are 

files with XML and ROI format.  Every image has a specific file associated that has multiple 

annotations including a list of contour points of the pectoral muscle. The annotations were made 

by a specialist in the field, and validated by a second specialist. Since only have some points of 

the contour of the pectoral muscle it was necessary create a little algorithm and use splines to 

connect all points, the final result can be seen in Figure 30. 
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The 201 images in MLO projection of INBreast were tested with the algorithm of 

segmentation and extraction of the muscle. An example of the result obtained can be seen in 

Figure 31. 

 
(a) 

 
(b) 

 
(c) 

 
(a) 

 
(b) 

Figure 30 – (a) Segmentation of pectoral muscle using splines; (b) Extraction of 

pectoral muscle. 

 

 
 (d) 

 
(e) (f) 

Figure 31 – (a) Original image; (b) Reduction to 9 gray levels; (c) Visualization of levels 4,5 and 6; (d) Labeling 

of regions; (e) Pectoral muscle; (f) Original image without pectoral muscle. 
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When compared with the ground truth, Figure 32, the success rate is 79%. 

 

By observing the results it can be said that the most notable difference between the two 

images is related to the delineation of a smooth contour, this happens because the morphological 

operators are used with high structural element. Even if the final image was resubmitted to 

morphological operators to try to smooth the part where was extracted the pectoral muscle the 

image would not be significant changes in this aspect. Note that although the success rate is not 

high image resulting from applying algorithm developed follows the direction of the curve of 

ground truth, which shows a good performance. 

The segmentation of the pectoral muscle is useful in image processing mammography, since 

this muscle usually presents as a dense region incidences prevalent in medio lateral (MLO) 

mammograms may, therefore, affect the performance of methods for automatic detection of 

lesions. 

The worst performance was observed in images where the edge of the pectoral muscle is 

presented poorly defined causing the density of this to be confused with the breast tissue. 

Regarding the automatic selection of the gray level, this may not be the more appropriate due 

to variations of the gray level in the pectoral muscle. These variations arise from factors such as 

improper positioning of the breast, the presence of axillary fold and pectoral muscle minor. In 

these cases the error appears to be related to problems when the mammograms acquisition than 

actually processing. This algorithm should be part of a CAD system for mammography. 

 

 
 (a) 

 
(b) 

Figure 32 – Comparison of pectoral muscle extraction: (a) Result of application of the algorithm; (b) Ground 

truth. 
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5.4 Classification 

 5.4.1 Breast Density 

 

In the previous chapter were indicated all the characteristics used to classify breast density. 

All features extracted where normalized between -1 and 1, using the following equation: 

  
                    

                
 

Where ymin and ymax stand for the desired range for the new values and xmin and xmax 

stand for the smallest and largest feature value that is normalized, respectively. 

As said previously, the classification was performed using 10-fold cross-validation scheme. 

Table 10 and Table 11 show the results for some combinations of features when the images 

have pectoral muscle and when do not have. The first table is related with MIAS database and 

the second with INBreast. 

 

 Table 10 – Accuracy results for MIAS database. 

Features 

MIAS 

Accuracy with Pectoral Muscle 
and Labels 

Accuracy without Pectoral Muscle 
and Labels 

Cross 
Validation 

(%) 

All images for 
training and all 

for test(%) 

Cross 
Validation 

(%) 

All images for 
training and all 

for test(%) 

Statistical 67.4 83.2 72,7 74,5 

Co-occurrence matrix 63.1 97.5 73.9 84,8 

Statistical + Co-occurrence 
matrix 

69.3 99.4 75,5 85,7 

Spectrum 60.3 78.9 61,8 80,7 

PCA+2DPCA (5 components) 52.5 77 50 77,9 

Invariants moments of Hu 54.4 60.9 62.2 67,4 

Statistical +  Co-occurrence 
matrix + Invariants moments of 

Hu 
67 86 74,8 86.5 

Statistical +  Co-occurrence 
matrix + Spectrum 

69.6 96 65,5 
97,5 
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The classification accuracy of the presented technique discriminating between 3 categories 

of density based on the ground truth. This measure is calculated as the percentage of correctly 

classified mammograms in a breast parenchymal density category over the ground truth total 

number of mammograms in that category. The results show and prove what was expected, 

namely that when the pectoral muscle is extracted as well as other artifacts existents the success 

rate increases. Would think that the more features it is used much higher would be the success 

rate, but taking into account the results it was ascertained that the statistical descriptors and the 

co-occurrence matrix together gets the best results with 75.5 in the cross-validation and 85.7 

when all images are used for training and testing. In some cases, when it is used all images for 

training and for test the accuracy decreases when the pectoral muscle is not present. This 

phenomenon it is difficult to explain because in theory the percentage in this case should be 

100%, after all being the same images used to train and classify. 

 

 
Table 11 – Accuracy results for IN Breast database. 

 

Features 

INBreast 

Accuracy with Pectoral Muscle 
and Labels 

Accuracy without Pectoral Muscle 
and Labels 

Cross 
Validation 

(%) 

All images for 
training and all 

for test(%) 

Cross 
Validation 

(%) 

All images for 
training and all 

for test(%) 

Statistical 61.2 76.6 75.6 83.9 

Co-occurrence matrix 71 78.5 77.4 80.2 

Statistical + Co-occurrence 
matrix 

78.3 81.5 80.7 91.5 

Spectrum 64 100 71.3 100 

PCA+2DPCA (5 components) 63.2 70.4 65 70.8 

Invariants moments of Hu 49.5 87.6 65.1 93.5 

Statistical +  Co-occurrence 
matrix + Invariants moments of 

Hu 
70 86.3 71.9 88.3 

Statistical +  Co-occurrence 
matrix + Spectrum 

66.6 88.3 77.1 90.3 
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In case of this base image it is important to note that the set of images is a bit higher than the 

previous base, in addition the classification of these images was made in four categories 

according to the ground truth. When the images without pectoral muscle are submitted to the 

classifier there is a significant increase in accuracy. Again, it is the same combination of 

features that get the best results, but in this case the values are higher. So for cross-validation 

the best accuracy is 80.7 and when all images are used for training and testing the accuracy is 

91.5. An example of a confusion matrix obtained to this database is presented in Table 12. 

 

 

 

 

 

 

Another test was made in order to evaluate the accuracy in classification of breast density. 

The SVM usually are used to classify binary problems so the categories of density were divided 

into higher density or lower density and for all features the results are presented in Table 13. 

 

 

 

Table 12 – Confusion Matrix. 

 1 2 3 4 

1 126 8 0 3 

2 21 115 0 10 

3 1 3 19 5 

4 7 16 2 74 

Table 13 – Accuracy results for two categories of density. 
 

Features 

MIAS INBreast 

Cross Validation 
(%) 

All images for 
training and all 

for test(%) 

Cross Validation 
(%) 

All images for 
training and all 

for test(%) 

Statistical 82.9 85 82 88.5 

Co occurrence-
matrix 

83.2 92.9 82.9 92.9 

Statistical+ Co – 
occurrence 

85.4 87.9 87.5 95 

Spectrum 79.5 88.8 81.7 100 

PCA+2DPCA(5 
components) 

67.1 78.9 78 90.3 

Invariants 
moments of Hu 

78 81.7 69.3 88 

Statistical +  Co-
occurrence matrix 

+ Invariants 
moments of Hu 

83.6 95.7 75.8 89.4 

Statistical +  Co-
occurrence matrix 

+ Spectrum 

81.7 90.7 82.7 93.9 
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It is clear that there is a very evident difference when used only two categories of density. In 

all features the accuracy increased compared to the tables 10 and 11, but again the combination 

of statistical descriptors and co-occurrence matrix may prove the most effective. This 

classification is simpler but the algorithm demonstrates the ability to differentiate tissues of high 

and low density, which is a satisfactory result. 

The invariants moments of Hu shown to be not very effective in this type of problem, 

however as mentioned in the previous chapter some parameters are used to calibrate the 

algorithm using the grid search scheme, trying to minimize the classification error. In the figure 

below, Figure 33, provides two examples of a grid scheme, one represents the worst results and 

the other the best. 

 

It is important to note that the use of 2DPCA proved to be better than the usual PCA. In 

addition, when combined with the features of co-occurrence reasonable results obtained in the 

order of 70%. For both types of PDA were tested several components including, but differences 

were not significant. 

The proposed method is simple but at the same time promising because may allow 

contemplate another type of information that will improve them. The fact of the base MIAS 

have accuracies much lower than INbreast is not only related to the fact of the images were 

badly obtained, but also due to having only one intermediate class. The base INBreast is a good 

way of testing any algorithm because the images are of excellent quality and have all the 

necessary information.

 

 (a) 

 

(b) 

Figure 33 – Graphic representation of grid scheme: (a) best result; (b) worst result. 
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5.4.2 Masses 

 

For the detection algorithm masses were subjected classified as normal images and images 

with masses of both projections. However the MLO projection images, first underwent 

segmentation technique pectoral muscle and hence the removal of that of the image. 

Although the entire process is automated using techniques from low computational cost, the 

image size directly influences the running time of the algorithm. 

As explained in the previous chapter it was found a value that allows get only certain parts of 

the image, between which where is located the masses, Figure 34. 

 

 

 
 

 

 
 (a) 

 
(b) 

 

Figure 34 – (a) Original Image; (b) Images after processing. 
 

 

It is clear that there is still a large part of the image to explore, but it is easier to analyze this 

small part especially when is sure that the mass is there, as shown in Figure 35. 
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 (a) 

 
(b) 

Figure 35 – (a) Image after processing with a mass; (b) Original image with a mass. 

 

Although the classification is not able to identify the exact location of the mass, only this 

data the classifier can distinguish satisfactorily a normal breast and a breast with a mass, as can 

be seen by analyzing Table 14. 

Table 14 – Results of classification in normal breast and breast with masses. 

 

Features 
Accuracy of cross validation 

(%) 

Accuracy using all images 

for training and test (%) 

Statistical 70 100 

Texture 85 94.6 

Statistical+ Texture 76.7 94.6 

Spectrum 84.2 97.3 

 
It is possible to observe that when the image is complete, the accuracies rates are not so high, 

Table 15. 

Table 15 – Results of classification in normal breast and breast with masses with the original image. 
 

Features 
Accuracy of cross validation 

(%) 

Accuracy using all images 

for training and test (%) 

Statistical 76.7 97.3 

Texture 72.5 97.3 

Statistical+ Texture 80 97.2 

Spectrum 67.5 91.9 
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As improvement of this work we intend to further divide the first image processing in small 

ROI and analyze each one to identify which one is the injury. When the image suffers a small 

pre-processing the results are a little better than when the original image is directly submitted to 

the classifier. Thus, the features extracted from the co-occurrence matrix shown to be most 

effective in classification with a success rate of 85%. Given that this type of injuries are very 

common and involve a special attention by the technicians and doctors, the fact of can reduce 

the image to a region where is the lesion can be considered a great help. 

5.5 Summary 

Presented various algorithms reached the objectives proposed and shown to be promising in 

respect to a complete CAD system. After extensive research it was verified that no method of 

automatic image analysis distinguishes between left and right breast and between CC and 

MLOprojection. The removal of the pectoral muscle is a very important step in any system 

analysis and image processing mammography, since it can influence the results. Finally, breast 

density has been much studied because it is believed to be a relationship between it and between 

the onsets of cancer classification should therefore be the first step of this stage. The distinction 

between a normal and a breast mass is a considerable advance in the detection of lesions.
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6. Conclusions and Future Perspectives  

Early detection of breast cancer is of utmost importance, since only localized cancer is 

deemed to be treatable and curable, as opposed to metastasized cancer. 

Mammography is a widely used screening tool and is the gold standard for the early 

detection of breast cancer. However, many suspicious findings on mammograms are benign. 

The most important mammographic signs of malignancy are masses and microcalcifications. 

Yet, the sensitivity of screening mammography is affected by image quality and the 

radiologist’s level of expertise.  

CAD systems have been developed to improve the results of mammographic screening 

programs by assisting radiologists in decision between follow up and biopsy, thereby decreasing 

the number of false- positive cases. 

Some CAD systems have reasonable results on detecting breast lesions, mainly 

microcalcifications and masses. But, some abnormalities are very difficult to detect in 

mammograms even as some structures of breast can be confused with abnormalities and cause 

an increase of false positives. 

Adjustment of CAD algorithms would increase its sensitivity and specificity and 

consequently, would increase the trust from the radiologists in these systems, as the role of 

CAD is still emerging. The development of the digital mammography may also increase the 

CAD effectiveness due to the potential to improve contrast resolution compared with film-

screen imaging.  

In this work it was proposed a method for breast density classification that consists in use 

combination of features and also segment and extract the pectoral muscle in order to prove that 

can influence the results of classification. Once the main goal is create a completely automatic 

method of mammography images analysis, the firsts steps were distinct the directions and the 

projections of breast. There are only few methods that are dedicated to make that distinction 

soon after image acquisition. It is clear that analyzing image without resorting to computational 

methods is easy to see if it is a right or left breast, and also what the projection. However, in a 

clinic or hospital where there are many images to analyze monetize it takes time, so do these 

distinctions at the beginning of the process of automatic analysis is a useful step. Moreover, 

since there is not a standard naming this method becomes an advantage in this aspect. Given 

that the images of MIAS database were considered unsuitable to be used as a test algorithm and 

even than achieved an accuracy rate of 85% for the distinction between left and right breast may 

be considered that the result was very positive. To emphasize the fact that the method of 

distinguishing between left and right breast is well developed it was obtained a hit rate of 100% 

for INBreast database. On the other hand, the results obtained from the distinction between CC 

and MLO projection were not as satisfactory as the first since the success rate decreased a little.
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Note that if the first distinction was always made correctly to the images of the MIAS database, 

this algorithm would also have a 100% rate of success. These differences that occur between 

these image databases may be due to the fact that the conditions for acquisition and formats that 

stored are different, and then they are not being compared equally. 

It is visible that the presented method for segmentation and extraction pectoral muscle can be 

an important phase in any system of automatic analysis of mammography images. Although in 

the case of image database MIAS not have a ground truth with the contour points of the pectoral 

muscle in order to compare the results obtained, it was found another way validation have been 

obtained satisfactory results. In respect to the base INBreast the result was relatively similar to 

the above. In fact these results are slightly below compared to other literature studies but even  

when the pectoral muscle is only partially removed already positively influence the 

classification results. 

The combination of features has proved to be a methodology that can be extended to other 

features that were not included in this work. Compared to other studies the classifier used 

proved to be very effective, inclusive possessed the advantage of seeking the parameters that 

allow optimizing the process and getting better results. It has been proven that the algorithm 

PCA two dimensions that are better than the usual PCA. However it should be noted that as the 

base INBreast images have a size in the order of a few Megs all this method has a very high 

computational cost. 

On the overall, it is very important to continue the development of systems that can improve 

and help in the study of the breast cancer, creating algorithms capable of aiding the expert, and 

reducing their examination time and subjectivity. Thus the method showed can be very 

promising and it is suitable to continue working on, until has also a classification and 

identification of lesions. 
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