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Abstract

The emergence of real temporal applications under non-stationary scenarios has drastically

altered the ability to generate and gather information. Nowadays, potentially unbounded

and massive amounts of information are generated at high-speed rate, known as data

streams. Therefore, it is unreasonable to assume that machine learning systems have

su�cient memory capacity to store the complete history of the stream. Indeed, stream

learning algorithms must process data promptly, discarding it immediately. Along with

this, as data �ows continuously for large periods of time, the process generating data is

not strictly stationary and evolves over time.

This thesis embraces concerns raised when learning from data streams. Namely, concerns

raised by the intrinsic characteristics of data streams and by the learning process itself. The

former is addressed through the construction of synopses structures of data and change

detection methods. The latter is related to the appropriate evaluation of stream learning

algorithms.

Given the huge volume of data gathered, it is essential to create synopses structures of data,

keeping only a small and �nite representation of the received information. Such compact

summaries allow the discarded data to be remembered. In this thesis, and within this

context, online equi-width histograms, under mean square error constraints, are proposed

to construct compact representations of data.

When dealing with data streams in evolving environments, in addition to the remembering

approach, it is also necessary to forget outdated data: old observations do not describe

the current state of nature and are, therefore, useless. This issue is accomplished by

two approaches: a forgetting data synopsis and a windows scheme model for change

detection. As the proposed fading histograms weight data examples according to their

age, as well as allowing discarded data to be remembered, outdated data is gradually

forgotten. Therefore, the data representation provided by these fading histograms is more

up-to-date. The Cumulative Windows Model for change detection proposed in this thesis,

is based on online monitoring of the distance between data distributions (provided by the

histograms mentioned earlier), which is evaluated using the Kullback-Leibler divergence.
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Within this approach, after the detection of a change, all past observations are abruptly

forgotten.

Learning from time-changing data streams is not a straightforward task. Traditional

learning algorithms, which produce models by learning in a batch mode, are not appropriate

for use in such a context. Within a continuous �ow of data, the learning process must be

carried out sequentially. Although there is a vast number of streaming learning algorithms,

the metrics and the design of experiments for assessing the quality of learning models is still

an open issue. Therefore, as a main contribution of this thesis, new criteria for e�ectively

evaluating algorithms when learning from time-changing data streams are proposed. These

evaluation metrics are based on computing prequential error estimates using forgetting

mechanisms: either a sliding window or fading factors. Moreover, the proofs of convergence

of di�erent error estimates to the Bayes error are also presented.

Given the recent growth of biomedical applications, the automatic detection of changes

in physiological signals is a �ourishing topic of research. Therefore, this thesis presents a

real-time algorithm for change detection in depth of anesthesia (DoA) signals of patients

undergoing surgery. The use of an e�ective change detection method has a high impact in

clinical practice, since it alerts the clinician in advance to changes in the anesthetic state

of the patient, allowing prompter actions. The remarkably encouraging results obtained

when detecting changes in DoA signals, sustain the argument that the proposed change

detection approach should be embedded in a real-time decision support system for routine

use in clinical practice.



Resumo

O aparecimento de aplicações reais em cenários temporais não estacionárias alterou dras-

ticamente a capacidade de gerar e recolher informação. Hoje em dia, uma quantidade

enorme, potencialmente in�nita, de informação é gerada a elevada velocidade, conhecida

como sendo um �uxo contínuo de dados. Portanto, é irrazoável supor que os sistemas

de processamento de dados têm capacidade de memória su�ciente para armazenar, por

completo, estes �uxos contínuos. De facto, os algoritmos de aprendizagem em �uxos

contínuos de dados têm de processá-los rapidamente e descartá-los de seguida. Juntamente

com esta limitação, como os �uxos contínuos de dados são gerados durante largos períodos

de tempo, o seu processo de geração não é estritamente estacionário e evolui ao longo do

tempo.

Esta tese aborda questões levantadas aquando da aprendizagem a partir de �uxos contínuos

de dados, nomeadamente, questões levantadas pelas características intrínsecas dos �uxos

contínuos de dados e pelo próprio processo de aprendizagem. As primeiras são abordadas

através da construção de estruturas sumárias de dados e através de métodos de deteção

de mudanças. As últimas estão relacionadas com a avaliação adequada de algoritmos de

aprendizagem a partir de �uxos contínuos de dados.

Relativamente ao grande volume de dados recolhidos, é necessária a criação de estruturas

sumárias de dados, mantendo apenas uma representação pequena e �nita da informação

recebida. Estes resumos compactos permitem relembrar os dados descartados. Neste

contexto, são propostos histogramas com classes de igual amplitude, em tempo real e com

limitações no erro médio quadrático, para a construção de estruturas sumárias de dados.

Ao trabalhar com �uxos contínuos de dados em ambientes evolutivos, além da abordagem

de os relembrar, torna-se necessário esquecer os dados desatualizados: observações antigas

não descrevem o estado atual da natureza e, portanto, são inúteis. Nesta tese, esta questão

tem duas abordagens: a construção de uma estrutura sumária de dados com propriedades

de esquecimento e um modelo, baseado em janelas deslizantes, para a deteção de mudanças

nos dados. Os histogramas de esquecimento propostos, pelo facto de atribuírem aos dados

uma ponderação de acordo com a sua idade, além de permitirem relembrar os dados
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descartados, possibilitam, também, esquecer dados desatualizados de um modo gradual.

Portanto, a representação de dados obtida por estes histogramas de esquecimento é mais

atualizada. O Modelo de Janelas Acumulativas para a deteção de mudanças proposto

nesta tese, é baseado na monotorização em tempo real da distância entre distribuições

de dados (fornecidas pelos histogramas mencionados anteriormente), avaliada através da

divergência Kullback-Leibler. Relativamente ao modelo de deteção de mudança, depois de

detetada uma mudança, todas as observações anteriores são abruptamente esquecidas.

A aprendizagem através de �uxos contínuos de dados não estacionários não é uma tarefa

simples. Os algoritmos de aprendizagem tradicionais, que produzem modelos através

de uma aprendizagem efetuada num conjunto de treino, não se adequam ao problema.

Tratando-se de um �uxo contínuo de dados, o processo de aprendizagem tem de ser

efetuado incrementalmente. De facto, atualmente, existe um grande número de algoritmos

de aprendizagem incrementais, contudo as métricas e o delineamento de experiências para

avaliar a qualidade dos mesmos é um tema em aberto. Portanto, como contribuição deste

trabalho, são propostos novos critérios para avaliar algoritmos de aprendizagem incremen-

tal. As métricas de avaliação propostas são baseadas no cálculo de estimativas de erro,

usando mecanismos de esquecimento: uma janela deslizante ou fatores de esquecimento.

São também apresentadas provas da convergência destas estimativas de erro para o erro

de Bayes.

Considerando o crescimento recente de aplicações em biomedicina, a deteção automática

de mudanças em sinais �siológicos é um tema de investigação em crescimento. Portanto,

neste trabalho é apresentado um algoritmo para deteção, em tempo real, de mudanças em

sinais �siológicos, nomeadamente no BIS (índice bi-espectral), de pacientes submetidos a

cirurgia. A utilização de um método de deteção de mudança e�caz tem um grande impacto

na prática clínica, no sentido em que alerta, antecipadamente, o médico para alterações no

estado de anestesia do paciente, permitindo uma ação médica mais rápida. Os resultados

obtidos na deteção de mudanças nos sinais BIS sustentam que o método de deteção de

mudanças proposto deve ser incorporado num sistema de apoio à decisão do controlo de

anestesia a utilizar na prática clínica em bloco operatório.
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Introduction

"All truths are easy to understand once they are discovered;

the point is to discover them."

Galileo Galilei (1564 - 1642)

This introductory chapter provides an overview of the thesis. Starting with the context

of the research, research questions are proposed and contributions achieved are provided.

Before concluding this chapter with the outline of the thesis, a bibliographical note of the

publications resulting from the research developed during the course of the doctoral project

is presented.

1.1 Context of Research

Learning is an inborn ability of human beings: to survive, man needs to learn as much as he

needs to breath. Given this truth, humans have invented machine learning, which mimics

human ability through computational models. As with human learning, machine learning

does not happen all at once, it is an ongoing process of upgrading based on experience.

Tom M. Mitchell provided the following de�nition of machine learning: "A computer

program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E",(Mitchell, 1997).

Along with the learning skills, ever since the beginning, critical capacity and curiosity has

guided humans through the search for a better understanding of the surrounding world.

We are a long way of fully comprehending everything around us, but, on the endless path

of progress, man has always earnestly pursued new and greater amounts of information,
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knowledge and discoveries.

Therefore, data mining has appeared. Data mining is concerned with the extraction of

information, through data analysis methods, and the transformation of that information in

order to discover knowledge, through machine learning methods. To quote Albert Einstein,

"Information is not knowledge". Indeed, data as it is collected is useless: certain techniques

need to be applied so useful information can be extracted from the data, transforming the

information contained in raw data into knowledge, allowing patterns underlying the data

to be discovered.

In the data mining context, knowledge is an understandable model or theory which explains

the information enclosed in the form of a data set. The ultimate goal of a data mining

process is to create models, which, when further applied to new data, reveal new patterns

underlying the data.

Data mining comes hand to hand with the process of Knowledge Discovery in Databases

(KDD). Proceeded by data selection, pre-processing and transformation, data mining is

the computational extraction of patterns representing knowledge implicitly stored in the

database. Figure 1.1 presents a �ow chart, exemplifying the KDD process, which ends

with the interpretation and evaluation of the results produced by the data mining stage.

Figure 1.1: Flow chart of the KDD process.
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Data mining and machine learning are intimately close and are often confused, as the

two areas overlap in many ways. Data mining involves several methods which come from

machine learning and arti�cial intelligence, comprising the following tasks:

• Data summarization

• Association rules

• Clustering

• Change detection

• Classi�cation

• Regression

The underlying motivation for this thesis was prompted by the growing number of problems

and applications across research �elds within data mining. Namely, the emergence of real-

time applications under non-stationary scenarios, such as:

• Real-time monitoring in biomedicine (Petzold et al., 2004; Rodrigues et al., 2011;

Sebastião et al., 2013; Yang et al., 1993);

• Quality control in industrial processes (Last, 2002);

• Electricity prediction domain (Bach and Maloof, 2008; Bifet and Gavaldà, 2007);

• Financial surveillance (Frisén, 2008);

• Business and stock market (Bifet and Gavaldà, 2007; Last, 2002);

• Intrusion and fraud detection in computer networks (Kim et al., 2004; Muthukrishnan

et al., 2007);

• Spam �ltering (Katakis et al., 2009);

• Telecommunication systems (Dasu et al., 2006);

• High-tra�c monitoring (Guralnik and Srivastava, 1999);

In this evolving scenario, the evaluation of learning algorithms is a major concern. Moreover,

the massive data sets produced must be addressed with feasible summarization techniques.

In most of these real world applications, the detection of changes plays an important role.

Consequently, in this thesis, the research e�orts were also devoted to change detection

methods.
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1.2 Research Questions

Within the scope of this thesis, the following research questions were proposed.

Research Question 1.

1. In the context of massive data streams, which strategy should be used to remember

the discarded data?

2. In the context of time-changing data streams, how can a compact representation of

data forget outdated data in order to be able to keep up with the current state of

evolving nature?

Research Question 2.

1. In the development of a model to detect changes through the comparison of distribu-

tions over two time windows, which is the appropriate step to perform comparisons?

2. When evaluating the distance between distributions, how do the forgetting rates of

fading histograms a�ect the detection delay time?

3. What is the robustness against noise of the proposed change detection model?

4. What is the e�ect of the extension of a stationary phase in the performance of the

proposed change detection model?

Research Question 3.

1. How should the performance of stream learning algorithms be evaluated?

2. Can forgetting mechanisms provide reliable error estimates?

3. How can the performance of learning algorithms in non-static environments be

compared?

4. How can forgetting mechanisms be extended to cope with concept drift problems?

Research Question 4.
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1. How can a change detection method contribute to a decision support system based

on Depth of Anesthesia (DoA) signals?

Research question 1 is addressed in Chapter 3, Chapter 4 is devoted to research question

2, research question 3 is assigned to Chapter 5 and Chapter 6 addresses research question

4.

1.3 Thesis Contributions

The increasing computational capacity of smart devices allows massive amounts of data to

be generated at high-speed rate. Subject to these two conditions, the information in the

form of transient data streams is promptly processed and discarded immediately. Therefore,

the use of online techniques with the ability to process continuous �ows of data is essential.

Regarding the discarding of data, the �rst contribution of this thesis is the construction of

a feasible and compact online representation of data in order to summarize huge amounts

of information. With regards to the graphical representation of data, which provides useful

information about the distribution of a random variable, online histograms, under error

constraints, are proposed as a synopsis structure.

Along with this, forgetting out-dated data is also a major concern. In this thesis, the issue

"how to forget" is addressed with two approaches:

• Within the data synopses structures, the old data is forgotten using fading factors in

the construction of the online histograms. These online fading histograms provide

a more up-to-date representation of data than standard ones, allowing old data to

be gradually forgotten. Accomplished with fading factors, such histograms, besides

allowing discarded data to be remembered, also allow outdated data to be forgotten.

• Related to the change detection problem, after the detection of a change, all past

observations are discarded. This results in abrupt forgetting in order to keep up with

the current state of nature.

Since data is produced in dynamic environments, the design of a method for change

detection in real-time is also one of the contributions of this thesis. The change detection

method proposed is based on a windowing scheme, comparing the distance between two

data distributions provided by the online histograms mentioned before.
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The third contribution of this thesis deals with concerns raised when learning from data

streams. To overcome such problems, forgetting strategies are proposed within di�erent

assignments. With regard to the evaluation of the performance of stream learning algo-

rithms, sliding prequential and fading prequential error estimates are advanced. Moreover, it

is proved that, for consistent learners, the error estimates obtained through the prequential

method, through the holdout strategy and over sliding windows converge to the Bayes error.

To compare the performance of stream learning algorithms in the �ow, the McNemar test

applied over such error estimates is a suitable approach. Regarding the detection of concept

drift, two approaches based on monitoring forgetting prequential error estimates and on

the ratio of these are proposed.

As a �nal contribution, a real-time algorithm for changes detection in depth of anesthesia

signals of patients undergoing surgery is presented.

1.4 Bibliographical Note

Most of the research developed during the course of this doctoral project was partially

included in the scope of the following research projects funded by the Fundação para a Ciên-

cia e a Tecnologia: KDUDS (PTDC/EIA-EIA/098355/2008) and GALENO (PTDC/SAU-

BEB/103667/2008). The enrollment in such projects allowed interactions among members

from di�erent research �elds, which often leaded to the application of multidisciplinary

insights and to contributions at diverse levels.

As a result, part of the work developed during the course of this PhD project has been

published in peer reviewed conferences, workshops and in peer reviewed journals.

Besides sharing the research e�orts in the area of discourse, publishing and attending

conferences in the scope of the PhD project stimulate feedback from expert researchers,

enhance interest and reinforce encouragement.

The following set presents the main publications according to the chapters addressing the

related contributions:

• Chapter 3 & Chapter 4:

� Sebastião, R., Gama, J., Rodrigues, P., and Bernardes, J. (2010). Monitoring

Incremental Histogram Distribution for Change Detection in Data Streams. In

Gaber, M. M., Vatsavai, R. R., Omitaomu, O. A., Gama, J., Chawla, N. V.,
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and Ganguly, A. R., editors, Knowledge Discovery from Sensor Data, volume

5840, chapter 2, pages 25�42. Springer Berlin Heidelberg, Berlin, Heidelberg

� Sebastião, R. and Gama, J. (2009). A study on change detection methods.

In Lopes, L. S., Lau, N., Mariano, P., and Rocha, L. M., editors, New Trends

in Arti�cial Intelligence, 14th Portuguese Conference on Arti�cial Intelligence,

EPIA'09, pages 353�364

� Sebastião, R., Gama, J., and Mendonça, T. (2008). Learning from data streams:

Synopsis and change detection. In Cesta, A. and Fakotakis, N., editors, STAIRS,

volume 179 of Frontiers in Arti�cial Intelligence and Applications, pages 163�

174. IOS Press

� Sebastião, R. and Gama, J. (2007). Change detection in learning histograms

from data streams. In Proceedings of the 13th Portuguese Conference on

Arti�cial Intelligence, EPIA'07, pages 112�123, Berlin, Heidelberg. Springer-

Verlag

• Chapter 5 :

� Gama, J., Sebastião, R., and Rodrigues, P. P. (2013). On evaluating stream

learning algorithms. Machine Learning, 90(3):317�346

� Gama, J., Sebastião, R., and Rodrigues, P. P. (2009). Issues in evaluation

of stream learning algorithms. In Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD '09,

pages 329�338, New York, NY, USA. ACM

• Chapter 6 :

� Sebastião, R., Silva, M., Rabiço, R., Gama, J., and Mendonça, T. (2013). Real-

time algorithm for changes detection in depth of anesthesia signals. Evolving

Systems, 4(1):3�12
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� Sebastião, R., Martins da Silva, M., Rabiço, R., Gama, J., and Mendonça,

T. (2012). Online evaluation of a changes detection algorithm for depth of

anesthesia signals. In Proc. 8th IFAC Symposium on Biological and Medical

Systems, pages 343�348

From an academic point of view, it is worth embracing di�erent research problems. Re-

sulting in contributions as a co-author, the following publications addressed problems such

as: regression and decision trees, concept drift detection and decision support and control

systems.

• Marques de Sá, J., Sebastião, R., and Gama, J. (2011a). Tree classi�ers based

on minimum error entropy decisions. Canadian Journal on Arti�cial Intelligence,

Machine Learning & Pattern Recognition, 2(3):41�55

• Marques de Sá, J., Sebastião, R., Gama, J., and Fontes, T. (2011b). New results on

minimum error entropy decision trees. In CIARP, pages 355�362

• Ikonomovska, E., Gama, J., Sebastião, R., and Gjorgjevik, D. (2009). Regression

trees from data streams with drift detection. In Discovery Science, pages 121�135

• Kosina, P., Gama, J., and Sebastião, R. (2010). Drift severity metric. In ECAI 2010 -

Proceedings of the 19th European Conference on Arti�cial Intelligence, pages 1119�

1120

• Rodrigues, P., Gama, J., and Sebastião, R. (2010). Memoryless fading windows in

ubiquitous settings. In Proceedings of Ubiquitous Data Mining (UDM) Workshop,

in conjunction with the 19th European Conference on Arti�cial Intelligence - ECAI

2010, pages 27�32

• Rodrigues, P. P., Sebastião, R., and Santos., C. C. (2011). Improving cardiotocogra-

phy monitoring: a memory-less stream learning approach. In Workshop on Learning

from Medical Data Streams, volume 765 - paper 7
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• Silva, M. M., Sousa, C., Sebastião, R., Gama, J., Mendonça, T., Rocha, P., and

Esteves, S. (2009). Total mass TCI driven by parametric estimation. In Proceedings

of the 2009 17th Mediterranean Conference on Control and Automation, MED '09,

pages 1149�1154, Thessaloniki, Greece. IEEE Computer Society

1.5 Thesis Outline

The thesis is organized as follows:

Chapter 1 - Introduction

The present chapter introduces the context of research and advances the major questions

proposed within the doctoral project. It also provides the achieved contributions and a

bibliographical note of the publications produced during these years of research.

Chapter 2 - Fundamentals on Evolving Data Streams

The next chapter is devoted to the fundamentals on evolving data streams. This chapter

starts with a background on data streams and the standards for learning from data streams

are introduced. The problems of distribution change and concept change are exposed

and data management methods and adaptation strategies to cope with evolving data are

discussed. A broader overview of the existing methods to cope with these problems is

presented and the chapter concludes with an evaluation methodology for change detection

methods.

Chapter 3 - Histograms over Data Streams

This chapter addresses the problem of constructing histogram representations from data

streams. Online histograms, under error constraints, are proposed to create a compact

representation of huge amounts of data, allowing properties of discarded data to be

remembered. The problem of forgetting outdated data is also addressed and two strategies

to cope with this problem are advanced. Therefore, research question 1 is assigned to this

chapter.
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Chapter 4 - Monitoring Data over Sliding Windows

Chapter 4 proposes the Cumulative Windows Model (CWM), an approach to cope with

distribution change and concept drift from time-changing data streams. The performance

of this model is evaluated on arti�cial data, on real data and on a public data set. This

change detection model is also compared with state-of-the-art concept drift detection

methods. Research question 2 is evaluated under the scope of this chapter.

Chapter 5 - New Criteria for Learning from Data Streams

In this chapter, the problems faced in learning scenarios are addressed. A framework based

on forgetting mechanisms is proposed for computing error estimates, to compare, in the

�ow, the performance of two algorithms and for concept drift detection. This chapter

answers proposed research question 3.

Chapter 6 - Application in a Clinical Environment

Chapter 6 extends the problem of online detecting changes in depth of anesthesia signals

of patients undergoing surgery. The change detection method is embedded in a real-time

software and its performance is evaluated online in the operating room. This chapter is

devoted to research question 4.

Chapter 7 - Concluding Remarks

Chapter 7 concludes the thesis, summarizing the contributions achieved and advancing

further research directions.
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Fundamentals on Evolving Data

Streams

"No man ever steps in the same river twice,

for it's not the same river and he's not the same man."

Heraclitus (535 BCE - 475 BCE)

This chapter is devoted to time-changing data streams. After an introduction to the

problems raised by evolving data streams, Section 2.2 presents a background on data

streams and Section 2.3 introduces concerns when learning from data streams. Next, in

Section 2.4 and in Section 2.5, the problems of distribution changes and concept changes

are de�ned and overviewed, respectively. Thereafter, solutions are presented to cope with

such data, namely data management and unsighted and sighted strategies to accommodate

evolving data, as well as a literature review on methods for change detection. Before

concluding the chapter, evaluation metrics to assess the performance of methods for change

detection are presented.

2.1 Introduction

The most recent developments in science and information technology have led to the

wide spread of the computational capacity of smart devices, which are capable to produce

massive amounts of information at high-speed rate, known as data streams. A data stream

is a sequence of information in the form of transient data that arrives continuously (possibly

at varying times) and is potentially in�nite. Along with this, as data �ows for long periods

of time, the process generating data is not strictly stationary and evolves over time.

The growth of high-speed rate data streams, provided by a wide range of applications,
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requires online analysis of the gathered signals. The ability to process examples once at the

rate they arrive is essential. It is also of utmost importance to maintain a stream learning

model consistent with the most recent data, forgetting outdated data. The dynamics of

environments faced nowadays, raise the need for performing online change detection tests.

Moreover, changes must be detected as soon as they occur, minimizing the delay between

the occurrence of a change and its detection.

2.2 Data Streams Background

The compelling human hunger for research has led man down a path of innovation and,

therefore, technology. Indeed, advances in technology have contributed to reducing the

costs of computational power, making it available almost everywhere. The improvements in

the computational capacity of smart devices, allow them to produce overwhelming amounts

of information at high-speed rate. This kind of data is referred to as data streams, and can

be viewed as a transient sequence of data that arrives continuously (possibly at varying

times) and potentially unlimited in size.

In many modern applications (such as telecommunications, web applications, networking

monitoring) information is no longer gathered as �nite stored data sets, but as a continuous

�ow of data. This has imposed constraints on the standards of data mining: as it is

impractical to permanently store data streams, it is impossible to apply conventional

methods, which require storing the full historic data in the main memory. In the data stream

context, the data elements are continuously received, treated and discarded. Moreover,

in most cases, the environment evolves over time and data is generated by non-stationary

distributions.

The following problems are raised by the main characteristics of the data streams:

• High-speed rate - the arrival speed of data implies that each data element needs to

be processed in the �ow. Therefore, the time for processing each data element is

limited, and data stream algorithms must run in real-time.

• Huge amount of data - the volume of information is massive and so storing all data

is unsuitable. This is overcome by constructing compact summaries of data, which

are stored, and discarding the remaining information.

• Time-changing data - as data �ows over time, changes in the distribution generating

examples are expected. Therefore, in order to keep up with the current state of
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Table 2.1: Di�erences between batch and stream learning systems.

Batch Streaming

Data

Data size �nite data set open-ended
Data evolution static evolving

Order of evolution independent dependent

System

Nr. of passes multiple single
Processing time unlimited restricted
Available memory unlimited restricted
Results accuracy accurate approximate

nature, approaches for coping with evolving data are of the utmost importance.

The use of online learning systems is devoted to the �rst two characteristics, while the

third implies data management or adaptation strategies.

2.3 Standards in Learning from Data Streams

The emergence of data streams has posed di�culties for traditional machine learning

systems. Considering the high-speed rate and the huge amount of information that

characterizes a data stream, traditional models are not suitable for use in this context.

Therefore, online learning systems, also known as stream learning systems, must be used to

accommodate crucial constraints such as processing time, memory availability and sample

size.

Hence, learning systems are roughly divided into two categories: batch learning and stream

learning. Within the �rst category, a large set of examples is provided to the batch learning

system and it learns them all at once. In a stream learning system, the examples are

provided sequentially, learning them one by one, updating the model as new examples are

processed. Table 2.1 presents a summary of the di�erences between batch and stream

learning systems and the data characteristics used in each of them (Gama and Rodrigues,

2007; Gama et al., 2013).

On the assumption that examples are �nite, i.i.d. and generated from a stationary distri-

bution, batch learners build static models. Contrary, stream learning systems build models

that evolve over time, therefore being dependent on the order of examples generated from

a continuous non-stationary �ow of data.
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Without being concerned about memory availability or the time required to process exam-

ples, the accuracy of traditional batch decision models relies on the fact that the whole

data set is used for training, allowing multiple passes through the data set to build the �nal

model. On the other hand, stream learning is based on processing examples sequentially,

learning in an incrementally manner. Regarding the limitations of the computational

resources, stream approaches make only a single pass through the data, processing each

example in a short time regardless of the number of examples processed so far. Obviously,

as in the stream learning context, the decision model is not rebuilt every time a new

observation comes in, the accuracy of results will be close to those of a batch model.

Whereas, in a static environment, the stream model is nearly as accurate as the model

trained at once on the whole data set (Domingos and Hulten, 2001).

Figure 2.1 depicts an overview of the work�ow of a stream learning classi�er. At each

time an instance arrives, the class prediction is outputted by the learning model. During

the classi�er training, immediately after the prediction output and before the arrival of the

next instance, the true label of the target instance is known. At this stage, the classi�er is

updated to accommodate the new training example. Such classi�ers should be as accurate

as necessary, approximating the results obtained with a batch classi�er trained in one go

on the data seen so far.

Figure 2.1: Work�ow of an online learning system.

Moreover, the knowledge of the true label, also allows the prediction error to be computed.
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Through the monitoring of the error rate, concept drifts are assessed. If the concept

remains stable, the model learns and predicts the next target instance. Otherwise, if the

concept changes, the current learning model is forgotten and a new one is learnt using the

most recent examples in the short-term memory.

Hulten et al. (2001) discusses several desirable properties of online learning systems to

mine huge continuous and unbounded time-changing data streams. To embrace such

data characteristics, they should process examples at once and in short constant time,

ideally at the rate of arrival, and using a �xed amount of memory. Moreover, the decision

model must be maintained at all times and be adaptable to dynamic scenarios. Frequently

in real-world applications, the data is order-dependent and generated according to non-

stationary distributions, stressing the need to adapt online learning systems to the status

of environment. Accommodating online learning systems in order to cope with evolving

data streams, can be done either by data management techniques or adaptation strategies.

In recent years, several learning algorithms have been proposed for handling concept drift,

maintaining a model that is consistent with the current state of nature:

• Clustering algorithms (Cormode and Garofalakis, 2007; Rodrigues et al., 2008);

• Incremental decision trees (Gama et al., 2003; Hulten et al., 2001; Street and Kim,

2001);

• Support Vector Machines (Klinkenberg, 2004);

• Rule-based learning (Gama and Kosina, 2011; Widmer and Kubat, 1996);

• Change detection (Bifet and Gavaldà, 2007; Gama et al., 2004);

Along with the �ourishing of learning algorithms to cope with evolving data, there are public

available systems for mining high-speed time-changing and open-ended data streams, such

as: VFML toolkit (Hulten and Domingos, 2003), MOA framework (Bifet et al., 2010) and

Rapid-Miner system (Mierswa et al., 2006).

2.4 Distribution Changes

In the dynamic scenarios faced nowadays, it is fundamental to bring out the question: "Is

the recent received information from the same distribution observed in the past?"



16 DISTRIBUTION CHANGES

When data �ows over time and for large periods of time, it is an unlikely the assumption that

the observations are generated, at random, according to a stationary probability distribution

(Basseville and Nikiforov, 1993). Changes in the distribution of the data are expected. As

the underlying distribution of data may change over time, it is of utmost importance to

perceive if and when there is a change.

2.4.1 Problem De�nition

The distribution change detection problem is concerned with the identi�cation of the

time of occurrence of a change (or several changes) in the probability distribution of a

data sequence. Figure 2.2 illustrates this problem. In this example, P0 is the probability

distribution of the observations seen in the past and P1 is the probability distribution of

the most recent observed data.

Figure 2.2: Illustration of a distribution change.

Consider that x1, x2, . . . is a sequence of random observations, such that xt ∈ R, t =

1, 2, . . . (unidimensional data stream). Consider that there is a change point at time t∗

with t∗ ≥ 1, such that the subsequence x1, x2, . . . , xt∗−1 is generated from a distribution

P0 and the subsequence xt∗ , xt∗+1, . . . is generated from a distribution P1.

A change is assigned if the distribution P0 di�ers signi�cantly from the distribution P1. In

this context, it means that the distance between both distributions is greater than a given

threshold.

The change detection problem relies on testing the hypothesis that the observations are

generated from the same distribution and the alternative hypothesis that they are generated



DISTRIBUTION CHANGES 17

from di�erent distributions: H0 : P0 ≡ P1 versus H1 : P0
∼= P1. The goal of a change

detection method is to decide whether or not to reject H0.

A windows-based change detection method considers two time windows and the data

distribution on both windows is monitored and compared to detect any change. It assumes

that the observations in the �rst window of length L0 are generated according to a

stationary distribution P0 and that the observations in the second window of length L1 are

generated according to a distribution P1. The null hypothesis is rejected at time t∗ when:

Dt∗(P0||P1) = max
L0<t

Dt(P0||P1) > λ, where λ is known as the detection threshold.

The method outputs that distribution changes at the change point estimate t∗.

Whenever the alternative hypothesis is veri�ed, the change detection method reports an

alarm. The correct detection of a change is a hit; a non-detection of an occurred change is

a miss or a false positive. Incorrectly detecting a change that does not occur is a false alarm

or false negative. An e�ective change detection method must present few false events and

detect changes with a short delay time.

2.4.2 Essence of Distribution Changes

The essence of a distribution change can be categorized according to three main charac-

teristics: rate, magnitude and source.

The rate of a change (also known as speed) is extremely important in a change detection

problem, describing whether a signal changes between distributions suddenly, incrementally,

gradually or recurrently.

Figure 2.3 presents the mentioned rates of change in the distribution of a single variable.

The �rst plot illustrates a sudden change that takes place when the distribution changes

immediately. This is typically exempli�ed by the buying preferences of customers that

change with the season. The second and the third plots show changes that happen slowly

over time. In an incremental change, the distribution of the signal changes smoothly

along time. Small dysfunctions in parts of an industrial process, which can modify the

quality of the �nal product, are an example of incremental changes. The detection of

such changes allows for the correct maintenance of the equipment and the identi�cation

of default products. A gradual change is characterized by a time period during which the

distributions of the signal change at varying times and for varying periods of time. A typical

example of such changes is the slow variation of interests of the users, in a web monitoring

process. The last plot represents a recurrent change. Such change happens when a signal
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changes from one distribution to another, remaining for a while, and returning again to

the former distribution. In this kind of changes, the distribution is expected to reappear at

irregular time intervals, without any periodicity attached.

Figure 2.3: Examples of the rate of a change in the distribution of a single variable.

Besides the intrinsic di�culties that each of these kinds of rates impose to change detection

methods, real data streams often present several combinations of di�erent rates of change.

This is even more challenging since data streams are potentially in�nite.

Along with the rate of change, the magnitude of change (also known as severity) is also

a characteristic of paramount importance. In the presence of a change, the di�erence

between distributions of the signal can be abrupt or smooth.

Figure 2.4 illustrates the magnitude of change in the distribution of a single variable, as

well as the rate of change. The magnitude of the change is drawn alongside the rate of

change in order to illustrate that these characteristics describe di�erent patterns, despite

being closely related.

The top plots present changes with an abrupt magnitude, where the signal changes from

one distribution to another with a great di�erence. The bottom plots show changes with
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Figure 2.4: Examples of the magnitude and the rate of a change in the distribution of a
single variable.

smooth magnitudes, illustrating signals where the distributions before and after the change

are quite close.

Abrupt changes are easily observed and detected. Hence, in most cases, they do not pose

great di�culties to change detection methods. What is more, these changes are the most

critical ones because the distribution of the signal changes abruptly. However, smooth

changes are more di�cult to be identi�ed. At least in the initial phases, smooth changes

can easily be confused with noise (Gama, 2010). Since noise and examples from another

distribution are di�erentiated by permanence, the detection of a smooth change in an early

phase, tough to accomplish, is of foremost interest.

The third characteristic of the essence of a distribution change is its source. Besides other

features that also describe a distribution of a data set (such as skewness, kurtosis, median,

mode), in most cases, a distribution is characterized by the mean and variance. In this

sense, a change in data distribution can be translated by a change in the mean or by a
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change in variance. Figure 2.5 shows examples of changes in the mean and in the variance

occurred in the distribution of a single variable. While a change in the mean do not pose

great challenges to a change detection method, a change in the variance tends to be more

di�cult to detect (considering that both presented similar rate and magnitude).

Figure 2.5: Examples of the source of a change in the distribution of a single variable.

2.5 Concept Changes

The concept change problem is found in the �eld of machine learning and is closely related

to the distribution change problem. A change in the concept means that the underlying

distribution of the target concept may change over time (Widmer and Kubat, 1996). In

this context, concept change describes changes that occur in a learned structure.

2.5.1 Problem De�nition

Consider a learning scenario, where a sequence of instances ~X1, ~X2, . . . is being observed

(one at a time and possibly at varying times), such that ~Xt ∈ Rp, t = 1, 2, . . . is an instance

p-dimensional feature vector and yt is the corresponding label, yt ∈ {C1, C2, ..., Ck}. Each
example ( ~Xt, yt), t = 1, 2, . . . is independently drawn from the distribution that generates

the data P ( ~Xt, yt). The goal of a stream learning model is to output the label yt+1 of

the target instance ~Xt+1, minimizing the cumulative prediction errors during the learning

process. This is remarkably challenging in environments where the distribution that is

generating the examples changes: P ( ~Xt+1, yt+1) may be di�erent from P ( ~Xt, yt).

Figure 2.6 illustrates a learning scenario: the top picture shows a static sequence of
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instances, while the bottom picture presents an evolving sequence of instants, representing

the concept change problem (image design based on Zliobaite (2009)).

Figure 2.6: Illustration of a concept change.

For evolving data streams, some properties of the problem might change over time, namely

the target concept on which data is obtained may shift from time to time, on each occasion

after some minimum of permanence (Gama, 2010). This time of permanence is known

by context and represents a set of examples from the data stream where the underlying

distribution is stationary. In learning scenarios, changes may occur due to modi�cations in

the context of learning (caused by changes in hidden variables) or in the intrinsic properties

of the observed variables. Concept change can be formalized as a change in the joint

probability distribution P ( ~X, y):

P ( ~X, y) = P (y| ~X)× P ( ~X)

Therefore, a concept change can be explained through a change in the class conditional

probability (conditional change) and/or in the feature probability (feature change) (Gao

et al., 2007).

By applying the Bayes theorem, it comes:

P ( ~X, y) = P (y| ~X)× P ( ~X) = P ( ~X|y)×P (y)

P ( ~X)
× P ( ~X) = P ( ~X|y)× P (y)

Therefore, considering the above terminology, due to Kelly et al. (1999) it is possible to

identify three ways in which concept change might occur:

1. The class of prior probabilities P (Cm),m = 1, 2, . . . , k could change over time.
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2. The feature conditional probability distributions p( ~X|Cm),m = 1, 2, . . . , k can change.

3. The class conditional probability distributions p(Cm| ~X),m = 1, 2, . . . , k may change.

Literature often describes the second case as virtual drift (Widmer and Kubat, 1996),

since a change in the class-conditional probability distributions can occur while the target

concept remains the same (Tsymbal, 2004), while the last case is identi�ed as real drift.

As well as for the distribution changes, concept change can also be categorized according

to the rate, magnitude and source of concept change. Although, regarding the source, a

change in the concept can be translated as a change in the mean, variance and correlation

of the feature value distribution. Moreover, literature categorizes concept changes into

concept drift and concept shift according to the rate and magnitude of the change. A

concept drift occurs when the change presents a sudden rate and an abrupt magnitude,

whilst a concept shift designates a change with gradual rate and smooth magnitude.

Figure 2.7: Examples of concept changes for an unidimensional data stream.

Figure 2.7 illustrates four kinds of concept change: sudden, incremental, gradual and

recurrent (Zliobaite, 2009).
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Concept changes can be addressed by assessing changes in the probability distribution

(class-conditional distributions or prior probabilities for the classes), changes due to di�erent

feature relevance patterns, modi�cations in the learning model complexity and increases in

the classi�cation accuracy (Kuncheva, 2008).

In a supervised learning problem, at each time stamp t, the class prediction ŷt of the instance
~Xt is outputted. After checking the class yt the error of the algorithm is computed. For

consistent learners, according to the Probability Approximately Correct (PAC) learning

model (Mitchell, 1997) if the distribution of examples is stationary, the error rate of the

learning model will decrease when the number of examples increases.

Detecting concept changes under non-stationary environments is, in most of the cases,

inferred by monitoring the error rate of the learning model (Baena-García et al., 2006;

Gama et al., 2004; Nishida and Yamauchi, 2007). In such problems, the key to �guring

out if there is a change in the concept is to monitor the evolution of the error rate. A

signi�cant increase in the error rate suggests a change in the process generating data.

For long periods of time, it is reasonable to assume that the process generating data will

evolve. When there is a concept change, the current learning model no longer corresponds

to the current state of the data. Indeed, whenever new concepts replace old ones, the

old observations become irrelevant and thus the model will become inaccurate. Therefore

the predictions outputted are no longer correct and the error rate will increase. In such

cases, the learning model must be adapted in accordance with the current state of the

phenomena under observation.

2.6 How to Cope with Time-Changing Data?

Often, changes make the model built on old data inconsistent with the new data, and regu-

lar updating of the model is necessary. Such adaptations intend to keep the decision model

updated and can be roughly branched into data management methods and adaptation

strategies.
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2.6.1 Data Management

Figure 2.8: Categorization of data management.

In a dynamic environment, as new data is available, older observations are less useful. This

underlines out the need to forget out-dated data, which does not describe the current state

of the nature. Indeed, a stream learning model must be able to deal with evolving data

within the learning process.

When and how to forget are the main questions in this context. Regarding how data is

stored in memory to maintain a decision model consistent with the evolving data, data

management can be categorized into full memory and partial memory (Gama et al., ress).

Figure 2.8 presents the di�erent data management methods to cope with time-changing

data.

Full Memory methods keep in memory su�cient statistics over all the observations. These

approaches are based on the assumption that relevance of information decays with time

and address the evolution of data using decay (or weighting) functions. Such approaches

allow old data to be forgotten gradually by assigning less weight to past observations and

focusing the attention on the most recent data. A simple approach consists of multiplying

the su�cient statistics by a fading factor α (0� α < 1), thereafter, older information has

a lower contribution to the statistics than newer information.

Forgetting approaches with exponential decay can be found in Klinkenberg (2004) and
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Pinto and Gama (2007). In the �rst approach the aging function is given by wλ(x) =

exp(−λtx), where observation x was found tx time steps ago. In the second approach,

each example is weighted according to: wi = k × wi−1, with i being the counter of

observations. Koychev (2000) de�nes a linear gradual decay function, where, at time i, the

weight of the observation is given by: wi = − 2k
n−1(i− 1) + 1 + k. In this decay function,

the parameter k (0 < k < 1) represents the decreasing percentage of the weight.

The weighting parameters (λ for the �rst and k for the last two approaches) controls the

importance rate, establishing whether the forgetting process evolves abruptly or smoothly.

For larger values of λ and smaller values of k, less weight is assigned to the examples and

the lesser is the importance they have. If the value of k is null or the value of λ is equal to

one, there is no forgetting in the process, since all observations will have the same weight.

Partial Memory methods keep in memory only the most recent observations, forgetting

the oldest at a constant rate, by using a time-window that slides along the data stream.

At each time step, as a new observation is added to the sliding window, the oldest one

is discarded. Therefore, the learner provides a decision model based only on the learnt

examples that are inside the window. The FLORA framework, initially proposed by Kubat

(1989), handled the concept drift problem by forgetting data that lies outside a �xed

window.

The main di�culty is how to select the appropriate length of the window, establishing a

trade-o� between good stability of the learning results in static phases and good adaptability

to a new concept. If the length of the window is small, the model will be very responsive and

will react quickly to changes, assuring a fast adaptability in phases with concept changes,

but the accuracy of the classi�er might be low due to the small number of observations

within the window. Indeed, in more stable phases, it can a�ect the performance of the

learner, since it is learning from a small number of observations and therefore do not provide

a full image of the data. On the other hand, using a window with a large length, may

result in a slow, but well trained decision model. In such cases, in stationary phases the

decision model will output reliable and stable results, but in evolving environments would

not be able to promptly react to changes.

To overcome this limitation, approaches with adaptive windows length had been proposed

(Bifet and Gavaldà, 2007; Klinkenberg and Renz, 1998), adjusting the length to the extent

of the current concept. Therefore partial memory methods can be divided into windows

with �xed length and windows with adaptive length. In the adaptive length mechanism, the

number of observations inside the window is variable. This approach tries to automatically

adjust the length of the sliding window to discover the best trade-o� between stability and
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adaptability. The FLORA framework has been improved to FLORA 2 in order to provide

this type of forgetting mechanism.

Adaptive windows are commonly used in combination with a change detection approach,

which de�nes if the length of the window increases or decreases. Klinkenberg and Renz

(1998) proposes adjusting the length of the sliding window progressively according to

evaluation measures of the performance of the classi�er (namely accuracy, recall and

precision).

Discussion

Comparing the ability of data management methods to deal with concept changes, Klinken-

berg (2004) found that a full memory approach without any kind of forgetting, while

producing the most stable performance in static phases, handles concept drift worse than

forgetting approaches, since the recovery phase after the occurrence of a change is too

wide. With respect to the partial memory approaches, with the advantage of adjusting

the length of the window, adaptive techniques outperform �xed ones, showing a good

performance in stationary phases and fast adaptability to new concepts.

Within the partial memory methods, the data that lies outside the sliding window is thrown

away which is known as a catastrophic forgetting of old data. With the full memory

approach old data is forgotten gradually, considering that although recent data is the most

important, old data is still slightly related with the current state of nature.

2.6.2 Adaptation Strategy

Despite aging, the problem of dealing with changes in a signal has caught the attention of

the scienti�c community in recent years due to the emergence of real word applications.

When dealing with time-changing data streams, strategies to accommodate the evolving

data can be mainly divided into unsighted strategies and sighted strategies, according

to Figure 2.9. In unsighted strategies the decision model is adapted to the non-static

data without any explicit detection of changes, whilst in sighted strategies explicit change

detection is performed.
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Figure 2.9: Characterization of adaptation strategies.

Unsighted adaptation strategies can be categorized according to data and model man-

agements. The �rst category adapts the model at regular intervals without any explicit

detection of changes. Weighted examples and time windows of �xed length are examples

of this strategy.

The model management strategy relies on using multiple decision models, instead of one,

known as ensembles. Examples of such approach can be found in Kolter and Maloof

(2003); Kuncheva (2008); Zliobaite (2007). The basic idea is that aggregated decisions

(by a voting rule) are more accurate than single ones. To meet such goals, the ensemble

must be diversi�ed. Obviously, this is a costly computational process as it requires several

models to be kept in the memory. It requires, at least, k times more processing than a

single model (for an ensemble of k models). Kuncheva (2004) presents an overview on

classi�er ensembles on evolving scenarios and proposes a new categorization of ensemble

approaches.

One of the most important ensemble approaches is the Dynamic Weighted Majority (DWM)

presented by Kolter and Maloof (2003), where the predictions are made using a weighted-

majority voting rule. Within this ensemble method, learners are trained and weighted online

according to their performance. Removals and insertions of learners are made depending
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on the individual and overall performances, respectively.

Regarding the increasing concerns about concept detection, Minku and Yao (2012) presents

classi�ers equipped with a change detector. As it takes out bene�ts from the usage of a drift

detection method, the Diversity for Dealing with Drifts (DDD) deals with time-changing

data by explicitly detecting changes. Therefore, this approach is categorized as sighted

and will be discussed in the next section.

Sighted strategies adapt the decision model depending on the information provided by a

change detection method. Within this strategy, the decision model is modi�ed only after

explicit change detection. As a matter of course, sighted adaptation strategies are less

computationally costly than unsighted adaptation strategies.

The methods to detect change found in literature can be mainly divided into 3 categories:

statistical hypothesis tests, sequential analysis approaches and windowing schemes. These

methods will be discussed in the next section. There are methods to detect changes that

do not �t in these categories, such as Bayesian approaches (Çelik, 2011) and martingale

frameworks (Ho, 2005; Ho and Wechsler, 2010).

2.7 Methods for Change Detection

The growth of high-speed rate and online data, provided by a wide �eld of applications,

requires the online analysis of the gathered signals: especially in those cases where actions

must be taken after the occurrence of a change. From this point of view it is essential

to detect a change as soon as possible, ideally immediately after it occurs. This reduces

the delay time between the occurrence of the change and its detection. Minimizing the

detection delay time is of great importance in applications such as real-time monitoring in

biomedicine and industrial processes, automatic control, fraud detection, safety of complex

systems and many others.

In 1987, Basseville and Nikiforov (1993) addressed the theory of detection of abrupt changes

and real word applications. This book got the data mining community interested in this

subject. Resulting from applications in many �elds, there is a broad number of methods to

address the change detection problem. The recently book published, "Quickest Detection"

(Poor and Hadjiliadis, 2009) discusses change detection and presents diverse methods to

address this problem.

While providing deep insights into the topic under investigation, the wider published

literature on change detection methods also highlights di�culties. It is impossible to
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review all the contributions and it is ambitious to limit the review process to the major

ones. On the other hand, it is of paramount importance to select them. The literature

review was undertaken by searching for the main known researchers in the �eld worldwide

and the most important cited work.

2.7.1 Statistical Hypothesis Tests

Statistical hypothesis tests have been developed to address time-series problems. In many

time-series analysis problems, the main purpose is signal modulation. As a result, most

of the available methods to detect distribution changes in time-series are suitable for use

only when data collection precedes analysis. Statistical tests are divided into parametric

and non-parametric tests: the great di�erence between both is the normality assumption

of the data in the �rst case. In statistical hypothesis testing, the null hypothesis is that the

previously seen values and the current observed values come from the same distribution.

The alternative hypothesis is that they are generated from di�erent distributions.

The parametric Student's t-test (Blair and Higgins, 1980) performs a t-test of the null

hypothesis that two data sets are independent random samples from normal distributions

with equal means and equal but unknown variances, against the alternative that the means

are not equal. The non-parametric alternative, the Wilcoxon signed-rank test (Gibbons and

Chakraborti, 2003), can often have better statistical power when the normality assumption

does not hold. The Wilcoxon Signed-Rank test for paired samples implements a two-sided

rank sum test of the null hypothesis that data in two data sets are independent samples

from identical continuous distributions with equal medians, against the alternative that they

do not have equal medians. This test cannot be generally used because it will not react

to changes in standard deviation or in mean whenever they are dissociated from changes

in the median. The non-parametric two-sample Kolmogorov-Smirnov (KS) test (Massey,

1951) determines if two data sets di�er signi�cantly. The KS-test has the advantage of

making no assumption about the distribution of data (it is distribution free).

Although widely used to detect distribution changes in time-series, statistical hypothesis

tests are not commonly found in published literature as suitable ways of detecting distribu-

tion changes in data streams. There are some issues that limit the application of statistical

hypothesis tests to data streams. Parametric tests are not suitable for use in some data

stream contexts as it is unlikely to make assumptions on a priori distribution. Along with

this, for non-parametric tests, the critical values must be calculated for each distribution

and these values cannot always be generated by computer software. Moreover, in the

context of open-ended data, data manipulations tend to become more laborious.
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Therefore, statistical hypothesis tests are not the best option when the dimension of data is

considerably high, which is a common characteristic of streams of data. Ways to overcome

some of the problems faced when applying statistical hypothesis tests to data streams

are addressed in Sayad (2011). Regarding parametric tests, the author presents several

procedures so that statistical tests can be updated online, processing data in the �ow.

2.7.2 Sequential Analysis Methods

Derived from Statistical Quality Control applications, methods for monitoring and detecting

changes in quality continuous processes have been developed to ascertain distribution

changes.

Control charts, or process-behavior charts, were introduced by Shewhart (Shewhart, 1925,

1931) and provide visual information about the state of a monitored process. At regular

time intervals, a statistic measuring a chosen quality characteristic is computed using

a sample of some �xed size. This statistic is then drawn up along with its mean and

standard deviation (computed using all the samples) and upper and lower control limits.

Those control limits indicate a detection threshold and whenever the statistic falls outside

these limits the process is considered out-of-control. Control charts have proved to be

e�cient in detecting signi�cant changes in the mean or variance of a process, but fail to

detect small changes.

Based on the idea of control charts, the Drift Detection Method (DDM) proposed in

Gama et al. (2004) controls the error rate of a stream learning algorithm online. Assuming

that classi�cation errors follow a binomial distribution, the proposed approach computes

a statistic dependent on the probability of misclassifying an example and its standard

deviation, de�ning warning and drift levels. When the error exceeds the �rst (lower)

threshold, the system enters into a warning mode and stores in a short-term memory

(bu�er) the examples within the warning level. If the error drops below the threshold

again, the warning mode is canceled and the bu�er is emptied. However, if in a sequence

of examples, the error increases reaching the second (higher) threshold, a change in the

concept is declared. The classi�er is retrained using only the examples in the bu�er and

the variables are reinitialized. This method is more suitable for concept drift (sudden and

abrupt changes) than for concept shift (smooth changes), since smooth changes can be

observed without triggering the alarm level. The Early Drift Detection Method (EDDM)

proposed by Baena-García et al. (2006) is a similar method, but monitors the distance error

rate (the distance between two consecutive errors) instead of the error rate as the DDM.

Although outperforming the DDM in some data sets, the EDDM is not better in detecting
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concept shift. To overcome this drawback, the same authors later presented the ADWIN

(Bifet and Gavaldà, 2007), which is based on a windowing scheme to detect changes.

Sequential tests, using all previous observations of the process to compute cumulative

variables, are more sensitive to detecting small changes over the control charts. Wald

(1947) proposed the sequential probability ratio test (SPRT) which monitors the evolution

of a cumulative variable de�ned as the di�erence between the observed values and the

cumulative sum of the log likelihood ratio. Whenever this cumulative variable exceeds a user

de�ned threshold a change is assigned. Muthukrishnan et al. (2007) proposed a method

based on SPRT to yield fast and space-e�cient change detection on data streams. The

main idea is to compare data distributions computing a test statistic based on the logarithm

of the ratio between both distributions. Compared to three alternative approaches for

change detection found in literature, this method proves to be more e�ective in detecting

changes, namely for query quality and intrusion detection applications.

Later, the cumulative sum method (CUSUM) was proposed by Page (1954). The cumula-

tive variable of CUSUM is computed using the current and previous observations, revealing

deviations from a target value. A change is detected if the maximal value between the

cumulative variable and zero exceeds a threshold. Although similar to SPRT in theory,

the CUSUM variable is initialized with score zero and uses the maximal value between the

cumulative variable and zero function as the lower barrier. This method has been revised

and recently applied in di�erent contexts (Hadjiliadis et al., 2009; Ross et al., 2009) and

associated to Kalman �lters (Bifet and Gavaldà, 2006; Severo and Gama, 2006).

As with the CUSUM, the Page-Hinkley Test (PHT) (Hinkley, 1971a,b; Hinkley and Hinkley,

1970; Page, 1954) is a sequential analysis technique typically used for monitoring change

detection in the average of a Gaussian signal (Mouss et al., 2004). However, it is relatively

robust in the face of non normal distributions. This test considers a cumulative variable

de�ned as the accumulated di�erence between the observed values and their mean until

the current moment. Whenever the di�erence between this cumulative variable and its

maximal value is greater than a given threshold, a change is detected. Although presented

as a test to search for increases in the signals behavior, computing the minimal value of

the cumulative variable, this test can also be used to detect decreasing trends. Recent

applications of this sequential technique (Gama et al., 2013; Hartland et al., 2006) sustain

its feasibility.

With the same principles as PHT, the Exponentially-Weighted Moving Average (EWMA)

chart, introduced by Roberts (1959), monitors the process mean. However, instead of

directly considering the moving average of the signal, it weights examples in geometrically
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decreasing order and computes the average using all the examples. Derived from Exponen-

tially Weighted Moving Average, Ross et al. (2012) presents ECDD (EWMA for Concept

Drift Detection). This method for detecting concept drift monitors the misclassi�cation

rate of a streaming classi�er and employs the warning and drift level idea presented in

DDM.

Within the context of online ensemble learning, the Diversity for Dealing with Drifts (DDD)

approach, proposed by Minku and Yao (2012), presents a high diversity ensemble combined

with a change detection method. The drift detection method is based on the idea that,

in a static phase, the distance between two consecutive errors increases (as proposed by

Baena-García et al. (2006)). Therefore, a concept drift is assigned if this distance decreases

considerably with respect to a user de�ned threshold. The di�erent severities of the learners

that compose the ensemble ensure the robustness of the approach and the good stability

in static phases, whilst the change detector improves the accuracy in the presence of drifts.

An overview of these methods can be found in Montgomery (2009), as well as deeper

insights into control methods for change detection.

2.7.3 Windowing Schemes

Windowing schemes approaches for detecting changes in data, consist of monitoring dis-

tributions over two di�erent time-windows, performing tests to compare distributions

and decide if there is a change. The simple pseudocode of Algorithm 1 illustrates a

change detection method based on a windowing-scheme that compares data distributions

(algorithm based on (Kifer et al., 2004)).

In most change detection models, the data distribution on a reference window, which usually

represents past information, is compared to the data distribution computed over a window

from recent examples (Dasu et al., 2006; Kifer et al., 2004; Sebastião and Gama, 2007).

Within a di�erent conception, Bifet and Gavaldà (2007) proposes an adaptive windowing

scheme to detect distribution and concept changes: the ADaptive WINDdowing (ADWIN)

method. The ADWIN keeps a sliding window W with the most recently received examples

and compares the distribution in two sub-windows (W0 and W1) of the former. Instead

of being �xed a priori, the size of the sliding window W is determined online according

to the rate of change observed in the window itself (growing when the data is stationary

and shrinking otherwise). Based on the use of the Hoe�ding bound, whenever two large

enough sub-windows W0 and W1, exhibit distinct enough averages, the older sub-window

is dropped and a change in the distribution of examples is assigned. When a change is
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Algorithm 1 Detect Changes - Windowing Scheme.

Input: Labeled data set: x1, x2, . . .
Length of the �rst window: L0

Length of the second window: L1

Output: Time of the detected changes
t← 1
Step 1:
for each window do
W0 = {xi : i = t, . . . , t+ L0 − 1}
compute distribution in W0: P0

W1 = {xi : i = t+ L0, . . . , t+ L0 + L1 − 1}
compute distribution in W1: P1

end for
Step 2:
while not at the end of the stream do
for i = 1 . . . N do
if D(P0, P1) > λ then
t← i
report a change at time i: t∗ = i
Go to Step 1

else
slide W1 by 1 observation
compute distribution in W1: P1

end if
end for

end while

detected, the examples inside W0 are thrown away and the window W slides keeping the

examples belonging to W1. With the advantage of providing guarantees on the rates of

false positives and false negatives, the ADWIN is computationally expensive, as it compares

all possible sub-windows of the recent window. To cut o� the number of possible sub-

windows in the recent window, the authors have enhanced ADWIN. Using a data structure

that is a variation of exponential histograms and a memory parameter, ADWIN2 reduces

the number of possible sub-windows within the recent window.

The windows based approach proposed by Kifer et al. (2004) provides statistical guarantees

on the reliability of detected changes and meaningful descriptions and quanti�cation of

these changes. The data distributions are computed over an ensemble of windows with

di�erent sizes and the discrepancy of distributions between two pairs of windows (with

the same size) is evaluated performing statistical hypothesis tests, such as Kolmogorov-
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Smirnov and Wilcoxon, among others. Avoiding statistical tests, the adjacent windows

model proposed by Dasu et al. (2006) measures the di�erence between data distributions

by the Kullback-Leibler distance and applies bootstrapping theory to determine whether

such di�erences are statistically signi�cant. This method was applied to multidimensional

and categorical data, showing to be e�cient and accurate in higher dimensions.

Addressing concept change detection, the method proposed by Nishida and Yamauchi

(2007) detects concept changes in online learning problems, assuming that the concept

is changing if the accuracy of the classi�er in a recent window of examples decreases

signi�cantly compared to the accuracy computed over the stream hitherto. This method

is based on the comparison of a computed statistic, equivalent to the Chi-Square test

with Yates's continuity correction, and the percentile of the standard normal distribution.

Using two levels of signi�cance the method stores examples in short-term memory during

a warning period. If the detection threshold is reached, the examples stored are used to

rebuild the classi�er and all variables are reset. Later, Bach and Maloof (2008) proposes

paired learners to cope with concept drifts. The stable learner predicts based on all

examples, while the active learner predicts based on a recent window of examples. Using

di�erences in accuracy between the two learners over the recent window, drift detection is

performed and whenever the target concept changes the stable learner is replaced by the

reactive one.

The work presented in Kuncheva (2008) goes beyond the methods addressed in this section.

Instead of using a change detector, it proposes an ensemble of windows-based change

detectors. Addressing adaptive classi�cation problems, the proposed approach is suitable

for detecting concept changes either in labeled and unlabeled data. For the labeled data

the classi�cation error is recorded and a change is signalled comparing the error on a sliding

window with the mean error hitherto. For labeled data, computing the classi�cation error

is straightforward, hence it is quite common to monitor the error or some error-based

statistic to detect concept drift on the assumption that an increase in the error results

from a change. However, when the labels of the data are not available, the error rate

cannot be used as a performance measure of drifts. Therefore, changes in unlabeled data

are handled by comparing cluster structures from windows with di�erent length sizes. The

advantage of an ensemble of change detectors is disclosed by their ability to e�ectively

detect di�erent kinds of changes.
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2.8 Evaluation of Change Detection Methods

The evaluation of the performance of change detection method in time-changing environ-

ments is quantitatively assessed by measuring the following standard criteria:

• True detections: capacity to correct detects real changes.

• Missed detections: ability to not fail the detection of real changes.

• False alarms: resilience to false alarms when there is no change, which means that

the change detection method is not detecting changes under static scenarios.

• Detection delay time: the number of examples required to detect a change after the

occurrence of one.

When evaluating the ability of a change detector to e�ectively detect changes, detection

rates are used to quantitatively assess its performance. Such quantities are dependent on

the capacity of the change detector to detect real changes and to be resilient in a static

scenario. A True Positive (TP) corresponds to a change that actually occurred, while a

False Positive (FP) is a wrongly detected change (also known as a type I error and as a

false alarm). A False Negative (FN) is a change that is not detected, when in fact one

exists (also known as a type II error and as a missed detection). The True Negatives (TN)

represents the data observations where the change detector do not detects a change and,

indeed, there is no change.

These assessments allow the computation of quality metrics, such as Precision and Recall

(also known as Sensitivity), which derive from the area of Information Retrieval. The

precision measures the ratio between the correct detected changes (TP) and all the detected

changes (TP+FP), while recall is de�ned as a ratio between the correct detected changes

(TP) and all the occurred changes (TP+FN):

Precision = TP
TP+FP

Recall = TP
TP+FN

For both quality metrics, the closer to 1 the more accurate is the change detection method.

Both metrics are closely related to the concepts of type I and type II errors: an algorithm

with high recall has a low type II error, which means that it misses a small number of

changes detections. While an algorithm with high precision has a low type I error, which

means that it is resilient to false alarms.
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To jointly provide information on precision and recall of a change detector, the F1 score,

which is the harmonic mean of precision and recall, is commonly used:

F1 = 2 Precision∗Recall
Precision+Recall

The F1 scores the accuracy of the change detector, and 1 represents its best value and 0

the worst.

2.9 Conclusions

This chapter addresses the main concerns when dealing with data streams gathered in

time-changing environments. In fact, data collected from real applications is becoming

increasingly evolved. Therefore, the problems of detecting distribution changes and concept

changes are of paramount importance when coping with this kind of data. Within these

contexts, a literature review on methods for change detection was presented and metrics

to evaluate the performance of such methods were described.



- 3 -

Histograms over Data Streams

"Tell me and I forget.

Teach me and I remember.

Involve me and I learn."

Benjamin Franklin (1705/1706 - 1790)

This chapter addresses the problem of constructing compact representations of data: when

and why they are useful. These compact representations of data, also known as synopses

structures or summaries, are designed to capture properties of the data that is being

represented.

It is mandatory to create compact representations of data when dealing with massive data

streams. Memory restrictions preclude keeping all received data in memory, making it

obligatory that data must be discarded after being processed.

As a result of the summarization process, the size of a synopsis structure is small in relation

to the length of the data stream represented. Reducing memory occupancy is of utmost

importance when handling a huge amount of data. Along with this, data synopses allow

fast and relative approximations to be obtained in a wide range of problems, without the

need of accessing the entire stream.

The chapter is organized as follows. It starts by introducing the problem of constructing

histograms and giving an overview of some of the existing techniques to address this

problem. Section 3.2 proposes an approach to constructing online histograms, under error

constraints, from open-ended data streams, which besides allowing properties of data

to be remembered, it also provides visual information on data distribution. Section 3.3

presents two strategies, abruptly and smoothly, to forget outdated data. Finally, Section

3.4 concludes this chapter and provides the answers to research question 1.
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3.1 Introduction

When very large volumes of data arrive at a high-speed rate, it is impractical to accumulate

and archive in memory all observations for later use. Nowadays, the scenario of �nite stored

data sets is no longer appropriate because information is gathered assuming the form of

transient and in�nite data streams, and may not even be stored permanently. Therefore, it

is unreasonable to assume that machine learning systems have su�cient memory capacity

to store the complete history of the stream.

In the data stream context "you only get one look". Processing time, memory and sample

size are the crucial constraints in knowledge discovery systems (Barbará, 2002) that handle

this complex and interactive type of data. These restrictions impose that in the data stream

systems, the data elements are quickly and continuously received, promptly processed and

discarded immediately. Since data elements are not stored after being processed it is of

utmost importance to create compact summaries of data, keeping only a small and �nite

representation of the received information.

Data synopses are helpful and critical in these circumstances: they provide a compact

representation of data and their size is small compared to the original size of the data

under analysis. Besides providing approximated representations of the data that is being

processed, the data synopses will allow fast and relative approximations to be obtained in a

wide range of problems, such as: range queries, selectivity estimation, similarity searching

and database applications, classi�cation tasks, change detection and concept drift.

As for the wide range of problems in which data synopses are useful, it is of paramount

interest that these structures have broad applicability. This is a fundamental requirement

for using the same data synopsis structure in di�erent applications, reducing time and space

e�ciency in the construction process. The data stream context under which these synopses

are used also imposes that their construction algorithms must be single pass, time e�cient

and have, at most, space complexity linear in relation to the size of the stream. Moreover,

in most cases, data is not static and evolves over time. Synopses construction algorithms

must allow online updates on the synopses structures to keep up with the current state of

the stream.

Synopses structures for massive data sets are discussed in Gibbons and Matias (1999).

Di�erent kinds of summarization techniques are considered in order to provide approximated

answers to di�erent queries. The online update of such structures in a dynamic scenario

is also discussed. Sampling (Vitter, 1985), hot lists (Cormode and Muthukrishnan, 2005b;

Misra and Gries, 1982), wavelets (Chakrabarti et al., 2000; Gilbert et al., 2003; Karras and
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Mamoulis, 2008), sketches (Cormode and Muthukrishnan, 2005a) and histograms (Guha

et al., 2006; Ioannidis, 2003; Jagadish et al., 1998) are examples of synopses methods to

obtain fast and approximated answers.

Within the context of this thesis, the histograms were selected among other synopses

structures as a result of their simplicity, e�ciency and e�ectiveness.

3.1.1 Histograms

A histogram is a synopsis structure that allows accurate approximations of the under-

lying data distribution and provides a graphical representation of data. Histograms are

widely applied to compute aggregate statistics, to approximate query answering, query

optimization and selectivity estimation (Ioannidis, 2003). Besides, histograms are useful

in a large variety of data mining applications, such as change detection and classi�cation

tasks. Moreover, for multidimensional problems it is feasible to construct histograms over

multiple attributes capturing the joint frequency distributions accurately.

Consisting of a set of k non-overlapping intervals (also known as buckets or bins), a

histogram is visualized as a bar graph that shows frequency data. The height of each

bar drawn on each interval is proportional to the number of observed values within that

interval.

There is a broad number of works proposing histograms as a feasible data summarization

technique. The most important developments in this synopsis structure are discussed in

Ioannidis (2003). Also Poosala et al. (1996) presents a study on histograms, proposing a

taxonomy to capture existing histograms types and deriving new ones.

Often, literature identi�es several classes of histograms:

• In equi-width histograms, the range of the variable is divided into k intervals of

equal length (the range of the variable is equalized).

• Equi-depth or equi-height histograms are constructed so that the range of the

observed variable is divided into k buckets such that the frequency of the values in

all buckets should be equal.

• V-optimal histograms are de�ned as those that minimize the variance of the di�er-

ence between the observed values and the approximations given by the corresponding

assigned bucket. A V-optimal histogram is the histogram with the least variance of

all histograms with the same number of buckets.
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• In maxDi� histograms, after sorting the data, a bucket boundary is placed between

two adjacent values, if the di�erence between them is one of the k − 1 largest.

• Compressed histograms begin by storing in l (l < k) buckets the most frequent

l source values. The remaining are divided into k − l buckets as proposed by the

equi-depth method.

To construct histograms in the stream mining context, there are some requirements that

need to be ful�lled: the algorithms must be one-pass, supporting incremental maintenance

of the histograms, and must be e�cient in time and space (Guha et al., 2006, 2004).

Therefore, when constructing online histograms from data streams there are two main

characteristics to embrace:

• The updating facility.

• The error of the histogram.

It is well known that the V-optimal histograms, due to having the smallest variance possible

among all the intervals, provide smaller errors (Poosala et al., 1996). Although presenting

the most accurate estimation of data, V-optimal histograms are very di�cult to update as

new data arrives. In fact, keeping a V-optimal histogram along with the data could imply

reconstructing the histogram entirely instead of updating the existing one. Regarding

practical issues, the work in Ioannidis and Poosala (1995) devoted e�orts to improve the

online maintenance of V-optimal histograms.

Addressing the same problematic concerns, in Gama and Pinto (2006) the Partition In-

cremental Discretization algorithm provides a histogram representation of high-speed data

streams. The advantage of such an algorithm, which uses an architecture composed by

two layers, is that any base discretization method can be used: equal frequency, equal

width, recursive entropy discretization, chi-merge, etc.

3.2 How to Remember?

In this thesis, the synopses structures used to remember data that is being discarded are

provided by online equi-width histograms, in which the number of buckets is chosen under

error constraints. Despite not presenting the smallest error, the equi-width histograms were

chosen based on the following reasons:
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• The construction is e�ortless: it simply divides the range of the random variable into

k non-overlapping intervals with equal width.

• The updating process is easy: each time a new data observation arrives, it just

identi�es the interval where it belongs and increments the count of that interval.

• Information visualization is simple: the value axis is divided into buckets of equal

width.

3.2.1 Online Histograms under Error Constraints

A histogram provides a data summarization showing a graphical representation of the

distribution of a random variable: the values of the random variable are placed into non-

overlapping intervals and the height of the bar drawn on each interval is proportional to

the number of observed values within that interval.

Let i be the current number of observations of a given variable X from which a histogram

is being constructed. A histogram Hk is de�ned by a set of k buckets B1, . . . , Bk in the

range of the random variable and a set of frequency counts F1(i), . . . , Fk(i).

De�nition 3.1. Let k be the number of non-overlapping intervals of a histogram. For

each observation xi of a given variable X, the histogram counters are de�ned as:

Cj(i) =

1, xi ∈ Bj

0, xi /∈ Bj

, ∀j = 1, . . . , k (3.1)

Along with the de�nition of the histogram counters, come the de�nitions of the histogram

counts and histogram frequencies.

De�nition 3.2. Let k be the number of non-overlapping intervals of a histogram. For

each observation xi of a given variable X, the histogram counts are de�ned as:

Ctj(i) =
i∑
l=1

Cj(l), ∀j = 1, . . . , k (3.2)

De�nition 3.3. Let k be the number of non-overlapping intervals of a histogram. For

each observation xi of a given variable X, the histogram frequencies are de�ned as:

Fj(i) =
Ctj(i)

i
, ∀j = 1, . . . , k (3.3)
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The set of k buckets of a histogram are de�ned by a set of break points bp1, . . . , bpk+1,

which divides the range of the variable, and by a set of middle break points m1, . . . ,mk.

De�nition 3.4. Let k be the number of non-overlapping intervals of a histogram. The

histogram buckets are de�ned as:

Bj = {bpj, bpj+1,mj} , ∀j = 1, . . . , k (3.4)

One of the main problems in using histograms is the de�nition of the number of buckets.

A histogram with too many buckets is over detailed. On the other hand, if the histogram

is constructed with too few buckets, important information may not be represented. Either

way, a wrong number of the histogram buckets do not allow the underlying distribution of

the data to be perceived.

Several rules exist to decide the number of buckets in a histogram. A rule that has been

widely used is the Sturges's rule (Sturges, 1926): k = 1 + log2n, where k is the number

of intervals and n is the number of observed data points. This rule has been criticized

because it implicitly uses a binomial distribution to approximate an underlying normal

distribution. Sturges's rule has probably survived because, for moderate values of n (less

than 200) produces reasonable histograms. Although, it does not work for a large number

of observations. Alternative rules for constructing histograms include Scott's rule (Scott,

1979) for the class width: h = 3.5sn−1/3 and Freedman and Diaconis's rule (Freedman

and Diaconis, 1981) for the class width: h = 2(IQ)n−1/3 where s is the sample standard

deviation and IQ is the sample interquartile range. However, these rules are not suitable to

use in the context of open-ended data streams. In this context, all values of the variable are

never observed, and therefore the total number of observations is unknown. Overcoming

this drawback, the number of buckets in the online equi-width histograms proposed is

de�ned establishing a bound on the mean square error of the histogram.

While estimating the probability distribution of a random variable, a histogram presents an

error due to the reason that all the values of the variable within an interval are represented

by the corresponding middle point. In each bucket, all the contained observations xi are

estimated by the corresponding middle point, which means that this approximation error

is bounded by half of the width (W ) of the interval:

xi −mj ≤ W
2
, bpj ≤ xi < bpj+1 and ∀j = 1, .., k.

Considering an equi-width histogram, the range of the random variable, R, is divided into k

non-overlapping intervals with equal width (W = R
k
). For each observation xi, the bound
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for the approximation error is:

xi −mj ≤
R

2k
, bpj ≤ xi < bpj+1, ∀j = 1, .., k. (3.5)

Therefore, the error of representing a random variable by an equi-width histogram is de�ned

as a function of this approximation error.

De�nition 3.5. The square error?1 of the bucket Bj, de�ned by the interval {bpj, bpj+1}
and the middle break point mj is given by:

SE(Bj) =
∑

bpj<xl≤bpj+1

(xl −mj)
2, ∀j = 1, . . . , k. (3.6)

Moreover, since a histogram is de�ned by a set of non-overlapping buckets and each data

observation belongs only to one bucket, the total error of a histogram can be expressed as

a sum of the bucket errors.

De�nition 3.6. The mean square error of a histogram Hk with buckets B1, . . . , Bk, and

a total of n observations, is the mean of the sum of the square errors along all the buckets:

MSE(Hk) =

k∑
j=1

SE(Bj)

n
(3.7)

Using equation 3.5, the square error of each bucket Bj is at most Cj R
2

4k2 :

SE(Bj) =
∑

bpj<xl≤bpj+1

(xl −mj)
2 ≤

∑
bpj<xl≤bpj+1

(
R

2k

)2

= Cj
R2

4k2
,∀j = 1, . . . , k (3.8)

where Cj is the count of bucket Bj, ∀j = 1, . . . , k.

After simple algebraic manipulation, the mean square error of an equi-width histogram Hk

is bounded, in the worst case, by R2

4k2 :

MSE(Hk) =

k∑
j=1

SE(Bj)

n
≤

k∑
j=1

Cj
R2

4k2

n
=

R2

4k2
(3.9)

?1The square error is one of the most used error measures in histogram construction. It is also known
as the V-Optimal measure and was introduced by Ioannidis and Poosala (1995).
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Figure 3.1: Representation of the number of non-overlapping intervals. The top �gure
shows the dependency from the admissible error ε and the variable range R. Bottom
�gures show it according to only one variable.

Let ε be the admissible error for the mean square error of a histogram Hk with k buckets.

Then, from equation 3.9, it turns out that R2

4k2 ≤ ε. And therefore, this guarantees that

the mean square error of any equi-width histogram with at least R
2
√
ε
buckets is, at most,

ε.

It must be stressed out that the constraint k ≥ R
2
√
ε
does not guarantee that the equi-width

histogram Hk is optimal, neither that, concerning the mean square error, k is the optimal

number of buckets.

Figure 3.1 shows that the number of buckets linearly increases with the variable range (R)

and when the admissible mean square error (ε) of the histogram decreases. Figure 3.1

(top) represents the number of buckets in function of ε and of R. The bottom �gures give

a projection of the number of buckets according to the variables ε and R (respectively).

Therefore, in this thesis, the input for the online equi-width histograms construction is

the error parameter ε and the range of the variable. The range of the variable is only

indicative and is used to de�ne the non-overlapping intervals using an equi-width strategy
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and to establish the number of buckets in the histogram. Each time a new value of

the variable is observed, the histogram is updated. The updating process determines the

bucket corresponding to the observed value and increments the counts. These updates are

processed online, performing a single scan over the data stream. It can process in�nite

sequences of data, processing each example in constant time and space. Keeping the

histogram up with the incoming data only requires the set of buckets, the set of counts

and the current number of observations seen so far to be stored in memory.

3.3 How to Forget?

In a dynamic environment, as new data is available, older observations are less useful. This

stresses the need to forget outdated data, which is not describing the current state of the

nature.

In this context, the forgetting approach is deeply related with the evolution of the process

generating data. The forgetting process can be done abruptly or smoothly. In the former,

the data seen so far is thrown away, which is known by a catastrophic forgetting of old data.

This approach can be applied either after a �xed period of time or after the occurrence of

a change. The second case, considers that although recent data is the most important,

old data is still slightly related with the current state of nature. Within this approach, old

data is forgotten gradually, using fading factors.

In this thesis, evolving data streams are summarized using online histograms. With the

construction of online histograms over a sliding window, a catastrophic forgetting of

outdated data is achieved. On the other hand, a smooth forgetting mechanism is performed

using fading histograms constructed over the entire stream.

3.3.1 Histograms over Sliding Windows

The most common approach to forgetting outdated data is sliding windows, where an

algorithm is applied only to a small contiguous portion of the data set (window) which is

moved (slide) along the data examples as they arrive. In a sliding windows approach, at

each time step, the data distribution is approximated by a histogram constructed only from

the observations that are included in the window. At every time i, a data record arrives

and expires at time i+ w, where w is the length of the window.

Histograms that are constructed over a sliding window, are, henceforth, referred to as
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sliding histograms. Sliding histograms allow attention to be focused solely on the most

recent data, which captures the current state of nature and therefore the current properties

of the process generating data.

De�nition 3.7. Consider a sliding window (SW ) of length w at observation xi:

SW = {xl : l = i− w + 1, . . . , i}.

The frequency counts of a sliding histogram (with k buckets) constructed at observation

xi over this window are de�ned by:

Fw,j(i) =

i∑
l=i−w+1

Cj(l)

w
,∀j = 1, . . . , k, (3.10)

To exemplify the forgetting ability of sliding histograms with respect to histograms con-

structed over the entire stream, arti�cial data was generated from two normal distributions.

The initial 2500 observations follow a normal distribution with mean 5 and standard

deviation 1 and the remaining 2500 observations follow a normal distribution with mean

10 and the same standard deviation.

For illustrative purposes, the number of buckets in each histogram was set to 20 (consid-

ering an admissible error ε = 0.1 for the mean square error of the histograms and using

equation 3.9). With respect to the sliding histograms, a window of length 1000 was used.

Figure 3.2 (top) shows the arti�cial data with a change at observation 2500. The remaining

plots display sliding histograms (constructed over a window of length 1000) and over the

entire stream, at di�erent observations: 2000, 3000 and 4000.

From the �rst representations, while in the presence of a stationary distribution, it turns

out that both histograms produce similar representations of the data distribution. The

size of 1000 examples of the sliding window is enough to capture the behavior in this

initial stage. The second and the third representations present a di�erent scenario. At

observations 3000, after the change occurred at observation 2500, the representations

provided by both histograms strategies become quite di�erent. It can be observed that in

the sliding histogram representation, the buckets for the second distributions are reinforced,

which does not occur on the histogram constructed over the entire stream. Furthermore,

at observation 4000, in the histogram constructed over the entire stream, the buckets for

the �rst distribution still �lled, which is not in accordance with the current state of nature.
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Figure 3.2: Comparison of histograms constructed over a sliding window of length 1000
(SH) and over the entire stream (AH).

While in the sliding histograms, those buckets are empty as a result of the fact that the

sliding histogram is constructed only with the observations from a window on the current

distribution.

However, to construct sliding histograms it is necessary to maintain in memory all the

observations within the window, which could be costly depending on the applications and

on the length of the window. Nevertheless, approaches based on sliding windows have been

widely applied in summarization problems (Babcock et al., 2002; Lin et al., 2007). The

next section advances a memoryless approach to forgetting outdated data, which avoids

keeping recent observations in the memory.

3.3.2 Fading Histograms

As stated before, with the previous approach a catastrophic forgetting is obtained, which

in some applications could turn out to be excessive. As an alternative, using fading factors,

data is forgotten gradually. In dynamic data streams, recent data is usually more important

than old data. Therefore, the most feasible way to attribute di�erent weights to data

observations is an exponential approach, where the weight of data observations decreases

exponentially with time. Exponential fading factors have been applied successfully in data
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Figure 3.3: The weight of examples as a function of age, in an exponential approach.

stream evaluation (Gama et al., 2013).

Figure 3.3 illustrates the weight of examples according to their age, considering an expo-

nential approach.

Following an exponential forgetting, histograms can be computed using fading factors,

henceforth referred to as fading histograms. In this sense, data observations with high

weight (the recent ones) contribute more to the fading histogram than observations with

low weight (the old ones).

De�nition 3.8. Let k be the number of buckets of a fading histogram. For each

observation xi of a given variable X, the α-frequencies are de�ned as:

Fα,j(i) =

i∑
l=1

αi−lCj(l)

k∑
j=1

i∑
l=1

αi−lCj(l)

,∀j = 1, . . . , k, (3.11)

where α is an exponential fading factor, such that 0� α < 1.

According to this de�nition, old data is forgotten gradually, since it contributes less than

recent data. Moreover, the recursive form enables the construction of fading histograms

in the �ow.

The forgetting ability of fading histograms with respect to histograms constructed over the

entire stream is illustrated using the same arti�cial data as in �gure 3.2. The number of
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Figure 3.4: Comparison of histograms computed with a fading factor of α = 0.997 (FH)
and histograms constructed over the entire stream (AH).

buckets and the value of the fading factor for the fading histograms were set to 20 (the

same settings as in Section 3.3.1) and α = 0.997, respectively.

The top Figure 3.4 shows the arti�cial data with a change at observation 2500. The re-

maining plots display fading histograms (with a fading factor of α = 0.997) and histograms

constructed over the entire stream, at di�erent observations: 2000, 3000 and 4000. The

number of buckets in each histogram was set to 20 (the same settings as in Section 3.3.1).

These histograms are similar to those shown in Figure 3.2, and therefore the same conclu-

sions can be taken for the fading histograms as those for the sliding histograms. Contrary

to the histograms constructed over the entire stream, fading histograms capture the change

better (as shown in the histograms produced at observation 3000), enhancing the ful�llment

of the buckets for the second distribution. At observation 4000, it can be seen that the

fading histogram produces a representation that keeps up with the current state of nature,

forgetting outdated data (it must be pointed out that although they appear to be empty,

the buckets for the �rst distribution present very low frequencies).

The fading factors are memoryless, an important property in streaming scenarios (Gama

et al., 2013). Hence, it turns out that fading histograms present a clear advantage over

sliding histograms, which require all the observations inside the window to be maintained

in memory. Nevertheless, fading histograms are, in fact, approximations of histograms
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constructed with data observations from a sliding window (for further details, see the

Appendix A). Moreover, there is a relation between the length of the sliding window and

the value of the fading factor that should be used to approximate that window (Rodrigues

et al., 2010).

3.3.3 Representation Comparison

In order to compare sliding histograms with fading histograms, the same arti�cial data as

in Figure 3.2 was used. With respect to the sliding histograms, a sliding window of length

1000 was used and to compute fading histograms, a fading factor of α = 0.997 was used

(from Rodrigues et al. (2010) it turns out that to approximate an estimate on a sliding

window of length w with a fading estimate, the α must be set to α = ε
1
w , where ε is the

admissible approximation error). The number of buckets in each histogram was set to 20

(the same settings as in Section 3.3.1).

Figure 3.5: Comparison of histograms constructed over a sliding window (of size 1000)
and with fading factors (α = 0.997).

Figure 3.5 (top) shows arti�cial data with a change at observation 2500. The remaining

plots display sliding histograms (constructed over a sliding window of length 1000) and

fading histograms (with α = 0.997) at di�erent observations: 2000, 3000 and 4000.

From these representations, it is straightforward that both approaches to constructing
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Figure 3.6: Comparison of the average counts of di�erent kinds of histograms: a histogram
constructed over the entire stream of data (solid thick line), a sliding histogram constructed
over a sliding window of size 1000 (long dashed thick line) and a fading histogram computed
with fading factor α = 0.997 (dashed thick line).

histograms with a forgetting ability lead to similar results. Moreover, both histograms

capture the change at observation 2500, as shown in the representations at observation

3000. However, it can be observed that the ability to forget outdated data is reinforced

in the fading histogram, since the buckets from the initial distribution presented smaller

values than the corresponding ones in the sliding window, while the buckets from the

second distribution have higher values.

Figure 3.6 (top) shows the same arti�cial data, with a change at observation 2500, used

in the previous �gures. The bottom plot presents the average of histogram counts from

a histogram constructed over the entire stream of data (solid thick line), from a sliding

histogram (long dashed thick line) and from a fading histogram (dashed thick line). In

the presence of a change in data distributions, the advantage of using sliding or fading

histograms instead of a histogram constructed with all the examples is obvious: both

adapt their data representation to the occurred change, keeping a representation which is

more faithful to the new state of the data distribution. Indeed, the histogram constructed

over the entire stream of data, is not able to overcome the contributions of the initial state

of data distribution, and therefore the representation of new data provided is corrupted

by the initial examples. In this sense, it is quite di�cult to perceive from this histogram
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representation the existence of a change in data distribution. In contrast, the representation

provided by fading histograms make the change occurred in data distribution clear. From

this example, it is easy to observe that the representation from fading histograms is able

to reproduce the new state of data earlier than the representation constructed over sliding

windows. Therefore, fading histograms provide representations of data more up-to-date

than any of the others.

The advantages of fading histograms over sliding histograms and over histograms con-

structed with all the data examples are straightforward: they are able to adapt better to a

new data distribution and they are memoryless with respect to sliding histograms, which

is an important property in data stream context (Gama et al., 2013).

3.4 Conclusions & Research Question

In this chapter the problem of data summarization from open-ended data streams has been

discussed and the approaches proposed to remember important properties of data streams

and to forget outdated data were presented.

This chapter is devoted to research question 1, which consisted of two parts:

1. In the context of massive data streams, which strategy should be used to remember

the discarded data?

2. In the context of time-changing data streams, how can a compact representation of

data forget outdated data in order to be able to keep up with the current state of

evolving nature?

In this thesis the properties of data are remembered using online histograms under mean

square error constraints. The advantage of this summarization structure is bi-fold: it

constructs a compact representation of data and provides a visual interpretation of the

underlying distribution.

Nowadays, it is not feasible to consider that data is collected in a static scenario. To deal

with non-stationary data streams, besides remembering data that is being discarded after it

is processed, the online histograms must also forget data that is not describing the current

state of nature. To accomplish this target, online histograms are constructed over sliding

windows or using fading factors. The former strategy enforces an abrupt forgetting while
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the second approach, which has the advantage of being memoryless, lets outdated data

slip out gradually.

The following chapter advances the proposed approach of monitoring and comparing

data distributions in dynamic environments. Data distribution is approximated using the

histograms mentioned in Section 3.3.
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- 4 -

Monitoring Data over Sliding

Windows

"Todo o mundo é composto de mudança,

Tomando sempre novas qualidades."

Luís Vaz de Camões (1524 - 1580)

Consider a data stream mining algorithm, whose main purpose is to create a model

describing certain properties of a data stream. While the underlying distribution that

generates data remains stable the model will be accurate. However, at the occurrence

of a change, old observations become irrelevant to the current state of nature, and their

contribution to the model becomes inappropriate. Therefore, the description provided by

the model will no longer be accurate. Old information must be forgotten and a new

model representing the current state of nature is needed, which stresses out the demand

of detecting such changes.

To cope with this problem, a change detection model based on monitoring data distributions

is proposed. Research question 2 addresses the characteristics of the change detection

model and therefore is dealt with in this chapter.

The chapter is organized as follows. It starts with the objectives and methodology of

research question 2. Then proposes an approach to detect changes through the monitoring

of data distributions over two time windows: the Cumulative Windows Model (CWM)

(Sebastião and Gama, 2007). Section 4.3 designs experiments to evaluate the performance

of CWM on detecting both distribution and concept changes, using arti�cial data, real data

and a public data set. This chapter ends with conclusions on the change detection model

and answers to the respective research question.
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4.1 Research Question

One of the main challenges in data mining occurs when the underlying distribution that

generates the data streams changes over time. In dynamic environments it is of utmost

importance to perform change detection tests to instigate if the underlying distribution

generating data is stationary. This chapter presents a model to detect changes by monitor-

ing data in two time windows. Considering the scope of this approach, research question

2 is raised:

1. In the development of a model to detect changes through the comparison of distribu-

tions over two time windows, which is the appropriate step to perform comparisons?

2. When evaluating the distance between distributions, how do the forgetting rates of

fading histograms a�ect the detection delay time?

3. What is the robustness against noise of the proposed change detection model?

4. What is the e�ect of the extension of a stationary phase in the performance of the

proposed change detection model?

Within this research question, the objectives are to:

1. Propose a windows-based model for change detection, where the step to perform data

distributions comparison is automatically de�ned according to the data stationarity.

2. Evaluate the overall performance of the CWM in detecting distribution changes with

di�erent magnitudes and rates, namely to:

• Evaluate the advantage of using an adaptive evaluation step instead of a �xed

one.

• Evaluate the bene�t, in detection delay time, of using fading histograms when

comparing data distributions to detect changes.

• Evaluate robustness to detect changes against di�erent amounts of noise.

• Evaluate the stability in static phases with di�erent lengths and how it a�ects

the ability to detect changes.

The above objectives are accomplished with the following methodology:



CUMULATIVE WINDOWS MODEL FOR CHANGE DETECTION 57

1. The step to perform comparisons is de�ned according to the distance between data

distributions: the step is increased if the distance is small (which suggests that data

is generated according to the same distribution, hence it is a stationary phase) and

is decreased if the distance is high (which means that data from both windows is

further apart).

2. Design experimental evaluation in order to assess the overall performance of the

change detection approach under di�erent evolving scenarios.

4.2 Cumulative Windows Model for Change Detec-

tion

The Cumulative Windows Model (CWM) is proposed for detecting changes when mon-

itoring data over sliding windows, addressing both distribution and concept changes.

Within this approach, the reference window (RW) has a �xed length and re�ects the data

distribution observed in the past. The current window (CW) is cumulative and it is updated

sliding forward and receiving the most recent data. In the CWM, the data distribution is

computed by the histograms presented in Section 3.3 of the previous chapter.

In change detection problems, it is mandatory to detect changes as soon as possible,

minimizing the delay time in detection. Along with this, the false and the missed detections

must be minimal. Therefore, the main challenge when proposing an approach for change

detection is reaching a trade-o� between the robustness to false detections (and noise) and

sensitivity to true changes. The CWM should detect true changes with high probability

(with few spurious detections - false positives) and as soon as they occur. Along with this,

CWM should present a minimal number of missed detections (false negatives). Moreover,

an e�ective change detection method must be able to forget outdated data, be a single

pass and allow constant updates in time and memory. The proposed CWM was designed

to ful�ll these requirements.

It must be pointed out that the proposed CWM is a non-parametric approach, which means

that it makes no assumptions on the form of the distribution. This is a property of major

interest, since real data streams rarely follow known and well-behavior distributions.
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Figure 4.1: Work�ow of the Cumulative Windows Model (CWM) for change detection.

Figure 4.1 shows the work�ow of the CWM for change detection. The histograms represen-

tations were constructed from the observed data, with di�erent number of observations. At

every evaluation step, the data distribution in the Current Window (CW) is compared with

the distribution of the data in the Reference Window (RW). If a change in the distribution

of the data in the CW with respect to the distribution of the data in the RW is not detected,

the CW is updated with more data observations. Otherwise, if a change is detected, the

data in both windows is cleaned, new data is used to ful�ll both windows and a new

comparison starts.

4.2.1 Distance Between Distributions

From information theory (Berthold and Hand, 1999), the Relative Entropy is one of the

most general ways of representing the distance between two distributions (Dasu et al.,

2006). Contrary to the Mutual Information this measure assesses the dissimilarity between

two variables. Also known as the Kullback-Leibler divergence, it measures the distance be-

tween two probability distributions and therefore is suitable for use in comparison purposes.

Assuming that the data in the reference window has distribution PRW and that data in the
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current window has distribution PCW , the Kullback-Leibler Divergence (KLD) is used as a

measure to detect whenever a change in the distribution has occurred.

Considering two discrete distributions with empirical probabilities PRW (i) and PCW (i), the

relative entropy of PRW with respect to PCW is de�ned by:

KLD(PRW ||PCW ) =
∑

i PRW (i)log PRW (i)
PCW (i)

.

The Kullback-Leibler divergence is not a real metric since is asymmetric:

KLD(PRW ||PCW ) 6= KLD(PCW ||PRW ).

Nevertheless, it satis�es many important mathematical properties: is a nonnegative mea-

sure, it is a convex function of PRW (i) and equals zero only if PRW (i) = PCW (i).

Consider a reference window with empirical probabilities PRW (i), and a current slid-

ing window with probabilities PCW (i). Taking into account the asymmetric property

of the Kullback-Leibler divergence and that the minimal value of the di�erence between

KLD(PRW ||PCW ) and KLD(PCW ||PRW ), which is zero, is achieved when P=Q: smaller

values of this di�erence correspond to smaller dispersion between both data distributions,

meaning that the data is similar; and higher values of this di�erence suggest that distribu-

tions are further apart.

4.2.2 Decision Rule

Considering a change detection approach based on monitoring data distribution over two

windows, the problem of detecting changes in a data stream is accomplished evaluating

whether the distance between data distribution on both windows is di�erent enough.

In the proposed Cumulative Windows Model for change detection, the decision rule used

to assess changes in data distribution is based on the asymmetry of the Kullback-Leibler

divergence. It is de�ned that a change has occurred in the data distribution of the current

window relatively to the data distribution of the reference window, if the absolute di�erence

of the KLD between the distributions of the reference and the current windows and the

KLD between the distributions of the current and the reference windows is greater than a

given threshold δ:

|KLD(PRW ||PCW )−KLD(PCW ||PRW )| > δ.
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The threshold δ represents a trade-o� between sensitivity to true changes and robustness

to false detections of the proposed model for change detection. A high value of δ entails

fewer false alarms, but might miss or delay the detection of true changes. A small value

of δ increases the rate of detecting small changes and ensures lower detection delay times,

but also increases the rate of false alarms.

If no change occurs, the reference distribution is maintained and more data points are

considered in the current window, and a new comparison is made. If any anomalies and/or

deviations from what is expected are detected, an alert alarm can be triggered and a change

is assigned. In that case, both windows are cleaned, initializing a new process of change

detection.

4.2.3 Evaluation Step for Data Distributions Comparison

In the proposed model for change detection, the evaluation step is the increment of the

cumulative current window. In a stationary phase, does it make any sense to compare

data distributions at each time a new data point is available? Regarding e�ciency,

computational costs and resources availability, the answer is no. On the other hand,

in a non-stationary phase, a large evaluation step could compromise the change detection,

by delaying it.

This raises the �rst part of research question 2: In the development of a model to detect

changes through the comparison of distributions over two time windows, which is the

appropriate step to perform comparisons?

When comparing data distributions over sliding windows, at each evaluation step the change

detection method is induced by the examples that are included in the sliding window. Here,

the key di�culty is how to select the appropriate evaluation step. A small evaluation step

may ensure fast adaptability in phases where the data distribution changes. However, a

small evaluation step implies that more data comparisons are made. Therefore, it tends to

be computationally costly, which can a�ect the overall performance of the change detection

method. On the other hand, with a large evaluation step, the number of data distribution

comparisons decreases, increasing the performance of the change detection method in

stable phases but not allowing quick reactions when a change in the distribution occurs.

Therefore, the a priori de�nition of the evaluation step to perform data distribution

comparisons is a compromise between computational costs and detection delay time.

In the proposed approach, the evaluation step, instead of being �xed and selected by

the user, is automatically de�ned according to the data stationarity and to the distance
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between data distributions. Starting with an evaluation step of IniEvalStep, the step

length is increased if the distance between distributions is small (which suggests that data

is generated according to the same distribution, hence it is a stationary phase) and is

decreased if the distance between distributions is high (which means that data from both

windows is further apart), according to the following relation:

EvalStep = max(1, round(IniEvalStep ∗ (1− 1
δ
) ∗ |KLD(PRW ||PCW )−KLD(PCW ||PRW )|)),

where KLD denotes the Kullback-Leibler divergence between data distributions and δ is

the change detection threshold.

Figure 4.2 illustrates the dependency of the evaluation step on the distance between data

distributions of an arti�cial data set, for a change detection threshold δ = 0.1.

Figure 4.2: Representation of the evaluation step for data distributions comparison with
respect to the absolute di�erence between KLD(PRW ||PCW ) and KLD(PCW ||PRW ) (for
a change detection threshold of δ = 0.1).

4.2.4 Pseudocode

The presented Cumulative Windows Model (CWM) was designed to detect changes online

in the distribution of streams of data. The data distribution is computed by the histograms

presented in Section 3.3 of the previous chapter. In order to detect changes, the data

distributions in two time windows are compared using the Kullback-Leibler divergence.

Algorithm 2 presents the pseudocode for this CWM.
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Algorithm 2 CWM

Input: Data set: x1, x2, . . .

Number of buckets in the histogram nBuckets

Length of the Reference window: LRW
Initial evaluation step IniEvalStep

Change detection threshold δ

Output: Time of the detected changes: t∗

ti ← 0

Step 1:

Initialize the histogram in the reference window (PRW ) as empty

Initialize the histogram in the current window (PCW )as empty

De�ne the �rst evaluation point: EvalPoint = LRW + IniEvalStep

while not at the end of the stream do

if t ≤ ti + LRW then

Compute the histogram in the RW : PRW
Compute the histogram counts for the CW

else if t = EvalPoint then

Compute the histogram in the CW : PCW
Compute the next evaluation step:

EvalStep = max(1, round(IniEvalStep(1− 1
δ
) ∗ |KLD(PRW ||PCW )−KLD(PCW ||PRW )|))

Compute the next evaluation point: EvalPoint = EvalPoint+ EvalStep

if |KLD(PRW ||PCW )−KLD(PCW ||PRW )| > δ then

ti ← i

report a change at time t: t∗ = t

Go to Step 1

end if

else

Compute the histogram counts for the CW

end if

end while
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4.3 Experimental Evaluation

In this section, the proposed CWM is evaluated under di�erent evolving scenarios, using

arti�cial and real data, and assessing the ability to detect distribution changes and concept

changes. Moreover, regarding the detection of concept changes, a comparison of the CWM

with 3 known algorithms taken from literature is presented. The ability of CWM to detect

distribution and concept changes was evaluated through the criteria and metrics presented

in Section 2.8. The arti�cial data as obtained in MATLAB (MATLAB R©& Simulink R©,

2007). All the experiments were implemented in MATLAB as well as the graphics produced.

4.3.1 Distribution Changes

This section presents the performance of the CWM in detecting distribution changes.

To detect distribution changes, the model is evaluated using arti�cial data, presenting

distribution changes with di�erent magnitudes and rates, and using real world data from

an industrial process and a biomedical problem.

4.3.1.1 Controlled Experiments with Arti�cial Data

The objectives of these controlled experiments with arti�cial data is to provide answers

to the research question 2. The data sets and the experimental designs were outlined in

order to evaluate the overall performance of the CWM in detecting distribution changes in

di�erent evolving scenarios, namely to:

1. Evaluate the advantage of using an adaptive evaluation step instead of a �xed one.

2. Evaluate the bene�t, in detection delay time, of using fading histograms when

comparing data distributions to detect changes.

3. Evaluate robustness to detect changes against di�erent amounts of noise.

4. Evaluate the stability in static phases with di�erent lengths and how it a�ects the

ability to detect changes.

The data sets were generated according to a normal distribution with certain parameters.

Both the mean and the standard deviation parameters were varied, generating 2 di�erent
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problems according to the source of the change. Each data stream consists of 2 parts,

where the size of the second is N .

Two data sets were generated. In the �rst data set, the length of the �rst part of data

streams was set to N . In the second data set, the length of the �rst part was set to 1N ,

2N , 3N 4N and 5N , in order to simulate di�erent lengths of static phases.

The �rst data set was used to carry out the �rst, the second and the third experimental

designs and the second data set was used to perform the fourth experimental design,

evaluating the e�ect of di�erent extensions of the stationary phase on the performance of

the CWM in detecting changes.

Within each part of the data streams the parameters stay the same, which means that only

1 change happens between both parts and di�erent changes were simulated by varying

among 3 levels of magnitude (or severity) and 3 rates (or speed) of change, obtaining

a total of 9 types of changes for each changing source (therefore, a total of 18 data

streams with di�erent kind of changes). Although there is no golden rule to classify the

magnitude levels, they were de�ned in relation to one another, as abrupt, medium and

smooth according to the variation of the distribution parameter, as shown in Table 4.1.

For each type of changes, 30 di�erent data streams were generated with di�erent seeds.

Table 4.1: Magnitude levels of the designed data sets.

Parameter Value of the Parameter variation Magnitude

changed �xed parameter (before → after change) of change

µ σ = 1

µ = 0→ µ = 5 Abrupt

µ = 0→ µ = 3 Medium

µ = 0→ µ = 2 Smooth

σ µ = 0

σ = 1→ σ = 5 Abrupt

σ = 1→ σ = 3 Medium

σ = 1→ σ = 2 Smooth

The rates of change were de�ned assuming that the examples from the �rst part of data

streams are from the old distribution and the N − ChangeLength last examples are

from the new distribution, where ChangeLength is the number of examples required

before the change is complete. During the length of the change, the examples from the

new distribution are generated with probability pnew(t) = t−N
ChangeLength

and the examples

from the old distribution are generated with probability pold(t) = 1 − pnew(t), where

N < t < N + ChangeLength. As for the magnitude levels, the rates of change were
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de�ned in relation to one another, as sudden, medium and low, for a ChangeLength of

1, 0.25 ∗N and 0.5 ∗N , respectively. The value of N was set to 1000.

Therefore, the �rst data set is composed by a total of 540 data streams with 2000 examples

each, and the second data set consists of a total of 2700 data streams with �ve di�erent

lengths, 540 data streams of each length.

Setting the parameters of the CWM and of the online histograms

The CWM and the online histograms require the setting of the following parameters:

• LRW - length of the reference window (CWM);

• IniEvalStep - initial evaluation step (CWM);

• δ - change detection threshold (CWM);

• ε - admissible mean square error of the histogram;

It was established that 5% was an admissible mean square error of the histogram. To

instigate the values for the remaining parameters, an experiment was performed on a

training data set with the same characteristics as the �rst data set, varying the LRW
within 1k, 2k, . . . 10k (where k is the number of buckets in the online histograms) and δ

within 0.01, 0.05, 0.1, 0.2. However, in this training data set, only 10 data streams were

generated with di�erent seeds for each type of drift, obtaining a total of 118 data streams

with length 2N (N = 1000). In this experiment, the CWM was performed with a unitary

evaluation step and the summary results were analyzed. Table 4.2 presents the precision,

recall and F1 score for a reference window of length 50k and 10k and for a change detection

threshold of 0.05 and 0.1, for a total of 180 true changes. Although compromising the

delay time in change detection, the best F1 score is obtained for a reference window of

10k examples and a change detection threshold of 0.05.

Table 4.2: Precision, Recall and F1 score, obtained when performing the CWM, with a
reference window of length 5k and 10k and a change detection threshold of 0.05 and 0.1.

LRW

5k 10k

δ

0.05

Precision = 0.87 Precision = 0.98

Recall = 1 Recall = 0.97

F1 = 0.93 F1 = 0.98

0.1

Precision = 0.97 Precision = 1

Recall = 0.96 Recall = 0.88

F1 = 0.97 F1 = 0.93
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Figure 4.3: Detection delay time, total number of false alarms (FA) and missed detections
(MD), depending on the LRW and δ.

Figure 4.3 shows the detection delay time (average of 10 runs) and the total number of

false alarms (FA) and missed detections (MD), for a total of 180 true changes, depending

on the length of reference window of length (LRW ) and on the change detection threshold

(δ). It can be observed, that an increase in the detection delay time, controlled by the

value of δ, is followed by a decrease in the number of false alarms (and an increase in the

number of missed detections). However, for LRW = 10k and δ = 0.05, the false alarm

rate (3/180) and the miss detection rate (5/180) are admissible.

Thereafter, the settings for the parameters of the CWM were the following:
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• The length of the reference window was set to 10k (LRW = 10k);

• The initial evaluation interval was set to k (IniEvalStep = k);

• The threshold for detecting changes was set to 5% (δ = 0.05);

The parameter k is the number of buckets in the online histograms, and was computed

establishing the admissible mean square error of the histogram as 5% (ε = 0.05).

Evaluate the advantage of using an adaptive evaluation step instead of a �xed

one

This experiment was designed to study the advantage of performing the CWM with an

adaptive evaluation step (ACWM) against a �xed evaluation step (FCWM). The �rst data

set was used in this experimental design. Figure 4.4 shows the advantage, in detection

delay time, of an adaptive evaluation step over the �xed one (average results for 30 runs

on data generated with di�erent seeds). Except for the distribution change in the mean

parameter, with smooth magnitude and sudden rate, the detection delay time is shorter

when performing the ACWM. This decrease in the detection delay time, when performing

ACWM, is obtained without compromising the false alarm and miss detection rates (except

for one case: change with smooth magnitude and abrupt rate, in the mean parameter, see

Table 4.3).

Using the results of the 30 replicas of the data, a paired, two-sided Wilcoxon signed rank

test was performed to assess the statistical signi�cance of the comparison results. It

was tested the null hypothesis that the di�erence between the detection delay times of

the ACWM and the FCWM comes from a continuous, symmetric distribution with zero

median, against the alternative that the distribution does not have zero median. For all

types of changes in both mean and standard deviation parameters, the null hypothesis

of zero median in the di�erences was rejected, at a signi�cance level of 1%. Therefore,

considering the very low p-values obtained, there is strong statistical evidence that the

detection delay time of ACWM is smaller than of FCWM.

In Table 4.3, besides the detection delay time using the CWM with an adaptive and a

�xed evaluation steps, the total number of missed detections and the total number of false

alarms are also presented. The results report the average and standard deviation of 30

runs.

As expected, greater distribution changes (abrupt magnitudes and sudden rates) are easier

to detect by the CWM, either using an adaptive or a �xed evaluation step. On the other
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Figure 4.4: Detection delay time (average of 30 runs) using the CWM with an adaptive
(ACWM) and a �xed (FCWM) evaluation steps.

hand, for smaller distribution changes (smooth magnitudes and low rates) the detection

delay time increases. The decrease in the detection delay time in this experiment sustains

the use of an adaptive evaluation step, when performing the CWM. Although the decrease

in detection delay time is small, these results must be taken into account that the length

of the data was also small. With data with higher length, the decrease of detection delay

time will be reinforced. Moreover, for both strategies, the execution time of performing

the CWM is comparable.

Evaluate the bene�t, in detection delay time, of using fading histograms when

comparing data distributions to detect changes.
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Table 4.3: Detection delay time (DDT) using the ACWM and the FCWM. The results
report the average and standard deviation of 30 runs. In parenthesis is the number of runs,
if any, where the CWM misses detection or signals a false alarm: they are in the form
(Miss; False Alarm).

Parameter
Mag. Rate

Adaptive Step Fixed Step
changed DDT (µ± σ) DDT (µ± σ)

Mean

Abrupt
Low 260 ± 57 275 ± 53 (0;0)

Medium 153 ± 24 (1;1) 178 ± 59 (0;1)
Sudden 19 ± 4 (0;1) 24 ± 0 (0;1)

Medium
Low 410 ± 131 (0;1) (0;1)424 ± 138

Medium 242 ± 125 (0;1) 259 ± 122 (0;1)
Sudden 36 ± 22 (0;1) 52 ± 26 (0;1)

Smooth
Low 516 ± 171 (7;2) 535 ± 177 (7;2)

Medium 371 ± 233 (5;0) 389 ± 232 (5;0)
Sudden 233 ± 229 (1;0) 223 ± 193 (3;0)

STD

Abrupt
Low 240 ± 34 284 ± 42

Medium 168 ± 16 198 ± 30
Sudden 71 ± 10 104 ± 0

Medium
Low 368 ± 87 399 ± 93

Medium 213 ± 28 245 ± 32
Sudden 65 ± 15 83 ± 27

Smooth
Low 517 ± 158 542 ± 154

Medium 362 ± 127 387 ± 129
Sudden 162 ± 60 (1;0) 189 ± 63 (1;0)

As stated before, fading histograms attribute more weight to recent data. In an evolving

scenario, this could be a huge advantage since it enhances small changes. Therefore, when

comparing data distributions to detect changes, the detection of such changes will be

easier. This experimental design intends to evaluate the bene�t of using fading histograms

as a synopsis structure to represent the data distributions that will be compared, for

detecting changes, within the ACWM (which will be referred to as ACWM-fh). Thus,

data distributions, within the reference and the current windows, were computed using

fading histograms with di�erent values of fading factors: 1 (no forgetting at all), 0.9994,

0.9993, 0.999, 0.9985 and 0.997.

As with evaluating the statistical signi�cance of the results of ACWM and FCWM, a paired,

two-sided Wilcoxon signed rank test was performed to assess the statistical signi�cance of

di�erences between ACWM and ACWM-fh, using the results of the 30 replicas of the

data. With the exception of the change in the mean parameter with abrupt magnitude and

sudden rate (for the fading factors tested except 0.997), for all the other types of changes

in both mean and standard deviation parameters, the null hypothesis of zero median in

the di�erences between detection delay times was rejected, at a signi�cance level of 1%.

Therefore, considering the very low p-values obtained, there is strong statistical evidence
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that the detection delay time of ACWM-fh is smaller than of ACWM.

Table 4.4 presents a summary of the detection delay time (average and standard deviation

from 30 runs on data generated with di�erent seeds) using the ACWM-fh for comparing the

data distributions in the �rst data set. The total number of missed detections and the total

number of false alarms are also presented. This experiment out underlines the advantage

of using fading histograms to compute the data distributions: the detection delay time

decreases by decreasing the fading factor and without compromising the number of missed

detections and false alarms (except when using a fading factor of 0.997). The increase of

false alarms when using a fading factor of 0.997 suggests that fading histograms computed

with this value are over reactive, therefore fading factors of values equal or smaller than

0.997 are not suitable for use in this data set.

Table 4.4: Detection delay time (average and standard deviation), using the ACWM and
computing data distributions with fading histograms (with di�erent fading factors). The
results report the average and standard deviation of 30 runs. In parenthesis is the number
of runs, if any, where the ACWM-fh misses detection or signals a false alarm: they are in
the form (Miss; False Alarm).

Parameter
Mag. Rate

Fading Factor
changed 1 0.9994 0.9993 0.999 0.9985 0.997

Mean

Abrupt
Low 260 ± 57 246 ± 64 246 ± 64 241 ± 68 233 ± 77 226 ± 70 (0;5)

Medium 153 ± 24 (1;1) 145 ± 27 (0;1) 150 ± 33 (0;2) 140 ± 31 (0;2) 140 ± 32 (0;2) 125 ± 36 (0;2)
Sudden 19 ± 4 (0;1) 19 ± 5 (0;1) 19 ± 5 (0;1) 18 ± 6 (0;1) 16 ± 6 (0;1) 13 ± 6 (0;1)

Medium
Low 410 ± 131 (0;1) 387 ± 142 (0;1) 385 ± 144 (0;1) 381 ± 151 (0;1) 365 ± 148 (0;2) 311 ± 96 (0;5)

Medium 242 ± 125 (0;1) 215 ± 69 (0;2) 213 ± 69 (0;2) 211 ± 58 (0;3) 205 ± 58 (0;3) 186 ± 54 (0;5)
Sudden 36 ± 22 (0;1) 27 ± 16 (0;1) 25 ± 15 (0;1) 23 ± 11 (0;1) 22 ± 9 (0;1) 36 ± 110 (0;2)

Smooth
Low 516 ± 171 (7;2) 510 ± 202 (4;2) 496 ± 204 (4;2) 496 ± 197 (3;2) 448 ± 173 (2;2) 369 ± 150 (0;9)

Medium 371 ± 233 (5;0) 338 ± 208 (3;0) 327 ± 193 (3;0) 324 ± 209 (1;0) 289 ± 168 250 ± 151 (0;4)
Sudden 233 ± 229 (1;0) 165 ± 170 (1;0) 159 ± 168 (1;0) 139 ± 159 (1;0) 138 ± 180 66 ± 76 (0;1)

STD

Abrupt
Low 240 ± 34 219 ± 36 216 ± 38 208 ± 41 204 ± 45 186 ± 52

Medium 168 ± 16 157 ± 18 155 ± 19 151 ± 22 143 ± 25 138 ± 40
Sudden 71 ± 10 60 ± 13 58 ± 14 52 ± 16 42 ± 19 23 ± 18

Medium
Low 368 ± 87 327 ± 76 322 ± 76 310 ± 76 294 ± 79 249 ± 92

Medium 213 ± 28 185 ± 30 180 ± 30 170 ± 32 159 ± 35 140 ± 40
Sudden 65 ± 15 53 ± 13 52 ± 14 49 ± 13 43 ± 13 39 ± 14

Smooth
Low 517 ± 158 445 ± 140 435 ± 137 411 ± 136 380 ± 145 316 ± 113 (0;2)

Medium 362 ± 127 305 ± 101 295 ± 92 278 ± 88 260 ± 85 204 ± 52
Sudden 162 ± 60 (1;0) 116 ± 41 (1;0) 122 ± 74 109 ± 74 87 ± 46 62 ± 40

The detection delay time (average of 30 runs on data generated with di�erent seeds) of

this experimental design is shown in Figure 4.5. It can be observed that the advantage of

using fading histograms is strengthened when detecting small changes, which is explained

by the greater importance attributed to recent examples that enhances a change and eases

its detection by the ACWM.
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Figure 4.5: Detection delay time (average of 30 runs) of the ACWM-fh.

Evaluate the robustness to detect changes against di�erent amounts of noise.

Within this experimental design, the robustness of the ACWM against noise was evaluated.

Noisy data was generated by adding di�erent percentages of Gaussian noise with zero mean

and unit variance to the �rst data set. Figure 4.6 shows the obtained results by varying

the amount of noise from 10% to 50%.

The detection delay time (average of 30 runs on data generated with di�erent seeds) of this

experimental design is shown in Figure 4.6. The ACWM presents a similar performance

along the di�erent amounts of noise, with the exception of a change in the standard

deviation parameter with abrupt magnitude and medium and sudden rates (for a level of



72 EXPERIMENTAL EVALUATION

Figure 4.6: Detection delay time (average of 30 runs) of the ACWM with di�erent amounts
of noise.

noise of 30%). In these cases, the average detection delay time increases when compared

with other amounts of noise. This experiment sustains the argument that the ACWM is

robustness against noise while e�ectively detects distribution changes in the data.

Table 4.5 presents a summary of the detection delay time (average and standard deviation

from 30 runs on data generated with di�erent seeds) using the ACWM for comparing the

data distributions in the �rst data set. The total number of missed detections and the

total number of false alarms are also presented. Regarding the total number of missed

detections and false alarms, with an amount of 50% of noise a slight increase is noticeable

for both, mainly for changes in the mean parameter.
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Table 4.5: Detection delay time (average and standard deviation), using the ACWM with
di�erent amounts of noise. The results report the average and standard deviation of 30
runs. In parenthesis is the number of runs, if any, where the ACWM misses detection or
signals a false alarm: they are in the form (Miss; False Alarm).

Parameter
Mag. Rate

Noise Scale
changed 10% 20% 30% 40% 50%

Mean

Abrupt
Low 245 ± 62 246 ± 67 235 ± 44 242 ± 82 256 ± 75 (0;3)

Medium 146 ± 25 (0;2) 143 ± 29 (0;1) 150 ± 30 (0;1) 167 ± 148 (0;2) 152 ± 36 (0;2)
Sudden 19 ± 5 18 ± 4 22 ± 6 17 ± 4 42 ± 150 (0;1)

Medium
Low 360 ± 152 (1;0) 416 ± 123 (1;2) 383 ± 90 (1;1) 380 ± 127 (1;1) 429 ± 144 (1;4)

Medium 223 ± 77 (0;3) 225 ± 70 (0;1) 201 ± 50 235 ± 72 (0;2) 246 ± 112 (1;5)
Sudden 27 ± 12 (0;1) 51 ± 138 (0;2) 28 ± 9 (0;1) 29 ± 13 (0;1) 65 ± 120 (0;1)

Smooth
Low 475 ± 201 (4;1) 456 ± 165 (6;1) 451 ± 137 (5;0) 464 ± 138 (7;2) 461 ± 144 (6;5)

Medium 382 ± 237 (6;1) 344 ± 206 (5;1) 322 ± 166 (5;1) 336 ± 237 (4;1) 375 ± 205 (5;1)
Sudden 203 ± 226 (0;1) 204 ± 234 (3;1) 187 ± 235 (1;0) 197 ± 221 (2;1) 139 ± 203 (3;9)

STD

Abrupt
Low 231 ± 35 240 ± 38 239 ± 36 234 ± 38 223 ± 53

Medium 153 ± 17 154 ± 15 222 ± 89 (1;0) 153 ± 17 150 ± 27
Sudden 53 ± 14 61 ± 14 245 ± 163 (2;0) 54 ± 13 36 ± 7

Medium
Low 316 ± 47 332 ± 49 310 ± 63 317 ± 64 349 ± 79

Medium 208 ± 24 205 ± 31 210 ± 29 209 ± 33 217 ± 56
Sudden 61 ± 16 60 ± 18 63 ± 14 59 ± 14 67 ± 17

Smooth
Low 481 ± 117 472 ± 129 472 ± 141 (1;0) 499 ± 128 (1;0) 513 ± 181 (2;1)

Medium 316 ± 142 (1;0) 331 ± 107 338 ± 104 350 ± 134 386 ± 210 (0;1)
Sudden 146 ± 80 153 ± 69 132 ± 63 154 ± 77 202 ± 152 (1;0)

Evaluate the stability in static phases with di�erent lengths and how it a�ects

the ability to detect changes.

This experiment was carried out with the second data set. The performance of the ACWM

was evaluated varying the length of stationary phases from 1N to 5N (N = 1000).

The detection delay time (average of 30 runs on data generated with di�erent seeds) of

this experimental design is shown in Figure 4.7.

Overall, it can be observed that the detection delay time for the ACWM increases within

the increase of the stationary phase. This is even more evident in distribution changes

with sudden rates. Indeed, the stability of the ACWM in stationary phases, compromises

the ability to e�ectively detect changes. However, this can be overthrown by using fading

histograms to compute the data distributions, as shown in Figure 4.8.

Actually, in stationary phases, the ability of the fading histograms to forget outdated

data works in favor of the change detection model, by decreasing the detection delay

time. However, a decrease in the value of the fading factor results in the increase of the

number of false alarms. Table 4.6 presents the detection delay time (average and standard

deviation of 30 runs on data generated with di�erent seeds for the 9 types of changes

for each source parameter) using the ACWM-fh in di�erent stationary phases. The total

number of missed detections and the total number of false alarms are also presented.

From the results presented, it can be noted that a decrease in the detection delay time

is achieved, establishing a commitment with respect to the number of false alarms and
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Figure 4.7: Detection delay time (average of 30 runs) of the ACWM with di�erent lengths
of stationary phases.

Figure 4.8: Detection delay time (average of 30 runs for the 9 types of changes) of the
ACWM-fh with di�erent lengths of stationary phases.
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missed detections.

Table 4.6: Detection delay time (average and standard deviation) using the ACWM-fh in
di�erent stationary phases. The results report the average and standard deviation of 30
runs for the 9 types of changes for each source parameter. In parenthesis is the number of
runs, if any, where the ACWM-fh misses detection or signals a false alarm: they are in the
form (Miss; False Alarm).

Parameter
Fading Factor

Length of Stationary Phase
changed 1k 2k 3k 4k 5k

Mean

1 249 ± 166 (14;7) 282 ± 172 (25;11) 300 ± 171 (31;7) 334 ± 183 (31;7) 365 ± 189 (35;7)
0.9994 228 ± 163 (8;8) 248 ± 163 (12;14) 260 ± 159 (14;15) 258 ± 164 (12;17) 254 ± 159 (15;21)
0.9993 224 ± 159 (8;9) 246 ± 170 (9;16) 247 ± 151 (14;18) 252 ± 162 (10;21) 250 ± 162 (11;24)
0.999 219 ± 160 (5;10) 228 ± 161 (9;17) 229 ± 150 (10;23) 227 ± 153 (10;30) 228 ± 155 (11:34)
0.9985 206 ± 146 (2;11) 221 ± 157 (4;20) 219 ± 162 (3;33) 228 ± 164 (1;47) 223 ± 163 (4;60)
0.997 176 ± 125 (0;34) 188 ± 121 (0;79) 182 ± 127 (3;121) 177 ± 131 (0;146) 187 ± 122 (0;182)

Standard deviation

1 241 ± 150 (1;0) 317 ± 185 (4;0) 385 ± 203 (11;0) 441 ± 208 (23;0) 495 ± 220 (34;0)
0.9994 207 ± 131 (1;0) 235 ± 141 (1;0) 251 ± 148 (1;0) 257 ± 151 (1;0) 263 ± 152 (1;0)
0.9993 204 ± 127 227 ± 137 (1;0) 238 ± 142 (1;0) 243 ± 143 (1;0) 246 ± 144 (1;0)
0.999 193 ± 122 208 ± 128 (1;0) 212 ± 130 (1;0) 213 ± 129 (1;1) 214 ± 131 (1;1)
0.9985 179 ± 116 188 ± 118 186 ± 117 (1;1) 189 ± 124 (2;6) 187 ± 118 (0;9)
0.997 151 ± 99 (0;2) 155 ± 96 (1;10) 160 ± 97 (1;21) 162 ± 105 (4;42) 162 ± 103 (3;60)

4.3.1.2 Industrial Data Set

This industrial data set was obtained within the scope of the work presented in Correa

et al. (2009), with the objective of designing di�erent machine learning classi�cation

methods for predicting surface roughness in high-speed machining. Data was obtained

by performing tests in a Kondia HS1000 machining center equipped with a Siemens

840D open-architecture CNC. The blank material used for the tests was 170 × 100 ×
25 aluminum samples with hardness ranging from 65 to 152 Brinell, which is a material

commonly used in automotive and aeronautical applications. These tests were done with

di�erent cutting parameters, using sensors for registry vibration and cutting forces. A

multi-component dynamometer with an upper plate was used to measure the in-process

cutting forces and piezoelectric accelerometers in the X and Y axis for vibrations measures.

Each record includes information on several variables used in a cutting process and the

measurements for each test were saved individually.

For change detection purposes, the measurements of the cutting speed on X axes from

7 tests were joined sequentially in order to have only one data set with 6 changes with

di�erent magnitudes and sudden and low rates.

Figure 4.9 shows this data set and the change detection time of ACWM. It can be noted that

ACWM takes too many observations to detect the fourth change. This can be explained

by the fact that this change has smooth magnitude with respect to the remaining changes.

The last change, which occurs at observation 420.000, is a change with a low rate: from
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the beginning of the change until approximately observation 430.000 (which is the length

of this change), the observations come from both the new and old tests. The ACWM is

able to detect the beginning of the change as well as the end.

Figure 4.9: Detection delay time of the ACWM on the industrial data set.

The goal of this experiment is to evaluate the feasibility of the proposed ACWM with an

industrial problem and comparing the advantage of using fading histograms. To this end,

data distributions, within the reference and the current windows, were computed using

fading histograms with di�erent values of fading factors: 1 (no forgetting at all), 0.999998

and 0.999994.

The ACWM-fh is able to detect the 6 changes in the data with smaller detection delay time

than when using online histograms. Moreover, with both approaches for data representa-

tions, ACWM did not miss any changes and although data has di�erent kinds of changes,

ACWM-fh presented a performance which was highly resilient to false alarms. The same is

true of the last change when performing the ACWM-fh. Table 4.7 presents the detection

delay time of the ACWM-fh when applied to this industrial data set. It can be observed

that, as well as for the ACWM, ACWM-fh presents a high delay time when detecting the

fourth change (with smooth magnitude)

4.3.1.3 Medical Data Set - CTGs

The CWM was evaluated on �ve Fetal Cardiotocographic (CTG) problems, collected at

the Hospital de São João, in Porto. Fetal Cardiotocography is one of the most important

methods of assessment of fetal well-being. CTG signals contain information about the

fetal heart rate (FHR) and uterine contractions (UC).

Five antepartum FHR with a median duration of 70 min (min-max: 59 - 103) were obtained

and analyzed by the SisPorto R© system. These cases corresponded to a median gestational

age of 39 weeks and 5 days (min-max: 35 weeks and 4 days - 42 weeks and 1 day).
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Table 4.7: Detection delay time of the ACWM-fh on the industrial data set.

Fading Factor (α)
True Change 1 0.999998 0.999994

45000 906 901 910
90000 988 1105 1331
210000 2865 2571 2100
255000 9142 8763 8452
375000 2496 2235 1806
420000 1340 1114 1018

Average 2956 2782 2603

The SisPorto R© system, developed at INEB (Instituto Nacional de Engenharia Biomédica),

starts the computer processing of CTG features automatically after 11 min of tracing

acquisition and updates it every minute (Ayres-de Campos et al., 2008), providing the

FHR baseline estimation, identifying accelerations and decelerations and quantifying short-

term and long-term variability according to algorithms described in Ayres-de Campos et al.

(2000). Along with these features, the system also triggers alerts, such as "Normality

criteria met alert", "Non-reassuring alerts" and "Very non-reassuring alerts" (further details

can be founded in Ayres-de Campos et al. (2000)). However, the system usually takes about

10 min to detect these di�erent behaviors. In the "Normal" stage of FHR tracing four

di�erent patterns may be considered (Gonçalves et al., 2007):

• A - corresponding to calm or non-eye movement (REM) sleep;

• B - active or rapid eye movement (REM) sleep;

• C - calm wakefulness;

• D - active wakefulness;

Figure 4.10 shows an example of the analysis of a CTG exam exactly as it is produced

by the SisPorto R© system. The FHR and UC tracings are represented at the top and at

the bottom, respectively. The FHR baseline estimation, accelerations and decelerations

and di�erent alerts stages also can be observed in this �gure. The "Normal" stage is

represented with a green bar in between the FHR and UC tracings. The "Suspicious"

stage is represented with yellow and orange bars and the "Problematic" stage with a red

bar.

The aim is to apply the CWM for this clinical data (with an adaptive and a �xed evaluation

step) and assess whether the changes detected are in accordance with the changes identi�ed
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Figure 4.10: FHR (top) and UC (bottom) tracings. This �gure also includes the FHR
baseline estimation, accelerations and decelerations and patterns classi�cation.

by the SisPorto R© system. Ideally these changes should be detected earlier with CWM.

The CWM was applied to the FHR tracings.

The data was represented by online histograms, with an admissible mean square error of

5% of the range of the data. The input parameters for the CWM were the following:

• The length of the reference window was set to 10k, where k is the number of buckets

in the online histograms;

• The initial evaluation interval was set to k/2, where k is the number of buckets in

the online histograms;

• The threshold for detecting changes was set to 5%;

The achieved results are consistent with the system analysis and the CWM detects the

changes between the di�erent stages earlier than the SisPorto R© system. Further than the

analysis of this program, the method is able to detect some changes between di�erent

patterns of the "Normal" stage. Due to di�culties in ascertaining the exact change points

between these behaviors it is not possible to perform a detection delay evaluation. However

the preference of an adaptive evaluation step is again supported by the detections results

in this data set.

4.3.2 Concept Changes

Concerning the detection of concept drifts, a comparison of the ACWM with three well

known methods taken from literature was undertaken, namely:
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• Drift Detection Method (DDM), presented by Gama et al. (2004);

• ADaptive WINDdowing (ADWIN) method, introduced by Bifet and Gavaldà (2007);

• Page-Hinkley Test (PHT), described in Page (1954);

Drift detection method (DDM) This online drift detection method monitors the

trace of the error rate of an online classi�er, for streaming observations, and considers

that the error rate follows the binomial distribution. At each time t, the error rate of

the online classi�er is the probability of misclassifying, pt, with a standard deviation st =√
pt(1− pt)/t. According to the Probability Approximately Correct (PAC) learning model,

this method assumes that in a stationary concept, the error rate decreases with the number

of observations. Therefore an increase in the error rate indicates a change in the concept.

While monitoring the error rate, the DDM stores pmin and smin, which correspond to

the minimum probability and minimum standard deviation (respectively), and are obtained

when pt + st reaches its minimum value. Based on these minimum values, the DDM

establishes two levels as follows:

• The warning level: when pt + st ≥ pmin + 2smin;

• The drift level: pt + st ≥ pmin + 3smin;

When the error rate exceeds the lower threshold, the system enters in a warning mode and

stores the observations within the warning level in a short-term memory. If the error drops

below the threshold again, the warning mode is cancelled. However, if the error increases

reaching the second (higher) threshold, a change in the concept is assigned. The online

classi�er is retrained using only the observations in the bu�er and reinitializes the variables.

The pseudocode for this algorithm is presented in Appendix B.1.

ADaptive WINdowing (ADWIN) The ADaptive WINDdowing method keeps a sliding

window W (with length n) with the most recently received examples and compares the

distribution on two sub-windows of W . Whenever two large enough sub-windows, W0 and

W1, exhibit distinct enough averages, the older sub-window is dropped and a change in the

distribution of examples is assigned. The window cut threshold is computed as follows:

εcut =
√

1
2m
ln 4

D
, with m = 1

1/n0+1/n1
, where n0 and n1 denote the lengths of W0 and W1.

A con�dence value D is used within the algorithm, which establishes a bound on the false

positive rate. However, as this �rst version was computationally expensive, the authors
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propose to use a data structure (a variation of exponential histograms), in which the

information on the number of 1's is kept as a series of buckets (in the Boolean case). It

keeps at most M buckets of each size 2i, where M is a user de�ned parameter. For each

bucket, two (integer) elements are recorded: capacity and content (size or the number of

1s it contains). The pseudocode for ADWIN algorithm is presented in Appendix B.2.

Page Hinkley Test (PHT) The Page-Hinkley Test (PHT) (Page, 1954) is a sequential

analysis technique typically used for monitoring change detection in the average of a

Gaussian signal (Mouss et al., 2004). This test considers a cumulative variable UT de�ned

as the accumulated di�erence between the observed values and their mean until the current

moment:

UT =
T∑
t=1

(xt − x̄T − δ)

where x̄T = 1/T
∑T

t=1 xt and δ corresponds to the magnitude of changes that are allowed.

To detect increases, it computes the minimum value of Ut: mT = min(Ut, t = 1 . . . T ) and

monitors the di�erence between UT and mT : PHT = UT−mT . When the di�erence PHT

is greater than a given threshold (λ) a change in the distribution is assigned. The threshold

λ depends on the admissible false alarm rate. Increasing λ will entail fewer false alarms, but

might miss or delay some changes. Controlling this detection threshold parameter makes

it possible to establish a trade-o� between the false alarms and the missed detections. The

pseudocode for the PHT is presented in Appendix B.3.

4.3.2.1 Controlled Experiments with Arti�cial Data

To assess the performance of these methods in detecting concept changes in di�erent

scenarios, di�erent experiments were carried out. The number of false alarms, the missed

detections and detection delay time were evaluated using data underlying a Bernoulli

distribution and a public data set.

This set of experiments uses data streams of lengths L = 2.000, 5.000 and 10.000,

underlying a stationary Bernoulli distribution of parameter µ = 0.2 during the �rst L−1.000

examples. During the last 1.000 examples the parameter is linearly increased to simulate

concept drifts with di�erent magnitudes. The following slopes were used: 0 (no change),

10−4, 2.10−4, 3.10−4 and 4.10−4. For each type of simulated drift, 100 data streams were

generated with di�erent seeds. These experiments also allow to analyze the in�uence, in

the delay time until detections, of the length of the stationary part (the �rst L − 1.000

samples).
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Table 4.8: Average detection delay time (DDT ), number of false alarms (#FA) and
the number of missed detections (#MD), for the four methods, using the data streams
with lengths 2.000, 5.000 and 10.000 and with di�erent slopes in the Bernoulli parameter
distribution. For slope = 0 (no change) the measurements DDT and #MD are not
applicable.

Length Slope
ADWIN DDM PHT ACWM-fh (α = 0.9994)

DDT #FA #MD DDT #FA #MD DDT #FA #MD DDT #FA #MD

2.000

0 (n.a.) 5 (n.a.) (n.a.) 0 (n.a.) (n.a.) 4 (n.a.) (n.a.) 0 (n.a.)

1.10−4 582 0 3 627 0 2 573 0 3 687 0 2

2.10−4 578 0 0 687 0 16 523 0 0 752 0 4

3.10−4 428 0 0 537 0 0 397 0 0 531 0 0

4.10−4 359 0 0 534 0 0 331 0 0 530 0 0

5.000

0 (n.a.) 17 (n.a.) (n.a.) 17 (n.a.) (n.a.) 41 (n.a.) na 0 (n.a.)

1.10−4 722 16 30 866 21 77 650 23 13 849 0 27

2.10−4 512 13 13 732 19 37 463 25 0 632 0 0

3.10−4 383 14 14 668 20 17 337 32 0 539 0 0

4.10−4 320 10 10 587 9 12 279 29 0 273 0 0

10.000

0 (n.a.) 15 (n.a.) (n.a.) 44 (n.a.) (n.a.) 68 (n.a.) (n.a.) 20 (n.a.)

1.10−4 722 19 35 829 39 94 650 60 10 828 14 54

2.10−4 505 19 19 843 56 57 466 71 0 678 15 5

3.10−4 401 17 17 720 29 53 344 68 0 576 16 1

4.10−4 327 23 23 642 52 41 280 66 0 507 22 6

Table 4.8 shows a summary of the performance of the four methods compared: ADWIN,

DDM, PHT and ACWM-fh (with fading factor α = 0.9994). The rows are indexed by the

value of L and corresponding slope, presenting the delay time (DDT ) until the detection

of the change that occurs at time stamp L−1.000 (averaged over the 100 runs), the total

number of missed detections (#MD) and the total number of false alarms (#FA).

For di�erent stream lengths, the �rst row (slope 0) gives the number of false alarms. The

PHT tends to present more false alarms than any of the other methods. The ACWM-fh

only presents false alarms for streams with a length of 10.000. For these cases, the number

of false alarms of ACWM-fh and ADWIN is similar.

In general, the increase of the data streams length leads to an increase in the number of

false alarms and missed detections. As is reasonable for all the methods, the increase in

the slope of Bernoulli's parameter contributes to a decrease in the time until the change

is detected. Fewer false alarms and missed detections resulted also from slope increases.

For all the streams and looking at the detection delay time, the ADWIN wins over DDM,

presenting a similar number of false alarms and missed detections. For detection delay

time, in all the cases, the PHT outperforms the ADWIN. Additionally, in most cases, PHT

does not miss changes. However, PHT results are compromised with the highest number

of false alarms among the four methods. In a concept drift problem, when a change

detector is embedded in a learning algorithm, this is a huge drawback. The occurrence of

a concept drift implies the relearning of a new model in order to keep up with the current

state of nature. In the presence of a false detection, the model, which is up-to-date, will
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be unnecessarily replaced by a new one. On the other hand, in learning scenarios, missed

detections are also harmful. They entail outdated models that are not describing the new

evolving data.

Regarding this trade-o� between false alarms and missed detections, the ACWM-fh presents

the best results, with detection delay times almost as low as the ADWIN.

4.3.2.2 Experiments on a Public Data Set

In the previous experiment, the data set did not allow the performance of the di�erent

change detection methods to be evaluated in large problems, which is important since

concept drift mostly occurs in huge amounts of data arriving in the form of streams. To

overcome this drawback, an evaluation of the change detection algorithms was performed

using the SEA concepts data set (Street and Kim, 2001), a benchmark problem for concept

drift. Figure 4.11 shows the error rate (computed using a naive-Bayes classi�er), which

presents three drifts. The drifts and the corresponding detections, signed by the analyzed

methods, are represented by dashed and solid lines, respectively.
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Figure 4.11: Evolution of the error rate and the delay times in drift detection using the
four presented methods (ACWM was performed with two variants). Vertical dashed lines
indicate drift in data, and vertical solid lines indicate when drift was detected.
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Table 4.9 presents the delay time in detecting concept drifts in this data set. In can be seen

that all the algorithms require too many examples to detect the �rst drift. The exception

is ACWM-fh, which takes only almost half the time of the second "best" methods (ACWM

and ADWIN) to detect the �rst drift. For all the methods, the resilience to false alarms

and the ability to reveal changes without missing detections must be stressed.

Table 4.9: Detection delay time of the compared methods, when performed in the SEA
data set.

# Drift
Detection Delay Time

ADWIN DDM PHT ACWM ACWM-fh

1 826 3314 1404 818 442
2 115 607 118 620 343
3 242 489 249 489 434

Comparing the performance of both ACWM, the approach using fading histograms, has a

clear advantage. The detection delay time is signi�cantly reduced for the �rst and second

drifts. For the second and third drifts, the performance of the ACWM is comparable to

the performance of the DDM; while for the �rst drift the detection delay time is similar

to the one presented by ADWIN. The ACWM-fh clearly performs better than DDM and

PHT. When compared to ADWIN, although it wins in the detection of the �rst drift, it is

beaten on the second and on the third.

In evolving learning scenarios, the time required to process examples plays an important role.

When comparing the MATLAB execution time of these methods, the ACWM performs best,

as shown it Table 4.10. It must be pointed out that ADWIN was performed in MATLAB

but the code was implemented in JAVA, which may increase the execution time.

Table 4.10: MATLAB execution times when performing the methods analyzed.

# Drift
Execution Time

ADWIN DDM PHT ACWM ACWM-fh

1 0.942387 0.938678 2.478019 0.034037 0.040603
2 0.614463 0.477378 1.260515 0.000695 0.004226
3 0.736048 0.621921 1.882912 0.044618 0.046027

4.4 Conclusions & Research Question

This chapter presented the CWM, which is a windowing scheme to detect changes through

the monitoring of data distributions over two time windows. The performance of the



CONCLUSIONS & RESEARCH QUESTION 85

CWM was evaluated in di�erent evolving scenarios, using arti�cial and real data, revealing

its suitability to detect distribution changes as well as concept changes. Research question

2 enquires about distribution changes and was therefore addressed in this chapter:

1. In the development of a model to detect changes through the comparison of distribu-

tions over two time windows, which is the appropriate step to perform comparisons?

The reasoning presented in Section 4.2.3 leads to an adaptive evaluation step, which

is automatically de�ned according to the data stationarity and according to the

distance between data distributions. The experimental designs with arti�cial data

sustain this decision based on the decrease of the detection delay time and on

comparable execution times of performing the CWM.

2. When evaluating the distance between distributions, how do the forgetting rates of

fading histograms a�ect the detection delay time?

The ability of the fading histograms to forget outdated data is preferred when

performing the ACWM, by decreasing the detection delay time without compromising

the number of missed detections and false alarms. Moreover, the advantage of using

fading histograms is more evident when detecting small changes.

3. What is the robustness against noise of the proposed change detection model?

The experiments designed sustain that the ACWM is robustness against noise while

e�ectively detects distribution changes in the data.

4. What is the e�ect of the extension of a stationary phase in the performance of the

proposed change detection model?

Overall, a long stationary phase will entail a greater detection delay time, compro-

mising the ability to e�ectively detect changes. However, since the ACWM compares

data distributions to assess changes, this drawback can be overcome by forgetting

outdated data using fading histograms, but this compromises the number of false

alarms and missed detections. Hence, good stability in stationary phases and a good

detection of distributions changes can be achieved establishing a trade-o� between

detection delay time and false alarms/missed detections. However, these conceptions

are contradictory and this trade-o� may not be easy to de�ne.
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- 5 -

New Criteria for Learning from

Data Streams

"For the things we have to learn before we can do them,

we learn by doing them."

Aristotle (384 BCE - 322 BCE)

The ability to gather data is changing drastically: nowadays, huge amounts of unbounded

data streams are produced at high-speed rate. Therefore, the learning algorithms need to

be modi�ed to accommodate this new data. Moreover, this unbounded data is generated in

non-stationary environments, which is even more challenging. Hence, the golden standards

to evaluate learning algorithms must be revised. In this chapter, the general framework for

evaluating learning algorithms found in Gama et al. (2013) is presented, proposing the use

of forgetting prequential error estimates in di�erent assignments. The forgetting strategy

in the computation of the error estimates is achieved either by computing the error over a

sliding window or through the use of fading factors in the error estimation. Furthermore,

for consistent learners, convergence proof of di�erent error estimates is introduced. The

performance of stream learning algorithms is compared by applying the McNemar test

over the proposed forgetting error estimates. The detection of concept drift is performed

throughout the monitoring of forgetting prequential error estimates and on the ratio of

these. The experimental data was obtained in MOA (Bifet et al., 2010), the change

detection tests were implemented in MATLAB (MATLAB R©& Simulink R©, 2007) and the

graphics were produced in R (R Development Core Team, 2008).

This chapter is structured as follows: the objectives and methodology of research question

3 begin this chapter. Next, Section 5.2 is devoted to new strategies for evaluating stream

learning algorithms and presents the proofs of convergence of the proposed error estimates

to the Bayes error. Section 5.3 presents a comparison of the performance of learning
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algorithms. Before presenting the overall conclusions in Section 5.5, Section 5.4 addresses

concept drift detection, proposing two approaches based on forgetting mechanisms.

5.1 Research Question

The main problem in evaluation methods when learning from time-changing data streams

is the correct monitoring of the evolution of the learning process. Therefore, raises the

research question 3:

1. How should the performance of stream learning algorithms be evaluated?

2. Can forgetting mechanisms provide reliable error estimates?

3. How can the performance of learning algorithms in non-static environments be

compared?

4. How can forgetting mechanisms be extended to cope with concept drift problems?

Within this research question, the objective is to propose a new methodology to evaluate

stream learning algorithms in the presence on non-stationary data. In particular, design

forgetting mechanisms strategies to accomplish the following assignments:

1. Computation of error estimates in the �ow.

2. Comparison of the performance of stream learning algorithms.

3. Concept drift detection.

The above objectives are accomplished with the following methodology:

1. Design of experimental work to evaluate and compare decision models that evolve

over time.

2. Design a set of experiments to assess the ability of the Page-Hinkley test to detect

drift using forgetting mechanisms, namely with two approaches:

(a) Monitoring drift using error estimates computed with forgetting mechanisms.

(b) Monitoring drift with the ratio of error estimates computed with forgetting

mechanisms.
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5.2 Evaluation of Stream Learning Algorithms

Just as the main properties of data streams render batch learning systems useless, the char-

acteristics of the newly developed stream learning algorithms render traditional techniques

for evaluating their performance inadequate. In the batch learning scenario, cross-validation

and variants (leave-one-out, bootstrap) are the standard methods of evaluating the learning

algorithms. Those evaluation methods are only appropriate for restricted size data sets and

are not suitable to be used in open-ended data streams contexts.

Therefore, this section presents new strategies to evaluate algorithms while learning from

data streams. At the same time, the �rst and the second parts of research question 3 are

addressed.

Suppose there is a sequence of examples in the form of pairs (xi, yi). For each example, the

current decision model predicts ŷi, that can be either True (ŷi = yi) or False (ŷi 6= yi). For

each time i in the sequence, the expected value of the error rate is pi. For a set of examples,

the error (ei) is a random variable from Bernoulli trials. The Binomial distribution gives

the general form of the probability for the random variable that represents the number of

errors in a sample of examples: ei ∼ Bernoulli(pi)⇔ Prob(ei = False) = pi.

De�nition 5.1. Consistent learner

In the Probability Approximately Correct (PAC) learning model (Kearns and Vazirani,

1994), a learner is called consistent if, for a su�ciently large number of independent

examples generated by a stationary distribution, it outputs a hypothesis with error arbitrarily

close to the Bayes error (B + ε), with at least probability 1− δ:

Prob(ei −B < ε) ≥ 1− δ

In fact, if the distribution of the examples is stationary and the examples are independent,

the error rate of a consistent learning algorithm (pi) will decrease when the number of

training examples, i, increases. With probability greater than or equal to 1 − δ, for an

in�nite number of training examples, the error rate will tend to approximate the Bayes

error (B). Which means that for every real number ε > 0, there exists a natural number

N1, so that for every i > N1 it results, with a probability of greater than or equal to 1− δ,
that |pi −B| < ε:

∀ε > 0, ∃N1 ∈ N : ∀i > N1 |pi −B| < ε
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Figure 5.1: Comparison of error evolution as estimated by holdout and prequential
strategies, in a stationary stream (waveform data set). The learning algorithm is VFDT.

For example, Duda and Hart (1973) prove that the k-nearest neighbor algorithm is guaran-

teed to yield an error rate no worse than the Bayes error rate as data approaches in�nity.

Bishop (1995) presents similar proofs for feed-forward neural networks, and Mitchell (1997)

for decision trees.

Henceforward, the mathematical proofs presented are applied to consistent learners.

Within the context of stream learning, two viable methodologies to evaluate stream learning

algorithms are the prequential method and the holdout sampling strategy.

In the predictive sequential (or prequential) (Dawid, 1984) method, the stream decision

model is evaluated through the evolution of the error rate.

In the holdout strategy, the decision model is applied to a test set at regular time intervals

(or set of examples). For a large enough test set, the loss estimated in the holdout is an

unbiased estimator.

Figure 5.1 shows a comparison of error evolution as estimated by these two strategies on

the waveform data set problem, for the Very Fast Decision Tree (VFDT) algorithm.

De�nition 5.2. Holdout error estimate

In a holdout test set with M examples, the error estimate is computed as:

He(i) = 1
M

M∑
k=1

L(yk, ŷk) = 1
M

M∑
k=1

ek.
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Theorem 5.3. Limit of the holdout error estimate

For consistent learning algorithms and for large enough ?1 holdout sets, the limit of the

error estimated in the holdout is the Bayes error: lim
i→∞

He(i) = B.

Proof. Assuming that at time i the probability of observing a false is pi, the errors in

the holdout test are independent and identically distributed (i.i.d.) random variables, all

Bernoulli distributed with success probability pi: ek ∼ Bernoulli(pi),∀k = 1, . . . ,M ,

where the expected value of ek is pi: E(ek) = pi. Then, from the Law of Large Numbers,

the average obtained from a large number of trials (He(i)) converges to the expected value:

∀ε > 0, ∃N1 ∈ N : ∀i > N1

∣∣∣∣∣ 1

M

M∑
k=1

ek − E(ek)

∣∣∣∣∣ < ε

⇔ |He(i)− E(ek)| < ε⇔ |He(i)− pi| < ε.

Since for an in�nite number of examples, the error rate of the learning algorithm (pi) will

tend to approximate the Bayes error (B), the result is:

∀ε > 0, ∃N1 ∈ N : ∀i > N1 |He(i)−B| < ε⇔ lim
i→∞

He(i) = B.

For each example in the stream, the current model makes a prediction based only on the

example attribute-values. The prequential method computes the error of the model from

that sequence of examples.

De�nition 5.4. Prequential error estimate

The prequential error estimate, computed at time i, is based on an accumulated sum of a

loss function between the prediction and observed values:

Pe(i) = 1
i

i∑
k=1

L(yk, ŷk) = 1
i

i∑
k=1

ek.

Theorem 5.5. Limit of the prequential error estimate

For consistent learning algorithms, the limit of the prequential error estimate is the Bayes

error: lim
i→∞

Pe(i) = B.

?1A window large enough to achieve an unbiased estimator of the average must be used.
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Proof. Using simple algebraic manipulation:

|Pe(i)−B| =

∣∣∣∣∣1i
i∑

k=1

ek −B

∣∣∣∣∣ =

∣∣∣∣∣1i
i∑

k=1

(ek −B)

∣∣∣∣∣
=

∣∣∣∣∣1i
N1∑
k=1

(ek −B) +
1

i

i∑
k=N1+1

(ek −B)

∣∣∣∣∣ ≤
∣∣∣∣∣1i

N1∑
k=1

(ek −B)

∣∣∣∣∣+

∣∣∣∣∣1i
i∑

k=N1+1

(ek −B)

∣∣∣∣∣
Let ε > 0. Then, there exists N1 ∈ N, so that for any i > N1, the result is:

Prob(ei ∼ Ber(B)) ≥ 1− ε.

Therefore, from the Law of Large Numbers, the average obtained from a large number of

trials converges to the expected value (B):∣∣∣∣∣∣∣∣∣
i∑

k=N1+1

ek

i−N1

−B

∣∣∣∣∣∣∣∣∣ <
ε

2

Hence, for i > N1, the result is:∣∣∣∣∣1i
N1∑
k=1

(ek −B)

∣∣∣∣∣+

∣∣∣∣∣1i
i∑

k=N1+1

(ek −B)

∣∣∣∣∣ <
<

∣∣∣∣∣1i
N1∑
k=1

(ek −B)

∣∣∣∣∣+
(i−N1)ε

2i
<

∣∣∣∣∣1i
N1∑
k=1

(ek −B)

∣∣∣∣∣+
ε

2

Considering N2 > N1 ∈ N, such that ∀i > N2 : 1
i

N1∑
k=1

|ek −B| < ε
2
, ∀ε > 0, the

result is:

∃ {N1, N2} ∈ N : ∀i > N2 :

∣∣∣∣∣1i
i∑

k=1

ek −B

∣∣∣∣∣ < ε

2
+
ε

2
= ε, ∀ε > 0

⇔ lim
i→∞

Pe(i) = B

Prequential evaluation provides a learning curve that monitors the evolution of learning as

a process. Figure 5.1 shows that using holdout evaluation, it is possible to obtain a similar
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curve by applying the current model to the holdout set, at regular time intervals. Both

error estimates can be a�ected by the order of the examples.

5.2.1 Error Estimates using a Forgetting Mechanism

The prequential error estimate is pessimistic because it is computed over the stream hitherto

and therefore is strongly in�uenced by the �rst part of the error sequence, when few

examples have been used to train the learning algorithm.

Stream learning models evolve over time, improving their performance with more labeled

data. Therefore, it is straightforward that while estimating the prequential error older

errors should contribute less than recent ones. This means that a prequential error estimate

computed with a forgetting mechanism would be more accurate than the one computed

over the entire stream of errors. This can be accomplished either by using a sliding window

of the most recently observed errors or by applying fading factors. With a sliding window

of size in�nite or a fading factor equal to 1, these forgetting error estimators equal the

prequential estimator.

5.2.1.1 Error Estimators using Sliding Windows

Sliding windows are one of the most commonly used forgetting strategies. They are used

to compute statistics from the most recent past.

De�nition 5.6. Sliding prequential error estimate

The prequential error is computed, at time i, over a sliding window of size w ({ej : j ∈]i− w, i]})
as:

Pw(i) = 1
w

i∑
k=i−w+1

L(yk, ŷk) = 1
w

i∑
k=i−w+1

ek.

Theorem 5.7. Limit of the prequential error estimate computed over a sliding

window

For consistent learning algorithms, the limit of the prediction error computed over a sliding

window of (large enough ?2) size w is the Bayes error: lim
i→∞

Pw(i) = B.

Proof. Using simple algebraic manipulation:

?2A window large enough to achieve an unbiased estimator of the average must be used.
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|Pw(i)−B| =

∣∣∣∣∣ 1

w

i∑
k=i−w+1

ek −B

∣∣∣∣∣ =

=

∣∣∣∣∣ 1

w

N1∑
k=i−w+1

(ek −B) +
1

w

i∑
k=N1+1

(ek −B)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

w

N1∑
k=i−w+1

(ek −B)

∣∣∣∣∣+
∣∣∣∣∣ 1

w

i∑
k=N1+1

(ek −B)

∣∣∣∣∣
From the Law of Large Numbers, it follows that:∣∣∣∣∣∣∣∣∣

i∑
k=N1+1

ek

i−N1

−B

∣∣∣∣∣∣∣∣∣ <
ε

2
.

Hence, for i > N1:

≤

∣∣∣∣∣ 1

w

N1∑
k=i−w+1

(ek −B)

∣∣∣∣∣+

∣∣∣∣∣ 1

w

i∑
k=N1+1

(ek −B)

∣∣∣∣∣ <
<

∣∣∣∣∣ 1

w

N1∑
k=i−w+1

(ek −B)

∣∣∣∣∣+
(i−N1)ε

2w
<

∣∣∣∣∣ 1

w

N1∑
k=i−w+1

(ek −B)

∣∣∣∣∣+
ε

2

Considering N2 ∈ N so that ∀w > N2 :

1

w

N1∑
k=i−w+1

|ek −B| <
ε

2
, ∀ε > 0,

it results that:

∃ {N1, N2} ∈ N : ∀i > N1,∀w > N2 :

∣∣∣∣∣ 1

w

i∑
k=i−w+1

ek −B

∣∣∣∣∣ < ε

2
+
ε

2
= ε,∀ε > 0

⇔ lim
i→∞

Pw(i) = B.

Lemma The prequential error estimator, Pe(i), is greater than or equal to the prequential

error computed over a sliding window, Pw(i), assuming a large enough sliding window

w � i: Pe(i) ≥ Pw(i).
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Proof.

Pe(i) =
1

i

i∑
k=1

ek ⇔ Pe(i) =

i−w∑
k=1

ek +
i∑

k=i−w+1

ek

i
⇔

⇔ Pe(i) =
(i− w)

i−w∑
k=1

ek

i−w + w

i∑
k=i−w+1

ek

w

i
⇔

⇔ Pe(i) =
(i− w)ēi−w + wPw(i)

i
⇒ ?3Pe(i) ≥

(i− w)ēi + wPw(i)

i
⇔

⇔ Pe(i) ≥
(i− w)Pe(i) + wPw(i)

i
⇔ i ∗ Pe(i)− (i− w)Pe(i) ≥ wPw(i)⇔

⇔ (i− (i− w)) ∗ Pe(i) ≥ wPw(i)⇔ Pe(i) ≥ Pw(i)

5.2.1.2 Error Estimators using Fading Factors

Another approach to discount older information across time consists of using fading factors.

The fading sum Sα(i) of observations from a stream x is computed at time i as:

Sα(i) = xi + α× Sα(i− 1)

where Sα(1) = x1 and α (0 � α ≤ 1). This way, the fading average at observation i is

then computed as:

Mα(i) =
Sα(i)

Nα(i)
(5.1)

where Nα(i) = 1 +α×Nα(i− 1) is the corresponding fading increment, with Nα(1) = 1.

An important feature of the fading increment is that:

lim
i→∞

Nα(i) = 1
1−α .

This way, at each observation i, Nα(i) gives an approximated value for the weight given

to recent observations used in the fading sum.

?3From the PAC learning theory the error rate of the learning algorithm will decrease, so the average of
errors can be seen as a decreasing function and so if N1 < N2 ⇒ ēN1

> ēN2
.
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De�nition 5.8. Fading prequential error estimate

The prequential error computed at time i, with fading factor α, can be written as:

Pα(i) =

i∑
k=1

αi−kL(yk,ŷk)

i∑
k=1

αi−k
=

i∑
k=1

αi−kek

i∑
k=1

αi−k
, with 0� α ≤ 1.

Theorem 5.9. Limit of the prequential error estimate computed with fading

factors

For consistent learning algorithms, the limit of the prequential error estimate computed with

fading factors is approximately equal to the Bayes error: lim
i→∞

Pα(i) ≈ B, with probability

greater than or equal to 1− δ.

Proof. Using simple algebraic manipulation:

|Pα(i)−B| =

∣∣∣∣∣∣∣∣∣
i∑

k=1

αi−kek

i∑
k=1

αi−k
−B

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
N1∑
k=1

αi−kek

i∑
k=1

αi−k
+

i∑
k=N1+1

αi−kek

i∑
k=1

αi−k
−B

∣∣∣∣∣∣∣∣∣
From the proof of the limit of the prequential error estimate, it results:

i∑
k=N1+1

ek

i−N1

= B.

Hence, ∃N1 ∈ N : ∀i > N1, it results:∣∣∣∣∣∣∣∣∣
N1∑
k=1

αi−kek

i∑
k=1

αi−k
+

i∑
k=N1+1

αi−kek

i∑
k=1

αi−k
−B

∣∣∣∣∣∣∣∣∣ ≈
∣∣∣∣∣∣∣∣∣
N1∑
k=1

αi−kek

i∑
k=1

αi−k
+

i∑
k=N1+1

αi−kēk

i∑
k=1

αi−k
−B

∣∣∣∣∣∣∣∣∣ =

=
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N1∑
k=1

αi−kek

i∑
k=1

αi−k
+

i∑
k=N1+1

αi−kB

i∑
k=1

αi−k
−B

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N1∑
k=1

αi−kek

i∑
k=1

αi−k
+B

 i∑
k=N1+1

αi−k

i∑
k=1

αi−k
− 1

∣∣∣∣∣∣ ≤ ε, ∀ε > 0⇔

⇔ lim
i→∞

Pα(i) ≈ B
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Furthermore, the prequential estimator computed using fading factors, Pα(i), will be lower

than the prequential error estimator, Pe(i).

The proof of the previous theorems assumes the stationarity of the data and the indepen-

dence of the training examples. The main lesson is that any of these estimators converge,

for an in�nite number of examples, to the Bayes error. All these estimators can be used

in any experimental study. However, these results are even more relevant when dealing

with data with concept drift. Indeed, the above theorems and the memoryless advantage

support the use of prequential error estimated using fading factors to assess performance

of stream learning algorithms in presence of non-stationary data. This topic is addressed

in Section 5.4.

5.2.1.3 Illustrative Example

The objective of this experiment is to illustrate the demonstrated convergence properties of

the error estimates using the strategies described above. The learning algorithm is VFDT

as implemented in MOA (Bifet et al., 2010). The experimental work was done using the

Waveform and the LED (Bache and Lichman, 2013) data sets, because the Bayes-error

is known: 14% and 26%, respectively. The RandomRBF (RBF) and Random Tree (RT)

data sets available in MOA were also used. The Waveform stream is a three class problem

de�ned by 21 numerical attributes, the LED stream is a ten class problem de�ned by 7

Boolean attributes, the RBF and the RT streams are two-class problems de�ned by 10

attributes.

Figure 5.2 plots the holdout error estimate, the prequential error estimate, the prequential

error estimated using sliding windows of di�erent sizes and the prequential error estimated

using di�erent fading factors. All the plots are averages from 10 runs of VFDT on data

sets generated with di�erent seeds. The most relevant fact is that the window size and the

fading factor does not matter too much: the prequential error estimated using forgetting

mechanisms always converges fast to the holdout estimate.
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Figure 5.2: Comparison of error estimates evolution between holdout, prequential,
prequential over sliding windows of di�erent sizes and prequential using fading factors.
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5.2.2 Learning in Evolving Environments

As the evolving scenario that generates data imposes that stream learning algorithms need

to adapt the model along with the evolving data, standard techniques to evaluate learning

algorithms have been rendered useless. The prequential method and the holdout strategy

are not suitable for use in evolving scenarios for the following reasons:

• The prequential error re�ects the overall accuracy but as it is long term in�uenced,

is not able to capture the recovering phase of the algorithm fast.

• In the holdout strategy, the test set can be extracted from a di�erent concept other

than the one that is being learnt by the algorithm.

Two feasible alternatives that represent the recovery phase of a model fast are sliding

windows and fading factors. Both methods have been used for blind model adaptation

without explicit change detection, in drift scenarios (Klinkenberg, 2004; Koychev, 2000).

Therefore, the presented forgetting error estimators are adequate strategies to evaluate

stream learning algorithms in evolving environments.

5.3 Evaluation Comparison

After deriving metrics to evaluate the performance of stream learning algorithms, it is

natural that the concerns about whether one algorithm is learning better than another

prompt the following question: Is algorithm A more accurate than algorithm B? The

comparison of the performance of algorithms can be assessed by comparing the proposed

error estimates.

In this section, the third part of research question 3 is addressed through the design of

experimental work to evaluate and compare decision models that evolve over time.

To compare the performance of two algorithms, in the batch scenario, one of the most

commonly used tests is the McNemar test. McNemar's test is a non-parametric method

used on nominal data. It assesses the signi�cance of the di�erence between two correlated

proportions, where the two proportions are based on the same �nite sample. This test is

applied to a contingency table (Dietterich, 1998), which tabulates the outcomes of two

algorithms, as shown in Table 5.1:
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Table 5.1: Contingency table when McNemar's test is applied.

# examples # examples

missclassi�ed by missclassi�ed by

both A & B A and not by B

(n0,0) (n0,1)

# examples # examples

misclassi�ed by misclassi�ed by

B and not by A neither A nor B

(n1,0) (n1,1)

Under the null hypothesis, both algorithms have the same error rate, hence n0,1 = n1,0.

Although well established to compare the performance of correlated proportions in a �nite

set of examples, this test can be extended to evaluate the comparison of two stream

learning algorithms: for that, error estimates must be computed in the �ow. This will

allow the contingency table to be updated incrementally, which is a desirable property in

mining high-speed data streams. The McNemar test statistic is computed as follows:

M = sign(n0,1 − n1,0)× (n0,1−n1,0)2

n0,1+n1,0

and has a χ2 distribution with 1 degree of freedom, under the null hypothesis. For a

con�dence level of 0.99, the null hypothesis is rejected if the statistic is greater than 6.635.

5.3.1 Illustrative Example

A benchmark problem for concept drift was used to compare the performance of two

learning algorithms: the SEA concepts data set (Street and Kim, 2001). Figure 5.3 (top

panel) shows the evolution of the prequential error of two naive-Bayes variants: a standard

one and a variant that detects and relearns a new decision model whenever a drift is

detected. The vertical dashed lines indicate drift in the data, and the vertical solid lines

indicate when the drift was detected.

The McNemar test was performed to compare both algorithms. The bottom panel shows

the evolution of the signed McNemar statistic computed for these two algorithms over

the entire stream. As can be observed, once this statistic rises above the threshold value

(6.635), it never falls below it, which is not informative about the dynamics of the process

under study.
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Figure 5.3: The evolution of signed McNemar statistic between two algorithms. Vertical
dashed lines indicate drift in data, and vertical solid lines indicate when drift was detected.
The top panel shows the evolution of the error rate of two naive-Bayes variants: a standard
one and a variant that detects and relearns a new model whenever a drift is detected. The
bottom panel shows the evolution of the signed McNemar statistic computed for these two
algorithms.

It is well known, that the power of statistical tests, the probability of signaling di�erences

where they do not exist, is highly a�ected by data length. Data streams are potentially

unbounded, which might increase the number of Type II errors.

To overcome this drawback, and since the fading factors are memoryless and prove to

exhibit similar behaviors to sliding windows, this statistical test was computed using

di�erent window sizes and fading factors.
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Figure 5.4: The evolution of signed McNemar statistic between two naive-Bayes variants.
The top panels show the evolution of the signed McNemar statistic computed over a
sliding window of 1000 examples and computed using a fading factor of α = 0.999, and
the bottom panels show the evolution of the signed McNemar statistic computed over a
sliding window of 100 examples and computed using a fading factor of α = 0.99. The
dotted line is the threshold for a signi�cance level of 99%. For di�erent fading factors,
di�erent results for the signi�cance of the di�erences are obtained.
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Figure 5.4 presents a comparison of the evolution of a signed McNemar statistic between

the two naive-Bayes variants, computed over a sliding window of 1000 and 100 examples

and computed using a fading factor of α = 0.999 and α = 0.99. From the dotted line

representing the threshold for a signi�cance level of 99%, it can be observed that, for both

strategies and almost at the same point, there is statistical evidence to reject the null

hypothesis.

This statistical test shows to be feasible to compare stream learning algorithms in evolving

scenarios by applying sliding windows or fading factors techniques. Nevertheless, these

experiments point out that for di�erent fading factors, as well as for di�erent lengths of

the windows, di�erent results for the signi�cance of the di�erences are obtained.

5.4 Evaluation under Concept Drift

The main problem in evaluation methods when learning from time-changing data streams

is the monitoring of the evolution of the learning performance, which is a common strategy

for concept drift detection (Klinkenberg, 2004; Street and Kim, 2001; Widmer and Kubat,

1996). Therefore, using forgetting error estimates, this section presents two strategies to

detect drift, focusing on the fourth part of research question 3.

5.4.1 Monitoring Drift using Prequential Error Estimates

The forgetting error estimates proposed to evaluate the performance of stream learning

algorithms have been shown to be more advantageous for the continuous assessment of the

quality of stream learning algorithms. Therefore, the forgetting prequential errors can be

used to assess drifts in evolving scenarios by monitoring their evolution. For this purpose,

the Page Hinkley test was applied.

The experiments were done with data from Waveform, LED, RT and RBF generators,

as implemented in MOA. The data was generated by emulating an abrupt concept drift

event as a combination of two distributions. For the LED, Waveform and RBF data sets

the �rst distribution was generated with the LEDGenerator, the WaveformGenerator and

the RandomRBFGenerator (respectively) and the second distribution was generated with

the LEDGeneratorDrift, the WaveformGeneratorDrift and the RandomRBFGeneratorDrift

(respectively). For the second stream of LED and Waveform data sets, the number of

attributes with drift were set to 7 and 21 (respectively). The second RBF stream was
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µ± σ
LED RBF RT Waveform

MC NBa MC NBa MC NBa MC NBa
Fading factors

α=0.9970 2155±370 486±10 3632±4413 1416±342 911±132 800±84 1456±326 836±490
α=0.9985 3391±797 693±15 4288±4413 1992±430 1317±177 1163±121 2072±437 1129±565
α=0.9990 4279±947 872±19 6474±4995 (1;0) 2454±486 1676±212 1481±153 2678±541 1420±740
α=0.9993 5433±1130 1076±24 9241±7769 (1;0) 3023±571 2122±255 1861±190 3452±656 1766±952
α=0.9994 6103±1331 1183±26 9818±7587 (1;0) 3369±644 2365±279 2068±208 3874±718 1931±1002

Sliding windows
w=1000 2542±512 725±14 3765±4444 1617±321 1157±120 1054±79 1637±290 1069±444
w=2000 3484±619 1146±30 4631±4430 2397±338 1866±156 1718±121 2491±353 1622±523
w=3000 4454±619 1503±36 7085±5205(1;0) 3151±344 2549±206 2331±164 3366±400 2158±713
w=4000 5436±804 1836±49 8315±5320 (1;0) 3987±384 3209±249 2925±203 4246±433 2654±824
w=5000 6419±860 2162±55 9198±5683 (2;0) 4899±466 3859±295 3507±237 5152±463 3133±918

Table 5.2: Detection delay time using PH test over di�erent error estimates. The learning
algorithms are VFDT-MC (MC) and VFDT-NBAdaptive (NBa). The results report the
average and standard deviation of 10 runs. In parenthesis is the number of runs, if any,
where PH test misses the detection or signals a false alarm: they are in the form (Miss;
False Alarm).

generated setting the seed for the random generation of the model to 10 and adding speed

drift to the centroids of the model (0.01). For the RT data set, both distributions were

generated with the RandomTreeGenerator, varying the seed of the second concept. For

the LED data stream the change occurs at example 128k and for the other streams the

change occurs at example 32k.

The learning algorithms were VFDT-MC (VFDT using Majority Class for leaf prediction)

and VFDT-NBAdaptive (VFDT using Naive Bayes Adaptive for leaf prediction), as imple-

mented in MOA. The PH test parameters were δ = 0.01 and λ = 100. Sliding windows

of sizes 1k, 2k, 3k, 4k and 5k and fading factors of 0.9970, 0.9985, 0.9990, 0.9993 and

0.9994 were used to compute the forgetting prequential error estimates.

Table 5.2 presents a summary of the delay times in the drift detection on the aforementioned

data sets, varying the parameters of the di�erent prequential error estimates. The results

refer to the average and standard deviation of 10 runs on streams generated with di�erent

seeds. These experiments highlight the advantage of using forgetting error estimators.

The PH test using the prequential error computed over the entire stream only detects

the change in the Waveform stream and VFDT-NBAdaptive learner (in all the runs), and

misses the detection in all the other cases.
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Figure 5.5: Change detection using PH test on prequential error estimates. The learning
algorithm is VFDT-NBAdaptive. Each plot corresponds to a data stream and presents the
evolution of prequential error estimates. The vertical lines indicate the point where change
was detected. In these experiments, the fastest drift detection method is the prequential
estimate based on fading factors.
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The PH test computed over prequential error estimates using sliding windows or fading

factors always detects the drift without any false alarm. The exception is on the RBF

stream and VFDT-MC learner where, for a small number of runs (reported in parenthesis),

the PH test was not able to detect the change. These results point out that the delay time

in detection is increased by increasing the window size or the fading factor. The PH test

detects much faster change points with VFDT-NBAdaptive than when using VFDT-MC.

Moreover, there is some evidence that error estimates based on fading factors allow faster

detection rates.

Figure 5.5 presents, for each stream, the 3 error estimates: the prequential error using the

full history, the prequential error over a sliding window of size 1k and the prequential error

using a fading factor of 0.997. Each plot shows the evolution of the di�erent prequential

estimates and the point where a change is detected. The learning algorithm was the

VFDT-NBAdaptive.

5.4.2 Monitoring Drift with the Ratio of Prequential Error Es-

timates

A common approach to detect changes consists of using two sliding windows: a short

window containing the most recent information and a large window, used as reference,

containing a larger set of data including the data in the short window (Bach and Maloof,

2008; Nishida and Yamauchi, 2007). The rationale behind this approach is that the short

window is more reactive while the large window is more conservative. When a change

occurs, statistics computed in the short window will capture the event faster than using

the statistics in the larger window. Similarly, using fading factors, a smooth forgetting

mechanism, a smaller fading factor will detect drifts earlier than larger ones. Based on

this assumption, a new online approach to detect concept drift is proposed. It is proposed

to perform the PH test with the ratio between two error estimates: a long term error

estimate (using a large window or a fading factor close to one) and a short term error

estimate (using a short window or a fading factor smaller than the �rst one). If the short

term error estimator is signi�cantly greater than the long term error estimator, a drift alarm

is signaled.

For fading factors, α1 and α2 were considered (with 0 � α2 < α1 < 1) and the fading

prequential error estimate was computed for both: Pα1(i) and Pα2(i) at observation i.

The ratio between them is described as: Rα(i) = Pα2(i)/Pα1(i). The PH test monitors

the evolution of Rα(i) and signals a drift when a signi�cant increase of this variable is
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observed. The pseudocode is presented in Appendix B.4.

For the approach with sliding windows, the procedure is similar. Using two sliding windows

of di�erent sizes w1 and w2 (with w2 < w1), the sliding prequential error estimate is

computed for both sliding windows: Pw1(i) and Pw2(i), at observation i. The ratio between

the two sliding estimates is computed as: Rw(i) = Pw2(i)/Pw1(i) and the PH test monitors

the evolution of this ratio.

In these experiments the same streams, learning algorithms and parameters of the PH test

were used as in the previous section. In this study, the values of the �rst fading factor

and the length of the larger window were varied to compare results. Table 5.3 presents

the detection delay time for the experiments in the context described above. The rate

of forgetting can be controlled using di�erent fading factors or di�erent windows lengths.

With respect to the ratio between di�erent fading factors, the value of the second fading

factor was set to 0.9970 and the value of the �rst one varied from 0.9994 to 0.9990. For

the ratio between di�erent sliding windows, the length of the second window was set to

1k and the length of the �rst one varied from 5k to 3k. Greater di�erences between the

fading factors values (or the length of sliding windows) will reinforce the weight of most

recent data, enhancing the capacity to forget old data and leading to earlier detections.

Figure 5.6 illustrates the delay time in detecting drifts of both methods. Fading factors α1

= 0.9994 and α2= 0.9970 were used and sliding windows of size 1k and 5k were used. As

stated in the previous sections, the fading factors, besides consuming less memory, have

advantage over sliding windows allowing fast concept drift detections. It is also possible to

note that an increase in the length of the larger window and an increase in the �rst fading

factor produce similar results in the detection delay time: the ratio of error rates computed

with a fading factor close to one presents smaller delay times in drift detection, similar

to the ratio of error rates computed over a window with a larger length (larger windows

present behavior comparable to higher fading factors).
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Figure 5.6: The evolution of the ratio of error rate estimates and the delay times in drift
detection. The learning algorithm is VFDT-NBAdaptive. Each �gure corresponds to a data
stream and plots the ratio of error estimates using two di�erent fading factors and two
di�erent sliding windows. The vertical lines indicate the point where change was detected.

The order of magnitude in detection delay time of the results presented in Table 5.2 is
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µ± σ
LED RBF RT Waveform

MC NBa MC NBa MC NBa MC NBa
Fading factors

α1=0.9990 - (10;0) 349±11 787±190 384±38 325±39 262±27 780±171 457±161
α1=0.9993 969±255 (4;0) 281±8 563±100 309±29 261±33 211±25 541±65 348±89
α1=0.9994 856±186 (3;0) 264±7 522±92 291±28 244±32 198±24 496±57 (2;0) 324±77 (1;0)

Sliding windows
w1=3000 1254±355 (1;0) 473±27 779±94 489±48 429±93 (0;1) 350±51 (0;1) 762±62 551±102
w1=4000 1089±261 423±26 710±100 (0;1) 465±41 (0;1) 397±79 (0;2) 312±52 (0;1) 673±57 501±102
w1=5000 1005±216 397±25 679±98 (0;2) 440±45 (0;2) 384±67 (0;3) 299±37 (0;3) 662±60 (0;5) 468±93

Table 5.3: Detection delay time, average and standard deviation, using PH test monitoring
the ratio of error estimates. The learning algorithms are VFDT-MC (MC) and VFDT
NBAdapt (NBa). The results report the average and standard deviation of 10 runs. In
parenthesis is the number of runs, if any, where PH test misses the detection or signals
a false alarm: they are in the form (Miss; False Alarm). With respect to the ratio using
di�erent fading factors, the value of the second fading factor was set to 0.9970 and the
value of the �rst one varied from 0.9994 to 0.9990. For the ratio using di�erent sliding
windows, the length of the second window was set to 1k and the length of the �rst varied
from 5k to 3k.

thousands of examples, while in Table 5.3 is hundreds of examples. Nevertheless, while

monitoring the ratio of error estimates allow much faster detection, it is riskier. False

alarms and missed detections are observed, mostly with VFDT-MC. Once more, in these

experiments drift detection based on the ratio of fading error estimates is somewhat faster

than with sliding windows.

5.5 Conclusions & Research Question

This chapter embraces the main problem with evaluation methods when learning from

time-changing data streams: the most appropriate way of monitoring the evolution of the

learning process.

Throughout this chapter the following answers to research question 3 were provided:

1. How should the performance of stream learning algorithms be evaluated?

Sliding prequential and fading prequential error estimates are two feasible approaches

to assess the performance of stream learning algorithms in the presence of evolving

data.

2. Can forgetting mechanisms provide reliable error estimates?

For consistent learning algorithms and examples generated by a stationary distribu-

tion, the prequential error estimated over a sliding window converge to the Bayes
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error. Moreover, the holdout estimator and the prequential error also converge to

the Bayes error, based on the same assumptions.

3. How can the performance of learning algorithms in non-static environments be

compared?

The McNemar test was made suitable for comparing stream learning algorithms by

applying sliding windows or fading factors strategies.

4. How can forgetting mechanisms be extended to cope with concept drift problems?

For concept drift detection purposes, monitoring drift using forgetting prequential

error estimates or the ratio of forgetting prequential error estimates are advantageous

approaches. Moreover, evaluating the detection delay time, the latter approach

outperforms the former.

Overall, the fading factors strategies are worthwhile because they are memoryless, they do

no require recent statistics to be stored in memory as in the case of the sliding windows

approaches.



- 6 -

Application in a Clinical

Environment

"I have been impressed with the urgency of doing.

Knowing is not enough; we must apply.

Being willing is not enough; we must do."

Leonardo da Vinci (1452 - 1519)

This chapter is devoted to research question 4:

How can a change detection method contribute to a decision support system based on

Depth of Anesthesia (DoA) signals?

This research question is answered by proposing the application of a real-time algorithm

to automatically detect changes in depth of anesthesia signals (Sebastião et al., 2013).

The method that was developed for change detection in DoA signals constitutes an

enhancement of the Page-Hinkley Test (PHT) with a forgetting mechanism (PHT-FM):

the samples are weighted according to their age so that more importance is given to recent

samples. This enables the detection of the changes with less delay time than if no forgetting

factor were used.

The performance of the PHT-FM was evaluated in a bi-fold approach. First, the algorithm

was run o�ine in DoA signals previously collected during general anesthesia, allowing the

adjustment of the forgetting mechanism. Second, the PHT-FM was embedded in a real-

time software and its performance was validated online in operating room. This was done

by asking the clinician that was present in the operating room to classify, in situ, the

changes as true positives (TP), false positives (FP) or false negatives (FN).

This chapter is organized as follows. The �rst section introduces the problem of detecting
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changes in Depth of Anesthesia (DoA) signals. Then in Section 6.1.1 the challenges

faced while detecting changes in BISpectral index (BIS) signals are presented. Section 6.2

presents the methods used in clinical data collection and the classi�cation procedure of

the detected changes. The PHT-FM is advanced in Section 6.3 and Section 6.4 presents

the results and discussion of the changes detected using this test. Section 6.5 addresses

the limitations of the proposed decision support system. The last section presents the

conclusions on research question 4 and further developments on the proposed decision

support system.

6.1 Change Detection in Depth of Anesthesia (DoA)

Signals

The automatic detection of changes in physiological signals has been a topic of research

for some years now (Ansermino et al., 2009; Melek et al., 2005; Yang et al., 2006).

The majority of the indices for assess the DoA, e.g., the Index of Consciousness (IoC)

(Jensen et al., 2008), Auditory Evoked Potentials (AEP) (Struys et al., 2002), Spectral

Entropy (SE) (Viertiö-Oja et al., 2004) and BISpectral index (BIS) (Gan et al., 1997; Glass

et al., 1997), range between a value close to 100, corresponding to fully awake state, and 0,

corresponding to electrocortical activity suppression during a fully asleep and unconscious

anesthetized state. In general anesthesia, values between 40 and 50 show to be ideal

to perform surgical procedures (Luginbühl and Schnider, 2002; Rampil, 1998). However,

during the course of surgery, this target range may change depending on the surgical

protocols that are being used or on the overall state of the patient. A trained clinician

judges the current observations and interprets them with sensitivity to the context and in

comparison with previous observations to provide a warning of potential deterioration in

the anesthetic state or to change the target values of the monitored physiological signals.

Naturally, the thresholds for the clinician to trigger an alarm are dynamically dependent on

all the available information and on the clinical environment. The automatic and correct

identi�cation of a change that needs to be alarmed can be considered a detection and a

decision problem.

Interpreting the BIS signal behavior is of utmost importance to infer the overall anesthetic

state of the patient. Surprisingly, no published work exists to date prior to this thesis,

to address the problem of solving changes in the BIS signal to infer the correct amount

of drugs to be administered. Nevertheless, this is a challenging problem to be solved

since it is of paramount clinical relevance for the a priori information about the signal
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trend. Nowadays the clinicians select the several drug delivery rates based on their clinical

experience and on some a priori information about surgery procedures.

Therefore, the detection of changes in DoA signals is of paramount importance in the

adaptation of the drug doses needed to achieve an optimal DoA level while avoiding

undesirable side-e�ects (Mashour et al., 2009; Selbst, 2000). Changes in DoA signals

may occur due either to intrinsic or extrinsic factors. Most of the DoA indices, namely the

BIS, report the level of hypnosis of patients (related to unconsciousness), and analgesia

(lack of pain) (Minto et al., 2000), which are the intrinsic factors. Intubation, incisions or

other painful stimuli are the extrinsic factors.

Even though the DoA is the most widely index used in clinical practice, there still exists

some controversy around the bene�ts of the use of the BIS in extensive clinical practice

(Monk and Weldon, 2011). The reason for the use of BIS signals to assess the performance

of the proposed change detection algorithm is bi-fold. First, BIS is the DoA index used in

the operating rooms the author has collaborated with. Second, insights gained from this

assessment are useful to extend this change detection algorithm to other DoA indices. In

fact, it turns out, from clinical experience and anesthetic procedures, that the developed

methodology can be easily adapted to other physiological signals used to measure the DoA.

6.1.1 Challenges Faced while Detecting Changes in BIS signals

In standard clinical practice, when the behavior of the BIS signal changes, the clinician

manually adjusts the drug doses to control the overall anesthetic state of the patient. A

quick reaction is crucial since a delay in this adjustment may compromise the well-being

and general condition of the patient (Mashour et al., 2009), possibly leading to some

undesirable side-e�ects (such as awareness experience during surgery and post-operative

nausea, vomiting and muscle aches).

Figure 6.1 illustrates this scenario in a operating room. Apart from the change detector

component, this �gure shows the standard clinical procedure: under the supervision of the

clinician, the drugs are delivered to the patient through the delivery devices (the amount

of drugs that need to be given to the patient is decided by the clinician and manually

established). Thereafter, the raw EEG data is collected through a sensor placed on the

forehead of patients. The Aspect Medical - Covidien system processes the BIS information

and computes a number between 0 and 100. This value is displayed along with the time on a

monitor, providing an indication of the level of unconsciousness and sedation of the patient.

Taking into account the BIS values presented, the clinician decides on the adjustment of
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the drug doses. Accomplishing this standard procedure with a change detector component,

the clinician is automatically alerted to changes in the BIS signal and then decides on the

drugs adjustments.

Figure 6.1: The change detector in the operating room setting.

The detection of initial phases of smooth changes is as challenging for the clinicians as it is

for change detection algorithms. The enhancement of the Page-Hinkley test (PHT) with

a forgetting mechanism aims at overcoming this di�culty. By giving more importance to

recent samples, the initial phase of changes will be reinforced and most easily detected.

On the other hand, sudden changes are easily observed and detected. Hence, they do not

pose great di�culties to change detection algorithms. However, these changes are the

most critical ones because the behavior of the DoA signal changes abruptly and quickly.

In these situations, it is of utmost importance to bring the DoA signal back to the desired

range or level after the occurrence of the change. This fact reinforces the advantage of

using an automatic change detection algorithm to give the clinician advanced warning so

he can act even more promptly.

6.2 Methods

In this section the software for data communication and the procedures for the databases

collection are presented. The classi�cation of the detected changes by the clinician is also

explained.
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6.2.1 Software for Data Communication

Figure 6.2: Software for data communication (Paz, 2013).

The software for data communication was developed by Paz (2013), in the scope of the

project PTDC/SAU-BEB/103667/2008 GALENO - Modeling and Control for Personalized

Drug Administration. This software was conceived to interact with two types of medical

equipments: DATEX-Ohmeda S/5 monitor and ALARIS syringe pumps. Figure 6.2 illus-

trates the communication of data between di�erent equipments. The BIS index sensor

(as well as the NMB sensor) collects the raw data that is processed by the DATEX-

OHMEDA system and displayed in a biomedical monitor. Thereafter, this data, and

the drugs information collected by the ALARIS syringe pumps, is communicated to the

GALENO platform, that works as the control system. This control system is implemented in

MATLAB (MATLAB R©& Simulink R©, 2007) and performs all the data processing, graphical

treatment and supports the implementation of the change detection test and of control

algorithms with model simulation for control algorithm testing. Moreover it also allows the

introduction of new modules, procedures or functions to increase the system performance.

Figure 6.3 shows the MATLAB interface of the control system.
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Figure 6.3: MATLAB interface of the GALENO platform.

6.2.2 Clinical Data Collection

In clinical practice, hypnotics and analgesics are the drugs that mainly in�uence the DoA. In

the real cases collected, the hypnotic propofol and analgesic remifentanil were intravenously

administrated to induce and maintain the DoA of patients, which was manually controlled

by the clinician who changed the drug doses according to clinical requirements, using as

a reference the vital signals of patients, e.g., the blood pressure and the heart rate, and

the BIS values. The BIS, hemodynamic parameters and drug rates were recorded with a

frequency of 1/5 s−1.

6.2.2.1 O�ine Database

For the o�ine evaluation, data previously collected from 22 patients undergoing abdominal

surgery was used. The patients were 60± 15 years old, 76.8± 17.7 kg and 13 female, and

the surgeries lasted on average 144± 74 minutes.

The PHT-FM was run on each case of the database and the changes were classi�ed

afterward. The changes that were followed by a modi�cation in the rate of propofol and/or
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remifentanil were classi�ed as TP. Similarly, if no modi�cation in drugs rates occurred after

the detection, the change was, in general, considered to be a FP. However, it should also

be noted that during the course of surgery, when informed by the surgeons of the possibly

painful procedures that are about to be performed, the clinician often avoids a possible

increase in the DoA index value by anticipating the administration of a higher dose of the

hypnotic and/or analgesic drugs. Some of the detected changes might therefore be the

consequence of an increase in the administered drugs. Due to this, the changes that were

detected by the PHT-FM were also considered TP if some modi�cation in the propofol

and/or remifentanil administered rates occurred right before the detection of a change.

6.2.2.2 Online Database

Due to the encouraging results that were obtained with the o�ine evaluation, the PHT-FM

was implemented in the GALENO platform and run online in operating room, during 78

general anesthesia episodes, for di�erent types of surgeries. The patients were 56 ± 14

years old, 71.8 ± 16.4 kg and 70 female, and the surgeries had an average duration of

123± 66 minutes.

The clinician was advised every time a change was detected by the PHT-FM and asked to

classify it as TP or FP. Whenever the clinician considers that there is a true change in the

BIS signal that was not detected by the PHT-FM, the clinician classi�es it as a FN. The

major advantage of this online assessment is that this classi�cation is done in situ, and,

consequently, based on the current observations and actions performed at the time when

the change is detected. In general, cases where the rate of propofol and/or remifentanil was

modi�ed after the change was detected were classi�ed as TP. Similarly, in most cases, if no

action by the anesthesiologist was taken after the detection of a change, it was considered

to be a FP. Exceptions were when, for example, the patient was subject to painful stimuli

of limited duration, caused by a known source of stimulation, such as small incisions or

patient repositioning. In such cases, when advised that a change had accurred, usually

the clinician did not react by increasing the rate of propofol and/or remifentanil, because

the DoA index value would decrease to its previous value as soon as the stimulus ended.

Those changes were, however, classi�ed as TP.

6.2.3 Classi�cation of the Changes Detected by the PHT-FM

Both for the o�ine and the online databases, the changes detected by the proposed

change detection algorithm were classi�ed by a single clinician as TP or FP and the missed
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changes by FN. The number of TN was not assessed because the TN are all the other

data observations in the signal that were not classi�ed as TP, FP or FN. For the online

database, the changes that were detected but not classi�ed by the clinician are marked as

"nC". In most cases, these detections were not classi�ed because the clinician was not

available at the time the change was detected.

6.3 The Page-Hinkley Test with a Forgetting Mech-

anism

In order to detect changes in the BIS signals, the PHT was selected among other change

detection algorithms, namely instead of the CWM, for the following reasons:

• The duration of the surgeries is expected to be brief. This implies that the col-

lected BIS signals have small lengths not requiring synopses structures, avoiding the

construction of histograms and saving time.

• The stable phases of the BIS signals are supposed to be short, which will not allow

to provide a well supported representation of the reference window, which could

compromise the success of comparison with the current window.

• The PHT is easy to implement and the time required to evaluate the samples is

short.

• The change detection in the signals must be performed in the �ow and the low

computational complexity of the PHT makes it appropriate for use in this context.

With the intention of reducing the delay time of the changes detected and since in swift

and evolving environments "old" data is usually less important than recent, this method

was enhanced with a forgetting mechanism (PHT-FM). A �xed fading factor was shown to

be suitable to forget outdated data in streaming scenarios. However, a time series (as BIS

signals) is relatively small in size with respect to a data stream. Therefore, when applied

to a time series, a fading factor must approximate a window with minimal length. Within

this setting, it is worthwhile assigning an adaptive fading factor instead of a �xed one.

In this decay strategy, the samples are weighted according to their age so the PHT will

focus more on recent samples, detecting the changes with low delay time. The resulting

tests are the following:
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For increase cases: For decrease cases:

U0 = 0 L0 = 0

UT = T−1
T
UT−1 + (xT − x̄T − δ) LT = T−1

T
LT−1 + (xT − x̄T + δ)

mT = min(Ut, t = 1 . . . T ) MT = max(Lt, t = 1 . . . T )

PHU = UT −mT PHL = MT − LT

In these equations, the forgetting mechanism is the weight of the variables UT−1 and

LT−1 in the update process. Since the ratio T−1
T

increases with time, the recent samples

have more importance in the update process than the older ones. With this forgetting

mechanism, while assigning more importance to recent observations, the algorithm will be

able to detect both abrupt (sudden) and gradual (slow) changes earlier.

At every observation, the two PH statistics (PHU and PHL) are monitored and a change

is reported whenever one of them rises above a given threshold λ. When a change is

detected, all the variables and index of samples are cleaned and a new test is initialized.

The parameter δ is highly dependent on the characteristics of the signal under study. The

value of this parameter is chosen to avoid false detections due to noise, taking into account

the magnitude of changes that are allowed and should not trigger an alarm. The PHT

relies on the di�erence between the observed value and its current average. Whenever

the referred di�erence increases continuously, eventually exceeding the user prede�ned

threshold (λ), the algorithm detects a change in the recorded BIS signal. The change

threshold parameter (λ) is chosen considering a trade-o� between admissible false alarm

rates and detection delay times.

The pseudocode for the PHT-FM is presented in Appendix B.5.

Figure 6.4 illustrates how PHT-FM works. The upper plot shows the initial phase of a

real BIS signal. As can be observed, two changes occur around minutes 14 and 17 due

to a decrease in the signal. The bottom �gure represents the evolution of the statistical

test PHL and the detection threshold (λ). The PHT-FM statistical test captures both

the decreases presented at this stage of the signal. The λ parameter should guarantee

that the algorithm, while being resilient to false alarms, can detect and react to changes

as soon as they occur, reducing the detection delay time. By controlling this detection

threshold parameter, a trade-o� between the false positive alarms and the missed detections

is established. Regarding both parameters (δ and λ), to the best of author's knowledge, it

is not possible to automatically derive them through the characteristics of the signal under
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study.

Figure 6.4: The upper �gure shows the initial phase of a real BIS signal. The bottom
�gure represents the evolution of the PHT-FM statistic and the detection threshold λ.

6.3.1 Forgetting Mechanism

A comparative analysis was performed on the o�ine database to assess the e�ect of using

the forgetting mechanism. Figure 6.5 shows the averaged delay time (in seconds) between

accordant detections obtained by the original PHT and by the PHT enhanced with a

forgetting mechanism (PHT-FM), for all the cases in the database. When using the PHT-

FM, in 50% of the cases, the clinician is warned more than half a minute of earlier than

when using the PHT without a forgetting mechanism. This is the main advantage of

the PHT-FM, since reducing the delay time in detections gives the clinician more time to

decide based on that information. The result of this assessment supports the use of the

proposed forgetting mechanism.

6.3.2 Algorithm Input Parameters

To adjust the algorithm input parameters, an analysis was previously conducted on 106 BIS

signals (Gambús et al., 2006, 2011) collected from patients undergoing similar anesthetic

procedures to the ones described in Section 6.2.2. From that, the parameters λ and δ

were set to 20 and 10, respectively. The admissible false alarm rate and the magnitude of
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Figure 6.5: Average delay time (in seconds) between accordant detections obtained with
the original PHT and with the enhanced PHT-FM, for all cases in the o�ine database.

Figure 6.6: Parameters sensitivity.

the permitted changes were taken into account with regard to the intrinsic characteristics

of the signal under study. The sensitivity of both parameters was also assessed by �xing

one of the parameters and varying the other. The results obtained are shown in Figure

6.6. As is clear from the upper plot of Figure 6.6, where λ was equal to 20, values of δ

below 10 give rise to an increasing number of FP. For values of δ above 10, the number

of FN increases. The same behavior is found when δ was set to 10, and λ was made to

vary between 15 and 25 (bottom plot of Figure 6.6).
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6.4 Results and Discussion

The classi�cations by the clinician of the changes detected by the proposed PHT-FM are

considered as ground truth. Naturally, they are highly dependent on the evaluation of a

single clinician and are not 100% accurate. Nevertheless, these validations allow computing

quality metrics of the PHT-FM performance, such as Precision and Recall.

6.4.1 O�ine Evaluation

The main purpose of this validation is the adjustment of the forgetting mechanism. Since

the changes that occur in the BIS signal were not simulated, but rather the consequence

of changes in live operating settings, it was di�cult to ascertain the exact times when the

changes in the BIS signal occurred. Hence, a detection delay time evaluation could not

be performed. A preliminary evaluation has however been performed scoring the o�ine

algorithm detections.

Regarding the quality of measurements, for all cases in the database a precision of 0.87

and a recall of 0.98 were obtained. Table 6.1 shows the confusion matrix obtained for the

o�ine database. In spite of the high number of false alarms, this fact does not represent a

major concern because the clinician might be advised and then decide on an action based

upon his expertise and on the vital signals of patients. Another important result of this

evaluation is the low number of missed detections, which is evidence that the PHT-FM

was able to detect almost all the changes that occurred in the BIS signals that induced

the clinician to adjust the drug doses.

It should also be pointed out that most of the detections were classi�ed as TP. These results

supported the online implementation and evaluation of this algorithm, whose results are

presented in Section 6.4.2.

Table 6.1: Confusion matrix obtained for the o�ine database.

Real Total

Change No Change Total

Detected
Change 266 40 306

No Change 4 X 4

Total 270 40 310
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6.4.2 Online Evaluation

Figure 6.7 shows records of three patients from the online database. For each case, the

upper plot shows the BIS signal and the changes detected by the PHT-FM (indicated by

a vertical line and arrows pointing upwards if an increase in the BIS signal was detected

and pointing downwards if a decrease in the BIS was detected).

As shown in Figure 6.7 (a), the change around minute 6, which is the consequence of the

administration of the initial bolus of propofol was detected by the algorithm, as expected,

and evaluated as TP by the clinician. The PHT-FM consistently detected the decreases of

the BIS signal as a result of this propofol bolus, as can also be observed later at minute

10, both validated as TP. Although a TP validation by the clinician, around minute 50

the algorithm detected two ascendant changes that were neither the consequence of nor

were they followed by any clinical action. Around minute 65, the clinician validated as

FP an algorithm detection. These situations intend to illustrate the di�culties that the

problem under study poses to the development of change detection algorithms, namely

the false positive detections due to noise present in the BIS signals. Later, around minute

70, a detection of an increase in the BIS, marked as TP, followed by the administration

of a propofol bolus by the clinician is noticeable. As expected, after this bolus the BIS

decreased which was detected by the PHT-FM (despite the �rst detected change not having

been classi�ed by the clinician, the second one was validated as TP and both were clearly

a result of the bolus administration). This is one example where the online use of this

algorithm may be advantageous: advised by the algorithm of this increase the clinician

could had acted more promptly. The last change detections, classi�ed as TP, were the

result of the end of the administration of the drugs.

Figure 6.7 (b) presents another clinical case. After the administration of the initial bolus

of propofol, the PHT-FM detected two decreases and later (around minute 25) another

one as the result of the accommodation of the BIS to this dose (all classi�ed by the

clinician as TP). After a stable period with values within the range of 40 to 60, the BIS

signal reveals an increase which was detected by the algorithm. This change, evaluated

as TP, contributed to an administration of a propofol bolus by the clinician. Resulting

from this administration of propofol, a decrease detection evaluated as TP also occurs.

From minute 40 to minute 60 the BIS signal remains stable around a mean value of 45.

Around minute 60, the algorithm detected another increase, classi�ed as TP, and leading

to an administration of a propofol bolus. However, this dose was not enough to reduce

the BIS signal which remained with an increasing behavior that was identi�ed by the PHT-

FM around minute 65. As a consequence, to avoid another BIS increase, the clinician
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administrated another propofol bolus. After these administrations, the BIS recovered to

the clinical reference range which was also detected by the PHT-FM (around minute 75).

Later, two false positive detections can be observed (the algorithm alarmed these changes

without any evident existence of a change). It should be noted that the noisy level of

these signals poses di�culties for this algorithm and often noise can be confused with

initial phases of a change, alarming a change when the signal remains stable and raising

the rate of false positives. The last detections of the algorithm (validated as TP) were a

consequence of the end of drugs administration due to the end of the surgery.

Figure 6.7 (c) shows a clinical case where the PHT-FM missed a change, identi�ed as FN

(around minute 60). The �rst three detected decreases, classi�ed as TP by the clinician,

were the result of the BIS adaptation after the initial dose of propofol. Around minute

25, the PHT-FM detected an increase in the BIS. The administration of a propofol bolus

followed this increase in order to maintain the BIS in the prede�ned target window. A

rise in the BIS around minute 40 was also detected by the algorithm and followed by a

decrease in the signal despite no clinical action. These two detections were the result of the

incision and did not report a relevant variation in the BIS behavior and as a consequence

were classi�ed as FP. Around minute 70, a TP detection led to a decrease in the propofol

administration. Approaching the end of the surgery, the administration of the drugs was

tuned o� and the algorithm, as expectable, detected two increases in the BIS signal (both

validated as TP).
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Figure 6.7: Example of the detected changes in a BIS signal of three clinical cases in the
online database. The upper plots show the BIS signal, the detected changes (indicated by
vertical lines and arrows) and the validation by the clinician. The bottom plots show the
propofol and remifentanil dosages (ml/h), respectively.



126 LIMITATIONS OF THE PROPOSED DECISION SUPPORT SYSTEM

So too with the o�ine analysis, the precision and the recall were computed for all cases

in the database, obtaining 0.72 and 0.93, respectively. The high accuracy achieved by

the proposed PHT-FM supports the argument for its inclusion in a real-time decision

support system for routine use in clinical practice. Table 6.2 shows the evaluation metrics

corresponding to the online validation by the clinician. It must be stressed that the number

of false alarms are not a major concern for this problem. A false alarm will alert the clinician,

who decides if an action should be taken, based upon his expertise and on the vital signals

of patients. The missed detections might be more problematic. If the PHT-FM misses a

change that occurred in the DoA signal, and if the clinician is unable to infer it by looking

at the available monitors, the drugs doses will not be adjusted in order to provide more

comfort to the patient. Both situations can disturb and/or potentially mislead the clinician

but do not cause any immediate wrong action.

Table 6.2: Confusion matrix obtained for the online database.

Real Total
Change No Change Total

Detected
Change 660 255 915

No Change 48 X 48
Total 708 255 963

Since the change detection algorithm is implemented online it is not possible to avoid the

presence of noise and sensor faults. Therefore, it should be pointed out, that the validations

of the clinician were only taken into account if the quality of the BIS signal was greater

or equal to 50%. As well as this, some of the changes detected by the algorithm were not

classi�ed by the clinician (and were not considered in these measurements).

6.5 Limitations of the Proposed Decision Support

System

The presence of noise and outliers in the collected signals of BIS are the main limitations

when incorporating the proposed PHT-FM in a decision support system.

The corruption of the BIS signals by noise is as challenging for the application domain as

for the change detection algorithms. For the application domain, noise can confuse the

clinician in the observation of the signal behavior, a�ecting and potentially confusing his

judgments. While for the change detection algorithms the noise can be easily confused

with an initial phase of a change. The noise in the signals could be addressed by performing

some sort of �lter strategy before presenting the signal to the change detection algorithm.
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However, this was not in the scope of this assignment, but it is a task to which some e�ort

should be devoted in future research.

Figure 6.8 shows a typical BIS signal collected in the operating room, illustrating the level

of noise present in the BIS signals. Especially after minute 50, along with decreases and

increases in the BIS behavior, the presence of noise is noticeable in the high variation of

the BIS signal.

Figure 6.8: Example of a BIS signal with typical noise level, collected in the operating
room.

Outliers and sensor faults also pose di�culties to both domains. Sensor faults, which are

impossible to avoid, often cause outliers and/or missed data. These constraints were not

addressed within this application.

6.6 Conclusions on Research Question and Further

Developments

The proposed PHT-FM has been found to be suitable for answering research question 4.

The online evaluations obtained so far support the advantage of this change detection

algorithm when monitoring DoA signals under general anesthesia procedures.

This contribution has a high impact in clinical practice since the PHT-FM alerts the clinician

in advance to changes in the anesthetic state of the patient, allowing actions to be taken

earlier. The results support the inclusion of the proposed PHT-FM in a robust and reliable

real-time decision support system for routine use in clinical practice. This system would help

clinicians to determine and administer the drug doses needed to achieve an optimum degree
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of comfort while avoiding undesirable side-e�ects, leading to increased patient anesthesia

satisfaction.

However, it should be noted that the environment of the application and the speci�c

features of the BIS signal, namely the high level of noise present in the measurements,

point to the need for further improvements in this detection algorithm. The development

of a dedicated online �lter to smoother the BIS signals is a task that should be addressed

to enhance the detection algorithm results.

Due to the lack of reliable sensors to directly and quantitatively measure the level of

analgesia, and considering the controversy around the use of BIS to quantify the DoA

of patients, further research on other vital signals such as the electrocardiogram, blood

pressure and heart rate should be carried out to improve the decision support system.

Results should naturally also be correlated with those obtained using BIS signals, or other

DoA signals, since the extension of the PHT-FM to them is straightforward.
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Concluding Remarks

"It is good to have an end to journey toward;

but it is the journey that matters, in the end."

Ernest Hemingway (1899 - 1961)

This �nal chapter provides a summary of the main contributions of this thesis, drawing

some conclusions from the research accomplished during this PhD project. An outline of

possible future developments is also presented.

7.1 Main Contributions

During the course of this PhD project, the main concern was to focus on the research

outcomes: would the results be indelible?

To accomplish such an ambitious and challenging assignment, the research conducted

during the PhD project was concerned with the identi�cation of the appropriate methods

to address the challenges established and to ful�ll the research questions proposed.

The e�orts to answer the proposed research questions led to the contributions summarized

in the following sections.

7.1.1 Online Equi-width Histograms under Error Constraints

It is impractical to accumulate and archive in memory the massive amount of information

produced at a high-speed rate and gathered in the form of transient and in�nite data

streams. In practice, data is promptly processed and discarded immediately. Therefore,
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it is necessary to create compact summaries of data, keeping only a small and �nite

representation of the received information. Such structures allow the discarded data to

be remembered.

Within this context, online equi-width histograms, under mean square error constraints,

are proposed to construct compact representations of data: the number of buckets in the

histogram is de�ned with respect to a user-established bound on the mean square error of

the histogram.

7.1.2 Online Fading Histograms

When dealing with data streams in evolving environments, in addition to the remembering

approach, it is also necessary to forget outdated data: old observations do not describe

the current state of nature and therefore are useless.

This issue is dealt with by using fading factors in the construction of histograms, weighting

data examples according to their age: recent observations (with high weight) contribute

more to the fading histogram than old observations (with low weight).

Such fading histograms, besides allowing discarded data to be remembered, also allow

outdated data to be gradually forgotten. Therefore, the data representation provided by

these fading histograms is more up-to-date.

7.1.3 Cumulative Windows Model (CWM) for Change Detec-

tion

Fading histograms forget data gradually, by assigning di�erent importance to observations.

Regarding the detection of changes, after the occurrence of a change, all past observations

are forgotten. This is the abrupt forgetting brought on when using a change detection

method.

Within the scope of change detection, a windowing scheme to address both distribution

and concept changes is proposed. The Cumulative Windows Model (CWM) for detecting

changes is based on the online monitoring of data distributions provided by the histograms

mentioned before, which are compared using the Kullback-Leibler divergence. This change

detection method can be performed using an adaptive evaluation step, allowing to reduce

the detection delay time.
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7.1.4 Forgetting Error Estimates

Learning from data streams di�ers in various aspects from learning in batch mode. This

is mainly because the learning process must be done sequentially. Therefore, standard

techniques to evaluate batch learning algorithms, such as cross-validation and variants,

are useless to evaluate the learning of stream algorithms. The evaluation of such learning

algorithms must be performed along with the incoming data. Prequential and holdout

strategies are suitable for use in this context.

However, in most cases, the learning scenario is not static; rather it evolves with time.

Thus, stream learning models must accommodate the evolving data. In this time-changing

context, the prequential and holdout strategies become inappropriate. Therefore, as a

contribution of this thesis, new criteria for e�ectively evaluating algorithms when learning

from evolving data streams are advanced. These evaluation metrics are based on computing

the prequential error estimate using forgetting mechanisms: either sliding windows or fading

factors. Moreover, for consistent learners, convergence proof to the Bayes error of the error

estimates obtained through the prequential method, through the holdout strategy and over

sliding windows are presented.

Regarding the forgetting estimates, the fading factor strategies are useful because they

are memoryless, not requiring to store in memory recent statistics, as is the case with the

sliding windows approaches.

7.1.5 Decision Support System

The last but not the least contribution of this thesis is presented in a clinical environment:

a real-time algorithm for change detection in depth of anesthesia signals of patients

undergoing surgery.

The Page-Hinkley Test (PHT) was enhanced with a forgetting mechanism (PHT-FM) in

order to detect changes in DoA signals with less detection delay time. The use of an

e�ective change detection method has a high impact in clinical practice, since it alerts

the clinician in advance to changes in the anesthetic state of the patient, allowing a more

prompt action to be taken.

The results of the online evaluation of the ability of the PHT-FM to detect changes in DoA

signals are remarkably encouraging. Therefore, the argument that the PHT-FM should be

embedded in a real-time decision support system for routine use in clinical practice is

sustained.
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7.2 Directions for Further Research

Research is endless: in most cases, the main �ndings in research lead to new and unsettling

questions.

This section presents directions for further developments and the issues raised while working

on the main contributions of this thesis.

7.2.1 Data Synopsis

Developments in technology have led to high capacity and low cost smart devices. These

are available almost everywhere, producing and collecting, at a high-speed rate, huge

amounts of information. Moreover, the �ourishing of networks prompts the exchange of

information between devices. Therefore, real world problems must be addressed from a

multidimensional perspective. Although the broad applicability of histograms relies on

their simplicity, e�ciency and e�ectiveness, new construction algorithms are needed to

conveniently handle such data.

7.2.2 Evolving Scenarios

The world is far from being static and data collected from real applications is becoming

increasingly evolved. Therefore, it is of paramount interest to go beyond the detection of

distribution and concept changes. Change analysis must be carefully carried out, developing

general groundwork concerned with the description of changes between data distributions

or between target concepts.

Moreover, the learning ability of evolving models that deal with evolving data must be

improved. Forgetting error estimates must be used to assess performance, allowing fast

adaptability in evolving environments.

7.2.3 Personalized Drug Administration System

A real-time decision support system, with the embedded PHT-FM, would help clinicians to

determine and administer the drug doses needed to achieve an optimum degree of comfort

while avoiding undesirable side-e�ects, leading to increased patient anesthesia satisfaction.
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Moreover, this decision support system should integrate a broader personalized drug admin-

istration system for routine use in clinical practice, like general anesthesia, deep sedation,

and intensive care units.

This is a huge task and must be embraced by a multidisciplinary research group in the

scope of a research project.



134 DIRECTIONS FOR FURTHER RESEARCH



- A -

Fading Histograms

This appendix presents some computations on the error of approximating the fading sliding

histogram with the fading histogram. Considering the de�nition of histogram frequencies

(3.1), the frequencies of a sliding histogram (with k buckets) constructed over a sliding

window of length w and computed at observation i with an exponential fading factor α

(0� α < 1), can be de�ned as follow:

Fα,w,j(i) =

i∑
l=i−w+1

αi−lCj(l)

k∑
j=1

i∑
l=i−w+1

αi−lCj(l)

,∀j = 1, . . . , k, (A.1)

To approximate a fading sliding histogram by a fading histogram, the older data than

that within the most recent window W = {xl : l = i− w + 1, . . . , i} must be taken into

consideration. Therefore, for each bucket j = 1, . . . , k, the proportion of weight given to

old observations (with respect toW ) in the computation of the fading histogram is de�ned

as the bucket ballast weight:

Bα,w,j(i) =

i−1∑
l=w

αl

Nα(i)
, ∀j = 1, . . . , k, (A.2)

where Nα(i) is the fading increment de�ned as Nα(i) =
k∑
j=1

i∑
l=1

αi−lCj(l).

As with the old observations, for each bucket j = 1, . . . , k, the proportion of weight given
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to observations within the most recent window W is de�ned by:

B′α,w,j(i) = 1−Bα,w,j(i) =

w−1∑
l=0

αl

Nα(i)
, ∀j = 1, . . . , k. (A.3)

Hence, the error of approximating the fading sliding histogram with the fading histogram,

both with k buckets, can be de�ned as:

∆α,w(i) =
k∑
j=1

∆α,w,j(i) =
k∑
j=1

‖Fα,w,j(i)− Fα,j(i)‖ . (A.4)

Theorem A.1. Let ε < 1 be an admissible ballast weight for the fading histogram. Then,

∆α,w(i) ≤ 2ε.

Proof. From the respective histogram frequencies de�nitions comes that the approximation

error in each bucket is:

∆α,w,j(i) =

∥∥∥∥∥∥∥∥∥
i∑

l=i−w+1

αi−lCj(l)

k∑
j=1

i∑
l=i−w+1

αi−lCj(l)

−

i∑
l=1

αi−lCj(l)

k∑
j=1

i∑
l=1

αi−lCj(l)

∥∥∥∥∥∥∥∥∥ ,∀j = 1, . . . , k

Splitting each of these errors considering the frequencies inside and outside the most recent

window of size w:

∆α,w,j(i) =
∥∥∆α,w,j(i)

in −∆α,w,j(i)
out
∥∥ ,

where

∆α,w,j(i)
in =

i∑
l=i−w+1

αi−lCj(l)

k∑
j=1

i∑
l=i−w+1

αi−lCj(l)

−

i∑
l=i−w+1

αi−lCj(l)

k∑
j=1

i∑
l=1

αi−lCj(l)

,

and

∆α,w,j(i)
out(i) =

i−w∑
l=1

αi−lCj(l)

k∑
j=1

i∑
l=1

αi−lCj(l)

.

Looking for an upper bound on the error, the worst case scenario is that these two sources
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of error do not cancel out, rather adding up their e�ect:

∆α,w,j(i) ≤
∥∥∆α,w,j(i)

in
∥∥+

∥∥∆α,w,j(i)
out
∥∥ .

Hence

∆α,w,j(i) ≤

∥∥∥∥∥∥∥
(

i∑
l=i−w+1

αi−lCj(l)

)(
k∑
j=1

i−w∑
l=1

αi−lCj(l)

)
−
(

i∑
l=i−w+1

αi−lCj(l)

)(
k∑
j=1

i∑
l=i−w+1

αi−lCj(l)

)
(

k∑
j=1

i∑
l=i−w+1

αi−lCj(l)

)(
k∑
j=1

i∑
l=1

αi−lCj(l)

)
∥∥∥∥∥∥∥+

∥∥∥∥∥∥
i−w∑
l=1

αi−lCj(l)

k∑
j=1

i∑
l=1

αi−lCj(l)

∥∥∥∥∥∥⇔

⇔ ∆α,w,j(i) ≤

∥∥∥∥∥∥∥∥∥∥

(
i∑

l=i−w+1

αi−lCj(l)

)(
k∑
j=1

i−w∑
l=1

αi−lCj(l)

)
(

k∑
j=1

i∑
l=i−w+1

αi−lCj(l)

)(
k∑
j=1

i∑
l=1

αi−lCj(l)

)
∥∥∥∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥∥∥
i−w∑
l=1

αi−lCj(l)

k∑
j=1

i∑
l=1

αi−lCj(l)

∥∥∥∥∥∥∥∥∥⇔

⇔ ∆α,w,j(i) ≤

∥∥∥∥∥∥∥∥∥∥

(
i∑

l=i−w+1

αi−lCj(l)

)(
k∑
j=1

i−w∑
l=1

αi−lCj(l)

)
(

k∑
j=1

i∑
l=i−w+1

αi−lCj(l)

)
Nα(i)

∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥
i−w∑
l=1

αi−lCj(l)

Nα(i)

∥∥∥∥∥∥∥∥∥
The upper bound on the error is given by considering all Cj(l) = 1:

∆α,w,j(i) ≤

∥∥∥∥∥∥∥∥∥

(
i∑

l=i−w+1

αi−l
)(

k
i−w∑
l=1

αi−l
)

(
k

i∑
l=i−w+1

αi−l
)
Nα(i)

∥∥∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥∥∥
i−w∑
l=1

αi−l

Nα(i)

∥∥∥∥∥∥∥∥∥ = 2

∥∥∥∥∥∥∥∥∥
i−w∑
l=1

αi−l

Nα(i)

∥∥∥∥∥∥∥∥∥
Then, from bucket ballast weight de�nition comes that:

∆α,w,j(i) ≤ 2 ‖Bα,w,j(i)‖

Considering in each bucket j = 1, . . . , k an admissible ballast weight, at most, of ε/k



138

comes that:

∆α,w(i) =
k∑
j=1

∆α,w,j(i) ≤
k∑
j=1

2ε/k = 2ε.
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Algorithms

In this appendix, the pseudocode from the di�erent change detection methods addressed

along the thesis is presented.

B.1 Drift Detection Method

Algorithm 3 Drift Detection Method (DDM).

Input: Φ % online classi�er
{~xt; yt}n % stream of examples

Initialize n← 0 % number of examples
r ← 0 % number of wrong classi�cations
pmin ← 0, pmin ← 0
B ← {} % short-term bu�er

for each example (~xt, yt) do
ŷt ← Φ(~xt)
increment n % number of examples
if Φ(~xt) 6= yt then

increment r % wrong classi�cation
end if
pt ← r

n
% probability of misclassi�cation

st ← sqrt(
pt(1−pt)

n
) % standard deviation

if pt + st < pmin + smin then
pmin ← pt; smin ← st % update registers

end if
if n ≥ 30 then

if pt + st < pmin + 2smin then
Warning?← FALSE % In-Control
Update Φ with example {~xt, yt}
B ← {}

else
if pt + st < pmin + 3smin then

if NOT Warning? then
B ← B ∪{~xt, yt)} % Warning zone
Warning?← TRUE

else
B ← B ∪{~xt, yt)}

end if
else

Relearn a new classi�er using the examples in the B % Out-control
Warning ← FALSE
reinitialize n, r, pmin, smin, B

end if
end if

end if
end for
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B.2 ADaptive WINdowing Method

Algorithm 4 ADaptive WINdowing method (ADWIN2).

Input: S % data stream of examples or errors

M % bucket's parameter

Initialize W as an empty list of buckets

WIDTH, VARIANCE and TOTAL

for all xt in S do

SetInput (xt, W )

Output: ûW = TOTAL/WIDTH and ChangeAlarm

end for

SetInput (item e, list W )

InsertElement(e,W )

repeat DeleteElement(W )

until |ûW0 − ûW1| < εcut holds

for every split of W into W = W0 ·W1

InsertElement(e,W )

create a new bucket b with content e and capacity 1

W ← W∪ b % add e to the head of W

updata WIDTH, VARIANCE and TOTAL

CompressBuckets(W )

DeleteElement(list W )

remove a bucket from the tail of list W

update WIDTH, VARIANCE and TOTAL

ChangeAlarm← TRUE

CompressBuckets(list W )

Transverse the list of buckets in increasing order

do If there are more than M buckets of the same capacity

do Merge buckets

CompressBuckets(sublist of W not transversed)
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B.3 Page-Hinkley Test

Algorithm 5 Page-Hinkley Test (PHT).

Input: S % data stream of examples or errors

δ % parameter for admissible changes

λ % change threshold

Output: DriftAlarm ∈ {TRUE,FALSE}
Time of the detected changes: t∗

% Initialize the error estimators

S(0)← 0;

U(0)← 0; m(0)← 0;

L(0)← 0; M(0)← 0;

% Update the error estimators

for all xt in S do

S(t)← S(t− 1) + x(t);

U(t)← U(t− 1) + x(t)− S(t)
t − δ;

L(t)← L(t− 1) + x(t)− S(t)
t + δ

m(t)← min(m(t), U(t));

M(t)← max(M(t), L(t));

% Page Hinkley test

if PHU ← U(t)−m(t) ≥ λ then

report a change at time t: t∗ = t % increase

DriftAlarm← TRUE

else

DriftAlarm← FALSE

end if

if PHL ←M(t)− L(t) ≥ λ then

report a change at time t: t∗ = t % decrease

DriftAlarm← TRUE

else

DriftAlarm← FALSE

end if

end for
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B.4 Page-Hinkley Test Based on the Ratio of two

Fading Factors

Algorithm 6 Page-Hinkley test based on the ratio of two fading factors.

Input: S % data stream of examples or errors
δ % parameter for admissible changes
λ % change threshold
Fading factor α1 (0� α1 ≤ 1)
Fading factor α2 (0� α2 < α1)

Output: DriftAlarm ∈ {TRUE,FALSE}
Time of the detected changes: t∗

% Initialize the error estimators
Sα1(0)← 0; Sα2(0)← 0;
SR(0)← 0; mT (0)← 0; MT ← 1;

% Update the error estimators
for all xt in S do
Sα1(i)← ei + α1 ∗ Sα1(i− 1)

Nα1(i)← 1 + α ∗Nα1(i− 1)

Mα1 ←
Sα1 (i)

Nα1 (i)

Sα2(i)← ei + α2 ∗ Sα2(i− 1)

Nα2(i)← 1 + α ∗Nα2(i− 1)

Mα2 ←
Sα2 (i)

Nα2 (i)

R(i) = log(
Mα2

Mα1
)

% Page Hinkley test
SR(i)← SR(i− 1) +R(i)

mT (i)← mT (i− 1) +R(i)− SR(i)
i
− δ

MT ← min(MT ,mT (i))

if mT (i)−MT ≥ λ then
report a change at time t: t∗ = t % time of detected drift
DriftAlarm← TRUE

else
DriftAlarm← FALSE

end if
end for
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B.5 Page-Hinkley Test based on Fading Factors (adap-

tive)

Algorithm 7 Page-Hinkley test based on fading factors (adaptive).

Input: S % data stream of examples or errors

δ % parameter for admissible changes

λ % change threshold

Output: DriftAlarm ∈ {TRUE,FALSE}
Time of the detected changes: t∗

% Initialize the error estimators

S(0)← 0;

U(0)← 0; m(0)← 0;

L(0)← 0; M(0)← 0;

% Update the error estimators

for all xt in S do

S(t)← S(t− 1) + x(t);

U(t)← T−1
T U(t− 1) + x(t)− S(t)

t − δ;

L(t)← T−1
T L(t− 1) + x(t)− S(t)

t + δ

m(t)← min(m,U(t));

M(t)← max(M,L(t));

% Page Hinkley test

if PHU = U(t)−m ≥ λ then

report a change at time t: t∗ = t % increase

DriftAlarm← TRUE

else

DriftAlarm← FALSE

end if

if PHL = M − L(t) ≥ λ then

report a change at time t: t∗ = t % decrease

DriftAlarm← TRUE

else

DriftAlarm← FALSE

end if

end for
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