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This thesis is structured in the following way: 

 

In the Summary a brief description of the thesis will be presented. 

 

Chapter I, Introduction, constitutes a general introduction for the thesis. 

First, the relevance of several gastrointestinal diseases on the society will 

be highlighted, with special emphasis on oncologic diseases - subchapter A. 

Then, a description of Toll-Like receptors (TLR) and of their signalling 

pathways will be made – subchapter B. 

 

In Chapter II, Toll Like Receptors as Therapeutics Targets in 

Gastrointestinal Diseases, the review article that constitutes the genesis of 

all the original research that brought light to this thesis is presented. The 

rationale of this thesis will in this way be described in this chapter. 

 

From Chapter III to V, the role of TLRs in several gastrointestinal diseases 

will be presented, according to the different organs (III- Liver diseases; IV- 

Gastric Diseases; V- Colon Diseases).  

 

Chapter III, Toll-Like Receptors and Liver Disease, includes one systematic 

review (subchapter A), two original articles (subchapter B and D) and one 

letter to the editor (subchapter C). It shows that although progressive TLR 

activation may be essential for the development of chronic liver disease and 

hepatocellular carcinoma, attenuation of these receptors in immunological 
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cells may on the other hand contribute to the increase risk of infection in 

cirrhotic patients. 

 

Chapter IV, Toll-Like Receptors and Gastric Disease, includes two original 

articles. The important role of TLR activation throughout the entire 

sequence of gastric carcinogenesis will become clear in this chapter both at 

the protein (subchapter A) and at the molecular level (subchapter B). 

 

Chapter V, Toll-Like Receptors and Colon Disease, includes two original 

articles. In the first one it will be shown that colon carcinogenesis is 

associated with increasing levels of TLRs as well as decreased levels of TLRs 

inhibitors (subchapter A). The second one, confirming the important role of 

TLRs in colon carcinogenesis, demonstrates that TLR polymorphisms 

significantly influence the risk of colorectal cancer development 

(subchapter B). 

 

In Chapter VI, Conclusion, an integrated discussion of all the articles will 

be provided and a general conclusion will be presented. 

 

And, finally, in Chapter VII, Future Research, because all research gives 

answers but creates even more questions, potential lines of research will be 

discussed.  
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INTRODUCTION: Gastrointestinal diseases are a major burden in modern 

society. Specifically, premalignant and malignant gastrointestinal 

pathologies are increasing and nowadays represent an important cause of 

disability in the population of most countries. Indeed, gastric, liver and 

colorectal cancers represent the 2nd, 3rd and 4th causes of death from cancer 

worldwide, respectively. For all the three tumours, precursors lesions are 

known and a sequence of progression from normal cells to cancer is 

described. Common to all three is a pro-inflammatory environment that 

facilitates the activation of oncogenic pathways and consequently cancer 

development and progression. Nevertheless, the molecular pathways that 

converge inflammation and cancer in these tumours are still not fully 

clarified. Toll-like receptors (TLRs) are the first line of interaction of the 

human cells with the different external and environmental agents. When 

activated by pathogen-associated molecular patterns of different 

microorganisms these receptors initiate pro-inflammatory and survival 

signalling pathways that at long term may create an oncogenic 

microenvironment for the cell. It is believed that gastrointestinal system 

express low levels of TLRs as well as high levels of these receptors inhibitors 

in order to prevent inadequate inflammatory reactions to commensal and 

diet bacteria. Nevertheless, how the expression of these receptors or their 

antagonists varies with the progression from normal epithelia to cancer in 

gastrointestinal organs is still not known. 

AIM: To clarify the role of TLR2 and TLR4 in several gastrointestinal 

diseases, particularly pre-malignant and malignant disease of liver, 

stomach, and colon. 
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METHODS: 1. Liver - In order to determine the role of TLR2 and TLR4 in 

cirrhosis infection risk a population of 26 stable and 5 unstable alcoholic 

cirrhotic patients as well as 17 controls were selected. For the study of TLRs 

expression in the hepatic inflammation-fibrosis-carcinoma sequence 15 

patients with unexplained transaminases elevation (control group), 22 with 

viral chronic hepatitis B or C, 14 with virus-induced severe fibrosis/cirrhosis 

and 10 with hepatocellular carcinoma were selected. Serum quantifications 

were made for several liver and inflammatory markers and for 

endotoxaemia. Stimulation of primary cultures of peripheral blood 

monocytes was made with TLR2 and TLR4 ligands and TNF-α production 

quantified afterwards. TLR protein expression was determined by flow 

cytometry (monocytes) or by immunohistochemistry (tissue samples). TLRs 

and related inflammatory molecules gene expression was evaluated by real 

time RT-PCR. 2. Stomach - Histological database analysis (n=117) and biopsy 

samples obtained by endoscopy (n=80, 44 patients) from normal mucosa, 

Helicobacter pylori (HP) induced gastritis, metaplasia, dysplasia and 

adenocarcinoma were included for evaluation of TLRs in gastric 

carcinogenesis. 3. Colon - Colon biopsy samples (n=90) from normal mucosa, 

normal mucosa adjacent to lesion, adenoma or carcinoma were obtained 

from 35 patients performing colonoscopy for evaluation of TLRs in colon 

carcinogenesis. Both in stomach and in colon gene quantification of TLR2, 

TLR4, TLR5, TOLLIP, PPAR-γ, NF-κB, TNF-α, COX-1, COX-2 and CDX2 was 

done by real-time RT-PCR while TLR2, TLR4 and TLR5 protein expression 

was quantified by immunohistochemistry. In order to determine the role of 

TLR2 and TLR4 polymorphisms in colorectal cancer development a Hospital 
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based multicentre case control study involving 193 colorectal cancer 

patients and 278 healthy individuals was performed. DNA samples were 

extracted from blood cells and genotyping of TLR2+597T>C, TLR2-4760T>C, 

TLR4-3745A>G, TLR2Arg753Gln and TLR4Asp299Gly was done. Functionality 

of risk polymorphisms was evaluated through production of TNF-α in cell 

culture. 

RESULTS: 1. Liver - Stable cirrhotic patients presented increased 

endotoxaemia with no differences in serum TNF-α or IL-10 when compared 

to controls. Both TLR2/TLR1 and TLR2/TLR6 activation induced TNF-α 

production by monocytes was blunted in stable cirrhosis (-40.1±13.5% and -

66±20.4% respectively, p<0.05), but not TLR4 activation. Basal TNF-α mRNA 

expression was decreased in monocytes from cirrhotic patients (-

50.1±21.0%, p<0.05), with no significant differences in the other studied 

genes. Results were similar in Child-Pugh A and B/C patients. Unstable 

patients presented increased serum levels of TNF-α (+141±48.2%, p<0.05) 

and both TLR2 and TLR4 diminished activation (-74.1±28% and -67±28%, 

respectively, p<0.05). As compared with control (expression = 1.0 arbitrary 

unit (AU)), we found an increased TLR2 and TLR4 mRNA expression in 

hepatitis (TLR2: 2.66±0.69 AU, p=0.04; TLR4: 3.11±0.79 AU, p=0.03) and 

cirrhosis (TLR2: 2.14±0.5 AU, p=0.04; TLR4: 1.74±0.27 AU, p=0.008). This 

was associated with an increased TNF-α and COX-2 mRNA expression in 

hepatitis (TNF-α: 3.24±0.79 AU, p=0.02; COX-2: 2.47±0.36 AU, p=0.003) and 

cirrhosis (TNF-α: 1.73±0.28 AU, p=0.009; COX-2: 1.8±0.35 AU, p=0.04). 

Immunohistochemistry confirmed increased protein expression of TLR2 and 

TLR4 in hepatitis and cirrhosis and a maintained expression of these 
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receptors in hepatocellular carcinoma. 2. Stomach - When compared to 

normal mucosa, HP gastritis presented higher expression of TLR2 (2.23±0.36 

AU), TLR4 (1.92±0.40 AU) and TNF-α (2.14±0.50 AU) and lower TOLLIP and 

PPARγ expression (0.72±0.12 AU) (p<0.05). Metaplasia and 

dysplasia/carcinoma presented higher expression of TLR2 (1.66±0.46 and 

1.48±0.20 AU, p<0.05), lower expression of TOLLIP (0.66±0.09 and 0.52±0.04 

AU, p<0.05) and PPARγ (0.73±0.12 and 0.63±0.10 AU, p<0.05). The 

significant trend for decrease of TOLLIP and PPARγ was associated with 

increasing levels of CDX2 from normal mucosa to carcinoma (p<0.05), 

translating that in diffuse and higher TLR2, TLR4 and TLR5 protein 

expression (p<0.05). An immunohistochemistry score of all TLRs’ expression 

of 8 leads to a low (4%) false positive rate for the diagnosis of dysplasia in 

patients with precancerous conditions. 3. Colon - When compared to colon 

normal mucosa, adjacent to lesion normal mucosa presented higher 

expression of COX-2 (1.86±0.3 AU) and TNF-α (1.44±0.18 AU) and lower 

TOLLIP expression (0.75±0.05 AU) (p<0.05). Adenoma and carcinoma 

presented higher expression of COX-2 (1.63±0.27 and 1.38±0.14 AU, p<0.05) 

and lower expression of TOLLIP (0.44±0.04 AU, p<0.001), translating that in 

diffuse and higher TLRs protein expression (p<0.001). Carcinoma 

additionally expressed higher TLR2 (2.31±0.32 AU, p=0.006) and lower 

PPARγ (0.56±0.12 AU, p=0.003). There was a statistical significant trend for 

decrease of TOLLIP (p<0.001) and PPARγ (p=0.05) from normal mucosa to 

adenoma/carcinoma. When concerning TLR2 and TLR4 risk polymorphisms 

analysis we found that TLR2+597CC homozygous had a 5-fold decreased risk 

(odds ratio (OR)=0.21, 95%CI: 0.09-0.50, p<0.001) and TLR4 299Gly 
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homozygous a 3-fold increased risk of colorectal cancer (OR=3.30, 95%CI: 

1.18-9.28, p=0.015). In stratified analysis, TLR2+597CC genotype protective 

effect was even higher in overweight individuals (OR=0.17, 95%CI: 0.06-

0.53, p<0.001) and in never smokers (OR=0.11, 95%CI: 0.02-0.51, p=0.001). 

Also, the increased risk effect for TLR4 299Gly homozygous genotype was 

higher in overweight individuals (OR=8.67, 95%CI: 1.11-87.85, p=0.011). 

TLR2+597T>C polymorphism conferred 41% less (p=0.03) and TLR4Asp299Gly 

65% more TNF-α production (p=0.02). CONCLUSION: In cirrhosis, activation 

of immune cells TLR2 at an early stage and TLR4 in advanced stages of liver 

disease is compromised. This may constitute an important mechanism of 

acquired immunodeficiency in chronic liver disease patients. Although 

immune cells lower TLR activation may contribute for the risk of infection in 

cirrhosis, progression of liver disease in the inflammation-fibrosis-carcinoma 

sequence is associated with progressive parenchyma TLR expression. 

Furthermore, both in the stomach and in the colon the sequence of 

gastrointestinal carcinogenesis was associated with increased expression of 

TLRs and/or decreased expression of their antagonist molecules. Moreover, 

single nucleotide polymorphisms of these receptors may impact significantly 

the individual risk to develop gastrointestinal cancer. This previously not 

described data suggests that TLRs play an essential role in gastrointestinal 

carcinogenesis. In the future TLRs modulation may be an interesting 

therapeutic option not only to prevent infectious complications but more 

important to prevent gastrointestinal cancer development. 
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CHAPTER I - INTRODUCTION 

“The important thing is not to stop questioning”  

Albert Einstein (1879-1955) 
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A) GASTROINTESTINAL PATHOLOGIES AND THEIR IMPORTANCE ON 

SOCIETY – FOCUS ON ONCOLOGY 
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Gastroenterological diseases represent a major burden in the society. 

Although the majority are benign, recent trends suggest that malignant 

gastrointestinal pathologies are increasing and nowadays represent an 

important cause of death in the population (1, 2). The reasons for this is not 

only because the population is living longer but also because the human 

conduct is changing with increasing adoption of cancer-associated lifestyle 

behaviours like hyper-caloric and fat diets, sedentary lifestyle, alcohol, 

smoking and other environmental factors (3). Indeed, the gastrointestinal 

system is the first one to interact with several external agents, particularly 

from diet but also microbial agents, and so, it is not strange that higher 

consumption of potential noxious agents will in the first place damage 

gastrointestinal cells. Furthermore, some gastrointestinal organs like the 

liver have a central role in human body metabolism and are in that way 

exposed not only to external harmful agents but also to endogenous ones. 

When exposed to aggressive agents, these organs start pathways of defence 

that although potentially beneficial at short term, when chronically exposed 

to noxious agents they may initiate potential oncogenic intracellular 

pathways that eventually lead to cancer. In fact, when we look to the three 

organs that are studied in this dissertation, we realize that all of them share 

common pathways to cancer with a sequence of well-defined events and 

lesions that precede the phenotypical change to cancer.  These aspects will 

be further described individually below. 
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Liver disease  

 The liver is a unique organ with an extraordinary capacity to answer 

to the aggression. Indeed, liver cells possess a regenerative capacity that no 

other organ can match (4). However, when chronically exposed to noxious 

agents, a sequence of inflammation and fibrosis begins that will eventually 

lead to cirrhosis, the final process of liver injury, independently of what was 

the aggressive agent. Indeed, the four most common agents of liver lesion 

(alcohol, steatosis/metabolic, viral hepatitis and auto-immunity) share this 

common pathway of inflammation-fibrosis-cirrhosis (5-7). The crucial step in 

this sequence appears to be activation of Kuppfer and stellate cells with 

production of several pro-inflammatory and fibrogenic factors (5-7).  

 Chronic liver disease represents a major burden in the society with 

incidences as high as 15 cases per 100 000 person year, with the incidence 

of cirrhosis in developed countries tending to increase (8, 9). The mortality 

by this disease remains high with cirrhosis being the 12th leading cause of 

death in the United States, with a mortality rate of 10 per 100,000 persons 

(10). The scenario in other developed countries, including Portugal, is 

similar or worse (11, 12). Indeed, Portugal ranked 5th in cirrhosis mortality 

rates with values as high as 30 per 100 000 person year in men and 10 per 

100 000 person year in women (11, 12). Although the improved management 

of some complications of cirrhosis (like gastrointestinal bleeding) has 

decreased the mortality, fatality rates by cirrhosis remain high with 5-year 

mortality rates superior to 40% in most series mainly because other 

complications like infection and hepatocellular carcinoma have emerged 

(13-16). 
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 Cirrhosis is frequently complicated by infections, which result in 

increased morbidity and mortality and place an economic burden on health 

care systems (7, 17-20). Actually, this disease is considered one of the most 

common forms of acquired immunodeficiency (7, 17-19). Several organic 

factors like ascites, hypoalbuminemia, intestinal bacterial overgrowth, 

increased intestinal permeability, bacterial translocation and increased 

endotoxaemia contribute for this susceptibility (17-19, 21, 22). However, 

many immunological factors like defects in polymorphonuclear leukocytes 

recruitment and activation, deficiencies in the complement system as well 

as defects in macrophage activation and adherence have been described 

(23-26). So, the infection risk in cirrhotic patients appears to be 

multifactorial and several factors may remain to discover. 

 In the liver, from the sequence of aggression-chronic inflammation-

fibrosis-cancer, hepatocellular carcinoma has emerged as a major 

complication of cirrhosis, with an incidence rate of 3-5% per year (27). 

Indeed, the majority of these tumours occur in patients with chronic 

hepatitis and cirrhosis, highlighting the importance of a pro-inflammatory 

and a pro-fibrogenic milieu for the development of carcinoma (27-29).  

Although with a wide geographic variation, hepatocellular carcinoma is the 

sixth most prevalent cancer and the third most frequent cause of cancer-

related death in the world (1, 27).  In Portugal, hepatocellular carcinoma 

has an incidence of 2.2 per 100 000 person year and an almost equal 

incidence of mortality of 2.1 per 100 000 person year (30).  Indeed, despite 

the great improvement in the diagnosis and therapy of this disease, the 

number of deaths per year by this cancer is virtually identical to its 
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incidence in almost every country, underscoring the high case-fatality rate 

of this tumour (1). Together with a rapid diagnosis and treatment, 

prevention of this tumour appears to be the challenge for the future. Only 

by knowing the molecular pathways that lead to cancer we will be able to 

efficaciously prevent this disease. 
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Gastric disease  

 Gastric pathologies have some unique characteristics mainly because 

many gastric diseases have a strong association with a bacteria infection – 

Helicobacter pylori (HP). Indeed, this bacteria discovered in the 1980s was 

rapidly associated to several gastric pathologies (31). In 1994 it was clearly 

recognized that HP was a major cause of gastroduodenal peptic ulcers and 

later that year the International Agency for Research on Cancer declared HP 

to be a group I human carcinogen for gastric adenocarcinoma (32).  HP is 

considered one of the oldest bacteria to infect humans with genetic studies 

identifying this bacterium in the first human populations, more than 58 000 

years ago (31). Even today with wide use of antibiotics, HP is estimated to 

infect more than 50% of the World’s population, with prevalence’s as high as 

90% in some developing countries (31). 

 HP is a Gram-negative bacterium that adheres to the surface of 

gastric mucosa, without invasion of gastric epithelial cells, and that upon 

interaction with several innate immunity receptors such as Toll-like 

receptors (TLRs), causes inflammation of the mucosa that perpetuates as a 

chronic gastric inflammatory state (33, 34). In some patients this 

inflammation progresses leading to gastric atrophy and intestinal 

metaplasia, clearly established gastric premalignant gastric conditions (35-

38). Indeed, Correa was the first one to describe a multistep pathway for 

the intestinal-type gastric adenocarcinoma, where HP is considered the 

initiator of the so-called Correa cascade of gastric carcinogenesis that 

involves chronic gastritis, atrophic gastritis, intestinal metaplasia, gastric 

dysplasia and, finally, intestinal-type gastric adenocarcinoma (39-42). 
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Gastric cancer is considered the number one infection related cancer 

in the world and even with conservative analyzes it is believed that 75% of 

all gastric cancers are attributable to HP infection, accounting for almost 

660 000 gastric cancers annually worldwide (43). Although in developed 

countries gastric cancer rates have decreased substantially, mainly because 

HP infection is being actively controlled, gastric adenocarcinoma is still one 

of the most common cancers in the world being the fourth most common in 

men and the fifth in women (1, 2, 44, 45). Moreover, gastric 

adenocarcinoma ranks second in mortality representing 10% of all deaths for 

cancer (1, 2). In Portugal, gastric cancer is the fifth most common and 

lethal cancer with an incidence of 14 per 100 000 person year and a 

mortality of 10 per 100 000 person year, the highest among European 

countries (30). It was estimated that Portuguese inhabitants show a life-

time risk for gastric cancer of approximately 2% (46). Taking altogether, 

gastric cancer acquires a relevant socioeconomic role in the world but 

particularly in Portugal among the developed countries. 

 Considering that HP infection is treatable with antibiotics, we might 

speculate that eradication at an early age might prevent most of gastric 

cancers in the future. Nevertheless, there is marked individual variability in 

the outcomes of this infection, with complications emerging only in 10-15% 

of infected persons, with fewer than 5% of infected persons developing 

cancer (31). Probably, the different outcomes possible following HP 

infection happen because HP infection involves complex interaction 

between bacterial, genetic and environmental factors (31). It is important 

to better define these factors and their interaction in order to better 
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prevent gastric cancer, since, considering all the side effects of antibiotics 

and also the possibility of generation of resistant microorganisms, it does 

not look ethical to treat all the infected persons when only few patients will 

benefit from that. 
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Colon disease  

Colorectal cancer (CRC) is one of the most common cancers in the 

world, being the third most common in males and the second one in 

females.  Its incidence rates are rapidly increasing in several areas in the 

world, particularly at developed countries, probably related to a 

combination of factors like diet, obesity and smoking (“the western 

lifestyle”) (1, 2, 47). Although the mortality rates have been decreasing in 

several developed countries, mainly because increased awareness, 

implementation of screening programmes with early detection and improved 

treatment, CRC still ranks fourth in world cancer mortality rates, 

representing 8% of cancer deaths (1, 2, 30, 47-49). In Portugal CRC is the 

third most common cancer (the second one both in men and women, losing 

only to prostate and breast cancer, respectively) with incidence rates of 31 

per 100 000 person year (30). The mortality rates in Portugal are of 15 per 

100 000 person year (survival superior to 50%), similar results to other 

developed countries like the United States of America (30). It is estimated 

that in developed countries, including Portugal, the lifetime risk of CRC is 

about 5-8% (1, 2, 47). The risk factors for CRC are environmental and 

inherited with three patterns for presentation:  

- Sporadic disease, accounting for 70% of the cases, in which there is 

no family history and where it is believed that environmental and dietary 

factors play a major role. 

- Hereditary syndromes, like familiar adenomatous polyposis and 

Lynch syndrome, representing fewer than 10% of the cases, in which a 

causative genetic mutation is generally identified. 
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- Familial CRC, which accounts for 20-25% of the cases, where there 

is a clear familiar history with no germline mutation identified, with the risk 

of cancer being superior to general population but inferior to hereditary 

syndromes, probably reflecting environmental and genetic factors (50).  

Probably because there are well-known hereditary syndromes leading 

to CRC, the understanding of the molecular events leading to CRC is one of 

the greatest among all the other tumours. Three distinct molecular 

mutagenic pathways are involved and described in colon carcinogenesis, 

sporadic or hereditary: Chromosomal instability (inactivating mutations of 

APC gene and sequential activation of oncogenes and inactivation of tumour 

suppressor genes); Microsatellite instability (mutations in DNA mismatch 

repair genes predisposing to mutations in genes with repetitive sequences); 

Epigenetic pathway (hypermethylation and gene silencing) (51). All these 

pathways appear to initiate an adenoma-carcinoma sequence where there is 

a progression from normal colonic mucosa to hyperproliferative epithelium, 

then to adenoma with increasing dysplastic changes, and finally carcinoma 

(50-53). Although these pathways are now extensively described, it is still 

not clear which factors initiate and promote tumour progression.  

Indeed, a number of environmental risk factors have been described, 

yet, it is unknown how environment and diet influence genetic pathways 

and predispose to cancer. For example, age, male gender, race, obesity, 

diabetes and diet, among many others, are considered risk factors for CRC. 

Even so, the molecular mechanisms through which these factors increase 

the risk of cancer and influence colon carcinogenesis are still not known 

(50, 54-56). In contrast, inflammatory bowel disease is a risk factor for CRC 
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by promoting chronic inflammation and consequently predisposing to 

mutations (57, 58). So, inflammation (even subclinical inflammation) may 

be an important factor in the initiation and progression of the mutagenic 

pathways described, with significant influence in the adenoma-carcinoma 

sequence (59-61). Emerging data imply that colonic microbiota may be the 

link between risk factors, subclinical inflammation and CRC (62, 63). 

Indeed, older studies suggested the important role of bacteria for the 

development of CRC not only because cancer and adenomas present higher 

bacteria levels than normal mucosa but also because germ-free rats given 

carcinogens are protected from CRC (64, 65). Taking altogether we might 

speculate that risk factors for CRC, like diet, may change the colonic 

microbiota to a more aggressive one that through interaction with colonic 

mucosa promote activation of pro-inflammatory pathways which, at long 

term, will facilitate the progression of the adenoma-carcinoma sequence.  

So, even though we have extensive knowledge of the molecular 

pathways leading to CRC and, even more important, we possess weapons 

capable of significantly reduce the incidence and mortality of CRC, like 

colonoscopy with polipectomy (66, 67), we still have many lines of research 

in this battle against CRC, one of the most common cancers in the world. 

Probably, we will have to better understand how the western lifestyle 

contributes to the risk of CRC. For that we will need to have a clear 

understanding of how microbiome changes with these factors and how the 

different bacteria interact with the gastrointestinal cells.    
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Epilogue  

 Malignant pathology of the liver, stomach and colon represent a 

major burden in the society and an important cause of death in the 

population. Even though we have an extensive knowledge of this tumours 

and we possess important therapeutic alternatives to fight them, the 

incidence and rates of mortality of this tumours are still very high and, in 

some cases, with a tendency to grow even more (Table I.1). 

 Indeed, in order to reduce its incidence and mortality, prevention 

appears to be the better way to fight cancer. In order to accomplish this we 

need to better understand the molecular pathways that lead to cancer. 

For all the three tumours, precursor lesions are known and a 

sequence of progression from normal cells to cancer is well described and 

validated by scientific studies.  Common to all three appears to be a pro-

inflammatory stimulus that may facilitate the activation of oncogenic 

pathways and consequently cancer development and progression. If we were 

able to better understand how environmental factors interact with the 

normal epithelium to generate these precursor lesions and how these 

precursor lesions evolve and eventually lead to cancer, we will probably be 

able to better prevent cancer development.  

  Since TLRs are the first line of interaction of the human cells with the 

different external and environmental agents and that, when activated, 

initiate pro-inflammatory signalling pathways, we believe that TLRs may 

have an important role in the genesis and progression of gastrointestinal 

cancers. In the following chapters we will provide scientific evidence to 

prove that hypothesis.  
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Table I.1 - Epidemiology of the gastrointestinal cancers studied in this thesis 

(both sexes considered). 

 INCIDENCE MORTALITY 2030 NEW CASES*  

GASTRIC CANCER 

World 

Europe 

Portugal 

 

14.0 

7.9 

13.7 

 

10.3 

5.6 

10.4 

 

1.75 

1.36 

1.32 

LIVER CANCER 

World 

Europe 

Portugal 

 

10.8 

4.7 

2.2 

 

9.9 

4.3 

2.1 

 

1.67 

1.36 

1.34 

COLON CANCER 

World 

Europe 

Portugal 

 

17.2 

31.7 

31.4 

 

8.2 

12.6 

14.6 

 

1.77 

1.36 

1.34 

Incidence presented as cases per 100 000 person year; *2030 new cases calculated as the 
proportion of: (estimated new cases in 2030)/(total cases in 2008). Data extracted from 
references (1) and (30). 
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Innate Immunity 

  The human body is in permanent contact with million different 

microorganisms, all potential pathogenic under propitious circumstances. 

Without fast and effective mechanisms to prevent and respond to eventual 

microbial threats it would not be possible for humans to survive as a 

species. These mechanisms, that human share with several other living 

species are known as innate immunity mechanisms (68, 69). 

  In this way, innate immunity constitutes the several immunological 

responses that are present from birth and that are not a result of exposure 

to microorganisms, so they are not learned nor are a result from adaptation. 

Moreover, innate immunity is in clear contrast with the immunological 

response of T and B-lymphocytes, a process known as adaptive immunity. 

Although essential, this specific adaptive immune response takes days to 

weeks to develop whereas most bacteria rapidly multiply in a matter of 

minutes, emphasizing the important role of innate immunity. Indeed, innate 

immunity is an essential and crucial first line of defence against infection, 

quickly responding to potential attacks by several and different 

microorganisms (68, 69).  

  Innate immunity consists of a diversity of components like anatomic 

and physical barriers (e.g. tight junctions in the skin, epidermis, dermis, 

and mucous membranes, mucus itself), physiologic barriers (e.g., 

temperature, low pH, oxygen), humoral factors (e.g., pepsin, lysozyme, 

other anti-microbial substances, interferons, complement), phagocytic cells 

(e.g., neutrophils and macrophages), and some lymphocyte cells (e.g., 

natural killer [NK] and NKT cells). Although many of these factors can 
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prevent or destroy the invading pathogens non-specifically, we now know 

that the microbiological recognition by innate immunity is also a specific 

and highly coordinated process involving pattern recognition receptors 

(PRRs) that identify preserved structures of different pathogens, the so-

called pathogen-associated molecular patterns (PAMPs) (70, 71). Moreover, 

this amazing specificity conferred by the recognition of PAMPs by PRRs is 

essential, not only for a more adequate initial control of a potential 

infection (innate immunity), but also for triggering the late antigen-specific 

acquired immunity (adaptive immunity), for controlling inflammation 

processes and for maintenance of a immunological homeostasis within the 

host (72, 73). 

  Many different PAMPs and PRRs have been identified. PAMPs include 

bacterial carbohydrates (e.g., lipopolysaccharide or LPS, mannose), 

bacterial peptides (flagellin), peptidoglycans and lipoteichoic acids (from 

Gram-positive bacteria), N-formylmethionine, lipoproteins and fungal 

glucans, and nucleic acids (e.g., bacterial or viral DNA or RNA) (69-71). On 

the other way, the PRRs can also be divided into 3 categories: secreted 

PRRs, membrane-bound PRRs, and phagocytic PRRs. Secreted PRRs are a 

group of proteins that kill pathogens through complement activation and 

opsonization of microbial cells for phagocytosis. Secreted PRRs include 

complements, pentraxins, and peptidoglycan-recognition proteins, which 

are mainly produced by hepatocytes and secreted into the blood stream. 

Membrane-bound or intracellular PRRs include TLRs, nucleotide-binding 

oligomerization domain (NOD)-like receptors, and retinoic acid-induced 

gene I-like helicases. Phagocytic (or endocytic) PRRs, which are expressed 
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on the surface of macrophages, neutrophils, and dendritic cells, can bind 

directly to pathogens, and this is followed by phagocytosis into lysosomal 

compartments and elimination. These phagocytic PRRs include scavenger 

receptors, macrophage mannose receptors, and β-glucan receptors (69-71). 

Of all these PRRs, TLRs are the most studied and appear to be one of the 

most important families of PRRs. 
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The family of TLRs 

The TLRs are surface molecules on eukaryotic cells, present in 

invertebrates and conserved in vertebrates, which were originally identified 

as homologs of Drosophila Toll molecule, an important component of 

antifungal defence mechanism (71, 74, 75). TLRs are considered the most 

important family of PRRs, with ten different TLRs being ubiquitously 

expressed in humans (71, 74-77). The existence of several TLRs enables the 

innate immunity system to recognize different groups of pathogens while 

initiating appropriate and distinct immunological responses, according to 

the PAMP recognized (70, 76, 78). In normal physiological conditions TLRs do 

not recognize self-ligands. However, after tissue lesion they may recognize 

endogenous antigens, the so-called damage-associated molecular patterns 

(DAMPs), and contribute to promote sterile inflammation (79, 80). Although 

initially described in several immunological cells, various studies have 

shown that different human tissues express these receptors, with the 

degree of expression varying from tissue to tissue (71, 74-77). 

 The structure of all TLRs is identical. TLRs are membrane-surface 

receptors consisting of a distinct leucine-rich repeat (LRR) extracellular 

domain that confers specificity to the receptor, a single transmembrane 

domain and a conserved toll/interleukin 1 (IL1) receptor (TIR) intracellular 

domain, homologous to the IL1 receptor (76, 77). In general, TLR2 

recognizes PAMPs mainly from Gram positive bacteria, TLR4 is the receptor 

for Gram negative bacteria lipopolysacharide (LPS), TLR5 recognizes 

bacteria flagellin, TLR3, TLR7 and TLR8 recognize viral components namely 

double (TLR3) and single-stranded RNA (TLR7/8), TLR9 recognizes 
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unmethylated CpG DNA from bacteria and virus, and finally, TLR1 and TLR6 

form heterodimers with TLR2 in order to sense tri-acyl (mycobacterium) and 

di-acyl lipopeptides (mycoplasma), respectively. In addition, TLR4 and TLR2 

can detect a wide range of antigens not only from bacteria but also from 

fungus, parasites, virus (particularly TLR2) and DAMPs (particularly TLR4) 

(71, 81). TLR4, the receptor of LPS, is probably the most studied TLR. In 

order to recognize LPS, a complex interaction between TLR4 and LPS 

binding protein (LBP) with CD14 and MD2 co-receptors appears essential for 

innate immune activation in response to the LPS of Gram-negative bacteria 

(82-85). In Table I.2 we can see a brief description of the different TLRs, 

their location, ligands, signalling molecules and final products. 
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TABLE I.2 – Description and essential features of Toll-like receptors 

RECEPTOR LOCATION LIGANDS SIGNALING 

MOLECULES 

FINAL 

PRODUCTS 

TLR1/TLR2 Plasma 
membrane 

Triacyl 
lipopeptides 
(Gram+ bacteria 
and 
mycobacteria), 
Neisseria porins 

TIRAP, MyD88 Inflammatory 
cytokines 

TLR2 Plasma 
membrane 

Peptidoglycan 
(Gram+ 
bacteria), 
several other 
from 
Mycobacteria, 
Virus, Fungus 
and 
Trypanosoma 

TIRAP, MyD88 Inflammatory 
cytokines 

TLR2/TLR6 Plasma 
membrane 

Diacyl 
lipopeptides 
(mycoplasma), 
lipoteichoic acid 
(Streptococcus), 
zymosan (fungus) 

TIRAP, MyD88 Inflammatory 
cytokines 

TLR3 Endosome dsRNA (virus) TRIF Inflammatory 
cytokines, type I 
Interferons 

TLR4 Plasma 
membrane 

LPS, DAMPs, 
other PAMPs 
from fungus and 
virus 

TIRAP, MyD88, 
TRAM, TRIF 

Inflammatory 
cytokines, type I 
Interferons 

TLR5 Plasma 
membrane 

Flagellin (several 
flagellated 
bacteria) 

MyD88 Inflammatory 
cytokines 

TLR7 Endosome ssRNA (virus) MyD88 Inflammatory 
cytokines, type I 
Interferons 

TLR8 Endosome ssRNA (virus) MyD88 Inflammatory 
cytokines, type I 
Interferons 

TLR9 Endosome CpG motifs from 
bacteria and 
virus, dsDNA 
(virus) 

MyD88 Inflammatory 
cytokines, type I 
Interferons 

TLR10 Unknown Unknown MyD88 Inflammatory 
cytokines 
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TLR signalling pathways 

In order to initiate intracellular signalling pathways, after recognition 

of the PAMP, all TLRs have to proceed to homodimerization, the only 

exception being TLR2 that forms heterodimers with TLR1 and TLR6. When 

TLRs couple to its respective ligand, intracellular signals are transduced 

through a MyD88-dependent pathway (the TIR-domain adaptor molecule is 

myeloid differentiation factor 88 (MyD88)) or/and through a MyD88-

independent pathway (adaptor molecule is TIR-domain-containing adaptor 

protein inducing IFN-β (TRIF)) (76, 77). With the exception of TLR3, all TLRs 

activate MyD88-dependent pathway, which leads to the production of 

several inflammatory cytokines through the early-phase of nuclear factor-kB 

(NF-kB) activation. On the other way, TLR3 and TLR4 (and probably TLR7, 8 

and 9) signal through MyD88-independent pathway, which involves the late-

phase of NF-kB activation and the production of interferons (IFN) (76). 

Despite similar intracellular signalling pathways, the final result of 

stimulating different TLRs is not exactly the same depending not only of the 

activated receptor but also of the cell that is stimulated (86-88). Moreover, 

intracellular consequences of TLR activation depend of several factors, 

namely the nature of the PAMPs, activation of other TLRs and PRRs, the 

level of cytokines, and other factors (86-88). Furthermore, current evidence 

suggests that when chronically activated these signalling pathways may 

interact and promote transcription of oncogenic factors (89, 90). This 

further underscores a complex and not completely understood intracellular 

signalization for these receptors. In Figure I.1 we can see the TLRs signalling 

pathways and the interaction between the several TLRs.    
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FIGURE I.1 – Toll-Like receptors signalling pathways 

 

 

TLR stimulation through the NF-kB early activation leads to the production of several 

inflammatory cytokines like IL-1 and TNF-α. Some TLRs can activate the late-phase of NF-

kB activation and the production of type I IFNs like IFN-β. Adapted from reference (91) 
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“Opportunity is missed by most people because it is dressed in overalls and looks like work!” 

Thomas Edison (1847-1931) 
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Importance of the field: Toll-like receptors (TLRs) are innate immunity recep-

tors that recognize several different antigens, initiating immunological/

inflammatory responses. Recent evidence associates numerous pathophysio-

logical processes and diseases with dysregulated activation of these receptors,

conferring a potential therapeutic value to their modulation.

Areas covered in this review: The aim of this systematic review that covers

literature from the past 10 years is to address the role of TLRs in the

pathophysiology of gastrointestinal (GI) diseases as well as the therapeutic

potential of modulating TLRs’ signaling pathways in GI pathology.

What the reader will gain: This review shows that TLRs play an important role

in the pathophysiology of several GI diseases and that modulating TLRs

signaling pathways may have an enormous therapeutic potential. Different

methods for modulation of TLRs’ activity in GI tract, with direct agonists/

antagonists but also with non-specific substances, like antibiotics or probiotics,

are presented.

Take home message: Even though TLRs modulators have been used for

therapy in some GI diseases, further research, particularly in humans, is needed

in order to establish the precise role of the different TLRs in the diverse GI

diseases and tomotivate clinical trials that consider TLRs as therapeutic targets

in GI pathology.

Keywords: gastrointestinal disease, therapeutic targets, therapy, toll-like receptors

Expert Opin. Ther. Targets (2010) 14(4):347-368

1. Introduction

The innate immune system recognizes several components of microbes and initiates
protective immunological responses. We now know that this microbiological
recognition is a specific and highly coordinated process involving pattern recognition
receptors (PRRs) that identify preserved structures of different pathogens, the so-
called pathogen-associated molecular patterns (PAMPs) [1,2]. Moreover, this initial
recognition of PAMPs by PRRs is essential, not only for the initial control of a
potential infection (innate immunity), but also for triggering a late antigen-specific
acquired immunity (adaptative immunity) [3,4]. Toll-like receptors (TLRs) are the
most important family of PPRs, with 10 different TLRs being ubiquitously expressed
in humans [5,6]. The existence of several TLRs enables the innate immune system to
recognize different groups of pathogens while initiating appropriate and distinct
immunological responses, according to the PAMP recognized [1,5,7]. Under normal
physiological conditions TLRs do not recognize self ligands. However, after tissue
lesion they may recognize endogenous antigens, the so-called damage-associated
molecular patterns (DAMPs), promoting sterile inflammation [8,9].

TLRs are membrane-surface receptors consisting of a distinct leucine-rich repeat
(LRR) extracellular domain that confers specificity to the receptor, and a conserved

10.1517/14728221003642027 © 2010 Informa UK Ltd ISSN 1472-8222 347
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toll/IL-1 receptor (TIR) intracellular domain [5,6]. In general,
TLR2 recognizes PAMPs mainly from Gram-positive bacte-
ria, TLR4 is the receptor for Gram-negative bacteria lipopo-
lysacharide (LPS), TLR5 recognizes bacteria flagellin, TLR3,
TLR7 and TLR8 recognize viral components namely double-
(TLR3) and single-stranded RNA (TLR7/8), TLR9 recog-
nizes unmethylated CpG DNA from bacteria and virus, and
finally, TLR1 and TLR6 form heterodimers with TLR2
in order to sense tri-acyl (mycobacterium) and di-acyl
lipopeptides (mycoplasma), respectively. In addition,
TLR4 and TLR2 can detect a wide range of antigens not
only from bacteria but also from fungi, parasites, viruses
(particularly TLR2) and DAMPs (TLR4) [2,10].
When TLRs couple to their respective ligands, intracellular

signals are transduced through a myeloid differentiation factor
88 (MyD88)-dependent pathway (the TIR-domain adaptor
molecule is MyD88) or/and through a MyD88-independent
pathway (the adaptor molecule is TIR-domain-containing
adaptor protein inducing IFN-b (TRIF)). With the exception
of TLR3, all TLRs activate the MyD88-dependent pathway
which leads to the production of several inflammatory
cytokines through the early-phase of NF-kB activation. On
the other hand, only TLR3 and TLR4 signal through the
MyD88-independent pathway, which involves the late-phase
of NF-kB activation and the production of IFN-b [5]. Despite
similar intracellular signaling pathways, the final result of
stimulating different TLRs is not exactly the same depending
not only on the activated receptor but also on the cell that is
stimulated [11-13]. This further underscores the complex
and not completely understood intracellular signalling for
these receptors.
The gastrointestinal tract is both colonized by several

microorganisms and their associated PAMPs and is also
exposed to other organisms, pathogenic or not, that on a
daily basis come into contact with the intestinal barrier.
Intestinal cells cannot initiate an inflammatory response to

the commensal PAMPs but at the same time they have to be
able to respond to potentially invading pathogens. So, a strict
regulation of TLR activation is fundamental for maintaining
gatrointestinal homeostasis. This is accomplished in several
ways that involve the receptor itself, the signaling cascade and
also a precise cellular and anatomic compartmentalization of
TLRs [14-16]. Although gastrointestinal epithelial cells
express TLRs, a marked downregulation of surface expression
of these receptors exists in the colon, particularly in the mature
cells, when compared with small bowel or crypt cells [14,16-19].
Numerous intracellular negative regulation mechanisms
have also been described in these cells, such as decreased
transcription of TLRs [20], proteolytic degradation of TLRs or
its signaling molecules [21,22] and high expression of several
TLR-antagonists [15]. In fact, commensal bacteria augment the
expression of Toll-interacting protein (TOLLIP), a molecule
that is highly expressed in normal colonic mucosa, and of
PPARg , which inhibit IL-1R-associated kinase (IRAK), a
component of TLR signaling, and NF-kB activation, respec-
tively, antagonizing in this way TLRs’ activity [23-27]. It is clear
that under normal physiological circumstances only invasive
pathogens can overcome these mechanisms and activate TLRs.

Recent studies show that besides their essential role in
immune responses and inflammation, TLRs also play a
part in epithelial regeneration, wound healing, maintaining
normal physiology in several organs, auto-immunity processes
and even carcinogenesis [28-32].

In this review, we aim to summarize the role of TLRs in the
pathophisiology of several GI diseases and to describe current
findings and future clinical implications of considering TLRs
as therapeutic targets in such diseases.

2. Role of TLRs in the pathophysiology and
therapy of GI diseases

2.1 Esophagus
Esophageal epithelial cells express several TLR molecules
and respond to TLR stimulation [33]. However, clear
evidence linking pathogens, innate immunity receptors and
disease is lacking.

2.2 Stomach
2.2.1 Helicobacter pylori infection and associated
pre-neoplasic conditions
Helicobacter pylori is a Gram-negative bacterium that adheres
to the surface of gastric mucosa, causing marked inflammation
without invasion of gastric epithelial cells [34]. It is clear that
TLRs have a role in H. pylori recognition and subsequent
innate and adaptive immunity against this bacterium [35].
However, which is the principal TLR responsible for this
process is a question of some controversy. TLR2 appears to be
the receptor responsible for most of the inflammatory changes
occurring as the result of H. pylori infection. Indeed, several
studies showed that TLR2, but not TLR4, was required
for H. pylori -induced NF-kB activation and cytokine

Article highlights.

. Regulation of TLRs activity is very important for
gastrointestinal (GI) homeostasis.

. TLRs play a significant role in the pathophysiology of
several gastric, hepatic, pancreatic, small bowel and
colonic diseases.

. Dysregulation of TLR activation is found in several
GI pathologies.

. There are several and different ways of modulating TLRs
activity in GI tract.

. TLR modulation in GI pathology may be associated with
beneficial therapeutic effects.

. Despite the great number of studies about the role of TLRs
in some areas, like in IBD, the data is far from conclusive.

. Future translational studies and clinical trials are needed in
order to clarify the potential for TLR modulation in
GI pathology.

This box summarises key points contained in the article.

TLRs in gastrointestinal diseases
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production by epithelial [36] and antigen-presenting cells [37].
Cytotoxin-associated gene A (Cag A), an important virulence
factor of H. pylori, promotes a higher production of IL-8 by
TLR2 and not TLR4 signaling [38]. Nevertheless, other studies
suggest that TLR4 play an important role in H. pylori
infection by recognizing several H. pylori antigens [39-41].
More recent studies demonstrate that either in epithelial or
dendritic cells, TLR2 is the principal receptor for recognition
of H. pylori, but this process depends also in a minor extent of
TLR4 that acts in synergy with TLR2 [35,42-46]. TLR9 recog-
nizes H. pylori DNA and appears to have a complementary
and synergistic interaction with the other two receptors [43,47].
On the other hand, TLR5 appears to have no role in the
detection of H. pylori since, despite some initial studies
suggesting interaction between H. pylori flagellin and this
receptor [36,48], more conclusive studies demonstrate that
TLR5 is unresponsive to H. pylori flagellin [49-51].

Besides H. pylori recognition, these receptors also have a
role in the progression of gastric lesions associated with
H. pylori infection. Chronic H. pylori infection increases
TLR4 and activation of NF-kB [40,41]. Intestinal metaplasia
and dysplasia are associated with a more diffuse cytoplasmatic
distribution of TLR4 [52]. Additionally, some studies showed
an association between TLR4 polymorphisms and the severity
of gastric lesions associated with H. pylori infection [53-55]. The
role of TLR2 in the progression of lesions is not established.
However, the TLR2 –196 to –174ins allele was associated
with severity of intestinal metaplasia and mucosal atrophy [56].
Together with the essential role of TLR2 in the recognition of
H. pylori, this indicates that TLR2 may have an important role
in the progression of gastric lesions.

Concerning H. pylori infection, although more studies are
needed, TLRs agonists, particularly TLR2 but also TLR4 and
TLR9, may help to mount effective long-term immunity and
increase the eradication rates when associated with anti-
biotherapy. Moreover, inhibition of TLR4 signaling may
delay the progression of gastric lesions. In fact, a recent
meta-analysis showed that green tea decreases the risk of
gastric cancer [57]. Curiously, green tea catechins appear to
interfere with TLR4 signaling conferring cytoprotective effects
against H. pylori -induced gastric cytotoxicity [58].

2.2.2 Gastric adenocarcinoma
Gastric carcinoma cells express several TLRs, enabling inter-
action with H. pylori or other microorganisms [52]. As several
PAMPs can induce gastric-carcinoma-promoting factors, such
as IL-8, via epithelial TLRs, TLR expression by gastric
carcinoma cells may have a dangerous potential [36,52,59]. In
fact, H. pylori augments the growth of gastric cancer cells via
the LPS–TLR4 pathway, promoting proliferation and pro-
gression of gastric cancers [60]. In other studies induction of
COX-2 overexpression, invasivity and angiogenesis of gastric
cells by H. pylori involved TLR2/TLR9 and NF-kB
activation [61,62]. Other non-H. pylori PAMPs may also
promote tumor growth via TLR2 signaling [63]. Confirming

this role of TLRs in gastric carcinogenesis, some studies
described an association of TLR4 [64,65] and TLR2 [66]

polymorphisms with intestinal type gastric adenocarcinoma.
So, it appears that TLR4, TLR2 and eventually TLR9

may promote gastric carcinogenesis as well as invasivity and
angiogenesis. Antagonizing these molecules may have a role in
the therapy of intestinal type gastric carcinoma.

2.3 Pancreas
2.3.1 Acute pancreatitis
Recent research has made it apparent that TLR4, by promot-
ing the release of many inflammatory cytokines, has an
important role in the patophysiology of acute pancreatitis,
contributing to the pancreatic lesions but particularly to the
systemic multi-organ dysfunction associated with this disease.
In fact, some studies suggest that TLR4 recognizes several
DAMPs originated by pancreatic lesion, such as pancreatic
elastase and heparan sulphate produced by hydrolysis of cell
membrane as well as extracellular matrix, thus inducing
systemic inflammation [67-69]. Other molecules, namely extra-
cellular heat-shock protein 70 may also aggravate pancreatitis
through TLR4 activation [70]. Several studies show that TLR4
deficiency or ablation, ameliorates the severity of acute pan-
creatitis, predominantly the extra-pancreatic organ damage
and the systemic inflammatory response [71-76]. Despite some
evidence that LPS may have some role in the inflammatory
response originated by TLR4 activation [77,78], the majority of
this process appears to be independent of LPS [72,79] and
probably involves DAMPs. Other TLRs such as TLR2 [80] and
TLR9 [81] may also play a part in acute pancreatitis, however,
no definitive conclusions can be made.

As evidenced by several works, blocking TLR4 is a potential
therapeutic target in acute pancreatitis [75,76,79]. A simple
measure like L-arginine administration may decrease TLR4
expression and severity of lesions [75,76]. Still, two considera-
tions have to be made: first, almost all evidence of the TLR4
role in acute pancreatitis came from animal studies; second,
antagonizing TLR4 may augment the risk of infection in these
susceptible patients [73,82].

2.3.2 Chronic pancreatitis
Few studies addressed the role of TLRs in chronic pancreatitis.
Pancreatic stellate cells, a major profibrogenic cell type,
express TLRs and respond to PAMPs by inducing
production of cytokines but not proliferation or production
of type I collagen [83]. A recent study showed that TLR3
signaling induces chronic pancreatitis through the Fas–Fas
ligand-mediated cytotoxicity in autoimmune-prone mice [84].

2.3.3 Pancreatic cancer
No single study suggest that TLRs play a role in pancreatic
carcinogenesis, despite pancreatic cells and pancreatic cancer
cells appear to express at least some TLRs [85-87]. Nevertheless,
one potential strategy treatment for pancreatic cancer is
targeted immunotherapy, and use of TLRs for this effect

Pimentel-Nunes, Soares, Roncon-Albuquerque Jr, Dinis-Ribeiro & Leite-Moreira
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has been performed by some. In a model of orthotopic
pancreatic cancer in mice, a tumor suppressive effect was
observed after treatment with a synthetic lipopeptide (MALP-
2), which signals through TLR2 and TLR6 [88]. This tumor-
suppressive effect of MALP-2 was confirmed in a Phase I/II
human trial, obtaining a mean survival remarkably high for
pancreatic cancer [89]. In an orthotopic human pancreatic
carcinoma xenograft, therapeutic synergism between gemcita-
bine and a TLR9 agonist, CpG-oligodeoxynucleotides (ODN),
was associated with delayed development of bulky disease and
significantly improved survival time [87]. Finally, a recent study
showed that inhibition of TLR3 signaling in human pancreatic
cancer cells with phenylmethimazole (C10), a novel TLR
signaling inhibitor, can decrease cell growth and migration [86].
In conclusion, TLR2/6 and TLR9 agonists could be an

option for immunotherapy in pancreatic cancer. Further
studies are needed to clarify if antagonizing TLR3 is also
an option for treatment of this disease.

2.4 Liver and biliar diseases
2.4.1 Alcoholic liver disease (ALD)
There is no doubt that alcohol leads to a significant elevation
of portal and systemic levels of LPS (endotoxemia), the TLR4
main ligand [90,91]. Several studies demonstrate that LPS is a
crucial mediator of liver injury in ALD [92-94]. Endotoxin, by
activating TLR4 on Kupffer cells, cells that express several
TLRs and are the first one to encounter gut-derived PAMPs,
leads to the production of several pro-inflammatory and
pro-fibrogenic mediators promoting liver injury [95-98]. The
important role of TLR4 in ALD is further supported by
the blunted inflammatory liver injury observed in mice
deficient in TLR4 or its coreceptors despite significant
endotoxemia [95,96,99,100]. Other TLR molecules may have a
secondary role since intrahepatic expression of most of
the TLRs is upregulated by chronic alcohol consumption,
further potentiating cytokine production in response to
LPS binding [101].
So, blocking the TLR4 liver activation appears to be a

therapeutic option in ALD. However, a direct blockage
of TLR4 may significantly increase the infection risk in
these patients, who are particularly susceptible to
infections [94,102,103]. More realistic options appear to be
the use of antibiotics/probiotics that reduce endotoxemia,
modulating in this way TLR4 function and attenuating
liver injury [92,104].

2.4.2 Non-alcoholic steatohepatitis (NASH)
A recent review [105] and a recent study [106] suggest that the
patophysiology of NASH may be similar to that of ALD, and
that the same TLR4 dependent mechanisms that occur in
ALD also are central in the pathogenesis of NASH. In fact,
a high-fat diet and obesity increase intestinal permeability to
LPS [107] as well as LPS-containing microbiota and endotox-
emia [108]. Similar to what happens in ALD, endotoxin may
promote Kupffer cell activation as well as insulin resistance, fat

accumulation and inflammation in the liver [108,109]. Support-
ing the role of TLR4 signaling in this process is the fact that
TLR4-deficient mice, but not TLR2-deficient mice, exposed
to a methionine/choline-deficient (MCD) diet, a common
experimental model of NASH, have presented decreased liver
injury and lipid accumulation [110].

Once again, the use of antibiotics or probiotics in
obese mice resulted in decreased LPS levels and attenuated
severity of NASH and metabolic syndrome, suggesting that
modulation of gut microflora may attenuate the deleterious
effects of TLR4 activation [111-114].

2.4.3 Hepatitis B
There is increasing evidence to support an important role of
TLRs in hepatitis B virus (HBV) infection. Besides presenting
antigens that stimulate TLRs, HBV promotes downregulation
of several TLR molecules as well as attenuation of activation of
these receptors which may help the infection to persist [115-117].
Curiously, in HBeAg-negative but not in HBeAg-positive
patients upregulation of TLR2, a TLR that does not appear
to be involved in HBV recognition, and increased TNF-a
production were found, which may promote the more severe
hepatic lesion that is seen in these patients [118,119]. Supporting
the role of TLRs in HBV infection, many recent studies show
that activation of several TLRs, particularly TLR3, TLR7 and
TLR9 but also TLR4 and TLR5, can block viral replication
through an IFN-dependent inhibition of HBV [120-122].

The clinical value of these findings is translated in the
augmented immune responses to HBsAg vaccination that is
seen with TLR9 (CpG-ODN) and/or TLR7/8 agonists
(Resiquimod) [123-125]. Human studies are needed to confirm
the value of these TLRs agonists in prophylaxis or even in
promoting erradication of HBV infection.

2.4.4 Hepatitis C
In a similar manner to HBV, existing evidence suggest that
hepatitis C virus (HCV) promotes decreased activation of
TLR signaling related to control of viral infection but at the
same time increases activation of TLR pathways that generate
liver inflammation [126-130]. After TLR3 binding to dsRNA
from HCV, HCV proteins, NS3/4A, block in several ways the
activation of TLR3 and the subsequent production of type I
IFNs [131,132]. The activation of other TLRs, such as TLR7 and
TLR9, may also be blunted by HCV proteins, with further
compromise of immune virus clearance by several primary
immune cells [133-136]. At the same time HCV core protein and
NS3 activate TLR2, with involvement of TLR1 and TLR6,
and maybe also TLR4, promoting hepatic inflammation and
injury [126,128,137].

TLR3- and TLR4-stimulated non-parenchymal liver cells
are able to regulate HCV replication through production of
IFN-b [138]. Treatment with intravenous isatoribine, a TLR7
agonist, or with CPG 10101, a TLR9 agonist, caused a
significant reduction of plasma HCV RNA in patients infected
with genotype 1 as well as non-genotype 1 HCV with induction

TLRs in gastrointestinal diseases
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of markers of a heightened immune antiviral state [139,140]. This
data further underscores the immense potential of using TLRs
as therapeutic targets in HCV infection.

2.4.5 Hepatic fibrosis and cirrhosis
TLR4 plays a crucial role in liver fibrosis and in the physio-
pathology of cirrhosis. There is no doubt that liver fibrosis and
cirrhosis is associated with significant increase in plasma LPS,
the TLR4 main agonist [90,141-144]. Studies using different
models of fibrosis and cirrhosis and different mechanisms to
block TLR4 signaling, namely with TLR4 or its coreceptors
CD14 and LPS binding protein (LBP) deficient mice as well
as with gut-sterilized mice, confirmed that LPS–TLR4
activation is essential for hepatic fibrogenesis [145,146]. Even
though TLR4 activation in Kupffer cells promotes the pro-
duction of several pro-inflammatory and also pro-fibrogenic
mediators [95-98], TLR4 activation in hepatic stellate cells is the
vital step for collagen production and consequently fibrosis
and cirrhosis [146-148]. Recent studies confirmed that variants of
TLR4 gene modulate risk of liver fibrosis [149-151] and that
a TLR4–MD2 fusion protein inhibits LPS-induced pro-
inflammatory signaling in hepatic stellate cells [152].
TLR9-deficient mice also have decreased fibrosis, suggesting
that TLR9 activation on hepatic stellate cells may have a role
in hepatic fibrogenesis [153,154].

Besides promoting fibrosis and cirrhosis, TLRs may also
have a role in cirrhosis complications, namely in the incredibly
high infection risk of these patients [94,102,103]. Lin et al. clearly
demonstrated that in Child C patients monocyte stimulation
with LPS was attenuated [155]. More importantly, Testro et al.
showed that, in the same group of patients, this blunted
response to LPS was dependent of decreased TLR4 expression
and that antibiotic therapy may restore TLR4 levels and also
the immunologic response to LPS [156]. These two works
suggest that changes in TLR4 expression and signaling are
important for the ‘endotoxin tolerance’ and that modulation
of TLR4 function with antibiotics may reverse this phenom-
enon. Other TLR molecules may contribute to the immuno-
deficiency of cirrhosis. In fact our group [157] and others [158]

demonstrated that a blunted TLR2 activation in immuno-
logical cells is present in cirrhotic patients, which may con-
tribute to the infection risk. Synbiotic therapy was able to
reverse this immunological defect [158].

So, a direct antagonist of TLR4 may decrease hepatic
fibrosis, but at the same time, it may significantly augment
the infection risk. Curcumin, a dietary component that has
been shown to inhibit TLR4 activation [159-161], also appears to
block activated hepatic stellate cells [159]. Modulation of TLR
activity through decreasing endotoxemia by the use of pro-
biotics/synbiotics [113,158,162] or antibiotics [92,156,163] may at
the same time decrease liver fibrosis and stimulate immunity.

2.4.6 Hepatocarcinoma
There is no clear evidence linking TLRs and hepatocarcinoma
despite the fact that in chronic HBV infection CpG DNA of

HBV, through activation of TLR9, may contribute to the
malignant transformation of benign liver cells [164]. TLR3
expression in hepatocarcinoma appears to have a role with
regard to proapoptotic activity [165,166]. In more than 80% of
the cases this tumor arises from chronic inflammation and
fibrosis of the liver, with cirrhosis being considered a
pre-neoplasic condition [167-169]. TLR4 has a crucial role in
inflammation and in liver fibrosis, and several inflammatory
factors that are upregulated by TLR4 activation, such as
COX-2 and NF-kB, have been shown to be important in
hepatocarcinogenesis [168-170]. Myd-88, the TLR adaptor
protein, also appears to be important for the development
of hepatocarcinoma [171,172]. In fact, a recent study suggests
that TLR4 mediates synergism between alcohol and HCV in
hepatic oncogenesis [173].

We believe that the constant activation of hepatic TLR4 by
elevated LPS plasma levels that exist in cirrhosis promotes
hepatocarcinogenesis and that antagonizing this effect may
have an important role in prophylaxis and even therapy for
this tumor. TLR3 agonists may have therapeutic potential as
cytotoxic agents in hepatocarcinoma [166].

2.4.7 Primary biliary cirrhosis (PBC)
Despite there being no clear evidence linking TLRs
with the physiopathology of PBC, it appears that TLR
activation is dysregulated in this disease. An initial study
suggested that TLR4 expression was higher in the liver of
PBC patients [174]. This was not confirmed in the study of
Shimoda et al., where TLRs expression levels in biliary
epithelial cells from patients and controls were found to
be similar [175]. However, when stimulated with a TLR3
agonist, they secreted higher levels of chemokines, but only
when co-cultured with liver-infiltrating mononuclear
cells [175]. TLR-3 and type I IFN signaling pathways were
active in both the portal tract and liver parenchyma of
early-stage PBC but not in controls [176]. Additionally,
monocytes isolated from PBC patients were hyperres-
ponsive to TLRs agonists, and B cells when stimulated
with a TLR9 ligand have been found to promote
hyper-IgM levels [177-180].

Importantly, antagonizing TLRs activation using PPAR-g
ligands have been suggested to be of therapeutic benefit to
attenuate biliary inflammation in PBC [181].

2.4.8 Ischemic/reperfusion (I/R) lesion and liver allograft
rejection
Current knowledge confers a central role of TLR4 activa-
tion by DAMPs via the MyD88-independent pathway in
the inflammatory process seen in I/R lesions [182-186]. On
the other hand, the role of TLR2 activation is not so clearly
defined, with some studies suggesting an important role [187]

while others do not [184]. In fact, not only the absence
of TLR4 [182] but also downregulation of TLR2 expression
in the donor organ reduces I/R injury [188]. Some molecules
like bicyclol or N-acetylcysteine have been shown to
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decrease liver injury in I/R by a non-selective attenuation of
TLR2 and TLR4 activation [189-191], thus emphasizing
the importance of these TLRs in I/R lesion.
Other aspect concerning liver transplantation where TLRs

may play a role is acute rejection. A recent work suggests
that acute liver rejection is associated with significantly
greater levels of immune cells TLR4 expression and function,
implicating TLR4 response in the initiation of allograft
rejection [192].
It is clear that TLR4 antagonists may have a therapeutic role

in several aspects of liver transplantation.

2.4.9 Other hepatic and biliary diseases
Acetaminophen-induced hepatotoxicity is dependent on
TLR9 and TLR4 activation by DAMPs [193,194]. Importantly,
TLR9 antagonists reduced mortality from acetaminophen
hepatotoxicity [193].
TLR2 and TLR4 may play a part in acute allograft

rejection after liver transplantation [195] and an antagonist
of TLR4 (E5564) had a beneficial effect in acute liver
injury [196].

2.5 Small bowel
2.5.1 Celiac disease
Celiac disease is an autoimmune disorder provoked by gluten
that affects primarily the small intestine. Its pathogenesis
involves various immunological factors, however, the role
of innate immunity is not determined. It was first suggested
that innate immune response has some importance in celiac
sprue since gliadin stimulation of macrophage inflammatory
gene expression and intestinal permeability were MyD88-
dependent [197]. Latter, a subset of autoantibodies against
transglutaminase were found to bind TLR4, inducing
activation of monocytes [198]. Finally, and more importantly,
mucosal expression of TLR2 and TLR4 was found to be
increased either in treated or untreated patients [199]. Further
investigation is needed in this area.

2.5.2 NSAIDs’ enterophaty
Recent studies have been focused on the importance of TLR4
in NSAIDs’ intestinal lesions. In the study of Kato et al.,
upregulation of iNOS/NO through the increased expression
of TLR4 in the small intestine of arthritic rats was shown,
suggesting that increased susceptibility of small intestine to
NSAID-provoked ulceration involved TLR4 activation [200].
These results were confirmed using mutant mice, clearly
establishing that NSAID-induced small intestinal damage
is TLR4-dependent and that therapy with Gram-negative-
but not Gram-positive-acting antibiotics decreased these
lesions [201]. Finally, probiotic exhibited a prophylactic effect
on indomethacin-induced enteropathy by suppressing the
LPS/TLR4 signaling pathway [202].
Human studies are needed to confirm the potential of

modulation of TLR4 activation by probiotics in NSAID
enteropathy treatment.

2.5.3 Radiation injury
Ionizing radiation is associated with massive apoptosis
in radiosensitive organs, particularly in intestinal crypt
cells [203]. A polypeptide drug derived from Salmonella
flagellin injected into mice before or after total body irradi-
ation activated TLR5 and protected mice from lesion, improv-
ing survival without decreasing tumor radiosensitivity [204].
Thus, TLR5 agonists have the potential to improve the
therapeutic index of cancer radiotherapy and may also be
beneficial against chemotherapeutic therapies that induce
significant apoptosis of intestinal cells.

2.6 Colon
2.6.1 Inflammatory bowel disease (IBD)
The dysregulation of innate and adaptive intestinal immune
responses to bacterial microbiota is believed to be highly
involved in the pathogenesis of IBD. TLRs play a key role
in microbial recognition in innate immunity and control the
adaptive immune responses. So, is not strange to see that a
large amount of literature examines the role of TLRs in the
patophysiology of IBD. However, the results have not so far
been conclusive and some are even contradictory.

TLR2 activation on intestinal epithelial cells (IECs) does
not appear to cause robust induction of proinflammatory gene
expression, but rather provokes augmented IEC barrier
function [205,206]. In fact, TLR2-/- mice presented increased
susceptibility to chemical induced colitis and oral treatment
with a TLR2 ligand prior to colitis induction significantly
suppressed mucosal inflammation and apoptosis and restored
epithelial integrity [207]. More recently, this increased suscep-
tibility to colitis and impaired mucosal repair was associated
with deficiency of trefoil factor (TFF3), a mucin glycoprotein
of intestinal mucus that is synthesized upon TLR2 stimula-
tion [208]. Importantly, some TLR2 or its correceptors TLR1
and TLR6 polymorphisms have been found to be associated
with disease patterns in IBD. Specifically, the TLR2-R753Q
variant that confers a functional deficient in the ability to
induce TFF3 synthesis, leading to impaired healing, is asso-
ciated with severe ulcerative colitis (UC) [208,209]. On the other
hand, NOD2 mutations, important Crohn’s disease (CD)
susceptibly genes, appear to contribute to IBD by causing
excessive TLR2 activation, dysregulation and induction of
antigen-specific colitis [210,211]. Several studies do in fact
contradict in some way this protective role of TLR2 in colitis.
In humans with IBD, increased expression of TLR2 and
TLR4 in the colonic mucosa was found, particularly during
intestinal inflammation, suggesting that TLRs may contribute
to the inflammatory process [212,213]. In complete contrast with
the possible TLR2 anti-inflammatory action, Liu et al.
suggested that Pam3CSK, a TLR2 agonist, may in fact
aggravate colitis [214]. Others showed that improvement in
patients with active IBD following leukocyte apheresis is
associated with decreased numbers of TLR2-positive cells
in intestinal mucosa [215] and that pro-inflammatory intestinal
bacteria aggravates acute colitis and ileitis via TLR2 and

TLRs in gastrointestinal diseases
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TLR4 [216,217]. Additionally, monocytes isolated from patients
with active IBD, but not from patients with inactive disease,
expressed higher levels of TLR2 and increased TNF-a pro-
duction in response to TLR2 stimulation when compared
with controls [218]. VIP appears to downregulate uncontrolled
inflammation by reducing TLR2 and TLR4 expression [219,220]

Similar to TLR2, TLR4 activation in normal conditions
does not appear to cause important inflammation, instead it
promotes intestinal healing. TLR4-/- and Myd88-/- mice after
induction of colitis present impaired mucosal regeneration
with greater colonic damage and mortality [221-223]. However,
in a different background, specifically on IL-10-deficient mice,
the absence of MyD88 protected the mice from the devel-
opment of colitis, suggesting a key pathogenic role of TLR
signaling for intestinal inflammation at least in IL-10-deficient
mice [224]. A recent study confirmed that in mice that lack both
IL-10- and TLR4-mediated signals, aberrant regulatory T-cell
function and dysregulated control of epithelial homeostasis
combine to exacerbate intestinal inflammation [225]. TLR4 do
appear to have a role in the initiation of intestinal inflamma-
tion, not only in IL10-/- colitis, since treatment with a lipid
A-mimetic, CRX-526, which has antagonistic activity for
TLR4, inhibits the development of moderate-to-severe
disease in two mouse models of colonic inflammation [226].
In other models of colitis a non-specific inhibition of TLR4
activation obtained in different ways, for example with pro-
biotics, was associated with significant reduction of mucosal
inflammation [227-231]. However, and supporting the impor-
tant role of TLR4 in epithelial regeneration, a specific TLR4
antagonist antibody ameliorated inflammation but impaired
mucosal healing in murine colitis [232]. Several studies associate
TLR4 polymorphisms, particularly the TLR4 Asp299Gly
polymorphism, with IBD, confirming the important role of
TLR4 in IBD pathogenesis [233-238].

Few studies address the role of TLR3 in IBD. Activation of
TLR3 by poly(I:C) treatment protected against dextran
sodium sulfate (DSS)-induced acute colitis [239]. However,
other studies suggested that TLR3 signaling may have a
deleterious effect on intestinal inflammation [240,241]. In
humans, TLR3 expression was downregulated in inflamed
and non-inflamed mucosa of CD but not of UC patients [242].

TLR5 is highly expressed in the basolateral but not in the
apical membrane of IEC. The current knowledge is that intact
epithelial cells do not respond to the TLR5 agonist, flagellin,
but when an epithelial barrier disruption occurs flagellin via
TLR5 basolateral membrane activation is able to elicit strong
inflammatory responses [243,244]. In fact, CD-associated
virulent Escherichia coli bacteria, via expression of flagella,
are able to potentiate an inflammatory mucosal immune
response involving increased expression of TLR5 [245]. Other
studies confirmed that in CD patients, tolerance to commen-
sal-derived flagellin is lost with enhanced flagellin reactiv-
ity [246,247]. Confirming that TLR5 activation is important at
least in CD inflammation, a dominant-negative TLR5
polymorphism, that confers inactivity to TLR5, was negatively

associated with CD [248]. However, TLR5 may also have
a homeostatic function since deletion of TLR5 results in
spontaneous colitis in mice, apparently through increased
TLR4 signaling, suggesting that TLR5 signaling may have
a physiological role in modulating TLR4 activation [249].

Recent studies showed that expression of TLR8 is highly
upregulated in the colonic epithelium from patients with
active IBD [250] and high-frequency haplotypes in the X
chromosome locus TLR8 are associated with both CD and
UC in females [251]. So, TLR8 have recently attracted some
interest, although its role in IBD, if any, is still to be defined.

Finally, similar to most of the other TLRs, TLR9 appear to
act as a double-edged sword in IBD. TLR9 activation with
CpG-ODNs improved the severity of induced-models of
colitis [252]. TLR9-induced type I IFN protected mice from
experimental colitis [253]. CpG DNA/TLR9 interaction
induced regulatory properties in CD4+CD62L+ T cells which
prevented intestinal inflammation in a transfer model of
colitis [254]. The beneficial anti-inflammatory effects of probio-
tics were shown to be dependent on TLR9 signaling [255,256].
In humans, CpG-ODNs inhibited colonic production of
inflammatory cytokines in ex vivo mucosal biopsies of UC
patients but not controls [257]. However, on the other hand,
intraperitoneal administration of CpG-ODN increased the
severity of DSS-induced colitis [258]. Medium-chain triglycer-
ides decreased the incidence of spontaneous colitis by reducing
TLR9 mRNA [259]. TLR9-deficient mice presented less intes-
tinal inflammation in a induced-model of colitis and blocking
CpG effects with adenoviral ODN resulted in a significant
amelioration of colitis, suggesting that CpG motifs of bacterial
DNA contributes to the perpetuation of chronic intestinal
inflammation [260]. TLR9 polymorphisms appear to modulate
susceptibility to CD [261,262].

How can we explain these apparent contradictory and
opposing effects of TLRs in IBD? In a similar way to that
described for TLR9 [263], we believe that apical or basolateral
TLRs activation in IEC initiates distinct signaling pathways,
with apical stimulation promoting anti-inflammatory and
homeostatic effects and basolateral stimulation initiating
defensive inflammatory reactions, which may have beneficial
effects against pathogens, but in IBD will perpetuate injury.
In conclusion, activating TLRs when the epithelial barrier
is intact may result in a protective effect against inflammation,
while when the epithelium is disrupted it may lead to
aggravation of inflammation not only by stimulation of
IEC but also of immune submucosal cells. In Table 1 we
list the most pertinent TLRs targets for prophylaxis and
therapy in IBD.

2.6.2 Colorectal cancer (CRC)
TLRs signaling appears to have an important role in carci-
nogenesis of several tumors, by promoting either apoptosis
or survival of neoplasic cells, and this potential is being
increasingly used for therapeutic purposes [264]. The link
between innate immunity receptors and CRC is highlighted
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by the fact that IBD and chronic inflammation are established
risk factors for CRC [265], germ-free rats given carcinogens are
protected from colonic cancer [266] and cancer and adenomas
present higher bacteria levels than normal mucosa [267]. In fact,
recently it has been shown that, in induced-colitis murine
models, bacterial-induced inflammation through TLR/
MyD88 signaling appears essential for progression of
adenoma to carcinoma [268]. TLR4 signaling appears to be
critical for colon carcinogenesis, at least following chronic
colitis. Fukata et al. showed that TLR4-/- mice are protected
against the development of colitis-associated neoplasia and
the mechanisms by which TLR4 activation appears to
promote the development of colitis-associated cancer
includes enhanced COX-2 expression and increased EGFR
signaling [269,270]. Recently, it was shown that human CRC
cells overexpress TLR4 when compared with normal mucosa
and that CRC cell lines when stimulated with LPS activate
the PI3K–Akt signaling pathway, involved in CRC growth
and progression [271]. Rapamycin cytotoxic effect appears to
involve at least in part inhibition of TLR4 activation on tumor
cells, in this way promoting apoptosis [272,273]. In others
murine models of CRC, silencing of TLR4 decreased CRC
tumor burden and metastasis [274,275]. In cultured human
colon cancer cells TLR2 activation also induced production
of oncogenic factors like TGFb and HGF [276]. Additionally, a
small study found association of microsatelite GT polymorph-
isms of the TLR2 gene and Asp299Gly polymorphism of the
TLR4 gene with sporadic CRC [277].

Others TLRs, by promoting anticancer immunity, may
have a different role in CRC carcinogenesis with antitumor
activity. In mouse xenografts of human colon cancer, lack of
TLR5 dramatically enhanced tumor growth and, in contrast,
TLR5 activation by flagellin greatly increased tumor necro-
sis [278]. Several studies also suggest an important antitumor
effect of TLR9 activation. Rayburn et al. demonstrated that
human CRC cells express TLR9 and that TLR9 agonism leads
to decreased cell survival and proliferation, inducing apoptosis
of CRC cells in vitro [279]. Other authors confirmed these
results, suggesting that agonists of TLR9 may even synergize
with anti-angiogenic factors and reduce the growth of
metastasized tumor cells [280-283].

In conclusion, it appears that blocking TLR2 but princi-
pally TLR4 may be an interesting therapeutic target for CRC.
On the other hand, TLR5 but mainly TLR9 activation
should be considered as potential immunotherapeutic target
to modulate growth of colonic tumors.

2.6.3 Necrotizing enterocolitis (NEC)
NEC is an important cause of death among premature infants.
Initial studies demonstrated the fundamental role of bacteria,
LPS and TLR4 in experimental NEC [284,285]. In a neonatal rat
model, polyunsaturated fatty acid supplementation reduced
the incidence of NEC through inhibition of TLR4 gene
expression [286]. Leaphart et al. showed that NEC in mice
and humans is associated with increased expression of TLR4T
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in the intestinal mucosa and that TLR4 activation promotes
enterocyte apoptosis, significantly compromising intestinal
repair. In this study, TLR4 mutant mice were protected
from NEC [287]. Gribar et al. confirmed the importance of
TLR4 in the pathogenesis of NEC and suggested that TLR9
is also very important. In this study, activation of TLR9
with CpG-DNA inhibited LPS-mediated TLR4 signaling
and significantly reduced NEC severity, whereas TLR9-
deficient mice exhibited increased NEC severity. They also
found that even in humans NEC was associated with increased
TLR4 and decreased TLR9 intestinal expression [288].
We can say that antagonists of TLR4 or agonists of TLR9

are potential therapeutic agents for NEC.

3. Conclusion

TLRs play a fundamental role in GI homeostasis allowing
colonization by commensal microflora and at the same time,
when necessary, initiating an immunological response to
invasive microorganisms. These receptors represent the first
line of defense against pathogens and it’s logical to say that
when this first barrier is disrupted, a pathological process
begins. In fact, in this systematic review we accumulate a
great amount of evidence that support TLR dysregulation as
an important factor for several GI diseases, from the stomach
to the colon. More importantly, it has become clear that
TLRs are potential therapeutic targets for many of the most
important GI pathologies, not only inflammatory/immuno-
logical but also oncological and even vascular diseases. In
some of these diseases, the potential therapeutic role for
modulation of TLR activation is already confirmed and
clinical trials have been done or are in progress. In other
diseases further research, mainly translation research, is
needed in order to confirm the role of TLRs in the patho-
physiological process of the disease for, later on, considering
TLRs as therapeutic targets.

4. Expert opinion

A growing body of evidence supports the hypothesis that
TLRs are indeed therapeutic targets for GI diseases. Never-
theless, in our opinion, there are several points that deserve
future consideration:

1. When considering gastric pathology there are few studies
that evaluated therapeutic value of TLR modulation
despite their role inH. pylori recognition and inflammatory
process. We believe that future studies should evaluate
gastric expression and activity of these receptors in normal
gastric mucosa, pre-neoplasic and carcinoma lesions – do,
in fact, activation or attenuation of one or more TLRs
contribute to the development of gastric adenocarcinoma,
the most serious consequence of H. pylori infection? Do
different mucosal patterns of TLRs expression confer
distinct cancer risks? We believe that gastric cancer

prophylaxis and treatment will be, in the near future,
targets for TLR-directed therapy.

2. As we have seen, TLR4 activation is associated with
deleterious effects in acute pancreatitis. Since severe
acute pancreatitis does not have an established effective
medical therapy, antagonists of TLR4 should be evaluated
in this context.

3. When considering liver diseases there is no doubt that
TLRs, mainly TLR4, play a fundamental role in inflam-
mation and fibrosis of the liver. Particularly, we believe that
TLR4 antagonists may become an important therapy after
liver transplantation. Large clinical randomized trials
should be design to prove the clinical usefulness of TLR
modulation in this context.

4. In the near future with the growing incidence of cardiac
pathology, NSAID enteropathy may become an important
disease. What are the therapeutic options for the patient
that takes aspirin for ischemic cardiac disease, and presents
with ferropenic anemia further increasing the cardiac
risk? Since NSAID -induced small intestinal damage is
TLR4-dependent, we believe that human studies with
TLR4 antagonists should be initiated.

5. Probably, IBD is the pathology where TLRs have the most
important pathophysiological role. However, in our opin-
ion and despite a large number of studies in this area, we
just do not know what is happening in IBD. Why is that?
Probably, the different models of induced-colitis represent
different stages of the disease or may not even represent
what really happens in human IBD. On the other hand,
CD and UC have different pathophysiological processes
and the role of the different TLRs may be distinct in each
of these diseases. Before considering TLRs as therapeutic
targets in IBD, more studies, particularly translational
studies, are needed.

6. Current evidence suggests that TLR2 or TLR4 antagonists
may have a role in the treatment of CRC. Human studies
are needed in this area. But, is there a role for TLRs in
the development of adenoma and CRC? Few studies
addressed this question that may be central for cancer
prophylaxis. We believe that TLRs may be important
for colon carcinogenesis and so studies in this area are
urgently needed.

The GI tract is on a daily basis exposed to different
microorganisms that are present in the food that we ingest,
modulating our commensal intestinal microflora. These
organisms and their respective PAMPs are primarily sensed
by TLRs. So what we eat can in fact be a risk factor for GI
pathology and TLRs may be the imperative link between food
and disease.
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CHAPTER III – TOLL-LIKE RECEPTORS AND 

LIVER DISEASE 

“Is life worth living? It all depends on the liver”  

William James (1842-1910) 
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LIVER DISEASES 
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Abstract Toll-like receptor 4 (TLR4) is a pattern rec-
ognition receptor that functions as lipopolysaccharide

(LPS) sensor and whose activation results in the production

of several pro-inflammatory, antiviral, and anti-bacterial
cytokines. TLR4 is expressed in several cells of healthy

liver. Despite the constant confrontation of hepatic TLR4

with gut-derived LPS, the normal liver does not show signs
of inflammation due to its low expression of TLR4 and

ability to modulate TLR4 signaling. Nevertheless, there is

accumulating evidence that altered LPS/TLR4 signaling is
a key player in the pathogenesis of many chronic liver

diseases (CLD). In this review, we first describe TLR4

structure, ligands, and signaling. Later, we review liver
expression of TLR4 and discuss the role of LPS/TLR4

signaling in the pathogenesis of CLD such as alcoholic

liver disease, nonalcoholic fatty liver disease, chronic
hepatitis C, chronic hepatitis B, primary sclerosing cho-

langitis, primary biliary cirrhosis, hepatic fibrosis, and

hepatocarcinoma.

Keywords Toll-like receptor 4 ! Lipopolysaccharide !
Chronic liver diseases

Abbreviations
Akt Serine/threonine protein kinase

ALD Alcoholic liver disease

Anti-BEC-Ab Antibiliary epithelial cell antibodies
AP-1 Activator protein 1

ATF3 Activating transcription factor-3

BAMBI Bone morphogenetic protein and activin
membrane-bound inhibitor

Bcl-3 B cell leukemia-3

BEC Biliary epithelial cell
CCL Chemokine

CCl4 Carbon tetrachloride

CLD Chronic liver diseases
CYLD Cylindromatosis protein

DAMP Damage-associated molecular patterns

DEN Diethylnitrosamine
DUBA De-ubiquitinating enzyme A

ERK Extracellular signal-regulated kinase

GSK-3b Glycogen synthase kinase-3b
HBV Hepatitis B virus

HCC Hepatocarcinoma

HCV Hepatitis C virus
HSC Hepatic stellate cell

ICAM Intercellular cell adhesion molecule

IFN Interferon
IKK Inhibitor of NF-jB kinase

IL Interleukin
IRAK Interleukin-1 receptor-associated kinase

IRF Interferon regulatory factor

IjBa Inhibitor of NF-jB
JNK C-Jun N-terminal kinase

KC Kupffer cells

LBP LPS binding protein
LPS Lipopolysaccharide

MCDD Methionine- and choline-deficient diet

miR MicroRNA
MyD88 Myeloid differentiation factor 88

MyD88s Splice variant of MyD88

NAFLD Non-alcoholic fatty liver disease
NEMO NF-jB essential modifier

NF-jB Nuclear factor jB
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PAMP Pathogen-associated molecular pattern
PBC Primary biliary cirrhosis

PI3K Phosphatidylinositol 3-kinase

Pin Peptidyl-prolyl isomerase
PRR Pattern recognition receptor

PSC Primary sclerosing cholangitis

RIP Receptor-interacting serine–threonine
kinase

ROS Reactive oxygen species

RP105 Radioprotective 105
SARM Sterile alpha- and armadillo-motif-

containing protein

SHP Src homology 2 domain-containing
protein tyrosine phosphatase

SIGIRR Single immunoglobulin IL-1R-related

molecule
SNP Single nucleotide polymorphism

SOCS1 Suppressor of cytokine signaling-1

ST2L Transmembrane form of ST2
sTLR4 Soluble decoy TLR4

TAK Transforming growth factor-b-activated
kinase

TANK TRAF family member associated NF-jB
activator

TBK TANK binding kinase
TGF Transforming growth factor

TIRAP Toll/IL-1 receptor domain-containing

adaptor protein
TNF Tumor necrosis factor

TIR Toll/interleukin 1 receptor

Tollip Toll interacting protein
TLR Toll-like receptor

TRAF Tumor necrosis receptor-associated factor

TRAIL Tumor necrosis factor-related apoptosis-
inducing ligand

TRAM TRIF-related adaptor molecule

TRIAD3A Triad domain-containing protein 3
variant A

TRIF Toll/IL-1 receptor domain-containing
adaptor inducing interferon-b

VCAM Vascular cell adhesion molecule

Introduction

The innate immune system recognizes several components
of microbes and initiates protective immunological

responses. This microbiological recognition is a specific

and highly coordinated process involving pattern recogni-
tion receptors (PRRs) that identify preserved structures of

different pathogens, the so-called pathogen-associated

molecular patterns (PAMPs) [1, 2]. Toll-like receptors

(TLRs) are the most important family of PRRs, with ten
different TLRs being ubiquitously expressed in humans [1,

2]. TLR4 acts as a receptor for lipopolysaccharide (LPS), a

cell-wall component of Gram-negative bacteria, promptly
inducing the production of several pro-inflammatory, anti-

viral, and anti-bacterial cytokines [1, 2].

The TLR4 is expressed in several liver cells, and the
liver, due to its anatomic location, is constantly confronted

with gut-derived LPS [3]. Despite the constant confronta-
tion of TLR4-expressing liver cells with gut-derived LPS,

the normal liver does not show signs of inflammation,

which on one hand can be explained by the relatively low
expression of TLR4 and its adaptor molecules in the liver

[3]. On the other hand, under normal circumstances, the

liver negatively regulates TLR4 signaling at different lev-
els, contributing to a process known as ‘‘liver tolerance’’

[3]. A breakdown of liver tolerance, by increased exposure

of TLR4 to LPS and/or increased expression or sensitivity
of TLR4, may induce an inappropriate immune response

which can contribute to chronic inflammatory liver dis-

eases [3]. Recent studies provide evidence for a role of
LPS/TLR4 signaling in the pathogenesis of alcoholic liver

disease, nonalcoholic fatty liver disease, chronic hepatitis

C, chronic hepatitis B, primary sclerosing cholangitis,
primary biliary cirrhosis, hepatic fibrosis, and hepatocar-

cinoma [3].

Herein we first review TLR4 structure, ligands, and
signaling pathways. Later, we review liver expression of

TLR4 and discuss the role of LPS/TLR4 signaling in the

pathogenesis of chronic inflammatory liver diseases.

TLR family

The TLR, originally identified as homologs of Drosophila
Toll, belong to the superfamily of interleukin-1 receptors
[4]. The human TLR family currently consists of ten

members, which are structurally characterized by the

presence of a distinct leucine-rich repeat extracellular
domain that confers specificity to the receptor, and a con-

served toll/interleukin 1 (IL1) receptor (TIR) intracellular

domain [5].
The existence of several TLRs enables the innate

immunity system to recognize different groups of patho-

gens while initiating appropriate and distinct immunolog-
ical responses, according to the PAMP recognized [3]

(Fig. 1). TLR1, TLR2, TLR4, TLR5, and TLR6 are

expressed on the cell surface, and TLR3, TLR7, TLR8, and
TLR9 are expressed on the endosome–lysosome mem-

brane. TLR1 and TLR6 form heterodimers with TLR2 in

order to sense tri-acyl (mycobacterium) and di-acyl lipo-
peptides (mycoplasma), respectively. TLR4 and TLR5 are
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the receptors for the Gram-negative bacterial cell wall

components, lipopolysaccharide (LPS), and bacterial fla-
gellin, respectively. Intracellular TLRs, TLR3, TLR7/8,

and TLR9 detect viral-derived and synthetic double-stran-

ded RNA, viral-related single-stranded RNA, and bacterial
unmethylated CpG-DNA, respectively. The ligands for

TLR10, TLR12, and TLR13 remain unidentified. TLR8

does not signal in mice. TLR10 is expressed in humans, but
not in mice. TLR11, TLR12, and TLR13 are expressed in

mice, but not in humans.

TLR4 ligands

The TLR4 is expressed on the cell surface and is the receptor

for the Gram-negative bacteria cell-wall component, LPS

[4]. LPS is composed of hydrophilic polysaccharides of the

core and O-antigen and a hydrophobic lipid A component,
which corresponds to the conserved molecular pattern of

LPS and is the main inducer of biological responses to LPS

[4]. Stimulation of TLR4 by LPS is a complex process
(Fig. 1), which includes the participation of several mole-

cules [LPS binding protein (LBP), CD14 and MD-2] [6, 7].

LBP (a soluble protein) extracts LPS from the bacterial
membrane and shuttles it to CD14 (a glycosylpho-

sphatidylinositol-anchored protein, which also exists in a
soluble form). CD14 then transfers the LPS to MD-2 (a

soluble protein that non-covalently associates with the

extracellular domain of TLR4). Binding of LPS to MD-2
induces a conformational change inMD-2which then allows

the complexMD-2-TLR4 to bind to a second TLR4 receptor,

thus achieving TLR4 homo-dimerization and signaling.
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Fig. 1 Overview of signaling of LPS/TLR4 and other TLRs. LPS
recognition is facilitated by LBP and CD14 and is mediated by TLR4/
MD-2 receptor complex. TLR4 signaling cascade can be separated
into MyD88-dependent and MyD88 independent pathways which

mediate the activation of proinflammatory cytokines and IFN-b.
These two pathways also mediate the intracellular signaling of other
TLRs, enabling interaction between TLR4 and other TLRs at different
levels. See text for abbreviations
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Besides LPS, TLR4 also senses endogenous ligands

initiating danger signals, such as high-mobility group box-
1, hyaluronan, heat shock protein 60, and free fatty acids

(C12:0, C14:0, C16:0, and C18:0) [8–10]. Recent reports

demonstrated that necrotic cells stimulate TLR4 associated
with MyD88 under sterile conditions, thereby pre-emp-

tively inducing an inflammatory response in the absence of

microbial challenge [11, 12]. Due to the association of
many endogenous ligands with tissue injury, they are

termed damage-associated molecular patterns (DAMPs).
Interestingly, recent studies show that many of the pro-

posed endogenous TLR4 ligands may also have the

capacity to bind and transport LPS and/or enhance the
sensitivity of cells to LPS, suggesting that many of these

molecules may be more accurately described as PAMP-

binding molecules or PAMP-sensitizing molecules, rather
than genuine ligands of TLR4 [13].

TLR4 signaling

Binding of ligands to the extracellular domains of TLRs
causes a rearrangement of the receptor complex and trig-

gers the recruitment of specific adaptor proteins to

the intracellular domain, thus initiating a signaling cascade
[6, 7].

TLR4 signals through adaptor molecules such as

MyD88, toll/IL-1 receptor domain-containing adaptor pro-
tein (TIRAP), toll/IL-1 receptor domain-containing adaptor

inducing interferon-b (TRIF) and TRIF-related adaptor

molecule (TRAM) to activate transcription factors such as
nuclear factor (NF)-jB, activator protein 1 (AP-1), and

interferon regulatory factors (IRFs). These transcription

factors then initiate the transcription of a specific set of
genes involved in proinflammatory, anti-viral, and anti-

bacterial responses and genes that control cell survival and

apoptosis. TLR4 signaling has been divided into MyD88-
dependent (mediated by MyD88) and MyD88-independent

(mediated by TRIF) pathways (Fig. 1) [5]. These two

pathways also mediate the intracellular signaling of other
TLRs, enabling the interaction between TLR4 and other

TLRs at different levels from adaptor molecules to tran-

scription factors (Fig. 1). MyD88 is an essential part of the
signaling cascade of all TLRs except for TLR3. In contrast,

TRIF only interacts with TLR3 and TLR4.

In the MyD88-dependent pathway, TLR4, through
TIRAP, recruits MyD88 to activate IL-1R-associated

kinase (IRAK)-4 and IRAK-1, which then associate with

tumor necrosis receptor-associated factor (TRAF)-6 and
transforming growth factor-b-activated kinase 1 (TAK-1).

These activate the complex inhibitor of NF-jB kinase

(IKK), formed by NEMO, IKKa e IKKb, which phos-
phorylates and degrades IjBa (inhibitor of NF-jB),

allowing nuclear translocation of NF-jB (normally

sequestered in the cytoplasm by ligation to IjBa). NF-jB
leads to expression of effectors genes (TNF-a, IL-6, and
IL-12). The MyD88-dependent pathway can also activate

p38 and c-Jun N-terminal kinase (JNK), leading to AP-1
activation followed by transcription of genes involved in

regulation of cell proliferation, morphogenesis, apoptosis,

and differentiation.
In the MyD88-independent pathway, TLR4, through

TRAM, recruits TRIF. This recruits TRAF3 which asso-
ciates with TRAF family member associated NF-jB acti-

vator (TANK), TBK1 (TANK binding kinase 1) and IKKi

with subsequent phosphorylation and nuclear translocation
of IRF-3. IRF-3 leads to IFN-b transcription. In MyD88-

independent pathway, TRIF also associates with the

receptor-interacting serine–threonine kinase (RIP)-1 to
activate NF-jB. NF-kB induction in the MyD88-dependent

pathway occurs with fast kinetics, whereas NF-kB activa-

tion in the MyD88-independent pathway occurs with
slower kinetics.

The significance of the two different downstream path-

ways and the role of distinct adapter molecules of TLR4
activation in liver diseases are largely unknown. None-

theless, many studies suggest that the activation of the

different downstream pathways may be cell- and effect-
specific. This may have important implications for devel-

oping TLR4 modulators as potential therapeutic agents.

Negative regulation of TLR4 signaling

Because TLR4 stimulation can induce potent inflammatory
responses, inhibitory pathways are necessary to protect the

host from inflammation-induced damage [14]. The balance

is maintained by multiple negative regulators, and the
regulation is very precise. TLR4 signaling can be regulated

at multiple levels (from receptor level to transcription

factors level; Table 1), through many kinds of mechanisms
(degradation, deubiquitination, and competition are the

most frequently observed). Table 1 describes the targets of

each inhibitor. sTLR4 (soluble decoy TLR4), RP105
(radioprotective 105; a homolog of TLR4), SIGIRR (sin-

gle immunoglobulin IL-1R-related molecule), ST2L
(transmembrane form of ST2; homolog of the IL-1 recep-
tor), MyD88s (splice variant of MyD88), SARM (sterile

alpha- and armadillo-motif-containing protein), TRAF1,
TRAF4, and IRAK-2c (splice variant of IRAK-2) inhibit
TLR4 signaling by means of competing with various

adaptors and transcription factors for binding sites.

TRIAD3A (triad domain-containing protein 3 variant A),
SOCS1 (suppressor of cytokine signaling-1), and Pin1
(peptidyl-prolyl isomerase1) inhibit several molecules of

TLR4 signaling by means of polyubiquitination and sub-
sequent proteasome-dependent degradation. A20, DUBA
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(de-ubiquitinating enzyme A), and CYLD (cylindromatosis

protein) inhibit several mediators of TLR4 signaling by
deubiquitination.

There are many other negative regulators that use dif-

ferent mechanisms to control TLRs signaling pathways.
Bcl-3 (B cell leukemia-3) and TRAIL (tumor necrosis

factor-related apoptosis-inducing ligand) inhibit activation

of NF-jB by stabilization of NF-jBp50 and IjBa,
respectively. IRAK-M (a member of IRAK family without

kinase activity) inhibits MyD88-mediated signaling by
preventing the dissociation of IRAKs from MyD88. ATF3
(activating transcription factor-3) binds to the promoters

and recruits histone deacetylase, resulting in altered chro-
matin structure to limit access to transcription factors (such

as NF-jB). Both the Src homology 2 domain-containing

protein tyrosine phosphatase (SHP)-1 and SHP-2 are
intracellular tyrosine phosphatases, which inhibit IRAK-1

and TBK1, respectively. Tollip constitutively suppresses

IRAK by forming a complex that is dissociated after TLR4
activation. MicroRNAs are 21–22-nucleotide, non-coding

small RNAs that have been shown to be centrally involved

in immune system development and function. Very
recently, it was shown that miR-146 expression was

increased by LPS stimulation [15], and miR-146 may

inhibit IRAK-1 and TRAF6. PI3K (phosphatidylinositol
3-kinase) is a member of the lipid kinase family. Recog-

nition of PAMP by TLRs can activate PI3K, which leads to

activation Akt (serine/threonine protein kinase) and sub-
sequent inactivation of glycogen synthase kinase-3b (GSK-

3b). Inhibition of GSK-3b decreases NF-kB-dependent

production of proinflammatory cytokines.
The expression of most negative regulators (including

PI3K, A20, IRAK-M, and miR-146) can be induced by the

activation of TLR4 and uses a mode of negative feedback

to terminate TLR4 activation. However, there are also
some constitutively expressed factors (including Tollip)

that could possibly exert their functions only when TLRs

are overactivated.

TLR4 expression in the liver

The healthy liver contains low mRNA levels of TLR4 and
signaling molecules such as MD-2 and MyD88 in com-

parison to other organs [16, 17], suggesting that the low

expression of TLR4 and signaling molecules may con-
tribute to the high tolerance of the liver to LPS from the

intestinal microbiota to which the liver is constantly

exposed.
Because of the unique anatomical link between the liver

and intestines, Kupffer cells (KC) are the first cell to

encounter gut-derived toxins including LPS. Accordingly,
Kupffer cells express TLR4 and are responsive to LPS

[18]. Upon triggering, TLR4 signaling drives Kupffer cells

to produce TNF-a, IL-1b, IL-6, IL-12, IL-18, and anti-
inflammatory cytokine IL-10 [19].

Hepatocytes may uptake and eliminate LPS from portal

and systemic circulation [20]. Hepatocytes express mRNA
for TLR4 and respond to TLR4 ligands although there are

contradictory data about the amount of TLR4 mRNA

expression and the level of responsiveness to LPS [21, 22].
Activated human hepatic stellate cells (HSCs) express

TLR4 and CD14 and respond to LPS [23]. TLR4 directly

stimulates HSC to induce proinflammatory features, such
as upregulation of chemokines (CCL2, CCL3, and CCL4)

and adhesion molecules [vascular cell adhesion molecule 1

(VCAM-1), intercellular cell adhesion molecule 1 (ICAM-
1), and E-selectin] and profibrogenic features including the

enhancement of TGF-b signaling by the downregulation of

TGF-b pseudoreceptor, bone morphogenetic protein and
activin membrane-bound inhibitor (BAMBI) [21, 23].

Other liver cells, such as biliary epithelial cells, sinu-

soidal endothelial cells, and hepatic dendritic cells, express
TLR4 and are responsive to LPS, but this expression and

response have not been studied in detail [20].

The role of LPS/TLR4 signaling in CLD

There is increasing evidence for a role of LPS/TLR4 sig-

naling in the pathogenesis of alcoholic liver disease, non-

alcoholic fatty liver disease, chronic hepatitis C, chronic
hepatitis B, primary sclerosing cholangitis, primary biliary

cirrhosis, hepatic fibrosis, and hepatocarcinoma (Table 2).

The evidence for a role of LPS and TLR4 in these diseases
comes from two kinds of studies:

Table 1 Negative regulation of TLR4 signaling

Level Inhibitor

TLR4 sTLR4, RP105, SIGIRR, and TRIAD3A

Adaptors molecules

Myd88 MyD88s

TRIF TRIAD3A, SARM, TRAF1, and TRAF4

TIRAP ST2L, TRIAD3A, and SOCS-1

Myd88-dependent pathway

IRAK IRAK-M, IRAK-2c, Tollip, SHP-1, and miR-146

TRAF6 TRAF4, A20, CYLD, and miR-146

NF-KB TRAIL, Bcl3, ATF3, and PI3K

Myd88-independent pathway

RIP1 A20 and TRIAD3A

TRAF3 DUBA

TBK1 SHP-2

IRF3 PIN-1

Abbreviations – see text
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1. Studies showing that LPS/TLR4 signaling is altered as

a result of altered portal LPS levels and/or hepatic

TLR4 expression in these diseases.
2. Studies showing that modulation of LPS/TLR4 sig-

naling (by suppressing/attenuating LPS production or

TLR4 gene expression) influences the pathogenesis of
these diseases.

Alcoholic liver disease

Alcoholic liver disease (ALD) is characterized by a spec-

trum of liver pathology ranging from fatty liver, steato-
hepatitis, to cirrhosis.

The LPS and TLR4 have been proposed as key players

in the pathogenesis of ALD. Chronic ingestion of alcohol
leads to a strong elevation of portal and systemic levels of

LPS in animal models and humans [24–26]. The elevation

of LPS appears to be predominantly caused by two
mechanisms. First, alcohol exposure can promote the

growth of Gram-negative bacteria in the intestine, which

leads to enhanced production of LPS [27]. In addition,
alcohol metabolism by Gram-negative bacteria and intes-

tinal epithelial cells can result in accumulation of acetal-

dehyde, which in turn can increase intestinal permeability
by opening intestinal tight junctions. Increased intestinal

permeability can lead to increased transfer of LPS from the
intestine to portal and systemic circulation [28]. Further-

more, chronic alcohol consumption upregulates hepatic

TLR4 and sensitizes it to LPS to enhance TNF-a produc-
tion [29]. Exposure to LPS during chronic alcohol con-

sumption results in increased production of inflammatory

mediators as well as in induction of reactive oxygen spe-
cies (ROS) [30]. Finally, inhibition of LPS/TLR4 signaling

by altering intestinal microbiota and LPS production

(antibiotics or probiotics) or suppressing TLR4 gene
expression protects against ALD. Indeed, treatment with

lactobacillus or antibiotics suppresses alcohol-induced liver

injury by reducing LPS circulating levels [31, 32]. TLR4-
mutant mice have a strong reduction of alcohol-induced

liver injury despite elevated LPS circulating levels [33].

Recent studies have clarified the cellular and molecular
pathways by which LPS/TLR4 signaling promotes ALD.

Kupffer cells have been established as a crucial cellular

target of LPS in alcohol-induced liver injury as demon-
strated by a strong reduction of alcoholic liver injury fol-

lowing depletion of Kupffer cells with gadolinium chloride

[34]. Moreover, Hritz et al. [35] demonstrated that TLR4-
mediated signal in ALD is mediated through a MyD88-

independent pathway, most likely through the adapter

molecule TRIF. Hepatic alcohol-induced production of
inflammatory mediators (TNF-a and IL-6) and TLR4 co-

receptors (CD14 and MD2) was prevented by TLR4

deficiency [35]. In addition, ROS production by cyto-

chrome P450 and the nicotinamide adenine dinucleotide
phosphate complexes was also prevented by TLR4 defi-

ciency [35]. These data suggest that TLR4-mediated

alcoholic liver injury is carried out by increased inflam-
matory mediators (TNF-a and IL-6) and ROS production.

Taken together, these data suggest that activation of TLR4

in Kupffer cells by LPS is a key pathogenetic mediator of
ALD through production of inflammatory cytokines and

ROS.

Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) includes a

continuum of disease ranging from steatosis to steatohep-

atitis and cirrhosis and usually develops in the setting of
obesity and insulin resistance [36]. Mechanisms involved

in the development of NAFLD are not yet fully clarified,

and therapeutic options are still limited.
There is accumulating evidence that LPS/TLR4 signaling

plays an essential role in the pathogenesis of NAFLD. In

different human and animal studies, NAFLD was associated
with increased portal LPS levels, through mechanisms

involving bacterial overgrowth, and increased intestinal

permeability and bacterial translocation [37–41].Wigg et al.
[37] found that bacterial overgrowth was prevalent among

22 patients with NAFLD. Bergheim et al. [38] showed that

even the early stages of fructose-induced NAFLD are
associated with an increased intestinal translocation of

bacterial LPS. NAFLD has also been associated with

increased sensitivity to LPS, mainly by increased hepatic
TLR4 expression. Leptin or leptin receptor-deficient ani-

mals that are genetically obese are highly susceptible to LPS

and develop NAFLD after low dose of LPS [42]. Finally,
suppression of LPS/TLR4 signaling by alteration of intes-

tinal microbiota (antibiotics or probiotics) or genetic

manipulation protects against NAFLD. Selective intestinal
decontamination results in decreased LPS levels in mice in a

high-fat diet and reduced hepatic triglycerides in mice with

diet-induced obesity as well as in leptin-deficient mice [40,
41]. Probiotics diminish non-alcoholic steatohepatitis in

leptin-deficient mice [43, 44]. The crucial role for TLR4

signaling in NAFLD was further confirmed in TLR4-mutant
mice that display decreased liver injury and lipid accumu-

lation following a methionine- and choline-deficient diet

(MCDD) and fructose-induced NAFLD [39, 45].
Besides the role of LPS/TLR4 signaling in the patho-

genesis of NAFLD, there is also accumulating evidence

showing a bidirectional connection between TLR4 signal-
ing and insulin resistance (to which NALFD is intimately

associated). There are several studies showing that LPS/

TLR4 activation induces inflammatory signaling pathways
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which mediate insulin resistance and studies showing that

insulin resistance may lead to activation of LPS/TLR4
signaling. Cani et al. [46] demonstrated that subcutaneous

infusion of a low dose of LPS resulted in liver insulin

resistance in a CD-14-dependent manner. On the other
hand, it was shown that free fatty acids, which are often

elevated in insulin resistance states, due to increased

release from adipose tissue, can induce insulin resistance
through activation of TLR4 [10]. Notably, a recent human

study demonstrated that TLR4 expression and its ligands
(high-mobility group box-1, hyaluronan, heat shock protein

60, and LPS), signaling, and functional activation are

increased in recently diagnosed type-2 diabetes and con-
tribute to a proinflammatory state [47].

Recent studies have clarified the mechanisms by which

increased LPS/TLR4 signaling promotes NAFLD.
Destruction of Kupffer cells with clodronate liposomes

blunted histological evidence of non-alcoholic steatohep-

atitis in a model of MCDD and prevented increasing of
TLR4 expression, underscoring a direct link between TLR4

and Kupffer cells within pathogenesis of NAFLD [39].

Hepatic lipid peroxidation, Myd88, and TNF-a levels were
significantly decreased in fructose-fed TLR4 mutant mice

in comparison to fructose-fed wild-type mice, suggesting

that MyD88 may be critical in mediating the effects of
TLR4 activation in the promotion of NAFLD, through

enhanced ROS and induction of TNF-a [45]. Taken toge-

ther, these data suggest a major role of TLR4 signaling in
the pathogenesis of NAFLD through activation of Kupffer

cells and enhanced ROS and TNF-a production.

HCV infection

About 30% of patients chronically infected with hepatitis C
virus (HCV) show signs of active hepatic inflammation and

are at risk of developing fibrosis, cirrhosis, and HCC [48].

There is an accumulating evidence that LPS and TLR4
play a key role in the pathogenesis of HCV infection.

Patients with chronic HCV infection display increased

serum levels of LPS even in the absence of significant
hepatic fibrosis [49].

Interaction of HCV and TLR4 expression and signaling

is robust although complex and may be cell-specific.
Machida et al. [50] found that HCV, through the action of

its NS5A protein, induces expression of TLR4 on the

surface of B cells, leading to enhanced IFN-b and IL-6
production and secretion, particularly in response to LPS.

Machida et al. [22] also provided evidence that hepato-

cyte-specific transgenic expression of the HCV nonstruc-
tural protein NS5A upregulates TLR4 expression and

signaling. They demonstrated enhanced TAK-1–TRAF-6

and TAK-1–IRAK-1 interactions and phosphorylation of
JNK and Ij-Ba (downstream mediators of TLR4

signaling) in NS5A mice given LPS. Miyazaki et al. [51]

found that myeloid dendritic cells from patients with
chronic HCV display an increased expression of TLR4,

but a decrease in the cytokine production secondary to

activation of TLR4 by LPS, thus suggesting the impair-
ment of TLR4 signaling by HCV in myeloid dendritic

cells. Abe et al. [52] demonstrated that murine macro-

phages overexpressing NS3, NS3/4A, NS4B, or NS5A
showed a strong suppression of TLR4 signaling. NS5A

interacts with MyD88 to prevent IRAK-1 recruitment and
cytokine production, such as IL-1, IL-6, and IFN-b
response to the ligands for TLR4 [53].

TLR4 signaling itself may regulate HCV replication.
Broering et al. [53] found that supernatants from TLR4-

stimulated non-parenchymal liver cells (Kupffer cells and

sinusoidal epithelial cells) led to potent suppression of HCV
replication in murine HCV replicon bearing MH1 cells

through IFN-b and induction of IFN-stimulated genes. These

novel findings are of particular relevance for the control of
HCV replication by the innate immune system of the liver.

Finally, TLR4 has also been associated with many

clinical consequences of HCV infection. Machida et al.
[22] demonstrated that, in a murine model, synergism

between alcohol and HCV in liver damage and tumor

formation is mediated by sustained activation of LPS/
TLR4 signaling, which results from HCV NS5A-induced

hepatic TLR4 expression and alcohol-induced endotoxe-

mia. Recently, in a gene centric functional genome scan in
patients with chronic hepatitis C virus, a major CC allele of

TLR4 encoding a threonine at amino acid 399 (p.T399I)

emerged as the second single nucleotide polymorphism
(SNP) with highest ability to predict the risk of developing

cirrhosis, indicating a protective role in fibrosis progression

of its c.1196C_T (rs4986791) variant at this location
(p.T399I), along with another highly cosegregated

c.896A_G (rs4986790) SNP located at coding position 299

(p.D299G) [54]. Interestingly, later on, it was shown that
these two SNP are associated with reduced TLR4-mediated

inflammatory and fibrogenic signaling and lower apoptotic

threshold of activated HSCs [55].
Taken together, these data support the hypothesis that

HCV selectively influences TLR4 signaling, impairing it in

cells that limit HCV replication (dendritic cells and mac-
rophages), while at the same time enhancing it in cells

(hepatocytes and B cells) that generate a chronic inflam-

matory state. Thus, it is likely that the interaction between
HCV and TLR4 promotes virus expansion, inflammation,

and potentially the progression to fibrosis and cirrhosis.

HBV infection

Hepatitis B virus (HBV) causes a chronic infection in about
10% of adults that may result in cirrhosis and HCC [45].
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Recent studies have shown that LPS/TLR4 signaling

may have an important role in the pathogenesis of HBV
infection. One study reported a 72-fold induction of LPS

levels in chronic HBV infection [56]. Moreover, a signif-

icant correlation was revealed between systemic LPS levels
with virus replication and the degree of basic clinical and

laboratory signs in patients with chronic viral hepatitis B

[56].
Interaction of HBV and TLR4 expression and signaling

is complex. One study demonstrated that TLR4 was
downregulated in HBV-infected peripheral blood mono-

cytes, and these cells also had a decreased cytokine

response to TLR4 ligands [57]. On the other hand, TLR4
was shown to block HBV replication through its ability to

upregulate IFNs. The injection of LPS into HBV transgenic

mice reduced HBV replication in an IFN-a/b-dependent
manner [58]. These antiviral effects of TLR4 activation are

directed at nonparenchymal cells, but not hepatocytes that

express low level of TLR4. Further experiments demon-
strated that nonparenchymal cell-derived mediators inhibit

HBV replication in HBV-Met cells. The supernatants from

TLR4-stimulated Kupffer cells inhibit HBV replication
independently of MyD88 in vitro, suggesting that TRIF-

dependent IFN-b plays a role [59].

Taken together, these data suggest that TLR4 signaling
is impaired in HBV infection and that TLR4 agonists can

block HBV replication through activation of TRIF-depen-

dent pathway in Kupffer cells.

Hepatic autoimmune disorders

The pathogenesis of hepatic autoimmune disorders remains

still largely unknown. It is believed that autoimmunity may

develop from genetic predispositions, but the onset of
autoimmune tissue injury or disease flare is often triggered

by microbial infection. Aberrant innate immune response

to infections, providing the necessary inflammatory milieu
to activate pre-existing autoreactive cellular repertoire, has

the potential to initiate the development of autoimmunity.

There is increasing evidence for LPS/TLR4 signaling in the
pathogenesis of primary biliary cirrhosis (PBC) and pri-

mary sclerosing cholangitis (PSC).

Primary biliary cirrhosis (PBC) is a chronic inflamma-
tory cholestatic disease of unknown origin that affects

small and medium intrahepatic bile ducts. Recent studies

have demonstrated that significant amounts of LPS accu-
mulate in biliary epithelia of PBC patients [60]. Ballot

et al. [61] reported that 64% of PBC sera were positive for

IgM antibodies against lipid A, an immunogenic and toxic
component of LPS. TLR4 expression is significantly ele-

vated in biliary epithelial cells and periportal hepatocytes

of PBC patients [62]. Monocytes from PBC patients appear
more sensitive to the ligand for TLR4 (LPS), producing

higher levels of proinflammatory cytokines, particularly

IL-1b, IL-6, IL-8, and TNF-a [63].
The PSC is characterized by the destruction of hepatic

bile duct and a high frequency of antibiliary epithelial cell

antibodies (anti-BEC-Ab). One study revealed that, in
primary sclerosing cholangitis, LPS gets accumulated

abnormally in biliary epithelial cells [60]. Anti-BEC-Ab-

stimulated BECs or PSC patient-derived BECs express
higher levels of TLR4 and respond to ligands for TLR4 to

produce higher levels of inflammatory cytokines (IL-1b,
IL-8, IFN-c, TNF-a, granulocyte–macrophage colony-

stimulating factor, and TGF-b) [64].
These data suggest that in CBP and PSC increased

accumulation of LPS and TLR4 expression in biliary epi-

thelial cells enhances secretion of selective pro-inflamma-

tory cytokines integral to the inflammatory response that
may be critical in the breakdown of self-tolerance and

initiation and perpetuation of bile duct injury.

Hepatic fibrosis

The development of hepatic fibrosis and cirrhosis occurs in
virtually any type of chronic hepatic injury [65]. In terms

of chronic liver injury, several studies have highlighted the

role of transforming growth factor-b (TGF-b) in activating
hepatic stellate cells (HSC), the main producers of extra-

cellular matrix in the fibrotic liver and the promotion of a

fibrogenic phenotype [65, 66]. On the other hand, chronic
liver inflammation is a key prerequisite for triggering liver

fibrosis [65, 66]. However, until now, the cell-type specific

molecular mechanisms linking pathways driving inflam-
mation on one hand and liver fibrogenesis on the other

hand have not been defined yet. Recently, there is accu-

mulating evidence that TLR4-induced activation and sen-
sibilization of HSC may constitute the molecular link

between hepatic inflammation and fibrogenesis.

The LPS is elevated in experimental models of hepatic
fibrosis and in patients with cirrhosis [21, 67]. It is believed

that changes in intestinal motility, subsequent alterations of

the intestinal microbiota, decreased mucosal integrity, and
suppressed immunity in hepatic fibrosis contribute to a

failure of the intestinal mucosal barrier, and causes

increases in bacterial translocation and LPS levels in later
stages of hepatic fibrosis and cirrhosis [68].

Data regarding expression of TLR4 in cirrhotic patients

are conflicting, with studies showing increased expression
on BEC, maintained or increased expression on hepato-

cytes, and maintained or decreased expression on PBMC

[62–64, 69–71].
Several studies have demonstrated that modulation of

the intestinal microbiota in advanced cirrhosis by probio-

tics or antibiotics is beneficial for the prevention of bac-
terial translocation and spontaneous bacterial peritonitis
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[72, 73]. It has been shown that antibiotics prevent hepatic

injury and fibrosis induced by CCl4 treatment or a choline-
deficient diet, and that LPS enhances hepatic fibrosis

induced by a MCCD [74, 75]. Treatment of mice with

nonabsorbable broad-spectrum antibiotics also resulted in a
clear reduction in the fibrotic response of mice, upon bile

duct ligation [21]. Recently, Velayudham et al. showed that

VSL#3 (a probiotic) protects against MCDD-induced liver
fibrosis, through modulation of collagen expression and

inhibition of TGF-b expression and signaling [76].
Recent studies, using TLR4 mutant as well as gut-ster-

ilized, CD14- and LBP-deficient mice, have demonstrated

the crucial role for the LPS–TLR4 pathway in hepatic
fibrogenesis [21, 77]. TLR4-mutant mice display a pro-

found reduction in hepatic fibrogenesis in three different

experimental models of biliary and toxic fibrosis [77].
In a recent study, Seki et al. [21] analyzed the cell-

specific molecular mechanism underlying the role of LPS/

TLR4 on liver fibrosis. They showed that chimeric mice
that contain TLR4-mutant Kupffer cells and TLR4-intact

HSCs developed significant fibrosis and the mice that

contain TLR4-intact Kupffer cells and TLR4-mutant HSCs
developed minimal fibrosis after bile duct ligation, indi-

cating that TLR4 on HSCs, but not on Kupffer cells, is

crucial for hepatic fibrosis. Notably, Kupffer cells are
essential for fibrosis by producing TGF-b independent of

TLR4. TLR4-activated HSCs produce chemokines (CCL2,

CCL3, and CCL4) and express adhesion molecules
(ICAM-1 and VCAM-1) that recruit Kupffer cells to the

site of injury. Simultaneously, TLR4 signaling downregu-

lates the TGF-b decoy receptor (BAMBI) to boost TGF-b
signaling and allow for unrestricted activation of HSCs by

Kupffer cells, leading to hepatic fibrosis. Finally, by using

adenoviral vectors expressing an inhibitor of NF-jB kinase
(IjB)-superrepressor and knockout mice for MyD88 and

the adapter molecule TRIF, the authors demonstrated that

TLR4-dependent downregulation of BAMBI is mediated
via a pathway involving MyD88 and NF-jB, but not TRIF.
In summary, they demonstrated that LPS/TLR4 signaling

acts in a profibrogenic manner via two independent
mechanisms: it induces the secretion of chemokines from

HSCs and chemotaxis of Kupffer cells which secrete the

profibrogenic cytokine TGF-b; additionally, TLR4-depen-
dent signals augment TGF-b signaling on HSCs via

downregulation of the TGF-b pseudoreceptor BAMBI.

Recently, Huang et al. [54] conducted a gene centric
functional genome scan in patients with chronic hepatitis C

virus, which yielded a Cirrhosis Risk Score signature

consisting of seven single nucleotide polymorphisms
(SNPs) that may predict the risk of developing cirrhosis.

Among these, a major CC allele of TLR4 encoding a

threonine at amino acid 399 (p.T399I) was the second most
predictive SNP among the seven, indicating a protective

role in fibrosis progression of its c.1196C[T (rs4986791)

variant at this location (p.T399I), along with another highly
cosegregated c.896A[G (rs4986790) SNP located at cod-

ing position 299 (p.D299G). In a subsequent study, the

same group examined the functional linkage of these SNPs
to hepatic stellate cell (HSC) responses [55]. They showed

both HSCs from TLR4-deficient mice, and a human HSC

line (LX-2) reconstituted with either TLR4 D299G and/or
T399I complementary DNAs were hyporesponsive to LPS

stimulation compared to those expressing wild-type TLR4
as assessed by the expression and secretion of LPS-induced

inflammatory and chemotactic cytokines (i.e., monocyte

chemoattractant protein-1, IL-6), downregulation of
BAMBI expression, and activation of NF-jB-responsive
luciferase reporter. In addition, spontaneous apoptosis, as

well as apoptosis induced by pathway inhibitors of NF-jB,
extracellular signal-regulated kinase (ERK), and phospha-

tidylinositol 3-kinase were greatly increased in HSCs from

either TLR4-deficient or Myd88-deficient mice, as well as
in murine HSCs expressing D299G and/or T399I SNPs

[55]. Recently, Li et al. expanded the list of TLR4 SNPs

that are independently associated with the risk of liver
fibrosis progression and the development of cirrhosis [78].

Taken together, these data suggest that LPS/TLR4 sig-

naling in HSC is essential for liver fibrosis development, by
stimulating production chemokines that recruit Kupffer

cells and at the same time allowing for unrestricted acti-

vation of HSCs by Kupffer cells-derived TGF-b.

Hepatocarcinoma

During recent years, evidence has been accumulating to

show that inflammation has an important role in initiation,

promotion, and progression of tumors [79, 80]. The gen-
eration of pro-inflammatory cytokines in the tumor

microenvironment provokes activation of NF-jB in cancer

cells, leading to protection against pro-apoptotic host
immune defense mechanisms [79, 80]. It has been shown

that cytokines and growth factors produced by tumor-

infiltrating macrophages, lymphocytes, and other cell types
in the inflammatory tumor microenvironment influence cell

differentiation and exert antiapoptotic and proangiogenic

effects which stimulate the growth of cancer cells, tumor
invasiveness, and metastasis [79, 80].

Hepatocarcinoma (HCC), a prominent example for

inflammation-associated cancer, is a major complication in
the end-stage of cirrhosis [81]. In most cases, HCC in

humans is the outcome of continuous injury and chronic

inflammation; thus, it provides a good and realistic
inflammatory-related cancer model to gain insight about

the role of TLR4 in the carcinogenesis [81]. Two studies

have revealed TLRs, in particular TLR4, as major factors
linking hepatic chronic inflammation and hepatocarcinoma.
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Diethylnitrosamine (DEN) is a chemical carcinogen

used to create a mouse model of HCC [82]. The patho-
genesis of HCC in this mouse model differs from that in

humans and thus may not be directly comparable to human

HCC. Nevertheless, the mouse model of DEN-induced
HCC has a histology and genetic signature similar to that of

human HCCs with poor prognosis and recapitulates a

dependence on inflammation and gender disparity seen in
human HCC [83]. Naugler et al. [12] showed in a model of

DEN-induced HCC in mice that the tumor appears in 100%
of males but only in 13% females. This is correlated with

increased liver injury and a higher production of IL-6 in

males after toxicant administration. They also showed that
IL-6 production after DEN-induced liver injury occurs

through TLR4 stimulation and demonstrated the implica-

tion of the innate immune response in the hepatocarcino-
genic process. They observed that the accumulation of IL-6

mRNA in Kupffer cells incubated with LPS or necrotic

hepatocytes was markedly reduced in MyD88 null mice.
They also found that liver damage and hepatic IL-6 levels

were significantly diminished after DEN administration in

MyD88-deficient mice. Importantly, these mice also
showed a significant reduction in the number and size of

DEN-induced liver tumors.

Clinical and epidemiological evidence implicates long-
term alcohol consumption in accelerating HCV-mediated

tumorigenesis [84]. A recent study provided evidence that

TLR4 mediates the synergism between alcohol and HCV in
hepatic oncogenesis. Machida et al. [22] studied the

molecular mechanism of synergism between alcohol and

HCV, using mice with hepatocyte-specific transgenic
expression of the HCV nonstructural protein NS5A, which

is known to have a cryptic trans-acting activity for cellular

gene promoters. They demonstrated that NS5A and alcohol
synergistically induce hepatocellular damage and trans-

formation via accentuated and/or sustained activation of

TLR4 signaling, which results from HCV NS5A-induced
hepatic TLR4 expression and alcohol-induced endotoxe-

mia. Additionally, Nanog, a stem cell marker, was identi-

fied as a novel downstream gene transcriptionally induced
by activated TLR4 signaling that is largely responsible for

TLR4-mediated liver tumor development.

Taken together, these data suggest that TLR4 signaling in
Kupffer cells and hepatocytemay constitute the link between

hepatic chronic inflammation and hepatocarcinoma.

Conclusion

TLR4, as the other members of toll-like receptors family, is

an essential player of innate immune system. It is activated

by LPS, a Gram-negative bacterial cell wall component, as
well as endogenous components derived from dying host

cell. Activation of TLR4 results in the production of sev-
eral pro-inflammatory, anti-viral, and anti-bacterial cyto-

kines, which mount a rapid protective response against

invading pathogens. Nevertheless, these cytokines may
also trigger harmful responses such as cell death, fibrosis,

and cancer.

Despite the constant confrontation of hepatic TLR4 with
gut-derived LPS, the normal liver does not show signs of

inflammation due to its low expression of TLR4 and ability

to inhibiting TLR4 signals. Enhanced signaling of TLR4
may lead to persistently elevated inflammatory cytokines,

resulting in chronic liver injury (Fig. 2). Indeed, in CLD,

such as ALD, NAFLD, PSC, CBP, and fibrosis, it has been
shown that LPS/TLR4 signaling is enhanced and is

essential for liver injury. Enhanced LPS/TLR4 signaling

may result from increased expression and/or sensitivity of
TLR4 and, mainly, from increased exposure to LPS.

Increased portal levels of LPS have been documented in

many CLD and result mainly from increased intestinal
permeability. In initial stages of CLD this increase of

intestinal permeability may be dependent on etiology of

CLD (i.e., alcohol, diet), but later on liver fibrosis and
subsequent portal hypertension can become the main

inducers of this alteration.

In many of CLD, inhibition of TLR4 has been shown to
decrease liver injury, reinforcing the importance of LPS/

TLR4 signaling in the pathogenesis of those diseases. Of

the many possibilities to suppress TLR4 signaling (modu-
lation of LPS production, TLR and co-receptors expression

and downstream signaling molecules), the first appear to be

the best as the others may result in systemic suppression of
TLR4 disabling it to respond to invading pathogens.

Modulation of the intestinal microbiota can be achieved by
antibiotics, probiotics, and symbiotics. Probiotics and

symbiotics, which already proved to have positive effects

Bacterial
Overgrowth

↑ Intestinal
Permeability

↑ Expression and/or
Sensitivity of hepatic TLR4

↑ Portal LPS levels

↑ LPS/TLR4 hepatic
signaling

Anti-viral responses Inflammation Steatosis Fibrosis Hepatocarcinoma

Portal Hypertension

Fig. 2 Overview of the role of LPS/TLR4 signaling in chronic liver
diseases. Increased expression and/or sensitivity of hepatic TLR4 and
increased portal LPS levels (resulting from bacterial overgrowth and
intestinal permeability) can lead to enhanced LPS/TLR4 signaling.
This can induce anti-viral responses, inflammation, steatosis, fibrosis,
and hepatocarcinoma. Hepatic fibrosis contributes to portal hyperten-
sion development which further increases bacterial overgrowth and
intestinal permeability, creating a positive feedback process
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in patients with CLD, should be preferred due to their high

tolerability and limited side effects.
TLR4 plays also a role in chronic viral hepatitis.

Chronic hepatitis B and C viruses lead to a downregulation

of antiviral TLR4 signaling pathways. On the other hand,
TLR4 was shown to block HBV and HCV replication

through its ability to upregulate IFNs. This suggests that

TLR4 agonists may boost anti-viral immunity and there-
fore represent a novel treatment approach for chronic viral

hepatitis.
Although we need more studies, mainly in human

patients, to translate TLR4 pathogenesis into clinical

practice in CLD, we can anticipate that with further
research on LPS/TLR4 signaling, this pathway will become

an important pharmacological target in CLD.
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Abstract
Background: Alcoholic chronic liver disease (ACLD) is a common form of
acquired immunodeficiency. Aim: To evaluate ex vivo toll-like receptor (TLR)
2 and TLR4 innate immune response in stable ACLD. Methods: Blood was
collected from 26 males with stable ACLD and from 17 controls. Serum was
used for lipopolysaccharide (LPS), sCD14, LPS-binding protein (LBP),
tumour necrosis factor-alpha (TNF-a) and interleukin 10 (IL-10) quantifica-
tion. Peripheral blood monocytes (PBM) protein expression of TLR2 and
TLR4 was determined by flow cytometry. Primary cultures of anti-CD11b
positive selected PBM were stimulated with the TLR2/TLR6 ligand zymosan
(Zym), with TLR2/TLR1 ligand lipopeptide (Lp) and with TLR4 ligand LPS.
PBM TLR1, TLR2, TLR4, TLR6, MD2, CD14, TNF-a and IL-10 gene
expression was evaluated by reverse transcription-polymerase chain reaction.
Results: Stable ACLD patients showed increased circulating LPS
(122.5! 4.1%), LBP (160.6! 12.2%) and sCD14 (123.5! 4.6%), with no
differences in TNF-a and IL-10. Zym and Lp, but not LPS, induced TNF-a
production by monocytes was blunted in ACLD (" 66! 20.4% Zym;
" 40.1! 13.5% Lp; Po 0.05). Basal TNF-a mRNA expression was decreased
in PBM from ACLD patients ("50.1! 21.0%; Po 0.05), with no significant
differences in the other studied genes. Results were similar in Child–Pugh A
and B/C patients. Conclusions: Patients with stable ACLD show an attenua-
tion of TLR2-mediated innate immune response in PBM, which may
represent an important mechanism for acquired immunodeficiency. This was
neither related with decreased TLR2 or its co-receptors expression nor with
impaired TLR4 activation, being already present in the early stages of disease.

Patients with chronic liver disease are particularly sus-
ceptible to infections, with increased morbidity and
mortality from sepsis, mainly in the presence of cirrhosis
(1–4). In fact, this disease is considered to be one of the
most common forms of acquired immunodeficiency
(1–4). Ascites, hypoalbuminaemia, intestinal bacterial
overgrowth, increased intestinal permeability, bacterial
translocation and increased endotoxaemia are important
factors for this susceptibility (2–6). However, several
immunological factors have also shown to be contribu-
tory. Namely, defects in polymorphonuclear leukocytes
recruitment and activation (7, 8), deficiencies in the
complement system (9) as well as defects in macrophage
activation and adherence have been described (10, 11).

Alcoholic chronic liver disease (ACLD) is one of the most
common forms of chronic liver disease worldwide, being
the leading cause of death from liver disease in the
western world (1, 12, 13). Excessive alcohol consumption
has been shown to impair both the cellular and the
humoral immune response, even in the absence of
chronic liver disease (1, 14, 15). Moreover, in patients
with ACLD, active alcohol consumption has a negative
impact in the prognosis, potentiating the risk of infection
associated with chronic liver disease (1, 12, 14, 16, 17).

Innate immunity is the first line of defense against
infection, its activation being critical for the acute
inflammatory response and subsequent adaptative
immunity. Recently, receptors for highly conserved
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molecular structures of microorganisms have been de-
scribed (18). The toll-like receptors (TLRs) are one of the
most representative class of pathogen-associated mole-
cular patterns (PAMPs) receptors that play a critical role
in innate immunity activation (19, 20). Of the several
identified TLRs described, the TLR2 and TLR4 subtypes
are critically involved in the innate immune response to
bacterial infections, being abundantly expressed in im-
mune cells such as polymorphonuclear leukocytes and
monocytes/macrophages (18, 21). TLR4, in association
with CD14 and MD2 co-receptors, is essential for innate
immune activation in response to the lipopolysaccharide
(LPS) of Gram-negative bacteria (18, 22–24). Differently,
TLR2 is essential for the innate immune response to
Gram-positive bacteria, being activated by bacterial lipo-
proteins and peptidoglycan (24, 25). Moreover, TLR2
also recognizes several microbial components from
Gram-negative bacteria, fungus and even virus (20, 23,
26–28). In order to recognize different antigens, TLR2
may homodimerize and heterodimerize with other TLRs,
such as TLR1 and TLR6, or with non-TLR molecules
(29–31). Stimulation of TLR2 and TLR4 by microbial
ligands initiates a signaling cascade that promotes NF-kB
activation and subsequent production of pro-inflamma-
tory mediators such as tumour necrosis factor-alpha
(TNF-a) (20, 32–34).
Despite the central role of TLRs activation in the in-

nate immune response to infection, its role in the patho-
physiology in ACLD remains undefined. In the present
study, TLR2- and TLR4-mediated innate immune re-
sponse was evaluated ex vivo in stable ACLD. Namely,
peripheral blood monocytes (PBM) primary cultures
stimulation with the TLR2/TLR6 ligand zymosan (Zym)
and the TLR2/TLR1 ligand lipopeptide (Lp), as well as
with the TLR4 ligand LPS, were performed, and the PBM
gene expression profile was evaluated.

Material and methods

Participants

The study protocol respected the ethical guidelines of the
1975 Declaration of Helsinki S. and was approved by the
Ethic Committee of Hospital João, Porto. Informed
consent was obtained from each patient and control.
The study sample was composed of 26 male patients

with ACLD followed in the hepatology outpatient clinic
of Hospital de S. João. Patients were considered to have
alcohol-related liver disease if alcohol intake had been in
excess of 60 g/day for more than 10 years and if tests for
viral and immune causes of disease were negative and
other etiologies of liver disease were clinically excluded.
The diagnosis of cirrhosis was performed clinically and
confirmed by histology, endoscopy (e.g. oesophageal
varices) and/or ultrasonography (e.g. nodular liver;
ascites). At least 3 months of abstinence was necessary
for inclusion in study. Any patient with infection,
gastrointestinal haemorrhage or hospital admission
within the previous 6 weeks was excluded from the study.

Hepatocarcinoma or other significant comorbidities (e.g.
congestive heart failure; renal insufficiency) were also
exclusion criteria. In order to compare and confirm the
stability of the selected ACLD patients, five additional
patients with ACLD admitted to the gastroenterology
ward of Hospital S. João with acute encephalopathy and/
or gastrointestinal haemorrhage, but no clinical or ana-
lytical evidence of infection, were included for TNF-a
serum levels and PBM TNF-a production evaluation.

Seventeen male age-matched blood donors (mean age
of 54 years) from the same area of residence with alcohol
intakeo20 g/day served as controls.

Blood sampling

Peripheral blood was collected using sterilized needles,
syringes and containers. Three tubes of 3ml were used
for routine analysis (complete blood count, glucose, elec-
trolytes, ethanol, renal and liver function tests, as well as
coagulation study) in order to complete clinical severity
of disease and for stratification of patients according to
the classification of Child–Turcotte–Pugh (35). Another
3ml blood tube was used for serum separation after
centrifugation at 2370 g for 15min at 4 1C with posterior
storage at ! 80 1C in 1.5ml sterilized aliquots. Whole
blood (8–10ml) was used for PBM isolation.

Endotoxaemia, sCD14, lipopolysaccharide-binding
protein, tumour necrosis factor-a and interleukin10
assays in peripheral blood

Serum endotoxin was measured using the chromogenic
limulus amoebocyte lysate assay (Cambrex Corporation,
East Rutherford, NJ, USA; sensitivity 0.1 EU/ml).

Serum levels of soluble CD14 (sCD14; R&D Systems,
Minneapolis, MN, USA; sensitivity 125pg/ml), LBP (Hy-
cult Biotechnology, Uden, the Netherlands; sensitivity
4.4 ng/ml), TNF-a (Biosource, Nivelles, Belgium; sensitivity
0.7 pg/ml) and IL-10 (Biosource; sensitivity 1.6 pg/ml) were
determined by enzyme-linked immunosorbent assays.

All assays were done in duplicate, in accordance to the
manufacturer’s instructions.

Isolation, culture and activation of peripheral blood
monocyte

Peripheral blood monocytes were isolated from whole
blood by density-gradient centrifugation with Ficoll-Paque
(GE Heathcare Lifesciences, Buckinghamshire, UK) fol-
lowed by positive selection isolation with anti-CD11b
microbeads (MACS, Miltenyi Biotec, Bergisch Gladbach,
Germany). Briefly, the cell layer containing mononuclear
cells of the blood was collected and washed three times in
phosphate-buffered saline (PBS – pH 7.2), containing
bovine serum albumine (0.5%) and EDTA (2mM). The
cell suspension was resuspended with CD11b microbeads
(MACS, Miltenyi Biotec) and incubated at 4 1C for 15min.
Then, the solution was applied to a column placed in a
suitable magnetic separator (MACS, Miltenyi Biotec).

Liver International (2010)
2 c" 2010 John Wiley & Sons A/S

TLR2 and alcoholic liver disease Pimentel-Nunes et al.



III.	
  TOLL-­‐LIKE	
  RECEPTORS	
  AND	
  LIVER	
  DISEASE	
  

	
  	
  	
  	
  	
  Role	
  of	
  	
  Innate	
  Immunity	
  Receptors	
  Toll-­Like	
  2	
  and	
  4	
  in	
  Gastrointestinal	
  Diseases	
   113	
  

After the column had been rinsed with buffer, the magnetic
labeled cell faction was collected and counted in a Neu-
bauer chamber (the average of freshly isolated monocytes
was 1! 106 cells). Cell viability was shown by the exclusion
of trypan blue (approximately 98%). Immediately after
separation and isolation of PBM, 1! 105 cells were col-
lected, centrifuged at 4 1C, 400 g during 5min and the final
cell pellet was used for mRNA isolation with TriPure
Isolation reagent (Roche, Germany), according to the
manufacturer’s instructions.

Afterwards, PBM primary culture was performed. The
monocyte samples were adjust to 1! 105 cells per well
and cultured in triplicate in RPMI-1640 medium (GE
Healthcare Lifesciences), supplemented with 100U/ml
penicillin, 100 mg/ml streptomycin, 2mmol/L glutamine
and 12% fetal bovine serum (GE Healthcare Lifesciences)
at 37 1C and 5% of CO2. After 36 h incubation (period of
maximum adherence for monocytes with our protocol),
nonadherent cells and supernatants were removed and
fresh medium was added (time 0 h). PBMs from patients
and controls were incubated separately in three different
wells with Zym [2 mg/ml] for TLR2/TLR6 stimulation,
with LPS [1 mg/ml] for TLR4 stimulation and 0,9% NaCl
as an internal control. In a subset of patients (n= 16;
seven stable patients Child A, four stable Child B and five
unstable patients) and controls (n= 7), PBM were also
stimulated with bacterial Lp Pam3Cys-SK4 [40 mg/ml] in
order to evaluate the TLR2/TLR1 dependent activation.
The supernatants were collected and the medium was
replaced at 3, 6, 12 and 24 h. After collection, super-
natants were frozen at " 80 1C until analysis of TNF-a
levels (R&D Systems; sensitivity 1.6 pg/ml). At the end of
the experimental protocol, the cultured PBM were lysed
and resuspended for mRNA isolation.

mRNA isolation and quantification

Total mRNAwas extracted from PBMs using the TriPure
isolation reagent according to the manufacturer’s
instructions (Roche). Concentration and purity were
assayed by spectrophotometry (Eppendorf 6131000.012,
Hamburg, Germany). Two-step real-time reverse tran-
scription-polymerase chain reaction (RT-PCR) was used
to perform mRNA relative quantification. For each
studied mRNAmolecule, standard curves were generated
from the correlation between the amount of starting total
mRNA and PCR threshold cycle of graded dilutions from
a randomly selected sample from the control group. For
the relative quantification of specific mRNA levels, 50 ng
of total mRNA from each sample underwent two-step
real-time RT-PCR. Glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) mRNA levels were similar in all
experimental groups, which led to the use of this gene as
the internal control.

Reverse transcription (20 ml; 10min at 22 1C, 50min at
50 1C and 10min at 95 1C) was performed in a standard
thermocycler (Whatman Biometra 050-901). Ten percent
of the cDNA yield was used as a template for real-time

PCR (LightCycler II, Roche) using SYBR green (Qiagen
204143) according to the manufacturer’s instructions.

Specific PCR primers pairs for the studied genes were:
GAPDH – fw (P1) 50– TTG GCC AGG GGT GCTAAG -
30 and rev (P2) 50- AGC CAA AAG GGT CAT CAT CTC -
30; CD14 – fw 50- TGA GGT TCG GAG AAG TTG CAG
ACG -30 and rev 50-TCG TGC TTG TTG CTG CTG CTG
C -30;Md2 – fw 50- TGT TGTATT CAC AGT CTC TCC -
30 and rev 50- ACA CCATGA ATC TTC CAA AGC GCA
– 30; TLR1 - fw 50- ATG GTG GCA ACG ATG GTG AC–
30 and rev 50 GGG CTG GCC TGATTC TTAT– 30; TLR2
– fw 50- GAT CCC AAC TAG ACA AAG ACT -30 and rev
50- CTG CGG AAG ATA ATG AAC ACC -30; TLR4 – fw
50- CTA AAC CAG CCA GAC CTT GAA -30 and rev 50-
ACC TGT CCC TGA ACC CTA TGA -30; TLR6 - fw
50- GAT GGG CAA AATAGA GTT CGTAAT -30 and rev
50- TGT CCC TGG CAA GAG CA - 30; TNF-a – fw 50-
GGT TTG CTA CAA CAT GGG CTA -30 and rev 50-AAG
AGT TCC CCA GGG ACC TCT C -30; IL-10 – fw 50-
CAG GTA ACC CTTAAAGTC CTC CAG -30 and rev 50-
TCC GAG ATG CCT TCA GCA GAG TG -30.

Results of mRNA quantification were expressed in two
ways: (i) nonstimulated PBM (basal expression): Values
were expressed as an arbitrary unit (AU) set as the
average value of control group, after normalization for
GAPDH; (ii) stimulated PBM: Values were expressed as
the ratio gene/GAPDH in order to compare the change in
thr mRNA expression (% of variation).

Toll-like receptor 2 and 4 protein quantification in
peripheral blood monocyte

Cell surface staining was performed on whole blood using
the following anti-human monoclonal antibodies: anti-
TLR2 (Alexa Fluors 488Mouse Anti-Human CD282; BD
PharmingenTM, San Diego, CA, USA), anti-TLR4 (Biotin
Mouse Anti-Human Toll-Like Receptor 4 conjugated
with PE Streptavidin, BD PharmingenTM), anti-CD45
(CD45 Per CP-CY5.5, BD Pharmingen TM) and anti-
CD14 (CD14 APC, BD PharmingenTM). A total of
100 000 cells were acquired for each sample, and dead
cells were gated out based on their light scatter properties.
PBM were gated based on the positivity for CD45 and
CD14. Data acquisition was performed in FACSCanto II
using FACSDivaTM Software (BD Pharmingen TM) and
analysed using INFINICYT 1.2TM Software (Cytognos, Sala-
manca, Spain). TLR2 and TLR4 values were expressed as
a ratio of the geometric mean fluorescence of individual
study patients to mean control values for that session.

Statistical analysis

Data analysis was performed using the computer soft-
ware Statistical Package for Social Sciences (SPSS for
Windows version 17.0; SPSS Inc., Chicago, IL, USA).
Data are presented as the mean# standard error of mean
(SEM) and the proportion of variation compared with
controls (mean difference of the proportions and SEM of
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the difference). One-way ANOVA and Student’s t test for
paired and unpaired data (or correspondent nonpara-
metric test) were used, when appropriate, for compar-
ison between groups. w2-test was used for comparison of
proportions. When necessary, the test was preceded by a
natural logarithm transform to obtain a normal distribu-
tion. The statistical significance was set at Po0.05.

Results

Baseline characteristics of patients

The baseline characteristics of patients are shown in
Table 1. None of the patients had leukocyte levels
higher than 10 000 cells/mm3 and Plasma C-reactive
protein was lower than 10mg/L in all patients. Ethanol
levels were null in all patients. None of controls had
serious infections in the previous year against 23% (6/26)

hospital admissions because of infection in the stable
ACLD patient group.

Serum levels of tumour necrosis factor-a, interleukin-10,
lipopolysaccharide, LPS-binding protein, sCD14, toll-like
receptor2 and toll-like receptor4

Serum levels of TNF-a, IL-10, LPS, LBP and sCD14 from
patients and controls are shown in Table 2. In patients,
there was a statistically significant elevation of LPS when
compared with controls (a mean increase of 22.5! 4.1%;
P= 0.04). This was associated with a significant elevation
of serum levels of sCD14 (123.5! 4.6%; P= 0.02) and
LBP (160.6! 12.2%; P= 0.03). However, there were no
differences in the serum levels of TNF-a (7.48 vs 8.3
pg/ml; P= 0.4) or IL-10 (14.9 vs 14.7; P= 0.6). When
comparing patients with or without ascites, the values
were similar to Child A and B/C, respectively; however,
TNF-a serum levels were significantly higher in stable
patients with ascites (8.8! 1 vs 6.7! 0.5 pg/ml;
P= 0.03), despite both groups being within the normal
range of controls TNF-a (5.0–11.5 pg/ml).

Toll-like receptor 2 and toll-like receptor 4 stimulation in
peripheral blood monocyte primary culture

The constitutional production of TNF-a (measured
TNF-a at 0 h) from stable ACLD patients’ PBM was
significantly lower than that from controls (36 h produc-
tion of 388! 52 vs 693! 152 pg/ml; P= 0.01; patients vs
controls, respectively). When PBM were stimulated with
LPS, no differences were found in TNF-a production
between stable ACLD patients and controls (Fig. 1).
However, when PBM were stimulated with Zym, there
was a significantly lower production of TNF-a at all
studied time points in the stable ACLD patient group
(Fig. 1). Globally (all studied time points considered),
Zym TNF-a production by PBM was reduced by
66! 20.4%. Regarding PBM stimulation with Lp, there
was a significantly lower production in the stable ACLD
patient group at 3 h (" 62! 23%; P= 0.03) and at 6 h
(" 64! 29%; P= 0.04), but not at 12 or 24 h (Fig. 1),
compared with control. Globally, Lp-induced TNF-a
production was reduced by 40.1! 13.5% (P= 0.03). Of
note, no significant differences were detected between
patients with or without ascites or between stable ACLD
Child–Pugh A and B/C patients, for LPS, Zym and Lp.

Table 1. Baseline characteristics of patients (n=26)

Child-A
(n=14)

Child-B/C
(n=12)

Total
(n=26)

Age 54 (2.5) 58 (3.7) 56 (2.2)
Serum bilirubin (mg/dl) 1.3 (0.16) 2.8 (0.6) 1.99 (0.3)
Serum albumin (g/L) 41 (1.1) 33 (1.2) 37 (1.1)
Presence of ascites 2 (8%) 9 (35%) 11 (42%)
INR 1.2 (0.04) 1.4 (0.06) 1.3 (0.05)
Serum creatinine (mg/dl) 1.0 (0.05) 1.05 (0.09) 1.03 (0.05)
MELD 9 (0.7) 13 (0.6) 10.8 (0.6)
Serum leukocytes (mm3) 5435 (567) 4930 (620) 5202 (413)
Plasma C-reactive protein
(mg/L)

3.8 (0.8) 5.1 (0.9) 4.4 (0.6)

Comorbilities 6 (23%) 5 (19%) 11 (42%)
DMNID 5 (19%) 3 (12%) 8 (31%)
HTA 1 (4%) 1 (4%) 2 (8%)
Heart disease 1 (4%) 0 (0%) 1 (4%)
Renal disease 1 (4%) 1 (4%) 2 (8%)
Lung disease 1 (4%) 0 (0%) 1 (4%)
Concomitant treatments
Norfloxacin 1 (4%) 3 (12%) 4 (15%)
Beta-blockers 7 (27%) 7 (27%) 14 (54%)
Lactulose 1 (4%) 6 (23%) 7 (27%)

Values are presented as mean (SEM) or number of patients (with % from

total population).

INR, international normalized ratio; MELD, model for end-stage liver

disease.

Table 2. Serum levels of TNF-a, IL-10, LPS, LBP and sCD14 from patients (n=26) and controls (n=17)

Controls (n=17) Total patients (n=26) P Child-A (n=14) Child-B/C (n=12) P

LPS (EU/ml) 0.40 (0.02) 0.49 (0.02) 0.04 0.49 (0.03) 0.48 (0.03) 0.77
LBP (ng/ml) 12 279 (1290) 20 774 (2403) 0.03 18810 (2980) 23 095 (3930) 0.4
sCD14 (ng/ml) 1363 (75) 1686 (74) 0.02 1590 (83) 1800 (125) 0.18
TNF-a (pg/ml) 8.3 (1.0) 7.48 (0.5) 0.4 6.54 (0.4) 8.57 (0.9) 0.06
IL-10 (pg/ml) 14.9 (0.6) 14.2 (0.7) 0.6 14.5 (1.0) 13.8 (0.9) 0.6

Values are presented as mean (SEM). Patients had significant higher levels of LPS, LBP and sCD14 (bold) but not TNF-a or IL-10 when comparing with

controls. There were no differences between Child-A and Child-B/C.

IL, interleukin; LBP, LPS binding protein; LPS, lipopolysaccharide; TNF, tumour necrosis factor.
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Peripheral blood monocyte gene expression profile

There was no difference in PBM TLR4 or TLR2 protein
levels between patients and controls (0.98 vs 1.00;
P= 0,8).

No significant differences were detected in PBMmRNA
basal expression of TLR1, TLR2, TLR4, TLR6, CD14,
MD2 and IL-10 between controls and stable ACLD
patients (Table 3). However, a nonstatistically significant
trend for lower TLR2 (0.74! 0.05 vs 1.0! 0.25 AU;
P= 0.10) and TLR1 expression (0.5! 0.1 vs 1.0! 0.48
AU; P= 0.10) was observed in patients with stable ACLD.
Interestingly, the basal expression of TNF-a mRNA in
patients PBM was half from the expression in controls
(0.5! 0.08 vs 1.0! 0.25 AU; " 50.1! 21%; P= 0.02).

mRNA expression of toll-like receptor 2 and toll-like
receptor 4 after peripheral blood monocyte stimulation

Zym or LPS stimulation of PBM induced different pat-
terns of TLR2 and TLR4 expressions in both patients and
controls, as shown in Fig. 2. When stimulated with Zym,
there was a 78! 4% and 67! 8% reduction of TLR4 and
TLR2 in PBM of stable ACLD patients respectively.
However, in the control group, there was also a signifi-
cant reduction in the expressions of TLR4 and TLR2
(85! 4 and 55! 14% respectively). After stimulation
with Zym, the expression of TLR2 was lower in stable
ACLD patients’ PBM in comparison with controls,
although this difference did not reach statistical signifi-
cance (0.28! 0.08 vs 0.59! 0.28 ratio TLR2/GAPDH;
P= 0.1). Differently to Zym, LPS stimulation resulted in
TLR4 downregulation but TLR2 upregulation in both
groups (Fig. 2).

Decompensate alcoholic chronic liver disease patients

Tumour necrosis factor-a serum levels and PBM TNF-a
production were measured in five cirrhotic patients
hospitalized for gastrointestinal bleeding and/or severe
encephalopathy (80% Child C, mean model for end-
stage liver disease 20! 0.9, all patients with ascites). In
patients with decompensated ACLD, TNF-a serum levels
were 20! 4 pg/ml, significantly higher (1141! 48.2%)
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Fig. 1. Monocyte production of tumour necrosis factor (TNF)-a
after stimulation with lipopolysaccharide (LPS) (up), zymosan
(middle) or lipopeptide (down). !Po 0.05 vs control group;
#Po0.05 vs production at time 0 h. There were no significant
differences in TNF-a production when monocytes were stimulated
with LPS. However, when stimulated with zymosan or lipopeptide,
the production of TNF-a per hour was significantly higher in controls.

Table 3.Monocyte mRNA basal expression of Toll-like receptor 1, TLR2, TLR4, TLR6, CD14, Md2, tumour necrosis factor-a and interleukin-10
from patients (n=26) and controls (n=17)

Controls (n=17) Total patients (n=26) P Child-A (n=14) Child-B/C (n=12) P

TLR1 (AU) 1 (0.46) 0.47 (0.08) 0.1 0.42 (0.05) 0.54 (0.15) 0.5
TLR2 (AU) 1 (0.24) 0.74 (0.06) 0.1 0.71 (0.07) 0.77 (0.08) 0.6
TLR4 (AU) 1 (0.08) 0.96 (0.07) 0.7 0.97 (0.09) 0.93 (0.11) 0.8
TLR6 (AU) 1 (0.22) 0.73 (0.11) 0.2 0.77 (0.13) 0.67 (0.2) 0.6
CD14 (AU) 1 (0.13) 0.98 (0.07) 0.8 0.98 (0.09) 0.97 (0.12) 0.9
Md2 (AU) 1 (0.21) 1 (0.08) 0.9 0.98 (0.11) 1 (0.12) 0.7
TNF- a (AU) 1 (0.27) 0.49 (0.08) 0.02 0.53 (0.11) 0.45 (0.12) 0.6
IL-10 (AU) 1 (0.7) 1.3 (0.6) 0.8 1.5 (1.0) 1.1 (0.5) 0.7

Values are presented as mean (SEM). Only the basal expression of TNF-a (bold) was different in patients when compared with controls (half the

expression).
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when compared with controls or with stable ACLD
patients (P= 0.02). The PBM basal production from
patients with decompensated ACLD was 25! 16% high-
er than that from controls (P= 0.12) and 70! 17%
higher than that from stable patients (Po 0.001). In this
subset of patients, all stimulations in PBM primary
cultures were blunted when compared with controls
(LPS: " 55! 30.3%, P= 0.05; Zym: " 81! 29%,
P= 0.002; Lp: " 67! 28%, P= 0.04).

Discussion

In the present study, TLR2- and TLR4-mediated innate
immune responses were analysed ex vivo in PBM of
patients with stable ACLD. A selective attenuation of
TLR2-mediated innate immune response was found in
these patients, which was not dependent on decreased
TLR2 expression or impaired TLR4 signaling pathways.
Previous reports studied the innate immunity recep-

tors in chronic liver disease (17, 36–42). However, the
results are difficult to extrapolate, given the differences
in the studied populations in terms of distinct liver
disease aetiologies (36, 37, 41, 42), various alcohol-
consumption status (acute ingestion, chronic ingestion
and abstinence) (17) and distinct liver disease stages
(hepatitis, established cirrhosis and decompensated

disease) (38, 42, 43). In our study, TLR2 and TLR4 innate
immune responses were analysed in a group of patients
with stable ACLD in different stages (Child–Pugh A and
B/C). In fact, our patients were selected from an out-
patient hepatology clinic and presented no recent history
of infection, gastrointestinal bleeding, hospital admission
or evidence of recent alcohol ingestion. Moreover, we
compared TNF-a serum levels and basal TNF-a produc-
tion in PBM primary culture with a group of decom-
pensated ACLD patients with clearly distinct results,
further supporting the stability of our group of patients.

In agreement with previous studies (16, 39, 44–46),
increased LPS circulating levels were found in ACLD. In
this disease, endotoxaemia has been attributed to several
factors such as intestinal bacterial overgrowth, and
structural and functional alterations of intestinal muco-
sal barrier that promote bacterial translocation (6).
Increased LPS circulating levels have been proposed to
underlie a low-grade systemic pro-inflammatory state
associated with chronic liver disease (1, 12, 47–50). In
our study, however, increased TNF-a circulating levels
supporting a systemic pro-inflammatory state was re-
stricted to patients with decompensated ACLD. This
might be because of the parallel increase in the serum
levels of the LPS-binding proteins LBP and sCD14. In
fact, LPS transfer to lipoproteins by LBP and sCD14 may
neutralize the immune response to LPS (51–53).

We did not find differences either in basal TLR4 levels
or in LPS-induced TNF-a production in PBM from
stable ACLD patients, compared with controls. Accord-
ingly, other studies (17, 37, 54) found similar patterns of
cytokine production in LPS-stimulated immune cells of
abstemic/stable cirrhotic patients. In advance or unstable
disease, however, TLR4 response may be compromised.
Tazi et al. (38) describe enhanced LPS-induced TNF-a
production in hospitalized Child-C patients, the major-
ity active drinkers, on the contrary, Lin et al. (39) and
Wasmuth et al. (42) found a decreased production of
TNF-a after LPS activation of immune cells, suggesting
the existence of immune paralysis in both advanced (39)
and unstable cirrhosis (42). A recent study (41) involving
Child-C patients listed for transplantation appears to
confirm a diminished TLR4 function in these patients.
Interestingly, this immune defect was reversible with
antibiotic therapy. Similarly, and despite the fact that
our study was not designed to evaluate unstable disease,
in our patients with decompensated ACLD, a significant
attenuation in TLR4-mediated innate immune response
was also observed. These results suggest a significant
compromise of TLR4 signaling pathways. However, this
may be present only in advance and/or unstable disease.

In our study, TLR2-mediated innate immune response
was blunted in PBM of stable ACLD patients. Similarly,
Riordan et al. (37) described blunted TLR2-mediated
innate immune response ex vivo in peripheral blood
mononuclear cells from patients with different cirrhosis
etiologies. Interestingly, in both studies, the attenuation
of TLR2-mediated innate immune response was not
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Fig. 2. Percentage (%) of variation in the gene expression of toll-
like receptor (TLR)2 and TLR4 after monocyte stimulation either with
lipopolysaccharide (LPS) (up) or with zymosan (down). #Po 0.05 vs
the initial gene expression. The pattern of genic expression variation
was similar between patients and controls.
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related with decreased TLR2 expression. In fact, no
significant differences in TLR2 mRNA or protein levels
were observed between ACLD and control groups, while
in the study of Riordan and colleagues, TLR2 levels were
even increased. Staldbauer et al. (40) also found neutro-
phil dysfunction in the presence of TLR2 overexpression.
Importantly, using two different TLR2 agonists (Lp and
zymosan), we have shown for the first time that this
immune deficiency involves TLR2/1 and TLR2/6 signal-
ing pathways, potentially affecting immunologic re-
sponse to a large variety of antigens. Moreover, no
differences in the expression levels of TLR2-heterodimers
(TLR1 and TLR6) or TLR2/TLR4 co-receptor CD14
(55–57) were detected between ACLD and control PBM.
Taken together, these results suggest an impairment of
TLR2-mediated intracellular signaling pathways in
ACLD.

To further clarify the molecular mechanisms under-
lying the selective attenuation of TLR2-mediated innate
immune response in patients with stable ACLD, the
differential effect of Zym and LPS in PBM stimulation
on TLR2 and TLR4 gene expression was analyzed. In fact,
Zym and LPS stimulation has distinct effects on TLR2
and TLR4 expression levels. Whereas Zym-mediated
TLR2 stimulation induced a downregulation of both
TLR2 and TLR4, LPS-mediated TLR4 stimulation was
accompanied by a selective upregulation of TLR2 and a
downregulation of TLR4. These differences could be
related to a distinct intracellular pathway activation. In
fact, although TLR2 and TLR4 share most of its intracel-
lular pathways, TLR4 also activates MyD88-independent
pathways (30, 31).

In conclusion, PBM of stable ACLD patients demon-
strate an attenuation of TLR2- but not TLR4-mediated
innate immune response. Given that TLR2 recognize
several different microbial molecules, this may constitute
an important mechanism of acquired immunodeficiency.
Further investigation is required to study the impact of
blunted TLR2 innate immunity in the infection risk and
the prognosis of this disease.
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Role of toll-like receptor impairment in cirrhosis infection risk: are we making
progress?

To the Editor:
Given our recent paper on toll-like receptors (TLR) in

alcoholic liver disease (1), we now review the role of TLR
impairment in cirrhosis infection risk. In our study (1),
patients with stable alcoholic chronic liver disease
showed an attenuated TLR2-mediated innate immune
response. We found an impaired TLR4 response only in
our unstable patients. A recent study by Testro et al. (2)
observed an impairment of TLR4 function in advanced
cirrhosis, but dependent on decreased TLR4 levels. This
process was reversible with antibiotics.
In our review of the literature of this subject, we found

some contradictory results (Table 1). If we consider only
the studies that evaluated advanced disease, we can see
that Testro’s results are partially in agreement with our
study (1), the study from Wasmuth et al. (3) and also

with the Child-C patients from Lin et al.’s study (4).
Nevertheless, Testro’s results are completely in disagree-
ment with the study from Tazi et al. (5), which found
augmented TNF-a production with decreased TLR4
levels. Also in contradiction with Testro are the results
from Stadlbauer et al. (6). In this last study, despite
studying stable patients, decreased phagocytic capacity
was found in association with increased TLR4 levels. The
normalization of function with probiotic was associated
not with an elevation of TLR4 levels but with a reduction
towards normal. Probably, methodological differences
(e.g. population, cells, quantification method, other)
can help to explain some but not all the differences.

Analysing all the studies, we conclude that decreased
TLR levels are insufficient to alter TLR function. In fact,
some found decreased function with increased (6, 7),

Table 1. Review of the studies about the role of toll-like receptor 2 and toll-like receptor 4 in cirrhotic patients according to toll-like receptor
expression and function (considered as tumour necrosis factor-a production in culture)

Study Cirrhotic population Cell TLR2 expression TLR4 expression TLR function Therapeutic intervention

Manigold et al. (9)! Stable (n=21)
viral and alcohol

PBMC = ; " only if
endotoxaemia

= ; # only in
Child-A

NE NE

Riordan et al. (7)w Stable (n=36)
several aetiologies

PBMC " = TLR4= ; TLR2 # Symbiotic " TLR2 levels
and # function

Wasmuth et al. (3) Advanced (n=27)
alcohol

PM NE NE TLR4 # NE

Tazi et al. (5)z Advanced (n=48)
alcohol

PM NE # TLR4 " NE

Laso et al. (8) Stable (n=21)
alcohol

PM NE NE TLR4= ; # only in active
drinkers

NE

Lin et al. (4) Stable (n=64)
several aetiologies

PM NE NE TLR4 # only in Child C NE

Stadlbauer et al. (6)w Stable (n=12)
alcohol

PN " " TLR4= ‰ Probiotic decreased TLR4
levels to normal‰

Pimentel-Nunes
et al. (1)!,w

Stable (n=26) and
advanced (n=5)
alcohol

PM = = TLR4= ; # only in
unstable; TLR2 #

NE

Testro et al. (2)w Advanced (n=41)
alcohol

PBMC = # only in
patients without
ATB

TLR4 apparently # in
patients without ATB
TLR2 apparently =

ATB increased TLR4
levels to normal with
increase of function

!TLRs quantified by RNA.

wTLRs quantified by flow cytometry.

zTLR4 quantified by Western blotting.

‰Despite presenting decrease phagocytic capacity, stimulated TNF-a in culture was not different to controls and probiotic restored phagocytic capacity.

ATB, antibiotics; PBMC, peripheral blood mononuclear cell; PM, peripheral monocytes; PN, peripheral neutrophils; NE, not evaluated; = , equal to

controls or equal to control group; #, decrease when compared with controls; ", increase when compared to controls.

Liver International (2010)
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normal (1) and decreased levels (2). This probably
implies dysfunction in intracellular signalling pathways.
Actually, in our study, we found blunted TLR2 activation
that was independent not only of TLR2 levels but also of
TLR1, TLR6 and CD14, important membrane activation
factors for TLR2 signalling pathways, thus further sup-
porting intracellular dysfunction. We have shown in vitro
that TLR2 and/or TLR4 agonists change the expression
levels of these receptors (1). Hence, we believe that the
frequent episodes of bacteraemia that occur in cirrhosis,
by changing TLR expression on immune cells, can help
explain these discrepancies concerning TLR expression.
This also might be the reason why Stadlbauer et al. (6),
using probiotics, promoted the decrease, and Testro et al.
(2), using antibiotics, the increase in TLR4 levels, both
trending towards normal levels of expression. Possibly,
these two different therapeutic agents decrease episodes
of bacteraemia, consequently with less fluctuation of TLR
levels. Why they restored TLR4 function remains unclear
because expression levels cannot explain the results from
these two studies.

Several conclusions can be made. Firstly, TLR2 and
TLR4, the most important innate immune receptors for
bacteria recognition, appear to play a significant role in
the infection risk of cirrhotic patients. Secondly, our
study (1) and others (7) clearly suggest a blunted TLR2
function even in the early stages of cirrhosis, which
may help explain the growing risk of Gram-positive
bacteria infection in these patients. Thirdly, at least in
advanced cirrhosis, TLR4 impairment is also present
(1–4, 6). Fourthly, taking together the discrepancies in
the expression levels of TLRs, it appears that other
factors, probably intracellular, are fundamental to this
immunodeficiency. Finally, this process may be reversible
with antibiotics and/or probiotics (2, 6). However,
further studies are needed before generalization since
Riordan et al. (7) showed that the use of a symbiotic
further compromised TLR2 function, in contrast to the
positive immunological effects obtained by Stadlbauer
et al. (6) and Testro et al. (2).

Pedro Pimentel-Nunes1,2, Roberto Roncon-Albuquerque Jr1,
Mário Dinis-Ribeiro2,3 and Adelino F. Leite-Moreira1
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Development Unit, Faculty of Medicine, University of Porto,

Porto, Portugal
2 Gastroenterology Department, Portuguese Oncology Institute,

Porto, Portugal
3 CINTESIS/Department of Biostatistics and Medical
Informatics, Porto Faculty of Medicine, Porto, Portugal
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D) INCREASED HEPATIC EXPRESSION OF TLR2 AND TLR4 IN THE 

HEPATIC INFLAMMATION-FIBROSIS-CARCINOMA SEQUENCE  
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Research Article

Increased hepatic expression of TLR2 and
TLR4 in the hepatic inflammation-fibrosis-
carcinoma sequence

João-Bruno Soares1,2,*, Pedro Pimentel-Nunes1,3,*,
Luı́s Afonso3, Carla Rolanda2,4, Paula Lopes3, Roberto Roncon-
Albuquerque, Jr1, Nádia Gonçalves1, Inês Boal-Carvalho1,
Fernando Pardal2, Susana Lopes5, Guilherme Macedo5,
Lúcio Lara-Santos3, Rui Henrique3,6, Luı́s Moreira-Dias2,
Raquel Gonçalves2, Mário Dinis-Ribeiro3,7 and Adelino F. Leite-
Moreira1

Abstract
We evaluated expression of TLR2, TLR4 and proinflammatory genes [NF-kB, TNF-a, cyclooxygenase-2 (COX-2)] in liver
samples of patients in different stages of liver disease. Fifteen patients with unexplained transaminases elevation (refer-
ence group), 22 with viral chronic hepatitis (hepatitis group), 14 with virus-induced severe fibrosis/cirrhosis (cirrhosis
group) and 10 with hepatocarcinoma (hepatocarcinoma group) were consecutively included in the study. Quantification
of TLR2, TLR4, NF-kB, TNF-a and COX-2 mRNA was done by real-time RT-PCR and TLR2 and TLR4 protein expres-
sion was evaluated by immunohistochemistry. Compared with reference, TLR2 and TLR4 mRNA was increased in
hepatitis (TLR2: 2.66! 0.69; TLR4: 3.11! 0.79; P< 0.05) and cirrhosis (TLR2: 2.14! 0.5; TLR4: 1.74! 0.27; P< 0.05)
and decreased in hepatocarcinoma (TLR2: 0.48! 0.15; TLR4: 0.54! 0.10; P< 0.05). This associated with increased
TNF-a and COX-2 mRNA in hepatitis (TNF-a: 3.24! 0.79; COX-2: 2.47! 0.36; P< 0.05) and cirrhosis (TNF-a:
1.73! 0.28; COX-2: 1.8! 0.35, P< 0.05), whereas NF-kB mRNA was increased in hepatitis (2.42! 0.31; P< 0.05)
and unchanged in cirrhosis (1.34! 0.17; P¼ 0.3). Hepatocarcinoma presented increased COX-2 mRNA (1.63! 0.15;
P< 0.05) and maintained (at decreased levels) mRNA of NF-kB (0.52! 0.12) and TNF-a (0.52! 0.12; P< 0.05, all
genes). Immunohistochemistry confirmed increased expression of TLR2 and TLR4 in hepatitis and cirrhosis and main-
tained expression in hepatocarcinoma. Upregulation of TLR2, TLR4 and their proinflammatory mediators is associated
with virus-induced hepatic IFC sequence.

Keywords
Chronic hepatitis, cirrhosis, hepatocarcinoma, TLR2, TLR4
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Introduction

Chronic liver inflammation, irrespective of the underly-
ing cause (metabolic, immune-driven or virus-induced),
leads to fibrosis and/or cirrhosis, which are precancer-
ous states in which the development of hepatocarci-
noma is more likely. Some authors call this sequence
the hepatic inflammation-fibrosis-carcinoma (IFC)
sequence.1 Nevertheless, the cellular and molecular
effectors mediating the interplay between the compo-
nents of hepatic IFC sequence continue to be largely
unknown.
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Recently, several studies implicated TLRs as
potential key orchestrators of the hepatic IFC
sequence.2–5 TLRs are one of the most representative
classes of pathogen-associated molecular patterns
(PAMPs) receptors that play a critical role in innate
immunity activation.6,7 The human TLR family
consists of 10 members that enable the innate immunity
system to recognize different groups of pathogens while
initiating appropriate and distinct immunological
responses according to the recognized PAMP.6,7

Besides immune cells, most liver cells (hepatocytes,
Kupffer cells and stellate cells) also express TLRs and
respond to their ligands.8,9 TLR2 and TLR4 have been
the most studied TLRs in liver diseases as they sense
bacterial components and, thus, may mediate liver
injury associated with increased bacterial translocation
that is present in many liver diseases.10–12 TLR2 is
essential for the innate immune response to Gram-
positive bacteria, being activated by bacterial lipopro-
teins and peptidoglycan.6,7 TLR4 acts as a receptor for
LPS, a cell wall component of Gram-negative bacte-
ria.6,7 Besides exogenous ligands, TLR2 and TLR4
may also sense endogenous ligands initiating danger
signals, such as high mobility group box 1, hyaluronan
and heat shock protein 60, inducing an inflammatory
response in the absence of microbial challenge.13

Stimulation of these two receptors initiates a signaling
cascade that promotes activation of NF-kB and
MAPK and, consequently, production of different
pro-inflammatory mediators, such as TNF-a and
cyclooxygenase-2 (COX-2). 14–18

Recent animal studies and in vitro hepatocyte culture
models suggest that TLR2 and TLR4 may play a key
role in the hepatic IFC sequence. Modulation of TLR2
and/or TLR4 function was shown to influence liver
inflammation in chronic liver diseases, such as alco-
holic liver disease (ALD), nonalcoholic fatty liver
disease (NAFLD), chronic hepatitis C and chronic
hepatitis B.2,3

There is also accumulating evidence that TLR4-
induced activation and sensitization of hepatic stellate
cells (HSCs) may constitute an important molecular
link between hepatic inflammation and fibrogen-
esis.19–22 Moreover, a recent study has revealed TLRs,
in particular TLR4, as major factors linking hepatic
chronic inflammation and hepatocarcinoma.23

However, to date, the suggested implication of
TLR2 and TLR4 in the pathogenesis of hepatic IFC
sequence is principally based on evidence obtained
from animal studies or in vitro hepatocyte culture
models. Studies using diseased human liver tissue to
confirm or refute the in vitro and animal findings are
scarce and have evaluated TLR2 and TLR4 in each
stage of IFC sequence separately.

Therefore, in the present study, we evaluated the
expression of TLR2 and TLR4 in liver samples
from patients in each stage of virus-induced hepatic

IFC sequence. The expression of NF-kB, TNF-a and
COX-2 was also evaluated in order to characterize their
association with TLR2 and TLR4 expression.

Materials and methods

Patients and biological samples

This study included patients from two hospitals of the
North of Portugal (Braga Hospital and Portuguese
Oncology Institute of Porto). The study protocol
respected the ethical guidelines of the 1975
Declaration of Helsinki and was approved by the
Ethics Committee of Braga Hospital and Portuguese
Oncology Institute of Porto. Informed consent was
obtained from each patient.

Patients were recruited consecutively during 2009.
We defined four groups: reference, hepatitis, cirrhosis
and hepatocarcinoma. Reference group included
patients followed in the Hepatology Outpatient Clinic
of Braga Hospital who underwent liver biopsy because
of chronic unexplained transaminase elevation. We
excluded from this group patients with alcohol abuse
(>30 g/d in males; >20 g/d in females); analytical or
histologic findings favoring hemocromatosis; autoim-
mune hepatitis; primary biliary cirrhosis; primary
sclerosing cholangitis; and HIV infection or clinical,
analytical, imagiological or histologic evidence of
severe fibrosis/cirrhosis (METAVIR F3–4). The hepa-
titis group included chronic hepatitis B or C patients
followed in the Hepatology Outpatient Clinic of Braga
Hospital who underwent staging liver biopsy. The
cirrhosis group was selected from the same group of
patients but with histologic evidence of severe fibro-
sis/cirrhosis (METAVIR F3–4). The hepatocarcinoma
group included chronic hepatitis B or C patients with
diagnosis of hepatocarcinoma (according to the EASL
2000 Barcelona Guidelines24) followed in the outpatient
clinic of Portuguese Oncology Institute of Porto who
underwent surgical resection of hepatocarcinoma. In
these groups, patients must have had >18 years
serological evidence of chronic hepatitis B (HBsAg+)
or C (HCVAb+) and clinical stability. Histologic evi-
dence of cirrhosis and hepatocarcinoma was required in
the hepatocarcinoma group. Patients with HIV infec-
tion or analytical or histologic findings suggestive of
liver disease other than viral chronic hepatitis were
excluded.

Before liver biopsy or surgical intervention, blood
samples were drawn from fasting patients for routine
analysis (complete blood count, glucose, electrolytes,
renal and liver function tests, and coagulation study)
and viral load quantification. Liver tissue was obtained
by percutaneous biopsy using a 16-gauge Menghini
needle or by transjugular biopsy. In the hepatocarci-
noma group, we obtained hepatocarcinoma tissue
[for mRNA quantification (in 6 patients) and

2 Innate Immunity 0(0)
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immunohistochemical evaluation (in 10 patients)] and
adjacent liver tissue (for cirrhosis confirmation) from
the surgical specimen. The collected tissue was divided
into two fragments: one was immediately placed in
RNAlater (Ambion) and stored at !80"C for mRNA
isolation and quantification; the other was fixed in 10%
buffered formalin and embedded in paraffin for histo-
logic and immunhistochemical analyses.

mRNA isolation and quantification of TLR2, TLR4,
NF-!B, TNF-" and COX-2

Total mRNA was extracted from tissue samples using
the TriPure isolation reagent according to the manufac-
turer’s instructions (Roche, Germany). Concentration
and purity were assayed by spectrophotometry
(Eppendorf 6131000.012). Two-step real-time
RT-PCR was used to perform relative quantification
of mRNA. For each studied mRNA molecule, standard
curves were generated from the correlation between the
amount of starting total mRNA and the PCR threshold
cycle of graded dilutions from a randomly-selected
sample from reference group. For relative quantifica-
tion of specific mRNA levels, 100 ng of total mRNA
from each sample underwent two-step real-time
RT-PCR. GAPDH mRNA levels were similar in all
experimental groups, which enabled the use of this
gene as an internal control. RT (20 ml; 10min at 22"C,
50min at 50"C and 10min at 95"C) was performed in a
standard thermocycler (Whatman Biometra 050-901).
Five percent of the cDNA yield was used as a template
for real-time PCR (LightCycler II, Roche) using SYBR
green (Qiagen 204143), according to the manufacturer’s
instructions. Specific PCR primers pairs for the studied
genes (GAPDH, TLR2, TLR4, NF-kB, TNF-a and
COX-2) are presented in Table 1. Results of mRNA
quantification were expressed as an arbitrary unit
(AU) set as the average value of reference group,
after normalization for GAPDH.

Immunohistochemical evaluation of TLR2 and TLR4

Tissue specimens were fixed in 10% neutral buffered
formalin for 24 h and paraffin embedded. De-paraffi-
nized tissue slides were submitted to antigen retrieval
using a high temperature antigen unmasking technique
in a water bath, 95"C in citrate buffer pH 6.0, for
20min. Endogenous peroxidase activity was blocked
by incubating the slides with freshly prepared 0.5%
H2O2 in distilled water for 20min. After washing the
slides in distilled water and PBS/0.05% Tween 20 solu-
tion, immunostaining was performed using an immu-
noperoxidase method according to the manufacturer’s
instructions. The slides were incubated with normal
horse serum (Vector Laboratories, Burlingame, CA,
USA) 1/50 in PBS-BSA 1% at room temperature
(21–23"C) for 20min in humid chamber. Sections
were then incubated with primary Ab at 4"C 16–18 h.
The following primary Abs were used: rabbit poly-
clonal Ab anti-TLR2 (H-175, 1 : 50 dilution, Santa
Cruz Biotechnology, CA, USA) and rabbit polyclonal
anti-TLR4 (H-80, 1 : 100 dilution, Santa Cruz
Biotechnology). The slides were then rinsed in PBS/
0.05% Tween 20 solution and bound Ab was detected
by applying biotinylated secondary Ab (Vectastain
Universal Elite ABC Kit) for 30min. After washing
the slides with PBS/0.05% Tween 20 solution the
slides were incubated with ABC reagent (Vectastain
Universal Elite ABC Kit) for 30min. The slides were
washed in PBS and incubated for 7min in 3,3-diamino-
benzidine (DAB; Sigma-Aldrich, St Louis, MO, USA)
0.05 g/PBS, 0.03% H2O2. Following counterstaining
with hematoxylin for 20 s, the slides were washed for
4min in water, dehydrated and mounted with Entellan
(Merck KGaA, Darmstadt, Germany). Normal gastric
mucosa and lymph node tissue were used as negative
and positive controls, respectively. An Ab diluent (non-
immune IgG, TA-125-UD; Thermo Scientific) was used
in some samples as additional negative control,

Table 1. Specific PCR primers pairs for the studied genes

Gene Primers

GAPDH F: 50 – GGT GGT CTC CTC TGA CTT CAA CA – 30

R: 50 – GTT GCT GTA GCC AAA TTC GTT GT – 30

TLR-2 F: 50 – GAT CCC AAC TAG ACA AAG ACT – 30

R: 50 – CTG CGG AAG ATA ATG AAC ACC – 30

TLR-4 F: 50 – CCA TAA AAG CCG AAA GGT GAT TGT – 30

R: 50 – AGA TGT GCC GCC CCA GGA C – 30

NF-kB F: 50 – CCT GGA TGA CTC TTG GGA AA – 30

R: 50 – TCA GCC AGC TGT TTG ATG TC – 30

COX-2 F: 50 – ACC GGG GGT ATA CTA CGG TC – 30

R: 50 – ACG GGC CCT ATT TCA AAG AT – 30

TNF-a F: 50 – GGT TTG CTA CAA CAT GGG CTA – 30

R: 50 – AAG AGT TCC CCA GGG ACC TCT C – 30

F¼ Forward primer, R¼Reverse primer.

Soares et al. 3
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confirming the specificity of our protocol. We evaluated
immunostaining of hepatocytes for TLR2 and TLR4 all
the samples. In order to quantify TLR expression in
tissue samples, three parameters were considered: (i)
sample positivity—a sample was considered positive if
hepatocytes were clearly marked by the Ab; (ii) grade of
expression—a score of 0–3 was considered according to
the number of epithelial cells marked (0¼ no cells;
1¼ less than 10% of epithelial cells; 2¼ 10–75% cells;
3¼more than 75% cells); and (iii) intensity of expres-
sion—a score of 0–3 was considered according to a
subjective evaluation of the intensity of marked cells
(0¼no immunostaining; 1¼weak positive staining;
2¼moderate positive staining; 3¼ strong positive
staining). Immunohistochemical evaluation was
performed independently by two experienced
pathologists.

Statistical analysis

Data analysis was performed using the computer soft-
ware SPSS for Windows (version 17.0; Chicago, IL,
USA). Data are presented as mean" standard error
of mean (SEM) or as median and range, according to
the type of distribution. Student’s t-test was used for
comparison between groups. When necessary, the test
was preceded by a natural logarithm transform to
obtain a normal distribution. Correlation between
TLR2 and TLR4mRNA expression and viral load,
necroinflammatory activity or transaminases levels

was evaluated by univariate analysis. Statistical signif-
icance was set at P< 0.05.

Results

Baseline characteristics of patients

The baseline characteristics of patients are shown in
Table 2. A total of 61 patients were included in the
study: 15 patients in reference group, 22 (10HBsAg+
and 12HCVAb+) patients in hepatitis group, 14
(7 HBsAg+ and 7HCVAb+) patients in cirrhosis
group and 10 (4HBsAg+ and 6HCVAb+) patients
in hepatocarcinoma group. Histologic findings in refer-
ence group included: steatohepatitis (seven patients);
macrovesicular steatosis (three patients); perivenular
cholestasis (two patients); granulomatous hepatitis
(two patients); normal findings (one patient). Patients
with steatohepatitis or macrovesicular steatosis were
considered to have NAFLD. As expected, the cirrhosis
and hepatocarcinoma groups had significantly higher
levels of bilirubin and INR and lower levels of albumin.

mRNA expression of TLR2, TLR4, NF-!B, TNF-" and
COX-2

Quantifications of TLR2, TLR4, NF-kB, TNF-a and
COX-2mRNA are shown in Figure 1. In the hepatitis
group, expression of TLR2 (2.66" 0.69, P¼ 0.04) and
TLR4 (3.11" 0.79, P¼ 0.03) were greatly increased.

Table 2. Baseline characteristics of patients

Group parameter Reference Hepatitis Cirrhosis Hepatocarcinoma

n 15 22 14 10

Age 48" 5 41" 2 48" 3 72" 2

Male/female 8/7 10/12 9/5 7/3

AST (U/l) (10-36U/l)1 50" 7# 33" 4# 80" 14 35" 6#

ALT (U/l) (10-30U/l)1 81" 10 44" 6*,# 108" 26 29" 5*,#

Bilirubin (mg/dl) (0.2-1.0mg/dl)1 0.57" 0.15 0.59" 0.07 1.20" 0.18§ 1.43" 0.10§

Albumin (g/dl) (3.5–5.2 g/dl)1 4.4" 0.1 4.5" 0.1 3.9" 0.2§ 3.6" 0.3§

INR 1.04" 0.02 1.08" 0.02 1.20" 0.03§ 1.22" 0.02§

HBsAg+ – 10 7 4

HBeAg+/HBeAg- – 1/9 0/7 0/4

HBV DNA load (IU/ml) – 3091 (<200–>
20000000)

2325340 (3300–>
20000000)

4300340 (2900–>
20000000)

HCVAb+ – 12 7 6

HCV genotype 1/2/3/4 – 7/3/0/2 4/1/1/1 5/0/0/1

HCV RNA load (IU/ml) – 834037 (9232
–19907580)

706025 (174044
–4803266)

804029 (182055-
#4803266)

METAVIR Grade A0/A1/A2/A3 – 0/13/8/1 0/0/8/6 –

METAVIR Stage F0/F1/F2/F3/F4 – 6/10/6/0/0 0/0/6/8 –

Values are presented as mean" SEM or as median and range according to the type of distribution. 1Normal range. *P< 0.05 vs reference group;
#P< 0.05 vs cirrhosis group; §P< 0.05 vs reference and hepatitis groups.
ALT¼alanine aminotransferase, AST¼aspartate transaminase, INR¼XXX, HBV¼ hepatitis B virus, HCV¼ hepatitis C virus.

4 Innate Immunity 0(0)
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This was associated with increased expression of
NF-kB (2.42! 0.31, P¼ 0.0003), TNF-a (3.24! 0.79,
P¼ 0.02) and COX-2 (2.47! 0.36, P¼ 0.003).
Compared to the reference group, this increased inflam-
matory profile (with exception of NF-kB) persisted in
the cirrhosis group (TLR2: 2.14! 0.5, P¼ 0.04; TLR4:
1.74! 0.27, P¼ 0.008; NF-kB: 1.34! 0.17, P¼ 0.3;
TNF-a: 1.73! 0.28, P¼ 0.009; COX-2: 1.8! 0.35,
P¼ 0.04), despite a global, but not significant (except
for NF-kB), decrease in expression of all the genes
when compared with the hepatitis group. In the hepa-
tocarcinoma group, all samples were positive for all
studied genes. Compared with the reference group,
the hepatocarcinoma group presented a higher
mRNA expression of COX-2 (1.63! 0.15; P¼ 0.02),
similar to the hepatitis and cirrhosis groups, and

lower mRNA expression of TLR2 (0.48! 0.15),
TLR4 (0.54! 0.10), NF-kB (0.52! 0.12) and TNF-a
(0.52! 0.12; P¼ 0.01, all genes). There were no differ-
ences between chronic hepatitis B or C patients
(P> 0.05, all genes). We did not find any difference or
tendency when comparing the genetic profile between
F0, F1 or F2 patients (P> 0.05, all genes). No correla-
tion was seen between mRNA expression of any gene
and viral load, necroinflammatory activity or transam-
inases levels.

Immunohistochemical evaluation of TLR2 and TLR4

All the samples, including those from the hepatocarci-
noma group, were positive for TLR2 and TLR4.
Compared with the reference group, TLR2 and TLR4
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Figure 1. mRNA quantification of TLR2, TLR4, NF-kB, TNF-a and COX-2, in the reference (mainly composed of patients with
NAFLD), hepatitis (composed of patients with chronic hepatitis B or C), cirrhosis (composed of patients with post-chronic hepatitis B
or C cirrhosis) and hepatocarcinoma (composed of patients with post chronic hepatitis B or C cirrhosis-related hepatocarcinoma)
groups. Levels of mRNA are expressed as arbitrary unit (AU) set as the average value of control group after normalization for
GAPDH. Results are presented as mean! standard error of mean (SEM). *P< 0.05 vs reference group; #P< 0.05 vs cirrhosis group;
§P< 0.05 vs hepatitis group.
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expression grade was maintained in the hepatitis group
and reduced in the cirrhosis and hepatocarcinoma
groups, while TLR2 and TLR4 expression intensity
was increased in the hepatitis and cirrhosis groups.
Moreover, in the reference group, cytoplasmic staining
of hepatocytes for TLR2 and TLR4 was very heteroge-
neous, while in the hepatitis and cirrhosis groups, hepa-
tocytes showed a diffuse cytoplasmic staining for TLR2
and TLR4. Compared with the hepatitis and cirrhosis
groups, TLR2 expression grade and intensity and
TLR4 expression grade were reduced, while TLR4
expression intensity was maintained in the hepatocarci-
noma group. In most samples of hepatocarcinoma
tissue there were well-differentiated areas with high
staining alternating with poorly differentiated areas
with low staining. There were no differences between
chronic hepatitis B or C patients (P> 0.05, all
proteins). These data are presented in Figure 2 and
Table 3.

Discussion

In the present study, we evaluated the expression of
TLR2 and TLR4 in liver samples from patients in
each stage of virus-induced hepatic IFC sequence. We
found increased TLR2 and TLR4mRNA and protein
expression in virus-induced chronic hepatitis and cir-
rhosis, and a maintained TLR2 and TLR4 protein
expression in virus-induced hepatocarcinoma.

Although there are several animal and in vitro stud-
ies implicating TLRs in the pathogenesis of hepatic IFC
sequence, studies using diseased human liver tissue are
scarce. Hepatic expression of TLR2 was shown to be
maintained in early- and late-stage biliary atresia25 and
HCV cirrhosis,26,27 increased in primary biliary cirrho-
sis (PBC) and non-alcoholic steatohepatitis (NASH),28

and decreased27 or maintained26 in alcoholic cirrhosis.
Hepatic expression of TLR4 was shown to be main-
tained in early- and late-stage biliary atresia25, alcoholic
and HCV cirrhosis,26,27 and increased in PBC28 and
NASH.28,29 Besides contradictory results, none of
these studies have evaluated simultaneously TLR
expression in different stages of liver disease.

To our knowledge the present study is the first to
evaluate hepatic TLR2 and TLR4 expression at differ-
ent stages of the virus-induced hepatic IFC sequence.
We found increased TLR2 and TLR4 mRNA and pro-
tein expression in virus-induced chronic hepatitis and
cirrhosis and a maintained TLR2 and TLR4 protein
expression in virus-induced hepatocarcinoma. Thus,
upregulation of TLR2 and TLR4 is an early, and per-
sistent, event in the virus-induced hepatic IFC
sequence.

Regarding TLR2 and TLR4 protein expression, the
differences between the groups were more evident in
terms of intensity of expression (which reflects the
level of expression per cell) than in terms of grade of

expression (which reflects the number of cells express-
ing the protein). The intensity of TLR2 and TLR4 pro-
teins expression was in line with TLR2 and TLR4
mRNA expression, while the grade of TLR expression
changed little between the groups, not accompanying
the changes in mRNA expression. This finding suggests
that the virus-induced hepatic IFC sequence is associ-
ated with changes in the level of TLR2 and TLR4 pro-
tein expression per cell and not with changes in the
number of cells expressing these proteins.

Interestingly, we found reduced TLR2 and TLR4
mRNA and protein expression in the hepatocarcinoma
group when compared with the hepatitis and cirrhosis
groups. Although we have no definite explanation for
the reduced expression of TLR2 and TLR4 in hepato-
carcinoma cells, we believe it is likely a consequence of
loss of differentiation of hepatocarcinoma cells. This is
suggested by the finding that in most samples of hepa-
tocarcinoma tissue there were well-differentiated areas
with high staining alternating with poorly differentiated
areas with low staining. This finding likely means that
at late stages of the hepatic IFC sequence, the role of
these receptors in this sequence becomes smaller.

However, our study has some limitations. Firstly,
most patients included in the reference group have evi-
dence of NAFLD and it was demonstrated that
NAFLD is associated with increased hepatic TLR2
and TLR4mRNA expression.28,29 This suggests that
the increase in hepatic expression of TLR2 and TLR4
in chronic hepatitis, cirrhosis and hepatocarcinoma
may, in fact, be underestimated. Moreover, the hepati-
tis, cirrhosis and hepatocarcinoma groups included
both patients with HBV infection or HCV infection.
Nonetheless, statistical analysis revealed no difference
between HBV and HCV patients. Moreover, as we
included only patients with virus-induced chronic hep-
atitis in this study, our data cannot be generalized to
other chronic hepatic diseases that follow IFC
sequence. Another limitation of our study is that the
method we used for quantification of protein expres-
sion was semi-quantitative. Although this could con-
tribute to the lack of difference in terms of grade of
protein expression, we were able to obtain significant
differences in terms of intensity of protein expression.
The validity of the protein quantification by this
method is supported by the overall agreement between
protein (grade of expression) and mRNA data.
Furthermore, the method was validated in a previous
study with consistent results.30

In the present study we have not explored the mech-
anisms underlying increased hepatic expression of
TLR2 and TLR4. Nonetheless, previous studies have
shown that HBV and HCV may upregulate TLR2 and
TLR4 through direct and indirect mechanisms. In vitro
studies have shown that HCV nonstructural protein
NS5A upregulates TLR4 expression and that HBeAg
upregulates TLR2 expression.23,31 In chronic hepatitis

6 Innate Immunity 0(0)



III.	
  TOLL-­‐LIKE	
  RECEPTORS	
  AND	
  LIVER	
  DISEASE	
  

	
  	
  	
  	
  	
  Role	
  of	
  	
  Innate	
  Immunity	
  Receptors	
  Toll-­Like	
  2	
  and	
  4	
  in	
  Gastrointestinal	
  Diseases	
   133	
  

XML Template (2012) [19.1.2012–6:02pm] [1–9]
{APPLICATION}INI/INI 436762.3d (INI) [PREPRINTER stage]

Figure 2. Immunohistochemical evaluation of TLR2 (left) and TLR4 (right). (A, B) Low power field magnification for TLR2 and TLR4
in the reference group (mainly composed of patients with NAFLD): there is a higher intensity staining in acinar zones 1 and 3 than in
acinar zone 2. (C, D) High power field magnification for acinar zone 2 in the reference group showing sparse cytoplasmatic staining.
(E, F) High and low power field magnification, respectively, in chronic hepatitis B or C (acinar zones 1 and 2) showing diffuse
cytoplasmatic staining (in contrast with A–D images). (G, H) Low power field magnification in post-chronic hepatitis B or C cirrhosis:
all hepatocytes are stained with a diffuse cytoplasmic staining. (I, J) Low power field magnification in post-chronic hepatitis B or C
cirrhosis-related hepatocarcinoma: low intensity staining in poorly-differentiated areas of hepatocarcinoma with multiple bizarre cells
(I) in contrast to nodular well-differentiated areas with high intensity staining in hepatocarcinoma cells (J). In most samples of
hepatocarcinoma tissue there were well-differentiated areas with high staining (J) alternating with poorly-differentiated areas with low
staining (I).

Soares et al. 7
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B and C, besides up-regulated expression of TLR2 and
TLR4 by the virus, other factors, such as augmented
exposure to their ligands, can also contribute to
increased activation of these TLRs, especially in later
stages of hepatic fibrosis and cirrhosis. In fact, several
studies have demonstrated that bacterial translocation
is increased in patients with cirrhosis, resulting in aug-
mented exposure of hepatic TLRs to their ligands.10,11

Herein, we did not search for liver cell-specific
expression of TLR2 and TLR4, but instead we have
focused on total hepatic mRNA expression and protein
expression of hepatocytes. This may be an important
issue as it has been demonstrated that HCV and HBV
may affect TLRs expression in a cell-specific manner.2–5

Nevertheless, the immunohistochemistry that we per-
formed in this study suggests that, at least in part,
this increase in TLRs expression occurs significantly
in hepatocytes.

Previous studies on human samples have shown that
hepatic expression of TLR2 and TLR4 in HCV cirrho-
sis was unchanged compared with the reference group,
which is in disagreement with our results.26,27 The rea-
sons for this disagreement are unclear, but our data are
consistent with a previous in vitro study showing that
hepatocyte-specific transgenic expression of the HCV
nonstructural protein NS5A upregulates TLR4 expres-
sion.23 Regarding chronic hepatitis B, Visvanathan
et al.31 have shown that expression of TLR2 on hepa-
tocytes and Kupffer cells was significantly reduced in
patients with HBeAg-positive chronic hepatitis B in
comparison with HBeAg-negative chronic hepatitis B
and controls, whereas it was significantly increased in
HBeAg-negative chronic hepatitis B compared with
controls. The level of TLR4 expression did not differ
significantly among the groups. Downregulation of
TLR2 was also demonstrated in HepG-2 cells trans-
duced with wild-type HBV (HBeAg-positive) but not
in cells transduced with pre-core mutant HBV
(HBeAg-negative). Regarding TLR2, our data are con-
sistent with the study by Visvanathan et al.31 as most of
our chronic hepatitis B patients were HBeAg-negative
and have increased TLR2. We could not compare
HBeAg-positive and HBeAg-negative patients owing
to the limited number of HBeAg-positive patients in
our study.

In order to clarify TLR2- and TLR4-induced proin-
flammatory genes expression we also studied NF-kB,

TNF-a and COX-2mRNA expression. We found that
hepatic TNF-a and COX-2mRNA expressions are
increased in virus-induced chronic hepatitis and cirrho-
sis, whereas hepatic NF-kB mRNA is increased in
virus-induced chronic hepatitis, but maintained in
virus-induced cirrhosis. This is an interesting finding
as these proinflammatory genes have been implicated
in hepatic inflammation, fibrogenesis and carcinogene-
sis interplay.1,32,33 Interestingly, hepatocarcinoma sam-
ples presented increased COX-2 expression, despite
lower expression of other studied genes, suggesting, in
line with previous studies, that this enzyme may have
an important role in hepatocarcinogenesis.33 Although
we have not investigated the functionality of TLR2 and
TLR4, increased expression of TLR2 and TLR4 pro-
teins and of NF-kB, TNF-a and COX-2 (key mediators
of TLR2 and TLR4 signaling pathway) mRNA expres-
sion suggest augmented signaling of TLR2 and TLR4.
When comparing hepatitis with cirrhosis we found a
tendency towards lower expression of inflammatory
genes mRNA; however, we cannot dismiss the possibil-
ity that this tendency is not related to a higher inflam-
matory cell infiltrate observed in the hepatitis group. In
fact, we did not find any clear tendency in the hepato-
cyte immunohistochemistry results, suggesting that the
difference, if any, between the two groups is not
significant.

In summary, in patients with HCV or HBV chronic
infection, hepatic expression of TLR2 and TLR4 is
increased in chronic hepatitis and cirrhosis and is main-
tained in hepatocarcinoma. This is associated with
increased TLR2- and TLR4-induced proinflammatory
gene expression. Overall, this study suggests that TLR2
and TLR4 may be key players in the human hepatic
IFC sequence associated with viral chronic hepatitis.
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Table 3. Immunohistochemichal evaluation of TLR2 and TLR4: grade and intensity of expression

Group parameter Reference (n¼ 15) Hepatitis (n¼ 22) Cirrhosis (n¼ 14) Hepatocarcinoma (n¼ 10)

TLR2 grade 3.0 3.0 2.87 (2.80–2.94) 2.2 (2.00–2.40)

TLR2 intensity 1.73 (1.55–1.91) 2.27 (2.17–2.37) 2.37 (2.25–2.49) 1.9 (1.73–2.07)

TLR4 grade 3.0 3.0 2.87 (2.80–2.94) 2.6 (2.44–2.76)

TLR4 intensity 1.8 (1.63–1.97) 2.41 (2.31–2.51) 2.44 (2.22–2.36) 2.1 (1.87–2.33)

Values are presented as mean (95%CI).
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CHAPTER IV – TOLL-LIKE RECEPTORS AND 

GASTRIC DISEASE 

“An army marches on its stomach”  

Napoleon Bonaparte (1769-1821) 
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A) INCREASED EXPRESSION OF TOLL-LIKE RECEPTORS 2, 4 AND 5 IN 

GASTRIC DYSPLASIA 
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Abstract TLRs are important innate immunity receptors.
Even though TLR2, 4 and 5 appear to be important for
Helicobacter pylori (HP) recognition, their role in the
evolution of gastritis to more advanced lesions is still
unknown. To compare the expression of TLR2, 4 and 5 in
normal gastric mucosa, HP+ gastritis, intestinal metaplasia,
dysplasia and adenocarcinoma. Immunohistochemistry for
TLR2, 4 and 5 was performed with anti-TLR2-TLR4-TLR5
antibodies in 117 histological samples of normal gastric
mucosa (n=22), HP+ gastritis (n=20), intestinal metaplasia
(n=33), dysplasia (mucosectomy specimens, n=20) and
intestinal type adenocarcinoma (surgery specimens,n=22);
quantification of expression was performed independently by

two pathologists taking into account the percentage of
positive epithelial cells and the degree of expression (zero
to three score). A statistically significant trend for progressive
increase of TLRs expression from normal mucosa to gastric
dysplasia was found (mean expression: normal mucosa 0.1;
gastritis 1.0; metaplasia 2.2; dysplasia 2.8, p<0.01). All
dysplasia samples presented more than 90% positive epithe-
lial cells with strong expression (2.8;95%CI2.7–3). There was
less TLRs expression in carcinomas (TLR2:1.0; TLR4:2.0
and TLR5:1.2, p<0.05) when compared with dysplasia, with
TLR4 being more expressed than TLR2 and 5 in these
lesions (p=0.03). A score of all markers’ expression of eight
leads to a low (4%) false positive rate in patients with
precancerous conditions. Progression of gastric lesions
associated with gastric carcinogenesis is associated with
increased TLRs expression. Gastric dysplasia presents a high
level of TLRs expression, suggesting that these receptors may
play a role in adenocarcinoma development.

Keywords Gastric pathology . Dysplasia .

Innate immunity receptors . TLRs

Introduction

The innate immune system by recognizing several con-
served microbial antigens is the first line of defense against
infection, initiating in this way protective immunological
responses [1, 2]. The toll-like receptors (TLRs) are the most
important class of pathogen-associated molecular patterns
(PAMPs) receptors, with ten different TLRs being ubiqui-
tously expressed in humans [2–5]. TLRs are membrane-
surface receptors consisting of a distinct leucine-rich repeat
(LRR) extracellular domain that confers specificity to the
receptor, and a conserved toll/interleukin 1 (IL1) receptor
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(TIR) intracellular domain [3, 4]. Of the several identified
TLRs described, the TLR2, TLR4 and TLR5 subtypes are
critically involved in immune responses to bacterial
infections, being abundantly expressed in immune cells
[6, 7]. In general, TLR2 recognizes PAMPs mainly from
Gram positive bacteria, TLR4 is the receptor for Gram
negative bacteria lipopolysacharide (LPS) and TLR5
recognizes bacterial flagellin [2, 8].

Helicobacter pylori (HP) is a Gram-negative bacterium
that adheres to the surface of gastric mucosa, causing
marked inflammation without invasion of gastric epithelial
cells [9]. It is believed that HP is a major risk factor for
intestinal-type gastric cancer. By promoting a chronic
gastric inflammatory state, HP appears to initiate a
carcinogenesis sequence that involves chronic gastritis,
intestinal metaplasia (IM), gastric dysplasia and, finally,
intestinal-type gastric adenocarcinoma [10–15]. However, it
appears that once this process begins it could be indepen-
dent of HP status since premalignant lesions such as IM
present irreversible genetic alterations that can promote
progression to cancer without HP presence [16–18].

It is clear that TLRs are essential for HP recognition and
subsequent innate and adaptive immunity against this bacteri-
um [19]. Several TLRs may play a role in gastric immuno-
logic response to HP [19]. TLR2 appears to be the receptor
responsible for most of the inflammatory process that occurs
as the result of HP infection [19–21]. However, other studies
suggest that TLR4 also play an important part in HP infection
by recognizing several HP antigens [22–24]. Concerning
TLR5, the data are contradictory with some studies suggest-
ing interaction between HP flagellin and this receptor[25, 26],
and others demonstrating that TLR5 is unresponsive to HP
flagellin [27–29]. Nevertheless, the role of these receptors in
gastric carcinogenesis may go beyond HP infection, since
they have been associated to different cancers [19].

Despite the importance of TLR in the inflammatory
activation to HP infection and in several oncogenic lines, its
role in the progression of the lesions associated with gastric
carcinogenesis remains largely unknown [19]. In the
present study, TLR2, TLR4 and TLR5 expression was
evaluated by immunohistochemistry in normal gastric
mucosa, chronic gastritis, intestinal metaplasia, gastric
dysplasia and in intestinal-type gastric adenocarcinoma in
an attempt to better understand the potential role of those
receptors in gastric carcinogenesis.

Material and Methods

Participants and Histological Samples

Data base of the institution, year 2004, was searched for
all the gastric lesions to be studied. A total of 20

samples per lesion were estimated to be necessary.
Samples of normal gastric mucosa (n=22), chronic active
HP gastritis (n=20), complete (n=16) and incomplete IM
(n=17) were obtained by endoscopy biopsy. Endoscopic
mucosectomy tissue specimens (n=20) were considered
for investigation of gastric dysplasia and surgical tissue
specimens (n=22) were considered for intestinal-type
gastric adenocarcinoma. HP was present in 13 IM (39%)
samples and in 5 (20%) mucosectomy samples. After
selection, all the samples (n=117) were reevaluated and,
whenever necessary, reclassified by an independent
pathologist.

The study protocol was approved by the Ethics Com-
mittee of Portuguese Oncology Institute, Porto.

Immunohistochemistry

Tissue specimens were fixed in 10% neutral buffered
formalin for 24 h and paraffin embedded. Deparaffinized
tissue slides were submitted to antigen retrieval using a
high temperature antigen unmasking technique in a water
bath, 95° in citrate buffer pH6.0, for 20 min. Endoge-
nous peroxidase activity was blocked by incubating the
slides with freshly prepared 0.5% hydrogen peroxide in
distilled water for 20 min. After washing the slides in
distilled water and PBS/0.05% Tween 20 solution,
immunostaining was performed using an immunoperox-
idase method according to de manufacturer’s instructions.
The slides were incubated with normal horse serum
(Vector Laboratories, Burlingame, CA,USA) 1/50 in
PBS-bovine serum albumin (BSA) 1% at room temper-
ature for 20 min in humid chamber. Sections were then
incubated with primary antibody at 4°C overnight. The
following primary antibodies were used: rabbit polyclon-
al antibody anti-TLR2 (H-175,1:50 dilution, Santa Cruz
Biotechnology, California, USA), rabbit polyclonal anti-
TLR4 (H-80, 1:100 dilution, Santa Cruz Biotechnology,
California, USA) and rabbit polyclonal anti-TLR5 (H-
127, 1:100 dilution, Santa Cruz Biotechnology, Califor-
nia, USA). The slides were then rinsed in PBS/0.05%
Tween 20 solution, and bound antibody was detected by
applying biotinylade secondary antibody (Vectastain
Universal Elite ABC Kit) for 30 min. After wash the
slides with PBS/0.05% Tween 20 solution the slides were
incubated with ABC reagent (Vectastain Universal Elite
ABC Kit) for 30 min. The slides were washed in PBS
and incubated for 7 min in 3,3-diaminobenzidine (DAB;
Sigma-Aldrich, USA) 0.05 g/PBS, 0.03%H2O2. Follow-
ing counterstaining with hematoxylin for 20 s, the slides
were washed for 4 min in water, dehydrated and mounted
with Entellan (Merck KGaA, Darmstadt, Germany).
Normal gastric mucosa and lymph node tissue were used
as negative and positive controls, respectively.

P. Pimentel-Nunes et al.
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Immunohistochemical Evaluation and TLRs Expression
Quantification

In order to quantify TLRs expression in tissue samples three
parameters were considered: 1. Sample positivity: A sample
was considered positive if gastric epithelial cells were clearly
stained by the antibody. The results were presented as a
proportion (positive samples/total samples of a specific
lesion); 2. Grade of expression: A score of 0 to 3 was
considered according to the number of epithelial cells stained
(0—no cells; 1—less than 10% of epithelial cells; 2—10–
75% cells; 3—more than 75% cells); 3. Intensity of
expression: A score of 0 to 3 was considered according to
a subjective evaluation of the intensity of stained cells (0—
no staining; 1—weak positive staining; 2—moderate positive
staining; 3—intense positive staining). The mean of the
grade with the intensity of expression was considered as the
final expression score.

All the samples were evaluated and quantified by two
independents pathologists.

Statistical Analysis

Data analysis was performed using the computer software
Statistical Package for Social Sciences-SPSS for Windows
(version 17.0). Data was presented as mean ± 95%
confidence interval (95%CI) or as a proportion of positive
samples. One way ANOVA and Student’s t test for paired
and unpaired data (or correspondent non-parametric test)
were used, when appropriate, for comparison between
groups. To test the difference of positivity among groups
a linear-by-linear association for the binary values was
used. In order to evaluate the tendency for increase or
decrease expression, t test for trend was used. Statistical
significance was set at p<0.05. Hypothesizing the use of
relative expression of TLR2, 4 and 5 to help in the
diagnosis of dysplasia or invasiveness, a score was then
calculated by the sum of the mean score for each marker,
varying between 0 and 9. The best cutoff for the diagnosis
of lesions as severe as dysplasia, for the diagnosis of
dysplasia and for the diagnosis of invasive cancer were
described and estimates of sensitivity and specificity for
each outcome calculated.

Results

Positivity of the Samples for TLRs Expression

Figure 1 depict the results of TLR2, 4 and 5 immunoex-
pression for the different tissue samples. The proportion of
positive samples in normal gastric mucosa was very low for
all TLRs (5–14%). When HP was present these values were

significantly higher (50–75%, p<0.01 Vs normal mucosa).
Almost all the metaplasia and all dysplasia samples were
TLRs positive (p<0.01 Vs normal or HP gastritis). When
carcinoma was considered, we found a significant decrease
of positive samples for TLR2 and TLR5 (55% and 64%,
respectively, p<0.05 Vs metaplasia or dysplasia) but not for
TLR4 (86%, p=0.08). This occurred because carcinoma
were more frequently positive for TLR4 than for TLR2 or
TLR5 (p<0.05).

TLRs Expression in the Different Gastric Lesions

In Fig. 2, TLRs expression in the different gastric lesions is
shown. Normal gastric mucosa weakly expressed all TLRs
(0.15; 95%CI 0.0–0.3). HP gastritis had increased TLRs
expression (five to ten fold higher expression for all TLRs, p<
0.001), still, with a weak expression (mean expression of 10%
gastric epithelial cells and weak intensity of expression in the
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majority of the samples (1.0; 95%CI 0.6–1.4)). TLRs were
strongly expressed in almost all areas of intestinal metaplasia
(>75% gastric epithelial cells and moderate intensity of
expression (2.2; 95%CI 1.8–2.6)), with no differences
between complete or incomplete metaplasia (2.1 vs 2.2, p=
0.8). There were also no differences between IM with or
without HP (2.2 vs 2.0, p=0.5). More important, in dysplasia,
TLRs expression was maximum in all areas (>90% gastric
epithelial cells, strong intensity of expression (2.8; 95%CI
2.7–3)) and clearly superior to all the other gastric lesions (p<
0.01). These results in dysplasia lesions were completely
independent of HP status (p=0.9). In intestinal-type
adenocarcinoma, some tumors had a high level of TLRs
expression in almost all the cells with a strong intensity.
Others, however, showed a very weak expression for one
or all TLRs. Nevertheless, TLR4 expression in tumors was
higher than TLR2 or TLR5 (2.0 Vs 1.0 or 1.2, respective-
ly, p<0.05). There was a statistical significant trend for

increase of TLRs expression from normal mucosa to
gastric dysplasia (p<0.01).

Cellular Distribution of TLRs

Gastric epithelium of normal mucosa, with or without HP,
expressed all TLRs in a polarized manner, particularly at
the basolateral membrane but also at the apical membrane
(Fig. 3a). On the other hand, metaplasia, dysplastic and
neoplastic epithelial cells expressed all TLRs diffusely and
homogeneously throughout the cytoplasm with no apparent
polarization (Fig. 3b–f).

Score for the Diagnosis of Dysplasia/Cancer Using TLRs
Relative Expression

When adding the relative expression of TLR 2,4 and 5, the
presence of a score of 1 seems to leads to a very low rate of

Fig. 3 Immunohistochemistry
images of the different lesions.
a HP+ gastritis—Weak to mod-
erate and polarized expression in
this case for TLR2 (similar to
the others TLRs); b Normal and
metaplasia—In the left, normal
mucosa with polarized and very
weak TLR5 expression, with the
transition in the right for intes-
tinal metaplasia with diffusely
and moderate to strong TLRs
expression; c (low power field)
and d (high power field) Gastric
dysplasia—In this mucosectomy
specimen we can see the rising
levels of TLR4 expression from
normal mucosa (down), meta-
plasia (right), to dysplasia (up)
that presents a very strong,
diffuse, expression in almost all
epithelial cells; e and f adeno-
carcinoma—Some tumors pre-
sented very weak expression (e)
and others presented a very
strong, diffuse expression (f), in
this case for TLR2

P. Pimentel-Nunes et al.
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false negative for lesions as severe as dysplasia. To
adequately identify dysplasia a score of 8 seems to be very
useful as it leads to a very low false positive rate (4%) in
patients with precancerous conditions and also to a low
false positive rate (missing invasiveness) when distinguish-
ing dysplasia from invasive cancer (Table 1). Figure 4
shows the respective Receiver Operating Curves.

Discussion

In the present study, TLR2, TLR4 and TLR5 immunoex-
pression was evaluated in gastric lesions associated with
gastric carcinogenesis. A significant increase of TLRs
expression from normal mucosa to gastric dysplasia was
found. Intestinal-type adenocarcinoma also presented sig-
nificant expression of these receptors, particularly for
TLR4.

Previous reports described TLRs expression in gastric
lesions [23, 24, 30, 31]. Similar to our study, Schmausser et
al. [31] suggested that HP augments TLRs expression in
gastric mucosa and that metaplasia and carcinoma had more
TLRs expression than normal mucosa. However, owing to a
low number of histologic samples, they were unable to
quantitatively compare TLRs expression between the
different gastric lesions. Our study clearly showed that
TLRs present a gradual increase of expression from normal
mucosa to gastric dysplasia, with these lesions presenting
more than 90% of epithelial cells with strong positivity for
these receptors. Moreover, contrarily to normal mucosa, IM
and dysplasia lesions presented diffuse positivity of these
receptors, which may suggest an easier activation of these
receptors.

Some limitations can be pointed to our study. First,
quantification of expression was done only by immunohis-
tochemistry. Second, the scores for TLRs expression were

Table 1 Score for the diagnosis of dysplasia and cancer obtained by adding the relative expression of TLR 2,4 and 5

Diagnosis N AUC (95%CI) Cutoffs Sensibility Specificity

At least dysplasia 117 0,75 (0,65-0,85) 1c 100 30

8c 40 96

Dysplasia vs other lesionsa 95 0,95 (0,91-0,99) 1c 100 30

8c 75 96

Invasive cancerb 42 0,94 (0,00-1,00) 1d 100 9

8d 91 75

a Patients with invasive cancer were excluded
b Among patients with neoplasia
c The cutoff presented means that individuals with less than that value in the Cumulative score would be considered as having no outcome (dysplasia),
whereas those with the cutoff value or more, would be considered with lesions as severe as dysplasia
d The cutoff value means that individuals with less than that value would have invasive cancer

Fig. 4 Receiver operating curves for the diagnosis of neoplastic lesions
(up) or Dysplasia versus other lesions excluding invasive adenocarci-
noma (down) using the cumulative score of TLRs expression

TLRs Expression in Gastric Lesions
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subjective. However, samples were evaluated by two
independent and expert gastrointestinal pathologists, that
come to similar results. On the other way, a strong aspect of
our study was the inclusion of mucosectomy samples. In
fact, in these samples we clearly observed all the spectrum
of gastric lesions, and consistently distinguished the
different levels of expression in these lesions, supporting
our results. Moreover, we have shown that a score obtained
by adding the relative expression of TLR 2,4 and 5 may
have diagnostic value since to adequately identify dysplasia
a score of 8 was very useful leading to a very low false
positive rate (4%) in patients with precancerous conditions
and also to a low false positive rate (missing invasiveness)
when distinguishing dysplasia from invasive cancer.

What can we learn from these results? In order to
maintain gastrointestinal homeostasis it appears that gastric
epithelium, similar to colonic epithelium, has a very low
expression of TLRs, fundamentally confined to the baso-
lateral membrane [32–34]. HP appears to initiate a cascade
that leads to chronic infection and increase TLRs expres-
sion in gastric epithelial cells. Chronic infection promotes
phenotypic change to gastric IM, which, as we have seen,
has a high and diffuse TLRs expression. We can speculate
that at this phase the presence of HP is not absolutely
necessary for epithelial stimulation. Actually, gastric epi-
thelium is exposed daily to innumerous bacteria that,
despite not being able to initiate a gastric infection like
HP, have the potential to stimulate these diffusely overex-
pressed receptors. In fact, some studies show that, when
stimulated, these receptors lead to the production of several
cytokines and growth factors as well as to an increase in
COX-2 expression, conferring an important oncogenic
potential to these receptors [35, 36]. Dysplasia, by present-
ing even more TLRs expression, can accelerate these
processes, leading to the development of gastric adenocar-
cinoma. Confirming the potential role of these receptors in
the progression of gastric lesions, some studies associated
TLR4 and TLR2 polymorphisms with the severity of
gastric lesions [37–41]. Future studies should evaluate if
blockage of TLRs can delay progression of lesions and
carcinoma development.

Concerning adenocarcinoma, we found that a large
number of tumors significantly express these receptors,
particularly TLR4. Others showed that TLRs stimulation in
gastric tumor cells can induce several gastric carcinoma
promoting factors leading to proliferation and progression
of gastric cancers [42–44]. Taking together these observa-
tions, it is possible that TLRs expression in gastric tumors
can influence prognosis and that antagonists of these
receptors can have therapeutic value. Future studies should
have these aspects in consideration.

In conclusion, progression of gastric lesions associated
to gastric carcinogenesis is accompanied by a progressive

increase of TLRs expression in gastric epithelial cells.
Gastric dysplasia presents a very high level of TLRs
expression, suggesting that these receptors may have a role
in carcinoma development. Adenocarcinomas also present a
significant expression of these receptors, which may
influence tumoral progression. Molecular and functional
studies are necessary to clarify the role of these receptors in
gastric carcinogenesis.
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Abstract

Background: Toll-like receptors (TLR) are essential for Helicobacter pylori

(HP) recognition. Their role in the progression of gastric lesions leading to

cancer is not established.

Aim: To evaluate for the first time in humans the expression of TLR2, TLR4,

and TLR5, as well as the expression of other related molecules in the entire

sequence of gastric lesions.

Methods: Biopsy samples (n = 80, 48% HP+) from normal mucosa, HP gas-

tritis, metaplasia, dysplasia or adenocarcinoma were obtained from 44

patients. mRNA quantification of TLR2, TLR4, TLR5, Toll-interacting protein

(TOLLIP), PPAR-c, NF-jB, TNF-a, COX-1, COX-2, and CDX-2 was performed

by real-time RT-PCR. TLR2, TLR4, and TLR5 protein expression was quanti-

fied by immunohistochemistry.

Results: When compared to normal mucosa (1.0 arbitrary unit (AU)), HP

gastritis presented higher expression of TLR2 (2.23 ± 0.36 AU), TLR4

(1.92 ± 0.40 AU) and TNF-a (2.14 ± 0.50 AU) and lower TOLLIP and PPARc
expression (0.72 ± 0.12 AU, p < .05 all genes). Metaplasia and dysplasia/car-

cinoma presented higher expression of TLR2 (1.66 ± 0.46 and 1.48 ± 0.20 AU,

respectively, p < .05), lower expression of TOLLIP (0.66 ± 0.09 and 0.52 ± 0.04

AU, p < .05) and PPARc (0.73 ± 0.12 and 0.63 ± 0.10 AU, p < .05). The signifi-

cant trend for decrease in TOLLIP and PPARc was associated with increasing

levels of CDX-2 from normal mucosa to carcinoma (p < .05), translating that in

diffuse and higher TLRs protein expression (p < .05).

Conclusion: Gastric carcinogenesis is associated with decreasing levels of

TLRs inhibitors and elevated TLRs levels throughout all the spectrum of

lesions. Future studies should investigate if modulation of these receptors

activity may influence gastric carcinogenesis and tumor progression.

Gastric cancer is still one of the most common cancers in

the world being the fourth most common in men and

the fifth in women. It remains a high lethal cancer repre-

senting 10% of all deaths for cancer [1,2]. Although

multiple factors may play a role in cancer development,

gastric cancer is considered the number one infection-

related cancer in the world with almost 75% of all gastric

cancers being attributable to Helicobacter pylori (H. pylori)

infection [3]. Indeed, in developed countries, gastric

cancer rates have decreased substantially probably

because chronic H. pylori infection is being actively con-

trolled, confirming H. pylori as the main risk factor for

this tumor [4,5].

H. pylori is a Gram-negative bacterium that adheres to

the surface of gastric mucosa, interacting with several

innate immunity receptors such as Toll-like receptors

(TLRs), and without invasion of gastric epithelial cells,

it causes marked inflammation of the mucosa that

© 2012 Blackwell Publishing Ltd, Helicobacter 1
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perpetuates as a chronic gastric inflammatory state [6,7].

In that way, H. pylori is considered to be the initiator of

the Correa cascade of gastric carcinogenesis that involves

chronic gastritis, intestinal metaplasia, gastric dysplasia

and, finally, intestinal-type gastric adenocarcinoma [8,9].

Toll-like receptors have an important role in gastric

carcinogenesis not only because they are essential for

the bacteria recognition, mainly TLR2 and TLR4, but

also because they appear to be overexpressed in the late

stages of gastric carcinogenesis [7,10–15]. Indeed, once
activated these receptors initiate inflammatory pathways

that when chronically activated, such as in chronic gas-

tritis, may acquire oncogenic potential [16–22]. For that
reason, under normal physiologic state the expression of

these receptors in the gastrointestinal mucosa appears to

be low and the expression of several TLR-antagonists,

like Toll-interacting protein (TOLLIP) and PPARc
appears to be high in order to prevent inadequate

inflammatory responses to nonpathogenic antigens

[7,23–35]. Confirming the role of TLRs in gastric cancer,

some studies associate polymorphisms of these receptors

to gastric preneoplasic and neoplasic lesions [36–39].
Although our group and others have shown that at

late stages of gastric carcinogenesis TLRs are overex-

pressed, no single study has simultaneously studied

TLRs and their interacting molecules expression

throughout the entire cascade of gastric carcinogenesis

[11–13,40]. Therefore, in this study, we evaluated for

the first time in humans the expression of TLR2, TLR4,

and TLR5 in all the lesions of gastric carcinogenesis,

from normal mucosa to adenocarcinoma. The expres-

sion of NF-jB, TNF-a, COX-1, COX-2, CDX-2 (factors

induced by TLRs activation) as well as TOLLIP and

PPAR-c (TLRs antagonists) was also evaluated to

characterize their association with TLRs expression.

Materials and Methods

Patients and Biologic Samples

This cross-sectional study included patients from Portu-

guese Oncology Institute of Porto. The study protocol

respected the ethical guidelines of the 1975 Declaration

of Helsinki and was approved by the Ethics Committee

of Portuguese Oncology Institute of Porto. Informed

consent was obtained from each patient.

Our institution is a tertiary center to which patients

with preneoplastic or superficial gastric lesions are

referred and treated with minimally invasive techniques

such as endoscopic submucosal dissection [41]. Patients

referred for upper gastrointestinal endoscopy with

40 years or more were recruited consecutively during

2011. Hereditary syndromes (confirmed or suspicion

of), upper gastrointestinal bleeding as indication for the

procedure, oral anticoagulation or hematologic diseases,

other active oncologic disease, pernicious anemia or

other known benign (e.g., Ménétrier disease) or malign

(e.g., lymphoma) gastric pathologies were exclusion cri-

teria. Six different lesions were considered: normal gas-

tric mucosa; normal mucosa with H. pylori gastritis;

gastric intestinal metaplasia with or without H. pylori

gastritis; dysplastic lesions; and adenocarcinoma of the

intestinal type. Gastric atrophy by itself was not consid-

ered because the reproducibility and interobserver cor-

relation for the histopathologic diagnosis of these lesions

is low and there is no endoscopic method to accurately

identify atrophy [42]. To correctly identify the different

lesions, all patients underwent upper gastrointestinal

endoscopy using a high-resolution (HR) Olympus endo-

scope with narrow band imaging (NBI) (EVIS EXERA II

video system center GIF-180; Olympus, Tokyo, Japan)

and a new recently developed NBI endoscopy classifica-

tion with high accuracy for gastric lesions was used,

with the specimen being collected with biopsy forceps

under direct NBI visualization [43]. The diagnosis was

always confirmed with histology. If there were discrep-

ancies between NBI endoscopy and histology (with the

exception of H. pylori status when histology was always

considered the gold standard), the sample was not con-

sidered for analysis to prevent false positives or false

negatives. Moreover, samples were considered as nor-

mal mucosa both at NBI and histology but positive for

CDX-2 expression were also excluded to prevent that

microscopic areas of intestinal metaplasia would be

included as normal mucosa. In every patient, at least

two biopsy samples of the same area (one for molecular

analysis and the other for histologic/immunohistochem-

ical evaluation) were obtained. Whenever possible, a

pair of samples was obtained from each different lesion

observed. One of the biologic samples was immediately

placed in RNAlater (Qiagen, Valencia, Santa Clarita;

California, USA) and stored at !80 °C for mRNA isola-

tion and quantification; the other was fixed in 10% buf-

fered formalin and embedded in paraffin for histologic/

immunohistochemical evaluation. Gastric specimens

were evaluated for H. pylori infection using modified

Giemsa (2%) stain. Two expert gastrointestinal patholo-

gists made the final histologic diagnosis according to the

Sydney–Vienna classification [42,44].

mRNA Isolation and Quantification of TLR2, TLR4,
TLR5, NF-jB, TNF-a, TOLLIP, PPARc, COX-1, COX-2,
and CDX-2

These methods were described elsewhere [45–47].
Briefly, total mRNA was extracted using the TriPure

© 2012 Blackwell Publishing Ltd, Helicobacter2
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isolation reagent (Roche, Grenzach, Germany) and

gene quantification made by two-step real-time RT-

PCR. Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) mRNA levels were similar in all experimental

groups, which enabled the use of this gene as internal

control. Specific PCR primers pairs for the studied genes

(GAPDH, TLR2, TLR4, TLR5, NF-jB, TNF-a, TOLLIP,

PPARc, COX-1, COX-2, and CDX-2) are presented as

Supporting information. Results of mRNA quantifica-

tion were expressed as an arbitrary unit (AU) set as the

average value of control group (normal mucosa), after

normalization for GAPDH, or as the ratio gene/GAPDH.

Immunohistochemical Evaluation of TLR2, TLR4,
and TLR5

Our immunohistochemical protocol was previously

described [13,42,45]. Briefly, tissue specimens were

fixed in 10% neutral buffered formalin for 24 hours

and paraffin embedded. Deparaffinized tissue slides

were submitted to antigen retrieval using a high-tem-

perature antigen-unmasking technique. The following

primary antibodies were used: rabbit polyclonal anti-

body anti-TLR2 (H-175, 1 : 50 dilution; Santa Cruz

Biotechnology, CA, USA), rabbit polyclonal anti-TLR4

(H-80, 1 : 100 dilution; Santa Cruz Biotechnology), and

rabbit polyclonal anti-TLR5 (H-80, 1 : 100 dilution;

Santa Cruz Biotechnology). Bound antibody was

detected by applying biotilynated secondary antibody

(Vectastain Universal Elite ABC Kit, Peterborough,

United Kingdom) for 30 minutes. Samples without the

primary antibodies were considered as negative con-

trols. Normal colon mucosa and lymph node tissue

were additionally used as negative and positive con-

trols, respectively (controls images presented as Sup-

porting information). To quantify TLRs expression in

tissue samples, two parameters were considered: 1,

Grade of expression: A score of 0–3 was considered

according to the number of epithelial cells marked (0:

no cells; 1: <30% of epithelial cells; 2: 30–75% cells; 3:

more than 75% cells); 2, Intensity of expression: A score

of 0–3 was considered according to a subjective evalua-

tion of the intensity of marked cells (0: no immuno-

staining; 1: weak positive staining; 2: moderate positive

staining; 3: strong positive staining). All the samples

were evaluated and quantified by two independent

pathologists.

Statistical Analysis

Data analysis was performed using the computer soft-

ware Statistical Package for Social Sciences (SPSS, IBM

Corporation, Armonk, New York, USA) for Windows

(version 17.0). Data are presented as mean ± standard

error of mean (SEM), as median and range or as a pro-

portion, according to the type of distribution. One-way

ANOVA and Student’s t-test for paired and unpaired data

(or correspondent nonparametric test) were used for

comparison between groups and lesions. When justified

chi-square test was used for the comparison of propor-

tions. Stratified analysis according to gender, age, and

gastric area was carried out for all the genes and data

presented separately when appropriate. To evaluate the

tendency for increase or decrease expression, t-test for

trend (ANOVA with polynomial function analysis) was

used. Statistical significance was set at p < .05.

Results

Baseline Characteristics of Patients and
Specimens Included in the Study

The baseline characteristics of patients are shown in

Table 1. A total of 44 patients were included in the

study. A median of two pairs of biopsies samples (range

1–6) for analysis was obtained per patient. In agree-

ment with previous report, the endoscopic NBI patterns

Table 1 Baseline characteristics of patients (n = 44) and endoscopic

and histologic diagnosis

Patients Total n = 44

Male sex, n (%) 26 (59)

Age, median (range), years 67 (41–88)

Number of biopsies, median (range) 4 (2–12)

Indications for upper gastrointestinal endoscopy, n

Dyspepsia 12

Follow-up/previous diagnosis of dysplasia 8

Follow-up after precursors conditions (metaplasia) 6

Follow-up after gastric mucosectomy 4

For gastric mucosectomy 6

For cancer biopsy 4

Other (e.g., gastroesophageal reflux disease) 4

Main endoscopic findings, n

Gastric superficial lesions 10

Normal 13

Papular erythematous gastritis 8

Gastric cancer 6

Gastric irregularity or scar 5

Erosive gastritis 2

Histologic diagnosis per patient, n

Normal mucosa (antrum and body) 12

Intestinal metaplasia antrum (normal body) 10

Intestinal metaplasia corpus and antrum 6

Dysplasia (one or more areas) 10

Adenocarcinoma (one or more areas) 6

Helicobacter pylori infection 21 (48%)

© 2012 Blackwell Publishing Ltd, Helicobacter 3
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strongly correlated with histology (>90% agreement for

normal, metaplasia or dysplasia/cancer) but only mod-

erate correlation with the H. pylori status (62% of accu-

racy) [43]. Only two samples considered as normal

mucosa expressed CDX-2 and they were not included

in the analysis (curiously, NBI patterns suggested the

possibility of small areas of intestinal metaplasia in

those samples). At the end, a total of 22 pairs of frag-

ments of normal mucosa, 17 pairs of normal mucosa

with H. pylori gastritis, 18 of intestinal metaplasia (eight

with and 10 without H. pylori), 15 pairs of gastric dys-

plasia, and eight of adenocarcinoma were collected for

molecular analysis.

mRNA Expression of TLR2, TLR4, TLR5, NF-jB,
TNF-a, TOLLIP, PPARc, COX-1, COX-2, and CDX-2

We did not find any statistically significant differences

in genetic expression between gastric segments, gender

or age and for that reason these factors were not

considered in the per lesion analysis. The most

expressed genes in normal mucosa were TOLLIP (TOL-

LIP/GAPDH = 3.62 ± 0.44) and PPARc (PPARc/GAP-
DH = 3.27 ± 0.45). Considering the different TLRs

expression in normal mucosa, TLR5 was the most

expressed with positivity in 90% of the samples and

TLR5/GAPDH = 2.2 ± 0.6 compared with 70% sample

positivity for TLR2 (TLR2/GAPDH = 1.12 ± 0.36) and

TLR4 (TLR4/GAPDH = 0.85 ± 0.23). When comparing

the expression of the several genes in the different

lesions, independently of H. pylori status (Fig. 1), TLR2

and TLR4 were both overexpressed in intestinal meta-

plasia (TLR2 = 1.66 ± 0.46 AU, p < .05;

TLR4 = 1.18 ± 0.21 AU, NS) and in dysplasia/cancer

(TLR2 = 1.48 ± 0.20 AU; TLR4 = 1.34 ± 0.21 AU,

p < .05) when comparing with normal mucosa (both

genes = 1.0 ± 0.11 AU). This was associated with a sta-

tistically significant trend for decrease in TOLLIP

(p < .001) and PPARc (p < .05) from normal mucosa to

metaplasia and finally to dysplasia/carcinoma, with

these final lesions of gastric carcinogenesis presenting

almost half the expression of both genes (TOL-

LIP = 0.52 ± 0.05 AU; PPARc = 0.63 ± 0.10, p < .05).

When considering H. pylori infection (Fig. 2), in normal

mucosa H. pylori significantly increased TLR2

(2.23 ± 0.36 AU, p < .05) and TLR4 (1.92 ± 0.40,

p < .05) and in intestinal metaplasia H. pylori signifi-

cantly increased TLR4 (1.89 ± 0.45 vs 1.16 ± 0.21 in

intestinal metaplasia without H. pylori, p < .05).

H. pylori gastritis was also associated with lower TOLLIP

(0.66 ± 0.15, p < .05) and lower PPARc (0.73 ± 0.11,

p < .05). H. pylori significantly augmented TNF-a
expression both at the normal mucosa (2.14 ± 0.50,

p < .05) and in intestinal metaplasia (1.84 ± 0.57 vs

0.89 ± 0.31 in intestinal metaplasia without H. pylori,

p < .05). Moreover, TNF-a was also overexpressed in

dysplasia/cancer, independently of H. pylori status

(1.50 ± 0.26 AU, p < .05). Indeed, H. pylori did not alter

significantly any gene expression on lesions with dys-

plasia or carcinoma. Interestingly, H. pylori also

increased CDX-2 expression (Fig. 3) in intestinal meta-

plasia. In fact, there was a statistically significant trend

for increase in CDX-2 (p < .01) from intestinal metapla-

sia to intestinal metaplasia with H. pylori and finally to

dysplasia and carcinoma (Fig. 3).

Immunohistochemical Evaluation of TLR2, TLR4,
TLR5

In Table 2 and Fig. 4, TLRs expression in the different

gastric lesions is shown. Normal mucosa expressed all

TLRs in a polarized manner, particularly at the basolat-

eral membrane but also in the apical membrane in

Figure 1 Expression levels (mRNA) of the several genes in the differ-

ent lesions, independently of Helicobacter pylori status. Higher TLR2,

TLR4, and lower TLRs antagonists levels characterized more advanced

lesions. *p < .05 versus normal mucosa; #p < .05 versus intestinal

metaplasia. TLR, Toll-like receptors.

© 2012 Blackwell Publishing Ltd, Helicobacter4
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H. pylori gastritis. In contrast, metaplasia, dysplastic,

and neoplastic epithelial cells expressed all TLRs dif-

fusely and homogeneously throughout the cytoplasm

with no apparent polarization. In normal mucosa,

when positive, a mean of 10–50% of the cells were

positive, however, with a weak to moderate intensity

of expression. When H. pylori was present these values

were significantly higher (50–75% of cells positive,

p < .05), still, with a moderate intensity of expression.

In metaplasia, dysplasia, and adenocarcinoma, almost

all epithelial cells were strongly TLRs positive (p < .05

vs normal or H. pylori gastritis). Neither the presence of

H. pylori nor the fact of complete or incomplete intesti-

nal metaplasia changed these results. In dysplasia, TLRs

expression was maximum in all areas (>90% gastric

epithelial cells were positive with strong intensity of

expression). In intestinal-type adenocarcinoma, the

majority of the included tumors had a high level of

TLRs expression in almost all the cells with a strong

intensity. Two of them, however, showed some areas of

weak expression for one or all TLRs, particularly at the

profundity of the lesion in undifferentiated areas. There

was a statistically significant trend for increase in TLRs

expression from normal mucosa to dysplasia/carcinoma

(p < .05).

Discussion

In the present study, we described for the first time in

all the lesions of human gastric carcinogenesis the

molecular expression of TLRs and of several other mol-

ecules that are involved or that modulate their signal-

ing pathways. We have found that H. pylori early

induce a lower expression of TLRs inhibitors associated

with higher TLRs protein levels in normal mucosa and

that these changes persist throughout all the spectrum

of lesions of gastric carcinogenesis. Our results suggest

that increasing activation of these receptors, initially by

H. pylori but at later stages potentially by several other

PAMPs or DAMPs, may have an important role in

gastric carcinogenesis and tumor progression.

The intestinal type of gastric cancer (the most com-

mon form of gastric cancer) develops through a cascade

of well-defined and recognizable precursors known as

the Correa cascade for gastric carcinogenesis: inflamma-

tion; atrophy; metaplasia; dysplasia; carcinoma [8,9]. It

is now undisputable that H. pylori plays a pivotal role in

this cascade of lesions and for that reason it was classi-

fied as a type 1 carcinogen in 1994 by the WHO [48].

It is believed that the combination of a virulent bacte-

rium in a genetically susceptible host is associated with

more severe chronic inflammation and it is this inflam-

mation that at long term may lead to cancer [49–51].
Indeed, several studies associate IL-1B, IL-1 receptor

antagonist, IL-8, IL-10 and TNF-a polymorphisms to

the risk of gastric cancer, confirming the important role

Figure 2 Effect of H. pylori on normal mucosa and intestinal metapla-

sia. H. pylori significantly changed genetic profile (mRNA) on normal

mucosa with higher TLR2, TLR4, TNF-a and lower Toll-interacting pro-

tein (TOLLIP) and PPARc. In intestinal metaplasia, the effect was less

pronounced, nevertheless, it induced higher TLR4 and TNF-a. *p < .05

versus normal mucosa; #p < .05 versus intestinal metaplasia H. pylori-

negative. TLR, Toll-like receptors

Figure 3 Expression levels (mRNA) of CDX-2 from intestinal metapla-

sia without H. pylori to adenocarcinoma. There was a progressive

increase in CDX-2 from intestinal metaplasia without H. pylori to intes-

tinal metaplasia with H. pylori and finally to dysplasia and carcinoma.

© 2012 Blackwell Publishing Ltd, Helicobacter 5
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of inflammation as the link between H. pylori and can-

cer [52–57]. However, as H. pylori is not an invasive

bacteria, it appears that the reaction of the host mucosa

to the bacteria plays an essential role in inflammation.

In that way, as TLRs are essential for H. pylori recogni-

tion and subsequent innate and adaptive immunity,

they may be the crucial players in perpetuating this

chronic inflammation [7].

After the first contact with the gastric mucosa,

H. pylori interacts with several TLRs, with TLR2 being

the receptor responsible for most of the immunologic

reactions occurring as the result of infection [58,59].

This process of recognition and immunologic reaction

to H. pylori depends also in a minor extent of TLR4

that acts in synergy with TLR2 [14,15,60–63]. On the

other way, H. pylori flagellin appears to evade TLR5

recognition, although some initial studies suggested

interaction between H. pylori flagellin and this receptor

[58,64–67]. When activated these receptors initiate

intracellular signaling pathways that promote NF-jB
activation and production of different pro-inflamma-

tory mediators such as TNF-a, IL-1, and several others

inflammatory molecules [16–20]. Because TLRs are

intrinsically related not only to inflammation but also

to cell survival signaling and in that way to epithelial

regeneration and cell proliferation, chronic activation

of these receptors has been associated with tumorigen-

esis [21]. Indeed, our group and others previously

showed that gastric dysplasia is associated with a more

intense and diffuse cellular distribution of TLRs

[13,40]. Moreover, recent studies associate TLR2 and

TLR4 polymorphisms with the severity of gastric

lesions associated with H. pylori infection and also with

gastric cancer [36–38,68]. However, even though this

data suggest an important role of TLRs in the

multistep pathway to gastric cancer, scarce human

data elucidates the sequence of events through which

TLRs and H. pylori interact and promote progression of

gastric lesions.

In that line of thoughts, to our knowledge, our

study is the first one in humans that directly evaluated

TLRs gene and protein expression throughout the

entire Correa cascade of gastric carcinogenesis.

Although we did not consider gastric atrophy, in this

condition, the epithelial cells appear phenotypically

the same as normal mucosa and we observed on

immunohistochemistry that atrophic glands (without

metaplasia) had a similar profile to normal mucosa.

Our results allow us to create a potential sequence of

events from H. pylori gastritis to cancer involving pro-

gressive activation of TLRs (Fig. 5). When interacting

with normal mucosa H. pylori doubled the expression

of TLR2 and TLR4 but not TLR5, indirect evidence

that in fact H. pylori flagellin does not interact with

this receptor. Nevertheless, we did not find any differ-

ence of expression between the three TLRs on immu-

nohistochemistry. This may be because H. pylori also

induced 25% decrease in the expression of PPARc and

TOLLIP. Indeed, besides antagonizing several intracel-

lular kinases that are activated by TLRs, TOLLIP also

blocks TLRs complexes and promote traffic of synthe-

sized proteins into endosomes leading to TLR early

degradation [69–74]. So, as we have shown in colon

mucosa, this decrease in TOLLIP may be a crucial step

leading to a more intense and apical protein expres-

sion of all TLRs, independently of the degree of mRNA

expression [45]. We believe that the progressive acti-

vation of the overexpressed TLRs will eventually lead

to aberrant transcription of CDX-2 and phenotypic

change to intestinal metaplasia. This hypothesis is

Table 2 Immunohistochemical evaluation of TLR2, TLR4, and TLR5

Normal (n = 20)

Helicobacter pylori

gastritis (n = 14) Metaplasia (n = 15) Dysplasia (n = 14) Carcinoma (n = 7)

TLR2

Grade 0.53 (0.11) 1.49 (0.13)* 2.20 (0.14)*# 2.86 (0.10)*#§ 2.57 (0.20)*#§

Intensity 0.97 (0.10) 1.64 (0.13)* 2.20 (0.11)*# 2.79 (0.11)*#§ 2.64 (0.18)*#§

TLR4

Grade 0.53 (0.11) 1.42 (0.10)* 2.20 (0.14)*# 2.86 (0.10)*#§ 2.57 (0.20)*#§

Intensity 0.97 (0.10) 1.64 (0.13)* 2.20 (0.11)*# 2.79 (0.11)*#§ 2.71 (0.15)*#§

TLR5

Grade 0.58 (0.08) 1.35 (0.12)* 2.13 (0.17)*# 2.86 (0.10)*#§ 2.57 (0.20)*#§

Intensity 1.00 (0.07) 1.64 (0.13)* 2.27 (0.12)*# 2.79 (0.11)*#§ 2.64 (0.18)*#§

TLR, Toll-like receptors. Values are presented as mean (SEM);

*p < .05 versus normal mucosa;

#p < .05 versus H. pylori gastritis;

§p < .05 versus intestinal metaplasia.

© 2012 Blackwell Publishing Ltd, Helicobacter6
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supported by the study of Ikeda et al. [75] when they

show that, at least in biliary epithelium, TLRs and

NF-jB activation by PAMPs is essential to CDX-2 tran-

scription and phenotypic change to intestinal metapla-

sia. In our study, intestinal metaplasia presented a

different genetic profile when compared to normal

mucosa with almost half of the expression of TOLLIP

and PPARc and 1.2–1.5 times more TLR2 and TLR4

expression dispersed through the entire cell, indepen-

dently of H. pylori status. These results suggest that

intestinal metaplasia is clearly more reactive to several

PAMPs and might explain why this lesion is a preneo-

plastic condition. Nevertheless, our results suggest that

at this stage the mucosa is still reactive to H. pylori

because the presence of this bacterium not only dou-

bled TNF-a levels in the mucosa but also increased

TLR4 and CDX-2 expression. This is important because

CDX-2 has been associated with progression of gastric

lesions and cancer [76,77]. In this way, our results are

in agreement with the current guidelines concerning

gastric preneoplastic lesions that recommend H. pylori

eradication at this stage because even though it is not

likely that eradication will reverse intestinal metaplasia

to normal mucosa it can prevent progression of the

lesions [42,44]. Progressive activation of TLRs at

this stage will eventually lead to dysplasia, character-

ized in our study by half of TOLLIP expression and

A B

C D

E F

G H

I J

K L

M N

Figure 4 Toll-like receptors (TLRs) immunohistochemistry images of

the different lesions. In brackets the letter of the image and the

respective TLR being stained and amplification. Normal mucosa (A –

TLR2, 409; B – TLR4, 409; C – TLR5, 1009) – Normal glands with a

polarized basolateral staining and low intensity of expression; H. pylori

gastritis (D – TLR2, 1009; E – TLR4, 409; F, left – TLR5, 409) – epithe-

lial cells presented a more intense but still polarized TLR expression

when compared to normal mucosa; Intestinal metaplasia (G – TLR2,

1009; H – TLR4, 409; F, right – TLR5, 409) – Diffuse and intense TLR

expression throughout the cytoplasm with no apparent polarization.

In (F) we see a transition of H. pylori gastritis to intestinal metaplasia

and even in areas of gastritis the intensity of TLRs expression in intes-

tinal metaplasia (right) was in clear contrast with normal mucosa (left);

Dysplasia (I, up – TLR2, 1009; J – TLR4, 1009; K, up – TLR5, 409) –

Diffuse, homogenous and very strong intensity of TLR expression. In

(K) we see a transition of normal mucosa to intestinal metaplasia and

dysplasia with a growing intensity of TLR expression being evident

from normal mucosa (right and below) to intestinal metaplasia (left

and below) and then to dysplasia (up). In higher amplification (image

I), we see a transition of normal mucosa to dysplasia with the polar-

ized and low expression in normal mucosa (down) in clear contrast

with the diffuse and intense TLR expression of dysplasia (up); Intesti-

nal adenocarcinoma (L – TLR2, 1009; M, up – TLR4, 1009; N – TLR5,

1009) – The majority of adenocarcinomas in this study were well-dif-

ferentiated and presented a high and strong intensity of TLRs expres-

sion. In (M) we can see that TLRs expression in carcinoma (up) was in

clear contrast with normal mucosa (down).

© 2012 Blackwell Publishing Ltd, Helicobacter 7
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consequently more and diffuse TLR expression

throughout the entire cell. At this point, H. pylori did

not alter the genetic profile of the cell even though

we found increased TNF-a levels in dysplasia and can-

cer. Probably, this intense and diffuse expression of

TLRs make the cell more reactive to several PAMPs

and even DAMPs and, so the effect of H. pylori

becomes negligible at this stage. Interestingly, the pro-

gression of gastric lesions was associated with increas-

ing levels of CDX-2. Although there is some

controversy concerning the role of CDX-2 in gastric

carcinogenesis, our results are in agreement with the

study of Kang et al. [77] and clearly suggest an impor-

tant role of CDX-2 in the progression of intestinal

metaplasia, dysplasia, and even cancer.

In conclusion, our results suggest that TLRs signaling

pathways may play an important role in gastric carcino-

genesis and that they might be the link between

H. pylori and cancer. A strategy of modulation of TLRs,

either by blocking TLRs or by increasing TOLLIP levels,

may be effective for the prevention of progression of

gastric lesions. Considering the high TLRs expression in

gastric cancer, blocking TLRs activation may also have

an important role in cancer treatment. As modulation

of TLRs activation may be accomplished by interven-

tional measures, future studies should evaluate the

clinical value of these novel findings.
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CHAPTER V – TOLL-LIKE RECEPTORS AND 

COLON DISEASE 

“Our bowels are outside of us – just a tucked-in portion” 

William Osler (1849-1919) 
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A) DECREASED TOLL-INTERACTING PROTEIN AND PEROXISOME 

PROLIFERATED-ACTIVATED RECEPTOR γ ARE ASSOCIATED WITH 

INCREASED EXPRESSION OF TOLL-LIKE RECEPTORS IN COLON 

CARCINOGENESIS  
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Decreased Toll-interacting protein and peroxisome
proliferator-activated receptor g are associated with
increased expression of Toll-like receptors in
colon carcinogenesis
Pedro Pimentel-Nunes,1,2 Nádia Gonçalves,1 Inês Boal-Carvalho,1 Luı́s Afonso,3

Paula Lopes,3 Roberto Roncon-Albuquerque Jr,1 João-Bruno Soares,1

Elisabete Cardoso,2 Rui Henrique,3 Luı́s Moreira-Dias,2 Mário Dinis-Ribeiro,2,4

Adelino F Leite-Moreira1

ABSTRACT
Background Animal data suggest that Toll-like receptors
(TLR) may play an important role in colon carcinogenesis.
Studies in humans to support that hypothesis are scarce.
Aim To evaluate the expression of TLR2, TLR4 and TLR5,
and the expression of several other related molecules, in
different human colonic lesions.
Methods Colon biopsy samples from normal mucosa,
normal mucosa adjacent to lesion, adenoma or
sporadic carcinoma were obtained from 35 consecutive
patients undergoing colonoscopy. Quantification of
TLR2, TLR4, TLR5, Toll-interacting protein (TOLLIP),
peroxisome proliferator-activated receptor g (PPAR-g),
nuclear factor kB, tumour necrosis factor (TNF) a,
cyclooxygenase (COX) 1 and 2 mRNA was performed by
real-time reverse transcription PCR. TLR2, TLR4 and TLR5
protein expression was quantified by
immunohistochemistry.
Results When compared with normal mucosa (1.0
arbitrary unit (AU)), adjacent normal mucosa presented
higher expression of COX-2 (1.8660.3 AU, p¼0.01) and
TNFa (1.4460.18 AU, p¼0.04) and lower TOLLIP
expression (0.7560.05 AU, p¼0.004). Adenomas and
carcinomas presented higher expression of COX-2
(1.6360.27 and 1.3860.14 AU, p¼0.03 and p¼0.05,
respectively) and lower expression of TOLLIP (0.4460.04
AU, p<0.001), with diffuse and higher TLR protein
expression (p<0.001). Carcinomas also expressed
higher TLR2 (2.3160.32 AU, p¼0.006) and lower PPAR-
g (0.5660.12 AU, p¼0.003). There was a trend
towards decreased TOLLIP (p<0.001) and PPAR-g
(p¼0.05) from normal mucosa to adenoma/carcinoma.
Conclusions Persistently positive TLR expression and
lower expression of TLR inhibitors was associated with
higher TLR protein levels throughout the spectrum of
lesions of colon carcinogenesis. Increasing activation of
these receptors by bacteria may play a crucial role in
colon carcinogenesis and tumour progression.

Colorectal cancer (CRC) is one of the most
common cancers in the world. Its incidence
appears to be growing, particularly in developed
countries.1e3 Three distinct molecular pathways
for colorectal tumorigenesis have been described,
namely chromosomal instability, microsatellite
instability and epigenetic pathways.4 5 Conversely,
other factors such as cyclooxygenase (COX) 2

and peroxisome proliferator-activated receptor g
(PPAR-g), by promoting genomic instability and
controlling cell growth, may be important for the
progression of these extensively described muta-
genic pathways.6e8

Toll-like receptors (TLR) are the most important
family of innate immunity receptors, with 10
different TLR being ubiquitously expressed in
humans.9 10 In general, the most important for
bacterial recognition are TLR2, which recognise
pathogen-associated molecular patterns (PAMP)
from Gram-positive bacteria, TLR4, the receptor for
Gram-negative bacteria lipopolysacharide and
TLR5, which recognise bacteria flagellin.11e13

Activation of these receptors initiates intracellular
signalling pathways that promote the production
of different pro-inflammatory mediators such as
tumour necrosis factor a (TNFa) and COX-2
through activation of nuclear factor kB (NF-kB)
and mitogen-activated protein kinases.9 14e17 In
order to prevent an inflammatory response to the
million different commensal PAMP, a strict regula-
tion of TLR activation appears fundamental for
gastrointestinal homeostasis. This may be done in
a number of ways such as the downregulation of
surface expression and compartmentalisation of
TLR, proteolytic degradation of TLR or its signal-
ling molecules and high expression of several TLR
antagonists, such as Toll-interacting protein
(TOLLIP) and PPAR-g (figure 1).18e31

By promoting chronic inflammation and conse-
quently predisposing to genetic instability, inflam-
matory bowel disease (IBD) is an established risk
factor for CRC.32 33 TLR may be the link between
IBD and CRC because in induced colitis murine
models, bacterial-induced inflammation through
TLR/MyD88 signalling appears essential for colon
carcinogenesis.14 34 35 In contrast, data linking TLR
to sporadic CRC are scarce.23 Nevertheless, studies
showing that rats given carcinogens under sterile
conditions are protected from CRC,36 that cancer
and adenoma present higher bacteria levels than
normal mucosa,37 and that TLR activation
(particularly TLR2 and TLR4) of colon cells
induce the enhanced expression of several
oncogenic factors14 35 38 39 suggest that TLR
response to bacterial PAMP may play a role in colon
carcinogenesis.23
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We hypothesised that common CRC risk factors, such as diet
and obesity, may change normal microbiota equilibrium with
modification of the physiological expression of TLR and/or their
antagonists, inducing a subclinical pro-inflammatory state that
may facilitate carcinogenesis. Therefore, in the present study,
we evaluated the expression of TLR2, TLR4 and TLR5 in
different human colon lesions, from normal mucosa to CRC.
The expression of NF-kB, TNFa, COX-1, COX-2 (factors
induced by TLR activation) as well as TOLLIP and PPAR-g (TLR
antagonists) was also evaluated in order to characterise their
association with TLR expression.

MATERIALS AND METHODS
Patients and biological samples
This cross-sectional study included patients from Portuguese
Oncology Institute of Porto. The study protocol respected the
ethical guidelines of the 1975 Declaration of Helsinki and was
approved by the Ethics Committee of the Portuguese Oncology
Institute of Porto. Informed consent was obtained from each
patient.

Patients referred for colonoscopy aged 50 years or more were
recruited consecutively during 2010. Hereditary syndromes
(confirmed or suspicion of), IBD, diarrhoea as an indication for
the procedure, oral anticoagulation or haematological diseases,
other active oncological disease, previous or current pelvic
radiotherapy, endoscopic or histological inflammatory changes
and deficient bowel preparation were exclusion criteria. Three
groups of patients were defined: control (patients undergoing
colonoscopy for screening, with a normal total colonoscopy);
adenoma group (patients with history of adenoma or with at
least one adenoma identified in the procedure); cancer group
(patients with a history of CRC or CRC identified in the
procedure). Four groups of tissue samples obtained by endo-
scopic biopsy were considered and analysed: normal mucosa
(mucosa with normal endoscopic and histological appearance
with at least 5 cm distance from an adenoma or cancer suspi-
cious lesion); normal mucosa adjacent to a lesion (mucosa with
normal endoscopic and histological appearance within 3 cm
of a histological confirmed adenoma or cancer); adenoma

(endoscopic lesion compatible with an adenoma of more than
5 mm, confirmed by histology in the resected specimen); cancer
(endoscopic lesion compatible with a CRC, confirmed by
histology in the biopsy sample).
In every patient at least two biopsy samples (one for molec-

ular analysis and the other for histological and immunohisto-
chemical evaluation) were obtained for at least one normal
segment of mucosa, either from the caecum/ascendent colon,
transverse colon, left colon or rectum. Whenever possible a pair
of samples was obtained from each of these anatomical regions.
When a lesion (adenoma of more than 5 mm or CRC) was
identified an additional pair of samples was obtained from
normal mucosa within 3 cm of the lesion (adjacent normal
mucosa).
One of the biological samples was immediately placed in

RNAlater (Qiagen, Valencia, Santa Clarita; California, USA) and
stored at !808C for messenger RNA isolation and quantification;
the other was fixed in 10% buffered formalin and embedded in
paraffin for histological and immunohistochemical evaluation.

mRNA isolation and quantification of TLR2, TLR4, TLR5, NF-kB,
TNFa, TOLLIP, PPAR-g, COX-1 and COX-2
These methods were described elsewhere.40 Briefly, total mRNA
was extracted from tissue samples using the TriPure isolation
reagent (Roche, Grenzach, Germany). Two-step real-time reverse
transcription (RT)ePCR was used to perform relative quantifi-
cation of mRNA. For each studied mRNA molecule, standard
curves were generated from the correlation between the amount
of starting total mRNA and the PCR threshold cycle of graded
dilutions from a randomly selected sample from the control
group. For relative quantification of specific mRNA levels,
100 ng of total mRNA from each sample underwent two-step
real-time RTePCR. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA levels were similar in all experimental groups,
which enabled the use of this gene as an internal control. Specific
PCR primer pairs for the studied genes (GAPDH, TLR2, TLR4,
TLR5, NF-kB, TNFa, TOLLIP, PPAR-g, COX-1 and COX-2) are
presented as a supplement (available online only). Results of
mRNA quantification were expressed as an arbitrary unit (AU)
set as the average value of the control group, after normalisation
for GAPDH.

Immunohistochemical evaluation of TLR2, TLR4 and TLR5
Our immunohistochemical protocol was described previously.41

Briefly, tissue specimens were fixed in 10% neutral buffered
formalin for 24 h and paraffin embedded. Deparaffinised tissue
slides were submitted to antigen retrieval using a high temper-
ature antigen unmasking technique. Immunostaining was
performed using an immunoperoxidase method according to the
manufacturer ’s instructions. The slides were incubated with
normal horse serum (Vector Laboratories, Burlingame, Cali-
fornia, USA) 1/50 in phosphate-buffered salineebovine serum
albumin 1% at room temperature for 20 min in a humid
chamber. Sections were then incubated with primary antibody
at 48C overnight. The following primary antibodies were used:
rabbit polyclonal antibody anti-TLR2 (H-175, 1:50 dilution;
Santa Cruz Biotechnology, Santa Cruz, California, USA), rabbit
polyclonal anti-TLR4 (H-80, 1:100 dilution; Santa Cruz
Biotechnology) and rabbit polyclonal anti-TLR5 (H-80, 1:100
dilution; Santa Cruz Biotechnology). Bound antibody was
detected by applying biotilynated secondary antibody (Vectas-
tain Universal Elite ABC Kit, Peterborough,United Kingdom) for
30 min. Following counterstaining with haematoxylin, the slides
were washed, dehydrated and mounted with Entellan (Merck

Figure 1 Interaction of Toll-like receptors (TLR) with bacterial
pathogen-associated molecular patterns leads to nuclear factor kB (NF-
kB) activation and transcription of several pro-inflammatory molecules
such as tumour necrosis factor a (TNFa) and cyclooxygenase (COX) 2.
In the colon, under normal physiological conditions, high levels of
Toll-interacting protein (TOLLIP) and peroxisome proliferator-activated
receptor g (PPAR-g) block TLR signalling pathways being fundamental
for colon homeostasis. JNK, c-jun N-terminal kinase; LPS,
lipopolysacharide.
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KGaA, Darmstadt, Germany). Samples without the primary
antibodies were considered as negative controls. Normal gastric
mucosa and lymph node tissue were additionally used as nega-
tive and positive controls, respectively. In order to quantify TLR
expression in tissue samples two parameters were considered: (1)
Grade of expression: A score of 0e3 was considered according to
the number of epithelial cells marked (0, no cells; 1, <10% of
epithelial cells; 2, 10e75% cells; 3, more than 75% cells); (2)
Intensity of expression: A score of 0e3 was considered according
to a subjective evaluation of the intensity of marked cells (0, no
immunostaining; 1, weak positive staining; 2, moderate positive
staining; 3, strong positive staining). Immunohistochemical
evaluation was performed independently by two experienced
pathologists.

Statistical analysis
Data analysis was performed using the computer software SPSS
for Windows (V.17.0). Data are presented as mean6SEM, as
median and range or as a proportion, according to the type of
distribution. One-way analysis of variance and Student’s t test
for paired and unpaired data (or a corresponding non-parametric
test) were used for comparison between groups and lesions.
When justified the c2 test was used for comparison of propor-
tions. Stratified analysis according to gender was done for all
the genes and data presented separately when appropriate. In
order to evaluate the tendency for increased or decreased
expression, the t test for trend (analysis of variance with poly-
nomial function analysis) was used. Correlation between TLR
protein expression and the several genes mRNA expression was
evaluated by univariate analysis. Statistical significance was set
at p<0.05.

RESULTS
Baseline characteristics of patients
The baseline characteristics of patients are shown in table 1. A
total of 35 patients was included in the study. All included
patients were Caucasian. The age was similar between the
groups, with an age range of 51e89 years. The proportion of
men was higher in the adenoma and cancer group when
compared with the control group (p<0.01). Screening was the
indication for the procedure in 29%. A substantial proportion of
patients (31%) underwent the colonoscopy because of cancer,
the majority of whom for the exclusion of synchronous lesions.
A median of three pairs of biopsy samples (range 1e10) for
analysis was obtained per patient. At the end a total of 25 pairs
of fragments of normal mucosa, 28 adjacent to lesion, 21 of
adenoma and 14 of carcinoma were collected for molecular
analysis.

mRNA expression of TLR2, TLR4, TLR5, NF-kB, TNFa, TOLLIP,
PPAR-g, COX-1 and COX-2
Considering normal mucosa, we did not find any statistically
significant difference in genetic expression between segments,
gender or age. However, we did find a tendency for higher
expression of TOLLIP (1.160.08 vs 0.860.07 AU, p¼0.07), COX-
1 (1.2260.16 vs 0.7560.13 AU, p¼0.07) and TLR5 (1.1760.1 vs
0.7860.09 AU, p¼0.06) and for lower COX-2 (0.8860.1 vs
1.1460.1 AU, p¼0.1) in the women with normal mucosa when
compared with men. When considering all fragments of normal
mucosa (normal and adjacent to lesion normal mucosa), the
expression of TOLLIP was significantly higher (1.04+0.07 vs
0.79+0.05 AU, p¼0.004) and COX-2 significantly lower (1.1
+0.15 vs 1.7+0.26 AU, p¼0.04) in women. When comparing
normal mucosa between groups (controls vs patients with
adenoma and carcinoma), controls expressed more COX-1
(1.460.17 vs 0.7460.1 AU, p¼0.006) but also more TOLLIP
(1.1660.07 vs 0.8860.07 AU, p¼0.02) and a tendency for more
PPAR-g (1.1560.09 vs 0.8960.09 AU, p¼0.08), with no differ-
ences in the other studied genes. Quantification of all genes in
the different lesions is shown in figure 2. The genetic profile of
adjacent normal mucosa was different from that of normal
mucosa with higher expression of COX-2 (1.8660.3 vs 160.08
AU, p¼0.01) and TNFa (1.4460.18 vs 160.09 AU, p¼0.04) and
lower TOLLIP expression (0.7560.05 vs 160.06 AU, p¼0.004).
Adenoma and carcinoma also presented higher expression of
COX-2 (1.6360.27 and 1.3860.14 vs 160.08 AU, p¼0.03 and
p¼0.05, respectively) and lower expression of TOLLIP
(0.4460.04 and 0.4560.06 vs 160.08 AU, p<0.001) when
compared with normal mucosa. Carcinoma expressed more
TLR2 when compared with adenoma or normal mucosa
(2.3160.32 vs 160.14 AU, p¼0.006) and less PPAR-g when
compared with normal mucosa (0.5660.12 vs 160.07 AU,
p¼0.003). Ninety per cent of the patients presented higher
COX-2 expression in the lesions when compared with normal
mucosa, but 60% of these expressed more COX-2 in the adjacent
mucosa than in the lesion itself. There was a statistically
significant trend for a decrease of TOLLIP (p<0.001) and PPAR-g
(p¼0.05) from normal mucosa to adenoma/carcinoma. In an
individual analysis, 90% of patients with lesions presented this
tendency for lower TOLLIP expression and 60% for lower PPAR-g
expression.

Immunohistochemical evaluation of TLR2, TLR4 and TLR5
In table 2 and figure 3, TLR expression in the different colonic
lesions is shown. Only 15% of the samples of normal mucosa
and 10% of adjacent normal mucosa were considered negative
for TLR expression. When positive, a mean of 50% of the cells
were positive; however, with a weak to moderate intensity of
expression. All the samples of adenoma and adenocarcinoma
were considered positive with more than 90% of the cells
immunoreactive, and the grade and intensity of expression was
significantly higher when compared with normal or adjacent
mucosa (p<0.001). Normal mucosa expressed all TLR in
a polarised manner, particularly at the basolateral membrane
(figure 3A). On the other hand, adenoma and carcinoma
expressed all TLR diffusely and homogeneously throughout the
cytoplasm and also apical membrane with no apparent polar-
isation (figure 3BeF). Concerning individual analysis, 90% of the
patients presented increased TLR2 expression and 70% of the
patients increased TLR4 and TLR5 expression from normal
mucosa to adenoma or adenocarcinoma. We did not find any
significant statistical correlation between TLR protein levels and
mRNA levels of the several genes.

Table 1 Baseline characteristics of patients (n¼35)
Control
(n[6)

Adenoma
(n[15)

Cancer
(n[14)

Total
(n[35)

Age, years (mean6SEM) 62 (64.8) 62 (62.5) 65 (62.8) 64 (62.1)

Sex (male) 2 (33%) 11 (73%) 10 (71%) 23 (66%)

Indication for endoscopy

Screening 6 3 1 10

Adenoma 0 12 2 14

Cancer 0 0 11 11

Endoscopy findings*

Normal 6 5 2 13

Adenoma 0 15 6 21

Cancer 0 0 14 14

*Values are presented as number of lesions identified per group.
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DISCUSSION
In the present study we described for the first time in human
colonic lesions the molecular expression of TLR and of several
other co-factors that modulate their signalling pathways. We
have found a persistently positive TLR expression and lower
expression of TLR inhibitors associated with higher TLR
protein levels throughout all the spectrum of lesions of colon
carcinogenesis. Our results suggest that increasing activation of
these receptors by bacteria may play a crucial role in colon
carcinogenesis and tumour progression.

It is current knowledge that three distinct molecular
mutagenic pathways are involved in colon carcinogenesis:

Chromosomal instability (inactivating mutations of adenoma-
tous polyposis coli (APC) gene and sequential activation of
oncogenes and inactivation of tumour suppressor genes);
microsatellite instability (mutations in DNA mismatch repair
genes predisposing to mutations in genes with repetitive
sequences); epigenetic pathway (hypermethylation and gene
silencing).4 All these pathways of the adenomae
carcinoma sequence are now extensively described.4 5 Neverthe-
less, not considering the hereditary syndromes, it is still not clear
which factors initiate and promote tumour progression. Indeed,
a number of environmental risk factors have been described; yet
it is unknown how environment and diet influence genetic
pathways and predispose to cancer. For example, age, male
gender, race, obesity, diabetes and diet, among many others, are
considered risk factors for non-hereditary CRC. Even so, the
molecular mechanisms through which these factors increase the
risk of cancer and influence colon carcinogenesis are still not
known.2 42 43 In contrast, IBD is a risk factor for CRC by
promoting chronic inflammation and consequently predisposing
to mutations.32 33 So, inflammation (even subclinical inflam-
mation) may be an important factor in the initiation and
progression of the mutagenic pathways described. In fact, COX-2
upregulation has long been associated with the adenomae
carcinoma sequence and inhibition of COX-2 reduces the risk of
developing new adenomas and may also reduce the growth of
colon cancer cells.6 8 44 Loss-of-function mutations in PPAR-g,
a factor that controls inflammation by reducing NF-kB activa-
tion, were also associated with colon cancer.7

The colon is colonised by a number of microorganisms and
their associated PAMP without inducing an inflammatory
response. A stringent regulation of TLR activation appears
fundamental for that to happen, maintaining colon homeostasis
in this way.23 Our results, in agreement with other studies,24e29

show that normal colon mucosa constitutively express TLR;
however, this is associated with high expression of TOLLIP and
PPAR-g, which appears to circumscribe protein expression to
basolateral membrane where they are not continuously exposed
to PAMP. This is important because TLR in that location are
central in controlling auto-immunity processes and for epithelial
regeneration, in that way maintaining normal physiology in the
gastrointestinal tract.45e49 On the other hand, by activating
cell survival signalling pathways (eg, NF-kB activation and
augmented COX-2 expression) abnormal TLR activation may
theoretically promote colon carcinogenesis in a different number
of ways.47 50 As TLR are the first line of recognition for bacterial
antigens, studies showing that germ-free rats given carcinogens
are protected from colonic cancer,36 and that cancer and
adenomas present higher bacteria levels than normal mucosa,37

Figure 2 mRNA quantification according to the studied lesions.
Adenoma and carcinoma presented lower Toll-interacting protein (Tollip)
(!56%) and higher cyclooxygenase (COX) 2 (+63% and +38%) when
compared with the normal mucosa. Carcinoma also presented a 46%
decrease in peroxisome proliferator-activated receptor g (PPAR-g).
*p<0.05 versus normal mucosa; #p<0.05 versus adjacent normal
mucosa; ap<0.05 versus adenoma. AU, arbitrary unit; NF-kB, nuclear
factor kB; TLR, Toll-like receptor; TNFa, tumour necrosis factor a.

Table 2 Immunohistochemical evaluation of TLR2, TLR4 and TLR5
Normal
(n[21)

Adjacent
(n[25)

Adenoma
(n[21)

Adenocarcinoma
(n[14)

TLR2

Grade 1.7 (60.11) 1.95 (60.14) 2.79 (60.11)* 2.62 (60.13)*

Intensity 1.25 (60.1) 1.4 (60.1) 2.57 (60.17)* 2.47 (60.13)*

TLR4

Grade 1.75 (60.1) 2.0 (60.14) 2.79 (60.11)* 2.57 (60.13)*

Intensity 1.25 (60.1) 1.4 (60.1) 2.64 (60.13)* 2.57 (60.13)*

TLR5

Grade 1.75 (60.1) 1.9 (60.15) 2.79 (60.11)* 2.57 (60.13)*

Intensity 1.25 (60.1) 1.4 (60.1) 2.28 (60.16)* 2.47 (60.13)*

Values are presented as mean (6SEM).
*p<0.001 versus normal or adjacent mucosa.
TLR, Toll-like receptor.
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provide indirect evidence that TLR activation may be essential
for the development and progression of colon cancer. Indeed,
Fukata et al35 showed that, at least in mice, TLR4 activation is
critical for colon cancer development, because TLR4!/! mice
were protected against colitis-induced cancer. Other authors
showed that silencing of TLR4 in mice decreased CRC tumour
burden and metastasis,51 52 and that TLR2 activation also
induced the production of oncogenic factors in cultured human
colon cancer cells.39 Still, data in humans that associate TLR
with colon cancer are scarce. Recently, Nihon-Yanagi et al,53

using human colon cancer tissue, suggested that TLR2 activa-
tion might be involved in sporadic colon carcinogenesis. Also
using human tissue other studies suggested that TLR4 expres-
sion may have prognostic value in CRC.54 55 More importantly,
a study found an association of polymorphisms of the TLR2
gene and Asp299Gly polymorphism of the TLR4 gene with
sporadic CCR.56

In that line of thought, to our knowledge, our study is the
first in humans that directly evaluated TLR gene and protein
expression as well as other related factors throughout the whole
adenomaecarcinoma sequence. First of all, we have found that
controls expressed 24% more TOLLIP and a tendency for more
PPAR-g when compared with persons with a history of
adenoma or carcinoma. These results, however, must be inter-

preted with caution because our primary aim was not to detect
differences between the groups, there was a higher proportion of
women in the controls and, finally, all the studied segments of
normal mucosa from the controls were provided only from six
different individuals. Nevertheless, when considering all the
fragments of normal mucosa (adjacent or not), women,
a protective factor for CRC, also presented 24% higher expres-
sion of TOLLIP and 35% lower expression of COX-2. Associating
these facts with the 56% decrease in TOLLIP expression in the
tumour lesions, which came predominantly from men, we may
hypothesise that higher mucosa levels of TOLLIP may at least
partly explain why some people do not develop tumours and
why women have a lower incidence of CRC.
The major findings of our study were the decreasing levels of

TOLLIP from normal mucosa to the adenomaecarcinoma
lesions associated with high TLR protein levels. Importantly,
this applied globally but also in an individual analysis, with 90%
of the patients presenting this tendency. TOLLIP is an ubiquitin-
binding protein that regulates inflammatory signalling by
interacting with several TLR signalling cascade components and,
therefore, is fundamental for controlling abnormal TLR
activation.57e61 Besides interacting with several intracellular
kinases that are activated by TLR, TOLLIP also appears to
interact and block TLR complexes.57 61 Indeed, TOLLIP appears

Figure 3 Immunohistochemistry
images of the different lesions. (A)
Normal mucosa/adenoma (low power
field)dtransition of normal mucosa (top
and right), with weak and polarised
expression, to low grade tubular
adenoma (down and left) with very
strong, diffuse, expression in almost all
epithelial cells in this case for Toll-like
receptor (TLR) 4 (similar to the other
TLR). (B) Normal mucosa/adenoma
(high power field)don the right, normal
mucosa with polarised, basolateral, and
moderate TLR5 expression, with the
transition in the left for adenoma with
diffusely and strong TLR expression. (C)
Adenoma (high power field)dhigh
grade tubulovillous adenoma with
strong and diffuse expression of TLR2.
(D) and (E) Normal/adenocarcinoma
(low power field)dTLR2 (D) and TLR5
(E) strong immunoreactivity in
adenocarcinoma cells (up and left) in
contrast to weak to moderate reactivity
in normal mucosa (down and right).
(F) Adenocarcinoma (high power
field)dthe majority of the tumours
presented very strong TLR expression,
in this case for TLR2.
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to promote the traffic of synthesised proteins into endosomes
and may lead to protein early degradation.59 62e64 This might
explain why in our study despite similar mRNA TLR expression
we found a substantial increase in protein levels and also
receptor dispersion through all the cytoplasm and apical
membrane (figure 4). PPAR-g is also associated with the atten-
uation of colon inflammation through modulation of TLR
signalling and NF-kB inhibition, and its expression was also 46%
lower in carcinoma cells. Combining the decreased levels of
TOLLIP and PPAR-g with the 38e63% increase in COX-2 and
the high immunohistochemistry positivity of TLR receptors in
the adenoma/carcinoma lesions we believe that continuous TLR
activation by colonic bacteria is an important factor for tumour
progression.

In a similar way, we have previously described an increased
expression of TLR in gastric cancer, suggesting that progression
of gastrointestinal malignancies may depend, at least partly, on
bacteriaeTLR interaction.41 This may be even more important
in colon carcinogenesis because all carcinomas included in our
study were extremely positive for TLR, even the two tumours
with poor to moderate differentiation, in contrast with the 25%
of gastric adenocarcinomas that were TLR negative.41 Moreover,
we did not find any important differences in TLR expression
between adenomas and adenocarcinomas. This suggest that TLR
may become highly active after neoplastic transformation

(adenoma) and continue extremely actively in all the process of
colon carcinogenesis (from malignant transformation to tumour
progression).
Another interesting aspect of our study, which to our

knowledge was not previously described elsewhere, was that the
adjacent normal mucosa presented a distinct genetic profile
when compared with normal mucosa. A 25% statistically
significant decrease in TOLLIP was associated with high levels of
mucosal COX-2 and TNFa. The reason for this is not linear as it
may represent a consequence of altered microbiota that colo-
nises adenoma/carcinoma lesions or it may be a marker for an
increased risk of neoplastic transformation. It is possible that
these two aspects may be simultaneously true. It has been
shown that commensal non-pathogenic bacteria may regulate
TLR activation by increasing mucosal levels of TOLLIP and
PPAR-g.18e22 With this in mind, it can be hypothesised that
some risk factors for CRC that have been shown to alter
commensal microbiota, such as diet and obesity,65e67 may
increase cancer risk by changing the mucosal genetic profile with
lower TOLLIP expression. As a consequence, it might lead to
higher TLR activation, promoting in that way higher COX-2
expression and subclinical inflammation. By promoting a pro-
inflammatory and pro-mutagenic environment this might be the
initial event for neoplastic transformation of the mucosa.
In conclusion, our results suggest that TLR signalling path-

ways play a crucial role in colon carcinogenesis and that they
might be the missing link between diet, bacteria and cancer. For
adenoma prevention, a strategy of modulation of TLR, by acting
earlier in the cascade of events, may be cost effective when
compared with COX-2 inhibitors and their side effects.
Considering the high TLR expression in colon cancer cells,
blocking TLR activation may also play an important role in
cancer treatment. Future studies should evaluate the clinical
value of these novel findings as the modulation of TLR activa-
tion may be accomplished by dietetic or pharmacological
measures.
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Background:  Colon  carcinogenesis  is  associated  with  increased  expression  levels  of  Toll-like  receptor  2
and Toll-like  receptor  4.
Aim:  To  determine  in  a  Caucasian  population  the  role  of  Toll-like  receptor  2  and Toll-like  receptor  4
polymorphisms  in  colorectal  cancer  development.
Methods:  Hospital  based  multicentre  case  control  study  involving  193  colorectal  cancer  patients  and
278  healthy  individuals.  DNA  samples  were  extracted  from  blood  cells and  genotyping  of TLR2+597T>C,
TLR2−4760T>C,  TLR4−3745A>G,  TLR2Arg753Gln, TLR4Asp299Gly  was  performed.  Functionality  of  risk  poly-
morphisms  was  evaluated  through  production  of  TNF-!  in cell  culture  and  Toll-like  receptors  levels
quantified  by  real-time  RT-PCR.
Results:  TLR2+597CC  homozygous  had  5-fold  decreased  risk  (odds  ratio  (OR)  =  0.21,  95%  CI:  0.09–0.50,
p  < 0.001)  and  TLR4  299Gly  homozygous  3-fold  increased  risk  of colorectal  cancer  (OR = 3.30,  95% CI:
1.18–9.28,  p  =  0.015).  In  stratified  analysis,  TLR2+597CC  genotype  protective  effect  was  even  higher  in
overweight  individuals  (OR  =  0.17,  95%  CI:  0.06–0.53,  p  < 0.001)  and in  never  smokers  (OR  =  0.11,  95%  CI:
0.02–0.51,  p =  0.001).  Also,  the  increased  risk  effect  for TLR4  299Gly  homozygous  genotype  was  higher  in
overweight  individuals  (OR  =  8.67,  95%  CI:  1.11–87.85,  p =  0.011).  TLR2+597T>C  polymorphism  conferred
41%  less  (p = 0.03) and  TLR4Asp299Gly  65%  more  TNF-!  production  (p  =  0.02)  with  no  differences  in  Toll-
like  receptors  levels.
Conclusion: Functional  Toll-like  receptor  2 and  Toll-like  receptor  4  polymorphisms  significantly  alter
the risk  to have  colorectal  cancer.  Obesity  and  smoking  may  influence  the  risk  for  colorectal  cancer  in
individuals presenting  these  genetic  profiles.

© 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers
worldwide, being the third most common in males and the second
one in females. Its incidence rates are rapidly increasing in several

∗ Corresponding author at: Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
Tel.: +351 96 7340096; fax: +351 22 5513646.

E-mail address: pedronunesml@gmail.com (P. Pimentel-Nunes).
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first authors.

areas in the world, probably related to a combination of factors
like diet, obesity and smoking [1–3]. It is clear that there are at
least three distinct molecular pathways for CRC development [4,5].
Nevertheless, modifier genes and inflammatory molecules, by pro-
moting genomic instability and controlling cell growing, may  also
be important for the progression of these CRC carcinogenic path-
ways [6–8]. Indeed, COX-2 polymorphisms have been associated to
CRC risk, suggesting that other factors, namely pro-inflammatory
ones, significantly influence the adenoma–carcinoma sequence
[9–11].

Toll-like receptors (TLR) are key players in immune system,
with ten different TLRs being expressed in humans [12,13]. TLR2

1590-8658/$36.00 ©  2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.dld.2012.08.006
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recognizes a number of pathogen-associated molecular patterns
(PAMP) from Gram positive bacteria and TLR4 is the receptor
of the Gram negative bacteria lipopolysaccharide (LPS) [14–16].
Activation of these receptors initiates intracellular signalling path-
ways that promote cell survival and production of different
pro-inflammatory mediators such as COX-2 [12,17–20].  Because
they are not only intrinsically related to inflammation but also
to cell survival signalling, epithelial regeneration and cell pro-
liferation, recent reports associate these receptors function to
tumourigenesis [21,22]. Concerning gastrointestinal system, cur-
rent evidence suggests that TLR innate immune responses to PAMPs
from luminal microbiota may  be essential for the development of
tumours [21–24].  In fact, our own group and other authors have
shown that human colon carcinogenesis is associated with increas-
ing expression levels of TLR2 and TLR4 [25–28].

Playing an important role in the interface between host and the
environment, dysregulation of the TLR2 and TLR4 signalling path-
ways due to functional single nucleotide polymorphisms (SNPs)
can disrupt the normal cellular immune response and consequently
conditioning cytokines cellular levels, contributing for inflamma-
tion and cancer. Genetic variants in TLRs encoding genes may
contribute to different response phenotypes, including suscepti-
bility to cancer development.

A potential functional genetic polymorphism in TLR4 gene has
been described responsible for an A-to-G transition in exon 3, caus-
ing an aspartic acid/glycine substitution Asp299Gly (rs4986790).
This transition affects the extracellular domain of TLR4 receptor,
in a ligand-recognition area [29]. TLR4 Asp299Gly polymorphism
has been subject of investigation in several studies involving dif-
ferent types of cancer [30–35].  Despite some studies observed lack
association of TLR4 Asp299Gly polymorphism and the risk of CRC
development [36,37],  one study associated this SNP to CRC [38] and
others address its role in tumour prognosis [39,40]. Several TLR2
SNPs have also been associated to cancer [38,40,41],  namely, it has
been reported, that TLR2+597T>C (rs3804099) polymorphism can
alter the risk of colon cancer development [40].

We  hypothesized genetic SNPs, with potential influence on TLR2
and TLR4 receptor expression and/or function, may  have impact in
CRC development. Our purpose was to address the role of potential
functional TLR SNPs on CRC risk in a European Caucasian popula-
tion.

2. Materials and methods

2.1. Study population and data collection

The study population has been described previously [11]. This
hospital-based case–control study included 471 participants: 193
histologically confirmed CRC patients and 278 cancer-free controls
from the northern and central region of Portugal recruited at the
Portuguese Institute of Oncology, Porto (IPOP) and Coimbra (IPOC).
Eligible cases included patients aged 50–75 years with a newly
diagnosed of CRC between January 2002 and September 2007 and
CRC patients submitted to chemotherapy between January 2004
and March 2008 that were under follow-up between February
and March 2008 at IPOP and IPOC. Controls were healthy indi-
viduals aged 50 years or more without clinical evidence of cancer
(blood donors) recruited at IPOP between July 2005 and October
2007. The characteristics of the study population are summarized
in Table 1. Cases were significantly older than controls’ with a
median age of 62 years (50–75) [vs 56 years in controls (50–65),
p < 0.001]. There were no significant differences in the distribution
of gender, BMI  and smoking habits between both groups. Written
informed consent was obtained from all participants before their
inclusion in the study, according to the Declaration of Helsinki.

Table 1
Description of participants (cases and controls): age, gender, body mass index, smok-
ing habits, and summarized clinical characteristics of cases (patients with cancer).

Cases Controls p
n = 193 n = 278

Demographics
Age (years)

Mean (SD) 62 (7) 56 (4)
Median [min–máx] 62 [50–75] 55 [50–65] <0.001

Gender, n (%)
Male 123 (64) 176 (63) 0.926
Female 70 (36) 102 (37)

Lifestyle behavioursb

BMI  categorya, n (%)
<25 kg/m2 49 (26) 41 (23) 0.598
≥25  kg/m2 143 (74) 136 (77)

Smoking status, n (%)
Never smokers 142 (74) 110 (66) 0.095
Ever smokers 51 (26) 58 (34)

Tumour characteristics
Tumour location, n (%)

Rectum 82 (42) –
Colon 111 (58) –

Stage, n (%)
I or II 76 (40) –
III or IV 116 (60) –

BMI, body mass index.
a Categorization based on the cut-off defined by WHO  for overweight people.
b The numbers may  not add-up since we were unable to gathered this information

for  all subjects, namely in controls’ group.

Furthermore, the Ethics Committee of the IPOP and IPOC approved
this research.

2.2. Sample DNA extraction and TLR2/TLR4 polymorphisms
genotyping

Genomic DNA was extracted from peripheral blood leukocytes,
using the QIAamp® DNA Blood Mini Kit (Qiagen, Madrid, Spain)
following manufacturer’s instructions.

The selection of studied TLR2 and TLR4 polymorphisms was
based on expected functional repercussion (FastSNP) and/or pre-
vious associations with cancer development of SNPs retrieved
from literature and public database search (dbSNP). The follow-
ing polymorphisms were selected: TLR2 Arg753Gln (rs5743708),
TLR2−4789T>C (rs4696483), TLR2+597T>C (rs3804099); TLR4
Asp299Gly (rs4986790) and TLR4−3869A>G (rs2737191). TLR2
Arg753Gln and TLR4 Asp299Gly variants were analysed through
PCR-RFLP method. Briefly, DNA was  amplified in a 50-!L reac-
tion mixture containing TLR4 Asp299Gly primers (forward, 5′-AGC
ATA CTT AGA CTA CTA CCT CCA TG-3′; reverse, 5′-GAG AGA TTT
GAG TTT CAA TGT GGG-3′), and TLR2 Arg753Gln primers (for-
ward, 5′-CAT TCC CCA GCG CTT CTG CAA GCT CC-3′; reverse,
5′-GGA ACC TAG GAC TTT ATC GCA GCT C-3′) (Metabion Martin-
sried, Germany), respectively, 1× PCR buffer, 1 unit Taq polymerase,
1.5 mmol/L MgCl2, 0.2 mmol/L deoxynucleotide triphosphates, and
20 ng DNA. TLR2 PCR products (129 bp) were incubated with
MspI restriction endonuclease at 37 ◦C, in the presence of allele
G the fragment is cleaved by the enzyme giving arise two frag-
ments (104 and 25 bp), whereas the A allele is not cleaved by the
enzyme. TLR4 PCR products (188 bp) were incubated overnight
with NcoI restriction endonuclease at 37 ◦C, the polymorphism was
defined by the presence (G) or absence (A) of a restriction site.
TLR2+597T>C, TLR2−4789T>C and TLR4−3869A>G polymorphisms
were analysed by allelic discrimination using 7300 real-time PCR
System (Applied Biosystems, Foster City, CA, USA). Real-time
PCR were carried out using a 6-mL reaction mixture, containing
1× Master Mix  (Applied Biosystems), with 1× probes (TaqMan
assay, C 22274563 10, C 27313261 10, C 1844485 10, respectively
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Table  2
TLR-2+597T>C and TLR-4 Asp299Gly polymorphisms-related odds ratios for colorectal cancer and genotype frequencies in patients and controls.

Controls Cases OR 95% CI p
n  (%) n (%)

TLR-2+597T>C
TT/TC 235 (86) 184 (97)
CC 37 (14) 6 (3) 0.21 0.086–0.501 <0.001

TLR-4  Asp299Gly
AA/AG 186 (97) 169 (92)
GG 5 (3) 15 (8) 3.30 1.175–9.279 0.015

OR, odds ratio; 95% CI, 95% confidence interval. Bold values represent statistical significant results and the significance of that values (p) is in the right column.

Applied Biosystems) and 20 ng of the DNA sample. Quality control
procedures implemented for genotyping included double sampling
in about 10% of the samples to assess reliability and the use of nega-
tive controls to step-away false-positives. In PCR-RFLP method, two
authors obtained the results independently, and the ambiguous
were reanalysed.

2.3. Functional evaluation of TLR’s genotypes – culture and
activation of peripheral blood monocytes (PBM)

Blood samples were obtained from 14 healthy blood donors
according to the different genotype of TLR2+597T>C and TLR4
Asp299Gly polymorphisms. Our culture cell protocol was  described
elsewhere [42]. Briefly, PBM were isolated from whole blood
by density-gradient centrifugation with Ficoll-Paque (GE Health-
care Lifesciences, UK) followed by positive selection isolation
with anti-CD11b Microbeads (MACS, Miltenyi Biotec, Germany).
Afterwards, PBM primary culture was performed. The monocytes
samples were adjusted to 1 × 105 cells per well and cultured in
quadruplicate in RPMI-1640 medium (GE Healthcare Lifesciences,
UK), supplemented with 100 U/mL penicillin, 100 !g/mL strep-
tomycin, 2 mmol/L glutamine and 12% foetal bovine serum (GE
Healthcare Lifesciences, UK) at 37 ◦C and 5% of CO2. After 3 h
incubation, nonadherent cells and supernatants were removed
and fresh medium was  added (time 0 h). PBMs from the differ-
ent genotypes were separately incubated in four different wells
with zymosan (Zym) [2 !g/mL] for TLR2/TLR6 stimulation, with
Lipopeptide (Lp) Pam3Cys-SK4 [1 !g/mL] for TLR2/TLR1 activa-
tion, with LPS [1 !g/mL] for TLR4 stimulation, and 0.9% NaCl
as internal control. The supernatants were collected after 24 h
stimulation. After collection, supernatants were frozen at −80 ◦C
until analysis of TNF-" levels (R&D Systems, USA; sensitivity
1.6 pg/mL).

2.4. Isolation of mRNA from PBM and quantification of TLR2 of
TLR4 expression

These methods were described elsewhere [42]. Briefly, after sep-
aration and isolation of PBM, 1 × 105 cells were collected and the
final cell pellet was used for mRNA isolation with TriPure Isola-
tion Reagent (Roche, Germany). Two-step real-time RT-PCR was
used to perform relative quantification of mRNA. For each stud-
ied mRNA molecule, standard curves were generated from the
correlation between the amount of starting total mRNA and PCR
threshold cycle of graded dilutions from a randomly selected sam-
ple. For relative quantification of specific mRNA levels, 100 ng of
total mRNA from each sample underwent two-step real-time RT-
PCR. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA
levels were similar in all genotypes, which enabled the use of
this gene as internal control. Specific PCR primers pairs for the
studied genes were: GAPDH – fw (P1) 5′-TTG GCC AGG GGT
GCT AAG-3′ and rev (P2) 5′-AGC CAA AAG GGT CAT CAT CTC-3′;
TLR2 – fw 5′-GAT CCC AAC TAG ACA AAG ACT-3′ and rev 5′-
CTG CGG AAG ATA ATG AAC ACC-3′; TLR4 – fw 5′-CTA AAC CAG

CCA GAC CTT GAA-3′ and rev 5′-ACC TGT CCC TGA ACC CTA TGA-
3′. Results of mRNA quantification were expressed as the ratio
gene/GAPDH.

2.5. Statistical analysis

Data analysis was  performed using the computer software Sta-
tistical Package for Social Sciences – SPSS for Windows (version
17.0). The Hardy–Weinberg equilibrium was tested by a Pear-
son goodness-of-fit test to compare the observed vs the expected
genotype frequencies. Chi-square analysis was used to compare
categorical variables, using a 5% level of significance. Statistical
differences between mean values were evaluated applying the
Mann–Whitney test. Multivariate logistic regression analysis was
used to estimate odds ratio (OR) and its 95% confidence interval
(CI) as a measure of the association between variant allele carriers
and the risk for the development of CRC. The potential confound-
ing variables: age, gender, BMI  and smoking habits were addressed
through data stratification. For each OR estimation dominant and
recessive models of analysis were followed and results presented
according to the tendency observed. The Kaplan–Meier method and
log-rank test were used to compare genotype influence in the age at
CRC diagnose. One-way ANOVA and Student’s t test for paired and
unpaired data (or correspondent non-parametric test) were used
for group comparison of TNF-" production in cell culture and for
mRNA levels. Statistical significance was  set at p < 0.05.

3. Results

3.1. SNP analysis and risk evaluation

We did not find any differences between cases and controls
concerning TLR2−4760T>C, TLR2Arg753Gln and TLR4−3745A>G
polymorphisms. TLR2+597T>C and TLR4 Asp299Gly polymorphisms
genotypes’ distribution in cases and controls and genetic profile-
associated risk of CRC are presented in Table 2. According
to TLR2+597T>C polymorphism, the CC genotype was under-
represented in CRC group (3% vs 14% in controls’, p < 0.001). The
present results show lower risk for developing CRC in CC geno-
types carriers than in those individuals’ carriers of TT/TC genotypes
(OR = 0.21, 95% CI: 0.09–0.50, p < 0.001). In TLR4 Asp299Gly genotype
distribution, we observed that GG genotype was more frequent
in CRC group than in control group (8% vs 3%, p = 0.015). Fur-
thermore, we observed that GG genotype carriers had higher risk
for developing CRC than AA/AG genotype carriers (OR = 3.30, 95%
CI: 1.18–9.28, p = 0.015). We  observed an interaction between
TLR2+597T>C polymorphism and BMI  and smoking status but not
with gender (Table 3). Both, female and male CC genotype carriers
had lower risk to CRC development (OR = 0.10, 95% CI: 0.01–0.76,
p = 0.005 and OR = 0.27, 95% CI: 0.10–0.73, p = 0.004, respectively).
We observed that CC genotype is associated with lower risk to
CRC development in individuals with BMI  ≥ 25 (OR = 0.17, 95% CI:
0.06–0.53, p < 0.001) and in individuals never smokers (OR = 0.11,
95% CI: 0.24–0.51, p = 0.001). Concerning the TLR4 Asp299Gly
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Table 3
Potential interaction between gender, body mass index, smoking status and TLR-2+597T>C and TLR-4 Asp299Gly polymorphisms in the development of colorectal cancer.

Controls Cases OR 95% CI p
n  (%) n (%)

TLR-2+597T>C
Stratification

Gender
Female

TT/TC 84 (87) 67 (98)
CC  13 (13) 1 (2) 0.10 0.012–0756 0.005

Male
TT/TC 151 (86) 117 (96)
CC 24 (14) 5 (4) 0.27 0.100–0.726 0.004

BMI
<25

TT/TC 37 (97) 46 (96)
CC 1  (3) 2 (4) 1.61 0.140–18.441 0.588

≥25
TT/TC 114 (86) 138 (97)
CC 19 (14) 4 (3) 0.17 0.058–0.526 0.001

Smoking status
Never smokers

TT/TC 92 (88) 138 (99)
CC 12 (12) 2 (1) 0.11 0.024–0.508 0.001

Ever  smokers
TT/TC 50 (86) 46 (8)
CC  8 (14) 4 (8) 0.54 0.153–1.026 0.260

TLR-4  Asp299Gly
Stratification

Gender
Female

AA/AG 57 (98) 61 (91)
GG  1 (2) 6 (9) 5.61 0.655–48.015 0.083

Male
AA/AG 129 (97) 87 (92)
GG 4  (3) 9 (8) 2.77 0.805–8.969 0.084

BMI
<25

AA/AG 27 (96) 42 (93)
GG  1 (4) 3 (7) 1.93 0.191–19.512 0.502

≥25
AA/AG 91 (99) 126 (91)
GG 1 (1) 12 (9) 8.67 1.107–87.845 0.011

Smoking status
Never smokers

AA/AG 74 (100) 123 (91)
GG 1 (1) 12 (9) 7.22 1.08–56.660 0.004

Ever  smokers
AA/AG 36 (95) 46 (94)
GG  2 (5) 3 (6) 1.174 0.186–7.403 0.620

OR, odds ratio; 95% CI, 95% confidence interval. Bold values represent statistical significant results and the significance of that values (p) is in the right column.

polymorphism, we observed that individual’ carriers of GG geno-
type and BMI  ≥ 25 had a higher risk to CRC development (OR = 8.67,
95% CI: 1.11–87.85, p = 0.011). Furthermore, the GG genotype was
also associated with risk to CRC development in never smokers’
individuals (OR = 7.22, 95% CI: 1.08–56.67, p = 0.004). No difference
was found considering different cancer locations, namely compar-
ing rectal or colon cancer.

3.2. Influence of TLR2+597T>C and TLR4 Asp299Gly
polymorphisms on the time-to-diagnosis of CRC

When we evaluated the influence of TLR2+597T>C polymor-
phism in the age at CRC diagnose (Fig. 1), we observed that
the TT/TC genotype carriers tend to be younger than CC geno-
type carriers at diagnose (66 vs 69 years, p = 0.073, respectively).
Concerning TLR4 Asp299Gly polymorphism we observed a lack of
association of the polymorphism and the age at CRC, despite GG
carriers being younger at the age of diagnosis (GG vs AA/AG, 63
vs 65 years, p = 0.4 respectively). No other statistical important
association or tendency between the studied polymorphisms and

any other clinical parameter (e.g. survival, answer to therapy) was
found.

3.3. Functional characterization of TLR2+597T>C and TLR4
Asp299Gly polymorphisms

The genotypes of the 14 participants involved in the functional
study were: TLR2+597T>C, 5 CC, 6 TC and 3 TT; TLR4Asp299Gly,  5 GG,
2 AG and 7 AA. Statistical differences were found when comparing
TLR2+597T>C CC homozygous with T carriers after Lp stimulation
(TNF-! production of 127.0 ± 18.7 vs 214.3 ± 23.2 pg/mL, p = 0.03)
and after LPS stimulation when comparing TLR4 299Gly carriers vs
AA homozygous (TNF-! production of 259.5 ± 27.7 vs 157.9 ± 22.2
pg/mL, p = 0.02) (Fig. 2). The TLR2 mRNA levels for the differ-
ent TLR2 genotypes were 0.58 ± 0.11 (CC), 0.41 ± 0.08 (CT) and
0.47 ± 0.17 (TT) and the TLR4 mRNA levels for the different TLR4
genotypes were 1.5 ± 0.59 (AA), 0.52 ± 0.35 (AG) and 0.87 ± 0.26
(GG), without any statistical difference between the groups. T car-
riers for TLR2+597T>C had TLR2 levels of 0.42 ± 0.07 (p = 0.2 vs CC
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Fig. 1. TLR2 (TLR-2+597T>C) and TLR4 (TLR-4 Asp299Gly) genotype influence in the age of CRC diagnosis (Kaplan–Meier curves and log-rank test). The effect of the TLR-2+597T>C
CC  genotype in the age of diagnosis was stronger than the TLR4 299Gly homozygous genotype.

homozygous) and G carriers of TLR4Asp299Gly had TLR4 levels of
0.82 ± 0.25 (p = 0.2 vs AA homozygous).

4. Discussion

In the present study we describe that functional TLR2 and TLR4
SNPs significantly influence the risk of CRC. Our results suggest
that small changes in the normal function of these receptors due
to functional SNPs may  contribute to an unbalanced cytokine and
pro-oncogenic cellular microenvironment and thus to a higher risk
for cancer development.

Why  should TLRs SNPs influence the risk of CRC development?
It is current knowledge that a strict regulation of TLRs activation is
fundamental for maintaining colon homeostasis [24]. Normal colon
mucosa constitutively express TLRs, however, it also presents a high

Fig. 2. TNF-! 24 h production (pg/mL) after stimulation with LPS (lipopolysaccha-
ride), Zym (zymosan), and Lp (lipopeptide) in culture cell of monocytes with the
different TLR2 (TLR-2+597T>C) and TLR4 (TLR-4 Asp299Gly) genotypes. *p < 0.05 vs
CC  (TLR2) or vs AA (TLR4).

expression of TLRs inhibitors, like TOLLIP and PPAR", which cir-
cumscribe TLRs protein expression to basolateral membrane where
they are not continuously exposed to PAMPs preventing in this way
inadequate inflammation to commensal bacteria [43–48].  Basal
TLRs expression in that particular cellular location appears impor-
tant for maintaining gastrointestinal homeostasis, preventing at
the same time auto-immunity processes, controlling bacterial
infections and allowing epithelial regeneration [21,49–52].  Since
TLRs also activate cell survival signalling pathways, abnormal TLR
activation could promote colon carcinogenesis [21,22]. Indeed, sev-
eral groups including our own  have shown in human studies that
colon carcinogenesis is associated with decrease expression of TLRs
inhibitors and conversely with higher protein expression of TLR2
and TLR4 [26,28].  It was previously shown that TLR4 expression
in tumours may  have prognostic value [25,27] and several animal
studies suggest that TLR2 and TLR4 activation may  be essential for
CRC development [23,53–55].  So, it appears that dysregulation of
these receptors activation may  influence the risk of cancer.

In this line of thoughts, we found that TLR2+597T>C and TLR4
Asp299Gly SNPs significantly influence the risk of CRC development,
suggesting that these TLRs SNPs may  be genetic susceptibil-
ity markers for CRC. The CC genotype of the TLR2+597T>C SNP
was associated with 5-fold decreased risk of CRC development
(OR = 0.21), which is a remarkable result for a SNP. In our study,
the CC genotype frequency in controls was similar to that observed
in healthy European Caucasian [56] and Korean individuals [57]
and higher than that observed in Thailand [58]. The TLR2+597T>C
polymorphism in exon 3 does not appear to induce any amino
acid change, remaining its functional impact and molecular mech-
anism poor understood. According to in silico analysis, this SNP can
introduce alterations in splicing regulation, possibly leading to an
alteration in TLR2 molecule. On the other hand, it may  be in linkage
disequilibrium with another functional SNP in TLR2 and thereby
influencing promoter activity or the stability of the transcript [59].
Previous reports have shown associations of this polymorphism
in TLR2 gene with melanoma susceptibility [41], sepsis [60] and
reverse reaction in leprosy [59]. To the best of our knowledge
we showed for the first time that TLR2+597T>C SNP may  confer
hypofunctionality to the receptor. Indeed, monocytes with the CC
genotype produced 41% less TNF-! in cell culture. Moreover, we
did not find any differences in TLR2 levels between the different
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genotypes suggesting that the potential hypofunctionality con-
ferred by this polymorphism is not dependent of TLR2 levels. So, for
any given stimulus, individuals with this SNP may  have less pro-
duction of inflammatory cytokines and less cell survival signalling
and this might help to explain the increase risk of melanoma and
sepsis and the decrease risk of CRC with an early age of diagnosis.

The TLR4 Asp299Gly polymorphism leads to missense replace-
ment of a conserved aspartic acid residue with a glycine amino acid
that alters the structure of the extracellular domain of this recep-
tor. TLR4 Asp299Gly has been subject of investigation in several
studies involving different type of cancer with controversial results
[31,33,34,39,61–64]. Due to evolutionary pressure and human
migration, this TLR4 polymorphism has a distinct distribution in
different populations, and may  or not be cosegregated with the
TLR4 Thr399Ile polymorphism, which may  change the functionality
of the receptor and may  help to explain the discrepancies between
the studies [65]. We  observed that in our control population the fre-
quency of TLR4 Asp299Gly polymorphism tend to be similar to those
observed in healthy European Caucasian [31,33,34] and American
[61,62] populations. The significance of this SNP led to contradic-
tory conclusions about its functional role [66]. Studies performed
by Arbour et al. reported that this SNP was associated with a
blunted response o inhaled LPS [29]. However, Lundberg et al. sug-
gested that not only genetic variant in TLR4 should be considered in
functional studies but also the origin of LPS [67]. Furthermore, Fer-
werda et al. showed that cells from individuals’ carriers of 299Gly
variant significantly produce higher amounts of pro-inflammatory
cytokines than homozygous wild-type [65]. Recently, a study per-
formed by Eyking et al. demonstrated that Caco-2 cells which
expressed TLR4 Asp29Gly polymorphism had a significant increase
in expression levels of genes associated with inflammation and/or
tumourigenesis compared with cells that expressed other forms of
TLR4 [68]. Our results, although they are not definitive concern-
ing the functionality of this SNP, are in agreement with the results
of Eyking et al. showing that monocytes from carriers of G allele
produce 64% more TNF-! when stimulated with LPS. Clinical stud-
ies also confirm the oncogenic potential of this SNPs since this
variant allele has been associated with a more quickly relapse in
patients submitted to radiotherapy and chemotherapy [30]. Other
study showed that this TLR4 SNP might alter prognosis on patients
that receive oxaliplatin [37]. So, this gain-of-function genetic vari-
ant implies the TLR4 Asp299Gly in malignant progression of human
colon cancer [68]. Future studies should study the role of these SNPs
also for prognosis and answer to therapy.

The other aspect that is interesting in our study is that both
the protective effect of the TLR2+597T>C SNP and the risk effect of
the TLR4 Asp299Gly SNP appear to be stronger in overweight and
never smokers’ individuals. Obesity is a well known risk factor for
CRC and in last decade, increase evidence has suggested the rele-
vance of a chronic inflammatory state in obesity [69]. Long-term
smoking also causes systemic inflammation with an increase of
inflammatory mediators concentration (C-reactive protein, IL-6, IL-
8, TNF!) [70]. Indeed, and in agreement with our results, recently
it was shown that TLR2+597T>C polymorphism can interact with
nonsteroidal anti-inflammatory drug use and cigarette smoking
to alter risk of colon cancer [40]. Individuals never-smokers and
CC genotype carriers have even lower risk for CRC development
probably due to their genetic background, with attenuated TLR2
function, and due to lower exposure to environmental factors. In
that line of thoughts it is easily understood why overweight indi-
viduals TLR4 Asp299Gly homozygous have greater risk of cancer,
however, why never smokers have greater risk than smokers is not
so comprehensive. We  may  speculate that the genetic influence of
the TLR4 Asp299Gly SNP may  be blunted in the face of the delete-
rious effect of smoking and, so, this SNP may  strongly interact with
the inflammatory process of obesity but not with the distinctive

inflammation process of smoking. Indeed, it is well known that
TLR4 may  have an important influence on adiposity and metabolic
syndrome [71].

Two main drawbacks could be noticeable in our study. First,
even if a match for ages were attempted by including only controls
aged 50 or more, a difference of ages between cases and controls
existed and secondly, the level of certainty of absence of CRC among
controls. The first was  addressed in the statistical analysis and for
the second point, we  should consider that controls were recruited
in 2005–2007, and, up to now, 85% of them (235/278) were asymp-
tomatic and still blood donors, so no clinical evidence of CRC is
present 5 years after the recruitment. Moreover, of the 43 controls
that were not blood donors in 2012, 31 quit because of age crite-
ria and there were no record of CRC in any of the 278 participants
5–7 years after recruitment. Thus, taking altogether, we may  well
consider that our control population represents individuals with-
out CRC and that the difference of ages at the time of recruitment
was not an issue to our results and conclusions.

In conclusion, functional TLRs SNPs modulate in a significant
way the individual susceptibility for CRC development with the
TLR2+597CC genotype decreasing 5-fold, whereas TLR4 299Gly
homozygous genotype increasing 3-fold the CRC risk. Factors like
obesity and smoking habits may  influence the risk of CRC in individ-
uals presenting these genetic profiles. In future, the identification of
these genetic profiles may  help to define more efficacious strategies
for screening of CRC through an individual fitted schedule.
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CHAPTER VI - CONCLUSION 

“Research is to see what everybody else has seen, and to think what nobody else has thought.”  

Albert Szent-Györgi (1893-1986) 
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In this dissertation we have analyzed the role of TLRs, mainly TLR2, 

TLR4 and TLR5, in several gastrointestinal pathologies, particularly in ones 

related with malignant or premalignant lesions. Although it was not possible 

to study TLRs in all gastrointestinal diseases, we have described TLRs 

expression in gastrointestinal normal epithelia as well as in preneoplastic 

and neoplastic lesions. Expression of several other TLRs related molecules 

was also analyzed and interesting results were provided. We have shown 

that gastrointestinal carcinogenesis was associated with increased 

expression of TLRs and/or decreased expression of their antagonist 

molecules. Moreover, we have provided data that suggest that single 

nucleotide polymorphisms of these receptors may significantly impact the 

risk of an individual to develop gastrointestinal cancer. Furthermore, 

emphasizing the multifaceted role of TLRs, we have shown that attenuation 

of these receptors function may on the other hand contribute to cirrhotic 

infection risk. These previously not described data suggest that in the future 

TLRs modulation may be an interesting therapeutic option not only to 

prevent infectious complications but more important to prevent cancer 

development. In the following sections we will discuss the role of TLRs in 

the different gastrointestinal organs studied in this thesis individually and 

then an integrated conclusion will be provided. 
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TLRs and Liver 

In this dissertation we have seen evidence that link TLR to chronic 

liver disease infection risk and to the inflammation-fibrosis-carcinoma 

sequence. Although an attenuation of TLR2 and TLR4 activation was 

associated with infection, increasing levels of these receptors were involved 

in the progression of liver lesions to cirrhosis and hepatocellular carcinoma.  

Previously to our work, some other authors had suggested that TLRs 

might be involved in the cirrhotic infection risk. However, the results were 

somewhat contradictory and not conclusive. Lin et al and Testro et al 

suggested that advanced cirrhotic patients presented an attenuated TLR4 

response to LPS and that this blunted response to LPS might be dependent 

of decreased TLR4 levels with the possibility of antibiotic restoring the 

immunologic response to LPS (1, 2). Riordan et al did not find attenuation of 

TLR4 function but a blunted TLR2 activation in immunological cells was 

found also with decreased levels of this receptor and with symbiotic therapy 

also able to reverse TLR2 towards normal (although with decreased TLR2 

function) (3). Other studies suggested that TLR function might in fact be 

increased or unaltered and that TLRs levels might be increased despite low 

function (4-6). 

In that line of thoughts we believe that our original and review 

studies provided some lights about the subject. In our study, TLR2 and TLR4 

innate immune responses as well as several endotoxaemia markers were 

analyzed in a group of patients with stable alcoholic cirrhosis (7). Our 

patients were selected from an outpatient hepatology clinic and presented 

no recent history of infection, gastrointestinal bleeding, hospital admission 
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or evidence of recent alcohol ingestion. Moreover, we also studied a group 

of decompensated cirrhotic patients and obtained clearly distinct results, 

further supporting the stability of our group of patients. In our study 

patients with stable alcoholic chronic liver disease showed attenuated TLR2-

mediated innate immune response with an impaired TLR4 response only 

found in the unstable patients. Moreover, we did not find any difference in 

genetic or protein expression of TLR2 and TLR4 levels to explain this 

attenuated function of these receptors.  

Taken altogether our results and also our review (8) suggest that 

TLR2 function at an early stage and that TLR4 function in advanced stages 

of disease are compromised and that this may constitute an important 

mechanism of acquired immunodeficiency in cirrhotic patients. Moreover, 

by analyzing all the data and in agreement with our results we might 

conclude that this deficiency is independent, at least in part, of TLRs levels 

and it is probably related to dysfunction in intracellular signalling pathways. 

Finally, this process may in part be reversible with antibiotics and/or 

probiotics (2, 6). Future studies should consider if modulation of TLRs 

function in cirrhotic patients would be beneficial. 

 

 Concerning the role of TLRs in the progression of liver diseases, many 

data imply activation of these receptors, particularly TLR4, in the 

progression of the inflammation-fibrosis-carcinoma sequence. Several 

studies show that liver disease is associated with endotoxaemia and 

bacteremia, TLRs main agonists (9-13). Other studies using different models 

of fibrosis and cirrhosis and different mechanisms to block TLR4 signalling 
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confirmed that LPS-TLR4 activation is essential for hepatic fibrogenesis (14, 

15). Even though TLR4 activation in Kupffer cells promotes the production 

of several pro-inflammatory and also pro-fibrogenic mediators (16-19), TLR4 

activation in hepatic stellate cells appears to be the vital step for collagen 

production and consequently fibrosis and cirrhosis (15, 20, 21). Recent 

studies confirmed that variants of TLR4 gene modulate risk of liver fibrosis 

(22-24). The data linking other TLRs to hepatic fibrogenesis are not so 

strong. However, some studies associate not only TLR4 but also TLR2 

activation to fibrosis and cirrhosis, independently of the cause of liver 

disease (alcohol, metabolic, virus) (25-28). Although the important role of 

TLRs, mainly TLR4, in liver inflammation and fibrosis is consensual, 

regarding the progression to hepatocellular carcinoma the results are not so 

strong. Nevertheless, a recent study has revealed TLRs, in particular TLR4, 

as major factors linking hepatic chronic inflammation and carcinoma (29). 

The problem with these data, although important, is that the suggested 

implication of TLR2 and TLR4 in the pathogenesis of hepatic inflammation-

fibrosis-carcinoma sequence is mainly based on evidence obtained from 

animal studies or in vitro hepatocyte culture models. Studies using human 

liver tissue to confirm or refute the in vitro and animal findings are scarce 

and have evaluated TLR2 and TLR4 in each stage of this sequence 

separately. 

 In our study, we evaluated for the first time in humans the expression 

of TLR2 and TLR4 in liver samples from patients in each stage of virus-

induced hepatic inflammation-fibrosis-carcinoma sequence (30). We found 

an increased TLR2 and TLR4 mRNA and protein expression in virus-induced 
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chronic hepatitis and cirrhosis and a maintained TLR2 and TLR4 levels in 

virus-induced carcinoma. Moreover, we found that hepatic TNF-α and COX-2 

mRNA levels, factors induced by TLR activation and implicated in liver 

inflammation and carcinogenesis (31-33), were also increased in this 

sequence of liver disease. Thus, we showed for the first time in humans that 

upregulation of TLR2 and TLR4 is an early and persistent event in the 

hepatic inflammation-fibrosis-carcinoma sequence. Our results confirmed 

previous animal data and open the door to a new line of research 

concerning modulation of TLRs pathways in order to prevent progression of 

liver diseases.  
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TLRs and Stomach 

Current knowledge provides conclusive data that TLRs have an 

essential role in H. pylori recognition and subsequent innate and adaptive 

immunity against this bacterium (34). After the first contact with the gastric 

mucosa H. pylori interacts with several TLRs, with TLR2 being the receptor 

responsible for most of the immunologic reactions occurring as the result of 

infection (35, 36). In fact, although being a Gram-negative bacterium, TLR2 

appears to be the receptor responsible for most of the inflammatory 

changes occurring as the result of H. pylori infection. Indeed, several 

studies showed that TLR2 was required for H. pylori-induced NF-kappa B 

activation and cytokine production by epithelial (35) and antigen presenting 

cells (37). Cytotoxin-associated gene A (Cag A), an important virulence 

factor of H. pylori, promotes a higher production of IL-8 by TLR2 and not by 

TLR4 signalling (36).  In spite of that, other studies suggest that TLR4 also 

play an important role in H. pylori infection by recognizing several other H. 

pylori antigens (38-40). More conclusive studies demonstrate that either in 

epithelial or dendritic cells, TLR2 is in fact the principal receptor for 

recognition and immunologic response to H. pylori, but this process depends 

also in a minor extent of TLR4 that acts in synergy with TLR2 (34, 41-45). 

TLR9 recognizes H. pylori DNA and appears to have a complementary and 

synergistic interaction with the other two receptors (42, 46). On the other 

hand, the role of TLR5 is very controversial, despite some initial studies had 

showed interaction between H. pylori flagellin and this receptor (35, 47), 

other studies suggested that TLR5 is unresponsive to H. pylori flagellin (48-

50). 
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Although it is certain that TLRs are essential for H. pylori recognition 

and subsequent immunologic response to this bacterium, their role in the 

progression of gastric lesions was not established. Nevertheless, there is 

some data suggesting that they might have an important role. Indeed, some 

studies showed that chronic H. pylori infection increased TLR4 expression as 

well as promoted chronic activation of NF-kB (39, 40). Additionally, other 

studies showed an association between TLR4 polymorphisms and the 

severity of gastric lesions associated to H. pylori infection (51-53). The role 

of TLR2 in the progression of lesions was even more blurred. However, a 

single nucleotide polymorphism of TLR2 was associated with the severity of 

intestinal metaplasia and mucosal atrophy (54). Bringing it all together and 

remembering the essential role of TLR2 in the recognition of H. pylori, it 

looks like TLR2 can have an important role in the progression of gastric 

lesions. 

So, although there was some rationale to say that TLRs might be 

important in gastric carcinogenesis, scarce human data elucidated the 

sequence of events through which TLRs and H. pylori interact and promote 

progression of gastric lesions with no single study simultaneously studying 

TLRs throughout the entire cascade of gastric carcinogenesis. Therefore, we 

evaluated for the first time in humans the expression of TLR2, TLR4 and 

TLR5 as well as their interacting molecules expression in all the lesions of 

gastric carcinogenesis, from normal mucosa to adenocarcinoma. We have 

shown for the first time in humans that H. pylori early induce a lower 

expression of TLRs inhibitors associated with higher TLRs protein levels in 

normal mucosa and that these changes persist throughout all the spectrum 
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of lesions of gastric carcinogenesis. Moreover, we have created an 

immunohistochemistry score of TLRs’ expression that could be applied to 

the diagnosis of gastric precancerous conditions. Our results suggest that 

increasing activation of these receptors, initially by H. pylori but at later 

stages potentially by several other PAMPs or DAMPs, may have an important 

role in gastric carcinogenesis and tumour progression. Indeed we were able 

to create a potential sequence of events from H. pylori gastritis to cancer 

involving progressive activation of TLRs (Figure VI.1). We believe that 

understanding of this proposed sequence of events can open the door to a 

new line of research in gastric cancer prevention and treatment.  
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FIGURE VI.1 – Proposed sequence for gastric carcinogenesis, involving 

progressive TLRs activation. 

 

 

Left - H pylori early induces higher TLRs expression and lower TOLLIP, allowing 

redistribution of TLRs to apical membrane where they can interact with H pylori. Trying to 

combat the infection, TLRs interaction with H pylori leads to activation of several pro-

inflammatory pathways and cytokine production. Middle - The perpetuation of these 

intracellular pathways during years eventually leads to CDX2 transcription and phenotypic 

change to intestinal metaplasia. These new state is characterized by even lower TOLLIP 

expression and consequently diffuse TLR protein throughout the cell, becoming the cell 

more reactive to H pylori and eventually to other antigens. With TLRs chronically 

stimulated, CDX2 levels progressively increase, and pro-oncogenic intracellular pathways 

eventually activate leading to cell dysplasia. Right - This state is associated with even 

lower levels of TOLLIP, high levels of CDX2 and TLRs, that are disperse throughout the cell, 

and so, at this point, many different antigens may perpetuate the production of different 

inflammatory and oncogenic mediators eventually leading to cancer.  
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TLRs and Colon 

Probably, before our studies relating TLRs to sporadic colorectal 

cancer, this was the weakest scientific research area of all three 

carcinogenesis pathways considered in this thesis. Nevertheless, there was 

some indirect scientific evidence that allowed us to speculate that TLRs 

might also have a role in colorectal cancer, in spite of not having a clear 

infectious agent involved in its pathogenesis, contrarily to gastric cancer (H. 

pylori) and hepatocellular carcinoma (hepatitis virus).  

Several facts made us to assume a potential link between innate 

immunity receptors and colorectal cancer. First, inflammatory bowel 

disease is an established risk factor for colon cancer by promoting chronic 

inflammation of the mucosa (55). Second, germ-free rats given carcinogens 

are protected from colonic cancer (56). Third, cancer and adenomas appear 

to present higher bacteria levels than normal mucosa (57).  More conclusive 

data came from animal and cell lines studies. In fact, in induced-colitis 

murine models, bacterial-induced inflammation through TLR/MyD88 

signalling appears essential for progression of adenoma to carcinoma (58). 

Fukata et al showed with TLR4 knockout mice that TLR4 signalling was 

critical for colon carcinogenesis following chronic colitis (59, 60). Although 

the data from humans was scarce, it was shown that human cancer cells 

overexpress TLR4 when compared to normal mucosa and that colon cancer 

cell lines when stimulated with LPS promoted intracellular signalling 

pathways involved in tumour growth and progression (61). The data relating 

other TLRs to colorectal cancer was even weaker than for TLR4. However, in 

cultured human colon cancer cells TLR2 activation also induced production 
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of oncogenic factors (62) and a small study found association of 

polymorphisms of TLR2 and TLR4 with sporadic colorectal cancer (63). 

Having this in mind, we hypothesized that common colorectal cancer 

risk factors, like diet and obesity, could change normal microbiota 

equilibrium with modification of the physiologic expression of TLRs and/or 

their antagonists, inducing a subclinical pro-inflammatory state that might 

facilitate carcinogenesis. Therefore, we decided to evaluate for the first 

time in humans the expression of TLRs and related molecules in different 

human colon lesions, from normal mucosa to cancer. We found a 

persistently positive TLRs expression and lower expression of TLRs 

inhibitors, particularly TOLLIP, associated with higher TLRs protein levels 

throughout all the spectrum of lesions of colon carcinogenesis. Moreover, 

we proposed for the first time that TOLLIP levels were essential for 

intestinal homeostasis by controlling not only TLRs activation but also its 

protein levels (Figure VI.2). Another interesting and novel result was that 

the adjacent to lesion normal mucosa presented a distinct genetic profile 

when compared to the normal mucosa, with lower expression of TOLLIP. 

Normal mucosa from control population also presented higher expression of 

TOLLIP. This is in agreement with our hypothesis that some risk factors for 

colorectal cancer that have been shown to alter commensal microbiota, like 

diet and obesity (64-66), may increase cancer risk by changing the mucosa 

genetic profile with lower TOLLIP expression and as a consequence with 

higher TLR activation. This can promote higher COX-2 expression and sub-

clinical inflammation facilitating a pro-mutagenic environment that can be 

the initial event for neoplastic transformation of the mucosa. 
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FIGURE VI.2 – Regulation of epithelial colon cell TLR protein levels and 

localization by TOLLIP 

Left - High levels of TOLLIP, like in normal mucosa, interact with TLRs molecules leading to 

early protein degradation and directing TLRs to basolateral membrane. Right - With low 

levels of TOLLIP, like in adenoma and adenocarcinoma, TLRs are diffusely dispersed trough 

the cell. 

 

 

Our results have suggested that increasing activation of TLRs by 

bacteria could have an important role in colon carcinogenesis and tumour 

progression. For that reason we decided to study the role of genetic 

polymorphisms with potential influence on TLR2 and TLR4 receptor 

expression and/or function in the risk of colorectal cancer development. In 
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a Hospital based multicentre case control study we showed that functional 

TLR2 and TLR4 single nucleotide polymorphisms significantly altered the risk 

of colorectal cancer. Indeed, we showed that a single nucleotide change 

could significantly alter the function of the receptors and that the 

hipofunctional CC genotype of the TLR2+597T>C polymorphism was 

associated with 5-fold decreased risk of CRC development (OR=0.21). On the 

other hand, the hiperfunctional TLR4 299Gly homozygous conferred a 3-fold 

increased risk of cancer (OR=3.30). Furthermore, both obesity and smoking 

influenced the risk for cancer in individuals presenting these genetic 

profiles.  

In our opinion these results suggest that TLR2 and TLR4 progressive 

activation to colon bacteria has an important role in colon carcinogenesis. 

Small changes in the normal function of these receptors due to functional 

polymorphisms may contribute to an unbalanced cytokine and pro-oncogenic 

cellular microenvironment and thus to a higher risk for cancer development, 

particularly when associated with other pro-inflammatory conditions like 

obesity. If confirmed by other studies, in the future, identification of these 

genetic profiles may help to define more efficacious strategies for screening 

of colorectal cancer through an individual fitted schedule. 
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Integrated conclusion 

 Although we were able to extract some interesting conclusions 

regarding the role of TLRs in each of the three pathways of carcinogenesis 

considered individually, when we analyze all the data together some 

interesting conclusions can be drawn. Indeed, the pattern of TLRs 

expression between the three organs shares some similarities but also some 

important differences. We believe that the different exposure to several 

number and type of microorganisms in the distinct parts of the 

gastrointestinal tract can help us to explain the obtained results. 

If we look to normal cells of stomach, liver and colon, TLRs 

expression was positive in almost all epithelial cells. Indeed, although some 

authors suggested that low TLR mRNA expression could be a mechanism for 

maintaining gastrointestinal homeostasis, particularly in the colon that is 

exposed to million different microorganisms, our data contradicts this 

theory. In fact, at the mRNA level the expression of TLRs was similar to 

other constitutive cell genes suggesting that TLRs may also have an 

important regulative function. Moreover, although not directly comparable, 

we did not find any apparent difference in TLR mRNA expression between 

the three organs although the exposure to microorganisms is clearly lower in 

the liver than in the stomach or colon. However, as we can see in figure 

VI.3, at the protein level there are some differences with the liver 

presenting a higher and more diffuse expression when comparing to the low 

intensity and polarized TLR protein expression of gastric and colonic 

epithelial cells.  
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FIGURE VI.3 – TLR protein expression in normal epithelial cells  

 

 

 

Although with similar mRNA levels, the intensity of TLR protein expression in the liver (up) 

was in clear contrast with stomach (middle) or colon (down). 
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We believe that the reason why liver has more TLR protein expression 

than gastric or colon epithelia is because this organ has to provide a rapid 

and effective immune response to any bacteria that come in contact with 

liver parenchyma. On the other hand gastrointestinal epithelia has to gain 

tolerance to the commensal bacteria in order to prevent an inadequate 

inflammatory response to non-pathogenic microorganisms, which could have 

deleterious consequences to the organism. So, although maintaining a 

constitutive genetic expression of TLRs, the gastrointestinal tract had to 

create mechanisms to diminish TLRs protein levels and to direct these 

receptors mainly to basolateral membrane where they could answer to any 

pathogenic microorganism that overcomes the first line of epithelial 

defence but not to the luminal commensal bacteria.  

Our initial hypothesis was that was made through a lower TLRs mRNA 

expression, however, as we have seen, that was not the case. Indeed, our 

work had a setback when we clearly saw that colon adenomas and 

adenocarcinomas had a much higher protein expression when comparing 

with normal mucosa, but with almost similar levels of mRNA. Fortunately, 

literature review allowed us to find TOLLIP. Of all the TLRs antagonist 

molecules, besides interacting with several intracellular kinases, TOLLIP 

also appeared to interact and to block TLRs complexes (67, 68). Indeed, 

although not described with TLR molecules, TOLLIP promoted traffic of 

some synthesized proteins like IL-1 receptors into endosomes, leading to 

protein early degradation (69-72).  

So, we hypothesized that lower levels of TOLLIP could allow higher 

TLRs protein expression with similar mRNA. It was thrilling to see that both 
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at gastric and colon mucosa decreasing levels of TOLLIP were associated 

with increasing protein levels of TLRs throughout the carcinogenesis 

sequence. In fact, although the carcinogenesis sequence of all the three 

organs was associated with increasing TLRs protein levels, in the liver that 

was associated with a direct elevation of TLRs mRNA while in the colon that 

was mainly associated with a decrease of TOLLIP with almost similar levels 

of mRNA. The stomach had an intermediate pattern between these two 

organs with lower TOLLIP but also with some increase in TLRs mRNA. So, it 

appears that in organs with lower exposure to microorganisms (liver), TLR 

protein levels must be constitutively high and TLRs inhibitors might not have 

an essential role since these organs have to rapidly answer to 

microorganisms in order to promote systemic sterile environment. In 

contrast, organs that are constantly exposed to microorganisms (colon) have 

low TLRs protein levels but high expression of TLR inhibitors and, when 

necessary, this levels decrease in order to allow a more robust TLR 

activation.  

Although interesting and allowing evidence-based scientific theories, 

our results should, nevertheless, be interpreted with some caution. In fact, 

although increased protein levels of TLRs and decreased TLRs inhibitors 

(TOLLIP, PPAR-γ) suggest that there is more TLRs activation by PAMPs in the 

sequence of lesions of gastrointestinal carcinogenesis, the lack of functional 

studies does not allow us to be definitive about that. Nevertheless, we 

believe that this is the case mainly because we showed that this sequence 

of events was also associated with increased inflammatory markers.       
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In conclusion, our results suggest that TLRs signalling pathways may 

play an important role in gastrointestinal carcinogenesis and that they might 

be the link between diet, infectious agents and cancer. If confirmed by 

more definitive functional studies, a strategy of modulation of TLRs, either 

by blocking TLRs or by increasing TOLLIP levels, may be effective for the 

prevention of progression of pre-neoplastic lesions. Also, considering the 

high TLRs expression in all the gastrointestinal cancers studied in this thesis, 

blocking TLRs activation may also have an important role in cancer 

treatment. Since modulation of TLRs activation may be accomplished by 

interventional measures, future studies should evaluate the clinical value of 

these novel findings.  
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CHAPTER VII – FUTURE RESEARCH 

“Science may set limits to knowledge, but should not set limits to imagination”  

         Bertrand Russell (1872-1970) 
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This thesis gave many answers but created even more questions. In 

this chapter a brief summary of future studies planned by our group of 

investigation will be presented taking in account the results previously 

presented. This does not intend to be a plan of future projects nor it 

intends to be a list of all possible lines of research that can follow the 

presented studies. 

 

Functional studies. 

Although we now know the pattern of TLR expression in normal and 

diseased gastrointestinal tissue, the functionality of these receptors in 

these lesions is still not fully established. In our opinion, tissue culture 

studies where biopsy samples of the different lesions are studied under 

laboratory conditions with TLRs agonists and antagonists will provide some 

answers regarding not only functionality but also interaction of all TLR 

signalling pathways. Cell lines could be used to complement information. 

The limitation of this line of research is that until now only few groups of 

investigation were able to study human gastrointestinal living tissue 

samples under in vitro conditions. 

 

Polymorphisms studies 

 We obtained very interesting results regarding the role of some 

TLRs polymorphisms in the risk of colorectal cancer development. Taking 

in account that both gastric and liver cancer also presented similar pattern 

of TLR expression when compared to colorectal cancer, it is predictable 
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that TLRs polymorphisms may also alter the risk of these cancers. 

Moreover, we may speculate that TLRs polymorphisms can alter not only 

the risk of cancer but also the risk of developing pre-neoplastic conditions 

like cirrhosis in the liver or intestinal metaplasia in the stomach. This 

should be worth to study. However, a huge limitation of these studies will 

be a relative great number of participants that would be necessary to 

include. 

 

Prevention and interventional studies 

 The main aim of scientific biomedical research is, in the end, to 

prevent or to treat diseases.  The better way to prevent is to know exactly 

who is at risk. In fact, the main limitation of prevention of gastrointestinal 

cancers is that in order to prevent one case we have to screen and follow 

far more cases. So, although we know some risk factors we still have to 

know which individuals exposed to that risks factors would at the end 

develop cancer. It should be interesting to study if a specific pattern of 

TLR/TOLLIP (or other related molecules) expression could predict which 

patients with pre-neoplastic conditions would develop cancer. 

Furthermore, since it is possible to modulate TLRs function with 

interventional measures such as antibiotics, probiotics or even specific 

TLRs agonists or antagonists, the effect of these interventions in persons 

at risk would be interesting – could modulation of TLRs with these 

interventions change the molecular profile of the mucosa? In the end could 

it prevent the progression of lesions? This hypothesis should be tested first 
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with animal studies and only afterwards in humans. The follow-up of these 

patients and ethical concerns will be issues to these studies.  

 

Someone said that science never solves a problem without creating 

ten more. Fortunately, trough the path of Science our patients and our 

spirit live longer. 
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