FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

[BPORTO

FEU FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Mobile Healthcare on a M2M Mobile
System

Ricardo Jorge Travanca Morgado

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Doctor Ana Cristina Costa Aguiar

July 31, 2014

© Ricardo Morgado, 2014

FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

o juri

A Dissertacao intitulada

“Mobile Healthcare on a M2M Mobile System”

foi aprovada em provas realizadas em 22-07-2014

e Ak Al Ay

Presidente Professor Doutor Manuel Alberto Pereira Ricardo

Professor Associado do Departamento de Engenharia Eletrotécnica e de
Computadores da Faculdade de Engenharia d iversidade do Porto

fﬁ-‘ M
Professor Doutor Adriano Jorge Cardoso Moreira

Professor Associado do Departamento de Sistemas de Informacao da Universidade
do MinhoEscola de Engenharia da Universidade do Minho

~ Q\/\/ -
Professora Doyfora Ana Cristina Costa Aguiar

Professora Alixiliar do Departamento de Engenharia Eletrotécnica e de
Computadores da Faculdade de Engenharia da Universidade do Porto

O autor declara que a presente dissertagao (ou relatério de projeto) é da sua
exclusiva autoria e foi escrita sem qualquer apoio externo nao explicitamente
autorizado. Os resultados, ideias, paragrafos, ou outros extratos tomados de ou

inspirados em trabalhos de outros autores, e demais referéncias bibliograficas
usadas, sio corretamente citados.

Kicordo Hongede

Autor - Ricardo Jorge Travanca Margado

Faculdade de Engenharia da Universidade do Porto

il

Resumo

Os desenvolvimentos tecnoldgicos na sociedade atual estdo a evoluir para um futuro onde
objetos mundanos terdo a capacidade de comunicar entre si. Estas comunicagdes nem sempre terdo
interacdo humana e serdo, provavelmente, auténomas, sendo chamadas de comunicagdo maquina
a maquina (Machine to Machine, ou M2M). No entanto, para diferentes servicos, aplicagdes e
dispositivos terem a capacidade de comunicar entre si, existe a necessidade de criar uma base,
sobre a qual a comunicagdo deve ser estabelecida. Isto é conseguido através da standardizacao de
comunicagdes.

Esta dissertacdo implementa um dos atuais standards para M2M, criado pelo ETSI (European
Telecommunications Standards Institute) e implementa-o num cendrio de satide, com o objetivo
de comunicar entre duas aplicacdes diferentes, criadas de acordo com o standard. Primeiramente,
a Gateway (GW) mével M2M ¢ responsavel pela conexdo e gestdo de sensores médicos, enquanto
recebe comandos da Network Application (NA) mével M2M que, por sua vez, também mostra os
resultados das medi¢des em tempo real. Ambas as aplicagdes foram implementadas no sistema
operativo Android e testadas num smartphone com Android 4.4 (KitKat).

No decorrer do projecto surgiu a ideia que a comunicagdo através do servidor standardizado
pelo ETSI, o NSCL, poderia ser ineficiente no que toca aos escassos recursos do smartphone.
Para colmatar esse problema foi projetada e criada uma ligacdo local, com o intuito de poupar
trafego nas comunicagdes e economizar bateria. Os dados transferidos através desta ligacdo local
sdo guardados para serem, posteriormente, enviados para o NSCL, garantindo que estes ndo sdao
perdidos. Para testar este conceito num cendrio médico, um dispositivo Bluetooth de medicao de
batimentos cardiacos foi integrado com a GW mével M2M.

O produto desta dissertacdo € um prototipo funcional de ambas as aplicacdes, que permite
ao utilizador procurar, comecar e parar o sensor suportado que esteja nas imediagdes da GW
moével M2M, usando a interface gréfica basica da NA mével M2M. A comunicagdo entre as duas
aplicagdes esta funcional, tanto através do NSCL, como através da ligacdo local projetada. Esta,
apo6s medigdes de trafego, provou ser eficiente na reducdo dos dados transmitidos.

il

v

Abstract

The technological developments in today’s society are evolving into a future where everyday
objects will have the ability to communicate with each other. These communications will not
always have human interaction, but will most likely be autonomous, hence called Machine-to-
Machine communications (M2M). However, for different services, applications and devices to be
able to share information, there is the need to create common ground, so they all can communicate
with each other. This is accomplished by standardizing these communications.

This dissertation implements one of the current M2M standards, created by ETSI (European
Telecommunications Standards Institute), and develops it in a mobile healthcare scenario aiming
to be able to communicate between two different applications created according to the standard.
Firstly, the mobile M2M Gateway (GW) is responsible for the connection and management of
medical sensors, while receiving commands from the mobile M2M Network Application (NA),
that also shows the measurement results in real time. Both applications were implemented for
Android OS and tested on a smartphone running Android 4.4 (KitKat).

During the course of the dissertation, the idea arose that the communication between the two
applications, normally made through an ETSI standardized server entity, the NSCL, could be
inefficient to the smartphone’s scarce resources, when both applications were running in the same
device. Therefore, a local connection was designed and created in order to fulfill this need to save
network traffic and battery, while keeping the data stored for delivery to the NSCL in a posterior
time, guaranteeing that it is not lost. To test the concept in an healthcare scenario, a bluetooth
heart-rate monitor was integrated within the mobile M2M GW.

This dissertation’s work presents a working prototype of both applications, that allow the
user to search, start and stop the supported sensor near the mobile M2M GW, while using a basic
graphical user interface of the mobile M2M NA. The communication between the two applications
is functional through the standardized NSCL, as well as through the designed local connection,
which after some traffic measurements was proven to be effective in reducing the transmitting
data.

vi

Acknowledgments

I would like to dedicate this dissertation to the following people, that in their own way helped
me through my academic career and gave me the strength and motivation needed to overcome all
the obstacles.

First and foremost, to my parents, to whom I owe everything I am today, and for being my
biggest inspiration. Even after all the difficulties they have been through, they keep very humble
and it’s them I look up to, and wish to be some day.

To my grandparents, which are also very dear to me and who I’m blessed to have in my life.
Their selflessness and dedication to family are unimaginable and their personalities also were a
great inspiration when growing up.

To my love, Cldudia, I'd like to thank the patience and understanding when the college work
came first, and for being there supporting and giving me strength and purpose to keep pushing my
own goals.

To Lhorca and Mafalda, for being there for me since the beginning of my degree and helping
me every step of the way, being my safe haven in darker times. Your friendship and company has
helped me grow into the man I am today.

To Canasta, for being a role-model in dedication and approach to problems, while also showing
that it is possible (and essential) to sometimes take a step back and enjoy the company of important
people in your life. A great word of appreciation for the effort put into reading this dissertation in
order to help me understand where there was room for improvement.

To the Tuna de Engenharia da Universidade do Porto and its members, for all the moments
and lessons that it provided, that made me grow as a person, and for giving me the opportunity to
make the great friends I have today.

To Carlos Pereira, for all the advices, help configuring networks, and for generally being there
for me, when I needed help with something related with the project. A special word of appreciation
for reviewing this document.

A special word of appreciation for all the help Pedro Rocha and Alberto Correia, from PT
Inovagdo, gave me during the development and testing of this project.

To Doctor Ana Aguiar, for mentoring me ever since I started working in Instituto de Teleco-
municagdes, and for helping me and teaching me every step of the way, helping to shape me into
the professional that I have become.

Ricardo Morgado

vii

viii

“I work on the motto that it something’s not impossible, there must be a way of doing it.”

Sir Nicholas Winton

ix

Contents

1 Introduction

1.1
1.2
1.3
1.4

Context of the Project
Motivation
Objectives
Structureo L.

2 State of the Art

2.1
2.2

23

24

25

Publish-Subscribe Paradigm
M2M Communications
2.2.1 ETSIM2M Standard
2.2.2 ITU M2M Service Layer . . .
2.2.3 OMA Lightweight M2M . . .
Communication Protocols
2.3.1 Representational State Transfer

232 MQTT

233 AMQP
eHealth
2.4.1 Application Revision

2.4.2 Communication Technologies
Discussion

3 Aspects of ETSI M2M Standard

3.1

3.2

33

ETSI M2M Standard
3.1.1 Resource Structure
3.1.2 M2M Gateway

3.1.3 M2M Network Application . . .

3.1.4 ETSI M2M Implementations

Marshalling
321 XML
322 JSON

Data Security Mechanisms

4 ETSI Compliant Mobile M2M System

4.1
4.2

Problem

Approach
4.2.1 Healthcare Use Case
4.2.2 System Design
4.2.3 Local Interface

X1

W W N = =

AN L

12
15
16
18
18
19
20
21
23

25
25
25
27
28
29
30
30
30
31

CONTENTS

4.2.4 Mobile Applications Design 41
43 Evaluation e e e e e 50
Implementation 53
5.1 Technologies e 53
5.2 ETSI Protocol Implementation 54
5.3 Bootstrap e e e e e e e 54
54 Web-Server 55
5.5 ETSI Resource Structure Implementation 56
5.6 SensorIntegration e e 57
5.6.1 Sensordatastorage 57
5.6.2 Zephyrdata 58
5.7 Communication considerations 58
5.7.1 SubscriptionCheck L 58
5.7.2 Persistent Database 59
573 Commands e e e 60
5.8 Mobile M2ZMGW 61
5.8.1 Android Implementation L. 61
5.8.2 Communication vt e e e e e e e 62
5.8.3 Commands handling, 64
59 Mobile M2M NA e 66
5.9.1 Android Implementation, 66
5.9.2 Communication oL 68
5.9.3 Interface Commands 70
5.10 Local Interface 72
Results 75
6.1 ProofofConcept 75
6.2 Traffic Measurements e 81
6.2.1 Resource Registration 82
6.2.2 LocalInterfacevs NSCL 83
6.2.3 Discussion e e e e 84
Conclusions and Future Work 87
7.1 Conclusions L 87
7.2 Future Work e 89
ETSI classes changes 91
Mobile M2M GW Logs 93
B.1 NSCL . . . e 93
B.2 Local API e 96
B.3 Connectivity Lost Test 100
B.4 Disconnection after using local APL 106
Mobile M2M NA Logs 113
C.1 NSCL . . . e 113
C2 Local APL e 116

C.3 Connectivity Lost Test e 119

CONTENTS Xiil

C.4 Disconnection after using local APT 123

X1V

CONTENTS

List of Figures

1.1

2.1
2.2
23
24
25

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
32
33
34

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Smartphone market share by Operating System in 2013. From [1] 2
Communication COMPAariSON v v v v vt et 6
Machine-to-Machine high level architecture. From [2]. 8
M2M Service Capabilities functional architecture framework. From [2]. 10
ITU-T M2M Service Layer in the IoT reference model. From [3]. 11
ITU-T M2M Reference points between device, gateway and network application

server. From [3]. 13
Lightweight M2M architecture and protocol stack. From [4]. 13
HTTPpacket 16
CoAP resource-observe. From [5]. 17
CoAPpacket 18
MQTT packet e e 18
AMQP functionality overview. From [6], 19
AMQPpacket 19
IEEE 11073 Framework. From [7]. 22
Continua Alliance profile of standards. From [7]. 23
Illustration of the ETSI M2M resource structure 26
ETSI M2M smart-home example 26
Simplified M2M GW resource structure. 27
Simplified M2M NA resource structure. o oo v v oL . 29
UML 2.0 Use Case Diagram for the study scenario 34
Architectural overview of integrated solution 36
Mapped mobile M2M GW resource structure. 37
First Approach. 37
Second Approach. 38
Mapped mobile M2M NA resource structure. 39
NSCL as information forwarder. 40
Local Interface Communication. 40
High-level Mobile M2M GW Architecture 42
Mobile M2M GW Protocol Manager Architecture 43
Mobile M2M GW Flowchart 44
Mobile M2M GW Commands Flowchart 45
High-Level Mobile M2M NA Architecture 47
Mobile M2M NA Protocol Manager Architecture 48
Mobile M2M NA Flowchart 49
Mobile M2M NA Protocol Manager Architecture 50

XV

XVi

5.1
52
53
54
5.5
5.6

5.7
5.8
59
5.10
5.11
5.12

5.13
5.14

6.1

LIST OF FIGURES

Bootstrap Procedures L oo 55
ECG example, specifying RR interval. From [8] 58
Procedure to check if subscription created by this mobile M2M GW or NA is present. 59
Storage Class Diagram. 60
Class diagram of the structure of the commands. 61
Sequence diagram of the communication held between the mobile M2M GW and

the NSCL. e 62
Mobile M2M GW handling of commands received from the NSCL 65
Network Application start screen. 66
Network Application commands screen. 67
Network Application commands screen with received sensors. 67
Network Application measurements interface. 68
Sequence diagram of the communication held between the mobile M2M NA and

the NSCL. 69
Sequence diagram of the mobile M2M NA commands. 71
Sequence diagram of the communication between the mobile M2M GW and NA

using the local interface. 72

Battery test studies. From [9]. 82

List of Tables

4.1 Evaluation metrics 51
6.1 Mobile M2M applications footprint. Lo 81
6.2 Resource Registration Traffic 83
6.3 Network traffic comparisontable 83
6.4 Evaluationmetrics L 85
A.1 Summary of affectedclasses 92

XVii

Xviil LIST OF TABLES

Abbreviations and Symbols

3GPP
AMQP
API
BPM
CA
CoAP
CR
CRUD
DSCL
DTLS
eHealth
ETSI
FCAPS
FIFO
GPS
GSCL
GW
GUI
H2M
HTTP
Id(s)
IEEE
IETF
IoT
IPsec
ISO
IT-Porto
ITU-T

JSON
LWM2M
M2M
MQTT
NA
NDA
NSCL
OEM
OM2M

3rd Generation Partnership Project

Advanced Message Queue Protocol

Application Programming Interface

Beats per minute

Certificate Authority

Constrained Application Protocol

Cardiac Rehabilitation

Create, Retrieve, Update and Delete

Device Service Capabilities Layer

Datagram Transport Layer Security

Transfer of health resources and healthcare by electronic means
European Telecommunications Standards Institute
Fault, Configuration, Accounting, Performance and Security
First-in First-out

Global Positioning System

Gateway Service Capabilities Layer

Gateway

Graphical User Interface

Human-to-Machine

Hypertext Transfer Protocol

Identifier(s)

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

Internet of Things

Internet Protocol Security

International Organization for Standardization
Instituto de Telecomunicagdes, Porto
Telecommunication Standardization Sector of the International Telecommuni-
cation Union

JavaScript Object Notation

Lightweight M2M

Machine-to-Machine

Message Queuing Telemetry Transport

Network Application

Non-Disclosure Agreement

Network Service Capabilities Layer

Original Equipment Manufacturer

Open-source M2M

XiX

XX ABBREVIATIONS AND SYMBOLS

OMA Open Mobile Alliance

PKI Public Key Infrastructures

PKIX Public Key Infrastructure X.509

PmEB Patient-Centered Assessment and Counseling Mobile Energy Balance
PTIN Portugal Telecomunicagées Inovagdo
pub-sub Publish-Subscribe

R&D Research and Development

REST Representational State Transfer

REC Request for Comments

RSA Rivest Shamir Adleman

SASL Simple Authentication and Security Layer
SCL Service Capabilities Layer

SCs Service Capatilities

SNI Server Name Indication

TCP Transmission Control Protocol
UDP User Datagram Protocol

URI Uniform Resource Identifier

W3C World Wide Web Consortium
XML eXtensible Markup Language

Chapter 1

Introduction

In a society irreversibly marked by the everyday use of technology, new ways to automatically
share data and automate systems and decisions are constantly emerging. Machine-to-Machine
(M2M) solutions are becoming increasingly popular, for the great scalability they provide, and
because they generally make people’s lives easier. An easily understandable example of M2M
system is GPS (Global Positioning System) [10, 11]. There is no human interaction, and yet by
gathering and processing data from satellites, it is able to compute the user’s current position. The
ease of use of these systems grant them the massive adoption they hold in today’s society.

The concept of the Internet of Things (IoT) [12], states that in the near future, everyday ob-
jects as simple as food packages, paper documents or even furniture will have the ability to be
connected to each other and to the Internet, providing services that can hopefully ease people’s
lives. M2M systems can act as a possible enabler of this 10T future, by providing the common
ground standardization needed for the objects to interact with each other, and enable the creation
or services that rely on their information.

The context of the project in which this dissertation is inserted is explained in Section 1.1,
followed by the motivation for studying the subject at hand, in Section 1.2. The objectives this
dissertation aims to achieve are stated in Section 1.3, before a brief explanation of the document’s

structure, in Section 1.4.

1.1 Context of the Project

This dissertation is integrated in a joint project between the Instituto de Telecomunicagoes,
Porto (IT-Porto), and Portugal Telecomunicacdes Inovagdo (PTIN). M2M communications, which
will be further explained in Section 2.2, enable the connection of sensors and services, providing
the interfaces and guidelines to allow data to be seamlessly exchanged and stored, to be available
to other applications and services authorized to access it. As an example, cities are starting to
explore the possibility of using M2M Smart Grids [13, 14], that allow metering data to be au-
tomatically uploaded to the service provider, be it water, electricity or gas. There are also other

scenarios in smart homes, where M2M communication can be used to autonomously optimize

2 Introduction

and manage energy consumption of any appliance that runs on electricity [15] or even control the
house temperature (like the Nest! equipment line does).

This dissertation’s work aims to build two Android OS [16] applications, working in a system
to show their potential enabling power for mobile M2M scenarios. The first application is a Gate-
way (standardized M2M entity) that will gather sensors data, store and process them accordingly
for being registered in the M2M Network later. The data is then forwarded to the Network Ap-
plication (also a standardized M2M entity) that give the user visual feedback, and allows him to
perform actions. The healthcare scenario was chosen to allow the better grasp of the standard’s

specifications, acting as a proof of concept for other possible scenarios.

1.2 Motivation

Back in 1965, Gordon Moore published in a paper what would later be considered Moore’s
Law [17], where he predicted that the transistor count in microprocessors would roughly dou-
ble each year. His expectation has been fairly accurate since the paper was published, and the
transistor count keeps more or less doubling each year. This means that the processing power is
constantly being improved, for every kind of device, and that derived from this, as well the signifi-
cant improvement of telecommunication technologies (3G, 4G), we’ve seen an impressive growth

in the smartphone industry as shown in Figure 1.1.

Worldwide Smartphone Sales to End Users by Operating System in 2013 (Thousands of Units)
Operating System 2013 2013 Market 2012 2012 Market

Units Share (%) Units Share (%)
Android 758,719.9 78.4 451,621.0 66.4
i0s 150,785.9 15.6 130,133.2 19.1
Microsoft 30,842.9 3.2 16,940.7 2.5
BlackBerry 18,605.9 1.9 34,210.3 5.0
Other OS 8,821.2 0.9 47,203.0 6.9
Total 967,775.8 100.0 680,108.2 100.0

Figure 1.1: Smartphone market share by Operating System in 2013. From [1]

The M2M scenarios mentioned in Section 1.1 have undoubtedly started to appear, but they
most of the times are proprietary, difficulting the exchange of data between services and appli-
cations the user owns or relies on. Using standardized M2M communications could ease this
difficulty in interchanging data, working towards an IoT future, which is limited today, by the
fragmentation of M2M solutions [4]. The smartphone can then be an excellent choice as M2M
service enabler, since it is permanently around the user. It possesses the necessary processing,
battery, and connectivity power needed for interacting as an M2M endpoint, while retaining the
mobility necessary to support a new wider range of mobile scenarios. In these, data could be

shared between standard compliant M2M devices, services and applications, be it mobile or not.

Uhttps:/nest.com/

1.3 Objectives 3

The scenario in study in this dissertation’s project is mobile healthcare, where the user could
use its smartphone to effortlessly make health-related measurement using a device he already
carries every day to access data from nearby sensors, knowing that the measurements would then
be stored online for him or his physician to access. This works as a proof-of-concept for the
ability to communicate locally using M2M communications, paving the way for more scenarios

to be developed.

1.3 Objectives

This dissertation is going to study how the smartphone can fit into this M2M system, using
the ETSI M2M standard. Back when the joint project started in May 2013, it focused on the
architectural design and implementation of the mobile M2M Gateway (GW). The functionalities of
the M2M GW entity will be further explained in Section 2.2.1. At the beginning of this dissertation
(September 2013), a first version of the mobile M2M GW had been released with the MQTT
protocol [18] working. Then the project changed its direction to complying with the ETSI M2M
Standard, and it became this dissertation’s objective to create of a mobile M2M system composed
by a mobile M2M GW and a mobile M2M Network Application (NA), working together in a
healthcare scenario. Both applications were built on a modular structure that can ease the addition
of new protocols, sensors and functionalities.

The mobile M2M Gateway gathers data from compatible healthcare sensors (such as heart-
rate), and processes it to be sent to the NSCL (ETSI M2M "cloud" entity). The mobile M2M GW
design has most modules running on their own threads, aiming to keep efficiency at a maximum,
while featuring a bottleneck in the Internet connection. This was purposefully done to save battery
by not having a constant data stream flowing. The mobile M2M NA will then receive the data from
the NSCL and show it on the graphical user interface (GUI), as well as commands. With these,
the mobile M2M NA will allow the user to send commands to control the mobile M2M Gateway
remotely, triggering sensor searches and starting/stopping the readings. The M2M concepts will
be further explained in Section 2.2.1 and the use cases will be addressed in Section 4.2.1. Given
the constrained nature of smartphones, there is a special interest in saving its scarce resources, and
so one of the objectives is also to determine a way to save the battery drain and network usage on
3G/Wi-Fi networks, by using a local bypass in certain situations. The two applications will work
together as a system, and regardless of the local bypass being used or not, the feedback given to

the user should be consistent, to ease the experience.

1.4 Structure

This document is structured in 7 chapters. After this introduction to the subject of this dis-
sertation, Chapter 2 is focused on the state of the art research related to this project, followed in

Chapter 3 by further specifications on the standard and technologies used.

4 Introduction

On Chapter 4 the scenario and approach to the problem are explained, followed by the imple-
mentation, in Chapter 5, paving the way for results and their discussion in Chapter 6. Last but
not least, Chapter 7 will summarize the conclusions to be taken from the work developed for this

dissertation as well as possible future work.

Chapter 2

State of the Art

In this chapter there is going to be a closer study of M2M communications, explaining its
importance in the evolution of information technology towards an [oT future. This chapter aims to
help the reader fully understand the technologies involved in the development of this dissertation’s
project.

First, an explanation of the publish-subscribe paradigm on which M2M communication are
based is explained in Section 2.1. Then, in Section 2.2, there is going to be a study into M2M
communications, detailing 3 different standards. Section 2.3 will then detail some communication
protocols compatible with the M2M standards or themselves enablers of M2M communications,
namely HTTP, CoAP, MQTT and AMQP.

Section 2.4 will review some healthcare applications, followed by some eHealth technology
standards that are used to communicate medical data. Finally, Section 2.5 will resume this Chap-

ter’s study, with a substantiated discussion on the decisions made for this dissertation’s project.

2.1 Publish-Subscribe Paradigm

By 2002, the author of [19] stated that: "Wireless has experienced explosive growth in recent
years, and “push’ will be the predominant wireless service delivery paradigm of the future". Push
is another term for the publish-subscribe (pub-sub) paradigm that refers to a communication model
that have the architecture necessary for users to subscribe to a topic, message, publisher, etc., and
receive all the subsequent updates about it. This differs from the web communication model,
which is request-response based. In the latter, a request is executed when information is desired
(polling), but this is inefficient for some types of communication, such as sensor measurements,
as it overloads the servers and networks with unnecessary requests and traffic, slowing down the
response times, as well as causing a delay between the information generator (e.g. sensors) and its
consumer (e.g. service, application).

Figure 2.1a shows the client is polling the server for the publisher’s content, having the need
to poll whenever there is new content. As the client does not know when there is new information,

regular polling is needed, to check for updates. On the other hand, in Figure 2.1b, the client must

6 State of the Art

only subscribe once to receive notifications for the following publications, until the subscription

is cancelled.

Client Server Publisher
I T . T Client Server Publisher
L : publish |
: request <
T : subscribe >| T
: response M . |
. i : publish
< <& ¢ publish : notify P !
: request .
: . notif : publish I_J
: response | | : hotity O
« | < |
[| | | | |
! ! | | | |
1 I 1
(a) Request-Response model (b) Pub-Sub model

Figure 2.1: Communication comparison

Publishers and subscribers do not need to be actively participating in the interaction at the
same time, or even know about each other. They can both produce and consume events in an
asynchronous way (i.e. not online at the same time), which allows for very flexible scenarios.

The Request-Response model is ideal for situations where the client only wishes for the in-
formation once, like loading a web-page, whereas pub-sub is used when the client wishes to be
notified of the publisher’s activity updates. This means that the latter fits a sensing M2M scenario
best, since it allows the communication to be held by subscribing the publishers that are important

to the client, and receive its updates.

2.2 M2M Communications

"The exponential growth of wireless communication devices and the ubiquity of wire-
less communication networks have recently led to the emergence of wireless machine-
to-machine (M2M) communications as the most promising solution for revolutioniz-

ing the future “intelligent” pervasive applications", [11]

As technology advances, M2M, which can also be called machine-type communications
(MTC), will continue to increasingly replace the traditional human-to-machine (H2M) opera-
tions [15]. By definition, M2M communications is a term used to refer to data communications
without or with limited human intervention amongst various terminal devices such as comput-
ers, embedded processors, smart sensors/actuators, mobile devices, software components, services
etc. [20]. Since M2M, as opposed to H2M, does not need user interaction, the devices communi-
cating with each other have some degree of decision making, and thus the services provided can be
to some extent considered intelligent, as the quote above suggests. M2M communication presents
itself as the enabling technology towards an IoT future, by allowing increase of devices that can
be uniquely addressed and accessed, enabling them to interact with each other and cooperate to
reach common goals [12].

There is interest in the development of M2M communications, since it can impact positively

both domestic (e.g. domotics, assisted living, e-health, etc.) and industrial fields (e.g. automation,

2.2 M2M Communications 7

manufacturing, logistics, business/process management, etc.) [12]. This can be done by allowing
real time information from sensors to produce changes in the subscribing applications, services
or devices, connected through the M2M system. This could mean slowing production line if
a delivery truck with essential feedstock was delayed, preventing a jam in the production line,
or even to trigger the alarm if an uninvited guest showed to the doorstep when the owner is on

vacation.

In mobile scenarios, M2M communications can allow for resource optimization, reducing
the usage of energy, network resources, computational cost, etc., allowing for more efficient and
cheaper solutions for the consumers [5, 11]. These are accomplished by using energy oriented
communications, that can have the processing executed in non-constrained devices, while creating

those solutions on top of the M2M layer, allowing significant savings in R&D.

The number of M2M-enabled devices (terminals) is increasing exponentially, forecasted to
grow from 50 million in 2008 to well over 200 million in 2014, and up to 50 billion by 2020 [15].
As the interest in M2M communications increases, so does the need to standardize it, in order to
allow the roughly 50 billion devices to exist in 2020 to communicate with each other, and with
services or applications. Naturally, some proprietary M2M solutions have already been proposed
and/or deployed, but without an accepted standard used by manufacturers and companies, the IoT
is still distant, due to the lack of interoperability. The following sections will give an overview of

the current efforts to standardize M2M communications.

2.2.1 ETSI M2M Standard

In 2005, the 3rd Generation Partnership Project (3GPP) started with the standardization of
M2M in the Global System for Mobile (GSM) and the Universal Mobile Telecommunications
Systems (UMTS). In 2007 the technical report (TR) 22.868 (release 8) [21] completed the study
on facilitating M2M communications in 3GPP systems, after which the 3GPP working group for

M?2M standardization was organized.

In January 2009, the European Telecommunications Standards Institute (ETSI), which is the
independent and non-profit standardization organization in the telecommunications industry in
Europe, picked up where 3GPP left off and continued the standardizing process of M2M, defin-
ing entities and functions to provide interoperable efficient end-to-end information delivery. ETSI
published a batch of technical specifications that state the M2M service requirements, its commu-

nication, and also several use cases, which will be summarized in this section.

ETSI’s M2M architecture provides a Service Capability Layer (SCL) that is common to all
M2M applications, devices and services, providing a consistent resource structure that specifies
the resources and collections hierarchy, creating the common ground between all M2M nodes
(elements that are compliant with the specification). These resources and collections are called
Service Capabilities (SCs), which is where the information is kept. The documents do not limit

the possibilities of these SCs, leaving their use open to interpretation.

8 State of the Art

M2M Applications

M2M
Management
M2M Service Capabilities Functions

Network Domain Core Network (CN)

Network
Management
Functions

Access Network

MM
Applications|
M2MService
Capabilities

M2M Gateway

Device and Gateway
Domain

M2M

lication:
M2M Service|
Capabilities

M2M Device

Figure 2.2: Machine-to-Machine high level architecture. From [2].

Figure 2.2 presents the high level view of the ETSI M2M system architecture as specified
in [22, 2]. Two domains are depicted: The M2M device and gateway domain, and the network

domain. The elements present in the device and gateway domain are:

* M2M Device: This entity represents devices that run M2M applications, that use SCs to

communicate. These can connect to the Network Domain in two ways:

— Direct Connectivity: Have a direct connection to the Network Domain, performing
the management procedures for himself (including registration, authentication, autho-
rization).

— Gateway as a Network Proxy: The M2M device can alternatively connect to an
M2M Gateway, through the M2M Area Network. In this situation the M2M Gateway
functions as a proxy for the communication with the Network Domain. One device

can use multiple M2M Gateways to connect to the Network Domain.

* M2M Area Network: Provides connectivity between the M2M Devices and M2M Gate-

ways.

* M2M Gateway: An M2M Gateway acts as a proxy for M2M devices, connecting them to
the Network Domain. The device can connect directly if it has M2M capabilities, but if it
is a legacy (older) device, the M2M Gatewy may run an M2M applications that handle the
connectivity between that device and the M2M Gateway, allowing him to also communicate

with the Network Domain.

The elements present in the Network Domain are:

2.2 M2M Communications 9

* Access Network: This entity provides access to the Core Network by the Device and Gate-

way Domain.

* M2M Core: The M2M Core is composed by two entities. The Core Network (CN) and the
M2M Service Capabilities (SCs):

— Core Network: This provides the access connections, IP connectivity and roaming
capabilities with the M2M core.

— M2M Service Capabilities: The SCs allow different applications, that have access
to them, to use M2M functions through a set of open interfaces. It simplifies and
optimizes application development and deployment by hiding network specificities,

working as an application-level protocol.

* M2M Applications: These are applications that run services logic, using the SCs accessed
through the open interface. This allows for interoperability of sensors and services, being a
clear advantage against the verticality of proprietary M2M solutions. These are called NA’s

(Network Applications) throughout this dissertation.

* Network Management Functions: This provides the necessary functions to allow the man-
agement of the Access and Core networks. They include Provisioning, Supervision, Fault

Management, etc.

* M2M Management Functions: This provides the functions required to manage SCs in the
Network Domain. It uses a specific M2M SC to manage M2M Gateways and Devices, such
as the M2M Service Bootstrap Function (MSBF) or the M2M Authentication Server (MAS).

As seen on Figure 2.3, the interface (called reference point in the specifications) between
an M2M application in the M2M Device Domain and the M2M Service Capability (SC) in the
Network and Application Domain is called mla; mld is the interface between an M2M device or
M2M gateway and the M2M SC in the Network and Application Domain; finally, the dla is the
name of the interface between an M2M device, or M2M gateway on behalf of a device, and the
Network Domain. These interfaces define which actions each entity can execute at any given time,
and the procedures in case of success and failure. The mIm, which is not represented in Figure 2.3,
allows two SCL in different domains to be connected, thus extending the reachability of services
offered over the mld interface.

As mentioned in the M2M Management Functions of the Network Domain, one of its respon-
sibilities is the handling of the Bootstrap procedures. These procedures provide a way to securely
connect the different entities using certificates and private keys. Every entity has a pre-provided
certificate-key pair that allows them to receive a session key, which is then used to encrypt the
communications with TLS (HTTP) or DTLS (CoAP). These are the only two protocols supported
by ETSI’s standard, and they will be discussed in sections 2.3.1.1 and 2.3.1.2, respectively. These
Bootstrap procedures are very important for data to be secure in transit, as they create an encryp-
tion channel between the communicating parties, using certificates and private keys (which will

be further explained in Section 3.3).

10 State of the Art

Device/Gateway Domain
| MAS | | MSBF | ‘ NA |
D/GA 'y Y 2
i ‘ mla
h 4 v

Network M2M |Node

DIGM Node
mld
D/GSCL [« > NSCL

x s

']
!]
Communication modules | Core Network Connection +
-]

v

¥
@ Core Network B

Figure 2.3: M2M Service Capabilities functional architecture framework. From [2].

dla

The NSCL (Network Service Capabilities Layer) connects the Device and Gateway domain to
the Network Applications, being a central element in the architecture, by providing the connection
between services and devices compliant with the standard. The Device and Gateway also have
their own standardized SCL’s, respectively Device Service Capabilities Layer (DSCL) and Gate-
way Service Capabilities Layer (GSCL), which define the resources and actions each entity can
have. The M2M Gateway and M2M NA will be further detailed in Section 3.1.

2.2.2 ITU M2M Service Layer

In February 2012 the ITU-T (Telecommunication Standardization Sector of the International
Telecommunication Union) created an M2M Focus Group aiming to provide an M2M Service
Layer focused on e-health use cases [23]. This group released the first batch of documents and
studies in April 2014, having first started by executing a study on the current e-health standardiza-
tion market, to identify which technical areas should be focused for standardization [24], as well
as which current e-health ecosystems already rely on M2M (standardized or otherwise) [25].

The main objective of this Service Layer is to provide the solution for some areas that the ETSI
standard did not cover, like the lack of specific management, support and security capabilities.
Figure 2.4 shows the [oT areas this standard will cover, mentioning the interfaces (called reference
points in the documentation) that are explained below.

Figure 2.4 shows the architectural overview of the ITU-T Service Layer, which is based on
the ITU-T IoT reference model [26]. Below is a brief explanation of the ITU-T IoT reference
model [26], which specifies layers and management:

Application Layer: The Application Layer contains the M2M applications, regardless of their
type (DA, GA or NA).

Service Support and Application Support Layer: This layer is where this M2M standard
builds upon, besides having some management and security capabilities. It is subdivided
into two. The generic support capabilities are common capabilities that can be used by

different M2M applications, such as data processing or storage. They can also be used to

11

2.2 M2M Communications
-
Management Application M2M DA GA NA Security
P layer applications g
capabilities n " T capabilities
T T T
D-SL G-SL A-SL
—_— — ITU-T M2M service layer j t ¥ —_—
P Y PR iyl dping iyt A PRSP JRPRPRPRPIN SPRPI AP edoscapafacad
L]
H Service support and Application support layer
L]
1
H Specific support capabilities
H n o Generic
: B a support e-health Telematics w o
H a g capabilities support support 9 o
] o o =) o
SEEARE 5l
I B T SEEAREN
o i 5 5
2|3 g| |2
=3 £ Networking capabilities] 8 8
0 2] o o
<] "] <) o1}
° o Network layer g =
= g . & =
= H Transport capabilities J] ®
1] 1]
w0 w
Device | Device Gateway
evice layer capabilities capabilities
— — — —

(’;\)
[
w
=

cessscscsscsecen e

Figure 2.4: ITU-T M2M Service Layer in the [oT reference model. From [3].

build other specific support capabilities. The specific support capabilities are more specific,

and serve the requirements of application groups, such as e-health or telematics support, as

shown in Figure 2.4.

Network Layer: This layer is subdivided into two: Network capabilities provide control func-

tions over network connectivity, such as access and transport resource control functions,

mobility management or authentication, authorization and accounting; Transport capabili-

ties provide connectivity for the M2M service transport and application specific data, and

also M2M related management information.

Device Layer: This layer is subdivided into two kinds of capabilities: Device capabilities provide

direct or indirect (through a gateway) access to the communication network, as well as ah-

hoc networking and sleeping functionalities (to save energy); Gateway capabilities support

multiple interfaces for the device (for example Zigbee, Bluetooth and Wi-Fi) and for the

network layer (e.g. 2G,3G and LTE), as well as protocol conversion. The protocols need to

be converted if the communications at device level use different layer protocols (e.g. one

uses Bluetooth and the other Zigbee), or if the protocol at device layer and network layer is

different (e.g. device layer uses Bluetooth and network layer uses 3G technology).

Management Capabilities: Besides the traditional management capabilities like FCAPS (fault,

configuration, accounting, performance and security) this layer also provides the M2M with

12 State of the Art

generic capabilities to manage devices (remote activation and de-activation and diagnos-
tics firmware/software upgrading), manage the local network topology, and traffic and con-
gestion management (detecting network overflows and implementing time-critical and/or

life-critical data flows).

Security Capabilities: Security capabilities are divided into generic and specific groups. The
specific security capabilities depend on application specific requirements, such as mobile
payments or medical data. Generic capabilities are independent from the applications, but

depend on the layer:

» Application Layer: Authorization, authentication, application data confidentiality

and integrity protection, privacy protection, security audit and anti-virus;

* Network Layer: Authorization, authentication, use data and signalling data confiden-
tiality, and signalling integrity protection;

* Device Layer: Authentication, authorization, device integrity validation, access con-

trol, data confidentiality and integrity protection.

Similar to ETSI’s mld, mla and dla reference points, the ITU-T Service Layer, provides its

own reference points for the communication between the architectural entities.

D-SL This reference point allows a device application in a Device to access the ITU-T M2M
Service Layer in the same device or in a Gateway. It can also connect Legacy Device that

does not have the ITU-T M2M service layer capabilities to a Gateway [3].

G-SL This reference point allows a gateway application in a Gateway to access the ITU-T M2M

Service Layer in the same Gateway [3].

A-SL This reference point allows a network application server to access the ITU-T M2M Service

Layer in the same network application server [3].

SL-SL This reference point allows the ITU-T M2M Service Layer in a Device, Gateway or Net-
work Application Server to access the ITU-T M2M Service Layer in a different Device,
Gateway or Network Application Server [3].

These reference points connections to each other are illustrated in Figure 2.5.

The ITU-T Service Layer defines a set of requirements for its API, to allow the use of HTTP
and CoAP to communicate between entities [27]. However, since these documents are still very
recent, there is still no more information on the specificities of the API or the Architecture of the

Service Layer itself.

2.2.3 OMA Lightweight M2M

In December 2013, the Open Mobile Alliance (OMA), released the first candidate version
documentation on the Lightweight M2M (LWM2MO) standard proposal. The LWM?2M is an ap-
plication layer communication protocol that attempts to fulfill the client-server needs that fit the

2.2 M2M Communications 13

Legacy Device

Gateway
DA |«
GA -
Network Application Server
. +
Device D-SL G-SL
NA
v
DA oSt e— A-SL
" - v
D-SL SL-sL . >
v | J SL
SL < SL-SL J

Figure 2.5: ITU-T M2M Reference points between device, gateway and network application
server. From [3].

overall M2M architecture from oneM2M alliance [28]. The latter is composed by the standard-
ization entities from around the world (including the aforementioned ETSI), as well as industry
companies, and aims to gather everyone’s efforts into creating an universally accepted Service
Layer that can then be incorporated in future devices and software. The LWM?2M solution is re-
ferred by OMA as an Enabler, aiming to have its LWM2M Server incorporated into private or
public data centers while the LWM?2M Client built into modules or devices.

Device

Management
Application

N1

LWM2M Server Objects

Interfaces Stack LWM2M J

Bootstrapping Efficient Payload
Registration CoAP Pratocol CoAP
Object / Resource Access DTLS Security
Reporting UDP or SMS Bearer S 14
UDP

LWM2M Client

M2M Device

Figure 2.6: Lightweight M2M architecture and protocol stack. From [4].

The LWM2M Enabler is focused on constrained devices (low power micro-controllers and
small amounts of RAM) that aims to provide a simple and low-cost remote management and

service-enablement mechanism [4]. It provides a light and compact secure communication inter-

14 State of the Art

face that uses CoAP over DTLS (which will be explained in Section 2.3.1.2) or Short Message
Service (SMS [29]) for communicating between the LWM2M Server and Client, like shown in
Figure 2.6’s protocol stack. It was also thought to be usable with non-IP based local networks
such as ZigBee [30] or 6LoWPAN [31], which are built over the IEEE 802.15.4 [32] for low
cost and/or low-speed communication between devices within the same Wireless Private Net-
works (WPAN).The implementation of the LWM2M Enabler with UDP is mandatory, whereas
with SMS is optional. Also shown in Figure 2.6, the LWM2M Enabler specifies four logical

interfaces between server and client, namely [33]:

Bootstrap: This interface is used to provide the LWM?2M Client with the necessary information
for him to Register with one or more LWM?2M Servers. There are four bootstrap modes
in the LWM2M Enabler: Factory Bootstrap, Bootstrap from Smartcard, Client initiated
Bootstrap and Server initiated Bootstrap. The LWM?2M Clients must support one of these,
while the LWM2M Server must support at least the Client initiated and Server initiated

modes.

Device Discovery and Registration: This interface specifies how the interactions to Regis-
ter, Update or De-Register must take place between the LWM2M Client and Server. The
LWM2M Server must support all interactions, while the LWM2M Client must implement
the Register and Update but should also provide the De-Register interaction.

Device Management and Service Enablement: This interface, which must entirely be sup-
ported by both the LWM2M Client and Server, specifies how the server can access the
client’s objects and resources, through the use of Create, Read, Write, Delete, Execute,

Write Attributes, or Discover operations.

Information Reporting: This interface, which must entirely be supported by both the LWM2M
Client and Server, is used by the LWM2M Server to Observe changes in the LWM2M
Client’s resources, receiving notifications when new values are available. This Observe
operation is initiated by the LWM2M Server, for a specific LWM2M Client resource or

object, and ends with the Cancel Observation operation.

Using CoAP, the LWM2M Enabler has the ability to use RESTful communication (RESTful
systems use the REST paradigm, which will be explained in Section 2.3.1) on constrained devices,
providing asynchronous communication using UDP. UDP does not guarantee message delivery,
but reduces the packet sizes. Some CoAP responses are supported by LWM2M, and together
with it’s resource discovery, are encoded in a simple binary format, providing their functionalities
starting with a 4 byte overhead [4].

The LWM2M Enabler defines a simple resource model where the information contained in the
LWMZ2M Client or Server is a Resource that it organized into Objects, where every Resource must
belong to an Object. The first release of the OMA LWM?2M standard specifies the following set

of device management objects [4]:

2.3 Communication Protocols 15

LWM2M Security: Handles security aspects between management servers and the LWM2M

client on the device.
LWM2M Server: Defines data and functions related to the management servers.

Access Control: Defines for each of several permitted management servers the kinds of access

rights they have for each data object on the client.
Device: Details resources on the M2M device related to device specific information.
Firmware: Details resources on the M2M device useful for firmware upgrades.

Location: Groups those resources that provide information about the current location of an M2M

device.

Connectivity Monitoring: Groups together resources on the M2M device that assist in monitor-

ing the status of a network connection.

Connection Statistics: Groups together resources on the M2M device that hold statistical infor-

mation about an existing network connection.

With the LWM2M Enabler, OMA aims to generate market growth and cost efficiency to the
industry Original Equipment Manufacturers (OEM), providing an easy way to provide services
and manage devices for users and corporations, simplifying the communications while reducing
the payloads. OMA feels that LWM?2M may be the missing standardization for the massification
of M2M devices, aiming towards an IoT future [4].

2.3 Communication Protocols

Communication protocols define how information is exchanged between nodes (any device
connected to the network), where these nodes do not need special software or hardware require-
ments, allowing different devices, or software written in different programming languages, to be
able to exchange data with each other. Protocols are thus present from the moment of information
collection, by the sensors, up to it’s delivery to the service or application. During that transi-
tion, several protocols may be used to communicate between nodes, and mastering all of them in
one system leads to difficulties in the development and deployment of end-to-end M2M/IoT so-
lutions. The proposed M2M standards reviewed in Section 2.2 act as application layer protocols,
that aim to allow easier integration between devices, services and applications, while relying on
other communication protocols at their core, some of which have been developed specifically for
M2M communication. This section aims to review the protocols on which the standards are built
upon, and other M2M-focused protocols existing today. HTTP (explained in Section 2.3.1.1) is
used in the ETSI and ITU-T standards, while CoAP (explained in Section 2.3.1.2) is used in all the
reviewed M2M standards. MQTT and AMQP, explained respectively in Sections 2.3.2 and 2.3.3,
were created purposefully for M2M systems even though the reviewed standards do not adopt
them. Since HTTP and CoAP share the REST paradigm, Section 2.3.1 will describe its features.

16 State of the Art

2.3.1 Representational State Transfer

Representational State Transfer, or just REST [34], is the dominant approach in client-server
communications, that allows for stateless communication (meaning it does not need to be synchro-
nized nor have an open session), cacheable resources and resource operations.

RESTful protocols rely on Uniform Resource Identifiers (URI) [35] to uniquely identify names
of web resources and collections (groups of resources), to be able to execute methods on them.
The CRUD methods are then used to Create, Retrieve, Update and Delete resources.

Clients perform operations on resources stored on a server by means of request and responses

exchanges. RESTful protocols implement four types of requests:

GET Retrieves the content of an existing resource or list a collection of resources;
POST Creates a new resource;
PUT Changes or updates the content of an existing resource;

DELETE Deletes/removes an existing resource or an entire collection;

This way, a client can have an abstraction layer on how the server handles the resources in
its database, while having a guideline on how to perform the actions needed. Being stateless,
the server does not save the state of the client after each request, since the messages carry all
the important data, leaving the client to manage the information and its flow as it wishes, which

removes stress from the server.

2.3.1.1 HTTP

Hypertext Transfer Protocol, or HTTP [36, 37], is one of the most used protocols in today’s
Internet. Websites are usually transmitted over HTTP, or its secure version HTTPS, which adds
TLS (Transport Layer Security [38]) to encapsulate the HTTP packets.

HTTP started to be used in the early 1990’s World-Wide Web global information initiative
only being proposed as standard in 1997 [39], receiving that status in 1999 with version 1.1 [36].
It can use TCP [40] or UDP [41] as Transport Layer protocols, but TCP is much more common
because of the reliability it provides. HT'TP can be used in a variety of communications, including
M?2M, despite having a big header overhead, on top of an already large TCP packet size. A typical
HTTP packet, is illustrated in Figure 2.7. This figure does not account for the TCP connection and
setup traffic, as well as re-transmissions, and only illustrates the size of a HTTP message, on the

application layer.

Transport Header

(TCP) HTTP Header Payload

20 Bytes ~200 - 8000 Bytes
(Apache maximum)

Figure 2.7: HTTP packet

2.3 Communication Protocols 17

2.3.1.2 CoAP

The Constrained Application Protocol (CoAP) [42] is a lightweight protocol designed for con-
strained devices (with low memory, processing power, etc) and constrained networks (e.g low
power, lossy), and specially fulfilling M2M requirements. Recently, the protocol’s proposal for
standardization was approved, leading to RFC 7252 [42].

Its simple interface and applicability was demonstrated in the 2013 ETSI plug-tests where it
was shown that in an event with eight companies with several different CoAP implementations of

clients and servers, the interoperability rate was 94.1% [43].

CoAP derives from Representational State Transfer (REST), explained in Section 2.3.1,
adapted for the use in constrained networks and nodes in M2M applications [5]. CoAP is also
easily translated to HTTP for integration with the web while accomplishing specialized require-
ments, such as multicast support, built-in resource discovery, block-wise transfer, observation, and

simplicity for constrained environments [44]. This allows for compatibility with existing systems.

Unlike HTTP, where to discover a resource structure, the client has to poll the server, CoAP
has an asynchronous approach to support pushing information from servers to clients: observation
(see Figure 2.8). In constrained environments, polling wastes to many resources, and CoAP ad-
dresses this with a special GET request, where a client can indicate its interest in further updates
from a resource by specifying the OBSERVE option. If the server accepts this option, the client be-
comes an observer of this resource and receives an asynchronous notification message each time it
changes. Every notification is identical in structure to the response to the initial GET request [44].
This model is an attempt to achieve stateless pub-sub communication, ideal for devices with fewer

resources.

Publisher client Server Observer client

GET /<resource URI
:xyz> <observe

option set> o
Registration

Resource value: 0
Current state
[from cache)

PUT /<resource
URI: xyz> <value 1>

Resource value: 1

State change

A 4

PUT /<resource
URI: xyz> <value 2>

Resource value: 2
State change

Figure 2.8: CoAP resource-observe. From [5].

18 State of the Art

Furthermore, in order to implement CoAP in constrained small devices (memory available,
computational and power consumption restrictions), the transport protocol is User Datagram Pro-
tocol (UDP) [45] and the protocol overhead in the header fields can be reduced to 4 bytes. Re-
liability can be implemented by an optional stop-and-wait protocol, and security by the use of
Internet Protocol Security (IPsec) [46] or Datagram Transport Layer Security (DTLS) [47]. CoAP
also supports TCP [48] connections, which add reliability of delivery, but increases the overhead
of each message, which is not ideal for constrained situations.

The CoAP packet is illustrated in Figure 2.9.

Transport Header Header
(UDP) (CoAP) CoAP Token Payload
8 Bytes 4 Bytes 0...8 Bytes

Figure 2.9: CoAP packet

232 MOQTT

MQ Telemetry Transport (MQTT) [18] is a lightweight broker-based publish-subscribe mes-
saging protocol designed to be open, simple, lightweight and easy to implement. The message
broker manages and routes the messages to subscribers depending on the message topic. These
characteristics make it ideal for use in constrained environments just like a smartphone. It is a
protocol developed by IBM to address the issue of reliable M2M communications [18].

MQTT is connection oriented, used over the TCP/IP protocol and features 3 quality of ser-
vice (QoS) levels for assuring delivery (no retransmission, re-transmit once and re-transmit until
received). Being based in pub-sub, it can save constrained devices to have to answer to requests,
saving messages, and thus processing power and battery. In terms of security, MQTT provides the
ability of using a username and password identification, built into the protocol. For point-to-point
encryption, SSL/TLS can be used, but it is independent of the protocol.

The underlying TCP connection causes MQTT to have a bigger overhead than other protocols
such as CoAP, which in evidenced in the protocol comparison tests done in [5]. The CoAP packet

is illustrated in Figure 2.10.

Transport Header Header Variable
(TCP) (MQTT) Header GCRLL
20 Bytes 2 Bytes 0...1 Byte

Figure 2.10: MQTT packet

233 AMQP

The Advances Message Queue Protocol (AMQP) [49] is an open standard application layer
asynchronous protocol for message oriented middleware. It uses the pub-sub model defined earlier

in Section 2.1

2.4 eHealth 19

AMQP uses brokers (servers) to receive messages from publishers, and route them to con-
sumers. Figure 2.11 gives a high level perspective of the protocol. [6] has a simple explanation
of the functionality of the protocol: "Messages are published to exchanges, which are often com-
pared to post offices or mailboxes. Exchanges then distribute message copies to queues using rules
called bindings. Then AMQP brokers either deliver messages to consumers subscribed to queues,

or consumers fetch/pull messages from queues on demand".

4 3
o e —— >. ‘
\ v

Figure 2.11: AMQP functionality overview. From [6]

In terms of security, AMQP implements Simple Authentication and Security Layer
(SASL) [50] and TLS [51]. Figure 2.10 illustrates the AMQP packet size.

Transport Header Header Extended Payload
(TCP) (AMQP) Header Y
20 Bytes 2 Bytes 0...8 Bytes

Figure 2.12: AMQP packet

2.4 eHealth

This dissertation uses a mobile eHealth (or healthcare) scenario to drive the development of
M2M solutions. But what exactly is eHealth? The World Health Organization (OMS) defines it as
"the transfer of health resources and healthcare by electronic means" [52], and is grouped into three
areas: using telecommunications to exchange health information between health professionals and
health consumers; improve public health services by online commerce (production, distribution,
marketing, sale or delivery of goods and services by electronic means, i.e. conducting business
over the Internet) and education and training health professionals; using online commerce and
businesses practices in health systems management [52].

This dissertation focuses on the first area, of exchanging of healthcare information using

telecommunications, on an M2M scenario. A review of mobile enabled healthcare applications

20 State of the Art

is presented in Section 2.4.1, followed by some communication standards for transmitting eHealth
data, in Section 2.4.2.

2.4.1 Application Revision

This section will review some healthcare studies that use mobile eHealth applications data
to enable real-time medical advices to improve/keep the users health and wellness, while also
enabling medical research over the gathered data. These reviews will provide a baseline for the
communication, for comparison with M2M approaches.

Section 2.4.1.1 will review a wellness diary, aimed to educate the users on weight manage-
ment, while Section 2.4.1.2 will review an application that provides remote cardiac monitoring
of patients. Then, Section 2.4.1.3 will review an application that monitors caloric balance in real

time.

2.4.1.1 Mobile Wellness Diary

Developed countries have numerous health issues, due to their sedentary lifestyle and de-
manding jobs, the most important of which are obesity, stress and sleep disorders[53]. All these
are very serious threats, since obesity is estimated to account for 2%-8% of healthcare in Europe,
while stress and sleep disorders have been associated with cardiovascular diseases and type II di-
abetes. Since current healthcare systems do not have the means or resources to prevent or manage
these health risks, it was necessary to individually address each case. The mobile wellness diary
was created for Symbian, Nokia’s OS, and it served as the base for a study of the habits of 29
subjects [53]. The application created received input of users on their input of calories ingested
and regular weight measurements. It was also associated with a study that gathered information on
the heart-rate (through a connected blood pressure meter) and a pedometer (through a connected
device). To transfer the sensors information to the researchers, it first had to be transferred onto a
computer, while the data generated from user input was sent via SMS or e-mail.

The data collected by this study were shown to be positive in educating the subjects’ on their
less healthy habits, instilling them to take better care of their health and wellness. Results during
the study also shown a decline of weight during the tests, showing that the subjects were receptive

to the advices and suggestions of the application [53].

2.4.1.2 Cardiac Telemonitoring of Patients

Cardiovascular disease is the leading cause of global mortality in both developed and devel-
oping countries, mostly due to heart attack and hypertension, while cardiac arrhythmia is also
thought to be responsible for most of the sudden cardiac deaths that occur [54]. Cardiac rehabil-
itation (CR) can help lower the risk of future heart problems, and is aimed at patients recovering
from heart attacks or heart surgery. It is based on the education and counseling of patients on how
to increase their physical fitness, in order to reduce cardiac symptoms and future complications.

For this study, the CR involved outdoor walking sessions with the duration of approximately 6

2.4 eHealth 21

minutes. A system composed by a portable electrocardiogram (ECG) and a GPS receiver, con-
nected to a smartphone via Bluetooth recorded the walking sessions, and streamed the data to the
secure server through 2G/3G connectivity. This system thus enabled real-time visualization of the
patient’s data in order to monitor his progress [55]. The aim was to diminish costs of CR that are
usually only executed in hospitals, with all the transport and accommodation costs that accompany
it.

The study, published in 2011, showed that a real-time system with these characteristics is
technically feasible and that it can complement the hospital-based programs. It also showed that
during the 6 minute walks, despite not having readily available doctors as would happen in the
hospital, the GPS data allied with voice contact through the smartphone could offer some level of

security for the patient’s medical care [55].

2.4.1.3 Monitoring Real Time Caloric Balance

Given the obesity problem in developed countries (e.g. 65% of US adults are either overweight
or obese [56]), self monitoring is an important skill for success in weight management. To provide
a real-time application that allowed users to monitor their caloric balance the Patient-Centered
Assessment and Counseling Mobile Energy Balance (PmEB) was created. This application relies
solely on the user input of the calories consumed and time spent doing physical activity. The
PmEB consists of a smartphone client, a server application and a web interface that allows the user
to personalize the mobile client. This client personalization is needed since calculating the overall
calories consumed depends on the person’s body (height, metabolic rate, etc.), and for identifying
probable work-out scenarios. Then, once a day, the server application signals the mobile client to
upload the registered data, in order to store it. Locally, besides allowing the addition of physical
activity and food intake, the client allows the consultation of the caloric balance, and set a goal to
fulfill. A more comprehensive web interface on the server is available, allowing the user to consult

the caloric balance on specific time intervals (e.g. for the past n days) [56].

This study proceeded to develop a detailed discussion on the research and development leading
to the creation of the PmEB, and concluded that using mobile applications for real-time monitoring
of caloric balance had a good adoption from the users, and comparing with paper questionnaires
that yielded the same balance. Users felt that usability of the PmEB was better, specially when
used over long periods of time.

2.4.2 Communication Technologies

As there are multiple manufacturer’s for medical devices, there needed to be some standard-
ization on how they should communicate their data, for security reasons and for that data to be
available for the connected applications and services. Section 2.4.2.1 presents the ISO/IEEE 11073
family of standards, while the

22 State of the Art

2.4.2.1 ISO/EEE 11073

The ISO/IEEE 11073 is the family of standards for medical devices that was originally called
IEEE 1073, or just X73 [57]. It arose in 1982 with the need for easy to use (plug-and-play) medical
grade equipment for operating rooms or bedside monitoring in intensive care units (ICU), aiming
for real-time and efficient exchange of data [58]. In the past decade, the IEEE 11073 has focused
on developing Personal Health Devices (PHD) standards, standardizing functions for each of the
OSI layers [59].

Figure 2.13 shows the IEEE 11073 Framework as of 2012, where several device specializations
can be represented. The main goal of all these standardizations is to facilitate the development of
equipment to monitor people’s well-being inside or outside of hospitals and provide interoper-
ability on medical grade equipments. These standards are not available for public scrutiny, and
consequently details on them are unavailable. On Android OS version 4.0 (API 14), a Bluetooth
Health API was introduced, facilitating the integration with devices following the IEEE 11073
specifications [60].

00103 Technical Report - Overview

Device Specializations

10404 10407 10408 10415
Pulse :’ou‘:gs Blood Thermo- Weighing G1|\012;Ze Phase Il osl|
Oximeter Pressure meter Scale

10400 Common Framework

Layer 7

20601 Optimized Exchange Protocol

Serial IrDA Bluetooth usB Zigbee Other

Layers 1-6

Figure 2.13: IEEE 11073 Framework. From [7].

2.4.2.2 Continua Alliance

The Continua Health Alliance [61] is a consortium that created a profile of standards built
on top of the IEEE 11073 family. Its goal is to provide the application layers with semantic
interoperability, to further allow communication between devices and services. Figure 2.14 shows
how the protocol builds around IEEE 11073 to allow for greater interoperability with a wider range

of devices [7].

Currently the Continua Alliance has a set of guidelines for manufacturers to follow, to provide
them with the proper certification, ensuring the compatibility of all Continua certified devices. The
details of these guidelines and of the resulting communication protocol are proprietary, and thus

not available for deeper discussion in this dissertation.

2.5 Discussion 23

Telehealth Telecare

Home controls

IEEE 11073

ZigBee ZigBee home

BT BT-LE healthcare automation
profile profile
USB
2.4GHz 868MHz

Figure 2.14: Continua Alliance profile of standards. From [7].

2.5 Discussion

Although the all the M2M standards discussed in this chapter could fit the needs of this project,
ETSI’s was chosen given the partnership with PTIN, since they had already implemented the
NSCL to communicate with. This also drove the protocol choice of HTTP and CoAP, as ETSI
does not support any other protocols.

The three mobile eHealth applications reviewed in this chapter give only a small example of the
possibilities that they can yield with their users. However, as shown, they all presented their own
specific communication servers and specificities, which severely limits the re-usability of the data
gathered by them. M2M communications allied with those applications could ease the usability
but mostly their interoperability, by allowing the data collected to be shared between devices,
services and applications. This could increase the amount of applications the user has access to,
that could greatly enhance the health insights he has access to. If the mobile eHealth applications
use sensors that implement the IEEE11073 or the Continua Health Alliance guidelines, using
M2M communications would allow for the easier integration of further medical grade sensors

(compliant with the same standards) on the healthcare system.

24

State of the Art

Chapter 3

Aspects of ETSI M2M Standard

This Chapter will take a deeper look into the ETSI M2M standard’s specifications, in Sec-
tion 3.1. Section 3.2 will detail Marshalling, which is an important mechanism in M2M com-
munications, followed by an overview of the security mechanisms required by the standard, in
Section 3.3.

3.1 ETSI M2M Standard

The ETSI standard resource structure will be further detailed in Section 3.1.1, followed by the
explanation of the differences between the Gateway and a Network Application in Sections 3.1.2
and 3.1.3. Finally, in Section 3.1.4 some ETSI M2M implementations found will be presented.

3.1.1 Resource Structure

The ETSI M2M standard defines a variety of resources and how they connect to each other, in
order to allow several M2M scenarios to take place. Figure 3.1 does not contain all the resources
or attributes standardized, but it illustrates the connections between them. The Scls resource has a
collection of Scl resources, where each contain an Applications resource, with the same structure
as its homonym connected to Sc/Base in the figure. This is recursive in the resource structure,
and shown in Applications, as there is a collection of Application resources, that in turn contains
Containers resources. So, this versatile resource structure means that with every new device,
gateway, or network application to be registered (locally or remotely, through the NSCL), there
may be a large number of resources created, remembering that Figure 3.1 shows only a small
fraction of the totality of the resources standardized.

In a smart-home example, such as the illustrated by Figure 3.2, the boiler and the washing
machine would register their DSCL’s on the M2M Gateway’s GSCL’s Scls resource, using the
dla interface. The M2M Gateway could also connect to some legacy devices that did not support
the dla interface, in which case a Gateway Aplication (GA) would create their resources on the
GSCL’s Scls resource also using the dla interface. These sensors would in turn be registered by the
M2M Gateway on the NSCL, making them reachable by M2M Network Applications. Figure 3.2

25

26 Aspects of ETSI M2M Standard

<SclBase>
[I I]
Scls Applications Containers AccessRights Subscriptions

L e

<AccessRight>

— <5cl> <Application> <Container> |

'4 Subscriptions ‘4 Subscriptions '4 Subscriptions ‘4 Subscriptions

Applications H Containers Contentinstances

Permission

H Containers H AccessRights '+ Subscriptions H SelfPermission

AccessRights

Subscriptions Subscriptions

'+ Subscriptions

Figure 3.1: Illustration of the ETSI M2M resource structure

suggests an M2M NA that would control the heating and washing cycles, and another from the
devices manufacturer’s (non-legacy), that could trigger software updates on their devices. Being
in the same SCL than the NSCL, the M2M NA’s would register themselves in the Applications
resource of the NSCL.

M2M Device & Gateway Domain M2M Network Domain

|
|
|
|
Boil I
oiler |
| Wde Area Network
ffm—— == ==
| r Wireless |
|
M2M Gateway | } : Smarthome App
() |
GSCL I Mobile |
|
mid 1| | mia
1
Washing Machine dia | I I e
h] Fixed |
GA : | |
Washing A
| omare |
| |
(J

Legacy Device

Figure 3.2: ETSI M2M smart-home example

3.1 ETSI M2M Standard 27

3.1.2 M2M Gateway

The M2M Gateway entity communicates through the dla reference point with network capable
sensors, and communicates with the NSCL using the mld reference point. The latter defines the
procedures to connect the M2M Device and Gateway Domain to the M2M Application Domain,
as shown earlier in Figure 2.3 [2, 62]. The mld interface offers the following functions for the
M2M GW to interact with the NSCL [2]:

* Registration of a SCL (DSCL or GSCL) to the NSCL.
* Request to Read/Write information in the NSCL, GSCL or DSCL. This requires proper

authorization.
* Request device management actions (e.g. software upgrade, configuration management).

* Subscribe and get notified for those subscriptions and for specific events.

The M2M Gateway entity has its own standardized M2M SCL, the GSCL, which details how
their SC’s should be created and managed. However, given the limited time of this dissertation, a
complete implementation of the GSCL resource structure and the mld and dla interfaces was not
feasible. So, the resources relevant for this dissertation’s work were identified and are represented
in Figure 3.3. Note that the resources connected to the SclBase (Scls, Applications, Containers)
were abstracted as collections, since for the purpose of this dissertation they act as arrays of their
child resources (respectively Scl, Application and Container resources). How this simplified re-

source structure is mapped into actual devices and concepts will be discussed in Section 4.2.2.3.

<SclBase>

L <Scls>
L Scl

L <Applications>

\; Application

\; <Containers>

L Container

L <Content Instances>

Contentinstance

Figure 3.3: Simplified M2M GW resource structure.
For the Gateway to fully interact with the NSCL using this resource structure, it has to perform
a series of actions defined in the mld reference point:

1. Register the scl resource (with a specific ’sclld’) under the /sclBase/scls target on the NSCL
host.

28 Aspects of ETSI M2M Standard

N

Receive the OK response for that registration.

Receive a subscription on the sc/ resource just created.

Register the application resource (one or more) under /sclBase/scls/’sclld’/applications.
Receive the OK response for each application resource registered.

Receive a subscription on the (one or more) application resource registered.

N kAW

Register a certain container resource belonging to the application ’appld’ under

/sclBase/scls/’sclld’/applications/’appld’/containers.
8. Receive the OK response for that registration.
9. Receive a subscription on the container resource just registered.

10. Register a contentlnstance resource belonging to the container with ’containerld’ under

/sclBase/scls/’sclld’/applications/’appld’/containers/’ containerld’/contentInstances.

11. Receive the OK response for that registration.

Being based in the publish-subscribe paradigm, subscriptions are needed to trigger the follow-
ing registration. These actions illustrate the path taken to create the registration for one specific
resource. The last resource (contentInstance) carries the data regarding the registered resource (for

example temperature or heart-rate measurements) encoded in Base64 [63].

3.1.3 M2M Network Application

The M2M NA entity communicates through the mla reference point with the NSCL (also
shown in Figure 2.3), and through it can also communicate with D/GSCL, if needed. A M2M NA
can represent a service or application, that can produce, consume or treat data within the M2M
domain, adding functionalities to it [2, 62]. It is also possible for a NA to have an external interface
to make the M2M data available outside of the scope, but this external interface is not mandatory
or standardized.

The mla reference point offers the following functions for the M2M NA to interact with the
NSCL [2]:

* Registration of NA on the NSCL.

* Request to Read/Write information in the NSCL, GSCL or DSCL. This requires proper

authorization.
* Request device management actions (e.g. software upgrade, configuration management).
* Subscribe and get notified for those subscriptions and for specific events.
M2M NA’s belong to the Network Domain, as shown in Figure 3.2, and how its SC’s are orga-

nized are detailed in the NSCL. As with the M2M GW, Figure 3.4 illustrates the simplified version

of the M2M NA resource structure, whose map into relevant concepts for this dissertation’s project

3.1 ETSI M2M Standard 29

<SclBase>

<Applications>

b Application
\; <Containers>

L Container

L <Content Instances>

Contentlnstance

Figure 3.4: Simplified M2M NA resource structure.

will be discussed in Section 4.2.2.3. The collections in this simplification are also abstractions, to
facilitate the understanding of this resource structure in the coming Chapters.
For the M2M NA to fully interact with the NSCL using this resource structure, it has to perform

a series of actions:
1. Register the Application resource (with a specific 'appld’) under the /sclBase/applications
target on the NSCL host.
. Receive the OK response for that registration.
. Register a certain Container resource under /scl/Base/applications/[appld]/containers.

. Receive the OK response for that registration.

| B NS B S]

. Register a ContentInstance resource belonging to the Container with ’containerld’ under

/sclBase/applications/[appld]/containers/’containerld’/contentInstances.

6. Receive the OK response for that registration.

3.1.4 ETSI M2M Implementations

Being an open standard, there are a few ETSI M2M open-source implementations available
online, each with their natural limitations. This section will review the found implementations.

OM2M

The Open-source M2M (OM2M™) [64] is an attempt from the Eclipse foundation to reach a
common ground on how the ETSI standard is interpreted, and is still in proposal stage, covering
limited functionalities. The idea behind the project is to implement the ETSI standard and allow its
functionalities to be accessed via an API, allowing for easier implementation and deployment of
solutions that integrate this standard. There is currently not much information on this project, but it
implements the standard’s Service Capabilities Layer, as well as a Gateway and a Device according
to the ETSI architecture. This project aims to become the basis for future implementation of the
OneM2M standard.

30 Aspects of ETSI M2M Standard

Cocoon

The Cocoon™ [65] solution, provides an implementation of the ETSI M2M standard. It in-
cludes the tools to install the ETSI M2M protocol on existing Gateways, or the ability to purchase
equipment with the protocol already installed. The goal is to allow the manufacturer’s to easily in-
clude this protocol on their hardware, and to provide a graphical user interface that developers can
use to interact with the Gateways and devices, learning the necessary tools to build M2M NA’s.
Actility, the company behind Cocoon, has a marketplace where these M2M NA applications are

available for purchase, aiming to get revenue on the platform they provide.

3.2 Marshalling

Marshalling, or serializing, is the process of encapsulating data for storage or transport, so
that it can be processed by different systems. Marshalling techniques allow for interoperability
of services by using standards readable by both machines and humans [66]. The most common
types of marshalling languages are XML and JSON, which will be explained in the sections 3.2.1
and 3.2.2 respectively, and the ETSI M2M standard supports both of them.

Some high level programming languages like Java, have their own serialization procedures
allowing the storage or transport of memory into binary objects. These techniques are essential
in M2M scenarios in order to be able to transparently exchange information between entities,
assuring that the destination is able to decode the original message, improving the interoperability

of the system.

3.21 XML

The eXtensible Markup Language, commonly known as XML, was first released in a World
Wide Web Consortium (W3C) draft in 1996 [67] as a derivation from the Standard Generalized
Markup Language (SGML), which had been standardized in the International Organization for
Standardization (ISO) in ISO 8879 [68]. XML 1.0 was originally submitted for standardization
on an RFC (Request for Comments) in 1998 [69] and has since become one of the most widely
used markup languages. It is, for instance being used in Android OS for detailing the layout

specifications and the permissions needed to run the application.

3.2.2 JSON

JavaScript Object Notation (JSON), was originally specified in [70] as a less verbose alter-
native to XML, featuring pairs of attribute-value, and it is currently in use in the many server-
application communication systems. It is used primarily to transmit data between a server and

web application, as an alternative to XML.

3.3 Data Security Mechanisms 31

3.3 Data Security Mechanisms

Data security is a very important issue, for most foreseen M2M applications and specially
for sensitive data like healthcare. One of the ways to provide secure communications is data

encryption, and it has two major concepts:

Symmetric Encryption This is the name given to communication where the sender and the re-
ceiver use the same key and similar processes to encrypt and decrypt data. If the keys were
always unique and known only to the two intervenients, this would be the way to always
communicate sensitive information. However, given the need to share keys, asymmetric
encryption was developed. The most commonly used symmetric encryption ciphers are
the 3DES (more cryptographically secure than the original Data Encryption Standard) and
AES (Advanced Encryption Standard) [71]. Data encrypted with AES or 3DES is nearly
impossible to decode without special information.

Asymmetric Encryption This kind of encryption is based on number theory and the computa-
tional difficulty of today’s processing units to invert discrete logarithms [71]. This provides
a way to have two keys that complement each other, where one public and available for ev-
eryone, and one private know only to the specific machine, and its strengths rely on the fact
that is easy to generate the public key from the private key, but infeasible to revert it without
special information (not impossible, but extremely difficult). The most common asymmetric
encryption algorithm is RSA (Ron Rivest, Adi Shamir and Leonard Adleman [72]). Asym-
metric encryption’s major downside is processing time, since it is computationally much
more demanding than symmetric encryption in order to yield similar results. Because of

this, it is mostly not used to communicate, but to share symmetric encryption keys.

Besides allowing for the exchange of symmetric keys, there are two functionalities of asym-
metric encryption. If the destination’s public key is used to encrypt the information, since
only its private key can decode the message, the data is sent securely. But it can also act as
an authentication agent, if the source private key is used, since everyone with access to its

public key can decode the message to verify its authenticity.

Symmetric and asymmetric encryption often work together to create a secure system, where
the keys for the symmetric encryption are shared with asymmetric encryption. TLS and DTLS
use this method to agree on a symmetric session key to encrypt the subsequent communications.
After the public keys are created, the need to distribute them led to the creation of certificates, and
Certificate Authorities (CA). Certificates consist of a storage for public keys, amongst other infor-
mation about the key’s owner, which is then signed by a CA, by hashing the owner’s information
with its (CA’s) private key. CA’s are used to store and provide authenticity to the stored certifi-
cates. This process allows anyone with a certificate to know the owner’s information (amongst
which is its public key), while also being able to verify its authenticity by checking that after using
the CA’s public key to decrypt the information, the hash value coincides with the one present in
the certificate [71].

32 Aspects of ETSI M2M Standard

X.509 Certificates specifies the certificate format, and how the public keys and other informa-
tion should be stored, as well as protocols on how to sign and check the signature of the certificate.
Public Key Infrastructures (PKI) are systems that use CA’s to create, manage, store and revoke cer-
tificates in a network, making use of asymmetric encryption [71]. The Public Key Infrastructure
X.509 (or PKIX [73]) defines a generic model that is suitable for deploying a certificate-based
architecture in web services. ETSI’s M2M standard makes use of X.509 Certificates.

Chapter 4

ETSI Compliant Mobile M2M System

This chapter presents the problems this dissertation’s work proposes to solve, in Section 4.1,
followed by the detailed approach taken, in Section 4.2. Finally, the evaluation metrics of this

work in Section 4.3.

4.1 Problem

The ETSI M2M standard has been in development since 2011, and some implementations
have already naturally emerged, aiming to ease the development of ETSI standardized solutions,
as shown in Section 3.1.4. These, even though some examples are given, still leave the standard’s
resources unmapped, difficulting the development approach.

Mobile scenarios, relying on a mobile M2M Gateway allow for a new range of applications,
but they needed to be thoroughly thought to use the ETSI M2M standard’s architecture. A way to
manage communication with sensors and use them following the ETSI M2M architecture is the

challenge this dissertation aims to solve.

4.2 Approach

This section explains the system concept composed by a mobile M2M GW and a mobile M2M
NA in an ETSI compliant approach. From now on, when referring to mobile M2M GW or NA,
this dissertation is not referring to the ETSI entities, but rather the mobile Android OS application
that implement those entities.

Specifying how we wanted to map the ETSI standard into a functional mobile M2M GW and
NA system prototype, needed a specific focus. Section 4.2.1 will detail the healthcare use case
thought to be the implementation target of the standard. Then, the system design will be detailed
in Section 4.2.2, with information on the requirements, architecture and mapping needed to use
the standard in a mobile scenario. Section 4.2.3 will detail the designed local interface, aimed to

save resources, followed by the Android applications architecture in Section 4.2.4.

33

34 ETSI Compliant Mobile M2M System

4.2.1 Healthcare Use Case

Imagine a user, let us call him John, that is concerned about his health. John goes into a
pharmacy, into the corner where the check-up equipment is and wants to weigh himself, or check
his blood pressure. He picks up his smartphone and connects to the sensors wirelessly, executing
the desired measurement, getting the result right in his smartphone. This measurement is then
stored online, and enables a service that provides him access to his medical records, in order to
keep track of his health evolution. John may also want to go to the park for a run, where he does
not have Wi-Fi connection or interest in spending his 3G/4G plafond, while still keeping track of
his heart-rate measurements. John should be able to keep track of his running locally, storing the

results to add to his medical history later.

Application

«Include»
Search sensors }<< - - - - -

_ -~ «nclude»

/ {_ «Include»
Choose (start) sensor)< - - - { Stop Reading Data
J—
< Ch
Control Sensor ange se.nsor
configurations
Show Medical
History

Figure 4.1: UML 2.0 Use Case Diagram for the study scenario

User

Given this scenario, the user actions presented in Figure 4.1 were defined. The user will be able
to use the phone’s Bluetooth capabilities to search supported sensors that have been paired with
the smartphone. Found sensors will be listed and choosing a sensor will start its measurements.

The sensors measurements will be shown in the application and the user will be able to stop
them at any time. If the measurements are running, the user will also be able to change the three

sensor configurations:

1. Maximum time the sensor must execute a new measurement (for sensors that support it);
2. Maximum time between the sensor measurements are delivered to the web-server;

3. Maximum size (in bytes) to be stored in the smartphone’s memory.

When it is time to send the data, either by reaching the maximum time, or because the maximum
size was reached, it is then forwarded to a web-server, that can provide a service with his medical
records, which can be consulted by himself or by his physician.

In order to save bandwidth in the jogging situation, the application should also allow the user
to continue to use the sensors offline, saving the measurements to add to the medical records when
he regains connectivity. Working offline, the application would also end up saving battery, since

3G and Wi-Fi are some of the components that drain more battery [9].

4.2 Approach 35

4.2.2 System Design

This section will detail the system that was designed with the healthcare use case in mind. Sec-

tion 4.2.2.1 will present the functional and non-functional requirements of this system, followed

by its high-level architecture in Section 4.2.2.2. Then, Section 4.2.2.3 will detail the map that was

made to adapt the use case to comply with the ETSI M2M standard, paving the way for the sensor

procurement, in Section 4.2.2.4.

4.2.2.1 Requirements

To implement the use case the following functional requirements are needed, in descending

order of priority:

1.

2.

Allow the following user actions:

Search sensors;

Select sensor;

e Start sensor;

Stop sensor;

Change sensor configurations;

Show medical history.
Support healthcare external sensors:

* Heart-rate monitor;
* Sphygmomanometer (Blood pressure monitor);

e Scale.

The non-functional requirements that the system has to fulfill are, also in descending order of

priority:

1.

el

Be compliant with the ETSI M2M standard;
Have a modular design, aiming for easy integration of new features, sensors or protocols;
Support offline storages, so that data is not lost when connection is;

Support offline connection to sensors, not needing Internet connection to make measure-

ments.
Support multiple protocols:
* HTTP;

¢ CoAP;
e MQTT.

36 ETSI Compliant Mobile M2M System

4.2.2.2 High-Level Architecture

This section explains the design of this dissertation’s system mapping the use cases into the
ETSI M2M architecture. The high-level system architecture is shown in Figure 4.2. Here, the
mobile M2M GW will take advantage of the smartphone’s connectivity abilities, connecting to
sensors via Bluetooth while communicating with the NSCL through the active network connectiv-
ity (Wi-Fi or 3G) using the mld interface. The mobile M2M NA will also communicate with the
NSCL through the active network connectivity, but using the mla interface. It will also possess
a graphical user interface (GUI) to allow the user to easily control the connection to supported

healthcare devices and see information relevant to him.

Sensor1
mid —
NsCL
Mobile M2M Gateway

mla

Local Interface
Mobile M2M Network Application

Figure 4.2: Architectural overview of integrated solution

The mobile M2M GW and mobile M2M NA work as an M2M system to fulfill the require-
ments defined in the previous section, where the mobile M2M GW handles the connectivity to
the sensors, and how their data is processed, and the mobile M2M NA receives the user’s input
on the action to be taken. The connection to the healthcare service that stores the user’s medical
records, can be done with aid of an M2M NA, which does not need to be mobile, that can treat the
information and re-introduce it to the NSCL under different resources, or even forward them to an
external service. Being a separate project and mapping altogether, and given the limited time to

execute this dissertation, this implementation fell out of the scope of this dissertation.

4.2.2.3 ETSI Resource Structure Map

This section will present how the ETSI resource tree was mapped into actual devices and
concepts, aiming to fulfill the requirements of this project:

M2M GW Resource Map:

Given the resource tree structure specified in Section 3.1.2, it made sense that the lower on the
tree, the closest the mapping would be of a physical device. Given the nature of the Contentln-
stance resource, which has an attribute that stores data encoded in Base 64, its parent resource
Container was mapped as a specific sensor (such as a Bluetooth heart-rate monitor).

The Application resource had to somehow generalize the sensors, and as such it made sense
that it grouped the different kinds of sensors the mobile M2M GW can connect to. Relating to the
above example of a Container as a heart rate sensor, the application it would be associated with
would be referring to health care monitoring. Other sensors of similar purposes would also be
added here.

4.2 Approach 37

Because of all the different kinds of sensors possible, all handled by the same mobile device,
the Scl resource represents the smartphone, being the "father" of all the other resources. The

mobile M2M GW mapping is illustrated in Figure 4.3.

<SclBase>

L <Scls>
Smartphone-ID
L Scl
L <Applications>
Sensor Group
\; Application
\; <Containers>
Sensor
L Container
L <Content Instances>

Sensor Data

Contentinstance

Figure 4.3: Mapped mobile M2M GW resource structure.

M2M NA Resource Map:

The mobile M2M NA also needed to have the resources specified in Section 3.1.3 to have some
mapping of its own. To allow the mobile M2M NA to execute commands on the mobile M2M
GW, the interaction had to somehow be mapped in the ETSI’s data structure. Two approaches

were discussed with the PTIN partners:

First Approach:
In this approach, the data flow would start with the subscription of the resource Applications, by the
mobile M2M GW. This subscription would be limited in the NSCL by Access Rights, providing
only the relevant mobile M2M NA information back to the mobile M2M GW. This means that
when the mobile M2M NA changes its own resources, the mobile M2M GW will be notified with

the relevant actuation data. This approach is illustrated in Figure 4.4.

=d first_approach /'
M2M GW NSCL MZM HA
T T T
! Subscribe NSCL "Applications’ resource() o !) : }
i - Register Application resaurce()
- Notification of Application creationi)
| Subscription of Application’s ‘Cantainers’ resaurce()
Register "Actions” "Container resource()
- Notification of Container creationi)
-
|~ subscriptian af Cantainers Cantentinstances callectian() |
TL Register Contentinstance {cammand)
_, Hotification of Contentlnstance creation {command) J
-t
H i
| | |

Figure 4.4: First Approach.

38 ETSI Compliant Mobile M2M System

Second Approach:
In this approach, when the mobile M2M GW is in the process of registering the Container re-
sources, two different types of resources would be created, one for the mobile M2M to write in,
that would be subscribed by the mobile M2M NA, and another for the latter to write in, that would
be subscribed by the mobile M2M GW. The sensor data would be sent in the Container in which
the mobile M2M GW would write in, and the acting commands would be sent by the mobile M2M
NA’s Container, triggering the notification for the intended destination, thus communicating. This

approach is illustrated in Figure 4.5.

sd secand_approach 7

M2M GW NSCL M2M NA

T
1
Register "write” Container) |

T
|
|
L
L Register "read” container) _hl'l'|
-
|
M|
|
1

Subscribe “read” Containers Contentinstances collection() leI
-

Register Contentlnstance an the "read” 'Container {comman d)

-
Notification for Cantentinstance craation (command) u""

-
-

N s SO

Figure 4.5: Second Approach.

Some considerations were taken into account to the decision:

* On the first approach, without the Access Rights limitation by the NSCL, the mobile M2M
GW would have an enormous amount of information to deal with, to subscribe all active

Application resources, increasing the network traffic with possibly useless information.

* The first approach is considerably more scalable, since as long as the mechanism for sub-
scribing the M2M NA’s (all the ones present in the NSCL database) is working, it will work

on every case.

* The second approach would have the mobile M2M NA write data in a Container that did

not belong to itself, which could possibly cause Access Rights issues in the future.

* The second approach would have the mobile M2M GW subscribe its own resource, because
it would be changed by the mobile M2M NA.

The first approach was chosen, with the actions to be performed stored in a Container resource
for that purpose. The scalability of the second approach was the decisive factor, as two Container

resources would have to be managed.

The mapping evolved around the actions Container, meaning that the Contentlnstance re-
sources will be the actions themselves. The Application resource has a mapping similar to the
mobile M2M GW’s Scl, with attributes unique to the smartphone (model and serial number), to

assure its uniqueness on the NSCL database. The resulting map is shown in Figure 4.6.

4.2 Approach 39

<Applications>
NA ID

Network
Application

\—‘ <Containers>
Action C i
\—‘ <Contentinstances>
Specific Action
Contentlnstance

Figure 4.6: Mapped mobile M2M NA resource structure.

4.2.2.4 Sensor Procurement

In order to implement the healthcare use cases that will act as proof-of-concept for the ETSI
resources map, a procurement of medical sensors to be integrated was necessary. Given the re-

quirements defined in Section 4.2.2.1, three types of sensors could be used:

* Heart-Rate Monitor: This sensor would allow the user to keep continuous track of his

heart-rate.

¢ Sphygmomanometer (Blood pressure monitor): This sensor would allow the user to make

measurements that yield the maximum and minimum blood pressure.

* Scale: This sensor would allow the user to make punctual measurements of his weight.

A first search attempted to find sensors certified by the Continua Health Alliance (detailed in
Section 2.4.2.2), but given the closed nature of the protocol, the PTIN partners have discarded that
option for this project. In order to be faster integrated in the project, a heart-rate monitor already
available in IT and with no Non-Disclosure Agreement (NDA) or proprietary protocol was chosen.
The Zephyr™ HxM Heart-Rate monitor [74] has an open API with Java libraries, which was ideal
for integration with this project. Then the scale chosen was the ForaCARE W310', which was
owned by PTIN, with known protocol specifications. This scale measures the body mass index, as
well as body fat, besides the normal user weight. However, bureaucracies due to an NDA PTIN
had signed in order to be granted access to the protocol delayed the availability of the sensor,

leaving no time for it to be implemented.

4.2.3 Local Interface

As argued in Section 4.2.1 there is a great interest in having the possibility of a local connection
between the two applications when running in the same smartphone, since the NSCL acts as a
intermediary between the mobile M2M GW and the mobile M2M NA, as shown in Figure 4.7.

"More information in http: //www.foracare.com/weightscale-W310.html.

http://www.foracare.com/weightscale-W310.html

40 ETSI Compliant Mobile M2M System

The figure illustrates how communicating through the NSCL wastes bandwidth, when a local

connection could be used instead.

sd gw-nsclna
M2M GW NSCL MZM HA

T T T
| | |
| Register Container |1 for each Sensor) — | :

o Matify for Cantainer Creatian() - |

-
‘Wait far Command()
o . - Start Sensar)
- Notification to Start Registered Sensor)

Start Sensor Measurements()

loop [while] Sensor is active /

U Sensor Datal)

Motification with Sensar Data()

_I:____

Figure 4.7: NSCL as information forwarder.

The proposed local interface builds upon the ETSI standard to allow the user to use the mobile
M2M NA transparently, sending the commands to the mobile M2M GW either locally or through
the NSCL, depending on which mode is chosen. Figure 4.8 illustrates this concept’s approach.

sd gw-na_concept

M2M GW M2 HA

Register Container {1 for each sensor) |

A |

Wait far command)

Start senson)

-t
-}
\]'D.‘__l Startsensor measurements()

loop [while] sensor is active /

Sensor datal)

Yy
L O---4

Figure 4.8: Local Interface Communication.

This bypass solution does not mean, however, that the sensor information will be lost, as the
mobile M2M GW will store all the information sent locally in a database file. This data can then
be delivered in two different situations:

* If the user stops the mobile M2M GW while the sensor is running, or there is no connectivity
when the stop command is received, the mobile M2M GW will store this data in the smart-
phone’s memory. This file will be opened the next time the mobile M2M GW is started, and
has connectivity, so that the saved resources are registered in the NSCL.

4.2 Approach 41

* If the user sends a command to stop the sensor, the data will be sent to the NSCL immedi-
ately, if the mobile M2M GW has connectivity at that time.

If the local interface is used, the only communication to pass through the NSCL is the session
establishment, where the mobile M2M GW and NA establish the TLS session to register their
resources. After this, the Container creation (each regarding one sensor), and the delivery of
commands and sensor data (by registering Contentlnstance resources) is entirely done locally.

This saves bandwidth for four reasons:

1. Creation of resources, either Container or Contentlnstance. The Container is only created

once, so the major savings will come from the ContentInstance resources.

2. The NSCL answer to the registration of these resources, will also not be received, saving an

amount very similar to the previous reason (1.).

3. The notification triggered by the creation of resources will not happen, saving a bandwidth
slightly larger than steps 1. and 2., since the Containers and Contentlnstances collections

are slightly larger than its "child" resources.

4. The answer to the notifications, which is approximately the same as the previous reason (3.).

The amount of savings obtained will then depend on the length of the sensor information, and
how frequently that data is sent, since one ContentInstance delivery triggers the sequence of four
message exchanges mentioned above.

ContentInstance_size = Transport&Protocol_headers + ContentInstance_info +
sensor,.command_data

Notification_size = Transport&Protocol_headers 4+ ContentInstances_info +
ContentInstance_size

The savings for each sensor message or command sent will be roughly:

2 x ContentInstance_size + 2 « Noti fication_size, as shown above.

4.2.4 Mobile Applications Design

A big part of this approach is the design and implementation of the mobile Android OS ap-
plications that communicate with the sensors and with each other. Section 4.2.4.1 will present the
concept details of the mobile M2M GW, while Section 4.2.4.2 will present the mobile M2M NA
specificities.

4.2.4.1 Mobile M2M Gateway

The mobile M2M GW acts as a proxy for the supported Bluetooth sensors, by announcing
them, gathering their data, and processing it for registration in the NSCL, using ETSI’s mld inter-
face, as explained in Section 3.1.2. ETSI standardizes an entity called Gateway Application (GA)

that has the responsibility to manage this connection between legacy sensors (older, non ETSI

42 ETSI Compliant Mobile M2M System

compliant devices) and the M2M GW, through the dla interface (as seen in Figure 3.2). For the
purposes of this dissertation, we decided to converge the M2M GA and M2M GW in a single An-
droid OS application, focusing on the mld connection to the NSCL and on the mapping needed to
fulfill the requirements defined in Section 4.2.2.1. The mobile M2M GW application is explained
below, where its detailed architecture is presented.

The mobile M2M GW design is based on the concept of services and threads to run entirely in
the background, with no GUI. The aim was to build a mobile M2M GW as modular as possible,

becomes more complex, changes and extensions could be easily accommodated.

easing the addition of supported features, sensors and protocols so that, as the mobile M2M GW
Android Application (Device and Gateway Domain) ﬁ

|

; Network

| |Domain

[
[
[
reqister found sensors f —\ |
Sensor Handler |
Je———— ——| }
[
|

Protocol Manager ™ NSCL
(start)

Interface

%C Memory Manager]

Figure 4.9: High-level Mobile M2M GW Architecture

Figure 4.9 represents the high-level architecture of the mobile M2M GW and the modules’

roles are described below:

Start: This module has the responsibility to start the Main Service on start-up or upon receiving

a specific Android OS command;

Main Service: This module assures that the application stays active, despite not having a GUI,
while also managing the remote commands, previously interpreted by the Protocol Handler.
It is also responsible for receiving and processing Android inter-process commands from
the mobile M2M NA, that start or stop the mobile M2M GW.

Sensor Handler: This module has the responsibility to manage the connections to sensors, in-
cluding internal and Bluetooth searches, as well as controlling which ones are active at each
time, and manage their threads. It also handles the GPS measurements, that are present in

the sensor data;

Memory Manager: This module handles the memory buffers assigned for each sensor, and man-

ages when the data should be sent;

Protocol Manager: This module handles all the communication aspects of the mobile M2M GW.
It is responsible for checking the network connectivity, marshalling the sensors data, and

communicating with the NSCL to register itself, the sensors and the their data. It is also

4.2 Approach 43

responsible for managing the commands received and for storing the sensors data if connec-

tivity is lost. In also handles when the local interface is used.

Protocol Manager

Main Service

GSCL (Thread)

mid

Sensor Handler Local Interface

NSCL

[Protocol Handler

‘ h
C Memory Manager (Thread)]—% L)

Figure 4.10: Mobile M2M GW Protocol Manager Architecture

Figure 4.10 shows the detailed architecture of the Protocol Manager, which is the most intricate

module of the project. Its modules details are as follows:
Protocol Handler: This module has three main roles in the mobile M2M GW:

1. When the Memory Manager flushes sensor data to be delivered to the NSCL, this
module handles the JSON marshalling of that data, depending on the sensor, so it can

be properly read afterwards.

2. Know whether an Internet connection exists. If it does not, and the application is
starting, it forces the application to wait for an available connection. If there is no con-
nection when sensors data is flowing to be registered in the NSCL, the module saves
the marshalled payload on the smartphone’s memory. When connectivity returns, the
marshalled data is then properly registered onto the NSCL.

3. This is also the module that depending on the protocol chosen to communicate, relays

the marshalled information to the proper module.

GSCL: This module partially implements the ETSI GSCL, handling the connectivity with the
NSCL through the mld interface using the supported protocols (HTTP or CoAP). It has an
internal memory with the created resources and it stores them in a local database, in or-
der to save traffic when the resource is already registered in the NSCL. By having its own
thread, this module assures that the communication protocols are accessed in a synchro-
nized manner, only allowing one outgoing request at a time to be executed. This module is
responsible for the creation of the Container resource with the name of the sensors, and the

ContentInstance resources with the marshalled sensor data.

MQTT: This module implements the MQTT protocol, and it was already completed when this
dissertation started. It currently does not support the communication of the sensors, since it
is not supported by ETSI, nor by the NSCL.

44 ETSI Compliant Mobile M2M System

Local Interface: This module represents the local interface connection explained in Section 4.2.3,
which is executed over HTTP, through the localhost interface of the smartphone. This mod-
ule also has access to the database, since it stores the sensors data so it can later be delivered
to the NSCL.

Is there

Internet Execute Bootstrap
connection?

Initiate all
Start Mobile threads,
M2M GW memory and
variables
Read from

Register Sc/
Yes— 9 No DB Database

Wait for

Shut Down
application

subscription on
the Applications Retrieve
collection Nox Resources

Subscribe NSCL Register
Applications Application
collection resources

Wait
Commands

Figure 4.11: Mobile M2M GW Flowchart

Figure 4.11 illustrates the information flow inside the mobile M2M GW. After starting the
application, the threads corresponding to the modules present in Figure 4.9 (except Start), and all
their variables and memory buffers are started. The modules have their own threads in order to
effectively reduce race conditions and delay of processing, since the instructions for the threads to
run are stored and handled in a first-in first-out (FIFO) pile. When there is an Internet connection,
the mobile M2M GW proceeds to execute the Bootstrap procedures, using one of the supported
ETSI protocols. If the Bootstrap is unsuccessful, the mobile M2M GW shuts down (since it has
no way to communicate to the NSCL), but if it is successful, the mobile M2M GW proceeds to
register its Sc/ resource. If the registration fails (meaning that the resource already exists on the
NSCL), the mobile M2M GW attempts to retrieve those resources from its local database. If the
resources stored somehow got corrupted, or do not match the requirements, the mobile M2M GW
retrieves the correct resources from the NSCL, and proceeds to await for commands. However,
if the Scl resource registration is successful (meaning that it is the first time this particular device
is connecting or that the NSCL database was wiped), the mobile M2M GW subscribes the NSCL
Applications collection (where the NA’s are stored), and then awaits for a subscription on its own

Applications collection. Once it receives this subscription, it registers its Application resources

4.2 Approach 45

corresponding to the groups of sensors that are supported (in this dissertation’s case only health
sensors are supported, so only one Application resource is registered). After this registration, the

mobile M2M GW awaits for commands, that will trigger its functionalities.

Receive
Command?

~\ Commands

Store to DB

Connection
Returned

Database

Read from
DB

Marshall data

Internet
Connection?

Yes

Local
Interface?

Register
Contentinstance

Figure 4.12:

with sensor data

Mobile M2M GW Commands Flowchart

Local

Change the

Interface?

Database

Read from
DB

parameter

Search Sensors Start Sensor Stop Sensor Change Sensor
Configurations
o I I I
Trigger Interpret Interpret Determine
Internal and/or sensor to start sensor to stop which
Esxtern;ll parameter,
earc I —I_ and the new
value
Start sensors Trigger sto
measurements, ggnsor P
thread and
Yes Register Container memory
for found sensor buffers Sensor
Active?
Disconnect from
Are there Stop the sensor, and
more sensors? Sensor? Yes clean all buffers
and variables Discard oS
related to him configurations

46 ETSI Compliant Mobile M2M System

Figure 4.12 represents the data flow produced by the incoming commands, each carrying some
specific information: The search sensors command contains information on whether the search
to be executed should be only internal, only external (through Bluetooth), or both. The start
sensor command contains the name of the Container to start, that because of the map explained
in Section 4.2.2.3 represents the sensor name. The stop sensor command also contains the name
of the Container to stop; The change sensor configurations command contains the name of the
Container to act, and the sensor configurable parameters that will be described below.

If a search sensor command is received, the Sensor Handler will proceed to execute the re-
quired local and/or Bluetooth search, and process the found sensors. It then delivers the found
sensors to the Protocol Manager’s GSCL module, in order to register one Container resource for
each sensor found. This procedure only announces that the sensors are present in the vicinity of
the mobile M2M GW, but not started immediately.

When a start sensor command is received, the Sensor Handler starts the procedures to connect
to it, start its own thread, and trigger the Memory Manager to start the buffers and variables re-

garding that sensor. Each sensor has a memory buffer with the following configurable parameters:

Reading Granularity : Maximum interval between two sensor readings.
Maximum Transmission Granularity : Maximum interval between two sensor flushes.

Maximum Buffer Size : Maximum amount of physical memory that the buffer storing the sensor

information is allowed to be.

The data on the buffers stays stored until the transmission granularity is reached or the buffer
gets full, and the trigger for delivery is whichever comes first. Once this data is flushed, it is
sent to the Protocol Manager for marshalling and dispatch. If there is no connectivity when the
information reaches the Protocol Manager, it is stored in the local storage, until the mobile M2M
GW has the ability to properly register the data on the NSCL. The marshalling process starts with
the packaging of the sensors data into a JSON object. The basic output is shown below with an
example from a Zephyr HXM Bluetooth sensor. The values array is specific to each sensor, where
the relevant data can be sent, whereas the remaining information about the sensor and GPS is

common between different types of sensors:

{

"values": [
{
"timeStamp": "1397491419169",
"RRinterval": [
"728"
1s
"heartRate": "87"
}
1,
"sensorModel": "HxM BT Heart Rate Monitor",
"sensorSerial": "12:34:56:78:90:AB",
"GPS_Latitude": 40.6299045,
"sensorType": "ZEPHYR",

"GPS_Accuracy": 20,
"GPS_Longitude": -8.6460066

4.2 Approach 47

This marshalled sensor data is used on the creation of a Content resource, which is an attribute
of the Contentlnstance resource. The Content automatically encodes the payload in Base64 [63],
and the GSCL module then registers the Contentinstance on the NSCL, as explained in Sec-
tion 3.1.2, using one of the ETSI supported protocols. In case there is no connectivity, the mar-
shalled information is stored in the database file initiated at start up. When the connection returns,
this storage file is chached into memory, and the messages are dispatched. Using the local inter-
face, the sensor data is automatically stored on the database, while being sent locally to the mobile
M2M NA.

Upon receiving a stop sensor command, the sensor connection is terminated, along with the
memory buffers associated with it. If this command is sent while using the local interface, the
data stored in the database by the local interface is then registered on the NSCL, provided there is
connectivity. If there is no connectivity, the data remains in the database until the next application

start up.

The change sensor configurations command contains the information on the target sensor, the
configuration to be changed, as well as the new value. If the target sensor is not active at the time,
the configuration request is discarded, otherwise the Sensor Handler manages the change of the

configurations.

4.2.4.2 Mobile M2M Network Application

The mobile M2M NA implements the mla ETSI interface, as mentioned in Section 3.1.3.
Having a mobile M2M NA was essential to complete the system, to allow the user to have visual
feedback (through the GUI), besides the ability to command the connection to sensors. The mobile
M?2M NA receives the relevant information about the healthcare sensors by notification from the
NSCL, after the proper subscription of the Gateway’s resources. It also sends commands to the
Gateway to trigger the actions needed to fulfill the use case scenario. The mobile M2M NA
Android application architecture design is presented below.

|
Android Application (Network Domain) ﬁ | Network

| Domain
|
Turn on/off . 0 }
Search I
Sensors :
Start Sensor | GUI) }
Stop Sensor :
Protocol Manager |
|
I
|

Turn off M2M ‘ mia
el NSCL
I
I
— I
I
Local |
Interface |

Figure 4.13: High-Level Mobile M2M NA Architecture

48 ETSI Compliant Mobile M2M System

Figure 4.13 represents the high-level architecture of the mobile M2M NA, and its modules

roles are:

GUI: This module handles the user input, that depending on the interface the application is on,
can represent turning it on or off (with options to turn off only the mobile M2M NA or also

the mobile M2M GW), or send the commands to search, start and stop sensors.

Main Service: This module, inherited from the mobile M2M GW’s design, manages the active

threads and the information flow between different user interfaces.

Protocol Manager: This module handles the Internet connection, and how the mobile M2M NA
communicates with the NSCL. It is also responsible for the local interface communication,

when active.

Protocol Manager

Main Service

|
|
|
|
|
|
I
SCL (Thread) |
|

mla

——| NsCL

Local Interface

Figure 4.14: Mobile M2M NA Protocol Manager Architecture

Figure 4.14 illustrates in grater detail the mobile M2M NA'’s Protocol Manager and its sub-

modules. Their roles in the application are:

SCL: This module handles the connectivity with the NSCL through the mla interface using the
supported protocols (HTTP or CoAP). It has an internal memory with the created resources
and it stores them in a local database, in order to save traffic when the resource is already
registered in the NSCL. By having its own thread, this module assures that the communica-
tion protocols are accessed in a synchronized manner, only allowing one outgoing request
at a time to be executed. This module is also responsible for creating the ContentInstance

resources corresponding to the commands triggered by the user’s input on the GUI.

Local Interface: This module is responsible for the local connection to the mobile M2M GW,
when itis active. The local interface can deliver commands and receive sensor data, allowing

the mobile M2M NA to function just as if it was communicating through the NSCL.

Figure 4.15 represents the information flow of the mobile M2M NA. After the user starts the
application, the modules present in Figure 4.13 are started, with their corresponding threads. If
there is Internet connection at start up, the Bootstrap procedure is initiated. Being a critical opera-
tion, if it fails, the mobile M2M NA shuts down, as it has no way to communicate with the NSCL.
If the Bootstrap is successful, the mobile M2M NA proceeds to the registration of its unique Ap-

plication resource onto the NSCL. If this registration is not successful, meaning that it was already

4.2 Approach 49

Is there
Internet
connection?

Initiate all

Start Button threads,
Pressed memory and

variables

Register Read from
Application No DB Database

[—p Execute Bootstrap

Yes

Yes—#»

Yes

A]

Register "Actions”
Container
resource

Subscribe NSCL
Scls collection

Retrieve
Resources

Shut Down
application

Wait User
Input

Figure 4.15: Mobile M2M NA Flowchart

completed before, the mobile M2M NA retrieves the data stored in its database. If somehow that
data was corrupted or deleted, the mobile M2M NA then retrieves the necessary Application and
Container resources from the NSCL. If, however, the Application resource registration is success-
ful, the mobile M2M NA then registers the "Actions" Container, and also subscribes to the Scls
collection of the NSCL, where the mobile M2M GW registers itself.

The functionality of the mobile M2M NA then depends on the user’s input, and is illustrated in
Figure 4.16. After the successful registration of resources and the mobile M2M NA is in posses-
sion of the resources needed to send commands, specifically the "Actions" Container, the search
sensors button is activated. The buttons to shut down the mobile M2M NA or both applications are

always active, and if pressed they will trigger the proper termination of the selected application(s).

If the user presses the search sensors button, a command ContentlInstance with that action will
be registered on the "Actions" Container on the NSCL. The mobile M2M NA then disables the
search sensor button and enables the start sensor button, and awaits for the NSCL notifications
on new Container resources (if there were any), containing the information on the found sensors.
These sensors are presented to the user in a list, and pressing the start sensor enables him to
choose which sensor to start. The choice of a sensor registers a Contentlnstance resource with that
action on the "Actions" Container, followed by the subscription of the sensor’s ContentInstances
collection, for receiving the posterior notifications with the sensor Contentlnstance resources. Still
derived from the start sensor trigger, the GUI changes to give the user feedback on the received

data, and activates the stop sensor button. Pressing the stop sensor button registers a ContentIn-

50

Search Sensors

Start Sensor

Wait User
Input

Create
Contentinstance
resource with the

command to search
sensors

Choose sensor
from list

Stop Sensor

Enable Search
Sensors and
disconnection

buttons

Disable Search
button and enable
Start Sensor button

Turn

off mobile M2M
NA

ETSI Compliant Mobile M2M System

Turn
off both
applications

V—é

Procede to
terminate all
threads and

pending actions

Send a signal to
turn off the mobile
M2M GW

Create
Contentinstance
resource with the
command to start

sensor

Create
Contentinstance
resource with the

command to stop
sensor

Enable Search
Sensors button
and disable start

and stop sensor
buttons

Subscribe chosen
sensor's

Contentinstances
collection

Change GUI to
present sensor
data, disable start
button and enable
Stop Sensor
button

Figure 4.16: Mobile M2M NA Protocol Manager Architecture

stance with that action on the "Actions" Container, followed by re-enabling the search sensors

button and disabling the stop sensor and start sensor buttons, allowing the user, to re-execute a

search, if necessary. Using the local interface poses absolutely no changes to the information flow

just described, and the user does not need to make any changes to the way he interacts with the

application.

4.3 Evaluation

The proposed solution is going to be evaluated according to the goals mentioned in Section 1.3.
To determine to which degree the mobile M2M GW and mobile M2M NA are functional, Table 4.1

defines the requirements, organized by priorities. The traffic measurements will evaluate if the it

effectively saves bandwidth, as it was designed to do.

4.3 Evaluation 51

Target Application Priority What to Evaluate
Basic Use Case

Both High Communicate securely with the NSCL using at least
one supported protocol

Both High Register itself and its resources in the NSCL

Both High Support a web-server that is able to receive
subscriptions and messages

Mobile M2M GW High Support at least one medical sensor

Mobile M2M GW High Have the ability to receive and process commands
according to the Use Case scenario

Mobile M2M NA High Have the ability to send commands to the Gateway
and process its answers

Mobile M2M GW Low Support more medical sensors, widening the test base

Traffic Reduction Use Case

Both High Implement the local interface

Both High Compare communication traffic through the NSCL
and through the local interface

Mobile M2M GW Medium Use a local storage to safeguard the sensor data when

the connection drops

Table 4.1: Evaluation metrics

52

ETSI Compliant Mobile M2M System

Chapter 5

Implementation

The development of the solution shown in Chapter 4 had its share of obstacles and difficulties,
which are always present in this kind of project. This Chapter aims to explain the development of
each feature and functionality, what were the main difficulties, and how they were overcame.

To begin with, the technologies needed for the implementation process are presented in Sec-
tion 5.1. Then the implementation of the communication protocol on which the ETSI M2M stan-
dard relies for its communications is explained in Section 5.2, followed by the Bootstrap proce-
dure, in Section 5.3. Section 5.4 details the web-server created within the mobile M2M GW and
mobile M2M NA to receive the necessary subscriptions, before the implementation details of the
ETSI’s resource structure in Section 5.5.

Section 5.6 focuses on the integration of the healthcare sensors, paving the way for the expla-
nation of the mobile M2M GW communication with the NSCL as well as the functionalities of the
commands, in Section 5.8. The mobile M2M NA’s communication is then detailed in Section 5.9
detailing how different actions are shown in the user interface, ending with the local interface

details in Section 5.10.

5.1 Technologies

Both the mobile M2M GW and the mobile M2M NA are being built as Android Operating
System applications. This choice was made given its open source nature, that provides easy in-
tegration with the external sensors, and because the programming language is Java, which was
already familiar. The wide range of devices currently running Android OS was also an important
factor since the result of this dissertation may evolve into a commercially available product.

The main software used in the development was:

* Android Development Kit (SDK) [75];
* IntelliJ Integrated Development Environment (IDE) [76];
» Apache Maven, for the dependency management, and easier integration of the several frame-

works/libraries [77];

53

54 Implementation

¢ Subversion version control [78].
The frameworks used to implement the use cases were:

* Native Apache HTTP implementation;
¢ Californium CoAP framework [79];
* Paho-mqtt library (Release 0.4.0, MQTT version 3) [80];

* Jackson is the library used to execute the marshalling and de-marshalling of ETSI resources.

Also, as communication technologies, Bluetooth, cellular (2G/3G/4G) and Wi-Fi capabilities

to communicate with the NSCL.

5.2 ETSI Protocol Implementation

The Protocol Manager of both applications was designed in a modular way, as explained in
Chapter 4, to allow the use of either HTTP or CoAP protocols to communicate with the NSCL.
Initial development efforts focused on CoAP, but there were some issues with the Californium
CoAP library (suggested by PTIN partners because they were also using it) and the use of DTLS.
The problem was that the framework did not provide a useful API to determine where the config-
uration and certificate files were located, which forced the import of the framework’s source code
into the project. However, since the NSCL didn’t fully support CoAP at the time, this integration
was put on hold, and efforts focused on the integration of HTTP.

With HTTP, the first stage was to find a library that could connect over TLS using the certifi-
cates retrieved from the NSCL. PTIN was using an Oracle library, that yielded dependency issues
in Android, which ultimately led to the use of the native Apache HTTP libraries, shipped with
the Android Operating System. The choice was fruitful, since the connections were successfully
implemented using TLS (v1.2) and also implementing a TLS extension (and ETSI requirement)
called Server Name Indication (or SNI). This extension allows a web-server, in this case the NSCL,
to provide different services over the same IP address, provided that the client specifies its destina-
tion in the connection. In this dissertation’s case, the NSCL URI was
https://phonegw.nscl.m2m.ptinovacao.pt, with SNI phonegw.nscl.m2m.ptinovacao.pt.

On Android there were some issues with this feature implementation, where the well docu-
mented Android fragmentation [81] had impact, since the Apache features that allow the SNI to be
properly implemented in Android were only introduced in API 17 (Android version 4.2), mean-
ing that the introduction of this requirement limits the number of devices that can use the final

application.

5.3 Bootstrap

As mentioned in Section 2.2.1 the Bootstrap is the first procedure to be executed, either by
the mobile M2M GW or by the mobile M2M NA (the procedure is the same for both), as it

5.4 Web-Server 55

yields the application’s session key (which is a X.509 Certificate with the NSCL public key, and
the requesting application’s RSA private key) to be used in the secure connection with the NSCL.
These security concepts were explained in Section 3.3. Since this procedure is protocol dependent,
it was only implemented for HTTP, as were the rest of the communications, as mentioned in
Section 5.2.

In order to correctly execute the Bootstrap, the mobile M2M GW or mobile M2M NA have a
pre-provisioned Certificate-Key pair, that is used to fetch the session keys. This pre-provisioned
pair is stored as a project resource, and is compiled with the applications to allow them to exe-
cute this procedure. After receiving the NSCL session keys, they are stored in the smartphone’s
memory and then used to create the TLS enabled HTTP client that will be used to execute the

communication with the NSCL. This procedure is illustrated in Figure 5.1.

=sd bootstrap

MZM GWINA NSCL

Create ternporary TLS enabled HTTP client using the pre-provisioned cerific ate-key pain)

2l
-
GET on [nsclURI]: 8443/ bootstrapParamSet]) -
=
o _____ Auwer(Session X500 Cenificate and Private Key) ____ ____ _ ﬂ
Store sessions certificates|)

Create TLS enabled HTTP client with the received session pain)

Figure 5.1: Bootstrap Procedures

Both the pre-provisioned and the session key are created by the NSCL to the specific client
(GW or NA) and they are the client’s own private key and the NSCL public key to use in the
TLS handshake. During this connection, the mobile M2M GW or mobile M2M NA use the NSCL
public key to initiate a secure handshake, to then share the symmetric key to be used for the session
encryption where the actual data is exchanged. The same certificate-key pair is used to generate

the secure HTTPS web-server, allowing the NSCL to also communicate securely over TLS.

5.4 Web-Server

The web-server exists both in the mobile M2M GW and mobile M2M NA to allow the NSCL
(or each other using the local interface) to subscribe their resources. These are naturally protocol
specific, and the CoAP web-server was never implemented, because the communication develop-
ment focused on HTTP for the reasons mentioned in Section 5.2.

There was some research on HTTP lightweight implementations, being NanoHTTPD [82] the
most interesting. This library was implemented, but the lack of SSL/TLS support led to its eventual

56 Implementation

dismissal. Since the client was already functional with the Apache libraries, the web-server was
also implemented using these, with and without support for TLS. However, because the NSCL
still uses an insecure connection to register its subscriptions or send notifications, the TLS feature

on the mobile applications is disabled.

For the communication to properly work, the web-servers needed to be accessible from the
outside of the FEUP network, to allow the subscriptions and subsequent notifications to reach the
applications. This required a configuration of the firewall, to open the ports used by the appli-
cations, as well as the establishment of routes to direct that traffic to the the right place. This
led to some bureaucracy steps' within FEUP, as well as configuration challenges?, to allow the
web-server to be accessed from the outside of the internal network (from PTIN, in Aveiro). This
introduced an unexpected delay, that shed light on one of the big problems mobile M2M solutions
may face, since normally every device is behind a firewall ou router that does not allow him to
become visible to the exterior. The end-user normally does not mess with router configurations,
limiting the scalability of solutions such as this one. To overcome this issue, the ETSI M2M
standard provides a long-polling mechanism that allows for the subscriptions and subsequent no-
tifications to be delivered using only a HTTP or CoAP client, by creating a persistent connection
started by the applications, which can always reach the NSCL. This could be used in the future,

but since the NSCL still did not implement it, the web-servers were the approach chosen.

The mobile M2M GW web-server listens to port 8080 while the mobile M2M NA listens
to port 9090. This was an arbitrary choice taken and can be easily changed, with the natural
safeguards towards the configuration needed on the routing stand point for the testing to continue

being possible from within the FEUP network.

5.5 ETSI Resource Structure Implementation

Implementing the ETSI resource structure was the first big milestone of this dissertation’s,

since it was a requirement for communicating with the NSCL.

The ETSI documents, specifically the TS 102 921 [62], besides the useful information about
communication, also provided XML schemas for every resource of the structure. With JAXB
(XML marshalling library) it was possible to convert these schemas into Java classes with annota-
tions, for automatic marshalling and de-marshalling. The problem faced was that Android could
not understand the annotations because of missing XML libraries. On Android, there were prob-
lems, since although it implements XML files to build its user interfaces, it does not have the core
XML libraries (javax.xml.*) and does not allow them to be compiled along with the application.

Given this issue, there were two possible approaches:

! Acknowledgment of the significant help of Superior Technician Isidro Ribeiro in requesting the port openings to
CICA.

2 Acknowledgment of the significant help of Paulo Vaz (IT technician), and Carlos Pereira (Doctorate student in
FEUP) for the help given with this configuration procedure.

5.6 Sensor Integration 57

* Import the XML libraries under a different package (such as xml.libraries.*) so that they

could get compiled along with the application.

» Use a different library and figure out the best way to make use of the provided classes.

The solution chosen was to use the Jackson library, because of its fast performance on An-
droid OS [83] (even when compared with the native Android JSON library), and because both
approaches demands editing some or all of the provided 120 classes: The first approach requires
changing the imports of every class, while the second requires commenting out the XML annota-
tions and include a few Jackson when needed (only known by trial and error).

The Jackson JSON approach seems like the best option on the long run, even though it is clear
that if there are new changes to those classes, they will have to be implemented by hand, prevent
having the same annotation issue as before. A comprehensive list of the changes executed in the
ETSI generated classes can be found in Appendix A.

After all the changes were completed and the applications were successfully marshalling and
de-marshalling resources using Jackson, the focus shifted on the communication of the mobile
M2M GW with the NSCL, but not before integrating a medical sensor to test the data with.

5.6 Sensor Integration

The mobile M2M GW'’s sensor handler was built in a modular way, and each sensor connected
to it has its own thread to prevent race condition issues. When the sensors are searched, for each
sensor found, a new Container is created. The Container name includes the sensor name (e.g.
Zephyr), and a timestamp of the moment it was created. The sensors are not connected until a
specific start command is received. Only then does the mobile M2M GW connect to the sensor
and start collecting data to build and send the ContentInstance resources with. This was done
for scalability purposes, because no sensor is going to consume battery unless specifically started.
Section 5.6.1 will present the implementation details for the database created to store the sensors
information when there is no connectivity.

As mentioned in Section 4.2.2.4, the only integrated sensor was the Zephyr™ HxM Heart-Rate
monitor, and given its open API, that integration was easily executed with the modular mobile
M2M GW. Section 5.6.2 will detail the information gathered and stored by the Zephyr sensor.

5.6.1 Sensor data storage

As mentioned in Section 4.2.4.1, the ability to store the sensor data for when no connectivity
is available is an important feature for this project’s use case scenario, to assure that no data is lost.
To execute this, the data to be sent is stored in the smartphone’s memory when the connection is
lost, and re-sent when the it returns. If the mobile M2M GW is stopped before the connection
returns, the data is kept in the smartphone’s memory and sent the next time the mobile M2M GW

is started (with connectivity), so that no data gets lost. This storage keeps the sensor data already

58 Implementation

properly marshalled, along with the Container name they belong to, and the target URI, which is

the necessary information for that data to be properly delivered, when connectivity is regained.

5.6.2 Zephyr data
The information being collected by the Zephyr sensor, when it is connected, is a single average
heart rate value (in beats per minute, or bpm), as well as an array of RR intervals, which holds the

exact time difference (in milliseconds) between R heart beats, as shown in Figure 5.2.

R R-R Interval R

|
Qs

Figure 5.2: ECG example, specifying RR interval. From [8]

The average value allows for a quick glance on what the heart-rate is at any given time, and is
calculated within the sensor itself whereas the RR interval measurement allows for more precise
data collection and analysis, since they are the base measurement for the heart-rate calculation:

__ _60000ms
HeartRate = "% (bpm)

5.7 Communication considerations

During the implementation of the communication, some features common to the mobile M2M
GW and the mobile M2M NA had to be developed to surpass some problems. These features will

be described in this Section.

5.7.1 Subscription Check

Since the communication depends almost entirely in subscriptions and notifications, there had
to be a way to check if every desired resource is subscribed, to prevent the situation, where the
information is not received because the resource was created and no subscription was in place to
trigger the notification. To tackle this issue, a series of functions are called whenever the applica-
tions (mobile M2M GW or mobile M2M NA) need to know if there already is a subscription with

their URI to the desired resource or collection. This procedure is shown in Figure 5.3.

5.7 Communication considerations 59

sd subscription_check /

MM GWINA MSCL

| GET [nsclURI){[resource]/subscrptions()

Answer: 200 [OK] (Subscrptions resource)

.:E __________________________________

1
— T
loop [for each] subscription / |
|
|
|

GET [nsclURI)[resounce R subscrptions/subscrption| D

Answer: 200 [OK] (Subscrption resource)

alt [if] no_subscriptions retriewved OR neither retrieved subscription originated in this GW/NA /
|

"

POST to [nsclURI)resource URI)/'subscriptions (Subscription resource)

Figure 5.3: Procedure to check if subscription created by this mobile M2M GW or NA is present.

Firstly, a GET request is executed to retrieve the Subscriptions collection, which contains the
list of all Subscription resources. Then, the application (mobile M2M GW or mobile M2M NA)
retrieves every single Subscription resource, to compare the URI to its own. After checking all the
resources, only if there is no Subscription from its URI, does the application (mobile M2M GW
or mobile M2M NA) create its own. This assures that a Subscription is present while preventing
creating multiple subscriptions with the same URI, which would result in multiple notifications

for every action occurred.

5.7.2 Persistent Database

Given the mobile nature of the mobile M2M GW and mobile M2M NA of this dissertation,
the mobility is a huge aspect of the design, which may cause the Internet connection to drop. The
mapping discussed in Chapter 4 was designed to have unique Id’s for each smartphone’s mobile
M2M GW and mobile M2M NA, but since the ETSI standard forces its resources, such as the Sc/
and Application, to have an unique identifiers (Ids) (returning the HTTP code 405 (Method not
allowed) if the Identifier (/d) is in use), there was the need to develop a way to be able to keep
this resources after they were created. To tackle this situation, a persistent database was created
on both the mobile M2M GW and the mobile M2M NA to store the created unique resources on
the smartphone’s memory. This database stores the needed information in serialized Java objects.

The classes created to fulfill this need are pictured in Figure 5.4.

60 Implementation

class class_diagram_storage /

Container Storage

- activeContainer: Container
- containerSubscription: ArmayList<Subscription=
- contentinstanceCollectionSubscriptions: ArrayList=Subscription=

SN
H‘-

Application Storage

- activeApplication: Application

- applicationSubscriptions: ArrayList=Subscription=

- containesCollectionSubscriptions: AmayList<Subscription=
- C i o AmayList=C i =

~ 0.
-

SclStorage

- cumentScl: Scl
- applicationStorage: AmrayList<ApplicationStorage>
- applicationsCollectionSubscriptions: ArrayList=Subscription=

Figure 5.4: Storage Class Diagram.

The mobile M2M GW stores a SclStorage instance, that holds the active Scl resource, has an
array that contains all its active ApplicationStorage objects as well as an array for the subscriptions
made on the Applications collection. The ApplicationStorage holds the information on the active
Application resource, as well as Subscription arrays that stores the subscriptions to the active
Application and to the Containers collection. An array of ContainerStorage instances is also
stored within the ApplicationStorage, holding the information on the active Container resource,
and arrays for that Container’s subscriptions and its respective Contentlnstances collection. All
this information is relevant to store, allowing the mobile M2M GW and mobile M2M NA to hold
the information needed to successfully re-connect to the NSCL with the same unique Id. Since
the mobile M2M NA does not own an Scl resource, it only stores an ApplicationStorage instance,
which was one of the reasons for this array centered design.

To accomplish the implementation of these databases, a few more changes had to be executed
on the ETSI classes, adding the ability for Java Serialization, for easier and faster storage and re-

trieval from the database. The list of classes that needed these changes is presented in Appendix A.

5.7.3 Commands

To implement the important feature of the commands delivery, by adding ContentInstances to
the mobile M2M NA’s actions Container as explained in Section 4.2.2.3, common ground had to
be created between the mobile M2M GW and the mobile M2M NA. To do this, the ActionCom-
mands class was created, which was then extended by the specific action to be taken, as depicted
in Figure 5.5. This super class has the action attribute that allows the mobile M2M GW to rec-
ognize which subclass it is receiving, to then retrieve the action’s attributes, which allow it to act
accordingly. Also, to assure that the mobile M2M GW is not acting on commands that were pre-
viously sent, the super class also has the creation time attribute, which holds the current time in

milliseconds since January 1, 1970, as well as a life span attribute (also in milliseconds) that stores

5.8 Mobile M2M GW 61

for how long that command should be active. To the purpose of this dissertation’s tests, the life

span was 2 minutes, to prevent commands from previous tests to interfere with.

class class_diagram_commands /

ActionCommands

- action: String
- commandCreationTime: long
- commandLifeSpan: long

P BN

ActionSearchSensors ActionStartSensor Action StopSensor

- intemalSearch: boolean - containerToStar: String - containerToStop: String
- bluetoothSearch: boolean

Figure 5.5: Class diagram of the structure of the commands.

To prove the concept created for the commands was functional, and regarding the list of com-
mands presented in Section 4.2, the change of sensor configurations was not implemented since it
was not a priority to test the functionalities of the sensors, that fulfill the use cases.

The action specific attributes are very simple. The ActionSearchSensors has two booleans to
configure whether the search to be executed is internal (to use the smartphone’s accelerometer,
gyroscope, or magnetometer) or external (Bluetooth supported sensors) or both. The ActionStart-
Sensor and ActionStopSensor commands are very similar, with the attribute signaling the Con-
tainer resource on which they are acting, either to be started, or stopped. This architecture is also

modular, aiming to ease the future addition of commands and features to the system.

5.8 Mobile M2M GW

This section explains how the mobile M2M GW was implemented in Android OS, in Sec-
tion 5.8.1, followed by the communication specifications in Section 5.8.2. Then, how the mobile

M2M GW handles the commands received is explained in Section 5.8.3.

5.8.1 Android Implementation

The mobile M2M GW concept explained in Section 4.2.4.1 was successfully implemented on
Android, with some specificities. Since it has no GUI, in order to allow it to be started in the
event that the mobile M2M NA is not installed in the same smartphone, an application launcher
was created. This is just an icon that is present in the applications drawer of the smartphone and
looks like any other Android application for the user. However, when the user selects it, no GUI
is opened, and it only sends the intent (Android inter-process mechanism) to start the service that
drives the mobile M2M GW.

62 Implementation

Android services require the creation of a persistent notification, to assure that the process is
not stopped. This was put to use, so that if the user presses the notification of the mobile M2M
GW the application is shut down, solving the problem of having no GUI. The mobile M2M GW
can also be stopped by the mobile M2M NA, by sending a specific intent that stops the application.

5.8.2 Communication

sd GW-NSCL ./

MZM GW MECL

alt [if] sclid exists /

[1]: POST to [nsclURImZmiscls {Scl resource)

Y

[— Rl: Answer: 405 Method not allewedli) ___ |

[2]: Retrieve data stared in database()

[4]: Answer: 200 [OK] (Scl resource)

e +

[5]: POST to [gwURI) applications/subscriptions { Subscription resource)

[B]: POST to [nsclURIYsclsi{sclldy applications (Application resource) -
- ____ [B1: Answer: 200 [OF] (Application resouree) _ H

loop [for each] subseription of [gsclURIfapplications /

[10]: POST on subscriptionUR| (Motify resource)

oy
=
I — [11): Answer. 200 [OK] (Notify resource) __ _ _ _ _ _ _ __________ |
—+ +
! [12]: POST to [gwURIJ{appld}subscriptions {Subscription resource) !
[13]: stare_subscription()
14]: Answer: 200 [OK] (Subscription resource
______________________________ ptionresource) |
[15]: [subscription_check] an [nsclURI)mZm/applications/subscriptions()
|
| [16]: Motification POST ta [gwURI] (Applications resaurce)
__________________ [17): Answer. 200 [OK] (Applications resource) =]

< [18]: [subscription_check] Containers collection of each application in the applications collection{) :
|
|

| [19]: Notification POST to [gwURI] (Containers resource)

" [21]: [subscription_check] Contentlnstances collection of each Container in the Containers callection{)

|
|
| [22]: Motification POST to [gwURI] (Contentlnstances resource) I
[23]: Answer: 200 [OK] (Contentlnstances resource) >U
|
|

[24]: [handle_na_cammands]{)

Figure 5.6: Sequence diagram of the communication held between the mobile M2M GW and the
NSCL.

The sequence diagram of the communication between the mobile M2M GW and the NSCL is
shown in Figure 5.6. An explanation of the messages exchanged between the mobile M2M GW

and the NSCL is below, with aid of the figure’s numeration.

5.8 Mobile M2M GW 63

[1]: The first message sent by the mobile M2M GW is the POST to create an Scl resource (on

[nsclURI])/m2m/scls). The sclld of the mobile M2M GW references to the device model

and serial number, to assure it is unique and there are no two equal IDs.

[2 & 3]: If this smartphone was previously connected to the NSCL and the resource already

[4]:

exists, the NSCL returns the HTTP code 405 (Method not Allowed), specifying that it was
a Bad Request. The mobile M2M GW then retrieves the data stored on the smartphone’s
memory (procedure previously explained in Section 5.7.2) allowing the communication to

continue using the original resources, without issues.

If the mobile M2M GW had never connected to the NSCL before or the new uniquely
generated sc/ID was successfully recognized, the NSCL returns the HTTP code 200 (OK),
with the complete Scl resource in the message body. The following messages are exchanged

only if the resources have not yet been created in the NSCL, as show in Figure 5.6.

[5]: After the successful creation of the Scl resource, the NSCL uses the "link" attribute to sub-

scribe to the Applications collection of that resource, by sending a POST message with the
Subscription resource to [gwURI]/applications/subscriptions. This Subscription is stored in
the memory of the mobile M2M GW, in order to later notify the subscribers, and the next

step of the its registration is triggered.

[6, 7 & 8]: The mobile M2M GW stores the Subscription resource on the Applications collec-

tion and returns the HTTP code 200 (OK) back to the NSCL, with the resource received
in the message body, as required by the ETSI standard. It then registers its Application re-
sources (one or more) on the NSCL Applications collection, by sending a POST message
to [nsclURI]/scls/[sclld]/applications, with the attributes needed to successfully create the
application in the NSCL.

[9]: The NSCL creates the Application resource locally, and generates the its specific attributes,

returning the HTTP code 200 (OK), with the created resource marshalled in the message
body.

[10 & 11]: The mobile M2M GW stores the Application resource registered in [9] locally, and

notifies every subscriber of the Applications collection sending a POST request with the
Notify resource to the specific subscriptionURI, which is an attribute of the Subscription
resource. The NSCL then returns the HTTP code 200 (OK) for the Notification of each

subscriber, with the resource created in the message body.

[12]: The NSCL subscribes each Application resource registered with a POST request to

[gwURI]/appld/subscriptions with a Subscription resource in the message body.

[13 & 14]: Stores the received subscriptions of the Application resources and returns the HTTP

code 200 (OK), with the Subscription resource in the body.

64 Implementation

[15]: Then, the mobile M2M GW executes a Subscription Check procedure (described in Sec-
tion 5.7.1) to check if the current Scl (with the same URI) has already subscribed to the
[nsclURI]/m2m/applications/subscriptions collection, which holds the subscriptions the Ap-

plications collection.

[16 & 17]: The NSCL notifies the mobile M2M GW about changes on the mobile M2M NA
Applications collection, sending a POST message with the marshalled resource in the body.
From this point on, the mobile M2M GW behavior is the same for either situation, if it
was just registered in the NSCL, or if it retrieved the information from storage. The mobile
M2M GW then returns the HTTP code 200 (OK), with the received resource in the body, as
required by the ETSI standard.

[18]: The mobile M2M GW executes a Subscription Check procedure on the Containers collec-

tion of each Application resource referenced in the received Applications collection.

[19 & 20]: The NSCL notifies the mobile M2M GW about changes on the mobile M2M NA
Containers collection, sending a POST message with the marshalled collection in the body.
The mobile M2M GW then returns the HTTP code 200 (OK), with the received resource in
the body, as required by the ETSI standard.

[21]: The mobile M2M GW executes a Subscription Check procedure on the Contentlnstance

collection of each Container resource referenced in the received Applications collection.

[22, 23 & 24]: The NSCL notifies the mobile M2M GW about changes on the mobile M2M
NA Contentlnstances collection, sending a POST message with the marshalled collection in
the body. The mobile M2M GW then returns the HTTP code 200 (OK), with the received
resource in the body, as required by the ETSI standard. The ContentlInstance resources
present within the collection are the specific commands that trigger actions in the mobile
M2M GW. The handling of these commands is explained below, in Section 5.8.3.

5.8.3 Commands handling

Once the mobile M2M NA’s ContentInstances collection is properly subscribed, the mobile
M2M GW receives the notification for its changes. Given the mapping of the ETSI resources,
those changes (triggered by the creation of new Contentlnstance resources) contain the commands
that control the mobile M2M GW'’s actions. This interaction is illustrated in Figure 5.7.

After parsing the received command as explained in Section 5.7.3, the 3 types of commands

have a specific trigger:

Search Sensors If the command is to search sensors, the mobile M2M GW first decodes if the
mobile M2M NA wants the internal, Bluetooth or both. Then, it triggers the search ac-
cordingly. On this dissertation’s healthcare scenario, only the Bluetooth sensors are being
searched. For each supported sensor found, the mobile M2M GW creates a new Container

resource on the NSCL, with a unique /d with a timestamp as well as the name of the sensor.

5.8 Mobile M2M GW 65

=sd handle_na_commands
MZM GW NSCL
T T
[POST an [gsclURI] {Cantentinstances callection) |
-
| w2000 Comentances colicton __________________ > |
alt [if] action==SEARCH_SENSORS /’ T
T |
search_sensors{) :
POST on [nsclURIImZmiscls/sclldy applicationsi{appld} containes (Container resource with Id "timestamp-sensar_name") - !
-
.:____________________fE"_eiz_oo_[gKlf_CE“_aile'_@%'Ee_] _____________________
loop [for each] Subscription on [gsclURNapp Id ¥subscriptions / |
|
POST to subscriptionURI (Naotify resource) - |
L
Answer. 200 [OK] (Motify resource)
s — e e e e,
L
I J
[else if] action==START_SENSOR |
|
|
start_sensor_readings() |
|
|
loop [for each] GSCL internal send rigger / :
|
marshall_sensor_dataf) :
POST to [nsclURIYm2m/scls/{sclld} applications/{appld} containes/{containerld} contentinstances (Contentinstances resource) o |
-
e Answer: 200 [OK] (Comtentnstance resource)_______ ____________ 4 ‘
e 1o
[else if] action==STOP_SENSOR :
|
stop_sensar_readings() |
|
|

Figure 5.7: Mobile M2M GW handling of commands received from the NSCL

This was done so that the mobile M2M NA has the ability to triage which sensors were found
recently and are still able to be acted upon. For this dissertation’s purpose, the sensor com-
mand is considered valid for up to 2 minutes, which is maximum time for the mobile M2M
NA to receive the Contentlnstance notification. The two minutes were arbitrarily chosen,
just like on the Container life span. For each Subscription to [gwURI]/appld/subscriptions

stored in the mobile M2M GW’s memory, a Notify resource is delivered.

Start Sensor If the command is to start a specific sensor, the mobile M2M GW first decodes
which Container it refers to. It starts the measurements procedures, starting the appropriate
memory buffers and threads related to that sensor. For as long as the sensor stays turned
on, its data keeps being flushed to the NSCL, either by reaching the maximum send gran-
ularity, or by surpassing the maximum buffer size allowed for that sensor, as explained in
Section 4.2.4.1.

Stop Sensor If the command is to stop a specific sensor, after decoding which one, besides stop-
ping the measurements, the memory buffers related to it are cleaned, and its thread is also

stopped.

66 Implementation

5.9 Mobile M2M NA

This section explains how the mobile M2M NA was implemented in Android OS, in Sec-
tion 5.9.1, followed by the communication specifications in Section 5.9.2. Then, how the interface

impacts the information flow is detailed in Section 5.9.3.

5.9.1 Android Implementation

Following the design of the mobile M2M NA discussed in Section 4.2.4.2, the application
required a user interface that was simple to use, but gave the user the necessary information at any
time. Figure 5.8 shows the start-up interface of the application. It was designed to be clear when it
is possible to use the local interface connections, graying out the check-box when it is not installed

in the same smartphone as it’s clear from the comparison between Figures 5.8a and 5.8b.

OFTA@0052 & O <4 @ 00:52

+ |Testing in FEUP? + |Testing in FEUP?

Use Local Connection?

Turn on M2M NA

Turn on M2M NA

(a) Gateway not installed. (b) Gateway installed.

Figure 5.8: Network Application start screen.

After starting the Network Application, the commands interface appears. Initially, the search
button is grayed out, as shown in Figure 5.9a, but after the NA is correctly registered in the NSCL,
or it successfully retrieves the data from the storage, if becomes clickable, as shown in Figure 5.9b.
It is irrelevant to the user if the local interface was chosen, since the Network Application works
exactly the same with either mode, being fully transparent.

After pressing the search button, it disappears, giving place to the list of sensors found. Fig-
ure 5.10a shows this list with the ZEPHYR sensor shown, being found and registered by the
Gateway. In Figure 5.10b the start sensor button is being pressed, triggering the dialog to choose

from the available sensors is shown to the user, as illustrated in Figure 5.10c. In this test only

5.9 Mobile M2M NA 67

O .4 @ 00:52

.l @ 00:47

Searct - 2nsors

Disconnect NA Disconnect NA

Disconnect NA and GW Disconnect NA and GW

(a) Search button disabled (b) Search button pressed.

Figure 5.9: Network Application commands screen.

the Zephyr sensor was found, so it was the only one available on the list, but the implementation
already supports multiple sensors.

=l @ 00:55 ¢ .4 & 0055 ” Tl @ 00:55

Found Sensors Found Sensors:
ZEPHYR ZEPHYR

Start Sensors Start Sensors

Choose Sensor

ZEPHYR

Disconnect NA Disconnect NA

Disconnect NA and GW Disconnect NA and GW

(a) Displaying found sensors. (b) Start Sensor button pressed. (c) Choose sensor dialog.
Figure 5.10: Network Application commands screen with received sensors.
After choosing the sensor from the dialog, the interface changes to the one depicted in Fig-

ure 5.11, which shows some statistics on the running sensor. Right after starting the sensor, when

no information has been received yet, the interface is filled with "Unknown" strings everywhere

68 Implementation

except the sensor name, which is the only thing known at the time, as shown in Figure 5.11a.
Then, after the readings start being received and processed, the interface starts getting updated, as
shown in Figure 5.11b. This was created as a demo interface, to show that the information was
received properly, and to be shown at a live demo to be held in PTIN in the near future, where this
dissertation’s results will be shown.

"o <4l © 01:55
Sensor: ZEPHYR

r Model; HxM™ BT Heart Rate Monito
or Identificator 00:07:80:6E:A9:50

Sensor Readings: Heart-Rate

30 Seconds Average 88 (bpm)

=4l @ 00:56
ZEPHYR

or Model. Unknown

or Identificator: Unknown

Sensor Readings: Unknown
30 Seconds Average: Unknown

1 Minute Average: Unknown 1 Minute Average: 88 (bpm)
Total Reading Average Unknown Total Reading Average 88 (bpm)

Latest Reading Time: Unknown

Location:

Latitude: Unknown

Latest Reading Time: 01:55:34

Location:
Latitude: 41.1783711
Longitude: -8.5952518

Location Accuracy: 30 (m)

Longitude: Unknown

Location Accuracy: Unknown

Stop Sensor
Disconnect NA Disconnect NA and GW

o =

Stop Sensor
Disconnect NA Disconnect NA and GW

A= T o B

(a) No data received yet. (b) After receiving some data.

Figure 5.11: Network Application measurements interface.

5.9.2 Communication

The messages exchanged between the mobile M2M NA and the NSCL, shown in Figure 5.12
are detailed below, with aid of the figure’s numeration.

[1]: The first message sent by the mobile M2M NA is the POST request to create an Application
resource on [nsclURI]/m2m/applications. The Id attributed to mobile M2M NA is, just as
with the mobile M2M GW, derived from the device model and serial number, assuring there

are no two equal IDs.

[2 & 3]: If the mobile M2M NA on the smartphone was previously connected to the NSCL and
the resource already exists, the NSCL returns the HTTP code 405 (Method not Allowed),
specifying that it was a Bad Request. The mobile M2M GW then retrieves the data stored
on the smartphone’s memory (procedure previously explained in Section 5.7.2) allowing the

communication to continue using the original resources, without issues.

[4]: If the mobile M2M NA had never connected to the NSCL before or the new uniquely gener-
ated Id was successfully recognized, the NSCL returns the HTTP code 200 (OK), with the

5.9 Mobile M2M NA 69

sd NA-NSCL ./

M2M HNA NSCL

T
|
|
| [1]: POST to [nsclURI)mZm/applications (Application resource)

[1 >
alt [if] app licationld exists /
e Bl: Answer 405 (Method notallowed) |
[3]: Retriewve datastored in database() T
53 |
__
[Else] | S |
e []: Answer. 200 [OK] (created Application resource) —[,l]
[5]: POST resource to [nsclURI'mZm/applications/{appldy containers ("ACTIONS" Container resource) - |
b= — - ___ [Bl:Answer:200 [OK] (created Containerresource) _ _ ____ _________ H
[F]: [fubscription_check] an [nsclURI} m2m/scls() |
L ; I
|
|
[B]: GET Scls collection resource from [nsclURIFmZmiscls() - |
e e _ PlAnswer200 [OK](Sclsresouree) __________________ H

loop [for each] scl in Scls collection /

[10]: [check_subscriptions] on [nsclURINmZ2miscls!{sclldf applications/subs criptions()

[11]: GET Applications collection resource from [nsclURImZmisclsi{sclldy applications()

>
e - - _ _[1ZI Answer 200 [OK] (Applications resouree) _ ________________ H

loop [for each] Application on Applications collection /

|
|
|
[13]: [check_subscription] an [nsclURImZ2misclsi{sclldfapplications/{appld} containersisubscriptions() :
|
|
T
|
|
|
'

; [14]: [handle_interface_cormmands]()

Figure 5.12: Sequence diagram of the communication held between the mobile M2M NA and the
NSCL.

complete Application resource in the message body. The following messages are exchanged

only if the resources have not yet been created in the NSCL, as show in Figure 5.12.

[5]: The mobile M2M NA then registers its ACTIONS Container resource on the NSCL Contain-
ers collection, by sending a POST message to [nsclURI]/applications/[Id]/containers, with

the attributes needed to successfully create the resource in the NSCL.

[6]: The NSCL creates the Container resource locally, and generates its specific attributes, before
returning the HTTP code 200 (OK) with the created resource marshalled in the message
body.

[7]: Then, the mobile M2M NA executes a Subscription Check procedure, checking if the current
mobile M2M NA (with the same URI) has already subscribed to the [nsclURI]/m2m/scls
collection, which holds the mobile M2M GW'’s Scl resources.

[8 & 9]: The mobile M2M NA then retrieves the Scls collection by sending a GET request to

[nsclURI]}/m2m/scls. Communications posterior to this message yield the same behavior in

70

Implementation

the mobile M2M NA, since it now has the needed resources active in memory. The NSCL
returns the HTTP code 200 (OK) with Scls collection in the body, which contains the Id and

URI of every stored Scl resource.

[10, 11 & 12]: The mobile M2M NA then executes the Subscription Check procedure on the

[13]:

Applications collection on of every Scl retrieved. It also performs a retrieve request by per-
forming a GET call to [nsclURI}/m2m/scls/sclld/applications, to retrieve the Applications
collection and make sure its containers are subscribed. The NSCL returns the HTTP code

200 (OK) with the Applications collection in the message body.

The mobile M2M NA executes the Subscription Check procedure on
[nsclURI])/m2m/scls/sclld/applications/appld/containers/subscriptions for every Application

present in the retrieved Applications collection.

[14]: The mobile M2M NA then awaits for the user input, processed from the graphical user

interface, and explained below, in Section 5.9.3

5.9.3 Interface Commands

The mobile M2M NA user interface flow, explained in Section 5.9.1, is complemented in this

section with the details behind its logic. Once the ACTIONS Container is properly registered,

the mobile M2M NA awaits the user input, to execute the commands. The actionable commands

are shown in Figure 5.13 and explained below. The user ultimately has three possible courses of

actions, even though only one is active at each point in time. Each one produces the following

effect on the communication:

Search Sensors When the user clicks the search sensors button, an object of the ActionSearch-

Sensors (explained in Section 5.7.3) is created, requiring only the search of external sensors
(as the only sensor integrated is external). This object is then marshalled into a ContentIn-
stance resource and registered in the NSCL on the "Actions" Container previously created.
After the mobile M2M GW's internal procedures to search sensors, it registers a Container
resource, which is delivered to the mobile M2M NA in the body of a notification, triggered
by the registration of the ContentInstance. The mobile M2M NA then uses the found sen-
sors which are still valid (found less than 2 minutes ago) and shows them in the Commands

interface.

Start Sensor Referring to Figure 5.10, after the user clicks the start sensor button he has the abil-

ity to choose an available sensor. After this choice, a ActionStartSensor class is created, and
the sensor chosen is set as the attribute that signals the Container resource to start. Then
this object is marshalled into a Contentlnstance resource and, once again, registered under
this mobile M2M NA’s "Actions" Container. In addition to the delivery of the specific com-
mand, the mobile M2M NA also uses this opportunity to subscribe to the ContentInstances

collection of the Container that was triggered to start. This happens so that the mobile

5.9 Mobile M2M NA

71

sd handle_interface_commands /

% M2M NA NsCL

Search Sensams() !

Generate SearchSensors Contentlnstancef)

POST to [nsclURImZmiapplications/{nald} containes/{actionsContainer} contentinstances {Contentlnstance resourcel
-

Answer: 200 [OK] (Contentlnstance resource)

e e N A

MNatification POST to [naclURI] (Container resource with id "timestamp-sensar_name") !

u> ________________ A ﬂe;aogmt_@nien_ﬂzst_an_ce_re_so_uge_l________________>u

Generate StartSensor Contentinstance()

POST to [nsclURI}mZmiapplications/{nald} containers/{actionsC iner} contentl es (C | e resourcael
-

Answer: 200 [OK] (Contentlnstance resource)

L e L
POST to - |
[nsclURI)mZm/applications/{nald}c i {{actionsContainerf c Instances/subscriptions (Subscription resourcerL.J
Change to Interface to Show Measurements()
1
loop [while] Active Sensor is not stopped /
: . Motification POST to [naclURI] {Contentinstance resource)

Treat information to show on screen()

|
Stop Sensor(active sensgrl |
-

- Generate StopSensor Contentinstance()

|
|
|
|
|
|
|
-t L
_____________________én_sw_egz_mue@______________________>H
|
|
|
|
|
|
|
|
|
|

POST to [nsclURI)mZmiapplications/{nald} containes/{actionsContainerf contentinstances {Contentlnstances resourcel
-

e Answer200fOKN)_ _______ _____________

Figure 5.13: Sequence diagram of the mobile M2M NA commands.

M2M NA does not receive any sensor information ahead of time, before it was requested

by its own command. The last procedure to do in this situation, is to change the active user

interface to show the measurements received. The mobile M2M NA then awaits for the

Notification POST messages with the sensor information, for further treatment to be shown

in the interface. This process is repeated until the sensor is stopped or the mobile M2M GW
and/or mobile M2M NA is shut down.

Stop Sensor After the user presses the stop sensor button, the active Container’s name is used to

create the ActionStopSensor object. This is then marshalled into a ContentInstance resource
and registered into the "Actions" Container. The mobile M2M NA’s GUI re-enables the

search sensor button to allow the user to re-search for sensors and possibly start a different

one.

72 Implementation

5.10 Local Interface

The local interface concept, explained in Section ??, aims to reduce the amount of traffic used
when the mobile M2M GW is in the same smartphone as the mobile M2M NA, and this Section
will detail this implementation, with aid of Figure 5.14. Given the presence of HTTP web-servers
on both applications, the obvious way to communicate between them was to take advantage of
that feature, using localhost as a fake NSCL URI. This communication is currently unencrypted
since the web-servers are not working over TLS yet, for the reasons mentioned in Section 5.4. The
local interface was built as shown in Figure 5.14, and its communication interactions are detailed

below:

sd local_communication

M2 NA MZM GW

der

=

Search Sensors() !

Generate Search Sensoms Contentlnstance()

POST to http:lllocalhost:8080/m2m/localAPl contentinstance (Contentlnstance resourca)
-
Answer: 200 [OK]()

POST to http:i/localhost:0000/ m2m/localAPlnewContainer - | Search Sensons()
[(Container resource with |d "timestamp-sensar_name") jJ

Hf' _______________ Amswerzoofony |

Start Sensorjchosen sensar] |

Generate StartSensor Conteninstance forspecific Containen)

POST to http:lllocalhost:8080/m2m/localAPl contentinstance (Contentlnstance resourca)

-l
- Amwerzooom) < Startsensor readings()

Change to Interface Show Measurements()

L
loop [while] Active Sensor is not stopped /

|
|
|
L
|

T |

: Marshall sensor dataf)

| BOST ta hitp://localhost:9090/m2milocalAPlicontentinstance (Contentlnstance resource)

-t
Treat information to show an screen()

_______________ Answer200JOKID _ __ ___________ 4|
|
|
|
|
|
|
|

|
|
|
L:_|
|
:
|
|
|
|
|
|
|
|
LI_l
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|

Stop Sensoractive sensogl |
-

Generate Stop Sensor Contentinstance()
FOST to http:llocalhost:8080/mZm/localAPl contentinstance (Contentinstance resourca)

-
Al 1200 [0
| o _ Amwer200[0K) ______________
Stop sensor
readings()

alt [if] connection exists /

|

|

|

|

|

|

| Register local data on
l NSCL{)
|

|

|

|

|

|

[Else]

Store to file()

1

Figure 5.14: Sequence diagram of the communication between the mobile M2M GW and NA
using the local interface.

5.10 Local Interface 73

Search Sensors When the user presses the search sensors button on the mobile M2M NA, it
builds the ActionSearchSensors Contentlnstance just as if it was going to communicate with
the NSCL. But instead it sends a POST message to
http://localhost:[gwPort]/m2m/local API/contentInstance. The mobile M2M GW returns the
HTTP code 200 (OK) and starts the search sensors procedure. Then just as it would com-
municate with the NSCL, it registers a Container resource for each sensor found, with the
same timestamp in the name as normally, on:
http://localhost:[naPort]/m2m/localAPI/newContainer. The mobile M2M NA returns the
HTTP code 200 (OK) for each Container resource received, completing the cycle of inter-

nally searching for sensors without recurring to the NSCL.

Start Sensor When the user clicks the start sensor button in the mobile M2M NA’s command
interface, the same ContentInstance with the marshalled ActionStartSensor is created, and
registered on http://localhost:[gwPort]/m2m/local API/contentInstance. The mobile M2M
GW starts the procedures to start the measurements from that sensor, and returns the HTTP
code 200 (OK) afterward. In the localAPI the mobile M2M NA does not need to subscribe
to the Contentlnstances collection since the delivery of the command acts as subscription.
The mobile M2M NA then changes its interface to show the measurements, just as it would
normally. The delivery of sensor data is executed on:
http://localhost:[naPort]/m2m/local API/contentInstance with the sensor date marshalled into
a Contentlnstance resource. The mobile M2M NA then treats the information to show on
screen and answers the HTTP code 200 (OK) back to the mobile M2M GW. Once again,

the sensor stays on until it is explicitly stopped.

Stop Sensor When the user clicks the stop sensor button, the mobile M2M NA registers a Con-
tentInstance containing the marshalled ActionStopSensor object on:
http://localhost:[gwPort]/m2m/local APl/contentInstance. Besides triggering the stoppage
of sensor readings, this command over the local interface also triggers the delivery of all
the sensor related resources registered by the mobile M2M GW (Container and ContentIn-
stance resources) to be delivered to the NSCL, so that no important data is lost when it is
used. If there is no Internet connection at that time, a local interface storage file (detailed
below) is used to store that information, which will be delivered the next time the mobile
M2M GW connects to the NSCL and erased from memory then.

Local Interface Storage:

The local interface storage holds the three attributes to ensure that the information can be prop-
erly delivered to the NSCL once the mobile M2M GW restarts. It stores the Container resource
created, a String holding the target URI of said Container, and an array of Contentlnstance re-
sources. Since the ContentInstances belong to the Container, only one URI is needed, because the
URI to register these resources to is generated by adding "/containerld/contentInstances” to the
end of it. Storing this data serialized guarantees that the important healthcare information always
reaches the NSCL.

74

Implementation

Chapter 6

Results

This chapter will present the results of the implementation presented in Chapter 5. To show

the functionalities of the solution, Section 6.1 will detail the testing procedures executed, followed

by the traffic measurements done to evaluate the performance of the solution with and without the

local interface, in Section 6.2. Then, these results will be discussed in Section 6.2.3.

6.1

Proof of Concept

To prove that the implementation is functional, a few tests were executed and its results were

gathered. These tests were executed on a LG Nexus 5 (codename hammerhead, as seen below

in the logs), running Android version 4.4.4 on the custom ROM Paranoid Android, version 4.42.

To execute the tests, a guide was created, to assure that the same procedure was followed when

communicating through the NSCL or through the local interface. The guide is detailed below:

1.

Install the mobile M2M GW and mobile M2M NA on an Android smartphone running at
least version 4.2 of the OS.

Wear the Zephyr heart-rate monitor, and assure the smartphone has a Bluetooth pair with

the device.

. Turn on the mobile M2M NA. Since the test is done within FEUP network, the "Testing in

FEUP" option is turned on, so that the mobile applications use the static IP address that has

the configured routes. Choose to use (or not) the local interface.

Press the "Start M2M NA" button, which also starts the mobile M2M GW.

. Await for the "Search Sensors" button to become active, and press it, to send the search

sensors command.

. Await for the found sensors list to arrive at the mobile M2M NA. Press start sensor and

choose the Zephyr, which is the only available sensor. Choosing the sensor starts its mea-
surements, which are then shown in a separate GUI. If using the local interface, during the
sensor data exchange, turn the Wi-Fi off and back on, to prove that it works even without an

active Internet connection.

75

76 Results

7. Press the stop sensor button, stopping the measurements by delivering that command to the
mobile M2M GW. After stopping the measurements, turn off both applications by pressing
the button Disconnect NA and GW.

This testing procedure is executed twice, first communicating normally through the NSCL, and
then using the local interface. The full length of the logs of the test executed through the NSCL
are presented in Appendices B.1 and C.1, and for the test executed through the local interface
in Appendices B.2 and C.2. To demonstrate that the communication is working, let us look at
the registration of sensor data' (using both connections) and to the delivery of the stop sensor

command:

 Sensor data through the NSCL:

— REGISTRATION ON THE MOBILE M2M GW —

(...)

07—-14 02:47:25.578 8276 —8305/pt. ptinovacao .mtom.gw D/MemoryManager: Flushing
ZEPHYR.

07—14 02:47:25.628 8276 —8309/pt . ptinovacao .mtom.gw D/CreateResources:
Registering contentInstance to /m2m/scls/Demohammerhead—04506dfa25231287—
TesteFEUP/ applications/HealthSensors/containers/1405302431976 —ZEPHYR/
contentlnstances

07—14 02:47:25.728 8276 —8333/pt.ptinovacao .mtom.gw D/CreateResources: Content
Instance successfully registered.

...

— NOTIFICATION ON THE MOBILE M2M NA —

(...)

07—14 02:47:25.798 8058 —8389/pt . ptinovacao .mtom.na D/ TreatSensorData:
Measurement Updated. Array Size: 7

C...)

This example shows that almost immediately after the mobile M2M GW receives the answer
that the Contentlnstance was properly registered, the mobile M2M NA is already updating
its User Interface with that information, after the parsing of the Contentlnstances collec-
tion notification (the log signaling the receival of this collection was ommited, since the

measurement updates are sufficient as they are only triggered when that notification exists).
 Sensor data through the local interface:

— REGISTRATION ON THE MOBILE M2M GW —

..

07—14 02:51:36.298 10585—10615/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing
ZEPHYR.

07—14 02:51:36.348 10585—10612/pt.ptinovacao.mtom.gw D/ProtocolManager: No
Internet Connection, but local interface connected. Sending data.

07—14 02:51:36.348 10585—10614/pt.ptinovacao.mtom.gw D/CreateResources:
Registering contentInstance to /m2m/localAPI/contentlnstance/1405302658817 —
ZEPHYR .

..

07—14 02:51:36.478 10585—10641/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

C...)

—— NOTIFICATION ON THE MOBILE M2M NA —

(...)

07—14 02:51:36.388 10482—-10680/pt.ptinovacao.mtom.na D/HandleRequests: Local
connection: Contentlnstance of Container: 1405302658817 —ZEPHYR

IThe exchange of sensor data is only possible after the successful delivery of the search sensors and start sensor
commands. For the full detail of the communications, see Appendices B and C

6.1 Proof of Concept 77

07—14 02:51:36.428 10482—-10680/pt.ptinovacao.mtom.na D/TreatSensorData:
Measurement Updated. Array Size: 25
(...)

This example shows that using the local interface, even when there is no Internet connec-
tion, the data is still successfully exchanged between the applications. Being an internal
connection, it naturally was almost instant, and the message of a successful registration was
already after the mobile M2M NA’s GUI was updated.

* Stop Sensor through the NSCL:

—— DELIVERY OF THE COMMAND BY THE MOBILE M2M NA —

(...)

07—14 02:47:44.688 8058 —8310/pt. ptinovacao .mtom.na D/CreateResources:
Registering contentInstance to /m2m/applications/HealthConsumerNA—hammerhead
—04506dfa25231287—-TesteFEUP/containers /ACTIONS/ contentlnstances

(...)

— RECEIVAL OF THE COMMAND BY THE MOBILE M2M GW —

(...)

07—14 02:47:44.858 8276 —8334/pt. ptinovacao .mtom.gw V/HandleRequests: Received
ContentInstances collection notification.

07—14 02:47:44.878 8276 —8334/pt . ptinovacao .mtom.gw V/HandleRequests: Valid
Container to Stop command.
Container: 1405302431976 —ZEPHYR

07—14 02:47:44.878 8276 —-8276/pt.ptinovacao .mtom.gw D/ZephyrHandler: Stopping
Zephyr ...
(...)

* Stop Sensor through the local interface:

— DELIVERY OF THE COMMAND BY THE MOBILE M2M NA —

..

07—14 02:51:54.178 10482—10601/pt.ptinovacao.mtom.na D/CreateResources:
Registering contentInstance to /m2m/localAPI/contentlnstance

07—-14 02:51:54.628 10482—-10680/pt.ptinovacao.mtom.na V/HandleRequests: Received
Containers collection notification.

(...)

07—14 02:51:54.688 10482—10601/pt.ptinovacao.mtom.na I/SCL: Container
1405302658817 —ZEPHYR is now active.

(...)

— RECEIVAL OF THE COMMAND BY THE MOBILE M2M GW —

(...)

07—14 02:51:54.218 10585—10642/pt.ptinovacao.mtom.gw D/ HandleRequests: Local
connection. Received Command.

07—14 02:51:54.218 10585—-10642/pt.ptinovacao.mtom.gw V/HandleRequests: Valid
Container to Stop command.

Container: 1405302658817 —ZEPHYR

07—14 02:51:54.218 10585—10585/pt.ptinovacao.mtom.gw D/ZephyrHandler: Stopping
Zephyr ...

07—14 02:51:54.228 10585—10614/pt.ptinovacao.mtom.gw I/CreateResources:
Registering container: 1405302658817 —ZEPHYR to: /m2m/scls/hammerhead —04506
dfa25231287 —TesteFEUP/ applications/HealthSensors/containers

07—14 02:51:54.228 10585—10614/pt.ptinovacao.mtom.gw D/CreateResources:
Registering contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers/1405302658817 —ZEPHYR/ contentInstances

07—14 02:51:54.228 10585—10614/pt.ptinovacao.mtom.gw D/CreateResources:
Registering contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers/1405302658817 —ZEPHYR/ contentInstances

..

07—14 02:51:54.718 10585—10641/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 02:51:54.718 10585—10614/pt.ptinovacao.mtom.gw I/GSCL: Local Container
1405302658817 —ZEPHYR created successfully.

78

07—14 02:51:54.858 10585—-10641/pt.ptinovacao
Instance successfully registered.

..

Results

.mtom.gw D/CreateResources: Content

This excerpt of the logs, show that the delivery of the stop sensor command triggered the

registration of the data created locally, and that the notification related to this registration

was immediately received by the mobile M2M NA.

To evaluate the ability of the mobile M2M GW to properly use the designed databases for

mobile scenarios where the connection drops, three more specific tests were designed:

1. When communicating through the NSCL, turn off the Wi-Fi connection while the sensor

is actively sending data, checking if that data is properly stored. Then, turn the connection

back on and check if the data was properly delivered.

When communicating through the NSCL, turn off the Wi-Fi connection while the sensor is

actively sending data, but follow the connection drop by turning off both application. Then,

turn the connectivity and the mobile M2M GW back on, in order to evaluate if the data is

properly registered in the NSCL.

When using the local interface with the sensor running, shut down both application, causing

the data sent locally to be stored in the mobile M2M GW'’s database. Then, turn the con-

nectivity and the mobile M2M GW application back on, in order to evaluate if the data is

properly registered in the NSCL.

Tests 1. and 2. were executed sequentially in a "lost connectivity" test, and their results are shown

in Appendices B.3 and C.3, while the results for the local interface connectivity test are presented

in Appendices B.4 and C.4. To demonstrate that these

at the logs for each case:

e Scenario 1.:

— CONNECTIVITY LOST, ON THE MOBILE M2M GW —

..

07—14 03:57:19.428 32257—-32257/pt.ptinovacao
connectivity change

07—14 03:57:19.438 32257—-32257/pt.ptinovacao
network connectivity

07—14 03:57:19.438 32257—-32257/pt.ptinovacao

connection. Resetting

)

4 03:57:23.378

Internet

¢...)

(...
07—-1 32257 —-32276/pt . ptinovacao
Connection: Can’t send data.

mobile scenarios are working, let us look

.mtom.gw W/ ConnectionListener: Network
.mtom.gw D/ConnectionChecker: No

.mtom.gw D/ProtocolManager: No

stored IPV4 address.

.mtom.gw I/ProtocolManager: No

Saving to Database.

— CONNECTIVITY REGAINED, ON THE MOBILE MM GW —

..

—1

07—14 03:57:44.698 32257—-32257/pt.ptinovacao.mtom.gw W/ ConnectionListener: Network
connectivity change

07—14 03:57:44.708 32257—-32257/pt.ptinovacao.mtom.gw I/ConnectionChecker: Network
WIFI connected

07—14 03:57:44.708 32257—-32276/pt.ptinovacao.mtom.gw I/ProtocolManager: Connection
returned , reading stored data... Size: 2386

07—14 03:57:44.708 32257—-32276/pt.ptinovacao.mtom.gw V/ProtocolManager: Reached

end of file.

6.1 Proof of Concept 79

07—14 03:57:44.718 32257—-32276/pt.ptinovacao.mtom.gw V/ProtocolManager: File
successfully erased.

07—14 03:57:44.718 32257—-32279/pt.ptinovacao.mtom.gw D/CreateResources:
Registering contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers/1405306620999 —ZEPHYR/ contentInstances

07—14 03:57:44.718 32257—-32279/pt.ptinovacao.mtom.gw D/CreateResources:
Registering contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers/1405306620999 —ZEPHYR/ contentInstances

07—14 03:57:44.828 32257—-32348/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 03:57:44.958 32257—-32348/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC
freed 308K, 20% free 3469K/4328K, paused 10ms, total 10ms

07—14 03:57:44.958 32257—-32348/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

...

— CONNECTIVITY REGAINED, ON THE MOBILE M2M NA —

..

07—14 03:57:44.688 32041—-32041/pt.ptinovacao.mtom.na W/ ConnectionListener: Network
connectivity change

07—14 03:57:44.698 32041—-32041/pt.ptinovacao.mtom.na I/ConnectionChecker: Network
WIFI connected

07—14 03:57:44.698 32041—-32272/pt.ptinovacao.mtom.na D/InternetManager :NA_SCL
already running.

07—14 03:57:44.908 32041—32449/pt.ptinovacao.mtom.na D/TreatSensorData:
Measurement Updated. Array Size: 25

07—14 03:57:45.118 32041—-32449/pt.ptinovacao.mtom.na D/TreatSensorData:
Measurement Updated. Array Size: 34

07—14 03:57:53.558 32041—-32449/pt.ptinovacao.mtom.na D/TreatSensorData:
Measurement Updated. Array Size: 44

(...)

These logs show that when the connectivity is lost, the mobile M2M GW stores the sensor
information on the local database, and that when it is regained, the data is properly retrieved
and registered on the NSCL.

e Scenario 2.:

— MOBILE M2M GW LOSING CONNECTIVITY AND BEING TURNED OFF —

..

07—14 03:57:59.078 32257—-32257/pt.ptinovacao.mtom.gw W/ ConnectionListener: Network
connectivity change

07—14 03:57:59.088 32257—-32257/pt.ptinovacao.mtom.gw D/ConnectionChecker: No
network connectivity

07—14 03:57:59.088 32257—-32257/pt.ptinovacao.mtom.gw D/ProtocolManager: No
connection. Resetting stored IPV4 address.

07—14 03:58:03.368 32257—-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing
ZEPHYR.

07—14 03:58:03.398 32257—-32276/pt.ptinovacao.mtom.gw I/ProtocolManager: No
Internet Connection: Can’t send data. Saving to Database.

C...)
07—-14 03:58:13.378 32257-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing
ZEPHYR.

07—14 03:58:13.458 32257—-32276/pt.ptinovacao.mtom.gw I/ProtocolManager: No
Internet Connection: Can’t send data. Saving to Database.

(...)

07—14 03:58:14.698 32257—-32257/pt.ptinovacao.mtom.gw D/MainService: M2M Gateway
Stopping

(...)

— MOBILE M2M GW RESTART AFTER LOSING CONNECTIVITY —

..

07—14 03:59:12.938 1155—-1890/pt. ptinovacao .mtom.gw I/ProtocolManager: Reading
stored data... Size: 2395

07—14 03:59:12.988 1155—-1890/pt. ptinovacao .mtom.gw V/ProtocolManager: Reached

end of file.

80

Results
07—-14 03:59:12.998 1155—-1890/pt . ptinovacao .mtom.gw V/ProtocolManager: File
successfully erased.
..
07—-14 03:59:13.298 1155—-1890/pt. ptinovacao .mtom.gw D/ CreateResources:

Registering contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers/1405306620999 —ZEPHYR/ contentlnstances
07—14 03:59:13.308 1155—-1890/pt. ptinovacao .mtom.gw D/CreateResources:
Registering contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers/1405306620999 —ZEPHYR/ contentlnstances

..

07—14 03:59:14.178 1155—-2126/pt.ptinovacao .mtom.gw D/CreateResources: Content
Instance successfully registered.

..

07—14 03:59:14.378 1155—-2126/pt.ptinovacao .mtom.gw D/CreateResources: Content
Instance successfully registered.

(...)

These logs show that the mobile M2M GW properly stores the data that is not able to deliver
after connectivity is lost, and that when it is restarted, and has proper connectivity, that data

is read and successfully delivered to the NSCL.

Scenario 3.:

—— MOBILE M2M GW BEING DISCONNECTED WITH LOCAL API AND RUNNING SENSOR ——

(...)

07—-14 03:34:38.218 25740—-25769/pt.ptinovacao .mtom.gw D/MemoryManager: Flushing
ZEPHYR.

07—14 03:34:38.238 25740—25773/pt.ptinovacao.mtom.gw D/CreateResources:
Registering contentInstance to /m2m/localAPI/contentInstance/1405305242955—
ZEPHYR .

07—14 03:34:38.348 25740—-25797/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

(..

07—14 03:34:42.448 25740—25740/pt.ptinovacao.mtom.gw D/MainService: M2M Gateway
Stopping

(..

07—14 03:34:42.448 25740-25740/pt.ptinovacao .mtom.gw D/GSCL: GSCL Stopping

07—14 03:34:42.528 25740—-25740/pt.ptinovacao.mtom.gw D/GSCL: Successfully saved
state to storage.

07—14 03:34:42.578 25740—25740/pt.ptinovacao.mtom.gw D/GSCL: Successfully saved

local interface data to storage.

..

— MOBILE M2M GW RESTART AFTER DISCONNECTION —

07—-14 03:36:20.948 26363 —-26763/pt.ptinovacao.mtom.gw D/GSCL: Memory database
successfully read!

07—14 03:36:21.008 26363—-26763/pt.ptinovacao.mtom.gw V/GSCL: Local Interface file
successfully erased.

..

07—14 03:36:21.358 26363—-26763/pt.ptinovacao.mtom.gw I/CreateResources:
Registering container: 1405305242955—-Z7ZEPHYR to: /m2m/scls/hammerhead—04506
dfa25231287 —TesteFEUP/ applications/HealthSensors/containers

07—14 03:36:21.528 26363 —-26763/pt.ptinovacao.mtom.gw D/CreateResources:
Registering contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers/1405305242955 —ZEPHYR/ contentInstances

07—14 03:36:21.548 26363 —-26763/pt.ptinovacao.mtom.gw D/CreateResources:
Registering contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers/1405305242955 —ZEPHYR/ contentInstances

(...)

07—14 03:36:22.468 26363 —-26829/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 03:36:22.558 26363 —-26763/pt.ptinovacao.mtom.gw I/GSCL: Local Container
1405305242955 —-ZEPHYR created successfully.

07—14 03:36:22.668 26363 —-26829/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

(...)

6.2 Traffic Measurements 81

These logs show that when the local interface is being used, and the sensor is not properly
stopped before the application is turned off, the data is properly stored in the database. After
the application is restarted, that data is then read and successfully registered, assuring that

no data is lost when using the local interface.

The size and performance parameters of the applications is detailed in Table 6.1. The applica-
tion size refers to the memory occupied by the application’s installation on the smartphone, and the
maximum and average memory used refer to the RAM memory. This RAM memory information
was gathered from the logs in Appendix B and C, since the Java programming calls the garbage
collector (GC) when memory is not being used, showing the current memory in use as well as the

maximum memory up to that time.

Type Mobile M2M GW Mobile M2M NA
Application Size 4350Kb 3600Kb
Maximum Memory Used 4328Kb 8872Kb
Average Memory Used 3424Kb 4846Kb

Table 6.1: Mobile M2M applications footprint.

6.2 Traffic Measurements

To test the bandwidth used by both applications, when communicating through the NSCL
or through the local interface, some traffic measurements were executed. Given the complexity
of executing battery tests, associated with the shortage of time to do them, a direct evaluation
was not possible. However, given the fact that these are mobile applications, the sheer use of
the 3G communications uses a great deal of power, as shown in Figure 6.1°. Even though the
tests executed to test the concept were done through Wi-Fi, in real scenarios, 3G/4G data would
possibly play a bigger role in mobile M2M scenarios, making traffic savings significant in terms
of battery.

To perform this measurements, a traffic monitor Android applications was first tried. However,
all of them rely on Android’s TrafficStats API, which counts localhost as regular network traffic,
not fitting the requirements for this dissertation’s measurements. A Wireshark [84] examination
was also attempted, but since the communication is encrypted end-to-end, there was no way to
distinguish which data was being sent by which application. This led to the programmatically
creation of counters on the HTTP client and server classes on both the mobile M2M GW and
the mobile M2M NA, differentiating when traffic is inbound or outbound, as well as internal and

external. These counters were done by counting the characters of the outgoing and incoming

2 Abbreviations:
3G = Third Generation;
GSM = Groupe Special Mobile;
Wi-Fi + SA = Wi-Fi with scan and transfer.

82 Results

=36

~-G5M
WiFi

“H=Wifi + SA

Energy (Joules)

1 10 100 1000
Data size in KB

Figure 6.1: Battery test studies. From [9].

HTTP traffic, as shown below. These cannot account for the headers and information created by
the Apache HTTP library used, but a very close estimate is acquired.

— POST SIZE —

postSize += post.getEntity ().getContentLength();

postSize += post.getRequestLine().toString ().length();

postSize += post.getEntity ().getContentType ().toString ().length();

— HEADERS SIZE —
for(int i = 0; i<headArray.length;i++){
headerSize += (long) headArray[i].toString ().getBytes().length;
}
Then, there were two important tests to be performed. Firstly, there was the need to evaluate
the amount of traffic generated during the resource creation, Section 6.2.1 addresses this case,
as well as evaluate the performance of the local interface in the amount of data saved, which is

detailed in Section 6.2.2.

6.2.1 Resource Registration

During the implementation, the increase in traffic, when new resources were created, was ev-
ident. Accordingly, a study where the traffic was measured when simulating several smartphones
connecting was important. To do so, the unique sclld of the mobile M2M Gateway, as well as the
appld of the mobile M2M NA, were purposefully altered. This aimed to simulate the first time
each device connects to the NSCL, creating its resources, and subscribing the existing resources if
needed, as explained in the Subscription Check procedure.

The test executed consisted simply of turning both applications on without the local interface
flag, so that they would connect to the NSCL, and perform their registration and subscriptions as
described in this chapter. It was ran several times, to calculate the traffic increase caused by each
new resource. The average increase measurements were calculated according to the following

formulas>:

3 Abbreviations:
Out = Outbound;
mX = Measurement number;
In = Inbound.

6.2 Traffic Measurements

Outbound_Average_6 = (

83

Out_m4—Out_m3)+(Out_m3—Out_m?2)+(Out_m2—Out_m1)

In_m4—In_m3)+(In_m3—In_m2)+(In_m2—In_ml)

Inbound_Average_6 = (

3

The results were then gathered into Table 6.2. All the measurements are displayed in bytes.

Measurement Traffic Type Mobile M2M GW Mobile M2M NA H Total
Outbound 10233 7556

! Inbound 12516 14774 45079
Outbound 10908 8301

2 Inbound 13424 16555 49188
Outbound 11579 9046

3 Inbound 14328 18336 53289
Outbound 12258 9791

4 Inbound 15240 20117 57406
Outbound Average A 675 745

Inbound Average A 908 1781 A=4109

Total A 1583 2526

Table 6.2: Resource Registration Traffic

6.2.2 Local Interface vs NSCL

To compare the traffic performance of both applications running normally through the NSCL

and through the local interface, a timer was programmatically added to assure that both would run

for exactly the same time, chosen arbitrarily to be 10 minutes. The timer was set to start when

the start sensor button was pressed, and both applications had already been registered, so that

they would get their resources from the database. To execute these tests, the Subscription Check

procedures were also turned off, so that the measurements were exclusively from the sensor data.

The results yielded are present in Table 6.3%. All the measurements displayed are in bytes.

Connection Traffic Tvpe Mobile M2M GW | Mobile M2M NA Total
M Int Ext Int Ext Int Ext
Inbound 0 110746 0 277168
NSCL Outbound 0 95522 0 260291 0 743727
Inbound 87541 4552 93057 4553
Local Interface Outbound | 91181 431 23364 606 355143 10192

Table 6.3: Network traffic comparison table

4 Abbreviations:
Int = Internal traffic, i.e. localhost;
Ext = External traffic, i.e. through NSCL.

84 Results

6.2.3 Discussion

Starting with the analysis of the results from Table 6.2, it becomes clear that there is a signifi-
cant increase in traffic due to the Check Subscription procedure, which performs retrieve requests
for each resource found, in order to check for the subscription. The average outbound increase rate
for the mobile M2M GW is 675 bytes, while the mobile M2M NA has a 745 bytes increase. The
small discrepancy is due to the different resource sizes, since Sc/’s have more attributes. As for
incoming traffic, the mobile M2M GW average delta was 908 bytes, while the mobile M2M NA'’s
was 1781 bytes. This greater discrepancy is double on the NA, because the NA has to retrieve dou-
ble the resources as it needs to check the /m2m/scls/[sclld]/applications/subscriptions as well as
the /m2m/scls/[sclld]/applications/appld/containers/subscriptions collections while the GW only
has to check the /m2m/applications/subscriptions collection. Still from column 7otal of Table 6.2
we can check the significant amount of data exchanged during this process when adding both ap-
plication’s traffic. The total data exchanged increases 4109 bytes with each new registration on the
NSCL, which is quite significant in the constrained scenario of this dissertation. The local storage
tackles this issue, by storing the created resources and using them at the next connection, saving a

great deal of traffic.

Then, Table 6.3 shows the comparison of traffic between the communication that flows through
the NSCL, and the communication that flows through the local interface. First thing to notice is
that in both cases, the inbound and outbound flows are almost the same, with slight advantage to
the inbound, and this occurs because the ETSI standard requires the objects to flow back and forth,
even when there is no change to them, and because of some requests executed by the applications.
The big difference here is that for an outbound data of 95522 bytes from the mobile M2M GW,
the mobile M2M NA has a 277168 bytes inbound register, which is almost three times more. This
happens because the packet size of the ContentInstances collection, adding headers and actual
payload, is roughly 3 times the size of the Contentinstance packet sent by the mobile M2M GW.
This was proven by further testing, where the average HTTP Contentlnstance packet containing
the Zephyr data leaving the mobile M2M GW was /1500 bytes, and the notification HTTP packet
containing the Contentlnstances collection had ~4200 bytes arriving at the mobile M2M NA,
hence the discrepancy. The sum of all external traffic communicating through the NSCL is then
~743Kb, which is very high for a mobile scenario on constrained devices. Comparing these with
the local interface traffic measurements, the first thing to notice is that the external communication
is nearly non-existent, caused only by the Bootstrap procedures and the initial attempt to register
the unique resources, which then leads to the retrieval from the database. Then, since the commu-
nication is mostly executed locally, the outbound traffic of the mobile M2M GW should be almost
exactly the same as the inbound traffic from the mobile M2M NA. However, there is a discrepancy
between the outbound and inbound measurements, which occurs due to the fact that the Apache
HTTP class adds some HTTP standard headers when executing the request, that are not reachable
programmatically from the sender side, thus not being counted in this study. Examining Table 6.3

it is clear that using the local interface for the communication saves a significant amount of exter-

6.2 Traffic Measurements 85

nal traffic (=355Kb using the NSCL VS ~10Kb using the local interface), when ran for the same
amount of time than the communication relying on the NSCL. According to these measurements,
the external traffic generated using the local interface is ~1,4% of the generated by the normal
communications, being a positive result for this dissertation’s study.

Even so, the local interface generates significantly less traffic than the communications through
the NSCL, and considering that most of them are local (=355Kb) as opposed to external (=10Kb).
The amount of traffic generated using the local interface is then ~1,4% of the generated by the

normal communications, being a positive result for this dissertation’s study.

6.2.3.1 Evaluation Discussion

According to the evaluation metrics proposed in Section 4.3, Table 6.4 summarizes which
ones could or could not be fulfilled. The mobile M2M NA only partially implements the com-
mands, as there was no time to develop a GUI that the user could use to change the active sensors

configurations, that was already implemented in the mobile M2M GW.

Target Priority What to Evaluate Status
Application
Basic Use Case
Both High Communicate securely with the NSCL using at Completed
least one supported protocol
Both High Register itself and its resources in the NSCL Completed
Both High Support a web-server that is able to receive
subscriptions and messages.
Mobile High Support at least one medical sensor Completed
M2M GW
Mobile High Have the ability to receive and process Completed
M2M GW commands according to the Use Case scenario
Mobile High Have the ability to send commands to the Partially
M2M NA Gateway and process its answers. Completed
Mobile Low Support more medical sensors, widening the Not
M2M GW test base completed
Traffic Reduction Use Case
Both High Implement the local interface Completed
Both High Compare communication traffic through the Completed
NSCL and through the local interface
Mobile Medium Use a local storage to safeguard the sensor data Completed
M2M GW when the connection drops

Table 6.4: Evaluation metrics

86

Results

Chapter 7

Conclusions and Future Work

This Chapter provides an overview of this dissertation’s work, its contributions, and the con-

clusions drawn. Then, some guidelines for future work are presented.

7.1 Conclusions

The main objective of this dissertation was to use a mobile system using M2M communica-
tions on a specific healthcare scenario, as a proof-of-concept for other mobile M2M scenarios. To

create this solution, the following steps were taken, specifying this dissertation’s contributions:

* First of all, the use cases were developed, in order to have concrete objectives in what
the user should be able to do, and which were the important abilities of an M2M enabled
healthcare scenario, keeping in mind that a mobile device has limited resources (traffic and

battery).

* Then, in order to fulfill the use cases, M2M standards were procured, and ETSI’s was chosen
given that the project’s partners were already on the way to support it, and since it fit the

requirements of this dissertation’s project.

» Since the ETSI standard is very versatile, the first step was to map its resources into tangible
concepts, in order to focus the approach on the healthcare scenario at hand. Together with
the project use cases, the mobile M2M GW architecture started to be designed in a modular
way, aiming to allow the easier addition of protocols, sensors and functionalities. This map
of the ETSI resources executed for this dissertation, is one of its contributions, showing a

possible approach for future M2M scenarios.

* The Zephyr sensor was then integrated to the mobile M2M GW, in order to test the ETSI mId
connection to the NSCL, and to also prove that the modular architecture that it supported
was functional. The connection was implemented and tested successfully, and mobile aware

features such as a local database for when the connection drops, were added.

87

88 Conclusions and Future Work

» Afterwards, the mobile M2M NA architecture was designed based on the working mobile
M2M GW, implementing ETSI’s mla interface to communicate with the NSCL. After this
connection was successfully tested, the first step was to get the information flowing between
the two applications: The mobile M2M NA should be able to send commands to the mobile
M2M GW, trigger actions, and receive the information corresponding to the command sent.
To execute this, there was the need to determine the best way, within ETSI’s scope, to
deliver the commands to the mobile M2M GW. After the decision to create a mobile M2M
NA Container that the mobile M2M GW would subscribe, this approach was implemented
and successfully tested. This mechanism to flow information between the mobile M2M
GW and NA is also a contribution of this dissertation, taking the map designed to create a

bi-directional data flow.

* With the communication flowing properly through the NSCL, attention shifted into the im-
plementation of the local interface, to allow the system to be functional even without an
Internet connection. The projected local interface was implemented and successfully tested,
with the information correctly flowing between the two applications, either communicating
through the NSCL, or through the local interface. This is also a valid contribution of this

dissertation’s work, since it is an alternative and allows for new local scenarios.

* Finally, to evaluate the real efficiency of this local interface, some bandwidth tests were ex-
ecuted, which showed that communicating through the local interface saved traffic, proving
the concept behind its creation. This local interface is a contribution of this dissertation’s

work, that can be adapted for future M2M scenarios that have similar efficiency concerns.

The solution presented in this dissertation was functional, and it communicates successfully
with the NSCL developed by PTIN. This proved that the interpretation and map of the ETSI
standard is valid, and that this kind of implementation is fairly straight-forward, when the standard
starts to be understood. The local interface proved be useful when attached to an M2M system like
the one described and implemented, where both applications are running on the same smartphone.
The communication mechanisms created for the information to properly flow between the two
applications can be adapted to other areas of M2M, mobile or not, extending the reach beyond the
healthcare scenario studied in this dissertation.

Using web-servers on a mobile system such as the one studied in this dissertation, may not
be the best approach, because of the reachability issues discussed in Section 5.4. As pointed out,
the ETSI standard has a long-polling mechanism that can provide the solution to this problem,
allowing the subscriptions and subsequent notifications to be delivered to the mobile M2M GW
and NA without the use of a web-server, which could improve the scalability of the solution.

Working with the PTIN partners was not always easy because of schedule differences and other
issues mentioned in Chapter 5, but ultimately it was a positive experience, since all the hurdles
only drove me to work harder and try and complete the work I had set out to do. It naturally gave

me a better view of the corporate world, being a preparation for the (near) future.

7.2 Future Work 89

7.2 Future Work

Despite the success of the solution presented in this dissertation, there is still room for im-
provement in several aspects of the system. This section divides those improvements into three
categories, one regarding solely to the mobile M2M GW, another to the mobile M2M NA, while
the final concerning the system as a whole.

The improvements for the mobile M2M GW could be:

* Additional Sensors: More healthcare sensors could be integrated with the mobile M2M
GW in order to improve its functionalities in healthcare scenarios.

¢ Minimal GUI: The mobile M2M GW could benefit from a minimalistic popup-based inter-
face, to control if it is running or not, for situations when the NA is not present in the same

smartphone.

The improvement for the mobile M2M NA could be:

¢ GUI Improvements: The mobile M2M NA can show real-time graphs with data related to

which sensor being used, for easier understanding.

¢ Sensor configurations: The mobile M2M NA needs to have a GUI that allows the user to

change the active sensor’s configuration parameters.
The improvements for the mobile M2M system could be:

e Long-Polling: As mentioned in the previous section, the ETSI long-polling mechanism
could be implemented into both applications, in an attempt to replace the web-server, to

create a significantly more scalable mobile solution.

* Implement more commands: The system should support the exchange of more commands,
such as: Sensor configurations, to change the intervals between data deliveries, or even
the maximum buffer size; Which measurements to store, given the case that for a specific
sensor, not all data is interesting to be stored. These would mean adding some features on
the GUI of the mobile M2M NA, as well adding support for those commands on both mobile

applications.

* Security: Fully implement TLS on the mobile applications web-servers for secure commu-
nication with the NSCL. For security in the local interface, new certificates could be used,
or a list of authorized Scl and Application could be stored in the NSCL so that only allowed
parties could send messages.

* Connection to healthcare service and data privacy: The current system can be extended
by a different M2M NA (not necessarily mobile), that could connect the NSCL to PTIN’s
healthcare platform, that would then manage the user’s medical records. The Access Rights

90

Conclusions and Future Work

feature has been disregarded so far, but it is essential in an M2M system like the one de-
scribed in this dissertation, to ensure that each user has only access to its own data, and that
it is hidden from other users querying the NSCL. When processing the data and introducing
it into the healthcare service, it should be deleted from the NSCL, in order to safeguard the
user’s interests. A connection could then be created between this healthcare service and the
mobile M2M NA, so that the user can have access to its medical records from within the

application.

Appendix A

ETSI classes changes

This appendix documents the changes executed on the classes automatically generated from
the ETSI standard schemas. These changes can difficult the adoption of new classes when that the
standard schemas change, which is why it is relevant to document which ones were altered.

Firstly, as mentioned in Section 5.5, all the classes were stripped of the "javax.xml.*" imports,
as Android OS does not implement them. Then, three different scopes of changes had to be

executed, and these will be explained below and summarized in Table A.1'.

Jackson Annotations: On some cases (specially when there were JSON Arrays), the removal of
the XML imports, caused errors during serialization an de-serialization, because the Class
variable names were different than they should. To fix this, some Jackson annotations had
to be done, most of them to force the variable name into the specified in the documents. The

classes that now have Jackson annotations are:

Custom Jackson Serializers and De-Serializers: Even with the annotations, some classes could
only be fully compliant with the ETSI specifications after they had a custom Jackson seri-
alizer and/or de-serializer made for them. Only the class SearchStrings needed a custom

serializer. The following list enumerates the ones that needed a custom de-serializer:

These custom made classes are located in the common module of the project, under

"pt.ptinovacao.mtom.common.marshallers".

Java Serialization Extend: To create the databases holding the current state of the Gateway and
the Network Application as well as the local API storage, the following ETSI classes had to

be slightly altered to allow Java Serialization:

ITable Abbreviations:
JA: Jackson Annotations
CS: Custom Serializer
CDS: Custom De-Serializer
JSE: Java Serialization Extend

91

92

ETSI classes changes
Java Class Name JA' | CcS' | CcDS' | JSE!
AnyURIList Yes | No No Yes
APocHandling Yes | No No No
Application Yes | No Yes Yes
Applications Yes | No No No
Container Yes | No Yes Yes
Content No | No No Yes
ContentInstanceCollection | Yes | No No No
ContentTypes Yes | No Yes Yes
CreateRequestIndication Yes | No No No
Integrity ValResults No | No No Yes
MgmtPtotocolType No | No No Yes
NamedReferenceCollection | Yes | No No No
OnlineStatus No | No No Yes
Scl Yes | No Yes Yes
SearchStrings Yes | Yes | Yes Yes
Subscription Yes | No Yes Yes
SubscriptionType Yes | No No No

Table A.1: Summary of affected classes

Appendix B

Mobile M2M GW Logs

This appendix shows the logs of the mobile M2M GW running and communicating through
the NSCL (in Section B.1) and through the local API (in Section B.2).

B.1 NSCL

07—14 02:46:40.558 8276 —8300/pt.ptinovacao .mtom.gw D/MainService: Thread Started:
8300

07—14 02:46:40.578 8276 —8300/pt. ptinovacao .mtom.gw I/ProtocolManager: Storage file
created successfully!

07—14 02:46:40.578 8276 —-8304/pt.ptinovacao .mtom.gw D/Sensor Handler: Thread Started:
8304

07—14 02:46:40.578 8276 —8303/pt.ptinovacao .mtom.gw D/ProtocolManager: Thread Started:
8303

07—14 02:46:40.578 8276 —-8307/pt.ptinovacao .mtom.gw D/BluetoothManager: Thread Started

8307

07—14 02:46:40.588 8276 —8305/pt. ptinovacao .mtom.gw D/MemoryManager: Thread Started:
8305

07—14 02:46:40.588 8276 —8276/pt.ptinovacao.mtom.gw I/ConnectionChecker: Network WIFI
connected

07—14 02:46:40.588 8276 —8276/pt.ptinovacao .mtom.gw V/ConnectionListener:

BroadcastReceiver started successfully.

07—14 02:46:40.588 8276 —8309/pt. ptinovacao .mtom.gw D/GSCL: Thread Started: 8309

07—14 02:46:40.588 8276 —8308/pt.ptinovacao .mtom.gw D/GPS: Thread Started: 8308

07—14 02:46:40.588 8276 —8303/pt.ptinovacao .mtom.gw D/ProtocolManager: GSCL already
running .

07—14 02:46:40.588 8276 —8303/pt. ptinovacao .mtom.gw D/ProtocolManager: Storage file
empty. Nothing to flush.

07—14 02:46:40.598 8276 —8308/pt.ptinovacao .mtom.gw I/GPS: Provider network has been
selected .

07—14 02:46:40.628 8276 —-8309/pt.ptinovacao .mtom.gw V/GSCL: GSCL Root URI: http ://
mobilelab.fe.up.pt:8080

07—14 02:46:40.778 8276 —-8309/pt. ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 278
K, 19% free 2872K/3516K, paused 9ms, total 9ms

07—14 02:46:41.088 8276 —8309/pt. ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 313
K, 19% free 3070K/3752K, paused 17ms, total 18ms

07—14 02:46:41.108 8276 —8309/pt. ptinovacao .mtom.gw D/M2M-BootStrap: GET https ://
phonegw . nscl.m2m. ptinovacao .pt:8443/bootstrapParamSet HTTP/1.1

07—14 02:46:41.108 8276 —8309/pt. ptinovacao .mtom.gw V/M2M-BootStrap: Bootstrap GET
Size: 74

07—14 02:46:41.158 8276 —8309/pt. ptinovacao .mtom.gw I/TLS_SNI: Setting SNI hostname

07—14 02:46:41.158 8276 —-8309/pt.ptinovacao .mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

93

94 Mobile M2M GW Logs

07—14 02:46:41.698 8276 —-8309/pt. ptinovacao .mtom.gw I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 02:46:41.908 8276 —8309/pt. ptinovacao .mtom.gw D/M2M-BootStrap: RESPONSE HTTP/1.1
200 OK

07—14 02:46:41.918 8276 —-8309/pt. ptinovacao .mtom.gw V/M2M-BootStrap: Bootstrap Answer
Size: 4307

07—14 02:46:41.928 8276 —8309/pt. ptinovacao .mtom.gw D/M2M-BootStrap: Certificate
Validity: Fri Jan 30 01:46:42 WET 2015

07—14 02:46:42.048 8276 —8309/pt. ptinovacao .mtom.gw D/CreateResources: Registering SCL

07—14 02:46:42.048 8276 —8334/pt. ptinovacao .mtom.gw D/HTTPServer: Thread Started: 8334

07—14 02:46:42.078 8276 —-8309/pt. ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 391
K, 20% free 3189K/3948K, paused 9ms, total 9ms

07—14 02:46:42.118 8276 —8309/pt. ptinovacao .mtom.gw I/CreateResources: Registering scl

hammerhead —04506dfa25231287 —TesteFEUP to: /m2m/scls

07—14 02:46:42.118 8276 —8309/pt. ptinovacao .mtom.gw I/GSCL: Local API file created
successfully!

07—14 02:46:42.248 8276 —8333/pt.ptinovacao.mtom.gw I/TLS_SNI: Setting SNI hostname

07—14 02:46:42.248 8276 —-8333/pt.ptinovacao .mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 02:46:42.618 8276 —8333/pt.ptinovacao.mtom.gw I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 02:46:42.818 8276 —8333/pt. ptinovacao .mtom.gw W/ HTTPClient: RESPONSE HTTP/1.1
405 Method Not Allowed

07—14 02:46:42.978 8276 —8309/pt. ptinovacao .mtom.gw D/GSCL: SCL already exists.
Retrieving Scls.

07—14 02:46:42.978 8276 —8309/pt. ptinovacao .mtom.gw D/GSCL: Memory database
successfully read!

07—14 02:46:42.978 8276 —-8309/pt.ptinovacao .mtom.gw W/GSCL: Stored SclStorage is null.
Re—creating .

07—-14 02:46:42.978 8276 —8309/pt. ptinovacao.mtom.gw I/RetrieveResources: Retrieving
Container: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP

07—14 02:46:42.978 8276 —-8309/pt. ptinovacao .mtom.gw I/RetrieveResources: Retrieving
Container: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors

07—14 02:46:42.978 8276 —-8333/pt.ptinovacao .mtom.gw I/HTTPClient: GET sent to domain:
/m2m/ scls /hammerhead —04506dfa25231287 —TesteFEUP

07—14 02:46:43.358 8276 —8333/pt.ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 436
K, 20% free 3265K/4068K, paused 10ms, total Ilms

07—14 02:46:43.358 8276 —-8333/pt.ptinovacao .mtom.gw I/HTTPClient: GET sent to domain:
/m2m/ scls /hammerhead —04506dfa25231287 —TesteFEUP/ applications/HealthSensors

07—14 02:46:43.388 8276 —8309/pt . ptinovacao .mtom.gw I/GSCL: SCL stored successfully.

07—14 02:46:43.878 8276 —-8309/pt. ptinovacao .mtom.gw I/GSCL: Local Application
HealthSensors stored successfully.

07—14 02:46:44.038 8276 —8308/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784305; Longitude: —8.5953201; Accuracy: 43.871.

07—14 02:46:53.848 8276 —8334/pt.ptinovacao .mtom.gw V/HandleRequests: Received
ContentInstances collection notification.

07—14 02:46:53.918 8276 —8334/pt. ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 416
K, 19% free 3360K/4144K, paused 1lms, total Ilms

07—14 02:46:53.998 8276 —8334/pt.ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 494
K, 21% free 3378K/4240K, paused 10ms, total 10ms

07—14 02:46:54.008 8276 —8334/pt. ptinovacao .mtom.gw V/HandleRequests: Valid Search
Sensors Command.
Bluetooth: trueSearch Internal: true

07—-14 02:46:54.008 8276 —8276/pt.ptinovacao .mtom.gw I/MainService: MainService Started
with Intent SEARCH_SENSORS

07—14 02:46:56.988 8276 —8276/pt.ptinovacao .mtom.gw D/BluetoothManager: Found Zephyr
BT device: HXMO017399

07—14 02:46:56.988 8276 —8276/pt.ptinovacao .mtom.gw V/BluetoothManager: Zephyr bonded.
Starting ZephyrHandler ...

07—14 02:46:56.998 8276 —8276/pt.ptinovacao .mtom.gw V/BluetoothManager: RSSI: —49

07—14 02:47:11.998 8276 —8309/pt. ptinovacao.mtom.gw I/CreateResources: Registering
container: 1405302431976 —-ZEPHYR to: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers

07—14 02:47:12.218 8276 —-8309/pt. ptinovacao .mtom.gw I/GSCL: Local Container
1405302431976 —ZEPHYR created successfully .

B.1 NSCL 95

07—14 02:47:15.558 8276 —8334/pt.ptinovacao .mtom.gw V/HandleRequests: Received
ContentInstances collection notification.

07—14 02:47:15.568 8276 —8334/pt.ptinovacao .mtom.gw V/HandleRequests: Valid Container
to Start command.
Container: 1405302431976 —ZEPHYR

07—14 02:47:15.568 8276 —8276/pt.ptinovacao.mtom.gw I/MainService: Starting
1405302431976 —ZEPHYR sensor .

07—14 02:47:15.568 8276 —8276/pt.ptinovacao .mtom.gw D/ZephyrHandler: Zephyr MAC
Address: 00:07:80:5A:3C:63

07—14 02:47:15.578 8276 —8276/pt.ptinovacao .mtom.gw D/BluetoothSocket: connect(),
SocketState: INIT, mPfd: {ParcelFileDescriptor: FileDescriptor[74]}

07—14 02:47:16.978 8276 —-8276/pt.ptinovacao .mtom.gw 1/ZephyrHandler: Zephyr connected
07—14 02:47:16.988 8276 —-8605/pt . ptinovacao .mtom.gw I/ZEPHYR: Connected to BioHarness
HXMO017399.

07—14 02:47:16.998 8276 —-8605/pt. ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 455
K, 20% free 3433K/4256K, paused 10ms, total 10ms

07—14 02:47:17.668 8276 —8308/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784549; Longitude: —8.5953409; Accuracy: 42.588.

07—14 02:47:17.798 8276 —-8608/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 02:47:18.048 8276 —8276/pt.ptinovacao .mtom.gw W/ ZephyrHandler: Timestamp empty.

07—14 02:47:20.798 8276 —-8613/pt.ptinovacao .mtom.gw I/System.out: Sending life sign

packet.

07—14 02:47:23.798 8276 —-8619/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:47:25.578 8276 —8305/pt. ptinovacao .mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 02:47:25.628 8276 —-8309/pt. ptinovacao .mtom.gw D/CreateResources: Registering
contentlnstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405302431976 —ZEPHYR/ contentInstances

07—14 02:47:25.728 8276 —8333/pt.ptinovacao .mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 02:47:26.818 8276 —8645/pt. ptinovacao . .mtom.gw I/System.out: Sending life sign

packet.

07—14 02:47:29.828 8276 —-8654/pt.ptinovacao . .mtom.gw I/System.out: Sending life sign
packet.

07—14 02:47:32.848 8276 —8655/pt. ptinovacao . .mtom.gw I/System.out: Sending life sign
packet.

07—14 02:47:35.588 8276 —8305/pt.ptinovacao .mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 02:47:35.608 8276 —8309/pt. ptinovacao .mtom.gw D/CreateResources: Registering
contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405302431976 —ZEPHYR/ contentInstances

07—14 02:47:35.728 8276 —8333/pt.ptinovacao .mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 02:47:35.848 8276 —-8657/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 02:47:38.858 8276 —8682/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 02:47:41.878 8276 —-8690/pt. ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:47:44.858 8276 —8334/pt. ptinovacao .mtom.gw V/HandleRequests: Received
ContentInstances collection notification.

07—14 02:47:44.878 8276 —8334/pt.ptinovacao . .mtom.gw V/HandleRequests: Valid Container
to Stop command.
Container: 1405302431976 —ZEPHYR

07—14 02:47:44.878 8276 —-8276/pt.ptinovacao .mtom.gw D/ZephyrHandler: Stopping Zephyr

07—14 02:47:48.048 8276 —8276/pt.ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 456
K, 20% free 3459K/4288K, paused 19ms, total 20ms

07—14 02:47:48.048 8276 —-8276/pt.ptinovacao .mtom.gw I/dalvikvm—heap: Grow heap (frag
case) to 3.812MB for 82384—byte allocation

07—14 02:47:48.068 8276 —8285/pt.ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 4K,
20% free 3534K/4372K, paused 21ms, total 21ms

07—14 02:47:48.178 8276 —8276/pt.ptinovacao .mtom.gw D/MainService: M2M Gateway
Stopping

07—14 02:47:48.188 8276 —8276/pt.ptinovacao .mtom.gw D/ProtocolManager: ProtocolManager
Service Stopping

07—14 02:47:48.188 8276 —8276/pt. ptinovacao .mtom.gw D/GSCL: GSCL Stopping

96

07—14 02:47:48.268 8276 —-8276/pt.ptinovacao . mtom
to storage.

07—14 02:47:48.268 8276 —8276/pt.ptinovacao .mtom.
Traffic: 4841. Inbound External Traffic: 6951

07—14 02:47:48.268 8276 —-8276/pt.ptinovacao .mtom.
Traffic: 0. Inbound Internal Traffic: 0O

07—14 02:47:48.268 8276 —8333/pt. ptinovacao .mtom.
Down

07—14 02:47:48.268 8276 —8276/pt.ptinovacao .mtom.
Traffic: 7566. Inbound External Traffic: 8061

07—14 02:47:48.268 8276 —8276/pt.ptinovacao .mtom.
Traffic: 0. Inbound Internal Traffic: 0

07—14 02:47:48.268 8276 —8276/pt.ptinovacao .mtom.
storage file successfully deleted.

07—14 02:47:48.268 8276 —8276/pt . ptinovacao . mtom

07—14 02:47:48.268 8276 —8276/pt.ptinovacao .mtom.
Handler .

07—14 02:47:48.268 8276 —8276/pt.ptinovacao .mtom.
Stopping ..

07—14 02:47:48.278 8276 —8276/pt.ptinovacao .mtom.
stopping

07—14 02:47:48.288 8276 —8276/pt.ptinovacao .mtom.
Goodbye!

B.2 Local API

07—14 02:50:34.278 10585—10600/pt.ptinovacao .mtom.
10600

07—14 02:50:34.318 10585—10600/pt.ptinovacao .mtom.
created successfully!

07—14 02:50:34.328 10585—10612/pt.ptinovacao .mtom.
10612

07—14 02:50:34.328 10585—10614/pt.ptinovacao .mtom.

07—14 02:50:34.338 10585—10613/pt.ptinovacao .mtom.
10613

07—14 02:50:34.338 10585—10585/pt.ptinovacao .mtom.
connected

07—14 02:50:34.338 10585—10585/pt.ptinovacao .mtom.
BroadcastReceiver started successfully.

07—14 02:50:34.348 10585—10612/pt.ptinovacao .mtom.
running .

07—14 02:50:34.348 10585—10612/pt.ptinovacao .mtom.
empty. Nothing to flush.

07—14 02:50:34.348 10585—10615/pt.ptinovacao .mtom.
10615

07—14 02:50:34.348 10585—10618/pt.ptinovacao .mtom.

07—14 02:50:34.358 10585—10616/pt.ptinovacao .mtom

10616

07—14 02:50:34.358 10585—10618/pt.ptinovacao .mtom.
selected .

07—14 02:50:34.368 10585—10614/pt.ptinovacao .mtom.
mobilelab . fe.up.pt:8080

07—14 02:50:34.468 10585—10614/pt.ptinovacao .mtom.
K, 19% free 2854K/3516K, paused 9ms, total 9ms

07—14 02:50:34.698 10585—10614/pt.ptinovacao .mtom.
K, 18% free 3063K/3732K, paused 9ms, total 9ms

07—14 02:50:34.768 10585—-10614/pt.

Mobile M2M GW Logs

.gw D/GSCL: Successfully saved state

V/HTTPClient: Outbound External

gw

V/HTTPClient: Outbound Internal

&w

D/HTTPClient: HTTP Client Shut

gw

V/ServerTraffic: Outbound External

gw

V/ServerTraffic: Outbound Internal

gw

I/ProtocolManager: Temporary

gw

D/GPS: GPS stopping
D/Sensor Handler: Stopping Sensor

.gwW
W

gw D/BluetoothManager: BT Manager

gw D/MemoryManager: MemoryManager

gw I/MainService: Stopping Service.

D/MainService: Thread Started:

gw

I/ProtocolManager: Storage file

gw

gw D/ProtocolManager: Thread Started:
D/GSCL: Thread Started: 10614

D/Sensor Handler: Thread Started:

aw
w
Network WIFI

gw I/ConnectionChecker:

gw V/ConnectionListener:

gw D/ProtocolManager: GSCL already

D/ProtocolManager: Storage file

gw

D/MemoryManager: Thread Started:

gw

D/GPS: Thread Started: 10618
D/BluetoothManager: Thread Started

W
.gw

I/GPS: Provider network has been

gw

gw V/GSCL: GSCL Root URI: http ://

gw D/dalvikvm: GC_FOR_ALLOC freed 296

gw D/dalvikvm: GC_FOR_ALLOC freed 302

ptinovacao .mtom.gw D/M2M-BootStrap: GET https ://

phonegw . nscl .m2m. ptinovacao.pt:8443/bootstrapParamSet HTTP/1.1

07—14 02:50:34.768
Size: 74
07—14 02:50:34.858 10585—-10614/pt.
07—14 02:50:34.858 10585—-10614/pt.

m2m. ptinovacao . pt
07—14 02:50:35.128 10585—10614/pt.

10585—-10614/pt.

ptinovacao.

ptinovacao .mtom.gw V/M2M-BootStrap:

ptinovacao .mtom.gw I/TLS_SNI:

mtom

ptinovacao .mtom.gw I/TLS_SNI:

connection with phonegw.nscl.m2m. ptinovacao. pt

Bootstrap GET

Setting SNI hostname
.gw D/TLS_SNI: Hostname: phonegw.nscl.
Established TLSvl.2
using SSL_RSA_WITH_RC4_128_MD5

B.2 Local API

07—14 02:50:35.498 10585—-10614/pt.ptinovacao .mtom
200 OK

07—14 02:50:35.498 10585—10614/pt.ptinovacao .mtom
Size: 4299

07—14 02:50:35.508 10585—10614/pt.ptinovacao.mtom.
Validity: Fri Jan 30 01:50:35 WET 2015

07—14 02:50:35.598 10585—10614/pt.ptinovacao .mtom.

07—14 02:50:35.608 10585—10642/pt.ptinovacao .mtom.

10642
07—-14 02:50:35.628

K, 20% free 3187K/3944K, paused 9ms, total 9ms

10585 —-10614/pt . ptinovacao . mtom.

97

.gw D/M2M-BootStrap: RESPONSE HTTP/1.1

V/M2M-BootStrap: Bootstrap Answer

.gwW

gw D/M2M-BootStrap: Certificate

gw D/CreateResources: Registering SCL

D/HTTPServer: Thread Started:

gwW

gw D/dalvikvm: GC_FOR_ALLOC freed 389

07—14 02:50:35.678 10585—10614/pt.ptinovacao.mtom.gw I/CreateResources: Registering scl
hammerhead —04506dfa25231287 —TesteFEUP to: /m2m/scls

07—14 02:50:35.698 10585—10641/pt.ptinovacao.mtom.gw I/TLS_SNI: Setting SNI hostname

07—14 02:50:35.698 10585—10641/pt.ptinovacao.mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.

m2m. ptinovacao . pt

07—14 02:50:36.028 10585—10641/pt.ptinovacao .mtom
connection with phonegw.nscl.m2m. ptinovacao . pt

07—14 02:50:36.208 10585—10641/pt.ptinovacao .mtom
405 Method Not Allowed

07—14 02:50:36.388 10585—10614/pt.ptinovacao .mtom
Retrieving Scls.

07—14 02:50:36.428 10585—10614/pt.ptinovacao .mtom
K, 20% free 3275K/4068K, paused 1lms, total

07—14 02:50:36.448 10585—10614/pt.ptinovacao .mtom
successfully read!

07—14 02:50:37.738 10585—10618/pt.ptinovacao .mtom
41.1784581; Longitude: —8.5953115; Accuracy:

07—14 02:50:45.528 10585—10642/pt.ptinovacao .mtom
. Received Command.

07—14 02:50:45.628 10585—10642/pt.ptinovacao .mtom
K, 20% free 3361K/4156K, paused 9ms, total 9ms

07—14 02:50:45.638
Sensors Command.
Bluetooth: trueSearch Internal:

07—14 02:50:45.638 10585—-10585/pt.
with Intent SEARCH_SENSORS

07—14 02:50:46.868 10585—10585/pt.
BT device: HXMO017399

07—14 02:50:46.868 10585—10585/pt.
Starting ZephyrHandler ...

true
ptinovacao

ptinovacao

ptinovacao

07—14 02:50:46.868 10585—10585/pt.ptinovacao .mtom

07—14 02:50:52.868 10585—10585/pt.ptinovacao .mtom.
connectivity change

07—14 02:50:52.868 10585—10585/pt.ptinovacao .mtom.
connected

07—14 02:50:52.878 10585—10612/pt.ptinovacao .mtom.
running .

07—14 02:50:52.878 10585—10612/pt.ptinovacao .mtom

empty. Nothing to flush.
07—14 02:50:58.848 10585—10614/pt.ptinovacao .mtom
container: 1405302658817 —ZEPHYR to:

07—14 02:51:06.248 10585—10642/pt.ptinovacao
Received Command.

07—14 02:51:06.268 10585—10642/pt.ptinovacao
to Start command.
Container: 1405302658817 —ZEPHYR

07—14 02:51:06.268 10585—10585/pt.ptinovacao
1405302658817 —ZEPHYR sensor .

07—14 02:51:06.268 10585—-10585/pt.ptinovacao
Address: 00:07:80:5A:3C:63

07—14 02:51:06.278 10585—10585/pt.ptinovacao .mtom
SocketState: INIT, mPfd:

07—14 02:51:07.368 10585—10585/pt.ptinovacao .mtom

07—14 02:51:07.388 10585—11060/pt.ptinovacao .mtom
HXMO017399.

. mtom

. mtom

. mtom

. mtom

10585 —-10642/pt. ptinovacao . mtom.

.mtom.
.mtom .

. mtom.

{ParcelFileDescriptor:

.gw I/TLS_SNI: Established TLSvl.2
using SSL_RSA_WITH_RC4_128_MD5
.gw W/HTTPClient: RESPONSE HTTP/1.1

.gw D/GSCL: SCL already exists.

.gw D/dalvikvm: GC_FOR_ALLOC freed 426

11ms

.gw D/GSCL: Memory database

.egw V/GPS:
44.656.
.gw D/HandleRequests:

Location updated! Latitude:

Local connection

.gw D/dalvikvm: GC_FOR_ALLOC freed 426

gw V/HandleRequests: Valid Search

gw I/MainService: MainService Started

D/BluetoothManager: Found Zephyr

gw

gw V/BluetoothManager: Zephyr bonded.

.gw V/BluetoothManager: RSSI: —56
gw W/ ConnectionListener: Network

I/ConnectionChecker: Network WIFI

gw

gw D/ProtocolManager: GSCL already

D/ProtocolManager: Storage file

.gwW

.gw I/CreateResources: Registering

/m2m/local API/newContainer/1405302658817 —ZEPHYR

.gw D/HandleRequests: Local connection

.gw V/HandleRequests: Valid Container

.gw I/MainService: Starting

.gw D/ZephyrHandler: Zephyr MAC
.gw D/BluetoothSocket:
FileDescriptor[66]}
.gw I/ZephyrHandler: Zephyr connected
.gw I/ZEPHYR: Connected to BioHarness

connect () ,

98 Mobile M2M GW Logs

07—14 02:51:08.188
packet.
07—14 02:51:08.468

10585 —-11063/pt . ptinovacao .mtom.gw I/System.out: Sending life sign

10585 —-10585/pt. ptinovacao .mtom.gw W/ ZephyrHandler: Timestamp empty.

07—14 02:51:11.188 10585—-11069/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:51:11.238 10585—10618/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784354; Longitude: —8.5953272; Accuracy: 43.4.

07—14 02:51:14.218 10585—11077/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:51:16.278 10585—10615/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—-14 02:51:16.318
K,
07—-14 02:51:16.338

19% free 3434K/4240K, paused 20ms,

10585 —-10612/pt. ptinovacao . mtom.gw
total 21ms
10585 —-10614/pt. ptinovacao . mtom.gw

D/dalvikvm: GC_FOR_ALLOC freed 438

D/CreateResources: Registering

contentlnstance to /m2m/localAPI/contentlnstance/1405302658817 —ZEPHYR .

07—14 02:51:16.718

10585 —10641/pt.ptinovacao . mtom.gw

Instance successfully registered.

07—14 02:51:17.218 10585—11105/pt.ptinovacao .mtom.gw
packet.

07—14 02:51:20.228 10585—11147/pt.ptinovacao .mtom.gw
packet.

07—14 02:51:22.058 10585—10585/pt.ptinovacao .mtom.gw
connectivity change

07—14 02:51:22.058 10585—-10585/pt. ptinovacao .mtom.gw
connectivity

07—14 02:51:22.058 10585—10585/pt.ptinovacao .mtom.gw
Resetting stored IPV4 address.

07—14 02:51:23.238 10585—11222/pt.ptinovacao .mtom.gw
packet.

07—14 02:51:26.248 10585—11251/pt.ptinovacao .mtom.gw
packet.

07—14 02:51:26.288 10585—10615/pt.ptinovacao .mtom.gw

07—14 02:51:26.338
Connection, but

07—14 02:51:26.338
contentlnstance

07—14 02:51:26.448
Instance

07—14 02:51:29.258
packet.

07—14 02:51:32.268
packet.

07—14 02:51:35.288
packet.

07—14 02:51:36.298

07—14 02:51:36.348
Connection, but

07—14 02:51:36.348
contentlnstance

07—14 02:51:36.478

K, 20% free 3439K/4296K, paused 25ms,

07—-14 02:51:36.478

successfully

10585—-10612/pt . ptinovacao . mtom.
local API connected.
10585 —-10614/pt. ptinovacao . mtom.gw

gw

D/CreateResources: Content

I/System.out: Sending life sign

I/System.out: Sending life sign

W/ ConnectionListener: Network
D/ConnectionChecker: No network

D/ProtocolManager: No connection.

I/System.out: Sending life sign
I1/System.out: Sending life sign
D/MemoryManager: Flushing ZEPHYR.

D/ProtocolManager: No Internet

Sending data.

D/CreateResources: Registering

to /m2m/localAPI/contentInstance/1405302658817 —ZEPHYR .

10585 —10641/pt.ptinovacao . mtom.gw
registered .
10585—-11262/pt. ptinovacao . mtom.gw

10585 —-11272/pt . ptinovacao . mtom.gw
10585—11317/pt. ptinovacao . mtom.gw
10585 —-10615/pt . ptinovacao . mtom.
10585 —-10612/pt. ptinovacao . mtom

local API connected.
10585 —-10614/pt.ptinovacao . mtom.gw

aw
.gW

D/CreateResources: Content

I/System.out: Sending life sign
I/System.out: Sending life sign
1/System.out: Sending life sign

D/MemoryManager: Flushing ZEPHYR.
D/ProtocolManager: No Internet

Sending data.

D/CreateResources: Registering

to /m2m/localAPI/contentInstance/1405302658817 —ZEPHYR .

10585 —-10641/pt. ptinovacao . mtom.gw
total 26ms
10585 —-10641/pt.ptinovacao .mtom.gw

D/dalvikvm: GC_FOR_ALLOC freed 457

D/CreateResources: Content

Instance successfully registered.

07—14 02:51:38.298 10585—11319/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:51:41.308 10585—11329/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:51:41.368 10585—10618/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784444; Longitude: —8.5953291; Accuracy: 43.322.

07—14 02:51:44.308 10585—11347/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:51:46.308 10585—10615/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 02:51:46.358
Connection, but
07—14 02:51:46.358
contentlnstance
07—14 02:51:46.518
Instance

successfully

10585 —-10612/pt. ptinovacao . mtom.gw
local API connected.
10585—-10614/pt . ptinovacao . mtom.gw

D/ProtocolManager: No Internet

Sending data.

D/CreateResources: Registering

to /m2m/localAPI/contentInstance/1405302658817 —ZEPHYR .

10585 —-10641/pt. ptinovacao . mtom.gw
registered .

D/CreateResources: Content

B.2 Local API 99

07—14 02:51:47.308 10585—11385/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:51:50.328 10585—11450/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:51:50.508 10585—10585/pt.ptinovacao.mtom.gw W/ ConnectionListener: Network
connectivity change

07—14 02:51:50.508 10585—10585/pt.ptinovacao.mtom.gw I/ConnectionChecker: Network WIFI
connected

07—14 02:51:50.528 10585—10612/pt.ptinovacao.mtom.gw D/ProtocolManager: GSCL already
running .

07—14 02:51:50.528 10585—10612/pt.ptinovacao.mtom.gw D/ProtocolManager: Storage file
empty. Nothing to flush.

07—14 02:51:53.328 10585—11490/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 02:51:54.218 10585—10642/pt.ptinovacao.mtom.gw D/HandleRequests: Local connection

Received Command.

07—14 02:51:54.218 10585—10642/pt.ptinovacao.mtom.gw V/HandleRequests: Valid Container
to Stop command.
Container: 1405302658817 —ZEPHYR

07—-14 02:51:54.218 10585—10585/pt.ptinovacao.mtom.gw D/ZephyrHandler: Stopping Zephyr

07—14 02:51:54.228 10585—10614/pt.ptinovacao.mtom.gw I/CreateResources: Registering
container: 1405302658817 —-ZEPHYR to: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers

07—14 02:51:54.228 10585—10614/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405302658817 —ZEPHYR/ contentInstances

07—14 02:51:54.228 10585—10614/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405302658817 —ZEPHYR/ contentInstances

07—14 02:51:54.278 10585—10641/pt.ptinovacao.mtom.gw I/TLS_SNI: Setting SNI hostname

07—14 02:51:54.278 10585—10641/pt.ptinovacao.mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 02:51:54.378 10585—10641/pt.ptinovacao.mtom.gw I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 02:51:54.718 10585—-10641/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 469
K, 20% free 3475K/4316K, paused 18ms, total 19ms

07—14 02:51:54.718 10585—10641/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 02:51:54.718 10585—10614/pt.ptinovacao.mtom.gw I/GSCL: Local Container
1405302658817 —ZEPHYR created successfully.

07—14 02:51:54.858 10585—10641/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 02:52:02.808 10585—10585/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 159
K, 21% free 3443K/4316K, paused 12ms, total 12ms

07—14 02:52:02.818 10585—10585/pt.ptinovacao .mtom.gw I/dalvikvm—heap: Grow heap (frag
case) to 3.796MB for 82384—byte allocation

07—14 02:52:02.828 10585—10595/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed <IK
, 20% free 3523K/4400K, paused 15ms, total 15ms

07—14 02:52:02.858 10585—10585/pt.ptinovacao.mtom.gw D/MainService: M2M Gateway
Stopping

07—14 02:52:02.858 10585—10585/pt.ptinovacao.mtom.gw D/ProtocolManager: ProtocolManager
Service Stopping

07—14 02:52:02.858 10585—10585/pt.ptinovacao.mtom.gw D/GSCL: GSCL Stopping

07—14 02:52:02.928 10585—10585/pt.ptinovacao.mtom.gw D/GSCL: Successfully saved state
to storage.

07—14 02:52:02.958 10585—10585/pt.ptinovacao.mtom.gw D/GSCL: Successfully saved state
to storage.

07—14 02:52:02.958 10585—10585/pt.ptinovacao.mtom.gw V/HTTPClient: Outbound External
Traffic: 4313. Inbound External Traffic: 4563

07—14 02:52:02.958 10585—10585/pt.ptinovacao.mtom.gw V/HTTPClient: Outbound Internal
Traffic: 6650. Inbound Internal Traffic: 6322

07—14 02:52:02.958 10585—10641/pt.ptinovacao.mtom.gw D/HTTPClient: HTTP Client Shut
Down

07—14 02:52:02.968 10585—10585/pt.ptinovacao.mtom.gw V/ServerTraffic: Outbound External
Traffic: 0. Inbound External Traffic: 0

07—14 02:52:02.968 10585—10585/pt.ptinovacao.mtom.gw V/ServerTraffic: Outbound Internal
Traffic: 1457. Inbound Internal Traffic: 2072

100

07—14 02:52:02.968 10585—10585/pt.ptinovacao .mtom.
storage file successfully deleted.

07—14 02:52:02.968 10585—10585/pt.ptinovacao .mtom.

07—-14 02:52:02.968 10585—10585/pt.ptinovacao .mtom.

Handler .

07—14 02:52:02.968 10585—10585/pt.ptinovacao .mtom.
Stopping ..

07—14 02:52:02.968 10585—10585/pt.ptinovacao .mtom.
stopping

07—14 02:52:02.968 10585—10585/pt.ptinovacao .mtom.
Goodbye!

07—14 02:52:02.968 10585—10585/pt.ptinovacao .mtom.
10585 SIG: 9

B.3 Connectivity Lost Test

07—14 03:56:27.818 32257—32275/pt.ptinovacao .mtom.
32275

07—14 03:56:27.828 32257 —-32275/pt.ptinovacao .mtom.
created successfully!

07—14 03:56:27.838 32257—32276/pt.ptinovacao .mtom.
32276

07—14 03:56:27.848 32257—-32280/pt.ptinovacao .mtom.
32280

07—14 03:56:27.848 32257—32281/pt.ptinovacao .mtom.

07—14 03:56:27.848 32257 —32257/pt.ptinovacao .mtom.
connected

07—14 03:56:27.848 32257 —32257/pt.ptinovacao .mtom.
BroadcastReceiver started successfully.

07—14 03:56:27.848 32257 —32277/pt.ptinovacao .mtom.

32277

07—14 03:56:27.848 32257—-32282/pt.ptinovacao .mtom.
32282

07—14 03:56:27.858 32257—-32281/pt.ptinovacao .mtom.
selected .

07—14 03:56:27.858 32257—-32276/pt.ptinovacao .mtom.
empty. Nothing to flush.

07—14 03:56:27.858 32257—-32279/pt.ptinovacao .mtom.

07—14 03:56:27.888 32257—-32279/pt.ptinovacao .mtom.
mobilelab . fe.up.pt:8080

07—14 03:56:28.058 32257 —-32279/pt.ptinovacao .mtom.

Mobile M2M GW Logs

gw I/ProtocolManager: Temporary

gw D/GPS: GPS stopping
gw D/Sensor Handler: Stopping Sensor

gw D/BluetoothManager: BT Manager
gw D/MemoryManager: MemoryManager
gw I/MainService: Stopping Service.

gw I/Process: Sending signal. PID:

gw D/MainService: Thread Started:

gw I/ProtocolManager: Storage file
gw D/ProtocolManager: Thread Started:
gw D/MemoryManager: Thread Started:

gw D/GPS: Thread Started: 32281
gw I/ConnectionChecker: Network WIFI

gw V/ConnectionListener:

gw D/Sensor Handler: Thread Started:
gw D/BluetoothManager: Thread Started
gw I/GPS: Provider network has been

gw D/ProtocolManager: Storage file

gw D/GSCL: Thread Started: 32279
gw V/GSCL: GSCL Root URI: http ://

gw D/dalvikvm: GC_FOR_ALLOC freed 286

K, 19% free 2864K/3516K, paused 29ms, total 29ms

07—14 03:56:28.298 32257—-32279/pt.ptinovacao .mtom.

gw D/dalvikvm: GC_FOR_ALLOC freed 309

K, 19% free 3067K/3744K, paused 10ms, total 10ms

07—14 03:56:28.308 32257—-32279/pt.ptinovacao .mtom.

gw D/M2M-BootStrap: GET https ://

phonegw . nscl.m2m. ptinovacao .pt:8443/bootstrapParamSet HTTP/1.1

07—14 03:56:28.318 32257—-32279/pt.ptinovacao .mtom.
Size: 74

07—14 03:56:28.398 32257—32279/pt.ptinovacao .mtom.

07—14 03:56:28.398 32257—-32279/pt.ptinovacao .mtom.
m2m. ptinovacao . pt

07—14 03:56:28.768 32257—-32279/pt.ptinovacao .mtom.
connection with phonegw.nscl.m2m. ptinovacao . pt

07—14 03:56:28.968 32257—-32279/pt.ptinovacao .mtom.
200 OK

07—14 03:56:28.968 32257—32279/pt.ptinovacao .mtom.
Size: 4299

07—14 03:56:28.978 32257 —-32279/pt.ptinovacao .mtom.
Validity: Fri Jan 30 02:56:29 WET 2015

07—14 03:56:29.078 32257—-32349/pt.ptinovacao .mtom.
32349

07—14 03:56:29.078 32257 —-32279/pt.ptinovacao .mtom.

07—14 03:56:29.118 32257—-32279/pt.ptinovacao .mtom.
K, 20% free 3193K/3948K, paused 8ms, total 8ms

gw V/M2M-BootStrap: Bootstrap GET

gw I/TLS_SNI: Setting SNI hostname
gw D/TLS_SNI: Hostname: phonegw.nscl.

gw I/TLS_SNI: Established TLSvl.2
using SSL_RSA_WITH_RC4_128_MD5

gw D/M2M-BootStrap: RESPONSE HTTP/1.1
gw V/M2M-BootStrap: Bootstrap Answer
gw D/M2M-BootStrap: Certificate

gw D/HTTPServer: Thread Started:

gw D/ CreateResources: Registering SCL

gw D/dalvikvm: GC_FOR_ALLOC freed 388

B.3 Connectivity Lost Test 101

07—14 03:56:29.168 32257—-32279/pt.ptinovacao.mtom.gw I/CreateResources: Registering scl
hammerhead —04506dfa25231287 —TesteFEUP to: /m2m/scls

07—14 03:56:29.318 32257 —-32348/pt.ptinovacao.mtom.gw I/TLS_SNI: Setting SNI hostname

07—14 03:56:29.318 32257—-32348/pt.ptinovacao.mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 03:56:29.858 32257 —-32348/pt.ptinovacao.mtom.gw I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:56:30.218 32257—-32348/pt.ptinovacao.mtom.gw W/ HTTPClient: RESPONSE HTTP/1.1
405 Method Not Allowed

07—14 03:56:30.218 32257—-32279/pt.ptinovacao .mtom.gw D/GSCL: SCL already exists.
Retrieving Scls.

07—14 03:56:30.258 32257 —-32279/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 425
K, 20% free 3279K/4072K, paused 12ms, total 12ms

07—14 03:56:30.278 32257—-32279/pt.ptinovacao.mtom.gw D/GSCL: Memory database
successfully read!

07—14 03:56:31.238 32257—-32281/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784321; Longitude: —8.5952674; Accuracy: 20.0.

07—14 03:56:44.988 32257—32349/pt.ptinovacao.mtom.gw V/HandleRequests: Received
ContentInstances collection notification.

07—14 03:56:45.088 32257 —-32349/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 419
K, 19% free 3372K/4160K, paused 10ms, total 10ms

07—14 03:56:45.148 32257—-32349/pt.ptinovacao.mtom.gw V/HandleRequests: Valid Search
Sensors Command.
Bluetooth: trueSearch Internal: true

07—14 03:56:45.158 32257—32257/pt.ptinovacao.mtom.gw I/MainService: MainService Started
with Intent SEARCH_SENSORS

07—14 03:56:47.868 32257—-32257/pt.ptinovacao.mtom.gw D/BluetoothManager: Found Zephyr
BT device: HXMO017399

07—14 03:56:47.868 32257 —32257/pt.ptinovacao.mtom.gw V/BluetoothManager: Zephyr bonded.
Starting ZephyrHandler ...

07—14 03:56:47.868 32257—32257/pt.ptinovacao.mtom.gw V/BluetoothManager: RSSI: —54

07—14 03:57:01.048 32257—-32279/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 471
K, 20% free 3415K/4252K, paused 13ms, total 13ms

07—14 03:57:01.078 32257—-32279/pt.ptinovacao.mtom.gw I/CreateResources: Registering
container: 1405306620999 —ZEPHYR to: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers

07—14 03:57:01.308 32257—-32279/pt.ptinovacao.mtom.gw I/GSCL: Local Container
1405306620999 —ZEPHYR created successfully .

07—14 03:57:03.288 32257—-32349/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 244
K, 20% free 3448K/4284K, paused 1lms, total 1lms

07—14 03:57:03.298 32257—-32349/pt.ptinovacao.mtom.gw V/HandleRequests: Received
Contentlnstances collection notification.

07—-14 03:57:03.308 32257-32349/pt.ptinovacao.mtom.gw V/HandleRequests: Valid Container
to Start command.
Container: 1405306620999 —ZEPHYR

07—14 03:57:03.308 32257—-32257/pt.ptinovacao.mtom.gw I/MainService: Starting
1405306620999 —ZEPHYR sensor .

07—14 03:57:03.308 32257—-32257/pt.ptinovacao.mtom.gw D/ZephyrHandler: Zephyr MAC
Address: 00:07:80:5A:3C:63

07—14 03:57:03.308 32257 —32257/pt.ptinovacao.mtom.gw W/ BluetoothAdapter:
getBluetoothService () called with no BluetoothManagerCallback

07—14 03:57:03.318 32257—-32257/pt.ptinovacao.mtom.gw D/BluetoothSocket: connect(),
SocketState: INIT, mPfd: {ParcelFileDescriptor: FileDescriptor[74]}

07—14 03:57:04.278 32257—-32257/pt.ptinovacao.mtom.gw I/ZephyrHandler: Zephyr connected

07—14 03:57:04.288 32257-32688/pt.ptinovacao.mtom.gw I/ZEPHYR: Connected to BioHarness
HXMO017399.

07—14 03:57:04.828 32257—32281/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784336; Longitude: —8.5952627; Accuracy: 20.0.

07—14 03:57:05.098 32257—-32691/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:05.338 32257—32257/pt.ptinovacao.mtom.gw W/ ZephyrHandler: Timestamp empty.

07—14 03:57:08.098 32257—-32706/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:11.118 32257—-32712/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—-14 03:57:13.318 32257-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

102 Mobile M2M GW Logs

07—14 03:57:13.358 32257—-32279/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405306620999 —ZEPHYR/ contentInstances

07—14 03:57:13.448 32257—-32348/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 03:57:14.118 32257—-32738/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:17.128 32257—-32747/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:19.428 32257—-32257/pt.ptinovacao.mtom.gw W/ ConnectionListener: Network
connectivity change

07—14 03:57:19.438 32257—-32257/pt.ptinovacao.mtom.gw D/ConnectionChecker: No network
connectivity

07—14 03:57:19.438 32257—-32257/pt.ptinovacao .mtom.gw D/ProtocolManager: No connection.
Resetting stored IPV4 address.

07—14 03:57:20.128 32257 —-357/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:23.128 32257—-392/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—-14 03:57:23.328 32257-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 03:57:23.378 32257—-32276/pt.ptinovacao.mtom.gw I[/ProtocolManager: No Internet
Connection: Can’t send data. Saving to Database.

07—14 03:57:26.128 32257 —426/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:29.158 32257 —437/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:32.168 32257 —438/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:33.338 32257—-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 03:57:33.358 32257—-32276/pt.ptinovacao.mtom.gw I/ProtocolManager: No Internet
Connection: Can’t send data. Saving to Database.

07—14 03:57:35.038 32257—-32281/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784385; Longitude: —8.5952659; Accuracy: 20.0.

07—14 03:57:35.178 32257 —440/pt . ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:36.328 32257—32257/pt.ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 506
K, 21% free 3454K/4328K, paused 18ms, total 19ms

07—14 03:57:38.178 32257 —480/pt. ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:41.188 32257 —-531/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:43.348 32257—-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 03:57:43.378 32257—-32279/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405306620999 —ZEPHYR/ contentInstances

07—14 03:57:43.428 32257—-32348/pt.ptinovacao .mtom.gw I[/TLS_SNI: Setting SNI hostname

07—14 03:57:43.428 32257 —-32348/pt.ptinovacao.mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 03:57:43.558 32257—-32348/pt.ptinovacao.mtom.gw I[/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:57:43.618 32257—-32348/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 03:57:44.188 32257 —546/pt.ptinovacao . .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:44.698 32257—-32257/pt.ptinovacao.mtom.gw W/ ConnectionListener: Network
connectivity change

07—14 03:57:44.708 32257—32257/pt.ptinovacao.mtom.gw I/ConnectionChecker: Network WIFI

connected

07—14 03:57:44.708 32257—-32276/pt.ptinovacao.mtom.gw I/ProtocolManager: Connection
returned , reading stored data... Size: 2386

07—14 03:57:44.708 32257—32276/pt.ptinovacao.mtom.gw V/ProtocolManager: Reached end of
file .

07—14 03:57:44.718 32257—-32276/pt.ptinovacao.mtom.gw V/ProtocolManager: File
successfully erased.

07—14 03:57:44.718 32257—-32279/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentlnstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405306620999 —ZEPHYR/ contentInstances

B.3 Connectivity Lost Test 103

07—14 03:57:44.718 32257—-32279/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405306620999 —ZEPHYR/ contentInstances

07—14 03:57:44.828 32257—-32348/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 03:57:44.958 32257—-32348/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 308
K, 20% free 3469K/4328K, paused 10ms, total 10ms

07—14 03:57:44.958 32257—-32348/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 03:57:47.198 32257—677/pt.ptinovacao.mtom.gw I/System.out: Sending life sign

packet.

07—14 03:57:50.198 32257 —-759/pt . ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:53.198 32257 —784/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:53.358 32257—-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 03:57:53.368 32257—-32279/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentlnstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405306620999 —ZEPHYR/ contentInstances

07—14 03:57:53.448 32257—-32348/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—-14 03:57:56.198 32257 —-848/pt.ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:57:59.078 32257—-32257/pt.ptinovacao.mtom.gw W/ ConnectionListener: Network
connectivity change

07—14 03:57:59.088 32257—-32257/pt.ptinovacao.mtom.gw D/ConnectionChecker: No network
connectivity

07—14 03:57:59.088 32257 —32257/pt.ptinovacao.mtom.gw D/ProtocolManager: No connection.
Resetting stored IPV4 address.

07—14 03:57:59.208 32257 —880/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:58:02.208 32257—-913/pt. ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—-14 03:58:03.368 32257—-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 03:58:03.398 32257—-32276/pt.ptinovacao.mtom.gw I/ProtocolManager: No Internet
Connection: Can’t send data. Saving to Database.

07—14 03:58:05.208 32257 —-945/pt . ptinovacao .mtom.gw I/System.out: Sending life sign
packet.

07—14 03:58:05.318 32257—-32281/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784154; Longitude: —8.5953212; Accuracy: 43.754.

07—14 03:58:08.208 32257 —-962/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:58:11.208 32257—-977/pt.ptinovacao . .mtom.gw I/System.out: Sending life sign
packet.

07—-14 03:58:13.378 32257—-32280/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 03:58:13.458 32257—-32276/pt.ptinovacao.mtom.gw I/ProtocolManager: No Internet
Connection: Can’t send data. Saving to Database.

07—14 03:58:14.208 32257 —-982/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:58:14.658 32257—-32257/pt.ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 362
K, 21% free 3460K/4328K, paused 16ms, total 17ms

07—14 03:58:14.658 32257—-32257/pt.ptinovacao.mtom.gw I/dalvikvm—heap: Grow heap (frag
case) to 3.813MB for 82384—byte allocation

07—14 03:58:14.698 32257 —-32268/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed <IlK
, 20% free 3540K/4412K, paused 33ms, total 33ms

07—14 03:58:14.698 32257—-32257/pt.ptinovacao.mtom.gw D/MainService: M2M Gateway
Stopping

07—14 03:58:14.708 32257 —-32257/pt.ptinovacao.mtom.gw D/ProtocolManager: ProtocolManager
Service Stopping

07—14 03:58:14.708 32257—-32257/pt.ptinovacao.mtom.gw D/ProtocolManager: Temporary
storage file has information. Not being deleted.

07—14 03:58:14.708 32257—-32257/pt.ptinovacao.mtom.gw D/GSCL: GSCL Stopping

07—14 03:58:14.788 32257—-32257/pt.ptinovacao.mtom.gw D/GSCL: Successfully saved state
to storage.

07—14 03:58:14.788 32257—-32257/pt.ptinovacao.mtom.gw V/HTTPClient: Outbound External
Traffic: 9551. Inbound External Traffic: 9680

07—14 03:58:14.788 32257—-32257/pt.ptinovacao .mtom.gw V/HTTPClient: Outbound Internal
Traffic: 0. Inbound Internal Traffic: 0

104

07—14 03:58:14.788 32257-—-32348/pt.ptinovacao.
Down

07—14 03:58:14.788 32257 —-32257/pt.ptinovacao.
Traffic: 5048. Inbound External Traffic:

07—14 03:58:14.788 32257—-32257/pt.ptinovacao
Traffic: 0. Inbound Internal Traffic: 0O

07—14 03:58:14.788 32257—32257/pt.ptinovacao

07—14 03:58:14.788 32257—-32257/pt.ptinovacao.
Handler .

07—14 03:58:14.788 32257 —32257/pt.ptinovacao.

07—14 03:58:14.788 32257-32690/pt.ptinovacao

bt socket closed, read
07—14 03:58:14.788 32257-32690/pt

return :
.ptinovacao .mtom.gw W/System.

-1

mtom

mtom .

5378

.mtom.

. mtom .

mtom

mtom.

.mtom.

.gw

gw

&w

W
.gw

gw

W

.BluetoothSocket.read (BluetoothSocket.java:429)

07—-14 03:58:14.788

32257 —-32690/pt . ptinovacao .mtom.gw W/ System .

Mobile M2M GW Logs

D/HTTPClient: HTTP Client Shut

V/ServerTraffic: Outbound External

V/ServerTraffic: Outbound Internal

D/GPS: GPS stopping
D/Sensor Handler: Stopping Sensor
D/ZephyrHandler: Stopping Zephyr

W/ System.err: java.io.IOException:

.BluetoothInputStream .read (BluetoothInputStream.java:96)

07—14 03:58:14.788

InputStream.read (InputStream.java:162)

07—14 03:58:14.788 32257-32690/pt

.ptinovacao.

HxMBT.BTComms. run (BTComms. java:103)

07—14 03:58:14.788 32257—-32257/pt
Stopping ..

07—14 03:58:14.788 32257-32257/pt
stopping

— APPLICATION RESTART —

07—14 03:58:56.428
07—14 03:58:56.578
07—14 03:58:56.578

ptinovacao .mtom.gw is
07—14 03:58:56.588 1155—-1161/pt
07—14 03:58:56.778 1155—-1155/pt

1155—1155/pt
1155—1155/pt

connected

07—14 03:58:56.778 1155—-1155/pt.
to settle ...

07—14 03:58:56.978 1155—-1155/pt.
to settle ...

07—14 03:58:57.178 1155—-1155/pt.
to settle ...

07—14 03:58:57.378 1155—-1155/pt.
to settle ...

07—14 03:58:57.578 1155—-1155/pt.
to settle ...

07—14 03:58:57.778 1155—-1155/pt.
to settle ...

07—14 03:58:57.988 1155—-1155/pt.
to settle ...

07—14 03:58:58.188 1155—-1155/pt.
(1434)

07—14 03:58:58.538 1155—-1439/pt.
1439

07—14 03:58:58.588 1155—-1457/pt.
1457

07—14 03:58:58.598 1155—-1458/pt.
1458

07—14 03:58:58.598 1155—-1477/pt .

1477

07—14 03:58:58.608 1155—-1476/pt.

1476

07—-14 03:58:58.608
connectivity
07—14 03:58:58.618
07—14 03:58:58.618
Resetting stored IPV4 address.
07—-14 03:58:58.618

BroadcastReceiver started

1155—1155/pt.

1155—-1478/pt.
1155—-1155/pt.

1155—-1155/pt.
successfully .

.ptinovacao.

.ptinovacao.

.ptinovacao.
.ptinovacao.

.ptinovacao.
.ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao .
ptinovacao.
ptinovacao .
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao .
ptinovacao.
ptinovacao.

ptinovacao.
ptinovacao.

ptinovacao.

mtom

mtom .

mtom

mtom.
mtom .
1155—1155/pt. ptinovacao .mtom.
waiting for the debugger
mtom .
mtom .

mtom .

mtom

mtom .

mtom .

mtom .

mtom .

mtom.

mtom .

mtom .

mtom .

mtom .

mtom .

mtom .

mtom .

mtom .
mtom .

mtom .

32257 —-32690/pt . ptinovacao .mtom.gw W/ System .

.gW

gw

.gW

gw
gw
gw
on

gw

gw

gw

.gW

gw

gw

&w

gw

gw

gw

gw

gw

gw

&w

gw

&w

gw
W

gw

err: at android.bluetooth

err: at android.bluetooth

err: at java.io.
W/System.err: at zephyr.android.

D/BluetoothManager: BT Manager

D/MemoryManager: MemoryManager

D/dalvikvm: Late—enabling CheckJNI
I/System.out: Sending WAIT chunk
W/ ActivityThread: Application pt.
port 8100...

I/dalvikvm: Debugger is active
I/System.out: Debugger has

I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I1/System.out: waiting for debugger
I/System.out: waiting for debugger

I/System.out: debugger has settled

D/MainService: Thread Started:

D/ProtocolManager: Thread Started:

D/Sensor Handler: Thread Started:
D/BluetoothManager: Thread Started
D/MemoryManager: Thread Started:
D/ConnectionChecker: No network

D/GPS: Thread Started: 1478
D/ProtocolManager: No connection.

V/ConnectionListener :

B.3 Connectivity Lost Test

07—14 03:58:58.628
selected .
07—14 03:59:06.748 1155—-1155/pt.
connectivity change

07—14 03:59:06.748 1155—-1155/pt.
connected

07—14 03:59:06.758 1155—-1890/pt.

07—14 03:59:06.838 1155-1890/pt.
mobilelab . fe.up.pt:8080

07—14 03:59:08.128 1155—-1890/pt.
K,

07—-14 03:59:09.638
K,

07—14 03:59:09.698 1155—-1890/pt.
phonegw . nscl.m2m. ptinovacao . pt:

07—14 03:59:09.698 1155—-1890/pt.

1155—-1478/pt.

1155-1890/pt.

19% free 2879K/3516K, paused 9ms,

19% free 3065K/3760K, paused

105

ptinovacao.mtom.gw I/GPS: Provider network has been

ptinovacao . mtom W/ ConnectionListener: Network

.gw

ptinovacao .mtom.gw I/ConnectionChecker: Network WIFI

D/GSCL: Thread Started:
V/GSCL: GSCL Root URI:

1890
http ://

ptinovacao .mtom.
ptinovacao . mtom

W
.gw
ptinovacao . mtom D/dalvikvm: GC_FOR_ALLOC freed 271
total 9ms

ptinovacao . mtom.gw
1lms, total 12ms
ptinovacao .mtom.gw D/M2M-BootStrap: GET https ://
8443/ bootstrapParamSet HTTP/1.1

ptinovacao .mtom.gw V/M2M-BootStrap:

.gwW

D/dalvikvm: GC_FOR_ALLOC freed 327

Bootstrap GET

Size: 74
07—-14 03:59:09.798
07—14 03:59:09.798
m2m. ptinovacao . pt
07—14 03:59:10.068 1155—-1890/pt.
connection with phonegw.nscl.m2m. ptinovacao . pt
07—14 03:59:10.338

11551890/ pt .
1155—1890/pt .

200 OK

07—14 03:59:10.348 1155—1890/pt. ptinovacao .mtom.
Size: 4307

07—14 03:59:10.428 1155—1890/pt. ptinovacao .mtom.
Validity: Fri Jan 30 02:59:10 WET 2015

07—14 03:59:12.568 1155—-1890/pt. ptinovacao . mtom
07—14 03:59:12.578

07—14 03:59:12.678

1155—-2127/pt.ptinovacao .
1155—1890/pt. ptinovacao .

mtom

ptinovacao .mtom.
ptinovacao .mtom.

ptinovacao .mtom.

1155—-1890/pt . ptinovacao .mtom.

mtom .

gw I/TLS_SNI:
gw D/TLS_SNI:

Setting SNI hostname
Hostname: phonegw.nscl.

gw I/TLS_SNI: Established TLSvl.2
using SSL_RSA_WITH_RC4_128_MD5
gw D/M2M-BootStrap: RESPONSE HTTP/1.1

V/M2M-BootStrap: Bootstrap Answer

gw

gw D/M2M-BootStrap: Certificate

.gw D/CreateResources: Registering SCL
D/HTTPServer: Thread Started: 2127

D/dalvikvm: GC_FOR_ALLOC freed 373

.gW
w

K, 19% free 3203K/3944K, paused 9ms, total 15ms

07—14 03:59:12.928 1155—1890/pt.ptinovacao . .mtom.gw I/CreateResources: Registering scl

hammerhead —04506dfa25231287 —TesteFEUP to: /m2m/scls

07—-14 03:59:12.938 1155—-1890/pt. ptinovacao .mtom.gw I/ProtocolManager: Reading stored
data ... Size: 2395

07—14 03:59:12.988 1155—1890/pt. ptinovacao .mtom.gw V/ProtocolManager: Reached end of
file .

07—14 03:59:12.998 1155—-1890/pt. ptinovacao .mtom.gw V/ProtocolManager: File
successfully erased.

07—14 03:59:13.038 1155—-2126/pt.ptinovacao .mtom.gw I/TLS_SNI: Setting SNI hostname

07—-14 03:59:13.038 1155—-2126/pt.ptinovacao .mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.

m2m. ptinovacao . pt

07—14 03:59:13.298 1155—1890/pt. ptinovacao . mtom
contentlnstance to /m2m/scls/hammerhead—04506d
HealthSensors/containers/1405306620999 —ZEPHYR/

07—14 03:59:13.308 1155—1890/pt. ptinovacao . mtom
contentlnstance to /m2m/scls/hammerhead—04506d
HealthSensors/containers/1405306620999 —ZEPHYR/

07—14 03:59:13.498 1155-2126/pt.ptinovacao . mtom
K, 20% free 3280K/4084K, paused 9ms, total 9ms

07—14 03:59:13.778 1155—-2126/pt.ptinovacao .mtom
connection with phonegw.nscl.m2m. ptinovacao . pt

07-14 03:59:13.998 1155—-2126/pt.ptinovacao .mtom
405 Method Not Allowed

07—14 03:59:14.008 1155—1890/pt. ptinovacao .
Retrieving Scls.

07—14 03:59:14.178 1155—-2126/pt.ptinovacao
Instance successfully registered.

07—14 03:59:14.278 1155—-1890/pt. ptinovacao
successfully read!

07—14 03:59:14.378 1155—-2126/pt. ptinovacao
Instance successfully registered.

07—14 03:59:20.188 1155—-1155/pt . ptinovacao . mtom
K, 20% free 3338K/4144K, paused 26ms, total

07—14 03:59:20.188 1155—1155/pt. ptinovacao .mtom
case) to 3.694MB for 82384—byte allocation

mtom

. mtom

. mtom

. mtom .

.gw D/CreateResources: Registering
fa25231287—TesteFEUP/ applications/
contentlnstances

.gw D/CreateResources: Registering
fa25231287—-TesteFEUP/applications/
contentlnstances

.gw D/dalvikvm: GC_FOR_ALLOC freed 437

.gw I/TLS_SNI: Established TLSvl.2
using SSL_RSA_WITH_RC4_128_MD5
.gw W/HTTPClient: RESPONSE HTTP/1.1

.gw D/GSCL: SCL already exists.

.gw D/CreateResources: Content

.gw D/GSCL: Memory database

D/CreateResources: Content

gw

.gw D/dalvikvm: GC_FOR_ALLOC freed 365

27ms

.gw I/dalvikvm—heap: Grow heap (frag

106

07—14 03:59:20.208
20% free 3419K/4228K, paused

07—14 03:59:20.228
Stopping

07—14 03:59:20.238
Service Stopping

07—14 03:59:20.238
storage file

17ms, total

1155—-1155/pt. ptinovacao

1155—-1155/pt. ptinovacao
successfully deleted.

07—14 03:59:20.238 1155—1155/pt. ptinovacao

07—14 03:59:20.558 1155—1155/pt.ptinovacao.
to storage.

07—14 03:59:20.568 1155—-1155/pt. ptinovacao
Traffic: 3890. Inbound External Traffic:

07—14 03:59:20.568 1155—-1155/pt. ptinovacao
Traffic: 0. Inbound Internal Traffic: 0

07—14 03:59:20.568 1155—-1155/pt. ptinovacao
Traffic: 0. Inbound External Traffic: 0

07—14 03:59:20.568 1155—1155/pt. ptinovacao
Traffic: 0. Inbound Internal Traffic: 0

07—14 03:59:20.568 1155—-2126/pt. ptinovacao
Down

07—14 03:59:20.568 1155—1155/pt. ptinovacao .

07—14 03:59:20.568 1155—1155/pt. ptinovacao
Handler .

07—14 03:59:20.568 1155—1155/pt. ptinovacao
Stopping ..

07—14 03:59:20.568 1155—1155/pt.ptinovacao
stopping

07—14 03:59:20.608 1155—1155/pt.ptinovacao.
Goodbye!

07—14 03:59:20.608 1155—1155/pt.ptinovacao.
1155 SIG: 9

1155—-1164/pt.ptinovacao.

1155—-1155/pt. ptinovacao.

mtom
17ms

. mtom .

. mtom .

.mtom.
mtom .

. mtom.

3658

. mtom .

. mtom.

. mtom .

. mtom .

.mtom .

. mtom.

mtom

mtom .

mtom .
.mtom.

mtom .

.gw

gw

&w

gw

gw
gw

W

gw

gw

gw

gw

gw
&w

gw

gw

gw

.gW

B.4 Disconnection after using local API

07—14 03:33:35.698 25740—-25755/pt.ptinovacao
25755

07—14 03:33:35.718 25740—25755/pt.ptinovacao
created successfully!

07—14 03:33:35.728 25740—25767/pt.ptinovacao
25767

07—14 03:33:35.738 25740—25769/pt . ptinovacao.
25769

07—14 03:33:35.738 25740—25768/pt.ptinovacao.
25768

07—14 03:33:35.738 25740—25772/pt.ptinovacao

25772

07—14 03:33:35.748 25740-—25770/pt. ptinovacao

07—14 03:33:35.758 25740—25770/pt.ptinovacao.
selected .

07—14 03:33:35.758 25740—25773/pt.ptinovacao.

07—14 03:33:35.758 25740-—25740/pt.ptinovacao
connected

07—14 03:33:35.758 25740-—-25740/pt.ptinovacao.

BroadcastReceiver started

07—14 03:33:35.758
empty. Nothing to flush.

07—14 03:33:35.858 25740—-25773/pt.ptinovacao
mobilelab . fe.up.pt:8080

07—14 03:33:35.948 25740—25773/pt.ptinovacao
K, 19% free 2856K/3516K, paused 9ms,

07—14 03:33:36.178
K, 19% free 3057K/3736K, paused 10ms,

07—14 03:33:36.288

successfully .

25740—-25767/pt . ptinovacao .

.mtom.

. mtom .

.mtom.

.mtom .

. mtom .
mtom .

mtom

.mtom.

.mtom .
total 9ms
25740—-25773/pt . ptinovacao . mtom.gw
total
25740—-25773/pt . ptinovacao .mtom.gw D/M2M-BootStrap: GET https ://

mtom .

mtom.

mtom .
.mtom .

mtom .

gw

gw

&w

gw

gw

gw

gw
gw

gw
gw

.gwW

gw

gw

gw

10ms

Mobile M2M GW Logs

D/dalvikvm: GC_FOR_ALLOC freed OK,
D/MainService: M2M Gateway

D/ProtocolManager: ProtocolManager

I/ProtocolManager: Temporary

D/GSCL: GSCL Stopping

D/GSCL: Successfully saved state

V/HTTPClient: Outbound External

V/HTTPClient: Outbound Internal

V/ServerTraffic: Outbound External

V/ServerTraffic: Outbound Internal

D/HTTPClient: HTTP Client Shut

D/GPS: GPS stopping
D/Sensor Handler: Stopping Sensor

D/BluetoothManager: BT Manager
D/MemoryManager: MemoryManager
I/MainService:

Stopping Service.

I/Process: Sending signal. PID:

D/MainService: Thread Started:

I/ProtocolManager: Storage file
D/ProtocolManager: Thread Started:
D/MemoryManager: Thread Started:
D/Sensor Handler: Thread Started:
D/BluetoothManager: Thread Started

D/GPS: Thread Started: 25770
I/GPS: Provider network has been

D/GSCL: Thread Started: 25773
I/ConnectionChecker: Network WIFI

V/ConnectionListener:
D/ProtocolManager: Storage file
V/GSCL: GSCL Root URI: http ://

D/dalvikvm: GC_FOR_ALLOC freed 294

D/dalvikvm: GC_FOR_ALLOC freed 311

phonegw . nscl.m2m. ptinovacao.pt:8443/bootstrapParamSet HTTP/1.1

B.4 Disconnection after using local API

07—-14 03:33:36.288
Size: 74
07—14 03:33:36.498 25740-25773/pt.
07—14 03:33:36.498 25740-25773/pt.

m2m. ptinovacao . pt
07—14 03:33:37.038 25740-25773/pt.
connection with phonegw.nscl.m2m. ptinovacao . pt
07—14 03:33:37.408

25740-25773/pt.

ptinovacao .mtom.

ptinovacao .mtom.
ptinovacao .mtom.

ptinovacao .mtom.

25740 —-25773/pt . ptinovacao . mtom.

107
gw V/M2M-BootStrap: Bootstrap GET

Setting SNI hostname
Hostname: phonegw.nscl.

gw I/TLS_SNI:
gw D/TLS_SNI:

gw I/TLS_SNI: Established TLSvl.2
using SSL_RSA_WITH_RC4_128_MD5
gw D/M2M-BootStrap: RESPONSE HTTP/1.1

200 OK

07—14 03:33:37.418 25740—25773/pt.ptinovacao.mtom.gw V/M2M-BootStrap: Bootstrap Answer
Size: 4307

07—14 03:33:37.428 25740-—-25773/pt.ptinovacao.mtom.gw D/M2M-BootStrap: Certificate
Validity : Fri Jan 30 02:33:37 WET 2015

07—14 03:33:37.548 25740—25773/pt.ptinovacao.mtom.gw D/CreateResources: Registering SCL

07—14 03:33:37.568 25740—25773/pt.ptinovacao .mtom.
K, 20% free 3177K/3936K, paused 9ms, total 9ms

07—14 03:33:37.568 25740—25798/pt.ptinovacao .mtom
25798

07—14 03:33:37.608 25740—25773/pt.ptinovacao.mtom.gw I/CreateResources:

hammerhead —04506dfa25231287 —TesteFEUP to: /m2m/scls

07—14 03:33:37.608 25740—25773/pt.ptinovacao.mtom.gw I/GSCL: Local API file created
successfully!

07—14 03:33:37.758 25740-25797/pt.

07—14 03:33:37.758 25740-—-25797/pt.
m2m. ptinovacao . pt

07—14 03:33:38.308 25740—-25797/pt.ptinovacao .mtom
connection with phonegw.nscl.m2m. ptinovacao . pt

07—14 03:33:38.488 25740-—-25797/pt.ptinovacao .mtom
405 Method Not Allowed

07—14 03:33:38.488 25740-25773/pt.
Retrieving Scls.

07—14 03:33:38.488 25740-25773/pt.
successfully read!

gw D/dalvikvm: GC_FOR_ALLOC freed 391
.gw D/HTTPServer: Thread Started:
Registering scl

Setting SNI hostname
Hostname: phonegw.nscl.

ptinovacao . mtom
ptinovacao . mtom

.gw I/TLS_SNI:
.gw D/TLS_SNI:

.gw I/TLS_SNI: Established TLSvl.2
using SSL_RSA_WITH_RC4_128_MDS5
.gw W/HTTPClient: RESPONSE HTTP/1.1

ptinovacao .mtom.gw D/GSCL: SCL already exists.

ptinovacao .mtom.gw D/GSCL: Memory database

07—14 03:33:38.498 25740—25773/pt.ptinovacao .mtom.gw W/GSCL: Stored SclStorage is null.
Re—creating .

07—14 03:33:38.498 25740—25773/pt.ptinovacao.mtom.gw I/RetrieveResources: Retrieving
Container: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP

07—14 03:33:38.498 25740—25773/pt.ptinovacao.mtom.gw I/RetrieveResources: Retrieving
Container: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors

07—14 03:33:38.498 25740—25797/pt.ptinovacao .mtom.gw I/HTTPClient: GET sent
/m2m/ scls /hammerhead —04506dfa25231287 —TesteFEUP

07—14 03:33:39.048 25740—25797/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 417
K, 20% free 3263K/4048K, paused 14ms, total 14ms

07—14 03:33:39.048 25740—25797/pt.ptinovacao .mtom.gw I/HTTPClient: GET sent to domain:
/m2m/ scls /hammerhead —04506dfa25231287 —TesteFEUP/ applications/HealthSensors

07—14 03:33:39.108 25740—25773/pt.ptinovacao.mtom.gw I/GSCL: SCL stored successfully.

07—14 03:33:39.118 25740—25770/pt.ptinovacao .mtom.gw V/GPS: Location updated! Latitude:
41.1784629; Longitude: —8.5953346; Accuracy: 43.104.

07—14 03:33:39.468 25740-—-25773/pt.ptinovacao.mtom.gw I/GSCL: Local Application
HealthSensors stored successfully.

07—14 03:33:49.278 25740—25798/pt.ptinovacao .mtom.gw

Received Command.

07—14 03:33:49.338 25740—25798/pt.ptinovacao .mtom.gw
K, 20% free 3340K/4140K, paused 1lms, total 1lms

07—14 03:33:49.378 25740-—-25798/pt.ptinovacao .mtom.gw
Sensors Command.

to domain:

D/HandleRequests: Local connection
D/dalvikvm: GC_FOR_ALLOC freed 432

V/HandleRequests: Valid Search

Bluetooth: trueSearch Internal: true

07—14 03:33:49.378 25740—25740/pt.ptinovacao.mtom.gw I/MainService: MainService Started
with Intent SEARCH_SENSORS

07—14 03:33:51.378 25740—25740/pt.ptinovacao.mtom.gw D/BluetoothManager: Found Zephyr
BT device: HXMO017399

07—14 03:33:51.378 25740—25740/pt.ptinovacao.mtom.gw V/BluetoothManager: Zephyr bonded.
Starting ZephyrHandler ...

07—14 03:33:51.378 25740—25740/pt.ptinovacao.mtom.gw V/BluetoothManager: RSSI: —45

108 Mobile M2M GW Logs

07—14 03:34:03.018 25740-—-25773/pt.ptinovacao.mtom.gw I/CreateResources:
container: 1405305242955 —-Z7EPHYR to:

Registering
/m2m/localAPI/newContainer/1405305242955 —ZEPHYR

07—14 03:34:03.068 25740—25797/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 453
K, 20% free 3385K/4212K, paused 22ms, total 22ms

07—14 03:34:08.188 25740-—25798/pt.ptinovacao.mtom.gw D/HandleRequests:

Received Command.

07—14 03:34:08.188 25740-—-25798/pt.ptinovacao .mtom.gw V/HandleRequests:
to Start command.
Container: 1405305242955 —-ZEPHYR

07—14 03:34:08.188 25740—25740/pt.ptinovacao .mtom.

Local connection

Valid Container

gw I/MainService: Starting

1405305242955 —-7EPHYR sensor .

07—-14 03:34:08.188

25740—-25740/pt . ptinovacao .mtom.gw D/ZephyrHandler: Ze

phyr MAC

Address: 00:07:80:5A:3C:63
07—14 03:34:08.198 25740—-25740/pt.ptinovacao.mtom.gw D/BluetoothSocket: connect(),
SocketState: INIT, mPfd: {ParcelFileDescriptor: FileDescriptor[71]}

07—-14 03:34:10.198
07—14 03:34:10.208

HXMO017399.

07—-14 03:34:11.008 25740—-26000/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:11.088 25740—25740/pt.ptinovacao.mtom.gw W/ZephyrHandler: Timestamp empty.

07—14 03:34:12.788 25740—-25770/pt.ptinovacao .mtom.gw V/GPS: Location updated! Latitude:
41.178454; Longitude: —8.5953345; Accuracy: 43.024.

07—14 03:34:14.028 25740—26005/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:17.038 25740—-26025/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:18.198
07—14 03:34:18.248

25740—-25740/pt . ptinovacao . mtom.
25740 —-25997/pt . ptinovacao . mtom.

gw I/ZephyrHandler: Ze
gw I/ZEPHYR: Connected

25740—-25769/pt . ptinovacao .mtom.gw D/MemoryManager: F1
25740—-25773/pt . ptinovacao .mtom.gw D/ CreateResources :

phyr connected
to BioHarness

ushing ZEPHYR.
Registering

contentlnstance to /m2m/localAPI/contentlnstance/1405305242955—-Z7EPHYR .

07—14 03:34:18.698 25740—25797/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 03:34:20.058 25740—-26035/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:23.078 25740—26046/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:26.078 25740—-26066/pt.ptinovacao.mtom.gw I[/System.out: Sending life sign
packet.

07—14 03:34:28.208 25740-—-25769/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 03:34:28.268 25740—25773/pt.ptinovacao.mtom.gw D/CreateResources: Registering

contentlnstance
07—14 03:34:28.298

K, 20% free 3436K/4256K, paused 12ms,

to /m2m/localAPI/contentlnstance/1405305242955 -ZEPHYR .
25740—-25797/pt . ptinovacao .mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 426

total 13ms

07—14 03:34:28.388 25740—25797/pt.ptinovacao.mtom.gw D/CreateResources: Content
Instance successfully registered.

07—14 03:34:29.078 25740-26096/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:32.088 25740—26134/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:35.108 25740-26136/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:38.148 25740—26137/pt.ptinovacao.mtom.gw I/System.out: Sending life sign
packet.

07—14 03:34:38.218 25740-25769/pt.ptinovacao.mtom.gw D/MemoryManager: Flushing ZEPHYR.

07—14 03:34:38.238 25740—25773/pt.ptinovacao.mtom.gw D/CreateResources: Registering

contentlnstance
07—14 03:34:38.348
Instance
07—14 03:34:41.158
packet.
07—14 03:34:42.408

K, 20% free 3427K/4256K, paused 16ms,

07—14 03:34:42.408
case)
07—14 03:34:42.428

, 20% free 3507K/4340K, paused 24ms,

successfully

to /m2m/localAPI/contentInstance/1405305242955 —-ZEPHYR .

25740 —-25797/pt . ptinovacao .mtom.gw D/CreateResources:
registered .

25740—-26138/pt.ptinovacao.mtom.gw I/System.out:
25740—-25740/pt . ptinovacao . mtom.gw
total 16ms
25740—-25740/pt . ptinovacao . mtom.gw

to 3.781MB for 82384—byte allocation

25740—-25750/pt . ptinovacao . mtom.gw
total 24ms

Sending life

Content

sign

D/dalvikvm: GC_FOR_ALLOC freed 258
I/dalvikvm—heap: Grow heap (frag

D/dalvikvm: GC_FOR_ALLOC freed <I1K

B.4 Disconnection after using local API

07—14 03:34:42.448 25740-25740/pt.ptinovacao .mtom
Stopping

07—14 03:34:42.448 25740—25740/pt.ptinovacao .mtom
Service Stopping

07—14 03:34:42.448 25740-—-25740/pt.ptinovacao .mtom.
storage file successfully deleted.

07—14 03:34:42.448 25740—25740/pt.ptinovacao .mtom.

07—14 03:34:42.528 25740—-25740/pt.ptinovacao .mtom
to storage.

07—14 03:34:42.578 25740—25740/pt.ptinovacao .mtom
API data to storage.
07—14 03:34:42.578 25740—-25740/pt.ptinovacao .mtom.
Traffic: 926. Inbound External Traffic: 2634
07—14 03:34:42.578 25740—25740/pt.ptinovacao .mtom.
Traffic: 5079. Inbound Internal Traffic: 4819

07—14 03:34:42.588 25740—-25797/pt.ptinovacao .mtom.
Down

07—14 03:34:42.588 25740—-25740/pt.ptinovacao .mtom.
Traffic: 0. Inbound External Traffic: 0

07—14 03:34:42.588 25740—25740/pt.ptinovacao .mtom.
Traffic: 974. Inbound Internal Traffic: 1384

07—14 03:34:42.588 25740—25740/pt.ptinovacao .mtom

07—14 03:34:42.588 25740—-25740/pt.ptinovacao .mtom.
Handler .

07—14 03:34:42.588 25740—25740/pt.ptinovacao .mtom.

07—14 03:34:42.588 25740—25740/pt.ptinovacao .mtom.
Stopping ..

07—14 03:34:42.588 25740—25740/pt.ptinovacao .mtom
stopping

07—14 03:34:42.598 25740—25740/pt.ptinovacao .mtom
Goodbye!

07—14 03:34:42.598 25740—-25740/pt.ptinovacao .mtom.
25740 SIG: 9

— APPLICATION RESTART —

07—14 03:36:06.278 26363 —-26363/pt.ptinovacao .mtom

07—14 03:36:06.578 26363 —-26363/pt.ptinovacao .mtom.

07—14 03:36:06.578 26363 —-26363/pt.ptinovacao.mtom.
ptinovacao.mtom.gw is waiting for the debugger

07—14 03:36:06.588 26363 —-26369/pt.ptinovacao .mtom.

07—14 03:36:06.778 26363 —26363/pt.ptinovacao .mtom
connected

07—14 03:36:06.778 26363 —-26363/pt.ptinovacao .mtom.
to settle ...

07—-14 03:36:06.978 26363 —-26363/pt.ptinovacao.mtom.
to settle ...

07—14 03:36:07.178 26363 —-26363/pt.ptinovacao .mtom.
to settle ...

07—-14 03:36:07.378 26363 —-26363/pt.ptinovacao.mtom.
to settle ...

07—14 03:36:07.578 26363 —-26363/pt.ptinovacao .mtom.
to settle ...

07—14 03:36:07.778 26363 —-26363/pt.ptinovacao .mtom.
to settle ...

07—14 03:36:07.978 26363 —-26363/pt.ptinovacao .mtom
to settle ...

07—14 03:36:08.178 26363 —-26363/pt.ptinovacao .mtom.
(1400)

07—14 03:36:08.538 26363 —-26511/pt.ptinovacao .mtom.
26511

07—14 03:36:13.068 26363 —-26511/pt.ptinovacao .mtom.
created successfully!

07—14 03:36:13.088 26363 —-26729/pt.ptinovacao .mtom.
26729

07—14 03:36:13.098 26363 —-26730/pt.ptinovacao .mtom.

26730

.gw

.gwW

&w

gw

.gw

.gw

&w

gw

gw

gw

gw

.gw

&w

gw

gw

.gw

.gW

W

.gW

gw

gw W/ ActivityThread:

on
gw

.gw

gwW

W

gw

&w

gw

gw

.gw

gw

gw

gwW

W

gw

109

D/MainService: M2M Gateway

D/ProtocolManager: ProtocolManager

I/ProtocolManager: Temporary
D/GSCL: GSCL Stopping

D/GSCL: Successfully saved state

D/GSCL: Successfully saved local

V/HTTPClient: Outbound External

V/HTTPClient: Outbound Internal

D/HTTPClient: HTTP Client Shut

V/ServerTraffic: Outbound External

V/ServerTraffic: Outbound Internal
D/GPS: GPS stopping
D/Sensor Handler: Stopping Sensor

D/ZephyrHandler: Stopping Zephyr

D/BluetoothManager: BT Manager

D/MemoryManager: MemoryManager

I/MainService: Stopping Service.

I/Process: Sending signal. PID:

D/dalvikvm: Late—enabling CheckJNI
I/System.out: Sending WAIT chunk
Application pt.
port 8100...

I/dalvikvm: Debugger is active
I/System.out: Debugger has

I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: debugger has settled
D/MainService: Thread Started:

I/ProtocolManager: Storage file

D/ProtocolManager: Thread Started:

D/Sensor Handler: Thread Started:

110 Mobile M2M GW Logs

07—14 03:36:13.098 26363 —-26732/pt.ptinovacao.mtom.gw D/BluetoothManager: Thread Started
26732

07—14 03:36:13.108 26363 —-26363/pt.ptinovacao.mtom.gw I/ConnectionChecker: Network WIFI
connected

07—14 03:36:13.108 26363—-26363/pt.ptinovacao.mtom.gw V/ConnectionListener:
BroadcastReceiver started successfully.

07—14 03:36:13.108 26363—26731/pt.ptinovacao.mtom.gw D/MemoryManager: Thread Started:
26731

07—14 03:36:13.118 26363 —-26733/pt.ptinovacao.mtom.gw D/GPS: Thread Started: 26733

07—14 03:36:13.128 26363 —-26733/pt.ptinovacao.mtom.gw [/GPS: Provider network has been
selected .

07—-14 03:36:14.958 26363 —-26729/pt.ptinovacao.mtom.gw D/ProtocolManager: Storage file
empty . Nothing to flush.

07—14 03:36:14.968 26363—-26763/pt.ptinovacao.mtom.gw D/GSCL: Thread Started: 26763

07—14 03:36:15.018 26363—-26763/pt.ptinovacao.mtom.gw V/GSCL: GSCL Root URI: http ://
mobilelab . fe.up.pt:8080

07—14 03:36:15.318 26363 —-26763/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 298
K, 19% free 2851K/3516K, paused 9ms, total 10ms

07—14 03:36:16.468 26363 —-26733/pt.ptinovacao.mtom.gw V/GPS: Location updated! Latitude:
41.1784473; Longitude: —8.5953513; Accuracy: 41.801.

07—14 03:36:16.988 26363 —-26763/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 308
K, 19% free 3056K/3732K, paused 7ms, total 7ms

07—14 03:36:17.848 26363 —-26763/pt.ptinovacao.mtom.gw D/M2M-BootStrap: GET https ://
phonegw . nscl.m2m. ptinovacao.pt:8443/bootstrapParamSet HTTP/1.1

07—14 03:36:17.848 26363 —-26763/pt.ptinovacao.mtom.gw V/M2M-BootStrap: Bootstrap GET
Size: 74

07—14 03:36:18.018 26363 —-26763/pt.ptinovacao.mtom.gw I/TLS_SNI: Setting SNI hostname

07—14 03:36:18.028 26363—26763/pt.ptinovacao.mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 03:36:18.588 26363—-26763/pt.ptinovacao.mtom.gw I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:36:18.968 26363 —-26763/pt.ptinovacao.mtom.gw D/M2M-BootStrap: RESPONSE HTTP/1.1
200 OK

07—14 03:36:18.978 26363 —-26763/pt.ptinovacao.mtom.gw V/M2M-BootStrap: Bootstrap Answer
Size: 4307

07—14 03:36:19.048 26363 —-26763/pt.ptinovacao.mtom.gw D/M2M-BootStrap: Certificate
Validity: Fri Jan 30 02:36:19 WET 2015

07—14 03:36:20.488 26363 —-26763/pt.ptinovacao.mtom.gw D/CreateResources: Registering SCL

07—14 03:36:20.508 26363 —-26830/pt.ptinovacao.mtom.gw D/HTTPServer: Thread Started:
26830

07—14 03:36:20.528 26363 —-26763/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 390
K, 20% free 3178K/3936K, paused 9ms, total 10ms

07—14 03:36:20.798 26363 —-26763/pt.ptinovacao.mtom.gw I/CreateResources: Registering scl

hammerhead —04506dfa25231287 —TesteFEUP to: /m2m/scls

07—14 03:36:20.868 26363 —-26829/pt.ptinovacao.mtom.gw I/TLS_SNI: Setting SNI hostname

07—14 03:36:20.868 26363 —-26829/pt.ptinovacao.mtom.gw D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 03:36:20.948 26363 —-26763/pt.ptinovacao.mtom.gw D/GSCL: Memory database
successfully read!

07—14 03:36:21.008 26363 —-26763/pt.ptinovacao.mtom.gw V/GSCL: Local API file
successfully erased.

07—14 03:36:21.098 26363 —-26763/pt.ptinovacao.mtom.gw D/dalvikvm: GC_FOR_ALLOC freed 426
K, 20% free 3264K/4056K, paused 10ms, total Ilms

07—14 03:36:21.358 26363 —-26763/pt.ptinovacao.mtom.gw I/CreateResources: Registering
container: 1405305242955—Z7EPHYR to: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/
applications/HealthSensors/containers

07—14 03:36:21.528 26363 —-26763/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405305242955 —ZEPHYR/ contentInstances

07—14 03:36:21.548 26363 —-26763/pt.ptinovacao.mtom.gw D/CreateResources: Registering
contentInstance to /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications/
HealthSensors/containers/1405305242955 —-7ZEPHYR/ contentInstances

07—14 03:36:21.718 26363—-26829/pt.ptinovacao.mtom.gw I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:36:21.978 26363 —-26829/pt.ptinovacao.mtom.gw W/ HTTPClient: RESPONSE HTTP/1.1
405 Method Not Allowed

B.4 Disconnection after using local API

07—-14 03:36:21.998
Retrieving Scls.

07—14 03:36:22.148 26363—26763/pt.ptinovacao .mtom.gw
successfully read!

07—14 03:36:22.348 26363 —-26829/pt.ptinovacao .mtom.gw

26363 —-26763/pt . ptinovacao . mtom.gw

K, 19% free 3366K/4144K, paused 15ms, total 15ms
07—14 03:36:22.468 26363—-26829/pt.ptinovacao .mtom.gw
Instance successfully registered.

07—14 03:36:22.558 26363 —-26763/pt.ptinovacao.
1405305242955 -7ZEPHYR created successfully .

mtom . gw

07—14 03:36:22.668 26363 —-26829/pt.ptinovacao .mtom.gw
Instance successfully registered.

07—14 03:36:32.678 26363 —-26363/pt.ptinovacao.mtom.gw
Stopping

07—14 03:36:32.678 26363 —-26363/pt.ptinovacao .mtom.gw
Service Stopping

07—14 03:36:32.678 26363 —-26363/pt.ptinovacao.mtom.gw
storage file successfully deleted.

07—-14 03:36:32.678 26363 —-26363/pt.ptinovacao .mtom.gw

07—14 03:36:32.928 26363 —-26363/pt.ptinovacao.mtom.gw
K, 18% free 3486K/4244K, paused 12ms, total 12ms

07—14 03:36:32.948 26363 —-26363/pt.ptinovacao .mtom.gw
to storage.
07—14 03:36:32.958 26363—-26363/pt.ptinovacao.mtom.gw
Traffic: 4329. Inbound External Traffic: 4579
07—14 03:36:32.958 26363 —-26363/pt.ptinovacao .mtom.gw
Traffic: 0. Inbound Internal Traffic: 0

07—14 03:36:32.958 26363—-26363/pt.ptinovacao .mtom.gw
Traffic: 0. Inbound External Traffic: 0

07—14 03:36:32.958 26363—-26363/pt.ptinovacao.mtom.gw
Traffic: 0. Inbound Internal Traffic: 0

07—14 03:36:32.958 26363—26363/pt.ptinovacao .mtom.gw

07—14 03:36:32.958 26363 —-26363/pt.ptinovacao .mtom.gw
Handler .

07—14 03:36:32.958 26363—-26829/pt.ptinovacao .mtom.gw
Down

07—14 03:36:32.958 26363 —-26363/pt.ptinovacao.mtom.gw
Stopping ..

07—14 03:36:32.958 26363—-26363/pt.ptinovacao .mtom.gw

stopping

111

D/GSCL: SCL already exists.
D/GSCL: Memory database

D/dalvikvm: GC_FOR_ALLOC freed 408

D/CreateResources: Content
I/GSCL: Local Container
D/CreateResources: Content

D/MainService: M2M Gateway
D/ProtocolManager: ProtocolManager
I/ProtocolManager: Temporary

D/GSCL: GSCL Stopping
D/dalvikvm: GC_FOR_ALLOC freed 385

D/GSCL: Successfully saved state
V/HTTPClient: Outbound External
V/HTTPClient: Outbound Internal

V/ServerTraffic: Outbound External

V/ServerTraffic: Outbound Internal

D/GPS: GPS stopping
D/Sensor Handler: Stopping Sensor

D/HTTPClient: HTTP Client Shut
D/BluetoothManager: BT Manager

D/MemoryManager: MemoryManager

112 Mobile M2M GW Logs

Appendix C

Mobile M2M NA Logs

This appendix shows the logs of the mobile M2M NA running and communicating through
the NSCL (in Section C.1) and through the local API (in Section C.2).

C.1 NSCL

07—-14 02:46:33.818
07—14 02:46:33.908
07-14 02:46:33.908

ptinovacao .mtom. na

07—14 02:46:33.918
07—14 02:46:34.108
connected

8058 —8058/pt. ptinovacao .
8058 —8058/pt . ptinovacao .
8058 —8058/pt . ptinovacao .

mtom .
mtom .
mtom .

is waiting for the debugger

8058 —8064/pt . ptinovacao .
8058 —8058/pt. ptinovacao .

mtom .
mtom.

na
na
na
on
na
na

07—14 02:46:34.108 8058 —8058/pt. ptinovacao .mtom. na
to settle ...

07—14 02:46:34.308 8058 —8058/pt. ptinovacao .mtom. na
to settle ...

07—14 02:46:34.508 8058 —8058/pt. ptinovacao .mtom. na
to settle ...

07—14 02:46:34.708 8058 —8058/pt. ptinovacao .mtom. na
to settle ...

07—14 02:46:34.908 8058 —8058/pt.ptinovacao .mtom. na
to settle ...

07—14 02:46:35.108 8058 —8058/pt. ptinovacao .mtom. na
to settle ...

07—14 02:46:35.308 8058 —8058/pt. ptinovacao .mtom. na
to settle ...

07—14 02:46:35.508 8058 —8058/pt. ptinovacao .mtom. na
(1435)

07—14 02:46:35.628 8058 —8058/pt . ptinovacao .mtom. na
K, 15% free 2975K/3460K, paused 1lms, total 1lms

07—14 02:46:35.658

14% free 3297K/3800K, paused 7ms,

07—-14 02:46:35.738

07—14 02:46:35.758
mode 0

07—14 02:46:40.488
Gateway .

07—14 02:46:40.528
8287

07—14 02:46:40.538
8290

8058 —8058/pt. ptinovacao .mtom. na

total 7ms

D/dalvikvm: Late—enabling CheckJNI
I/System.out: Sending WAIT chunk
W/ ActivityThread: Application pt.
port 8100...

I/dalvikvm: Debugger is active
I/System.out: Debugger has

I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: debugger has settled

D/dalvikvm: GC_FOR_ALLOC freed 115

D/dalvikvm: GC_FOR_ALLOC freed 4K,

8058 —8058/pt. ptinovacao .mtom.na I/Adreno—EGL: <
qeglDrvAPI_egllnitialize:320>: EGL 1.4 QUALCOMM Build:
10404c4692afb8623f95c43aeb6d5el3ed4b30ddbDate:

8058 —8058/pt. ptinovacao .mtom.na D/OpenGLRenderer:
8058 —8058/pt. ptinovacao . .mtom.na I/ StartInterface:
8058 —8287/pt.ptinovacao .mtom.na D/MainService:

8058 —8290/pt . ptinovacao .mtom.na D/InternetManager:

113

11/06/13

Enabling debug
Started Mobile
Thread Started:

Thread Started:

114 Mobile M2M NA Logs

07—14 02:46:40.608 8058 —8310/pt. ptinovacao .mtom.na D/SCL: Thread Started: 8310

07—14 02:46:40.828 8058 —8310/pt. ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 114
K, 12% free 3696K/4176K, paused 9ms, total 9ms

07—14 02:46:40.838 8058 —8310/pt. ptinovacao .mtom.na V/SCL:NA_SCL Root URI: http ://
mobilelab.fe.up.pt:9090

07—14 02:46:40.928 8058 —8058/pt. ptinovacao.mtom.na I/ConnectionChecker: Network WIFI
connected

07—14 02:46:40.938 8058 —8058/pt. ptinovacao .mtom.na V/ConnectionListener:
BroadcastReceiver started successfully.

07—14 02:46:40.948 8058 —8290/pt . ptinovacao .mtom.na D/InternetManager :NA_SCL already
running .

07—14 02:46:43.718 8058 —8310/pt. ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 247
K, 14% free 3956K/4572K, paused 8ms, total 8ms

07—14 02:46:45.038 8058 —8310/pt. ptinovacao .mtom.na D/M2M-BootStrap: GET https ://
phonegw . nscl.m2m. ptinovacao .pt:8443/bootstrapParamSet HTTP/1.1

07-14 02:46:45.038 8058 —8310/pt. ptinovacao .mtom.na V/M2M-BootStrap: Bootstrap GET

Size: 74
07—14 02:46:45.148 8058 —8310/pt.ptinovacao.mtom.na I/TLS_SNI: Setting SNI hostname
07—14 02:46:45.148 8058 —8310/pt.ptinovacao .mtom.na D/TLS_SNI: Hostname: phonegw.nscl.

m2m. ptinovacao . pt

07—14 02:46:45.438 8058 —8310/pt. ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 366
K, 16% free 4103K/4836K, paused 9ms, total 10ms

07—14 02:46:45.718 8058 —8310/pt. ptinovacao .mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 02:46:46.078 8058 —8310/pt. ptinovacao .mtom.na D/M2M-BootStrap: RESPONSE HTTP/1.1
200 OK

07—14 02:46:46.098 8058 —8310/pt.ptinovacao.mtom.na V/M2M-BootStrap: Bootstrap Answer
Size: 4299

07—14 02:46:46.168 8058 —8310/pt. ptinovacao .mtom.na D/M2M-BootStrap: Certificate
Validity: Fri Jan 30 01:46:46 WET 2015

07—14 02:46:47.518 8058 —8389/pt . ptinovacao .mtom.na D/HTTPServer: Thread Started: 8389

07—14 02:46:48.768 8058 —8310/pt. ptinovacao.mtom.na I/CreateResources: Registering
application: HealthConsumerNA—-hammerhead —04506dfa25231287 —TesteFEUP to: /m2m/
applications

07—14 02:46:48.858 8058 —8388/pt. ptinovacao.mtom.na I/TLS_SNI: Setting SNI hostname

07—14 02:46:48.858 8058 —8388/pt.ptinovacao .mtom.na D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 02:46:49.118 8058 —8388/pt.ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 349
K, 15% free 4267K/4984K, paused 10ms, total 10ms

07—14 02:46:49.528 8058 —8388/pt.ptinovacao .mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 02:46:49.908 8058 —8388/pt.ptinovacao .mtom.na W/ HTTPClient: RESPONSE HTTP/1.1
405 Method Not Allowed

07—14 02:46:49.928 8058 —8310/pt.ptinovacao.mtom.na D/SCL: Application already exists.
Restoring from storage ...

07—14 02:46:50.088 8058 —8310/pt. ptinovacao .mtom.na D/SCL: Memory database
successfully read!

07—14 02:46:50.748 8058 —8310/pt. ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 586
K, 19% free 4225K/5180K, paused 12ms, total 12ms

07—14 02:46:50.878 8058 —8310/pt. ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/TesteTrafego2hammerhead —04506dfa25231287 —TesteFEUP/
applications

07—14 02:46:50.888 8058 —8310/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications
07—14 02:46:50.898 8058 —8310/pt. ptinovacao.mtom.na I/RetrieveResources: Retrieving

Applications: /m2m/scls/hammerhead —04506dfa25231287 —AssignedIP/applications

07—14 02:46:52.818 8058 —8388/pt . ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 507
K, 18% free 4250K/5180K, paused 13ms, total 13ms

07—14 02:46:53.178 8058 —8310/pt. ptinovacao.mtom.na D/SCL: All resources checked and
subscription is present.

07—14 02:46:53.388 8058 —8310/pt. ptinovacao.mtom.na D/SCL: All resources checked and
subscription is present.

07—14 02:46:53.628 8058 —8310/pt. ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 495
K, 18% free 4295K/5180K, paused 1lms, total Ilms

07—14 02:46:53.678 8058 —8310/pt.ptinovacao .mtom.na D/CreateResources: Registering
contentInstance to /m2m/applications/HealthConsumerNA—hammerhead —04506dfa25231287—
TesteFEUP/containers /ACTIONS/ contentInstances

C.1 NSCL

07—14 02:47:12.248 8058 —8389/pt.ptinovacao .mtom. na
Containers collection notification.

07—14 02:47:12.348 8058 —8389/pt . ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.348 8058 —8389/pt.ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.348 8058 —8389/pt. ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.348 8058 —8389/pt . ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.348 8058 —8389/pt. ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.358 8058 —8389/pt . ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.358 8058 —8389/pt.ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.358 8058 —8389/pt . ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.358 8058 —8389/pt.ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.358 8058 —8389/pt. ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.358 8058 —8389/pt. ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.368 8058 —8389/pt. ptinovacao .mtom. na
created more than two minutes ago. Discarding.
07—14 02:47:12.368 8058 —8310/pt. ptinovacao .mtom. na

ZEPHYR is now active.
07—-14 02:47:13.968 8058 —8058/pt. ptinovacao .mtom. na
K, 17% free 4341K/5180K, paused 1lms, total I1lms
07—14 02:47:13.968 8058 —8058/pt. ptinovacao .mtom. na
case) to 4.810MB for 225520—byte allocation
07—14 02:47:13.978 8058 —8067/pt.ptinovacao .mtom. na
16% free 4559K/5404K, paused 1lms, total 1lms
07—14 02:47:13.988 8058 —8058/pt. ptinovacao .mtom. na
, 16% free 4559K/5404K, paused 12ms, total 12ms
07—14 02:47:13.988 8058 —8058/pt. ptinovacao .mtom. na
case) to 7.228MB for 2536936—byte allocation
07—14 02:47:14.008 8058 —8067/pt.ptinovacao .mtom. na
11% free 7037K/7884K, paused 18ms, total 18ms
07—14 02:47:14.998 8058 —8058/pt. ptinovacao .mtom. na
chosen to start.
07—14 02:47:15.128 8058 —8310/pt. ptinovacao .mtom. na

contentlnstance

TesteFEUP/containers /ACTIONS/ contentlnstances

07—14 02:47
subscri
07—14 02:47

07—14 02:47

containers/1405302431976 —ZEPHYR/ contentInstances/subscriptions
ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 341
12ms
ptinovacao .mtom.na D/ TreatSensorData:

07—-14 02:47

K, 8% free 8165K/8872K, paused

07—14 02:47
Updated
07—-14 02:47
Updated
07—14 02:47

contentlnstance

:16.438
ptions .
116.508

:16.808

:16.868

125.798

8058 —8310/pt. ptinovacao .mtom.na V/SCL: Resource
Subscribing ...

115

V/HandleRequests: Received
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
I/SCL: Container 1405302431976 —

D/dalvikvm: GC_FOR_ALLOC freed 248

I/dalvikvm—heap: Grow heap (frag

D/dalvikvm:

D/dalvikvm:

GC_FOR_ALLOC freed 2K,

GC_FOR_ALLOC freed <IK

I/dalvikvm—heap: Grow heap (frag

D/dalvikvm: GC_FOR_ALLOC freed OK,

I/CommandsActivity :

D/CreateResources:

8058 —8310/pt. ptinovacao . .mtom.na D/CreateResources:
/m2m/ scls /hammerhead —04506dfa25231287 —TesteFEUP/ applications/HealthSensors/
containers/1405302431976 —ZEPHYR/ contentInstances/subscriptions

8058 —8388/pt.ptinovacao .mtom.na I/CreateResources:
/m2m/ scls /hammerhead —04506dfa25231287 —TesteFEUP/ applications/HealthSensors/

8058 —8389/pt.
12ms, total

8058 —8389/pt.

. Array Size: 7

:35.848

. Array Size:

:44.688

8058 —8389/pt.
16
8058 —8310/pt.

TesteFEUP/containers /ACTIONS/ contentlnstances

07—-14 02:47

:48.028

8058 —8058/pt.

stop Mobile Gateway.

07—14 02:47
07—-14 02:47

:48.048
:48.168

Service Stopping

07—-14 02:47

:48.178

8058 —8058/pt.
8058 —8058/pt.

8058 —8058/pt.

ptinovacao.mtom.na D/TreatSensorData:

ptinovacao .mtom.na D/CreateResources:
to /m2m/ applications/HealthConsumerNA—hammerhead —04506dfa25231287 —

ptinovacao .mtom.na I/ShowMeasurements:

Sensor ZEPHYR

Registering

to /m2m/applications/HealthConsumerNA—hammerhead —04506dfa25231287 —

still has no

Subscribing to

Subscription to

successful .

Measurement
Measurement

Registering

Sent intent to

ptinovacao.mtom.na D/MainService: M2M NA Stopping
ptinovacao .mtom.na D/InternetManager:

InternetManager

ptinovacao .mtom.na D/SCL:NA_SCL Stopping

116 Mobile M2M NA Logs

07—14 02:47:48.438 8058 —8058/pt. ptinovacao .mtom.na D/SCL: Successfully saved state to
storage .

07—14 02:47:48.438 8058 —8058/pt. ptinovacao .mtom.na V/HTTPClient: Outbound External
Traffic: 9890. Inbound External Traffic: 11362

07—14 02:47:48.438 8058 —8058/pt.ptinovacao .mtom.na V/HTTPClient: Outbound Internal
Traffic: 0. Inbound Internal Traffic: 0O

07—14 02:47:48.438 8058 —8388/pt. ptinovacao .mtom.na D/HTTPClient: HTTP Client Shut
Down

07—14 02:47:48.448 8058 —8058/pt. ptinovacao.mtom.na V/ServerTraffic: Outbound External
Traffic: 15126. Inbound External Traffic: 15786

07—14 02:47:48.448 8058 —8058/pt. ptinovacao.mtom.na V/ServerTraffic: Outbound Internal
Traffic: 0. Inbound Internal Traffic: 0

07—14 02:47:48.488 8058 —8058/pt. ptinovacao.mtom.na I/MainService: Stopping Service.
Goodbye!

C.2 Local API

07—14 02:50:21.088 10482—10482/pt.ptinovacao.mtom.na D/dalvikvm: Late—enabling CheckJNI

07—14 02:50:21.378 10482—10482/pt.ptinovacao.mtom.na I/System.out: Sending WAIT chunk

07—14 02:50:21.378 10482—10488/pt.ptinovacao.mtom.na I/dalvikvm: Debugger is active

07—14 02:50:21.378 10482—10482/pt.ptinovacao.mtom.na W/ ActivityThread: Application pt.
ptinovacao.mtom.na is waiting for the debugger on port 8100...

07—14 02:50:21.578 10482—10482/pt.ptinovacao.mtom.na I/System.out: Debugger has
connected

07—14 02:50:21.578 10482—-10482/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 02:50:21.778 10482—10482/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 02:50:21.978 10482—-10482/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 02:50:22.178 10482—10482/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 02:50:22.378 10482—10482/pt.ptinovacao.mtom.na [/System.out: waiting for debugger
to settle ...

07—14 02:50:22.578 10482—-10482/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 02:50:22.778 10482—10482/pt.ptinovacao .mtom.na I[/System.out: waiting for debugger
to settle ...

07—14 02:50:22.978 10482—10482/pt.ptinovacao.mtom.na I/System.out: debugger has settled
(1419)

07—14 02:50:23.098 10482—10482/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 100
K, 14% free 3040K/3516K, paused 13ms, total 13ms

07—14 02:50:23.128 10482—10482/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 4K,
13% free 3362K/3856K, paused 10ms, total 10ms

07—14 02:50:23.238 10482—10482/pt.ptinovacao.mtom.na I/Adreno—EGL: <
qeglDrvAPI_egllnitialize:320>: EGL 1.4 QUALCOMM Build:
10404c4692afb8623f95c43aeb6dSel3ed4b30ddbDate: 11/06/13

07—14 02:50:23.258 10482—10482/pt.ptinovacao.mtom.na D/OpenGLRenderer: Enabling debug
mode 0

07—14 02:50:34.218 10482—-10482/pt.ptinovacao.mtom.na I/StartInterface: Started Mobile
Gateway .

07—14 02:50:34.228 10482—10591/pt.ptinovacao.mtom.na D/MainService: Thread Started:
10591

07—14 02:50:34.258 10482—10597/pt.ptinovacao.mtom.na D/InternetManager: Thread Started:
10597

07—14 02:50:34.288 10482—10601/pt.ptinovacao.mtom.na D/SCL: Thread Started: 10601

07—14 02:50:34.458 10482—-10601/pt.ptinovacao.mtom.na V/SCL:NA_SCL Root URI: http ://
mobilelab . fe.up.pt:9090

07—14 02:50:34.498 10482—-10482/pt.ptinovacao.mtom.na I/ConnectionChecker: Network WIFI
connected

07—14 02:50:34.508 10482—10482/pt.ptinovacao.mtom.na V/ConnectionListener:
BroadcastReceiver started successfully.

07—14 02:50:34.508 10482—-10597/pt.ptinovacao.mtom.na D/InternetManager :NA_SCL already
running .

C.2 Local API 117

07—14 02:50:34.618 10482—10601/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 151
K, 13% free 3722K/4240K, paused 17ms, total 19ms

07—14 02:50:36.248 10482—10601/pt.ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 236
K, 14% free 3998K/4600K, paused 9ms, total 10ms

07—14 02:50:37.238 10482—-10601/pt.ptinovacao.mtom.na D/M2M-BootStrap: GET https ://
phonegw . nscl.m2m. ptinovacao.pt:8443/bootstrapParamSet HTTP/1.1

07—14 02:50:37.238 10482—10601/pt.ptinovacao.mtom.na V/M2M-BootStrap: Bootstrap GET
Size: 74

07—14 02:50:37.318 10482—10601/pt.ptinovacao.mtom.na I/TLS_SNI: Setting SNI hostname

07—14 02:50:37.318 10482—10601/pt.ptinovacao.mtom.na D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 02:50:37.748 10482—-10601/pt.ptinovacao.mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 02:50:38.118 10482—10601/pt.ptinovacao.mtom.na D/M2M-BootStrap: RESPONSE HTTP/1.1
200 OK

07—14 02:50:38.128 10482—10601/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 374
K, 16% free 4134K/4876K, paused 12ms, total 12ms

07—14 02:50:38.138 10482—10601/pt.ptinovacao.mtom.na V/M2M-BootStrap: Bootstrap Answer
Size: 4307

07—14 02:50:38.218 10482—10601/pt.ptinovacao.mtom.na D/M2M-BootStrap: Certificate
Validity: Fri Jan 30 01:50:38 WET 2015

07—14 02:50:39.718 10482—10680/pt.ptinovacao.mtom.na D/HTTPServer: Thread Started:
10680

07—14 02:50:40.938 10482—10601/pt.ptinovacao.mtom.na I/CreateResources: Registering
application: HealthConsumerNA—hammerhead —04506dfa25231287 —TesteFEUP to: /m2m/
applications

07—14 02:50:41.068 10482—10679/pt.ptinovacao.mtom.na I/TLS_SNI: Setting SNI hostname

07—14 02:50:41.068 10482—10679/pt.ptinovacao .mtom.na D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 02:50:41.628 10482—10679/pt.ptinovacao.mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 02:50:42.048 10482—10679/pt.ptinovacao .mtom.na W/ HTTPClient: RESPONSE HTTP/1.1
405 Method Not Allowed

07—14 02:50:42.078 10482—10679/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 335
K, 15% free 4300K/5008K, paused 25ms, total 27ms

07—14 02:50:42.088 10482—10601/pt.ptinovacao.mtom.na D/SCL: Application already exists.
Restoring from storage ...

07—14 02:50:42.268 10482—10601/pt.ptinovacao.mtom.na D/SCL: Memory database
successfully read!

07—14 02:50:43.148 10482—10601/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 628
K, 20% free 4228K/5224K, paused 10ms, total I1lms

07—14 02:50:43.178 10482—10601/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/TesteTrafego2hammerhead —04506dfa25231287 —TesteFEUP/
applications

07—14 02:50:43.188 10482—10601/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications

07—14 02:50:43.198 10482—-10601/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/hammerhead —04506dfa25231287 —AssignedIP/applications

07—14 02:50:44.668 10482—10601/pt.ptinovacao.mtom.na D/CreateResources: Registering
contentlnstance to /m2m/localAPI/contentInstance

07—14 02:50:44.938 10482—-10679/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 458
K, 18% free 4290K/5224K, paused 17ms, total 17ms

07—14 02:50:45.768 10482—10679/pt.ptinovacao .mtom.na I/TLS_SNI: Setting SNI hostname

07—14 02:50:45.768 10482—-10679/pt.ptinovacao .mtom.na D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 02:50:45.868 10482—10679/pt.ptinovacao .mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 02:50:46.098 10482—-10679/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 470
K, 18% free 4297K/5224K, paused 14ms, total 14ms

07—14 02:50:46.128 10482—10601/pt.ptinovacao.mtom.na D/SCL: AIll resources checked and
subscription is present.

07—14 02:50:46.398 10482—-10601/pt.ptinovacao .mtom.na D/SCL: All resources checked and
subscription is present.

07—14 02:50:52.858 10482—10482/pt.ptinovacao.mtom.na W/ ConnectionListener: Network
connectivity change

07—14 02:50:52.868 10482—10482/pt.ptinovacao.mtom.na I/ConnectionChecker: Network WIFI
connected

118

07—14 02:50:52.868
running .

10482 —-10597/pt . ptinovacao .mtom. na

07—14 02:50:58.888 10482—10680/pt.ptinovacao .mtom.na
: New Container: 1405302658817 —ZEPHYR
07—14 02:50:58.888 10482—10680/pt.ptinovacao.mtom.na

ZEPHYR is now active.
07—14 02:51:04.848 10482—10482/pt.ptinovacao .mtom.na
K, 18% free 4327K/5224K, paused 13ms, total 14ms
07—14 02:51:04.848 10482—10482/pt.ptinovacao.mtom.na
case) to 4.796MB for 225520—byte allocation
07—14 02:51:04.858 10482—10491/pt.ptinovacao .mtom.na
, 17% free 4546K/5448K, paused 15ms, total 15ms
07—14 02:51:04.878 10482—10482/pt.ptinovacao.mtom.na
, 17% free 4547K/5448K, paused 14ms, total 15ms
07—14 02:51:04.878 10482—10482/pt.ptinovacao .mtom.na
case) to 7.215MB for 2536936—byte allocation
07—14 02:51:04.898 10482—10491/pt.ptinovacao.mtom.na
12% free 7024K/7928K, paused 14ms, total 14ms
07—14 02:51:05.098 10482—10482/pt.ptinovacao .mtom.na
, 10% free 7940K/8812K, paused Ilms, total 1lms
07—14 02:51:06.038 10482—10482/pt.ptinovacao.mtom.na
chosen to start.
07—14 02:51:06.158 10482—-10601/pt. ptinovacao .mtom.na
contentlnstance to /m2m/localAPI/contentInstance
07—14 02:51:16.368 10482—10680/pt.ptinovacao .mtom.na
ContentInstance of Container:
07—14 02:51:16.698 10482—-10680/pt.ptinovacao.mtom.na
Updated. Array Size: 7

07—14 02:51:22.058 10482—10482/pt.ptinovacao .mtom.na
connectivity change

07—14 02:51:22.058 10482—10482/pt.ptinovacao .mtom.na
connectivity

07—14 02:51:22.058 10482—10482/pt.ptinovacao .mtom.na
Resetting stored IPV4 address.

07—14 02:51:26.378 10482—10680/pt.ptinovacao .mtom.na

ContentInstance of Container:

07—14 02:51:26.418 10482—-10680/pt.
Updated. Array Size: 16

07—14 02:51:36.388 10482—-10680/pt.

ContentInstance of Container:

07—14 02:51:36.428 10482—-10680/pt.
Updated. Array Size: 25

07—14 02:51:46.418 10482—-10680/pt.

ContentInstance of Container:

07—14 02:51:46.488 10482—-10680/pt.
Updated. Array Size: 34

ptinovacao .mtom. na
ptinovacao .mtom. na
ptinovacao .mtom.na
ptinovacao .mtom. na

ptinovacao .mtom. na

07—14 02:51:50.508 10482—10482/pt.ptinovacao .mtom.na
connectivity change

07—14 02:51:50.518 10482—10482/pt.ptinovacao .mtom.na
connected

07—14 02:51:50.538 10482—10597/pt.ptinovacao .mtom.na
running .

07—14 02:51:54.178 10482—10601/pt.ptinovacao.mtom.na
contentInstance to /m2m/localAPI/contentInstance
07—14 02:51:54.628 10482—10680/pt.ptinovacao.mtom.na
Containers collection notification.
07—14 02:51:54.678 10482—10680/pt.ptinovacao .mtom.
created more than two minutes ago. Discarding.
07—14 02:51:54.688 10482—-10680/pt.ptinovacao .mtom.
created more than two minutes ago. Discarding.
07—14 02:51:54.688 10482—10680/pt.ptinovacao .mtom.
created more than two minutes ago. Discarding.
07—14 02:51:54.688 10482—-10680/pt.ptinovacao .mtom.
created more than two minutes ago. Discarding.
07—14 02:51:54.688 10482—-10680/pt. ptinovacao .mtom.
created more than two minutes ago. Discarding.
07—14 02:51:54.688 10482—10680/pt.ptinovacao .mtom.
created more than two minutes ago. Discarding.

na

na

na

na

na

na

Mobile M2M NA Logs

D/InternetManager :NA_SCL already
D/HandleRequests: Local connection
I/SCL: Container 1405302658817 —

D/dalvikvm: GC_FOR_ALLOC freed 193
I/dalvikvm—heap: Grow heap (frag

D/dalvikvm: GC_FOR_ALLOC freed <IlK
D/dalvikvm: GC_FOR_ALLOC freed <I1K
I/dalvikvm—heap: Grow heap (frag

D/dalvikvm: GC_FOR_ALLOC freed OK,
D/dalvikvm: GC_FOR_ALLOC freed 10K
I/CommandsActivity: Sensor ZEPHYR
D/ CreateResources:

Registering

D/HandleRequests: Local connection

1405302658817 —ZEPHYR

D/ TreatSensorData: Measurement

W/ ConnectionListener: Network
D/ConnectionChecker: No network
D/InternetManager: No connection.

D/HandleRequests: Local connection

1405302658817 —ZEPHYR

D/ TreatSensorData: Measurement

D/HandleRequests: Local connection

1405302658817 —ZEPHYR

D/ TreatSensorData: Measurement

D/HandleRequests: Local connection

1405302658817 —ZEPHYR

D/ TreatSensorData: Measurement

W/ ConnectionListener: Network
I/ConnectionChecker: Network WIFI

D/InternetManager :NA_SCL already

D/CreateResources: Registering
V/HandleRequests: Received
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container
V/HandleRequests: Container

C.3 Connectivity Lost Test 119

07—14 02:51:54.688 10482—-10680/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 02:51:54.688 10482—10680/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 02:51:54.688 10482—-10680/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 02:51:54.688 10482—10680/pt.ptinovacao .mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 02:51:54.688 10482—10680/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 02:51:54.688 10482—10680/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 02:51:54.688 10482—10680/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 02:51:54.688 10482—10601/pt.ptinovacao.mtom.na I/SCL: Container 1405302658817 —
ZEPHYR is now active.

07—14 02:52:02.798 10482—10482/pt.ptinovacao.mtom.na I/ShowMeasurements: Sent intent to
stop Mobile Gateway.

07—14 02:52:02.828 10482—-10482/pt.ptinovacao.mtom.na D/MainService: M2M NA Stopping

07—14 02:52:02.848 10482—-10482/pt.ptinovacao.mtom.na D/InternetManager: InternetManager
Service Stopping

07—14 02:52:02.848 10482—10482/pt.ptinovacao.mtom.na D/SCL:NA_SCL Stopping

07—14 02:52:03.098 10482—-10482/pt.ptinovacao .mtom.na D/SCL: Successfully saved state to
storage .

07—14 02:52:03.098 10482—10482/pt.ptinovacao.mtom.na V/HTTPClient: Outbound External
Traffic: 6105. Inbound External Traffic: 8224

07—14 02:52:03.098 10482—10482/pt.ptinovacao.mtom.na V/HTTPClient: Outbound Internal
Traffic: 1925. Inbound Internal Traffic: 1658

07—14 02:52:03.098 10482—-10679/pt.ptinovacao.mtom.na D/HTTPClient: HTTP Client Shut
Down

07—14 02:52:03.098 10482—10482/pt.ptinovacao.mtom.na V/ServerTraffic: Outbound External
Traffic: 5867. Inbound External Traffic: 6032

07—14 02:52:03.098 10482—-10482/pt.ptinovacao.mtom.na V/ServerTraffic: Outbound Internal
Traffic: 5983. Inbound Internal Traffic: 6797

07—14 02:52:03.178 10482—10482/pt.ptinovacao.mtom.na I/MainService: Stopping Service.

Goodbye!
07—14 02:52:03.178 10482—-10482/pt.ptinovacao.mtom.na I/Process: Sending signal. PID:
10482 SIG: 9

C.3 Connectivity Lost Test

07—14 03:56:14.398 32041—-32041/pt.ptinovacao.mtom.na D/dalvikvm: Late—enabling CheckJNI

07—14 03:56:14.428 32041—-32047/pt.ptinovacao.mtom.na E/jdwp: Failed sending reply to
debugger: Broken pipe

07—14 03:56:14.428 32041—32047/pt.ptinovacao.mtom.na D/dalvikvm: Debugger has detached;
object registry had 1 entries

07—14 03:56:14.448 32041—-32041/pt.ptinovacao.mtom.na I/System.out: Sending WAIT chunk

07—14 03:56:14.448 32041—32041/pt.ptinovacao.mtom.na W/ ActivityThread: Application pt.
ptinovacao.mtom.na is waiting for the debugger on port 8100...

07—14 03:56:15.478 32041—-32047/pt.ptinovacao.mtom.na I/dalvikvm: Debugger is active

07—14 03:56:15.648 32041—32041/pt.ptinovacao.mtom.na I/System.out: Debugger has
connected

07—14 03:56:15.658 32041—-32041/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 03:56:15.858 32041—32041/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 03:56:16.058 32041—-32041/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 03:56:16.258 32041—32041/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 03:56:16.458 32041—-32041/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 03:56:16.668 32041—32041/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

120 Mobile M2M NA Logs

07—14 03:56:16.868 32041—-32041/pt.ptinovacao.mtom.na I/System.out: waiting for debugger
to settle ...

07—14 03:56:17.068 32041—32041/pt.ptinovacao.mtom.na [/System.out: debugger has settled
(1351)

07—14 03:56:17.188 32041—32041/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 81K
, 14% free 3040K/3496K, paused 12ms, total 14ms

07—14 03:56:17.218 32041—32041/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 4K,
13% free 3427K/3904K, paused 1lms, total 1lms

07—14 03:56:17.338 32041—-32041/pt.ptinovacao.mtom.na I/Adreno—EGL: <
qeglDrvAPI_egllnitialize:320>: EGL 1.4 QUALCOMM Build:
10404¢c4692afb8623f95c43aeb6d5el3ed4b30ddbDate: 11/06/13

07—14 03:56:17.388 32041—-32041/pt.ptinovacao.mtom.na D/OpenGLRenderer: Enabling debug
mode 0

07—14 03:56:27.748 32041—32041/pt.ptinovacao.mtom.na I/StartInterface: Started Mobile
Gateway .

07—14 03:56:27.748 32041—-32265/pt.ptinovacao.mtom.na D/MainService: Thread Started:
32265

07—14 03:56:27.788 32041—32272/pt.ptinovacao.mtom.na D/InternetManager: Thread Started:
32272

07—14 03:56:27.848 32041—-32278/pt.ptinovacao.mtom.na D/SCL: Thread Started: 32278

07—14 03:56:28.028 32041—32278/pt.ptinovacao.mtom.na V/SCL: NA_SCL Root URI: http://
mobilelab.fe.up.pt:9090

07—14 03:56:28.308 32041—-32041/pt.ptinovacao.mtom.na I/ConnectionChecker: Network WIFI
connected

07—14 03:56:28.308 32041—-32041/pt.ptinovacao.mtom.na V/ConnectionListener:
BroadcastReceiver started successfully.

07—14 03:56:28.318 32041—-32278/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 181
K, 13% free 3757K/4304K, paused 10ms, total 12ms

07—14 03:56:28.328 32041—32272/pt.ptinovacao.mtom.na D/InternetManager :NA_SCL already
running .

07—14 03:56:29.978 32041—-32278/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 245
K, 14% free 4024K/4636K, paused 8ms, total 8ms

07—14 03:56:30.868 32041—32278/pt.ptinovacao.mtom.na D/M2M-BootStrap: GET https ://
phonegw . nscl.m2m. ptinovacao.pt:8443/bootstrapParamSet HTTP/1.1

07—14 03:56:30.868 32041—32278/pt.ptinovacao.mtom.na V/M2M-BootStrap: Bootstrap GET
Size: 74

07—14 03:56:30.948 32041—-32278/pt.ptinovacao.mtom.na I/TLS_SNI: Setting SNI hostname

07—14 03:56:30.948 32041-—32278/pt.ptinovacao.mtom.na D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 03:56:31.458 32041—-32278/pt.ptinovacao.mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:56:31.828 32041—32278/pt.ptinovacao.mtom.na D/M2M-BootStrap: RESPONSE HTTP/1.1
200 OK

07—14 03:56:31.838 32041—-32278/pt.ptinovacao.mtom.na V/M2M-BootStrap: Bootstrap Answer
Size: 4307

07—14 03:56:31.858 32041—32278/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 371
K, 16% free 4158K/4904K, paused 12ms, total 13ms

07—14 03:56:31.928 32041—-32278/pt.ptinovacao.mtom.na D/M2M-BootStrap: Certificate
Validity : Fri Jan 30 02:56:32 WET 2015

07—14 03:56:34.158 32041—32449/pt.ptinovacao.mtom.na D/HTTPServer: Thread Started:
32449

07—-14 03:56:35.378 32041—-32278/pt.ptinovacao.mtom.na I/CreateResources: Registering
application: HealthConsumerNA—hammerhead —04506dfa25231287—-TesteFEUP to: /m2m/
applications

07—14 03:56:35.458 32041—32448/pt.ptinovacao.mtom.na I/TLS_SNI: Setting SNI hostname

07—14 03:56:35.458 32041—-32448/pt.ptinovacao.mtom.na D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 03:56:35.988 32041—-32448/pt.ptinovacao.mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:56:36.438 32041—32448/pt.ptinovacao.mtom.na W/ HTTPClient: RESPONSE HTTP/1.1
405 Method Not Allowed

07—14 03:56:36.458 32041—-32278/pt.ptinovacao.mtom.na D/SCL: Application already exists.
Restoring from storage ...

07—14 03:56:36.528 32041—32278/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 358
K, 15% free 4311K/5036K, paused 10ms, total 12ms

07—14 03:56:36.678 32041—-32278/pt.ptinovacao.mtom.na D/SCL: Memory database
successfully read!

C.3 Connectivity Lost Test 121

07—14 03:56:37.388 32041-—-32278/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/TesteTrafego2hammerhead —04506dfa25231287 —TesteFEUP/
applications

07—-14 03:56:37.398 32041-—-32278/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications

07—14 03:56:37.418 32041—-32278/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/hammerhead —04506dfa25231287—AssignedIP/applications

07—14 03:56:37.558 32041-—32278/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 637
K, 20% free 4236K/5240K, paused 20ms, total 20ms

07—14 03:56:40.418 32041—32448/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 492
K, 19% free 4279K/5240K, paused 20ms, total 20ms

07—14 03:56:40.598 32041-—-32278/pt.ptinovacao.mtom.na D/SCL: All resources checked and
subscription is present.

07—14 03:56:40.838 32041—32278/pt.ptinovacao.mtom.na D/SCL: AIll resources checked and
subscription is present.

07—14 03:56:44.808 32041—-32278/pt.ptinovacao.mtom.na D/CreateResources: Registering
contentlnstance to /m2m/applications/HealthConsumerNA—hammerhead —04506dfa25231287—
TesteFEUP/containers /ACTIONS/ contentInstances

07—14 03:57:01.328 32041-—32449/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 502
K, 18% free 4327K/5240K, paused 15ms, total 15ms

07—14 03:57:01.338 32041—32449/pt.ptinovacao.mtom.na V/HandleRequests: Received
Containers collection notification.

07—14 03:57:01.408 32041-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.408 32041—32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.408 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.408 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.408 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.408 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.418 32041—-32449/pt.ptinovacao.mtom.na V/HandleRequests: Container
created more than two minutes ago. Discarding.

07—14 03:57:01.438 32041—-32278/pt.ptinovacao.mtom.na I/SCL: Container 1405306620999 —
ZEPHYR is now active.

07—14 03:57:01.998 32041—-32041/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 131
K, 18% free 4342K/5240K, paused 13ms, total 14ms

07—14 03:57:01.998 32041—-32041/pt.ptinovacao.mtom.na I/dalvikvm—heap: Grow heap (frag
case) to 4.811MB for 225520—byte allocation

07—14 03:57:02.008 32041—-32050/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 4K,

17% free 4558K/5464K, paused 16ms, total 16ms

122 Mobile M2M NA Logs

07—14 03:57:02.028 32041—32041/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed <IK
, 17% free 4558K/5464K, paused 12ms, total 12ms

07—14 03:57:02.028 32041—-32041/pt.ptinovacao.mtom.na I/dalvikvm—heap: Grow heap (frag
case) to 7.227MB for 2536936—byte allocation

07—14 03:57:02.048 32041—-32050/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed OK,
12% free 7036K/7944K, paused 15ms, total 15ms

07—14 03:57:02.918 32041—32041/pt.ptinovacao.mtom.na I/CommandsActivity: Sensor ZEPHYR
chosen to start.

07—14 03:57:03.048 32041—-32278/pt.ptinovacao.mtom.na D/CreateResources: Registering
contentlnstance to /m2m/applications/HealthConsumerNA—hammerhead —04506dfa25231287—
TesteFEUP/containers /ACTIONS/ contentInstances

07—14 03:57:03.898 32041—-32278/pt.ptinovacao.mtom.na V/SCL: Resource still has no
subscriptions. Subscribing ...

07—14 03:57:03.978 32041—32278/pt.ptinovacao.mtom.na D/CreateResources: Subscribing to
/m2m/ scls /hammerhead —04506dfa25231287 —TesteFEUP/ applications/HealthSensors/
containers/1405306620999 —ZEPHYR/ contentInstances/subscriptions

07—14 03:57:04.248 32041—-32448/pt.ptinovacao.mtom.na [/CreateResources: Subscription to
/m2m/ scls /hammerhead —04506dfa25231287 —TesteFEUP/ applications/HealthSensors/
containers/1405306620999 —ZEPHYR/ contentInstances/subscriptions successful.

07—14 03:57:04.338 32041—-32449/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 343
K, 8% free 8163K/8872K, paused 1lms, total 1lms

07—14 03:57:13.528 32041—-32449/pt.ptinovacao.mtom.na D/TreatSensorData: Measurement
Updated. Array Size: 7

07—14 03:57:19.428 32041—-32041/pt.ptinovacao.mtom.na W/ ConnectionListener: Network
connectivity change

07—14 03:57:19.448 32041—-32041/pt.ptinovacao.mtom.na D/ConnectionChecker: No network
connectivity

07—14 03:57:19.448 32041—-32041/pt.ptinovacao.mtom.na D/InternetManager: No connection.
Resetting stored IPV4 address.

07—14 03:57:43.718 32041—-32449/pt.ptinovacao.mtom.na D/ TreatSensorData: Measurement
Updated. Array Size: 16

07—14 03:57:44.688 32041—32041/pt.ptinovacao.mtom.na W/ ConnectionListener: Network
connectivity change

07—14 03:57:44.698 32041—-32041/pt.ptinovacao.mtom.na I/ConnectionChecker: Network WIFI
connected

07—14 03:57:44.698 32041—-32272/pt.ptinovacao.mtom.na D/InternetManager :NA_SCL already
running .

07—14 03:57:44.908 32041—-32449/pt.ptinovacao.mtom.na D/TreatSensorData: Measurement
Updated. Array Size: 25

07—14 03:57:45.118 32041—-32449/pt.ptinovacao.mtom.na D/TreatSensorData: Measurement
Updated. Array Size: 34

07—14 03:57:53.558 32041—32449/pt.ptinovacao.mtom.na D/TreatSensorData: Measurement
Updated. Array Size: 44

07—14 03:57:59.078 32041—32041/pt.ptinovacao.mtom.na W/ ConnectionListener: Network
connectivity change

07—14 03:57:59.098 32041—32041/pt.ptinovacao.mtom.na D/ConnectionChecker: No network
connectivity

07—14 03:57:59.098 32041—-32041/pt.ptinovacao.mtom.na D/InternetManager: No connection.
Resetting stored IPV4 address.

07—14 03:58:14.638 32041—32041/pt.ptinovacao.mtom.na I/ShowMeasurements: Sent intent to
stop Mobile Gateway .

07—14 03:58:14.668 32041—-32041/pt.ptinovacao.mtom.na D/MainService: M2M NA Stopping

07—14 03:58:14.678 32041—32041/pt.ptinovacao.mtom.na D/InternetManager: InternetManager
Service Stopping

07—-14 03:58:14.678 32041—-32041/pt.ptinovacao.mtom.na D/SCL:NA_SCL Stopping

07—14 03:58:14.918 32041—-32041/pt.ptinovacao.mtom.na D/SCL: Successfully saved state to
storage .

07—14 03:58:14.918 32041-—-32041/pt.ptinovacao.mtom.na V/HTTPClient: Outbound External
Traffic: 9068. Inbound External Traffic: 10627

07—14 03:58:14.918 32041—-32041/pt.ptinovacao.mtom.na V/HTTPClient: Outbound Internal
Traffic: 0. Inbound Internal Traffic: 0

07—14 03:58:14.918 32041-32041/pt.ptinovacao.mtom.na V/ServerTraffic: Outbound External
Traffic: 30417. Inbound External Traffic: 31572

07—14 03:58:14.918 32041—32041/pt.ptinovacao.mtom.na V/ServerTraffic: Outbound Internal
Traffic: 0. Inbound Internal Traffic: 0

07—14 03:58:14.928 32041—-32448/pt.ptinovacao.mtom.na D/HTTPClient: HTTP Client Shut
Down

C.4 Disconnection after using local API

C.4 Disconnection after using local API

07—14 03:32:15.628
07—14 03:32:15.648
debugger:
07—14 03:32:15.648
object
07—14 03:32:15.748
07—14 03:32:15.748

ptinovacao .mtom.

07—14 03:32:16.708
07—14 03:32:16.748
connected
07—14 03:32:16.748

to settle ...
07—14 03:32:16.958
to settle ...
07—14 03:32:17.158
to settle ...
07—14 03:32:17.358
to settle ...
07—14 03:32:17.558
to settle ...
07—14 03:32:17.758
to settle ...
07—14 03:32:17.958
to settle ...
07—14 03:32:18.158
to settle ...
07—14 03:32:18.358
(1455)
07—14 03:32:18.498

25330-25330/pt.
25330—-25336/pt.

Broken pipe

25330-25336/pt .

registry had 1 entries

25330-25330/pt .
25330—-25330/pt.
na is
25330-25336/pt .
25330—-25330/pt .
25330-25330/pt.
25330—-25330/pt.
25330-25330/pt .
25330—-25330/pt.
25330-25330/pt .
25330-25330/pt .
25330—-25330/pt .
25330-25330/pt .
25330—-25330/pt.

25330-25330/pt.

, 13% free 3040K/3492K, paused

07—-14 03:32:18.528

13% free 3427K/3900K, paused 10ms,

07—-14 03:32:18.638

07—14 03:32:18.668
mode 0

07—-14 03:33:35.628
Gateway .

07—14 03:33:35.638
25745

07—14 03:33:35.668
25752

07—14 03:33:35.708

07—14 03:33:35.858

mobilelab . fe.up.

07—14 03:33:35.988
connected
07—14 03:33:35.988

BroadcastReceiver

07—14 03:33:35.998
running .
07—14 03:33:36.278

K,
07—14 03:33:39.208
K,
07—14 03:33:40.318

07—14 03:33:40.318
Size: 74
07—14 03:33:40.438
07—14 03:33:40.438

m2m. ptinovacao .

25330-25330/pt.

25330—-25330/pt.

25330—-25330/pt.
25330-25330/pt.
25330—-25745/pt .
25330-25752/pt.
25330—-25764/pt .
25330—-25764/pt.
pt:9090

25330—-25330/pt.
25330-25330/pt.

started
25330—-25752/pt.

waiting for

ptinovacao.
ptinovacao.

ptinovacao .

ptinovacao.
ptinovacao .

ptinovacao.
ptinovacao.

ptinovacao.
ptinovacao .
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao.
ptinovacao.
8ms, total

ptinovacao .

total
ptinovacao.

ptinovacao .mtom.na D/OpenGLRenderer:

ptinovacao
ptinovacao.
ptinovacao

ptinovacao
ptinovacao.

ptinovacao.

ptinovacao

successfully .

ptinovacao

mtom .
mtom .

mtom .
mtom .
mtom.
the debugger

mtom .
mtom .
mtom .
mtom .
mtom .
mtom.
mtom .
mtom.
mtom .
mtom .

mtom.

mtom .

15ms

mtom.

11ms

na
na

na

na

na

on

na

na

na

na

na

na

na

na

na

na

na

na

na

123

D/dalvikvm: Late—enabling CheckJNI
E/jdwp: Failed sending reply to
D/dalvikvm: Debugger has detached;
I1/System.out: Sending WAIT chunk
W/ ActivityThread: Application pt.
port 8100...

I/dalvikvm: Debugger is active
I1/System.out: Debugger has

I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger
I/System.out: waiting for debugger

I/System.out: debugger has settled
D/dalvikvm: GC_FOR_ALLOC freed 77K

D/dalvikvm: GC_FOR_ALLOC freed 4K,

mtom.na I/Adreno—EGL: <
qeglDrvAPI_egllnitialize:320>: EGL 1.4 QUALCOMM Build:
10404c4692afb8623f95c43aeb6d5el3ed4b30ddbDate:

.mtom.

mtom .

.mtom.

.mtom .
mtom.

mtom .

.mtom.

.mtom .

11/06/13

na

na

na

na
na

na

na

na

25330—-25764/pt . ptinovacao .mtom. na

13% free 3755K/4304K, paused 13ms,

total

14ms

25330—25764/pt . ptinovacao .mtom. na

14% free 4017K/4636K, paused 8ms,

total

8ms

Enabling debug
I/StartInterface: Started Mobile

D/MainService: Thread Started:

D/InternetManager: Thread Started:

D/SCL: Thread Started:
V/SCL:NA_SCL Root URI:

25764
http ://

I/ConnectionChecker: Network WIFI
V/ConnectionListener:

D/InternetManager :NA_SCL already
D/dalvikvm: GC_FOR_ALLOC freed 182

D/dalvikvm: GC_FOR_ALLOC freed 252

25330—-25764/pt . ptinovacao .mtom.na D/M2M-BootStrap: GET https ://
phonegw . nscl.m2m. ptinovacao .pt:8443/bootstrapParamSet HTTP/1.1

25330—-25764/pt . ptinovacao .mtom.na V/M2M-BootStrap:

25330—-25764/pt . ptinovacao .mtom.na I/TLS_SNI:
25330—25764/pt . ptinovacao .mtom.na D/TLS_SNI:

pt

Bootstrap GET

Setting SNI hostname
Hostname: phonegw.nscl.

124 Mobile M2M NA Logs

07—14 03:33:40.998 25330-—-25764/pt.ptinovacao.mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:33:41.388 25330-—25764/pt.ptinovacao.mtom.na D/M2M-BootStrap: RESPONSE HTTP/1.1

200 OK

07—14 03:33:41.478 25330-—-25764/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 354
K, 15% free 4167K/4888K, paused 41ms, total 45ms

07—14 03:33:41.488 25330—25764/pt.ptinovacao.mtom.na V/M2M-BootStrap: Bootstrap Answer
Size: 4307

07—14 03:33:41.568 25330—25764/pt.ptinovacao.mtom.na D/M2M-BootStrap: Certificate
Validity: Fri Jan 30 02:33:41 WET 2015

07—14 03:33:43.198 25330-—-25883/pt.ptinovacao.mtom.na D/HTTPServer: Thread Started:
25883

07—14 03:33:44.428 25330-—-25764/pt.ptinovacao.mtom.na I/CreateResources: Registering
application: HealthConsumerNA—hammerhead —04506dfa25231287—TesteFEUP to: /m2m/
applications

07—14 03:33:44.488 25330-—-25882/pt.ptinovacao.mtom.na I/TLS_SNI: Setting SNI hostname

07—14 03:33:44.488 25330-—25882/pt.ptinovacao.mtom.na D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 03:33:45.058 25330-—-25882/pt.ptinovacao.mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:33:45.508 25330-—25882/pt.ptinovacao.mtom.na W/ HTTPClient: RESPONSE HTTP/1.1
405 Method Not Allowed

07—14 03:33:45.528 25330—-25764/pt.ptinovacao.mtom.na D/SCL: Application already exists.

Restoring from storage ...

07—14 03:33:45.568 25330—25764/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 377
K, 15% free 4304K/5048K, paused 14ms, total 16ms

07—14 03:33:45.738 25330-—25764/pt.ptinovacao.mtom.na D/SCL: Memory database
successfully read!

07—14 03:33:46.498 25330—25764/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/TesteTrafego2hammerhead —04506dfa25231287 —TesteFEUP/
applications

07—14 03:33:46.518 25330—25764/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/hammerhead —04506dfa25231287 —TesteFEUP/applications

07—14 03:33:46.528 25330—25764/pt.ptinovacao.mtom.na I/RetrieveResources: Retrieving
Applications: /m2m/scls/hammerhead —04506dfa25231287 —AssignedIP/applications

07—14 03:33:46.628 25330—25882/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 618
K, 19% free 4237K/5224K, paused 13ms, total 13ms

07—14 03:33:47.398 25330-—25764/pt.ptinovacao.mtom.na D/CreateResources: Registering
contentlnstance to /m2m/localAPI/contentlnstance

07—14 03:33:48.868 25330-—25882/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 473
K, 18% free 4299K/5224K, paused 15ms, total 15ms

07—14 03:33:49.498 25330-—25882/pt.ptinovacao.mtom.na I/TLS_SNI: Setting SNI hostname

07—14 03:33:49.498 25330-—-25882/pt.ptinovacao.mtom.na D/TLS_SNI: Hostname: phonegw.nscl.
m2m. ptinovacao . pt

07—14 03:33:49.638 25330-—25882/pt.ptinovacao.mtom.na I/TLS_SNI: Established TLSvl.2
connection with phonegw.nscl.m2m. ptinovacao.pt using SSL_RSA_WITH_RC4_128_MD5

07—14 03:33:50.268 25330—-25764/pt.ptinovacao.mtom.na D/SCL: All resources checked and
subscription is present.

07—14 03:33:50.648 25330-—25882/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 526
K, 18% free 4303K/5224K, paused 13ms, total 13ms

07—14 03:33:50.688 25330—-25764/pt.ptinovacao.mtom.na D/SCL: All resources checked and
subscription is present.

07—14 03:34:03.088 25330—25883/pt.ptinovacao.mtom.na D/HandleRequests: Local connection
: New Container: 1405305242955 —-ZEPHYR

07—14 03:34:03.088 25330-—25883/pt.ptinovacao.mtom.na I/SCL: Container 1405305242955 —
ZEPHYR is now active.

07—14 03:34:06.988 25330-—-25330/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed 70K
, 18% free 4335K/5224K, paused 14ms, total 14ms

07—14 03:34:06.988 25330-—-25330/pt.ptinovacao.mtom.na I/dalvikvm—heap: Grow heap (frag
case) to 4.804MB for 225520—byte allocation

07—14 03:34:07.018 25330—25339/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed <IK
, 17% free 4554K/5448K, paused 25ms, total 25ms

07—14 03:34:07.038 25330-—25330/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed <IK
, 17% free 4555K/5448K, paused 14ms, total 15ms

07—14 03:34:07.038 25330-—-25330/pt.ptinovacao.mtom.na I/dalvikvm—heap: Grow heap (frag
case) to 7.223MB for 2536936—byte allocation

07—14 03:34:07.058 25330—25339/pt.ptinovacao.mtom.na D/dalvikvm: GC_FOR_ALLOC freed OK,
12% free 7033K/7928K, paused 20ms, total 20ms

C.4 Disconnection after using local API

07—14 03:34:07.968
chosen to start.
07—14 03:34:08.098

25330—-25330/pt

125

.ptinovacao .mtom.na I/CommandsActivity: Sensor ZEPHYR

25330—-25764/pt. ptinovacao .mtom.na D/CreateResources: Registering
contentlnstance to /m2m/localAPI/contentInstance
25330—25883/pt.ptinovacao.mtom.na D/HandleRequests: Local connection

07—14 03:34:18.278

ContentInstance of Container:

07—14 03:34:18.558 25330-25883/pt
K, 9% free 8151K/8868K, paused

07—14 03:34:18.668 25330-—-25883/pt
Updated. Array Size: 7

07—14 03:34:28.308 25330-25883/pt

ContentInstance of Container:

07—14 03:34:28.358 25330-—-25883/pt
Updated. Array Size: 16
07—14 03:34:38.278 25330-—25883/pt

Contentlnstance of Container:

1405305242955 —ZEPHYR

.ptinovacao .mtom.na D/dalvikvm: GC_FOR_ALLOC freed 350
10ms, total 12ms

.ptinovacao.mtom.na D/TreatSensorData: Measurement
.ptinovacao .mtom.na D/HandleRequests: Local connection
1405305242955 —ZEPHYR
.ptinovacao.mtom.na D/TreatSensorData: Measurement
.ptinovacao.mtom.na D/HandleRequests: Local connection

1405305242955 —ZEPHYR

07—14 03:34:38.318 25330-—25883/pt.ptinovacao.mtom.na D/TreatSensorData: Measurement
Updated. Array Size: 25

07—14 03:34:42.388 25330-—-25330/pt.ptinovacao.mtom.na I/ShowMeasurements: Sent intent to
stop Mobile Gateway.

07—14 03:34:42.418 25330-—25330/pt.ptinovacao.mtom.na D/MainService: M2M NA Stopping

07—14 03:34:42.438 25330—25330/pt.ptinovacao.mtom.na D/InternetManager: InternetManager
Service Stopping

07—14 03:34:42.438 25330-—25330/pt.ptinovacao.mtom.na D/SCL: NA_SCL Stopping

07—14 03:34:42.718 25330—25330/pt.ptinovacao.mtom.na D/SCL: Successfully saved state to
storage .

07—14 03:34:42.718 25330-—25330/pt.ptinovacao.mtom.na V/HTTPClient: Outbound External
Traffic: 6105. Inbound External Traffic: 8224

07—14 03:34:42.718 25330—25330/pt.ptinovacao.mtom.na V/HTTPClient: Outbound Internal
Traffic: 1286. Inbound Internal Traffic: 1108

07—14 03:34:42.718 25330-—25330/pt.ptinovacao.mtom.na V/ServerTraffic: Outbound External
Traffic: 0. Inbound External Traffic: 0

07—14 03:34:42.718 25330-—-25330/pt.ptinovacao.mtom.na V/ServerTraffic: Outbound Internal
Traffic: 4548. Inbound Internal Traffic: 5197

07—14 03:34:42.718 25330-—25882/pt.ptinovacao.mtom.na D/HTTPClient: HTTP Client Shut
Down

07—14 03:34:42.778 25330-—-25330/pt.ptinovacao.mtom.na I/MainService: Stopping Service.

Goodbye

126 Mobile M2M NA Logs

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

Gartner Says Annual Smartphone Sales Surpassed Sales of Feature Phones for the First Time
in 2013. http://www.gartner.com/newsroom/id/2665715. Online; accessed 20-
06-2014.

ETSI TS 102 690 V2.1.1 (2013-10) Machine-to-Machine communications (M2M); Func-

tional architecture, 2013.

Focus Group on M2M Service Layer. D2.1 — Version 1.0: M2M service layer: Requirements
and architectural framework. Technical report, ITU-T, April 2014.

Guenter Klas (Vodafone), Friedhelm Rodermund (Vodafone), Zach Shelby (ARM),
Sandeep Akhouri (Ericsson), and Jan Holler (Ericsson). White Paper: ”LightweitghtM2M” :
Enabling Devicemanagement and applications for the Internet of Things, March 2014.

Lightweight Internet protocols for web enablement of sensors using constrained gateway
devices, 2013 International Conference on Computing, Networking and Communications
(ICNC 2013). IEEE, 2013.

RabbitMQ. Amqgp 0.9.1 model explained. https://www.rabbitmg.com/tutorials/
amgp-concepts.html. Online; accessed 11-02-2014.

Malcolm Clarke, Joost de Folter, Charles Palmer, and Vivek Verma. Building point
of care health technologies on the IEEE 11073 health device standards. In 2013
IEEE Point-of-Care Healthcare Technologies (PHT), pages 117-119. IEEE, January
2013. URL: http://ieeexplore.ieee.org/articleDetails. jsp?arnumber=
6461298,doi1:10.1109/PHT.2013.6461298.

Biomedical Engineering - ECG Assignment. http://eleceng.dit.ie/tburke/
biomed/assignmentl.html. Online; accessed 20-06-2014.

Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. Energy con-
sumption in mobile phones: A measurement study and implications for network applications.
In ACM SIGCOMM Internet Measurement Conference, IMC, pages 280-293. ACM Press,
2009.

127

http://www.gartner.com/newsroom/id/2665715
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6461298
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6461298
http://dx.doi.org/10.1109/PHT.2013.6461298
http://eleceng.dit.ie/tburke/biomed/assignment1.html
http://eleceng.dit.ie/tburke/biomed/assignment1.html

128

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

Aeronautics and National Research Council Space Engineering Board. The Global Po-
sitioning System:A Shared National Asset. The National Academies Press, 1995. URL:
http://www.nap.edu/openbook.php?record_1id=4920.

Rongxing Lu, Xu Li, Xiaohui Liang, Xuemin Shen, and Xiaodong Lin. GRS: the green,
reliability, and security of emerging machine to machine communications. IEEE Commu-
nications Magazine, 49(4):28-35, April 2011. URL: http://dx.doi.org/10.1109/
MCOM.2011.5741143,do1:10.1109/MCOM.2011.5741143.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.
Computer Networks, 54(15):2787-2805, 2010. URL: http://dx.doi.org/10.1016/
J.comnet.2010.05.010,doi:10.1016/7j.comnet.2010.05.010.

ETSI TR 102 935 V2.1.1 (2012-09) Machine-to-Machine communications (M2M); Applica-
bility of M2M architecture to Smart Grid Networks, Impact of Smart Grids on M2M platform,
2012.

ETSI TR 102 691 VI1.1.1 (2010-05) Machine-to-Machine communications (M2M); Smart
Metering Use Cases, 2010.

Min Chen, Jiafu Wan, Sergio Gonzalez, Xiaofei Liao, and Victor C.M. Leung. A
Survey of Recent Developments in Home M2M Networks. IEEE Communica-
tions Surveys & Tutorials, pages 1-17, 2014. URL: http://www.scopus.com/
inward/record.url?eid=2-s2.0-84888162287&partnerID=tz0tx3ylhttp:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6674156,
doi:10.1109/SURV.2013.110113.002409.

Android Operating System. http://www.android.com/. Online; accessed 29-06-2014.

GE Moore. Cramming more components onto integrated circuits. Electronics, 38(8),
1965. URL: http://web.eng.fiu.edu/npala/EEE5425/Gordon_Moore_1965_
Article.pdf.

IBM. Mqtt v3.1 protocol specification. http://public.dhe.ibm.com/software/
dw/webservices/ws—-mgtt /MQTT_V3.1_Protocol_Specific.pdf,2010. Online;
accessed 27-06-2014.

Jon Tong-Seng Quah and Guey Long Lim. Push selling—Multicast messages to wireless
devices based on the publish/subscribe model. Electronic Commerce Research and Applica-
tions, 1(3-4):235-246, September 2002.

3GPP. Service requirements for Machine-Type Communications (MTC); stage 1, release 12.
Technical Report TS 22.368 V12.3.0, 3GPP, 2013.

http://www.nap.edu/openbook.php?record_id=4920
http://dx.doi.org/10.1109/MCOM.2011.5741143
http://dx.doi.org/10.1109/MCOM.2011.5741143
http://dx.doi.org/10.1109/MCOM.2011.5741143
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://www.scopus.com/inward/record.url?eid=2-s2.0-84888162287&partnerID=tZOtx3y1 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6674156
http://www.scopus.com/inward/record.url?eid=2-s2.0-84888162287&partnerID=tZOtx3y1 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6674156
http://www.scopus.com/inward/record.url?eid=2-s2.0-84888162287&partnerID=tZOtx3y1 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6674156
http://dx.doi.org/10.1109/SURV.2013.110113.00249
http://www.android.com/
http://web.eng.fiu.edu/npala/EEE5425/Gordon_Moore_1965_Article.pdf
http://web.eng.fiu.edu/npala/EEE5425/Gordon_Moore_1965_Article.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf

BIBLIOGRAPHY 129

[21] 3GPP. Technical Specification Group Services and System Aspects; Study on Facilitating
Machine to Machine Communication in 3GPP Systems. Technical Report TR 22.868, 3GPP,
2007.

[22] ETSITS 102 689 V2.1.1 (2013-07) Machine-to-Machine communications (M2M); M2M ser-

vice requirements, 2013.

[23] Focus Group on M2M Service Layer. D1.1 — Version 1.0: M2M use cases: e-health. Tech-
nical report, ITU-T, April 2014.

[24] Focus Group on M2M Service Layer. D0.1 — Version 1.0: M2M standardization activities
and gap analysis: e-health. Technical report, ITU-T, April 2014.

[25] Focus Group on M2M Service Layer. D0.2 — Version 1.0: M2M enabled ecosystems: e-
health. Technical report, ITU-T, April 2014.

[26] Focus Group on M2M Service Layer. Y.2060: Overview of the Internet of things, June 2012.

[27] Focus Group on M2M Service Layer. D3.1 — Version 1.0: M2M service layer: APIs and
protocols overview. Technical report, ITU-T, April 2014.

[28] OneM2M. http://www.onem2m.org/. Online; accessed 24-06-2014.

[29] Specification detail: Technical realization of the Short Message Service (SMS). http:
//www.3gpp.org/DynaReport/23040.htm. Online; accessed 05-07-2014.

[30] ZigBee. http://www.zigbee.org/. Online; accessed 05-07-2014.

[31] N. Kushalnagar, Intel Corp, G. Montenegro, and Microsoft Corporationand C. Schumacher.
IPv6 over Low-Power Wireless Personal Area Networks (6LOWPANSs): Overview, Assump-
tions, Problem Statement, and Goals. RFC 4919, Danfoss A/S, August 2007. URL:
http://www.rfc-editor.org/rfc/pdfrfc/rfc4919.txt.pdf.

[32] IEEE 802.15.4: Low Rate WPAN. http://www.ieee802.0rg/15/pub/TG4.html.
Online; accessed 05-07-2014.

[33] Lightweight Machine to Machine Technical Specification [Version 1.0], December 2013.

[34] Roy T. Fielding. Architectural styles and the design of network-based software architec-
tures. http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_
dissertation.pdf, 2000. Online; accessed 26-06-2014.

[35] T. Berners-Lee, MIT/LCS, R. Fielding, U.C. Irvine, L. Masinter, and Xerox Corporation.
Transmission Control Protocol. RFC 2396, Network Working Group, August 1998. URL:
http://www.ietf.org/rfc/rfc2396.txt.

http://www.onem2m.org/
http://www.3gpp.org/DynaReport/23040.htm
http://www.3gpp.org/DynaReport/23040.htm
http://www.zigbee.org/
http://www.rfc-editor.org/rfc/pdfrfc/rfc4919.txt.pdf
http://www.ieee802.org/15/pub/TG4.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ietf.org/rfc/rfc2396.txt

130

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

BIBLIOGRAPHY

R. Fielding, UC Irvine, J. Gettys, Compaq/W3C, J. Mogul, Compagq, H. Frystyk, W3C/MIT,
L. Masinter, Xerox, P. Leach, Microsoft, T. Berners-Lee, and W3C/MIT. Hypertext Transfer
Protocol — HTTP/1.1. RFC 2616, Network Working Group, June 1999. URL: http://
tools.ietf.org/pdf/rfc2616.pdf.

Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and Arthur Se-
cret. The World-Wide Web. Communications of the ACM, 37(8):76-82, August 1994,
URL: http://dl.acm.org/citation.cfm?id=179606.179671, doi:10.1145/
179606.179671.

T. Dierks, Certicom, and C. Allen. The TLS Protocol, Version 1.0. RFC 2246, Network
Working Group, January 1999. URL: http://www.ietf.org/rfc/rfc2246.txt.

R. Fielding, UC Irvine, J. Gettys, J. Mogul, DEC, H. Frystyk, T. Berners-Lee, and MIT/LCS.
Hypertext Transfer Protocol — HTTP/1.1. RFC 2068, Network Working Group, January
1997. URL: http://tools.ietf.org/pdf/rfc2068.pdf.

Jon Postel. Transmission Control Protocol. RFC 793, Information Sciences Institute, Uni-
versity of Southern California, September 1981. URL: http://www.ietf.org/rfc/
rfc793.txt.

J Postel. User Datagram Protocol. RFC 768, Information Sciences Institute, University
of Southern California, August 1980. URL: http://tools.ietf.org/pdf/rfc768.
pdf.

Z. Shelby, ARM, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252, Internet Engineering Task Force, June 2014. URL: http://tools.
ietf.org/html/rfc7252.

ETSI, IPSO Alliance, and OMA. CoAP 3 & OMA Lightweight M2M
Plugtest. http://www.etsi.org/news-events/past-events/
693-coap-oma—-lightweight-m2m, November 2013. Online; accessed 07-02-2014.

Carsten Bormann, Angelo P. Castellani, and Zach Shelby. CoAP: An Application Pro-
tocol for Billions of Tiny Internet Nodes. IEEE Internet Computing, 16(2):62-67,
March 2012. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6159216,doi1:10.1109/MIC.2012.209.

J Postel and ISI. User Datagram Protocol. RFC 768, ISI, August 1980. URL: http:
//tools.ietf.org/pdf/rfc768.pdf.

Suresh Krishnan and Sheila Frankel. IP Security (IPsec) and Internet Key Exchange (IKE)
Document Roadmap. RFC 6071, IETF, February 2011. URL: http://tools.ietf.
org/html/rfc6071.

http://tools.ietf.org/pdf/rfc2616.pdf
http://tools.ietf.org/pdf/rfc2616.pdf
http://dl.acm.org/citation.cfm?id=179606.179671
http://dx.doi.org/10.1145/179606.179671
http://dx.doi.org/10.1145/179606.179671
http://www.ietf.org/rfc/rfc2246.txt
http://tools.ietf.org/pdf/rfc2068.pdf
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/pdf/rfc768.pdf
http://tools.ietf.org/pdf/rfc768.pdf
http://tools.ietf.org/html/rfc7252
http://tools.ietf.org/html/rfc7252
http://www.etsi.org/news-events/past-events/693-coap-oma-lightweight-m2m
http://www.etsi.org/news-events/past-events/693-coap-oma-lightweight-m2m
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6159216
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6159216
http://dx.doi.org/10.1109/MIC.2012.29
http://tools.ietf.org/pdf/rfc768.pdf
http://tools.ietf.org/pdf/rfc768.pdf
http://tools.ietf.org/html/rfc6071
http://tools.ietf.org/html/rfc6071

BIBLIOGRAPHY 131

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security Version 1.2.
RFC 6347, IETF, January 2012. URL: http://tools.ietf.org/search/rfc6347.

Jon Postel. Transmission Control Protocol. RFC 793, Information Sciences Institute, Uni-
versity of Southern California, September 1981. URL: http://www.ietf.org/rfc/
rfc793.txt.

OASIS Standard. Oasis advanced message queuing protocol (amgp) version 1.0. http:
//docs.oasis-open.org/amgp/core/vl1.0/os/amgp-core-complete-vl.
0-os.pdf. Online; accessed 11-02-2014.

Ed. A. Melnikov, Isode Limited, Ed. K. Zeilenga, and OpenLDAP Foundation. Simple Au-
thentication and Security Layer (SASL). RFC 4422, Network Working Group, June 2006.
URL: http://www.ietf.org/rfc/rfcdd22.txt.

S. Blake-Wilson, BCI, M. Nystrom, RSA Security, D. Hopwood, Independent Consultant,
J. Mikkelsen, Transactionware, T. Wright, and Vodafone. Transport Layer Security (TLS)
Extensions. RFC 4366, Network Working Group, June 2006. URL: http://www.ietf.
org/rfc/rfcd366.txt.

World Health Organization - E-Health. http://www.who.int/trade/glossary/
story021/en/. Online; accessed 29-06-2014.

Elina Mattila, Juha Pirkkd, Marion Hermersdorf, Jussi Kaasinen, Janne Vainio, Kai Sam-
posalo, Juho Merilahti, Juha Kolari, Minna Kulju, Raimo Lappalainen, and Ilkka Korhonen.
Mobile diary for wellness management—results on usage and usability in two user studies.
IEEE transactions on information technology in biomedicine : a publication of the IEEE En-
gineering in Medicine and Biology Society, 12(4):501-12, July 2008. URL: http://www.
ncbi.nlm.nih.gov/pubmed/18632330,doi:10.1109/TITB.2007.908237.

Joseph J Oresko, Heather Duschl, and Allen C Cheng. A wearable smartphone-based plat-
form for real-time cardiovascular disease detection via electrocardiogram processing. IEEE
transactions on information technology in biomedicine : a publication of the IEEE Engi-
neering in Medicine and Biology Society, 14(3):734-40, May 2010. URL: http://www.
ncbi.nlm.nih.gov/pubmed/20388600,doi:10.1109/TITR.2010.2047865.

Charles Worringham, Amanda Rojek, and lan Stewart. Development and feasibility
of a smartphone, ECG and GPS based system for remotely monitoring exercise in
cardiac rehabilitation. PloS one, 6(2):e14669, January 2011. URL: http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=3036581&tool=
pmcentrez&rendertype=abstract,doi:10.1371/journal .pone.0014669.

http://tools.ietf.org/search/rfc6347
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://www.ietf.org/rfc/rfc4422.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.who.int/trade/glossary/story021/en/
http://www.who.int/trade/glossary/story021/en/
http://www.ncbi.nlm.nih.gov/pubmed/18632330
http://www.ncbi.nlm.nih.gov/pubmed/18632330
http://dx.doi.org/10.1109/TITB.2007.908237
http://www.ncbi.nlm.nih.gov/pubmed/20388600
http://www.ncbi.nlm.nih.gov/pubmed/20388600
http://dx.doi.org/10.1109/TITB.2010.2047865
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3036581&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3036581&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3036581&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1371/journal.pone.0014669

132

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

BIBLIOGRAPHY

Christopher C. Tsai, Gunny Lee, Fred Raab, Gregory J. Norman, Timothy Sohn, William G.
Griswold, and Kevin Patrick. Usability and Feasibility of PmEB: A Mobile Phone Ap-
plication for Monitoring Real Time Caloric Balance. Mobile Networks and Applica-
tions, 12(2-3):173—-184, July 2007. URL: http://link.springer.com/10.1007/
s11036-007-0014-4,doi1:10.1007/s11036-007-0014-4.

Jianchu Yao and Steve Warren. Applying the ISO/IEEE 11073 standards to wearable home
health monitoring systems. Journal of clinical monitoring and computing, 19(6):427-36,
December 2005. URL: http://www.ncbi.nlm.nih.gov/pubmed/16437294, doi:
10.1007/s10877-005-2033~-17.

Malcolm Clarke, Douglas Bogia, Kai Hassing, Lars Steubesand, Tony Chan, and Deepak
Ayyagari. Developing a standard for personal health devices based on 11073. Con-
ference proceedings : ... Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Con-
ference, 2007(Dim):6175-7, January 2007. URL: http://www.ncbi.nlm.nih.gov/
pubmed/18003430,d0i:10.1109/IEMBS.2007.4353764.

ISO/IEC. Information technology - open systems interconnection - basic reference model:
The basic model. International Standard 7498-1, ISO/IEC, 1994.

Google Inc. Android BluetoothHealth API. http://developer.android.com/
reference/android/bluetooth/BluetoothHealth.html.

Continua Health Alliance. www.continuaalliance.org/.

ETSI TS 102 921 V2.1.1 (2013-12) Machine-to-Machine communications (M2M); mla, dla
and mld interfaces, 2013.

V. Ryan, S. Seligman, R. Lee, and Inc. Sun Microsystems. The Base16, Base32, and Base64
Data Encodings. RFC 4648, Network Working Group, October 2006. URL: http://
tools.ietf.org/pdf/rfc4648.pdf.

Eclipse Foundation OpenM2M (OM2M). http://eclipse.org/om2m/. Online; ac-
cessed 20-06-2014.

Actility. Cocoon™- ETSI M2M Gateway Open Source Implementation. http://cocoon.
actility.com/. Online; accessed 08-07-2014.

V. Ryan, S. Seligman, R. Lee, and Inc. Sun Microsystems. Schema for Representing Java(tm)
Objects in an LDAP Directory. RFC 2713, Network Working Group, October 1999. URL.:
http://tools.ietf.org/pdf/rfc2713.pdf.

W3C. Extensible markup language (xml). http://www.w3.org/TR/WD-xm1-961114.
html, November 1996. Online; accessed 31-01-2014.

http://link.springer.com/10.1007/s11036-007-0014-4
http://link.springer.com/10.1007/s11036-007-0014-4
http://dx.doi.org/10.1007/s11036-007-0014-4
http://www.ncbi.nlm.nih.gov/pubmed/16437294
http://dx.doi.org/10.1007/s10877-005-2033-7
http://dx.doi.org/10.1007/s10877-005-2033-7
http://www.ncbi.nlm.nih.gov/pubmed/18003430
http://www.ncbi.nlm.nih.gov/pubmed/18003430
http://dx.doi.org/10.1109/IEMBS.2007.4353764
http://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
http://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
www.continuaalliance.org/
http://tools.ietf.org/pdf/rfc4648.pdf
http://tools.ietf.org/pdf/rfc4648.pdf
http://eclipse.org/om2m/
http://cocoon.actility.com/
http://cocoon.actility.com/
http://tools.ietf.org/pdf/rfc2713.pdf
http://www.w3.org/TR/WD-xml-961114.html
http://www.w3.org/TR/WD-xml-961114.html

BIBLIOGRAPHY 133

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

ISO 8879. Information Processing - Text and Office Systems - Standard Generalized Markup
Language (SGML). ISO Standard, 1986.

M. Murata E. Whitehead, UC Irvine. XML Media Types. RFC 2376, Fuji Xerox Info.
Systems, July 1998. URL: http://tools.ietf.org/html/rfc2376.

Douglas Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627, JSON.org, July 2006. URL: http://tools.ietf.org/html/
rfcd627.

William Stallings. Cryptography and Network Security. Prentice Hall, 5 edition, 2010.

B. Kaliski and J. Staddon. PKCS 1: RSA Cryptography Specifications Version 2.0. RFC
2437, RSA Laboratories, October 1998. URL: http://www.ietf.org/rfc/rfc2437.
txt.

D. Cooper, S. Santesson, Microsoft, S. Farrell, Trinity College Dublin, S. Boeyen, Entrust,
R. Housley, Vigil Security, and W. Polk. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 5280, NIST, May 2008. URL: http:
//tools.ietf.org/pdf/rfc5280.pdf.

Zepyr HXM BT Heart Rate Monitor. http://zephyranywhere.com/products/
hxm-bluetooth—-heart-rate-monitor/. Online; accessed 28-06-2014.

Get the Android SDK. http://developer.android.com/sdk/index.html?utm_

source=weibolife. Online; accessed 09-06-2014.

Jetbrains IntelliJ IDEA. http://www. jetbrains.com/idea/. Online; accessed 09-
06-2014.

Apache Maven. http://maven.apache.org/. Online; accessed 09-06-2014.

Apache Subversion. http://subversion.apache.org/. Online; accessed 09-06-
2014.

Californium (Cf) CoAP framework. http://people.inf.ethz.ch/mkovatsc/
californium.php. Online; accessed 09-06-2014.

Eclipse Paho MQTT. http://www.eclipse.org/paho/. Online; accessed 09-06-
2014.

Android Dashboard - Version Statistics. https://developer.android.com/about/
dashboards/index.html. Online; accessed 09-06-2014.

NanoHttpd Library. https://github.com/NanoHttpd/nanohttpd. Online; ac-
cessed 09-06-2014.

http://tools.ietf.org/html/rfc2376
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2437.txt
http://tools.ietf.org/pdf/rfc5280.pdf
http://tools.ietf.org/pdf/rfc5280.pdf
http://zephyranywhere.com/products/hxm-bluetooth-heart-rate-monitor/
http://zephyranywhere.com/products/hxm-bluetooth-heart-rate-monitor/
http://developer.android.com/sdk/index.html?utm_source=weibolife
http://developer.android.com/sdk/index.html?utm_source=weibolife
http://www.jetbrains.com/idea/
http://maven.apache.org/
http://subversion.apache.org/
http://people.inf.ethz.ch/mkovatsc/californium.php
http://people.inf.ethz.ch/mkovatsc/californium.php
http://www.eclipse.org/paho/
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://github.com/NanoHttpd/nanohttpd

134 BIBLIOGRAPHY

[83] Performance Comparison of JSON frameworks for Android OS. https://github.com/

martinadamek/json—-android-compare. Online; accessed 09-06-2014.

[84] Wireshark. http://www.wireshark.org/. Online; accessed 21-06-2014.

https://github.com/martinadamek/json-android-compare
https://github.com/martinadamek/json-android-compare
http://www.wireshark.org/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context of the Project
	1.2 Motivation
	1.3 Objectives
	1.4 Structure

	2 State of the Art
	2.1 Publish-Subscribe Paradigm
	2.2 M2M Communications
	2.2.1 ETSI M2M Standard
	2.2.2 ITU M2M Service Layer
	2.2.3 OMA Lightweight M2M

	2.3 Communication Protocols
	2.3.1 Representational State Transfer
	2.3.2 MQTT
	2.3.3 AMQP

	2.4 eHealth
	2.4.1 Application Revision
	2.4.2 Communication Technologies

	2.5 Discussion

	3 Aspects of ETSI M2M Standard
	3.1 ETSI M2M Standard
	3.1.1 Resource Structure
	3.1.2 M2M Gateway
	3.1.3 M2M Network Application
	3.1.4 ETSI M2M Implementations

	3.2 Marshalling
	3.2.1 XML
	3.2.2 JSON

	3.3 Data Security Mechanisms

	4 ETSI Compliant Mobile M2M System
	4.1 Problem
	4.2 Approach
	4.2.1 Healthcare Use Case
	4.2.2 System Design
	4.2.3 Local Interface
	4.2.4 Mobile Applications Design

	4.3 Evaluation

	5 Implementation
	5.1 Technologies
	5.2 ETSI Protocol Implementation
	5.3 Bootstrap
	5.4 Web-Server
	5.5 ETSI Resource Structure Implementation
	5.6 Sensor Integration
	5.6.1 Sensor data storage
	5.6.2 Zephyr data

	5.7 Communication considerations
	5.7.1 Subscription Check
	5.7.2 Persistent Database
	5.7.3 Commands

	5.8 Mobile M2M GW
	5.8.1 Android Implementation
	5.8.2 Communication
	5.8.3 Commands handling

	5.9 Mobile M2M NA
	5.9.1 Android Implementation
	5.9.2 Communication
	5.9.3 Interface Commands

	5.10 Local Interface

	6 Results
	6.1 Proof of Concept
	6.2 Traffic Measurements
	6.2.1 Resource Registration
	6.2.2 Local Interface vs NSCL
	6.2.3 Discussion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	A ETSI classes changes
	B Mobile M2M GW Logs
	B.1 NSCL
	B.2 Local API
	B.3 Connectivity Lost Test
	B.4 Disconnection after using local API

	C Mobile M2M NA Logs
	C.1 NSCL
	C.2 Local API
	C.3 Connectivity Lost Test
	C.4 Disconnection after using local API

