
Rui Miguel Ferreira Mendes

Experiments with the Callas
Programming Language and its

Virtual Machine

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Setembro de 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143387224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Rui Miguel Ferreira Mendes

Experiments with the Callas
Programming Language and its

Virtual Machine
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Resumo

Redes de sensores sem fios (WSN) são sistemas distribuidos compostos por pequenos

dispositivos capazes de fazer medições de determinadas grandezas ambientais, proces-

sar dados e comunicar entre si. Estes dispositivos são, tipicamente, muito limitados em

termos de CPU, memória e recursos de energia. Juntando o facto de que as WSN são

maioritariamente desenhadas para aplicações muito espećıficas e devem ser capazes de

se auto-configurar em aplicações com um grande número de sensores, faz com que a

programação deste tipo de redes seja uma tarefa dif́ıcil.

Atualmente existe um número considerável de linguagens de programação para WSN

que fornecem niveis distintos de percepção do hardware e da rede. Algumas delas

forçam o utilizador a programar praticamente ao ńıvel do hardware, mas outras usam

compiladores sofisticados para abstrair dos sensores e da infra-estrutura de rede. Ape-

sar disso, todas elas falham num importante aspecto. Nenhuma é baseada num modelo

para descrever computações numa rede de sensores, que permita que propriedades da

linguagem, o seu ambiente de execução e as suas aplicações sejam demonstradas.

A linguagem de programação Callas para WSN é baseada num modelo formal que

garante propriedades como ”type-safety” e “soundness” do sistema de execução. Isto

traduz-se numa garantia de segurança para as aplicações no sentido em que erros

comuns na execução podem ser evitados por implementação ou estaticamente em

tempo de compilação. A linguagem usa um formato de bytecode personalizado e

corre-o numa máquina virtual criada para esse propósito.

Nesta tese apresentamos uma série de experiências com a linguagem de programação

Callas e a sua máquina virtual, com o objectivo de verificar a sua usabilidade e expres-

sividade através da introdução de novos construtores, novas abstracções, modificações

no modelo adjacente, e optimizando o consumo de recursos. Relatamos as nossas

descobertas fornecendo a base lógica e os detalhes da implementação, e exemplificando

as novas caracteŕısticas com exemplos escritos em Callas.
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Abstract

Wireless sensor networks (WSN) are distributed systems composed of small devices

capable of sensing the environment, processing data, and communicating with each

other. These devices are typically very limited in terms of CPU, memory, and power

resources. Joining the fact that WSN are mostly designed for very specific applications,

and must be able to self-configure in large-scale sensor applications, makes the task

of programming this type of networks very challenging.

Currently exists a considerable number of programming languages for WSN providing

distinct levels of hardware and network awareness. Some of them force the user to

program basically at the hardware level, but others use sophisticated compilers to

abstract away from the sensor devices and from the network infra-structure. Nev-

ertheless, all of them fail in one important aspect. None is based on a model for

describing computations in sensor networks allowing properties of the language, its

runtime and applications to be demonstrated.

The Callas programming language for wireless sensor networks is based on a formal

model that allows properties like type-safety and soundness of the runtime system to

be proved. This translates into a safety assurance for applications in the sense that

common runtime errors can be prevented by design or statically at compile time. The

language uses a custom bytecode format and runs it on a virtual machine created for

this purpose.

In this thesis we present a series of experiments with the Callas programming language

and its virtual machine with the goal of verifying its usability and expressiveness

through the introduction of new constructs, new abstractions, changes to the under-

lying model, and optimizing the resource footprint. We report our findings providing

the design rationale and implementation details, and exemplifying the new features

with examples written in Callas.
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Chapter 1

Introduction

Wireless Sensor Networks (WSN) can be viewed as collections of small, low-cost sensor

devices communicating over wireless channels [1]. The sensor network is normally

divided into two groups: nodes and basestation (also called sink). The nodes are

the devices capable of sensing the environment and can be deployed over wide areas.

The basestation device is connected to a computer and allows the programmer to

collect and manipulate data. Applications in WSN are manifold and embrace different

areas [23]. A small overview of these possibilities can be found in Table 1.1.

WSN differ substantially from other mobile ad-hoc networks. The main differences

are: (a) they are mostly designed for very specific applications; (b) the sensor nodes

have very limited CPU, memory, and power resources; and (c) they must be able to

self-configure in large-scale sensor applications without human intervention [14]. All

these limitations make the task of programming WSN very challenging.

Currently there are several programming languages for WSN that provide distinct lev-

els of hardware and network abstraction. In PushPin [13], for example, the hardware

abstraction is absent and the user is required to program directly at the hardware

level. The language uses pieces of native code that are able to interact with each

other using a shared memory address space to communicate. Protothreads [7] for the

Contiki [6] operating system, is a more elaborated computation model, allowing the

creation of multi-threaded applications while maintaining the resources consumption

low. Another low-level language is the component-based nesC [11]. This language

makes use of the operating system TinyOS [21], calling functions from its modules.

Higher in the level of abstraction we have the macro-programming languages. This

type of languages uses sophisticated compilers to abstract away from the hardware

12



CHAPTER 1. INTRODUCTION 13

Areas Applications

Military
Enemy tracking

Biological and Chemical Attack Detection

Health
Patient Monitoring

Assisted Living

Biology
Animal Tracking

Animal and Plant Monitoring

Environment
Fire Detection

Flood Detection

Pollution Levels

Management
Traffic Control

Inventory Control

Industry

Factory Monitoring

Machine Monitoring

Gas Concentrations

Home Home Automation (Domotics)

Table 1.1: Overview of typical WSN applications

or from the network infra-structure. One example of a macro-programming language

is the TinyDB [16] language, where the programmer sees the sensor network as a

database, using SQL-like queries to obtain data from the devices. Similarly, there are

other languages like Cougar [9] that use a database model as an abstraction for the

sensor network. There are also languages which abstract the sensor network using

mobile agents (e.g., Sensorware [4] and Agilla [8]), streams (e.g., Regiment [18]) or

regions (e.g., Abstract Regions [22] and Kairos [12]). In [14] we have a comprehensive

review of programming languages for wireless sensor networks.

1.1 Problem Statement and Motivation

Current WSN programming languages are designed top-down by mapping high-level

constructs from their programming model into low-level runtimes, e.g., implemented

in nesC. This approach is prone to errors since: (a) there is often no underlying formal

model for the language; and (b) the semantics may not be preserved from the top level

constructs to their low-level implementations.
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Callas [15] is a programming language based on a formal model that aims to be

correct by design. The model allows properties of the language and its runtime

to be demonstrated. Furthermore, it is a type-safe language and its runtime is

sound. Type-safety means that well-typed applications will not violate the semantics

of the programming language. The soundness of the runtime ensures that it will not

incorrectly execute applications and produce runtime errors.

The motivation for this thesis emerged from the need of evaluating the usability, the

expressiveness and, in some aspects, the efficiency of the language. There were several

questions that were raised becoming the basis for this thesis:

• “Can we seamlessly implement common patterns in WSN applications with

Callas?”;

• “Can we make programming easier by introducing new abstractions or extending

existing ones?”;

• “Can we make the runtime system more efficient while preserving its sound-

ness?”.

With these questions in mind, some changes to the language and to the model were

thought and more demanding applications were tested in Callas. Here we present a

detailed account of these experiments.

1.2 Contributions

In order for the work in this thesis to be possible it was mandatory the studying of the

Callas formal model specification and its compiler and virtual machine implementa-

tion. It was also necessary an exploratory interaction with the sunSPOT [20] devices,

and the learning of the sunSPOT SDK needed to program those devices, since the

language runtime currently only supports this platform. After this learning process,

several work on the language was made, and the main contributions are:

• evaluation of the expressiveness of Callas through examples;

• a more friendly syntax;

• changes to the communication model and introduction of channel abstractions;
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• changes to the timer model and a more efficient implementation;

• new abstract syntax and virtual machine specification.

1.3 Outline

In Chapter 2, we present the Callas programming model, its syntax and bytecode

created to run on a virtual machine. Chapter 3 contains the description of the

Callas virtual machine, presenting its data structures and state transitions for every

instruction. The contributions for this thesis are described in Chapter 4 and 5.

Chapter 4 explains the rationale and implementation of the changes, and Chapter 5

the new syntax and semantics for the Callas programming language. Chapter 6

contains a description of the implementation of a large demo created in Callas using

the new syntax, which use a prediction model to minimize the communication in a

sensor network application. Finally, Chapter 7 concludes this thesis with some final

considerations.



Chapter 2

The Callas Programming Language

Callas [15, 17] is a calculus for programming WSN that aims to establish a formal

framework upon which programming languages, runtime systems, and, ultimately,

applications may be built safe by design, in the sense that they can be statically

guaranteed not to produce runtime errors. Working upwards from this calculus and

its static and operation semantics, a programming language and a matching virtual

machine were designed and implemented. The language is type-safe and the runtime

preserves the semantics of the language, a property also known as soundness. In

this chapter we present the language syntax and the compilation process into Callas

bytecode.

2.1 Language Syntax

The Callas language syntax is inspired in the Python programming language, using

the white space to delimit blocks. We will use a simple application written in Callas

to present its syntax. This application reads the temperature from the network every

second for one minute. Figure 2.1 shows the file main.calnet which contains information

1 i n t e r f a c e = i f a c e . c a l t y p e

2 e x t e r n s = sunspo t . c a l t y p e

3

4 s e n s o r : code = s i n k . c a l l a s

5 s e n s o r : code = samp le r . c a l l a s

Figure 2.1: The top level project file: main.calnet.

16
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about a Callas project. The interface attribute is used to specify the file that provides

the type for the application. The externs attribute is used to specify the file that

contains the type of the target devices, which in this case are the SunSPOT [20]

devices (Figure 2.2).

1 defmodule Exte rn :

2 bool setLEDColor ( long pos , long red , long green , long b l u e )

3 bool setLEDOn ( long pos , bool i sOn )

4 bool l ogLong ( long v a l )

5 bool l ogDoub le ( double v a l )

6 bool l o g S t r i n g ( s t r i n g v a l )

7 s t r i n g macAddr ( )

8 long getTime ( )

9 long b a t t L e v e l ( )

10 long ge tLum ino s i t y ( )

11 double getTemperature ( )

12 double getAcce lX ( )

13 double getAcce lY ( )

14 double ge tAcce lZ ( )

15 double ge tAcc e l ( )

16 double g e t I n c lX ( )

17 double g e t I n c lY ( )

18 double g e t I n c l Z ( )

Figure 2.2: The hardware interface: sunspot.caltype.

The attribute sensor contains references to the files that implement the behavior for

each type of node when the application is deployed. In this specific case, we have code

for two different types of devices: sinks and samplers. For each instance of sensor, the

Callas compiler uses the initial attributes to produce a corresponding byte-code file,

e.g., sink.calbc and sampler.calbc.

Figure 2.3 presents the code for the iface.caltype. For this application we defined three

main modules where Nil represents the empty module. Each module provides the

interfaces for the functions it implements. An instance of module Sensor, in this case,

must implement two functions: logData and listen, plus the functions in module Deploy

which it extends. All of the defined modules can be used freely as arguments or return

values in the interfaces of functions and may also be extended. For example, function

deploy has an argument which is a module of type Sampler.

The code for both sink and sampler nodes must implement the application interface.
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1 defmodule Sampler :

2 N i l sample ( )

3 N i l run ( )

4

5 defmodule Deploy :

6 N i l dep l oy ( Sampler samp le r )

7

8 defmodule Sensor ( Deploy ) :

9 N i l logData ( s t r i n g mac , double temp )

10 N i l l i s t e n ( )

Figure 2.3: The application type: iface.caltype.

In some cases a function may not be required by one of the sides, in which case its

body is composed of the process pass. Figure 2.4 represents the code for the sink.

The first instructions to be executed in a Callas application are the ones outside the

modules, i.e, the top-level instructions, and therefore the application starts by storing

the module logger in the sensor memory (line 24), and then sends a deploy message with

the module sampler as the argument (line 25). The communication is made through

a preset channel, that uses the primitive radiogram protocol, since this application

was developed for the SunSPOT devices. When sending a message the nodes always

send it to the sink, and the sink always sends it to all nodes. The last instruction

implements a timer that runs the function listen every second for one minute (line 26).

Analyzing the rest of the code, the first module defined is the sampler that implements

two functions: run and sample. Function run simply creates a timer that runs the

sample every second for one minute (line 5). This last function queries the hardware

for the MAC address and temperature (lines 7-8), and sends a logData message with

that information (line 9). Actually, this module contains the code that will run on the

samplers, so the destination of the message is the sink.

The other module present in the code is the logger. This module has two main functions

defined, since the function deploy is not required in the sink side. The function logData

is a simple function that prints the information received as argument (lines 14-20). The

samplers will use this function as message to send the MAC address and temperature

value. The last function, listen, is used to receive incoming messages (lines 21-22).

In the samplers side the code is quite simple (Figure 2.5). We create a timer using

listen to try to receive any message sent by the sink. The deploy is the main function

for the sensing nodes, since it receives a code module as argument and runs it, by



CHAPTER 2. THE CALLAS PROGRAMMING LANGUAGE 19

1 from i f a c e import ∗
2

3 module samp le r of Sampler :

4 def run ( s e l f ) :

5 s e l f . sample ( ) every 1000 exp i re 60000

6 def sample ( s e l f ) :

7 mac = extern macAddr ( )

8 temp = extern getTemperature ( )

9 send l ogData (mac , temp )

10

11 module l o g g e r of Senso r :

12 def dep l oy ( s e l f , s amp le r ) :

13 pass

14 def l ogData ( s e l f , mac , temp ) :

15 extern l o g S t r i n g ( ”\nMAC add r e s s : ” )

16 extern l o g S t r i n g (mac)

17 extern l o g S t r i n g ( ”\nTemperature : ” )

18 extern l ogDoub le ( temp )

19 extern l o g S t r i n g ( ” C e l s i u s ” )

20 pass

21 def l i s t e n ( s e l f ) :

22 r e c e i v e

23

24 store l o g g e r

25 send dep l oy ( samp le r )

26 l i s t e n ( ) every 1000 exp i re 60000

Figure 2.4: The code for the sink side: sink.callas.

calling run function.

After deploying the application to the sunSPOTs, the application works as follow: the

sink sends the code to be executed to the sensing nodes (the module sampler). The

samplers, that immediately start to listen on the channel, receive the message and

run the code carried within. This code starts producing logData messages, which are

routed by the underlying radiogram protocol up to the sink where they are handled by

the function with the same name, that prints the data items. The samplers continue

to produce data, and the sink printing it as it arrives for sixty seconds.
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1 from i f a c e import ∗
2

3 module l o g g e r of Senso r :

4 def dep l oy ( s e l f , code ) :

5 code . run ( )

6 def l ogData ( s e l f , mac , temp ) :

7 pass

8 def l i s t e n ( s e l f ) :

9 r e c e i v e

10

11 store l o g g e r

12 l i s t e n ( ) every 1000 exp i re 60000

Figure 2.5: The code for the sensing nodes: sampler.callas.

2.2 The Concrete Syntax

In the previous section we presented the Callas syntax using an example. Now,

we will take a look at the concrete syntax of the language to better understand

how the language is structured. Figure 2.6 contains the Callas concrete syntax. A

program, p, is defined by a vector of type definitions, ~d, specifying the application

interface, followed by a vector of terms, ~t, containing the implementation of the

application. A type definition, d, is composed by a keyword, defmodule , followed by a

type identifier, T , and a set of function signatures, ~s. These function signatures contain

the information about the methods that compose this type definition, and maintain

information about the type of the function, τ , as well as the number and type of the

parameters, ~a, needed for the function. There are four types in the language: integer,

float, boolean, and a type identifier. This last one can be any type defined earlier in

the application. A term is also divided in four possibilities. It can be an assignment,

x = e; it can be a module, M , that uses a name, x, and its type, T , followed by a

vector of functions, ~f .A function is defined using a label, l, a set of arguments, ~x, and

a vector of terms, ~t. A term might also be a conditional, if v : ¶ ~t else : ¶ ~t, or an

expression, e.

There are different type of expressions in Callas: (a) a value, v, that carries the

data possible to be exchanged between sensors. It can be a variable, x, an integer,

a boolean or a floating point, (b) a unary or binary operation, where it uses one or

two values, v, respectively, and performs the desired operation, (c) a load or a store

operation: the first gets the module installed in the sensor, and the second stores
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p ::= ~d ~t Programs

d ::= defmodule T : ¶ ~s Type Defs.

s ::= τ l(~a)¶ Func. Sigs.

a ::= τ x Typed Params.

τ ::= Types

int integer

| float float

| bool boolean

| T type identifier

t ::= Terms

x = e ¶ assign

| M module

| e ¶ expression

| if v : ¶ ~t else : ¶ ~t conditional

M ::= module x of T : ¶ ~f Modules

f ::= def l(~x) : ¶ ~t Functions

e ::= Expressions

v value

| unop v unary op.

| v binop v binary op.

| load load

| store v store

| v || v merge modules

| v.l(~v) function call

| extern l(~v) external call

| l(~v) every v expire v timed call

| send l(~v) communication

| receive communication

v ::= Values

x variable

| . . . | 0 | . . . integer

| True | False boolean

| . . . | 0.0 | . . . floating point

The symbol ¶ represents the end-of-line character.

Figure 2.6: The syntax of Callas.

value, v, as the main module for the application, (d) a merge of two modules, v || v,

(e) a call v.l(~v) to a function, where v represents the module of the function l with

~v as the arguments to the function, (f) an external call, extern l(~v), to functions that

are hardware dependent. Whenever, we need to measure some physical property (e.g,

luminosity) that interacts directly with the hardware, this type of calls is used, (g) a

timed call, l(~v) every v expire v, used to call an installed function l(~v) periodically, (h)

a remote call, send l(~v), used to place a message 〈l(~v)〉 into the output queue, and (i)

a receiving process, receive , used to get a message from the input queue and add the

packaged function call, l(~v), to the run queue, where awaits for execution.

From the concrete syntax, it is possible to create an abstract syntax specifically to

sensors. The abstract syntax allows us to define the operational semantics of the

language resorting in some reduction rules [5]. In parallel, there is a type system
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which restricts the valid programs of the language. This, added to the operational

semantics, proves the type-safety of the language. Also, the type-safety property along

with the specification of the virtual machine, that will be presented later in this thesis,

guarantees the soundness of the virtual machine.

2.3 Compilation and Deployment

The Callas programming language uses a virtual machine to run its applications. But,

in order to run it, each of the files that compose a Callas project are first compiled

to a custom bytecode format. Figure 2.7 shows the runtime representation of the

bytecode. The top level of the bytecode is the program, P , and contains an array

of module definitions. A module definition, D, is a map of strings, containing the

function names, onto tuples representing the functions bodies. A function body, F , is

a tuple containing three integers that hold the number of parameters, of free variables

and of local variables for the function. It also contains a bytecode array, B, holding

the code for the function, and an array, U , that carries the constants that occur in

the source code for the function. The virtual machine works with basic data types

(boolean, integer, float) and with modules, M.

program P ∈ ArrayOf(D)
module bytecode D ∈MapOf(String 7→ F)
function bytecode F ∈ Int × Int × Int × B × U
values U ∈ ArrayOf(v)

function code B ∈ ArrayOf(c)

value v ∈ Bool ∪ Int ∪ Float ∪M
module M∈MapOf(String 7→ F ×ArrayOf(v))

instruction c ∈ {loadm i, loadm2 i, call, call2,merge, send, receive, timer, return,

jmp i, ift i, loadb, storeb, loadc i, load i, store i, dup, swap

binop, unop}

Figure 2.7: The byte-code format.

Modules are dynamic instances of module definitions since they store, for each of the

function in the module definition, the free variables together with the instructions,
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c, for the function body. The virtual machine is stack based allowing a compact

instruction set with few addressing modes. Thus, operands must be on top of the

operand stack in order to be used, and for that the virtual machine has load and store

instructions to move values between the function environment and the operand stack.

The instruction-set also contains instructions for handling modules, making calls,

receiving or sending values through the network, control-flow and a set of arithmetic

and logic operations.

The compilation process (Figure 2.8) is mainly composed by two steps. In the first

step, the source code for each file is transformed into a corresponding Callas bytecode

file. Then, the second step embeds the byte-code files in a .jar or .suite file, depending

on the target platform, at a specific point within the package hierarchy. This packet is

then deployed in the target platform and executed using sunSPOT specific commands.

At the time the applications starts to execute, e.g. startApp() for SunSPOT MIDlets,

the virtual machine loads the embedded byte-code into run-time data structures which

are used thereafter.

Figure 2.9 shows a textual representation of the file node.callas from the application

previously presented in order to better understand the translation from a Callas file

to the respective bytecode. The figure highlights the different methods implemented

in Callas. Each function contains the information about the parameters, free variables

and local variables. Every symbol needed for the function is placed after its respective

bytecode, e.g., the definition of a module Nil and a string run after the code for the

deploy function. Previous to the description of the methods in the logger module,

we have the anonymous top-level module containing the bytecode for the instructions

outside the modules followed by a list of the symbols used in the code.

Figure 2.8: The compilation process.
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Figure 2.9: Bytecode translation of file node.callas

Completed the description of the Callas programming language syntax and bytecode,

the next chapter overviews the Callas virtual machine, its associated data structures,

and explains the bytecode execution.



Chapter 3

The Callas Virtual Machine

The Callas programming language uses a custom bytecode format, and therefore in

order to interpret it, a matching virtual machine is required. In this chapter we will

describe in detail the Callas virtual machine that provides an abstraction from the

hardware and allows the execution of Callas applications.

3.1 Data Structures

The virtual machine contains a set of data structures (Figure 3.1) that are used to

represent its state, G. The state is given by a pair P , 〈Int ,M, T , C,R〉IO that represents

the bytecode for the program, as described on the previous chapter. The Int represents

machine state G ∈ P × Int ×M× T × C ×R× I ×O
timers T ∈ SetOf(l(~v)× Int × Int × Int )

call-stack C ∈ StackOf(Int × E × S × B × U)
waiting calls R ∈ QueueOf(l(~v))

messages I,O ∈ QueueOf(〈l, ~v〉)
environment E ∈ ArrayOf(v)

operand stack S ∈ StackOf(v)

Figure 3.1: The syntactic categories of the virtual machine.

25
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an integer value used as an internal clock for the machine. Next,M is a module that

contains all the functions installed in a sensor. This module can be updated during

execution, but it is not possible to add or remove functions, just replace already

existing ones. The T represents a set of timed calls. This type of calls are used to

make periodic calls to functions. Each of the timed calls is composed of a pending

call, l(~v), and three integers: the first represents the periodicity of the call, the second

specifies the time when the timed call expires, and the last one contains the next

invocation of the timer. Using an interrupt-like mechanism, whenever it is time for

the next invocation, the execution is paused and the respective call is added to the

run queue. Continuing with the machine state description, the C is a call-stack that

stores call-frames which are composed of a program counter, an environment frame E ,

an operand stack S, a bytecode array B, and a constant array U . The environment

frame is an array that stores the values for the parameters, the free variables and the

local variables of a function. The R represents the run queue used to store pending

calls. They wait the return of the current call, before being loaded onto the call-

stack. The last data structures of the virtual machine state are the input and output

queue, I and O respectively, which are used to interact with lower layers of the sensor

network protocol stack in order to receive and send, respectively, messages through

the network.

3.2 Initial State

The initial state of the virtual machine is obtained by loading the bytecode on the

program, P . Every program P contains an anonymous module with a function run,

at offset 0, containing top-level instructions in the original program. This function

has no parameters or free variables. Thus, loading a program P is done by a function

boot() obtaining the following result:

P , 〈0,M0, {}, (0, ε, ε, 〈loadc 0, call2, return〉, 〈”run”〉), ε〉εε ← boot(P)

The function loads a representation of the top level module, M0, into the virtual

machine and installs a piece of bytecode that starts the program by calling run. In

order to load the identifier for the function from the constant array, the bytecode

starts by using the instruction loadc 0 and then uses the instruction call2 to call the

respective function. The return instruction simply ends the bytecode sequence and
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allows calls from the run queue to be loaded to the call-stack. In the initial state of

the virtual machine, the input and output queues, run queue, and set of timed calls

are empty.

3.3 Transition Rules

In this section we will analyze the state transitions for the main instructions, which can

be called by the virtual machine. In what follows, we will use a set of tables containing

three fields: B[i], assumptions, and transitions. The B[i] represents the instruction

inspected by the virtual machine. The transitions will contain a description of the

new state provided that the assumptions are satisfied. Table 3.1 contains the state

transitions for the instructions that allow the loading and merging of modules, and

the calling of functions. In terms of loading modules, the virtual machine has two

possible instructions: loadm and loadm2. In both cases, they receive an index j to

identify the module in the bytecode that is required to load. This operation needs

some preparatory work. The map containing the bytecode for the module is collected

in P [j] = {lk 7→ Fk}k∈I , where I = {0 . . . n} is a set of consecutive integer indexes,

lk is the function name, and Fk = (j1, j2, j3,B,U) is a tuple containing information

about function lk, that includes the number of parameters j1, free variables j2, local

variable j3, and its bytecode and array of constants. If none of the functions in

the module has free variables, the instruction used is the loadm and it results in a

simple closure for the module. Otherwise, it is used the loadm2 instruction and the

resulting module includes arrays of values, acquired from the current environment,

which represent the free variables for each of the module’s functions. These values are

provided on top of the operand stack, listed by function.

Calling a function also uses two different instructions: call and call2. While call handles

the functions that interact with the hardware (device sensors and actuators), the call2

handles the calls to functions implemented by the application programmer. In the first

case, the function name l, and the arguments to the call ~v are placed at the top of the

operand stack and consumed. Then, a built-in function of the virtual machine that

acts as interface with the underlying operating system or with a library, handles the

call. The virtual machine maintains internal information about the possible system

calls and therefore uses the information about the arity of the function l to prepare

the call to sysCall(l, ~v). The value returned by the system call is placed at top of the

operand stack. The call2 instruction needs the name of the function l, the respective
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Table 3.1: Transition rules for function calls and handling modules instructions

B[i] Assumptions Transitions

loadm j P [j] = {lk 7→ Fk}k∈I t→ t′ (time)

∀k,Fk = ( , 0, ,B,U) i→ i+ 2 (instruction pointer)

S → S : {lk 7→ (Fk, ε)}k∈I (operand stack)

loadm2 j P [j] = {lk 7→ Fk}k∈I t→ t′

Fk = ( , jk, ,B,U) i→ i+ 2

jk = |~vk| S : ~vn : ln : · · · : ~v0 : l0 → S : {lk 7→ (Fk, ~vk)}k∈I
call |~v| = arity(l) t→ t′

v = sysCall(l, ~v) i→ i+ 1

S : ~v : l→ S : v

call2 M(l) = (F , ~v2) t→ t′

F = (j1, j2, j3,B′,U ′) i→ i+ 1

E ′ = 〈M~v1~v2~0〉 C : (i, E ,S : ~v1 : l :M,B,U) (call stack)

j1 = |~v1|, j3 = |~0| → C : (i+ 1, E ,S,B,U) : (0, E ′, ε,B′,U ′)

return t→ t′

i→ i+ 1

C : (i′, E ′,S ′,B′,U ′) : (i, E ,S : v,B,U)

→ C : (i′, E ′,S ′,B′,U ′)

merge M3 = merge(M1,M2) t→ t′

i→ i+ 1

S :M2 :M1 → S :M3

module M, and the arguments to the call ~v1, placed at top of the operand stack.

While consuming these values, the instruction collects runtime information about M
and l that includes the bytecode for the function B′, the function’s constants U ′, the

values for the free variables ~v2, and the size of the environment frame j1 + j2 + j3.

With the arguments to the call, M~v1, along with the values of the free variables ~v2

and extra space for the local variables, ~0, with size j3, a new environment frame E
is built. Finally, the instruction uses that information to create a new call-frame,

with program counter at 0 and an empty operand stack, and pushes it on top of the

call stack C. The return instruction is used to transfer values from one call-frame to

another. The virtual machine expects a value, v, on top of the operand stack of the

call-frame which is executing. Then, the current call-frame is removed from the call
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Table 3.2: Transition rules for communication and timed calls instructions

B[i] Assumptions Transitions

send M0(l) = (F , ~v2) t→ t′

F = (j1, j2, j3,B,U) i→ i+ 1

j1 = |~v1| S : ~v1 : l→ S
O → 〈l, ~v1〉 :: O (outgoing queue)

receive t→ t′

i→ i+ 1

I :: 〈l, ~v〉 → I (incoming queue)

R → l(~v) :: R (run queue)

timer M0(l) = (F , ~v2) t→ t′

F = (j1, j2, j3,B,U) i→ i+ 1

j1 = |~v1| S : j : ~v1 : l→ S
T → T ∪ {(l(~v1), j, k, t+ j)} (timers)

(interrupt) t = t′ T ] {(l(~v), j, k, t′)} → T ∪ {(l(~v), j, k, t′ + j)}
R → l(~v) :: R

stack and the value v is placed on top of the operand stack associated to the next

call-frame on the call stack.

The instruction merge is important, since it allows the dynamic update of code mod-

ules. This instruction expects two modules, M1 and M2, of the same type at the

top of the operand stack and as a result puts a new module, M3, that merges both

modules, on top of the operand stack.

Table 3.2 has a second set of instructions for the virtual machine. This set contains

the communication instructions send and receive and the instruction timer, used to

deal with periodic tasks. The send starts by inspecting the definition of function l

in the module M0, in order to obtain its arity. With this information the virtual

machine knows how many values are needed to fetch from the operand stack, and

using the function name and the call arguments, a message, 〈l, ~v〉, is built and added

to the end of the output queue, for further processing. Another instruction used for

communication is the receive. In this case, the virtual machine checks the input queue

for messages. If a message is found, it takes the message on top of the queue and

puts it on the run queue, where it waits for execution as a pending call. The message

contains all the information needed to build the pending call. If no message is found
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Table 3.3: Transition rules for arithmetic and control flow instructions

B[i] Assumptions Transitions

binop v3 = binaryOperation(v1, v2) t→ t′

i→ i+ 1

S : v2 : v1 → S : v3

unop v2 = unaryOperation(v1) t→ t′

i→ i+ 1

S : v1 → S : v2

dup t→ t′

i→ i+ 1

S : v → S : v : v

swap t→ t′

i→ i+ 1

S : v2 : v1 → S : v1 : v2

jmp j t→ t′

i→ i+ j

ift j k =

i+ j, v = true

i+ 1, v = false
t→ t′

i→ k

S : v → S

in the input queue, the instruction returns and the program continues unaffected by

the receive.

The timer instruction is used to program periodic tasks. This instruction involves

storing the call, l(~v1), the period, j, the expire value, k, and the next invocation, t+ j,

in a tuple in the array of timers, T . In order to extract the number of values necessary

from the stack, the instruction inspects in M0, the definition of the function l. The

tasks are triggered using an interrupt-like mechanism at a given instant t′. Using this

interrupt the execution pauses, the respective pending call l(~v) is added to the bottom

of the run queue, and the execution resumes. The next invocation of the timer, t′ + j,

is also updated.

Table 3.3 shows another set of instructions of the virtual machine. Starting by

the binaryOperation, where it pops from the operand stack the two values needed
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Table 3.4: Transition rules for data management instructions

B[i] Assumptions Transitions

loadc j v = U [j] t→ t′

i→ i+ 1

S → S : v

loadb G = (P , j,M, T , C,R, I,O) t→ t′

i→ i+ 1

S → S :M
storeb G ′ = (P , j,M′, T , C,R, I,O) t→ t′

i→ i+ 1

S :M′ → S
G → G ′

load j v = E [j] t→ t′

i→ i+ 1

S → S : v

store j E ′[j] =

E [k], k 6= j

v, k = j
t→ t′

i→ k

S : v → S

for the operation (v1 and v2), executes the respective binary operation and then

puts the result, v3, on top of the operand stack for further use. Similar to the

binaryOperation, we have the unaryOperation, except in the number of arguments

needed for the operation. In this case, only one value is expected on top of operand

stack. The instruction dup consists in duplicate the value on top of the operand stack.

Thus, it is only needed to pop the value, v, from the stack and then push the same value

twice. A swap is viewed in the virtual machine as the swap between the two values on

top of the operand stack. The implementation is quite simple, it pops the two values

from the stack and pushes them in the reverse order. The last two instructions make

jumps in the program bytecode. The jmp has an integer as argument, j, and simply

adds that value to the program counter. The ift instruction expects a boolean value

on top of the operand stack and if that value is true the j is added to the program

counter; if not, the program counter continues to the next instruction.

Finally, Table 3.4 contains the last set of instructions for the virtual machine. Instruc-
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tion loadc is used to collect a value from the constant array, U . It has an integer, j,

as argument, containing the index of the value on the constant array. Thus, value v

is fetched and placed on top of the operand stack. Next in the table, we have the

instructions to load and store code in the sensor. The loadb simply places moduleM
from the machine state on top of the operand stack. The storeb executes the opposite,

expecting a module, M′, on top of the operand stack and storing it as the main

module on the machine state. The final two instructions are the load and store, and

are used to load or store values in a given index of the environment frame, E . Both

instructions have an integer, j, as argument, that represents the related environment

frame index. The load fetches the value v from the environment frame and places it

on top of the operand stack. The store executes the opposite, expecting a value v on

top of the operand stack and storing it on the position j of the environment frame.

Figure 3.2: Architecture of the Callas virtual machine

The Callas virtual machine is implemented in Java and uses the sunSPOT SDK to
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interact with the sunSPOT devices. The bytecode interpreter simply has a main

loop, which runs a switch statement with end case an instruction operand and its

implementation. Figure 3.2 shows the virtual machine architecture. It is divided in

three threads: (a) the main thread, who is responsible for the interpretation of the

program bytecode, trigger timed calls and the interaction with the communication

threads; (b) the receiver thread, used to receive messages from the network, unpack

them and create the function calls which are consumed by the main thread; (c) and the

sender thread, that consumes function calls, packs them into bytecode messages and

broadcast them. All the low-level network communication is handled by the Squawk

virtual machine [19], on top of which runs the Callas virtual machine when using the

sunSPOT devices.

With all the virtual machine instructions described in this section we now understand

how the Callas programming language works and the steps needed from the program-

ming of an application to its execution in the virtual machine. The next chapter

explains in detail my contributions for this project.



Chapter 4

Building on Callas

In this chapter we describe the problems we detected when working with Callas

as a programming tool. We will present each problem and the solution we have

implemented in three steps: (a) the problems, (b) changes to the compiler, and (c)

changes to the virtual machine.

4.1 A Program is a Module

Problem: In order to simplify the language we modified it in a way that programs in

Callas now have a single top level module with the method init implemented. Before

this modification we could have a number of modules defined independently, and top-

level instructions outside those modules that were compiled into a special internal

module. When translating the instructions to the bytecode format, it was needed to

add a new anonymous module that contained all the instructions outside the modules.

These were the first instructions to be executed in the virtual machine. To improve

this process, the programmer now is forced to create a single top level module that has

all the initial instructions within a method named init. With this change we simplify

the translating process and the organization of the code in Callas. We also address a

problem in the semantics of the virtual machine which would make its initial state not

typable. For example, the program in Figure 4.1 would crash, because it was necessary

for the programmer to store the main module. If an instruction store was missing in

the code for an application, the virtual machine would not have any module defined

in its state, and therefore would not recognize any function call.

34
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1 module app of Senso r :

2 def p r i n t ( s e l f ) :

3 extern l o g S t r i n g ( ‘ ‘ Th i s t e x t w i l l n eve r be p r i n t e d ’ ’ )

4

5 p r i n t ( ) every 1000 exp i re 5000

Figure 4.1: Example of a demo that would crash in the previous version of Callas.

Compiler: The main changes for this modification were made in the compiler. The

first one in the parser. Previously, the language accepted more than one module and

instructions outside those modules. As shown in Figure 4.2, a program in Callas could

1 program : :=

2 s tmts : s

3 { : RESULT = pa r s e r . composeBody ( s ) ; :}
4 | t y p e r e g s

5 { : RESULT = new Code ( p a r s e r . g e t Lo c a t i o n (0 , 0 ) ) ; :}
6 | /∗ empty ∗/

7 { : RESULT = new Code ( p a r s e r . g e t Lo c a t i o n (0 , 0 ) ) ; :}
8 ;

Figure 4.2: Old version of the Callas parser top level condition.

be a stmts that represents any possible set of instructions made in Callas, or simply

a typeregs that refers to the definition of types and imports. The program could also

be an empty program. In order to force the existence of a single top level module

this production was changed (Figure 4.3). Now, a Callas program cannot be seen as

1 program : :=

2 t y p e r e g s moduledef :m

3 { :
4 L i n k e d L i s t l l = new L i n k e d L i s t ( ) ;

5 l l . add (m) ;

6 RESULT = pa r s e r . composeBody ( l l ) ; :}
7 | t y p e r e g s

8 { : RESULT = new Code ( p a r s e r . g e t Lo c a t i o n (0 , 0 ) ) ; :}
9 | /∗ empty ∗/

10 { : RESULT = new Code ( p a r s e r . g e t Lo c a t i o n (0 , 0 ) ) ; :}

Figure 4.3: Current version of the Callas parser top level condition.

a set of instruction of any kind. The stmts were replaced by a typeregs, that can be
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empty, followed by a definition of a module, moduledef. Thus, a program is limited

to only one top level module. After updating the syntax, the compiler checks that an

1 p u b l i c CodeType adapt ( S t r i n g f i l e name , Map<Symbol , Recurs i veType> t yp e s )

2 throws Er ro rMes sage sExcep t i on {
3 Recur s i v eType type = type s . ge t ( Symbol . symbol ( ” Senso r ” ) ) ;

4 i f ( type == n u l l ) {
5 throw new Er ro rMes sage sExcep t i on (new S y n t a c t i c E r r o r (

6 new Sou r c eLoca t i on ( f i l e n ame ) , ”Type ’ Senso r ’ t ha t d e c l a r e s the

7 s e n s o r type i s not d e c l a r e d . ” ) ) ;

8 }
9 CodeType sensorType = (CodeType ) type . type ;

10 TypeEqua l i t y typeEq = new TypeEqua l i t y ( ) ;

11 Map<Symbol , Funct ionType> f un c s = new TreeMap<Symbol , Funct ionType>

12 ( senso rType . f u n c t i o n s ) ;

13 i f ( ! f un c s . con ta in sKey ( Symbol . symbol ( ” i n i t ” ) ) )

14 throw new Er ro rMes sage sExcep t i on (new S y n t a c t i c E r r o r (new

15 Sou r c eLoca t i on ( f i l e n ame ) , ” Func t i on ’ i n i t ’ i n module Senso r

16 i s m i s s i n g . ” ) ) ;

17 i f ( ! f un c s . ge t ( Symbol . symbol ( ” i n i t ” ) ) . i sN i l T yp e ( ) )

18 throw new Er ro rMes sage sExcep t i on (new S y n t a c t i c E r r o r (new

19 Sou r c eLoca t i on ( f i l e n ame ) , ” Func t i on o f s i g n a t u r e ’ N i l i n i t ’ i n

20 module Senso r i s m i s s i n g . ” ) ) ;

21 return ( CodeType ) typeEq . un f o l d (new Recur s i v eType ( type . v a r i a b l e ,

22 new CodeType ( f unc s ) ) ) ;

23 }

Figure 4.4: Parser function responsible for the sensor type parse.

init method of signature Nil init() is present in the top-level module of type Sensor.

Figure 4.4 shows the code for function adapt of the type checker, responsible for this

verification. In lines 3-8 it searches for a module of type Sensor, which needs to be

declared as the top-level module. If it does not exist an error message is returned.

Then, in lines 9-12 the functions present in the module are fetched in order to be able

on line 13 to verify if function init exists. Once again, if the function does not exist,

an error message is sent (lines 14-15). Also, we need to verify if the function init is of

type Nil (line 16), otherwise an error is thrown (lines 17-19). The final modification

in the compiler was in the translate package, where previously we needed to create a

new module containing all the instructions outside the modules. Now the translation

of a program to the Callas bytecode, aside of the definition of types, it is equivalent

to translate just one module. Figure 4.5 starts by creating a list of modules present

in the application (line 2), and then we simply need to translate the top-level module,
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with index 0, since every other modules are implemented inside this one and will be

recursively translated.

1 p u b l i c CVMModule comp i l e ( C a l l a s P r o c e s s from ) {
2 L i s t<Code> modules = Func t i on s . modulesProc ( from ) ;

3 return t r a n s l a t e ( modules . ge t ( 0 ) ) ;

4 }

Figure 4.5: Function in the translate package used to translate a program

Virtual Machine: With the aforementioned modifications in the compiler, the

virtual machine only needs, when initiated, to load the module at offset 0, that

represents the top level module, and to place a call to the function init on top of the

call stack. This way, the virtual machine starts by running the instructions defined

in the init function. The modifications also allowed the initial state to be typable,

since now it is guaranteed that it will exist a main module installed in the sensor

that implements the type of the application. Before this change, the programmer

were required to store the main module, because it was not defined by default, and

therefore the initial state of the virtual machine would not be typable.

1 //(...)

2 Module f i r s tModu l e = program . c r e a t e ( ) ;

3 Funct i on f i r s t F u n c t i o n = f i r s tModu l e . l ookup ( ” i n i t ” ) ;

4 s e t E x e c u t i n g (new Running ( f i r s t F u n c t i o n , new Object [ ] { f i r s tModu l e } ) ) ;
5 //(...)

Figure 4.6: Code for the initialization of the bytecode interpreter

Figure 4.6 shows the code used to initialize the bytecode interpreter. The instruction

in line 2 gets the top level module in the Callas application and stores the information

about its functions in a runtime representation of a Callas module. Then, using this

module, a lookup is made for function init (line 3) and the method setExecuting places

a new call-frame, created using the function init and the top-level module, on top of

the call stack (line 4).
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4.2 Derived Constructs

There were a few programming patterns being used so often that derived constructs

really made it easier on the programming and made the concrete syntax cleaner. In

this section we present a description of the changes related to the implementation of

those derived constructs.

4.2.1 The Operator ||=

Problem: Merging two modules is a common operation in Callas applications. In

order to facilitate the programming in Callas we implemented the operator “||=”. This

operator is used in the form “x ||= y” which is equivalent to “x = x || y”.

Compiler: Only small changes are required in the compiler with the creation of the

new construct that runs an adaptation of the already existing merge. Figure 4.7 shows

the code for both constructs. The existing merge (lines 1-3) simply uses both modules,

left and right, as arguments for the process type associated to the merge operation,

Update. In the case of the new construct (lines 4-10), we need to use the identifier for

the first module, n, to create a new variable that will be used as argument along with

the second module for the Update. Finally, the result will be the assignment of the

resulting value from the merge operation to the variable, var, that represents the first

module.

1 | v a l u e : l e f t MERGE: i v a l u e : r i g h t

2 { : RESULT = new Update ( p a r s e r . g e t Lo c a t i o n ( i l e f t , i r i g h t ) , l e f t ,

3 r i g h t ) ; :}
4 | ID : n MERGE ASSIGN : i v a l u e : v

5 { :
6 Sou r c eLoca t i on l o c = pa r s e r . g e t Lo c a t i o n ( n l e f t , n r i g h t ) ;

7 Va r i a b l e va r = new Va r i a b l e ( l oc , n ) ;

8 Update up = new Update ( p a r s e r . g e t Lo c a t i o n ( i l e f t , i r i g h t ) , var , v ) ;

9 RESULT = new Ass ignment ( var , up ) ;

10 :}

Figure 4.7: Implementation of the ”||” and ”||=” operators
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4.2.2 Install

Problem: A wide range of Callas applications need to install new code in the sensors.

That process includes loading the sensor code to a variable, updating it using the

merge operation, and storing the new code in the sensor (Figure 4.8). Therefore, it

makes sense to implement a single instruction, which can automatically do those three

instructions. Thus, we implemented a constructor that takes as argument the code

we want to install and encapsulates all three instructions (Figure 4.9).

1 def dep l oy ( s e l f , newCode ) :

2 code = load

3 code | |= newCode

4 store code

Figure 4.8: Installing a new code without the install command

1 def dep l oy ( s e l f , newCode ) :

2 i n s t a l l newCode

Figure 4.9: Installing a new code with the install command

Compiler: Once again this was not a major change in terms of implementation. The

already existing processes in the language were used to create the new constructor

install. The processes needed for this were LoadSensorCode, Update, StoreSensorCode

and also Let to represent the chain of instructions. In Figure 4.10 we have the parser

code for the instruction install. The parser expects a value, v, that represents the

module we want to install. In lines 4-5 we create a new variable, var, with an arbitrary

name. This variable, ultimately, will represent the resulting module of the entire

operation. Then, using the process types needed for this instruction, new processes

are created in lines 6-8. At last, in line 9 we create the first chain of instructions, let1,

using p2 and p3 that represent, respectively, an Update process and a StoreSensorCode

process. Then, the result will be the second chain of instructions, let2, chaining p1,

which represents the LoadSensorCode process, with let1 (lines 10-11).
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1 | INSTALL : x v a l u e : v

2 { :
3 Sou r c eLoca t i on l o c = pa r s e r . g e t Lo c a t i o n ( x l e f t , x r i g h t ) ;

4 S t r i n g varName = pa r s e r . newVariableName ( ) ;

5 Va r i a b l e va r = new Va r i a b l e ( l oc , varName ) ;

6 LoadSensorCode p1 = new LoadSensorCode ( l o c ) ;

7 Update p2 = new Update ( loc , var , v ) ;

8 StoreSenso rCode p3 = new StoreSenso rCode ( loc , va r ) ;

9 Let l e t 1 = new Let ( var , p2 , p3 ) ;

10 Let l e t 2 = new Let ( var , p1 , l e t 1 ) ;

11 RESULT = l e t 2 ;

12 :}

Figure 4.10: Implementation of the install construct

4.3 Programmer Defined Channels

Problem: One of the main limitations of the language was its communication model.

The virtual machine started with two predefined channels, one to send messages and

another to receive. These channels could not be changed by the programmer and it

was also not possible to add a different channel, the programmer could only use the

predefined channels, where the nodes would always send the messages to the basesta-

tion, and the basestation would always send the messages to all nodes. Therefore, it

was needed to change this situation, but that required major changes in the language

syntax. We needed to create instructions to open and close communication channels

and also an interface to manage the different channels opened by the programmer.

1 | OPEN: x v a l u e : v

2 { : RESULT = new Open ( p a r s e r . g e t Lo c a t i o n ( x l e f t , x r i g h t ) , v ) ; :}
3 | CLOSE : x v a l u e : v

4 { : RESULT = new C lo s e ( p a r s e r . g e t Lo c a t i o n ( x l e f t , x r i g h t ) , v ) ; :}

Figure 4.11: Clauses for instructions open and close in the parser

Compiler: In the compiler there was the need to create two new keywords, open and

close. Then, creating a clause in the parser for both instructions (Figure 4.11) and

implementing two new process types to represent both instructions in the compiler.

These new process types simply store the information about the location of the

instruction in the source code and the string representing the channel. We use a

string to represent the channel so it could be possible to accept different kind of



CHAPTER 4. BUILDING ON CALLAS 41

1 p u b l i c L i s t<CVMStmt> caseOpen (Open open ) {
2 L i s t<CVMStmt> s tmts = new L i n k edL i s t<CVMStmt>() ;

3 s tmts . addA l l ( comp i l e ( open . channe l ) ) ;

4 s tmts . add (CVMOpen .OPEN) ;

5 s tmts . addA l l ( comp i l e ( Code . NIL ) ) ;

6 return s tmts ;

7 }
8

9 p u b l i c L i s t<CVMStmt> c a s eC l o s e ( C lo s e c l o s e ) {
10 L i s t<CVMStmt> s tmts = new L i n k edL i s t<CVMStmt>() ;

11 s tmts . addA l l ( comp i l e ( c l o s e . channe l ) ) ;

12 s tmts . add (CVMClose .CLOSE ) ;

13 s tmts . addA l l ( comp i l e ( Code . NIL ) ) ;

14 return s tmts ;

15 }

Figure 4.12: Implementation of instructions open and close in the Process Translator

communication protocols by a simple analysis to the string content. Different protocols

have diverse options, like the definition of the number of hops used in the channel,

and in this way it is possible to encapsulate these options in the string itself. The

virtual machine must be able to parse this string and create an appropriate channel.

The next step in the implementation of open and close is the verification of the type of

the argument received by the parser, since in both instructions the argument needs to

be of type string. Finally, the last change in the compiler was the creation of two new

methods to translate these new instructions to the bytecode. Figure 4.12 contains the

code used for the translation. Both instructions are similar, their argument is compiled

and placed in a linked list, stmts, then the respective virtual machine instruction is

also added, and finally, a Nil is added representing the return value of this instruction.

Virtual Machine: In this case there were also major changes in the virtual machine.

The obvious ones are: the creation of two new types in the virtual machine (CVMOpen

and CVMClose); and linking two new opcodes with these instructions. In order to

manage the channels the program wants to open or close, a new interface named

ConnectionManager was created. This interface contains two hashtables, inputCon-

nectionMap and outputConnectionMap, to store the channels, which are divided into

input or output channels. The string that represents the channel is the key to the

hashtable and the value is a NetworkInputInterface in a case of an input channel, or a

NetworkOutputInterface in the case of an output channel. These interfaces allow us to

manipulate the different types of channels. Figure 4.13 shows the implementation of
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1 p u b l i c c l a s s Netwo rkOutpu t I n t e r f a c e implements IN e two r kOu tpu t I n t e r f a c e {
2 RadiogramConnect ion connect ionToSend ;

3

4 p u b l i c Netwo rkOutpu t I n t e r f a c e ( S t r i n g s t r ){
5 t r y {
6 connect ionToSend = ( RadiogramConnect ion ) Connector . open ( s t r ) ;

7 }catch ( Excep t i on e ){
8 e . p r i n t S t a c kT r a c e ( ) ;

9 }
10 }
11 p u b l i c void send ( C a l l msg ) throws IOExcept i on {
12 t r y {
13 Datagram datagramSend = connect ionToSend

14 . newDatagram ( connect ionToSend . getMaximumLength ( ) ) ;

15 S e r i a l i z e r s e r = new S e r i a l i z e r ( datagramSend ) ;

16 s e r . w r i t e C a l l (msg ) ;

17 connect ionToSend . send ( datagramSend ) ;

18 datagramSend . r e s e t ( ) ;

19 } f i n a l l y {}
20 }
21 p u b l i c void c l o s e ( ) throws IOExcept i on {
22 connect ionToSend . c l o s e ( ) ;

23 }
24 }

Figure 4.13: Implementation of the Network Output Interface

the NetworkOutputInterface for the radiogram protocol used by the sunSPOT devices.

The class constructor (lines 4-10) expects the string with the channel as argument and

simply tries to open it. Then, two additional methods are implemented. The send is

used to send messages through the channel and expects a call-frame, msg, as argument.

It creates a new datagram (lines 13-14) in order to send the message, serializes the

msg (lines 15-16), and finally sends the message through the channel (line 17). The

other method, close, simply closes the connection (line 22).

In Figure 4.14 we have the implementation of the interface used to manipulate the

input channels (NetworkInputChannel). This interface is run as a separate thread and

therefore is slightly different from the previous one. Previously in the language, we

only had one input channel and therefore it was only needed an unique queue to store

the incoming messages. Now, since we want the programmer to be able to choose

from which channel he wants to receive, every NetworkInputInterface will have its own
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1 p u b l i c c l a s s Ne two r k I n pu t I n t e r f a c e implements Ne two r k I n t e r f a c e {
2 p r i v a t e Queue inQueue ;

3 p r i v a t e RadiogramConnect ion connec t i onToRece i v e ;

4 p r i v a t e boolean i sRunn ing = true ;

5 p u b l i c void run ( ) {
6 inQueue = new Queue ( ) ;

7 t r a n sm i t ( ) ;

8 }
9 p u b l i c void t r a n sm i t ( ){
10 t r y {
11 Datagram datagramRece ive = connec t i onToRece i v e

12 . newDatagram ( connec t i onToRece i v e . getMaximumLength ( ) ) ;

13 whi le ( i sRunn ing ){
14 connec t i onToRece i v e . r e c e i v e ( datagramRece ive ) ;

15 i f ( datagramRece ive . ge tLength ( ) > 0) {
16 D e s e r i a l i z e r d e s e r = new D e s e r i a l i z e r ( datagramRece ive ) ;

17 inQueue . put ( d e s e r . r e a dC a l l ( ) ) ;

18 }
19 datagramRece ive . r e s e t ( ) ;

20 }
21 } f i n a l l y {
22 connec t i onToRece i v e . c l o s e ( ) ;

23 }
24 }
25 p u b l i c void s e tConnec t i on ( S t r i n g s t r ){
26 t r y {
27 t h i s . c onnec t i onToRece i v e = ( RadiogramConnect ion ) Connector . open ( s t r ) ;

28 t h i s . c onnec t i onToRece i v e . se tT imeout ( 10000 ) ;

29 }catch ( Excep t i on e ){
30 e . p r i n t S t a c kT r a c e ( ) ;

31 }
32 }
33 p u b l i c Ca l l popCa l l ( ){
34 i f ( inQueue . s i z e ( ) == 0)

35 return n u l l ;

36 return ( C a l l ) inQueue . ge t ( ) ;

37 }
38 p u b l i c void c l o s e ( ){
39 t h i s . i sRunn ing = f a l s e ;

40 }
41 }

Figure 4.14: Implementation of the Network Input Interface
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queue where it stores the received messages, meaning that for every input channel we

will have a different queue. When the interface is started, it creates the queue (line

6) and executes the method transmit (line 7). This method is a loop in which we are

constantly trying to receive a message and placing it in the respective queue (lines 13-

20). The setConnection method defines the channel used by the interface and expects

a string with that information as argument. Thus, it opens the channel (line 27) and

associates a timeout of ten seconds to it (line 28). The receive method present in the

RadiogramConnection is a blocking operation, and therefore this timeout is needed to

prevent a deadlock and to be able to terminate the thread. The function popCall is the

one used to pop a call from this interface queue. If there are no calls in the queue the

method returns the null value. Finally, the close terminates the thread by changing the

isRunning variable to false (line 39). With this operation the loop condition (line 13) is

no longer true, the channel is closed (line 22) and the thread terminates. Whenever

1 p u b l i c boolean open ( S t r i n g channe l ){
2 boolean output = parseURL ( channe l ) ;

3 i f ( output ){
4 IN e two r kOu tpu t I n t e r f a c e i f a c e = new Netwo rkOutpu t I n t e r f a c e ( channe l ) ;

5 outputConnect ionMap . put ( channe l , i f a c e ) ;

6 return true ;

7 } e l s e {
8 Ne two r k I n t e r f a c e i f a c e = new Ne two r k I n pu t I n t e r f a c e ( ) ;

9 i f a c e . s e tConnec t i on ( channe l ) ;

10 new Thread ( i f a c e ) . s t a r t ( ) ;

11 inputConnect ionMap . put ( channe l , i f a c e ) ;

12 return true ;

13 }
14 return f a l s e ;

15 }

Figure 4.15: Function open from the ConnectionManager class

it is needed to open a channel, the virtual machine expects a string on top of the

operand stack (representing the channel) and then uses the ConnectionManager to

open it. Figure 4.15 shows the code used in the ConnectionManager to open a channel.

It starts by analyzing the string received as argument (line 2). This process is made

by the method parseURL that, since we are working with radiogram protocols, simply

inspects the string to understand if it is an output or input channel. Then, if it is an

output channel, we just create an NetworkOutputInterface and store it in the output

related hashtable (lines 4-5).
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1 p u b l i c void c l o s e ( S t r i n g s t r ) throws IOExcept i on {
2 boolean output = parseURL ( s t r ) ;

3 i f ( output ){
4 IN e two r kOu tpu t I n t e r f a c e n I n t e r f a c e = ( INe two r kOu tpu t I n t e r f a c e )

5 outputConnect ionMap . ge t ( s t r ) ;

6 n I n t e r f a c e . c l o s e ( ) ;

7 outputConnect ionMap . remove ( s t r ) ;

8 } e l s e {
9 Ne two r k I n t e r f a c e n I n t e r f a c e = ( Ne two r k I n t e r f a c e )

10 inputConnect ionMap . ge t ( s t r ) ;

11 n I n t e r f a c e . c l o s e ( ) ;

12 inputConnect ionMap . remove ( s t r ) ;

13 }
14 }

Figure 4.16: Function close from the ConnectionManager class

In the case of an input channel, the code is slightly different since we need to start a

new thread to receive messages and store them in a queue for further use by the virtual

machine. We create a new NetworkInputInterface (line 8), then define the channel for

the connection (line 9), start a new thread with the NetworkInputInterface (line 10),

and store the interface in the input related hashtable (line 11). To access the channels

afterwards, the ConnectionManager has the methods lookupInput and lookupOutput,

that return the respective channel if it exists in the hashtables.

Closing a channel is a simpler process. Likewise the open, the close function expects

a string on top of the operand stack. The ConnectionManager simply needs to check

if it is an output or input channel, and then get the interface from the respective

hashtable, to finally use the method close from the respective interface, to close the

channel, and remove it from the memory (Figure 4.16). In the case of an output

channel it only closes the connection, but when it is an input channel it also kills the

associated thread.

4.3.1 Selecting Channels

Problem: With open and close implemented we required a way to select the channels

when sending or receiving messages. So, we introduced a new keyword select, followed

by a value identifying the channel that complements the send and receive constructs.

With this new syntax the programmer can select on which channel he wants the
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program to communicate. In Figure 4.17 we have a small example of a Callas ap-

plication using this new way of communicate. In this application two channels are

opened, for input (line 3) and output (line 4), and then using the new semantics for

instructions send and receive, we select the appropriate channel for the communication

(lines 6 and 9).

1 module s e n s o r of Senso r :

2 def i n i t ( s e l f ) :

3 i npu tChanne l = open ” rad iogram : / / : 9 0 ”

4 outputChanne l = open ” rad iogram :// b roadca s t : 90 ”

5 l i s t e n ( i npu tChanne l ) every 1000

6 s e l e c t outputChanne l send a c t i o n ( )

7

8 def l i s t e n ( s e l f , i npu tChanne l ) :

9 s e l e c t i npu tChanne l r e c e i v e

Figure 4.17: Application in Callas using the new communication semantics

Compiler: Everything in the compiler that included the instructions send and receive

was affected by this change. We added a new variable to both representations to store

the string containing the channel. Figure 4.18 shows the updated production for the

instructions send and receive in the parser. As it is possible to see, it now expects

the select keyword prior to both instructions and also a value, v, used to represent

the channel through which the message will be sent or received. Then, it is necessary

to verify if that variable is of the correct type, and adding it in the translation for

the bytecode of both send and receive. Figure 4.19 shows the code from the compiler

translate package. Both instructions compile the string containing the channel, then

add the respective virtual machine instruction, and place the value Nil as the return

value (lines 3-6 for send and 11-13 for receive). The only difference is that prior to the

compilation of the channel the instruction send also compiles both function name and

arguments related to the message that will be sent through the network (line 2).

Virtual Machine: To have the ability to select the channel, some changes were

required in the virtual machine. Figure 4.20 shows the updated implementation in the

bytecode interpreter for the instructions send and receive. Starting with instruction

send, it now pops a string from the operand stack that contains the channel for

the communication (line 2) and uses it to lookup for the channel interface in the

connection manager, connManager (line 3-4). Next, the name and the arguments of

the function we want to send are popped from the operand stack (line 5-6) and then
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1 | SELECT : t v a l u e : v SEND: s ID : f u n c t i o n arguments : a

2 { : RESULT = new Send ( p a r s e r . g e t Lo c a t i o n ( t l e f t , t r i g h t ) , v , f un c t i o n ,

3 a ) ; :}
4

5 | SELECT : t v a l u e : v RECEIVE : r

6 { : RESULT = new Rece i v e ( p a r s e r . g e t Lo c a t i o n ( t l e f t , t r i g h t ) , v ) ; :}

Figure 4.18: Production for instructions send and receive in the parser

1 p u b l i c L i s t<CVMStmt> caseSend ( Send send ) {
2 L i s t<CVMStmt> s tmts = new L i n k edL i s t<CVMStmt>() ;

3 s tmts . addA l l ( comp i l eArgs ( send . funct ionName , send . arguments ) ) ;

4 s tmts . addA l l ( comp i l e ( send . channe l ) ) ;

5 s tmts . add (CVMSend .SEND) ;

6 s tmts . addA l l ( comp i l e ( Code . NIL ) ) ;

7 return s tmts ;

8 }
9 p u b l i c L i s t<CVMStmt> c a s eRe c e i v e ( Rece i v e r e c v ) {
10 L i s t<CVMStmt> s tmts = new L i n k edL i s t<CVMStmt>() ;

11 s tmts . addA l l ( comp i l e ( r e c v . channe l ) ) ;

12 s tmts . add ( CVMReceive . RECEIVE ) ;

13 s tmts . addA l l ( comp i l e ( Code . NIL ) ) ;

14 return s tmts ;

15 }

Figure 4.19: Functions for instructions send and receive in the process translator

using the channel interface we send the message (line 8). If the channel is not open

the instruction will throw an error. The instruction receive also starts by popping

the string representing the channel from the operand stack (line 14). Then, using the

method popCall from the connManager, the virtual machine tries to get a call from the

queue associated to the channel (line 15). If the input queue is empty this instruction

does nothing. If a call is retrieved from the queue, then we add the top-level module,

installed, as the first arguments of the call and put it on the run queue where it waits

for execution (lines 17-18).

4.4 Cleaning Up Timed Calls

Problem: Timed calls are very commonly used in sensor network applications. It is

important to optimize and guarantee a good performance with low cost and this was
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1 p u b l i c void caseSend ( ){
2 S t r i n g channe l = popS t r i ng ( ) ;

3 IN e two r kOu tpu t I n t e r f a c e outFace =( INe two r kOu tpu t I n t e r f a c e )

4 connManager . lookupOutput ( channe l ) ;

5 S t r i n g funct ionName = popSt r i ng ( ) ;

6 Object [ ] a r g s = pop I n s t a l l e dFun c t i o nPa r ame t e r s ( funct ionName ) ;

7 t r y {
8 outFace . send (new Ca l l ( funct ionName , a r g s ) ) ;

9 } catch ( IOExcept i on e ) {
10 e . p r i n t S t a c kT r a c e ( ) ;

11 }
12 }
13

14 p u b l i c void c a s eRe c e i v e ( ) {
15 S t r i n g channe l = popS t r i ng ( ) ;

16 Ca l l c a l l = connManager . popCa l l ( channe l ) ;

17 i f ( c a l l != n u l l ){
18 c a l l . addModule ( i n s t a l l e d ) ;

19 addRunQueue ( c a l l ) ;

20 }
21 }

Figure 4.20: Implementation of instructions send and receive in the virtual machine

the main reason to re-define the support for timed calls. Prior to this work, timed

calls were supported in the main thread of the virtual machine, by computing the time

for the next call. A new approach was required to process timed calls, and since every

timed call is independent of each other, the idea was the creation of threads to process

them. While threads may be considered expensive for sensor nodes, many operating

systems like TinyOS [21] and Contiki [6] support them. Therefore this approach to

the timed calls can be adapted for different sensors with distinct architectures and

operating systems. Moreover, they allow the clean programming of timers and CPU

time to be effectively managed, e.g., putting the main thread to sleep when the run

queue is empty, until a timer produces another process. With this approach each

thread is responsible for adding the respective call to the run queue and sleeps in

between such events.

Virtual Machine: For this change, we needed to change the way the virtual machine

handled this type of processes. Thus, we created a new class BoundedTimedTask to

represent and handle the timed calls in the virtual machine. This class takes advantage

of the package java.util.TimerTask to implement periodic calls (Figure 4.21). Now,
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1 p u b l i c c l a s s BoundedTimedTask{
2 p r i v a t e Ca l l c a l l ;

3 p r i v a t e long p e r i o d ;

4 p r i v a t e I n t e r p r e t e r emu ;

5 p r i v a t e Timer t ime r ;

6

7 p u b l i c BoundedTimedTask ( f i n a l Ca l l c a l l , long pe r i od ,

8 f i n a l I n t e r p r e t e r emu)

9 {
10 t h i s . c a l l = c a l l ;

11 t h i s . p e r i o d = pe r i o d ;

12 t h i s . emu = emu ;

13 t h i s . t ime r = new Timer ( ) ;

14 }
15 p u b l i c void s c h edu l e ( ){
16 t ime r . s chedu l eA tF i x edRa t e (new TimerTask ( ) {
17 p u b l i c void run ( ) {
18 synchronized (emu){
19 emu . addRunQueue ( c a l l ) ;

20 emu . n o t i f y A l l ( ) ;

21 }
22 }
23 } , p e r i od , p e r i o d ) ;

24 }
25

26 p u b l i c void c a n c e l ( ){
27 t ime r . c a n c e l ( ) ;

28 }
29 }

Figure 4.21: Class that implements the timers: BoundedTimedTask.java

when we create a BoundedTimedTask in the virtual machine a new thread is launched,

and it automatically puts a new call in the run queue whenever it is time. Note that

the run queue of the virtual machine is a thread-safe data structure and these threads

are sleeping and only awake to put the calls on the run queue. Also, if the main

thread does not have any call in the run queue, but has active timers, it sleeps and

only awakes when a timed call occurs. Furthermore, it was necessary to remove the

code that was previously responsible for verifying the time and adding the calls to the

run queue.

Figure 4.22 shows the code in the virtual machine interpreter to handle the timed calls.
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It pops the string containing the function name from the operand stack (line 2), looks

up for the function in the top-level module (lines 3-4), fetches the arguments needed for

the function and the periodicity value of the timer from the operand stack (lines 5-6)

and creates a new BoundedTimedTask, btt (line 7-8). For the creation of this task we

need also to create a new call-frame using the function name and its arguments. The

other parameters needed are the periodicity of the call and the interpreter itself, to

add calls to the run queue. The timed calls are now stored in an appropriate hashtable

(timers) and to avoid conflicts a unique name is created and returned by the timer

instruction. This unique name (timerName) is created attaching a timetag with the

time of its creation to the function name (line 9). The unique name is used as the

key in the hashtable timers for the respective task (line 10). Before the instruction is

completed we need also to start the thread for the timed call (line 11) and place the

timerName on the operand stack in order to be returned (line 12).

1 p u b l i c void ca seT imedCa l l ( ) {
2 S t r i n g funct ionName = popSt r i ng ( ) ;

3 Module module = peekModule ( ) ;

4 Funct i on f u n c t i o n = module . l ookup ( funct ionName ) ;

5 Object [ ] a r g s = popArray ( f u n c t i o n . d e c l a r a t i o n . parameter sCount ) ;

6 long p e r i o d = popLong ( ) ;

7 BoundedTimedTask b t t = new BoundedTimedTask (new Ca l l ( funct ionName , a r g s ) ,

8 pe r i od , t h i s ) ;

9 S t r i n g timerName = funct ionName + c l o c k . c u r r e n tT im eM i l l i s ( ) ;

10 t ime r s . put ( timerName , b t t ) ;

11 b t t . s c h edu l e ( ) ;

12 ge tEx e cu t i n g ( ) . pushOperand ( timerName ) ;

13 }

Figure 4.22: Timed calls implementation in the virtual machine interpreter

4.4.1 Adding the Instruction Kill to the Language

Problem: Formerly in the Callas language, whenever a timed call was created it

was impossible to access it later either to modify its parameters or to terminate it.

The timed call used a parameter expire to determine when to terminate. While re-

designing the support for timed calls we decided to implement an useful new construct

for the language: kill. This command allows the user to terminate an active timer.

Figure 4.23 shows a simple example of the use of the instruction kill, where a timer
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is created and terminated after just one iteration. The program starts by creating

a timer that runs the method action every second, storing its unique name on the

variable timerID (line 3). Then, it stores the timerID in the sensor memory (lines 4-6).

When the method action is called for the first time, it prints a message (line 10), loads

the timerID stored in the memory (lines 11-12), and terminates the timer (line 13) and

consequently the entire program.

1 module s e n s o r of Senso r :

2 def i n i t ( s e l f ) :

3 t ime r ID = ac t i o n ( ) every 1000

4 module temp of t ime r s :

5 def getTimer ID ( s e l f ) : t ime r ID

6 i n s t a l l temp

7 pass

8

9 def a c t i o n ( s e l f ) :

10 extern l o g S t r i n g ( ‘ ‘ Ju s t one i t e r a t i o n ’ ’ )

11 mem = load

12 t ime r ID = mem. getTimer ID ( )

13 k i l l t ime r ID

14

15 def t ime r ID ( s e l f ) :

16 ””

Figure 4.23: Callas example using the instruction kill

Compiler: The creation of a new construct obviously implies some changes in the

compiler. These changes are very similar to the ones related to the instructions open

and close, since in all three cases there is a keyword followed by a string. Figure 4.24

contains the implementation of the kill construct in the parser. The command has

a single argument (a label that represents the timer) and it is necessary to verify if

the type of the argument is a string. Then, it was necessary to create a new type of

process in the compiler to represent and store the information about the kill. In order

to translate it to the byte-code it was created a new function that translate this new

type of process (Figure 4.25). It is created a linked list with the string containing the

timer identifier compiled, the instruction kill from the virtual machine and at last the

Nil as the return value for the operation.

Virtual Machine: In terms of the virtual machine, it was also necessary to create

a new type CVMKill to represent this new command and then associating it to a new

opcode. Then, in the bytecode interpreter a new condition was added to handle the
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1 | KILL : x v a l u e : v

2 { : RESULT = new K i l l ( p a r s e r . g e t Lo c a t i o n ( x l e f t , x r i g h t ) , v ) ; :}

Figure 4.24: Implementation of instruction kill in the parser

1 p u b l i c L i s t<CVMStmt> c a s e K i l l ( K i l l k i l l ) {
2 L i s t<CVMStmt> s tmts = new L i n k edL i s t<CVMStmt>() ;

3 s tmts . addA l l ( comp i l e ( k i l l . t ime r ID ) ) ;

4 s tmts . add ( CVMKill . KILL ) ;

5 s tmts . addA l l ( comp i l e ( Code . NIL ) ) ;

6 return s tmts ;

7 }

Figure 4.25: Implementation of instruction kill in the process translator

kill constructs. Figure 4.26 shows the code used whenever the virtual machine finds

a kill command. It pops the string containing the timer identifier from the operand

stack (line 2), searches in the hashtable for the respective BoundedTimedTask (line 3),

terminates it (line 4), and then removes it from the hashtable (line 5).

1 p u b l i c void c a s e K i l l ( ) {
2 S t r i n g t ime r ID = popSt r i ng ( ) ;

3 BoundedTimedTask b t t = ( BoundedTimedTask ) t ime r s . ge t ( t ime r ID ) ;

4 b t t . c a n c e l ( ) ;

5 t ime r s . remove ( t ime r ID ) ;

6 }

Figure 4.26: Implementation of instruction Kill in the virtual machine

4.4.2 Removing Expire from Timed Calls

Problem: The expire argument from a timer is used to terminate a timer after a

period of time. Despite being an useful tool, with the restructuring of the timed calls

and the addition of the new constructor kill, expire became an unnecessary argument

and it was removed from the definition of timers.

Compiler: The obvious start for this task is the removal of the argument expire

from both parser and lexical analyzer. Then, it was also necessary to make some

adjustments to: (a) the process used to represent a timed call on the compiler, by

removing the variable used to store the expire value; (b) the type verification, where
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previously it was checked the expire value, and now is no longer necessary; and (c) the

translate part of the compiler, by simply removing the translation of the expire value,

only processing the name of the call and period for each timed call.

Virtual Machine: This modification involved the removal of the argument expire in

the virtual machine representation of a timed call, and also the removal of the code used

to terminate the timer when the expire value was reached. When a timer instruction

is encountered in the virtual machine, now it just need to get two arguments from the

operand stack instead of three: the name of the function and the value representing

the period.

This last change concludes the set of modifications made to the language in the context

of this thesis. Obviously, these changes have consequences in the syntax and bytecode

presented on Chapter 2 and also in the data structures and state transitions of the

virtual machine presented on Chapter 3. Therefore, in the next chapter we will

overview the impact of these changes on the Callas programming language and its

formal specification.



Chapter 5

The New Callas

The changes mentioned in the prvious chapter had an expected impact in the language.

In this chapter we will describe the present state of the language Callas using both

Chapter 2 and Chapter 3 of this thesis as a guide to identify the differences. Thus,

this chapter will be divided into three sections: language syntax by example; concrete

syntax; and virtual machine. The first one will identify the changes in the application

example from Chapter 2. The second will present the new concrete syntax. The last

one will analyze the differences in the state and behavior of the virtual machine.

5.1 Language Syntax

1 defmodule Sampler :

2 N i l sample ( s t r i n g channe l )

3 N i l run ( )

4

5 defmodule Deploy :

6 N i l dep l oy ( Sampler samp le r )

7

8 defmodule Sensor ( Deploy ) :

9 N i l i n i t ( )

10 N i l logData ( s t r i n g mac , double temp )

11 N i l l i s t e n ( s t r i n g channe l )

Figure 5.1: The application type updated: iface.caltype.

In order to perceive the real changes in the syntax of the language we update the

54
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application from Chapter 2 to the new syntax. The top level project file, main.calnet,

along with the file containing the hardware interface (sunspot.caltype) remain the same,

without any modification. Figure 5.1 shows the first changes in the implementation of

the application. Due to the insertion of a top-level module, a function init is added to

the Sensor module that will contain the first instructions to be executed (line 9). Also,

in the methods listen from the Sensor module and sample from the Sampler module,

we add a new argument, that will be used to pass a channel identifier.

1 from i f a c e import ∗
2

3 module l o g g e r of Senso r :

4 def i n i t ( s e l f ) :

5 module samp le r of Sampler :

6 def run ( s e l f ) :

7 t oS i nk = ” rad iogram :// b roadca s t : 91 ”

8 open t oS i nk

9 s e l f . sample ( t oS i nk ) every 1000

10 def sample ( s e l f , t oS i nk ) :

11 mac = extern macAddr ( )

12 temp = extern getTemperature ( )

13 s e l e c t t oS i nk send l ogData (mac , temp )

14 toNodes = ” rad iogram :// b roadca s t : 90 ”

15 fromNodes = ” rad iogram : / / : 9 1 ”

16 open toNodes

17 open fromNodes

18 s e l e c t toNodes send dep l oy ( samp le r )

19 l i s t e n ( fromNodes ) every 1000

20 pass

21

22 def dep l oy ( s e l f , s amp le r ) :

23 pass

24 def l ogData ( s e l f , mac , temp ) :

25 extern l o g S t r i n g ( ”\nMAC add r e s s : ” )

26 extern l o g S t r i n g (mac)

27 extern l o g S t r i n g ( ”\nTemperature : ” )

28 extern l ogDoub le ( temp )

29 extern l o g S t r i n g ( ” C e l s i u s ” )

30 pass

31 def l i s t e n ( s e l f , fromNodes ) :

32 s e l e c t fromNodes r e c e i v e

Figure 5.2: The code for the sink updated: sink.callas.
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Figure 5.2 contains the updated code for the sink. There were major changes compar-

ing to the code previously presented. The first instructions to be executed now are the

ones inside the init function. Thus, the application starts by creating a module sampler

(the code to be sent and executed to the nodes) with methods run and sample (lines 5-

13). The only difference in the code of sampler is due to the existence of channels in

the language. The run method starts by opening a channel to communicate with the

sink and passes the channel identifier to the sample function as an argument. In the

sample function the only change is the selection of the channel received as argument,

when sending the data.

After the creation of the module, the application opens two different channels for

sending/receiving messages to/from the nodes (lines 14-17). Next, it uses the output

channel (toNodes) to send the module to the nodes (line 18), and creates a timer with

the function listen using the input channel (fromNodes) as argument (line 19). The

function listen now receives a string as argument that represents the channel identifier

and is used to select the channel from where the data is received (lines 31-32). Finally,

the logData function, used to print the data, remains unchanged (lines 24-30).

1 from i f a c e import ∗
2

3 module l o g g e r of Senso r :

4 def i n i t ( s e l f ) :

5 f romSink = ” rad iogram : / / : 9 0 ”

6 open f romSink

7 l i s t e n ( f romSink ) every 1000

8 def dep l oy ( s e l f , code ) :

9 code . run ( )

10 def l ogData ( s e l f , mac , temp ) :

11 pass

12 def l i s t e n ( s e l f , f romSink ) :

13 s e l e c t f romSink r e c e i v e

Figure 5.3: The code for the sensing nodes updated: sampler.callas.

The code in the sensing nodes required only small changes (Figure 5.3). In the old

version of this application, there was only the implementation of a timer using the

function listen, outside the modules. Thus, this instruction moves to the function init,

with a small change that also occurred in the code for the sink (line 7). Now the

function listen needs a string with a channel identifier as argument, and because of

this we need to open a channel, fromSink, to receive messages from the sink (lines 5-6).
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The rest of the code is similar, since in the deploy method it is only needed to receive

a module and call the function run within it.

In short, the application is now more flexible, since the programmer has the possibility

to choose through which channel the communication is made. In this application we

separate the nodes from the sink using port 90 for communication sent by the sink

to the nodes and port 91 for communication in the opposite direction. This type

of programming allows, for example, the creation of groups of nodes using different

channels to communicate, opening possibilities to a wider number of applications,

increasing the expressiveness of Callas.

5.2 Concrete Syntax

Figure 5.4 contains the updated Callas syntax. The notion of a program is now

changed. A program is a vector of type definitions followed by a single top-level

module. This module is stored in the sensors and must have a function of signature

Nil init, which contains the first instructions to be executed.

In terms of expressions, e, three new types were added: (a) the kill process, kill v,

used to terminate the timer with identifier v; (b) the opening of a communication

channel, open v, where v represents the link to the channel; and (c) the closing of

a communication channel, close v, where v, is the link to the channel. These three

expressions use a string as argument, so a new type of value, v, was added: strings. Due

to the change to the communication semantics, the remote calls are now represented

by select v send l(~v), where channel, v, is selected and message, 〈l(~v)〉, is sent through

that specific channel. The receiving process is now represented by select v receive , and

also uses the channel identifier, v, to fetch a message from the input queue associated

to that channel in order to add the packaged function, l(~v), to the run queue, R. The

last modification was in the timed call process, where the expire value was removed,

being represented only by l(~v) every v.

5.3 Virtual Machine

The changes mentioned above had an expected impact on the data structures and

transition rules presented in Chapter 3. In addition, the bytecode also suffered a small

change associated to the addition of three new constructs to the language, affecting
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p ::= ~d M Programs

d ::= defmodule T : ¶ ~s Type Defs.

s ::= τ l(~a)¶ Func. Sigs.

a ::= τ x Typed Params.

τ ::= Types

int integer

| float float

| bool boolean

| T type identifier

t ::= Terms

x = e ¶ assign

| M module

| e ¶ expression

| if v : ¶ ~t else : ¶ ~t conditional

M ::= module x of T : ¶ ~f Modules

f ::= def l(~x) : ¶ ~t Functions

e ::= Expressions

v value

| unop v unary op.

| v binop v binary op.

| load load

| store v store

| v || v merge modules

| v.l(~v) function call

| extern l(~v) external call

| l(~v) every v timed call

| kill v kill timed call

| open v open channel

| close v close channel

| select v send l(~v) communication

| select v receive communication

v ::= Values

x variable

| . . . | 0 | . . . integer

| True | False boolean

| . . . | 0.0 | . . . floating point

| ”” | . . . string

The symbol ¶ represents the end-of-line character.

Figure 5.4: The syntax of Callas.

the instruction-set of the virtual machine with the inclusion of three new instructions:

open, close, and kill.

Figure 5.5 represents the updated data structures of the virtual machine. Starting

with the machine state, G, both input and output queues were removed from the state,

and it was added instead the connection manager, N , that is now the data structure

handling the communication. This connection manager is a map of strings representing

the channel identifier into an input queue, Q, associated to the channel. Obviously,
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machine state G ∈ P × Int ×M× T × C ×R×N
timers T ∈ MapOf(String 7→ (l(~v)× Int × Int ))

call-stack C ∈ StackOf(Int × E × S × B × U)
waiting calls R ∈ QueueOf(l(~v))

messages Q ∈ QueueOf(〈l, ~v〉)
environment E ∈ ArrayOf(v)

operand stack S ∈ StackOf(v)

connection manager N ∈ MapOf(String 7→ Q)

Figure 5.5: The syntactic categories of the virtual machine.

in the case of an output channel, a mapping is made between the channel identifier to

an empty queue, since sent messages are not queued. The timers also suffer a small

change, since now an unique name is associated to every timed call. Thus, the timers,

T , are now a map of strings into the representation of a timed call, (l(~v)× Int × Int ).

The representation of a timed call has now only two integers (the periodicity of the

call and the next invocation) due to the removal of the expire parameter in the timers.

The last modification to the syntactic categories of the virtual machine was related to

messages. With the restructuring of the communication semantics, the output queue

is not used, and therefore now it is only represented by an empty queue, ε. These

messages on the input queue have the same format as before, the only difference now

is that we have multiple queues, one for every input channel opened. Since now the

receive operation has a channel associated, a lookup for the channel is made in the

connection manager, which returns the associated queue.

The initial state of the virtual machine is obtained by loading the top-level module, at

offset 0 of program, p, containing the function init, used to initiate the computation.

Thus, loading a program P is done by function boot() obtaining the following result:

P , 〈0,M0, {}, (0, ε, ε, 〈loadc 0, call2, return〉, 〈”init”〉), ε, {}〉 ← boot(P)

There are only small changes in the initial state, where now we start the program by

calling the function init. Also, the input and output queues were removed from the

machine state, and instead we have the connection manager, N , as the last item, that

is initially empty.
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In terms of state transitions, Table 5.1 shows the instructions affected by the changes,

and also the transitions associated to the three new instructions created. The open

command is used to open a communication channel, and expects a string, v, on top

of the operand stack. This string contains the link to the channel and it is used to

open the respective channel. When a channel is created a new queue is associated

to it. The information about the channel is stored in the connection manager, N ,

for further use. The instruction close also expects a string, v, on top of the operand

stack, using it to access the representation of the channel, closing it, and removing its

information from the connection manager.

Continuing on the instructions for communication, both send and receive were obvi-

ously affected by the introduction of channels in the language. In the case of the

send, it now expects on top of the operand stack, not only the function name and its

arguments, but also a string, v, identifying the channel through which the message

will be sent. In order to execute the instruction the channel must be opened and it

must also be an output channel. This is checked with isSource. If these conditions are

satisfied the message is created and sent immediately. The receive instruction, needs

also the link to the channel, v, in order to fetch from the associated input queue, Q,

the first message received from that specific channel. Like in the instruction send,

it checks if the channel is open and is an input channel with isSink, and if it is the

case, the virtual machine fetches its input queue. Both instructions in the case of the

channel not being open or not matching the sensor type (sink or source), crash the

virtual machine and the execution halts.

The timed calls were restructured and therefore it affected the behavior of timers in

the virtual machine. The instruction timer needs to return a unique label, containing

the name of the function and a timestamp, and for that reason it is now present a

string, v, which represents that unique label and it is placed on top of the operand

stack by this instruction, in order to be returned afterwards. The string v, is also

used to store the timers, since now they are represented by a map from a string to

the representation of a timer (BoundedTimedTask). In order to terminate a timer,

the instruction kill was added. It expects a string, v, on top of the operand stack,

containing the name of the respective timer. Then, a lookup for the specific timer is

made and it is terminated and removed from the mapping.

The updated virtual machine architecture is presented on Figure 5.6. The sender

thread was removed and whenever a message is sent the main thread is responsible

for the packing of the function call into a message bytecode and for the dispatch of

the message. Also, we have now multiple receiver threads which correspond to the
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Table 5.1: Updated transition rules for communication and timed call management

instructions used by the virtual machine

B[i] Assumptions Transitions

open v 6∈ N t→ t′

i→ i+ 1

S : v → S
N → N ∪ (v, ε)

close t→ t′

i→ i+ 1

S : v → S
N ] (v, )→ N

send M0(l) = (F , ~v2) t→ t′

F = (j1, j2, j3,B,U) i→ i+ 1

j1 = |~v1| S : ~v1 : l : v → S
isSource(v)

receive isSink(v) t→ t′

Q = N (v) i→ i+ 1

S : v → S
Q :: 〈l, ~v〉 → Q (incoming queue)

R → l(~v) :: R (run queue)

timer M0(l) = (F , ~v2) t→ t′

F = (j1, j2, j3,B,U) i→ i+ 1

j1 = |~v1| S : j : ~v1 : l→ S : v

v = newId(l, t) T → T ∪ {(v, (l(~v1), j, t+ j))} (timers)

kill t→ t′

i→ i+ 1

S : v → S
T ] {(v, )} → T

(interrupt) t = t′ T ] {(v, (l(~v), j, t′))} → T ∪ {(v, (l(~v), j, t′ + j))}
R → l(~v) :: R

different input channels opened in the application. These receiver threads contain

their own input queue from where the main thread fetches the function calls. A final

addition to the architecture was the timer threads. Timed calls are now processed
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Figure 5.6: Updated architecture of the Callas virtual machine

by independent threads that put the respective function call, whenever is time, for

executing in the main thread.

In this chapter we described the impact of the changes in the language. Using this

updated version of the Callas programming language a large demo was created to

verify its usability. This demo will be presented in the next chapter.



Chapter 6

Exponential Smoothing Demo

With the new syntax and semantics we decided to test its usability by the creation

of a more complex application that will be presented in this section. We will start by

presenting the problem, and then explaining how it was implemented in Callas. This

demo is based on the application described in [2]. The idea of this application is to

use a predictive model in order to reduce the communication between sensors in an

application where a physical quantity (in this case the light value), is monitored at

periodic, fixed intervals.

6.1 Adaptive Model Selection

The main objective in Adaptive Model Selection (AMS) [3] is the reduction of the

communication on wireless sensor networks performing periodic data collection tasks,

by using predictive models that approximate the real measurements.

In some applications, the exact sensor measurements are not required, only an approx-

imation of the value is enough. This is the idea of AMS, where models are used to

approximate the measurements collected by a wireless sensor by means of time series

prediction techniques. A model refers to a parametric function that predicts, at time

t + m, m ∈ N, the measurement of the sensor. Formally, the model is a function

hθ :X→ R

x 7→ x̂[t + m] = hθ(x)

where x ∈ X is the input of the model, which is normally a vector of measurements, θ
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is a vector with the parameters of the model, and x̂[t + m] is the approximation of

the model h to the measurement x[t + m].

In a normal periodic sensor application, the measurements are sent to the basestation

at a certain rate, but in AMS the parameters of the model are sent instead. The basic

technique works as follows, a threshold value, e, is defined that represents the error

tolerance of the application. The sensor node locally assess if the prediction x̂[t + m]

made by the model is within ±e of the true measurement x[t + m]. Whenever

the difference between the real measurement and the prediction is larger than the

threshold value, a new set of parameters is sent to the basestation. If the difference

is not significant no communication is needed, and the basestation assumes that the

prediction is correct. The definition of this threshold value obviously depends on the

application requirements, but the higher the value, the less communication occurs.

6.2 Exponential Smoothing

Exponential smoothing is a time series prediction technique that has different proposed

variants, and has been shown to perform well in a large number of time series [10].

The simpler version is the simple exponential smoothing, which consists in a weighted

average, s, of the past measurements. The weighted average is calculated as

s[t] = αx[t − 1] + (1 − α)s[t − 1]

where 0 ≤ α ≤ 1 represents the data smoothing factor. In this case the predictions

are given with x̂[t + m] = s[t].

However, in order to achieve better approximations to the real measurements, it is

normally used the double exponential smoothing. This model takes into account the

trend of the data and in order to obtain the predictions we need to compute

s[t] = αx[t − 1] + (1 − α)(s[t − 1] + b[t − 1])

b[t] = β(s[t] − s[t − 1]) + (1 − β)b[t − 1]

where 0 ≤ β ≤ 1 represents the trend smoothing factor. The predictions are given

with x̂[t + m] = s[t] +mb[t].

Note that the computational cost of the exponential smoothing is very low, and

therefore makes it an ideal model for implementation in resource-constrained wireless
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sensors. Another advantage of the utilization of predictive models is the possibility

to compress data, since the number of model parameters sent to the basestation is

normally less than the sensor values.

6.3 Demo Implementation

The physical quantity being monitored in this application is the light intensity. The

application implemented in Callas uses the double exponential smoothing model to

predict the light values and therefore save unnecessary communication. Thus, it is

required the specification of the values for the data and trend smoothing factors, α

and β. These values are used to calculate the model parameters, s[t] and b[t]. In order

to present the data from the Callas application we use an interface implemented in

Java. This interface gets the values from the Callas application output and builds a

graph with it. Figure 6.1 shows a set of four snapshots of the demo where the readings

were exactly the same for all. Readings were taken every 5 seconds for 15 minutes.

We have the real sensor values without using a prediction model on the top left graph.

The Model 1 (top right) ignores the trend (β = 0) and uses α = 1. The Model 2

(bottom left) has α = 0.8 and β = 0.2, and finally the Model 3 (bottom right) uses

α = 0.4 and β = 0.6. This means that in Model 3 we are giving more importance

to the trend of the data than the real sensor readings when calculating the prediction

value, x̂[t + m]. On the other hand, in Model 2 the trend of the data is also taken

in account but has less impact in the prediction, x̂[t + m], than the real values.

The error tolerance for this application was set as e = 10lux, since the readings were

taken in an office where the light intensity normally varies between 10 and 125 lux. As

it is possible to see the α and β values affect directly the model. For example, Model 1,

basically mantains the same light value until an update is made. The graph is drawn

in two colors, where color red represents the times where the model was updated in

the basestation. For Models 1 and 2, the saved transmissions were about 70%, but

in Model 3 this value dropped to 64%. The saved transmission are computed every t

dividing the number of times that the prediction model did not need any update, by

t.

The demo here presented in detail computes a single prediction model that uses the

double exponential model. Also, the demo is created to work in a network with only

one sensor and the basestation. It could be possible to increase the number of sensors in

the application. The basestation needed to maintain information about the prediction
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Figure 6.1: Snapshot of the Double Exponential Demo. From top to bottom, left to

right: Real Data, Model 1 (α = 1, β = 0), Model 2 (α = 0.8, β = 0.2), Model

3 (α = 0.4, β = 0.6)

models for every sensor in the network, and calculate the respective models every

iteration. Figure 6.2 shows the application type for this demo, with several modules

defined. The module Channels is used to store the links for the communication. There

is a module Timers to store any needed information about a timer, in order to be

able to terminate it later in the execution. The FixedParameters module contains the

information about the fixed parameters values needed for the prediction model. The

model parameters that are sent from the nodes to the basestation are stored in the

module ModelParameters. In order for the nodes to keep track of the model parameters

still in use by the basestation, a module CurrentParameters is used to store these values.

The StoredData is used to maintain information about time t, the previous readings

of the node in order to calculate s[t], and also the number of saved transmissions,

savedTrans. In order for the basestation to know if the model was updated, a boolean

updated is held in the module Updated, along with the information about value m,

used to calculate x̂[t+m]. Finally the main module Sensor extends all other modules,

and contains the methods that implement the vital code for the application.

In our implementation, the sensor node waits for a message from the basestation

before starting to collect data. When the message is received by the node, the
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6 defmodule Timers :

7 s t r i n g t ime r ID ( )

8

9 defmodule F ixedParamete r s :

10 double a l f a ( )

11 double beta ( )

12 double e r r o rT o l e r a n c e ( )

13

14 defmodule ModelParameters :

15 double s t ( )

16 double bt ( )

17

18 defmodule Cur r en tPa ramete r s :

19 double c u r r S t ( )

20 double cu r rB t ( )

21

22 defmodule StoredData :

23 double x t ( )

24 double t ( )

25 double savedTrans ( )

26

27 defmodule Updated :

28 bool updated ( )

29 double m()

30

31 defmodule Channe l s :

32 s t r i n g i n pu t ( )

33 s t r i n g output ( )

34

35 defmodule Sensor ( StoredData , Channels , ModelParameters , Timers , Updated ,

36 FixedParamete r s , Cu r r en tPa ramete r s ) :

37 N i l i n i t ( )

38 N i l f i r s t D a t a ( )

39 N i l p r e d i c t ( )

40 N i l updateData ( ModelParameters newParameters )

41 N i l p r i n tDa ta ( double p r e d i c t i o n , double t , bool updated ,

42 double savedTrans )

43 N i l l i s t e n ( s t r i n g c2 )

Figure 6.2: Exponential Smoothing Demo: iface.caltype

first light reading is made, and the model parameters are initialized and sent to the

basestation. After this initialization process, both node and sink run the prediction
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model every 5 seconds, and in the case of the difference between the prediction and

the real measurement is larger than the error tolerance, the node sends the updated

model parameters to the basestation. If that is not the case, then no communication

occurs, and the basestation assumes that the prediction is correct. The application

also keeps track of the percentage of saved transmissions that is updated every t. The

complete source code for this application is provided with this thesis in Appendix A.



Chapter 7

Conclusions

In this thesis we presented a series of experiments with the Callas programming

language and its virtual machine with the general goal of assessing its usability,

expressiveness, and to optimize the virtual machine in terms of resource footprint.

New derived constructs were implemented to facilitate the programming of common

patterns in the Callas language. The program syntax was changed, so a top-level

module is always present in the applications. This makes the syntax of the programs

cleaner while allowing the initial state of the virtual machine to be typable, a problem

detected in the previous specification.

The timed calls were completely restructured. Callas now uses distinct threads to

run this type of calls. This modification allowed a cleaner implementation and opens

different possibilities in terms of energy management. Now, the main thread sleeps

until being awaked by a timer, and the threads responsible for the timed calls only

awake whenever it is time to place a call on the run queue, sleeping in between. The

changes also included major work in the communication semantics of the language.

This was a limitation in the language that was partially overcome, allowing now the

programmer to use user-defined channels. Previously, nodes only sent messages to the

basestation, and the basestation always sent messages to all nodes. Now it is possible

for the user to choose the appropriate channel for the communication, including

creating distinct communication groups in the sensor network. For the purpose of

this thesis, only the radiogram protocol for the communication was supported.

With all the changes applied to the Callas language a large demo was implemented

in the new model. This application uses a prediction model to avoid excessive com-

munication between the nodes and the sink. It also shows that it is possible to create

69



CHAPTER 7. CONCLUSIONS 70

more elaborated applications for wireless sensor networks in Callas.

As for future work, the goal is to adapt the virtual machine to support other type of

services, such as HTTP and RMI. This will enable a growth of the language potential,

since it opens new possibilities for applications. For example, it would be possible to

process data outside the sensor network. Since the sensor devices normally have small

processing and storing capacity, this could be useful in applications that use complex

algorithms to analyze data.



Appendix A

Double Exponential Smoothing

Demo

The application in Callas contains the following files:

• main.calnet

• sunspot.caltype

• iface.caltype

• sink.callas

• node.callas
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44 #File main.calnet

45

46 i n t e r f a c e = i f a c e . c a l t y p e

47 e x t e r n s = sunspo t . c a l t y p e

48

49 s e n s o r : code = s i n k . c a l l a s

50 s e n s o r : code = node . c a l l a s
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51 #File sunspot.caltype

52

53 defmodule Exte rn :

54 bool setLEDColor ( long pos , long red , long green , long b l u e )

55 bool setLEDOn ( long pos , bool i sOn )

56 bool l ogLong ( long v a l )

57 bool l ogDoub le ( double v a l )

58 bool l o g S t r i n g ( s t r i n g v a l )

59 s t r i n g macAddr ( )

60 long getTime ( )

61 long b a t t L e v e l ( )

62 long ge tLum ino s i t y ( )

63 double getTemperature ( )

64 double getAcce lX ( )

65 double getAcce lY ( )

66 double ge tAcce lZ ( )

67 double ge tAcc e l ( )

68 double g e t I n c lX ( )

69 double g e t I n c lY ( )

70 double g e t I n c l Z ( )

71 double longToDouble ( long v a l )
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72 #File iface.caltype

73 defmodule N i l :

74 pass

75

76 defmodule Timers :

77 s t r i n g t ime r ID ( )

78

79 defmodule F ixedParamete r s :

80 double a l f a ( )

81 double beta ( )

82 double e r r o rT o l e r a n c e ( )

83

84 defmodule ModelParameters :

85 double s t ( )

86 double bt ( )

87

88 defmodule Cur r en tPa ramete r s :

89 double c u r r S t ( )

90 double cu r rB t ( )

91

92 defmodule StoredData :

93 double x t ( )

94 double t ( )

95 double savedTrans ( )

96

97 defmodule Updated :

98 bool updated ( )

99 double m()

100

101 defmodule Channe l s :

102 s t r i n g i n pu t ( )

103 s t r i n g output ( )

104

105 defmodule Sensor ( StoredData , Channels , ModelParameters , Timers , Updated ,

106 FixedParamete r s , Cu r r en tPa ramete r s ) :

107 N i l i n i t ( )

108 N i l f i r s t D a t a ( )

109 N i l p r e d i c t ( )

110 N i l updateData ( ModelParameters newParameters )

111 N i l p r i n tDa ta ( double p r e d i c t i o n , double t , bool updated ,

112 double savedTrans )

113 N i l l i s t e n ( s t r i n g c2 )
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114 #File sink.callas

115 from i f a c e import ∗
116

117 module main of Sensor :

118 def i n i t ( s e l f ) :

119 mem = load

120 #opening communication channels

121 c1 = mem. output ( )

122 c2 = mem. i npu t ( )

123 open c1

124 open c2

125 #ask for first data

126 l i s t e n ( c2 ) every 5000

127 p r e d i c t ( ) every 5000

128 s e l e c t c1 send f i r s t D a t a ( )

129

130 def updateData ( s e l f , newParameters ) :

131 i n s t a l l newParameters

132 module update of Updated :

133 def updated ( s e l f ) : True

134 def m( s e l f ) : 1 . 0

135 i n s t a l l update

136 pass

137

138 def p r e d i c t ( s e l f ) :

139 mem = load

140 a l f a = mem. a l f a ( )

141 beta = mem. beta ( )

142 e r r o rTo l e r a n c e = mem. e r r o rT o l e r a n c e ( )

143 #DOUBLE EXPONENTIAL SMOOTHING

144 #getting the values from the last iteration

145 s t = mem. s t ( )

146 bt = mem. bt ( )

147 t = mem. t ( )

148 m = mem.m( )

149 savedTrans = mem. savedTrans ( )

150 updated = mem. updated ( )

151 i f updated :

152 savedTrans = savedTrans

153 e l s e :

154 savedTrans = savedTrans +. 1 .0

155 p r e d i c t i o n = s t +. m ∗ . bt

156 n e g a t i v e = p r e d i c t i o n <. 0 . 0

157 i f n e g a t i v e :
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158 p r e d i c t i o n = 0 .0

159 e l s e :

160 p r e d i c t i o n = p r e d i c t i o n

161 module newData of StoredData :

162 def x t ( s e l f ) : p r e d i c t i o n

163 def t ( s e l f ) : t +. 1 . 0

164 def savedTrans ( s e l f ) : savedTrans

165 mem | |= newData

166 module update of Updated :

167 def updated ( s e l f ) : F a l s e

168 def m( s e l f ) : m +. 1 .0

169 mem | |= update

170 store mem

171 mem. p r i n tDa ta ( p r e d i c t i o n , t , updated , savedTrans )

172

173 def p r i n tDa ta ( s e l f , p r e d i c t i o n , t , updated , savedTrans ) :

174 extern l o g S t r i n g ( ”PData\n” )
175 extern l ogDoub le ( t )

176 extern l o g S t r i n g ( ”\n” )
177 extern l ogDoub le ( p r e d i c t i o n )

178 extern l o g S t r i n g ( ”\n” )
179 pe r c en t age = savedTrans / t

180 extern l ogDoub le ( p e r c en t age )

181 extern l o g S t r i n g ( ”%\n” )
182 i f updated :

183 extern l o g S t r i n g ( ” t r u e \n” )
184 e l s e :

185 extern l o g S t r i n g ( ” f a l s e \n” )
186 pass

187

188 def f i r s t D a t a ( s e l f ) :

189 pass

190

191 def a l f a ( s e l f ) :

192 0 .2

193

194 def beta ( s e l f ) :

195 0 .6

196

197 def e r r o rT o l e r a n c e ( s e l f ) :

198 5 .0

199

200 def x t ( s e l f ) :

201 0 .0

202
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203 def s t ( s e l f ) :

204 0 .0

205

206 def bt ( s e l f ) :

207 0 .0

208

209 def c u r r S t ( s e l f ) :

210 0 .0

211

212 def cu r rB t ( s e l f ) :

213 0 .0

214

215 def t ( s e l f ) :

216 0 .0

217

218 def updated ( s e l f ) :

219 Fa l s e

220

221 def savedTrans ( s e l f ) :

222 0 .0

223

224 def m( s e l f ) :

225 1 .0

226

227 def t ime r ID ( s e l f ) :

228 ”” ;

229

230 def i n pu t ( s e l f ) :

231 ” rad iogram : / / : 9 0 ” ;

232

233 def output ( s e l f ) :

234 ” rad iogram :// b roadca s t : 90 ” ;

235

236 def l i s t e n ( s e l f , c2 ) :

237 s e l e c t c2 r e c e i v e
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238 #File node.callas

239 from i f a c e import ∗
240

241 module main of Sensor :

242 def i n i t ( s e l f ) :

243 mem = load

244 #opening communication channels

245 c1 = mem. output ( )

246 c2 = mem. i npu t ( )

247 open c1

248 open c2

249 #timer to receive first message

250 t ime r ID = l i s t e n ( c2 ) every 200

251 module newTimer of Timers :

252 def t ime r ID ( s e l f ) : t ime r ID

253 mem | |= newTimer

254 store mem

255 pass

256

257 def f i r s t D a t a ( s e l f ) :

258 extern setLEDColor (0 , 0 , 255 , 0)

259 extern setLEDOn (0 , True )

260 mem = load

261 t ime r ID = mem. t ime r ID ( )

262 k i l l t ime r ID

263 #first data

264 l ongLux = extern ge tLum ino s i t y ( )

265 l u x = extern longToDouble ( longLux )

266 module updatedData of StoredData :

267 def x t ( s e l f ) : l u x

268 def t ( s e l f ) : 1 . 0

269 def savedTrans ( s e l f ) : 0 . 0

270 mem | |= updatedData

271 module newParameters of ModelParameters :

272 def s t ( s e l f ) : l u x

273 def bt ( s e l f ) : 0 . 0

274 mem | |= newParameters

275 module newCurrParam of Cur r en tPa ramete r s :

276 def c u r r S t ( s e l f ) : l u x

277 def cu r rB t ( s e l f ) : 0 . 0

278 mem | |= newCurrParam

279 store mem

280 p r e d i c t ( ) every 5000

281 c1 = mem. output ( )
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282 s e l e c t c1 send updateData ( newParameters )

283

284 def p r e d i c t ( s e l f ) :

285 mem = load

286 a l f a = mem. a l f a ( )

287 beta = mem. beta ( )

288 e r r o rT o l e r a n c e = mem. e r r o rT o l e r a n c e ( )

289 #DOUBLE EXPONENTIAL SMOOTHING

290 l ongLux = extern ge tLum ino s i t y ( )

291 l u x = extern longToDouble ( longLux )

292 #getting the values from the last iteration

293 o l d x t = mem. x t ( )

294 o l d s t = mem. s t ( )

295 o l d b t = mem. bt ( )

296 t = mem. t ( )

297 c u r r S t = mem. c u r r S t ( )

298 cu r rB t = mem. cu r rB t ( )

299 m = mem.m( )

300 savedTrans = mem. savedTrans ( )

301 #calculating s[t]

302 expr1 = 1 .0 −. a l f a

303 expr2 = o l d s t +. o l d b t

304 s t = a l f a ∗ . o l d x t +. expr1 ∗ . exp r2

305 #calculating b[t]

306 expr1 = s t −. o l d s t

307 expr2 = 1 .0 −. be ta

308 bt = beta ∗ . exp r1 +. expr2 ∗ . o l d b t

309 #AMS

310 d i f f = 0 .0

311 p r e d i c t i o n = cu r r S t +. m ∗ . c u r rB t

312 i f p r e d i c t i o n >. l u x :

313 d i f f = p r e d i c t i o n −. l u x

314 e l s e :

315 d i f f = l u x −. p r e d i c t i o n

316 needsUpdate = d i f f >. e r r o rT o l e r a n c e or s t <. 0 . 0

317 i f needsUpdate :

318 module newData of StoredData :

319 def x t ( s e l f ) : l u x

320 def t ( s e l f ) : t +. 1 . 0

321 def savedTrans ( s e l f ) : savedTrans

322 mem | |= newData

323 module newParameters of ModelParameters :

324 def s t ( s e l f ) : s t

325 def bt ( s e l f ) : bt

326 mem | |= newParameters
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327 module newCurrParam of Cur r en tPa ramete r s :

328 def c u r r S t ( s e l f ) : s t

329 def cu r rB t ( s e l f ) : bt

330 mem | |= newCurrParam

331 module newUpdated of Updated :

332 def updated ( s e l f ) : True

333 def m( s e l f ) : 1 . 0

334 mem | |= newUpdated

335 c1 = mem. output ( )

336 store mem

337 s e l e c t c1 send updateData ( newParameters )

338 e l s e :

339 module newData of StoredData :

340 def x t ( s e l f ) : p r e d i c t i o n

341 def t ( s e l f ) : t +. 1 . 0

342 def savedTrans ( s e l f ) : savedTrans +. 1 .0

343 mem | |= newData

344 module newParameters of ModelParameters :

345 def s t ( s e l f ) : s t

346 def bt ( s e l f ) : bt

347 mem | |= newParameters

348 module updated of Updated :

349 def updated ( s e l f ) : F a l s e

350 def m( s e l f ) : m +. 1 .0

351 c1 = mem. output ( )

352 store mem

353 pass

354

355 def updateData ( s e l f , newData ) :

356 pass

357

358 def p r i n tDa ta ( s e l f , s t , t , updated , savedTrans ) :

359 pass

360

361 def a l f a ( s e l f ) :

362 0 .2

363

364 def beta ( s e l f ) :

365 0 .6

366

367 def e r r o rTo l e r a n c e ( s e l f ) :

368 5 .0

369

370 def x t ( s e l f ) :

371 0 .0
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372

373 def s t ( s e l f ) :

374 0 .0

375

376 def bt ( s e l f ) :

377 0 .0

378

379 def c u r r S t ( s e l f ) :

380 0 .0

381

382 def cu r rB t ( s e l f ) :

383 0 .0

384

385 def t ( s e l f ) :

386 0 .0

387

388 def updated ( s e l f ) :

389 Fa l s e

390

391 def m( s e l f ) :

392 1 .0

393

394 def savedTrans ( s e l f ) :

395 0 .0

396

397 def t ime r ID ( s e l f ) :

398 ”” ;

399

400 def i n pu t ( s e l f ) :

401 ” rad iogram : / / : 9 0 ” ;

402

403 def output ( s e l f ) :

404 ” rad iogram :// b roadca s t : 90 ” ;

405

406 def l i s t e n ( s e l f , c2 ) :

407 s e l e c t c2 r e c e i v e
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