
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Bluetooth based Warning System for

Ambient Assisted Living

João Pedro Cruz Silva

Master in Electrical and Computers Engineering

Scientific supervision by:

Hugo Sereno Ferreira, Assistant Professor

Department of Informatics Engineering

Aditional supervision by:

Manuel Monteiro, M.Eng. and Filipe Sousa, M.Eng.

Fraunhofer Portugal

July 21, 2015



© João Pedro Cruz Silva, 2015







Resumo

Os idosos são o grupo etário com maior taxa de crescimento, especialmente em países desenvolvi-

dos. Estas pessoas tendem a viver sozinhas, o que, numa situação de emergência, leva a que os

serviços de resposta demorem mais tempo a ser notificados da mesma e ainda mais tempo a agir.

Seria preferível que estas situações fossem evitadas e não tratadas.

As Redes de Sensores Sem Fios têm estado nos interesses de investigação da comunidade

académica já há alguns anos e a Internet das Coisas tem crescido mais depressa que nunca. Estes

desenvolvimentos podem ser aplicados em Ambient Assisted Living para permitir aos idosos viver

no seu ambiente preferido por mais tempo do que o que seria normalmente possível. Isto tem

vários impactos positivos: aumenta a qualidade de vida dos idosos, dá-lhes mais independência e

alivia a carga dos serviços de emergência.

Neste documento propomos um sistema baseado numa tecnologia sem fios relativamente re-

cente: o Bluetooth Low Energy. Esta tecnologia oferece uma largura de banda menor quando

comparada com o Bluetooth clássico, mas oferece também vida de bateria muito mais longa.

Este sistema funciona com uma arquitectura Peer-to-Peer enquanto fornece possibilidades

para que seja expandido de formas mais escaláveis. Um pequeno microcontrolador com conec-

tividade BLE correndo um interpretador customizado permite ao utilizador (um idoso com con-

hecimentos de informática ou seus acompanhantes) configurar regras que, usando sensores e es-

timando a distância ao utilizador permitem agir em contextos que correspondam a situações de

emergência. Por exemplo, se um idoso estiver a cozinhar e se esquecer do fogão ligado, o micro-

controlador pode actuar e desligar o fogão se o idoso em questão se afastar demasiado.

Esperamos que a exposição compreensiva de informação neste documento potencie desen-

volvimentos futuros nesta área.

i



ii



Abstract

The elderly are the fastest growing age group, especially in developed countries. These people

tend to live alone, which leads to EMS taking longer to be notified than would be preferred and

even longer for them to act. It would be preferable for these emergencies to be prevented rather

than treated.

Wireless Sensor Networks have been in the research interests of the academic community for

a few years now, and the Internet of Things is growing faster than ever. One can take advantage of

these new developments and apply them to Ambient Assisted Living in order to allow the elderly

to live in their preferred environment for longer. This has several positive effects: it increases

elderly people’s quality of life, their independence, and puts less strain on emergency services.

In this paper we present a system based on a relatively new wireless technology: Bluetooth

Low Energy. This technology offers us smaller bandwidth performance when compared to its

older counterpart (classic Bluetooth) but with greatly increased battery life.

Our system functions in a peer-to-peer architecture while providing a framework for being

expanded into more scalable options. A small Microcontroller with BLE capabilities running a

custom interpreter allows the user (a tech-savvy elder or his/her caregiver) to set rules that, using

sensors and estimating distance to a connected device, can contextually act in order to prevent

emergency situations: e.g. if an elder is cooking and forgets the stove on, this MCU can act and

turn it off if the elder gets too far away.

We hope that this paper’s comprehensive presentation of information lays the foundation for

future developments in this area.

iii



iv



Acknowledgements

I’d like to thank:

My girlfriend, for putting up with me, and for being a constant in my life.

My parents, for supporting me, however annoying they may be.

My grandfather, may he rest in peace, for having been a great role model.

My grandmother, for the grandmotherly gifts she gives me.

My godmother and godfather, for their knowledge and support.

My cousin and his wife, Lily, for giving me advice, even though I’m often not willing to take it.

Nuno, because sometimes he can be the only person as deranged as I am.

Jota, for the group assignments together, the long nights, and the rides home.

My dog, for being around for me when I don’t want people around.

My coaches, for helping to keep me sane when I’m stressed out beyond imagination.

To Hugo for the conversations, ideas and advices; To Manuel for the tough love; To Filipe for the

support; And to João Oliveira for the debugging advice.

To Barbosa and to João Lima for being thesis buddies... also for the cereal.

To all those that I can’t remember right now but that aren’t forgotten.

And, finally, to the giants that came before for lending me their shoulders.

(João Silva)

v



vi



“Behind every great man is a woman rolling her eyes.”

Jim Carrey

vii



viii



Contents

Acronyms and Abbreviations xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Research Problem 5

2.1 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 State of the Art 7

3.1 WSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Ubiquitous Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.2 Internet of Things/Everything . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.3 Meshed and Multi-hop Networks . . . . . . . . . . . . . . . . . . . . . 9

3.2 MOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Wireless Communication Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 What is defined by the IEEE . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3 ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.4 Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.5 nRF24L01+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.6 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.7 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Android Smartphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.3 SheevaPlug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.4 TelosB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.5 Texas Instruments (TI) CC2540 . . . . . . . . . . . . . . . . . . . . . . 24

3.4.6 Nordic nRF51822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Indoor Location Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Bluetooth Low Energy (BLE) based . . . . . . . . . . . . . . . . . . . . 25

ix



x CONTENTS

3.5.2 ZigBee based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.3 Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Applied Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.1 Health sensor systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.2 Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.3 Ambient Assisted Living . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Development tools 29

4.1 Fraunhofer Pandlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Development Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 PCA10001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 PCA20006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 The Softdevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 nRF51 SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 IoT SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 The LWIP IP stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Other software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 The BlueWarnAAL solution 37

5.1 The solution broken down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 FhP Pandlet developments . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Android developments . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.3 Raspberry Pi developments . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Testbed and Results 59

6.1 The proposed scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 The testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Functional tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Distance estimation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Connectivity tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion 65

7.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.1 Pi application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.2 MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.3 nRF52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.4 Interfacing with the Middleware . . . . . . . . . . . . . . . . . . . . . . 67

7.2.5 Sensor remote control . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.6 Scaling up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.7 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

References 69



List of Figures

1.1 The three components that compose our solution . . . . . . . . . . . . . . . . . 4

2.1 Fraunhofer Portugal’s Living Lab. . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Quantity computing vs Quality computing . . . . . . . . . . . . . . . . . . . . . 9

3.2 Technology roadmap for the evolution into the Internet of Things . . . . . . . . . 10

3.3 Basic Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Fitting two pieces of a puzzle together . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Comparison of different MOM solutions . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Another comparison is made with similar results to Fig. 3.5 . . . . . . . . . . . . 17

3.7 The OSI model defines several abstraction layers for communication systems. . . 18

3.8 The ZigBee protocol stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.9 An example ZigBee network topology. . . . . . . . . . . . . . . . . . . . . . . . 20

3.10 A Raspberry Pi Compute Module and a Raspberry Pi model B . . . . . . . . . . 23

3.11 The Marvell SheevaPlug computer . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.12 TelosB module with block diagram . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.13 Proposed system architecture for agriculture . . . . . . . . . . . . . . . . . . . . 26

4.1 Fraunhofer Pandlet CORE with coin for scale . . . . . . . . . . . . . . . . . . . 29

4.2 The Fraunhofer Pandlet, complete with Memory and Sensing+ modules. . . . . . 30

4.3 Nordic’s PCA10001 development board . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Nordic’s PCA20006 development board . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Micro Controller Unit (MCU) with full software stack and SD . . . . . . . . . . 32

4.6 BLE stack as implemented by the SD . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 IoT network with 6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.8 Memory map generated by linker . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Block diagram of the solution’s three main components . . . . . . . . . . . . . . 37

5.2 Example diagrams of typical situations in which the BlueWarnAAL system would

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 The different wireless technologies used for node to node communication . . . . 40

5.4 Block diagram of the Pandlet’s three components . . . . . . . . . . . . . . . . . 40

5.5 Exploded view of an AltBeacon advertisement packet . . . . . . . . . . . . . . . 41

5.6 First stage of interpreting a rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Flowchart of the different stages of rule processing. . . . . . . . . . . . . . . . . 44

5.8 Second stage of interpreting a rule . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.9 Third and last stage of interpreting a rule . . . . . . . . . . . . . . . . . . . . . . 45

5.10 Bad Match Table and calculation process . . . . . . . . . . . . . . . . . . . . . . 46

5.11 The different stages of the Boyer-Moore algorithm on an example string . . . . . 47

xi



xii LIST OF FIGURES

5.12 The naïve algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.13 Inflix notation vs postfix notation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.14 Flowchart of the shunting yard algorithm . . . . . . . . . . . . . . . . . . . . . . 50

5.15 Step by step solving of an RPN expression . . . . . . . . . . . . . . . . . . . . . 51

5.16 Flowchart of the RPN parser algorithm . . . . . . . . . . . . . . . . . . . . . . . 52

5.17 Main switch block of our Reverse Polish Notation (RPN) parser code . . . . . . 53

5.18 The Smart Companion Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.19 Android application UI flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Schematic of the power switching circuit incorporating a relay . . . . . . . . . . 60

6.2 The circuit recreated in National Instruments (NI)’s Multisim . . . . . . . . . . . 61

6.3 Oscilloscope plot of voltage at the load . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Voltage and current for different points in the circuit . . . . . . . . . . . . . . . . 63

6.5 Open space plot of estimated distance . . . . . . . . . . . . . . . . . . . . . . . 63

6.6 Fraunhofer Portugal’s main corridor (first floor) . . . . . . . . . . . . . . . . . . 63

6.7 Corridor plot of estimated distance . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.8 TCPDump utility output during connection with the Nordic MCU . . . . . . . . 64

7.1 The Pimatic UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



List of Tables

3.1 Comparison of different qualitative characteristics in the MQTT, STOMP and

AMQP protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Table of wireless technologies and respective IEEE standards . . . . . . . . . . . 18

3.3 Comparison of different wireless technologies’ characteristics . . . . . . . . . . 22

6.1 Circuit bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



xiv LIST OF TABLES



Acronyms and Abbreviations

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

AAL Ambient Assisted Living

AC Alternating Current

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AMQP Advanced Message Queuing Protocol

AP Access Point

API Application Program Interface

APIPA Automatic Private IP Addressing

APK Android application PacKage

ARM Advanced RISC Machines

ARP Address Resolution Protocol

ART Android RunTime

BAN Body Area Network

BJT Bipolar Junction Transistor

BLE Bluetooth Low Energy

BNC Bayonet Neill–Concelman

BSD Berkeley Software Distribution

BSS Basic Service Set

CBC Cipher Block Chaining

CoAP Constrained Application Protocol

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DC Direct Current

xv



xvi Acronyms and Abbreviations

DDR Double Data Rate

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

DSP Digital Signal Processing

EDR Enhanced Data Rate

EMS Emergency Medical Services

EMU Environmental Measurement Unit

ESS Enhanced Service Set

FFD Full Function Device

GPIO General Purpose Input Output

GPS Global Positioning System

GPU Graphics Processing Unit

HART Highway Addressable Remote Transducer protocol

HS/EDR High Speed (HS)/Enhanced Data Rate (EDR)

HS High Speed

HTTP HyperText Transfer Protocol

I/O Input/Output

IBM International Business Machines Corporation

IBSS Independent Basic Service Set (BSS)

IC Integrated Circuit

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IEEE-SA IEEE - Standards Association

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IMU Inertial Measurement Unit

IoE Internet of Everything

IoT/IoE Internet of Things (IoT)/Internet of Everything (IoE)



Acronyms and Abbreviations xvii

IoT Internet of Things

IP Internet Protocol

IPv4 IP version 4

IPv6 IP version 6

ISM Industrial, Scientific and Medical

JTAG Joint Test Action Group

LAN Local Area Network

LwIP Lightweight IP

M2M Machine to Machine

MAC Media Access Control

MAN Metropolitan Area Network

MCU Micro Controller Unit

MEMS Microelectromechanical Systems

MIB Management Information Base

MIPS Microprocessor without Interlocked Pipeline Stages

MIT Massachusetts Institute of Technology

MOM Message Oriented Middleware

MPR Multi-Point Relay

MQTT Message Queue Telemetry Transport

MQTT-SN MQTT - Sensor Networks

NI National Instruments

NIST National Institute of Standards and Technology

NP Nondeterministic Polynomial

OASIS Organization for the Advancement of Structured Information Standards

OLSR Optimized Link-State Routing protocol

OOB Out Of Band

OSI Open Systems Interconnection

OSPF Open Shortest Path First

P2P Peer to Peer

PAN Personal Area Network



xviii Acronyms and Abbreviations

PARC Palo Alto Research Center

PC Personal Computer

PCB Printed Circuit Board

PHY Physical

PPI Programmable Peripheral Interconnect

PPP Point-to-Point Protocol

PPPoE Point-to-Point Protocol (PPP) over Ethernet

PPPoS PPP over Serial

QoS Quality of Service

RAM Random Access Memory

RF Radio Frequency

RFD Reduced Function Device

RFID Radio-Frequency IDentification

RISC Reduced Instruction Set Computing

RPN Reverse Polish Notation

RSSI Received Signal Strength Indicator

RTT Round Trip Time

SASL Simple Authentication and Security Layer

SD Soft Device

SDK Software Development Kit

SIG Special Interest Group

SNMP Simple Network Management Protocol

SoC System on (a) Chip

SO-DIMM Small Outline - Dual In line Memory Module

SPEC Standard Performance Evaluation Corporation

SPI Serial Peripheral Interface

STOMP Simple (or Streaming) Text Orientated Messaging Protocol

SWD Serial Wire Debug

TCP/IP TCP/Internet Protocol

TCP Transmission Control Protocol



Acronyms and Abbreviations xix

TI Texas Instruments

TLS Transport Layer Security

TX Transmit

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

UI User Interface

ULP Ultra Low Power

URL Uniform Resource Locator

USB Universal Serial Bus

USD United States Dollar

UTF8 Universal Character Set + Transformation Format — 8-bit

UWB Ultra-Wide Band

VCO Voltage-Controlled Oscillator

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

WPAN Wireless PAN

WSN Wireless Sensor Networks

XML eXtensible Markup Language





Chapter 1

Introduction

Ambient Assisted Living (AAL) has been a big research interest in current times. Due to the

trend of an ever-increasing elderly population measures are needed to allow elderly people to not

only cope with their condition but to thrive in their preferred environment. Research projects

such as [1] and [2] have been funded by both private and public organizations in the last decade

to develop solutions for these problems. In this document we propose a solution by leveraging

recent developments in technology. In Chapter 1 we provide an introduction to the document

by succinctly explaining our Motivation, the Problem and the project’s Objectives. The research

problem is further discussed in detail in Chapter 2.

1.1 Motivation

The world’s elderly population is currently the fastest growing age group, especially in developed

countries. Populational trends also lead to these people living alone in single households [3] which

obviously constitutes a health hazard since elderly people usually have memory and physical im-

pairments as a side effect of the ageing process. Healthcare costs with elderly people are highest

in their final two years of life, since they require further attention by caregivers and healthcare

professionals, including Emergency Medical Services (EMS). These factors combined will lead

to increased costs. If alternative solutions aren’t developed the increased costs will be unsustain-

able. This will lead to either reduced Quality of Service (QoS) for healthcare or to increased costs

for the patients. An integrated AAL solution would allow for the elderly to live largely unassisted

in their preferred environment, increasing their autonomy and proactively decreasing healthcare

costs by preventing possible problems before they even happen.

Wireless Sensor Networks (WSN) have taken leaps and bounds in the last decade. They have

shown great promise due to them being durable, decentralized (in mesh configuration) and being

able to be clustered into highly available configurations [4]. Yet, they still haven’t been realized

to their full potential; new technologies are being developed every day in this area and WSN’s are

being used in new, interesting applications. These include WSN’s for monitoring farms [5] and

1



2 Introduction

also traveling sign-on schemes [6]. This nature makes them ideal for distributed systems that need

to be assembled without big costs to infrastructure and also makes them highly flexible.

Computing trends have reversed in the previous two decades. The focus was once to build ever

more powerful computers, disregarding their efficiency, both energy and space-wise. Starting with

the ’90s the focus was on miniaturizing computers: making them smaller and more efficient while

also being able to maintain computing power. One only has to look at the common smartphone:

usually equipped with several gigabytes of Random Access Memory (RAM) and a multi-core

processor, to see real world results of this phenomenon. Yet, computers are all around us, and most

are left forgotten, maybe because their computing power pales in comparisson to smartphones, but

still, even the common microwave oven has at least a microprocessor powering it. Although

overlooked, these devices still have some computing power that should not be underestimated.

One can take advantage of the small, yet important processing power that these devices provide to

process data, instead of using them simply as the dumb middle man that is required to deliver data

from where it is produced to where it is processed.

Location-based Services exploit the user’s physical location in order to provide different ser-

vices [6]. The means used to attain the physical location of the user range from very simple to

very complicated and convoluted, using many technologies. The location can be either absolute

or relative. An absolute location can be obtained with technologies like Global Positioning Sys-

tem (GPS), beacons and cross-referencing with stored maps or landmarks. The relative location

can be calculated (in reference to other nodes) using trillaterarion, time of arrival, angle of arrival

or time difference of arrival. If one knows the absolute location of at least three nodes in the

network and the relative locations of all other nodes are known, one can use this information to

calculate the absolute location of every node [4].

The integration of these technologies could offer a solution to the increase in the elderly pop-

ulation by providing a safe environment where they could live, autonomously, not requiring con-

stant intervention on the behalf of caregivers or healthcare professionals by proactively preventing

problems before they even occur. Throughout this paper the most basic use case we will consider

is the following:

“An elderly person, living alone, is cooking supper in the kitchen. For some reason

they need to leave the room. They forget the stove is on. The stove is now a potential

fire/explosion hazard.”

Our motivation is to leverage these technologies in order to proactively stop this hazard while also

providing an extensible framework so that many more use cases can be implemented in the system.

This is not as easy as it sounds: It is a widely known fact that the elderly usually struggle with

embracing new technologies. Interfaces and systems must be designed maintaining simplicity in

mind, and keeping information clear and concise.



1.2 Problem 3

1.2 Problem

The quality of life of the elderly must either be maintained or increased as the population in that

age group increases either maintaining current costs per person or, preferably, decreasing them. In

short, one must develop a solution that enables current healthcare solutions to scale well with the

increasing population.

The technologies that have been mentioned here are naturally heterogeneous, and therefore

difficult to integrate. This forces us to develop some kind of glue that allows us to abstract the

differences in Application Program Interface (API)’s and communications protocols[7].

There are currently no commercial systems that are able to trigger events in the home based on

rules this complex. The home automation systems that do exist and provide similar functionalities

are expensive and often proprietary, making them very hard if not impossible to be extended by

the user [8].

1.3 System Requirements

The proposed system, has the following requirements:

• The system must be based around the Fraunhofer Pandlet/Nordic nRF51822 hardware plat-

forms;

• It must use an Android smartphone to both detect the position of the user and to provide a

UI for the system;

• Communication between nodes must use Bluetooth Low Energy (BLE) (as it is natively sup-

ported by most recent Android smartphones). Other technologies may be used in addition

to BLE.

• The system must be capable of interpreting rules set by the user, and configured on-the-fly;

• The context of a specific situation must be available as an input for rules;

• The system must work in a Peer to Peer (P2P) fashion, i.e. the Pandlet and the smartphone

must constitute a working system without additional hardware;

• The system must be scalable, optionally with extra hardware.

1.4 Objectives

Our objectives can be divided into two phases:

• Development phase: In this first phase we develop the solution. The solution is composed

of three components (Fig. 1.1):



4 Introduction

Figure 1.1: The three components that compose our solution: an Android smartphone (graphics),

a Nordic MCU/Fraunhofer Pandlet (brains) and a Raspberry Pi (connectivity)

– Nordic application: This is the MCU applicaton. It will have to calculate the distance

to the connected smartphone and support custom rules that the user can configure.

– Android application: The Android application will work as a frontend for the system,

giving the user an interface to access the system and customize its rules.

– Scalling: In this phase we give the system the ability to scale from just one node to

several.

• Test phase: In this phase we test the solution. This will be accomplished by building a

testbed and testing the system in a real world situation.



Chapter 2

Research Problem

2.1 The System

In this section we talk about the problem that we have proposed to address in a more academical

sense and discuss its non-triviality.

Developing any AAL solution is not simple, since the elderly are an age group which is known

to be hard to cater to. Solutions developed for the elderly must be simple, but retain functionality.

This means that very complicated systems must have simple interfaces and not seem complicated.

The most basic use case that we have proposed to address is mentioned in Section 1.1. Al-

though this scenario is simple enough, our main challenge relies in scalability: We want this

system to be able to scale from only two devices (the sensor and actuator that are needed in this

first scenario) to several tens, hundreds or even thousands of devices. This system should be able

to be implemented in every room in an elder’s home, or even in a nursing home or perhaps a

hospital.

The system must also be easily extensible so that other types of sensors and/or actuators and

functionality can be easily added.

On the other hand the system itself is not trivial. Integrating this type of heterogeneous system

has been a known challenge for developers. Even though solutions to make communication be-

tween applications in distributed systems have been developed (as mentioned in Section 3.2) these

systems are inherently complicated.

We are also limited because of power: Most sensors/actuators will not be connected to mains

power and must therefore rely on batteries for their operation. For commodity’s sake we want

the devices to go for as long as possible without battery replacement/recharging. This means that

power consumption must be kept to a minimum.

Location with Bluetooth or any other type of generic wireless communication technology is

a continuing research effort with no commercial products implemented as of yet. In of itself the

location engine that we have proposed to develop can be considered a valid research effort, but in

this thesis we propose to not only develop this location engine but use it as a component to our

AAL system, which again, involves a great effort with integration.

5



6 Research Problem

Figure 2.1: Fraunhofer Portugal’s Living Lab.

The rule engine that we propose to develop is not without precedent, there have been other

efforts in this area, which include [9]. Yet, as far as our state of the art research has been able to

ascertain there are no systems similiar to ours used in real world situations, especially considering

the types of data that we are dealing with and the application.

2.2 The Testbed

We propose to develop a life-like testbed to test our system. This means that in a short time frame

we need to develop our system and get it to a stage where it is stable enough and bug free so that

it can be implemented in an actual testbed.

The testbed will be implemented in Fraunhofer Portugal’s Living Lab (Fig. 2.1), which is a

reproduction of an average apartment with all usual commodities. The Living Lab consists of a

living room/kitchen and a suite (bedroom and bathroom). This will give us a lifelike scenario

where test subjects can interact with the system in a plausible situation.

A small-scale tabletop testbed will be built, having power outlets available to where an electric

appliance can be connected. These outlets will not, however, be normal outlets. They will be

connected to a relay circuit controlled by a MCU. Depending of a smartphone to the testbed, one

will see if the system will react as planned: by turning on or off the electric appliance.



Chapter 3

State of the Art

3.1 Wireless Sensor Networks

Wireless Sensor Networks are the next evolutionary step in computing and automation. Smart

sensors can be compared in that sense to biological systems. They have exteroceptors, that deal

with external stimuli and proprioteptors that deal with information originating in the system.

What constitutes a smart sensor has been standardized by the National Institute of Standards

and Technology (NIST) and Institute of Electrical and Electronics Engineers (IEEE) as the IEEE

1451 standard [10]. A smart sensor is a sensor that includes, in the same node, software and

Digital Signal Processing (DSP) functions as well as standard control protocols and networking

interfaces. The point of having a smart sensor is abstracting the output of the transducer (usually

a voltage or current value) and the signal processing stage, thereby moving the intelligence closer

to the sensor. Wireless sensor networks can be composed of different clusters of sensors, forming

different sub-networks. When a clear separation is visible, usually it is between a data collection

network and a data processing network.

Since at least some nodes in these networks are not connected to a fixed power supply and

must rely instead on batteries to provide power, power conserving and/or generating techniques

and ultra-low power node design have become a big focus in this type of research. These tech-

niques include making devices enter a deep sleep mode in between transmission/reception in order

to conserve power and energy generation including traditional techniques such as as integrating

solar panels with the nodes and also innovative ones such as Radio Frequency (RF) energy gather-

ing and the use of Microelectromechanical Systems (MEMS) [11]. Power conserving techniques

pertaining to specific wireless transmission technologies will be further discussed in Section 3.3.

Message routing in this specific type of network is usually very different from routing in

traditional environments. The network topology is not constant and can be constantly changing

as sensors may be mobile. Even traditional routing protocols with a fast conversion time (Open

Shortest Path First (OSPF) [12]) can have trouble coping with all the topology changes. The

available bandwidth is usually smaller and nodes must be powered down for the most amount of

7



8 State of the Art

time in order to conserve power, so any overhead must be minimized [11]. To do this a creative

approach is needed and will be discussed in Section 3.1.3.

3.1.1 Ubiquitous Computing

While one discusses Wireless Sensor Networks it is important to note the paradigm shift that

eventually lead to the coming of age of this technology and its implications, including the huge

research interest that revolves around it.

This shift was characterized by a concept that emerged from the mind of a researcher named

Mark Weiser at the Xerox Palo Alto Research Center in 1988. Quoting Weiser:

“Ubiquitous computing names the third wave in computing, just now beginning. First

were mainframes, each shared by lots of people. Now we are in the personal comput-

ing era, person and machine staring uneasily at each other across the desktop. Next

comes ubiquitous computing, or the age of calm technology, when technology recedes

into the background of our lives [13].”

The future that Weiser envisioned was one where computing was ubiquitous (seeming to be

seen everywhere) [14]. Current trends have proven him to be, at least to an extent), right.

Weiser identified three ages of computing:

In the first age many users shared a single Mainframe between them. More powerful computers

were necessarily just one bigger, more powerful (and power-hungry) machine.

In the second age, defined by Weiser as the Personal Computer (PC) age, which we are cur-

rently experiencing, computing is achieved by means of individual machines. The "One Person,

One Computer" paradigm is the norm and computing is achieved my means of these devices.

Supercomputers in this day and age are built from thousands of generic off-the-shelf computer

components, and their huge performance is essentially attained by exploiting parallelism [15].

Weiser predicted that there would be a third age of computing characterized by huge num-

bers of small, cheap, and easily-replaceable wirelessly-connected computing nodes. These nodes

would fade out of existence, melding imperceptibly with everyday objects. Everything would be

connected and computing would be everywhere (see Fig. 3.1). One would use this Everyware [16]

naturally and fluently without even realising it.

This concept is obviously still just that, but computing is slowly evolving into it. Other similar

concepts such as the Internet of Things/Everything will naturally come first.

3.1.2 Internet of Things/Everything

The Internet of Things is a concept that is closely related to Ubiquitous Computing but pertaining

more to individual objects rather than ever-present computing. Internet of Things (IoT)/Internet of

Everything (IoE) (IoT/IoE) boils down to a scenario where common day objects, people, animals,

etcetera, are connected to the Internet and are able to use it to communicate. A thing in the IoT

is something that can be issued a unique identifier in order for it to communicate without human



3.1 WSN 9

(a) Quantity computing paradigm (b) Quality computing paradigm

Figure 3.1: If one assumes that the cost of computing will fall over time two outcomes are possible:

either (Fig. 3.1a) the number of computers increases or (Fig. 3.1b) their quality increases. If current

trends continue the first scenario is more likely and fits into the Ubiquitous Computing concept

[13].

interaction. This type of communication is known as Machine to Machine (M2M) communication

[17]. In a sample system consisting of a vending machine and the company that restocks the

vending machine, a machine connected to the IoT would transmit information about stocks to

the company’s server and when it would get low on a particular product an automated message

would be sent to the employee restocking the machines. This way, the human middle-man is cut

out. Products built with this type of capabilities are usually defined as being smart (eg: smart

label, smart sensor). The concept of IoT was only coined in 1999 by Massachusetts Institute of

Technology (MIT)’s Auto-ID Center and its related publications [18], but it had been in the making

long before that: The MIT’s Computer Science Department runs a Coke machine since the ’70s

that was the first appliance to have internet connectivity. It allowed users to check the status of the

Coke bottles in the machine (quantity and temperature) [19].

As we can see in Fig. 3.2 the fist version of the Internet of things came from a necessity for

more efficient logistics by using Radio-Frequency IDentification (RFID) tags. This first iteration

consisted mainly of one-way communication: the tags themselves contained no information be-

yond an ID code that corresponded to an entry in a database. Eventually, this development will

lead to Ubiquitous Computing, where everything is connected.

3.1.3 Meshed and Multi-hop Networks

Meshed and Multi-hop Networks are incredibly important, enabling technologies for both Ubiq-

uitous Computing and Internet of Things/Everything. Even though wireless technologies have

progressed a lot in the last decade the current networking paradigm is still one of infrastructure:

wireless devices access the internet through an Access Point that connects to a wired infrastruc-

ture network. This type of web access isn’t scalable for huge numbers of ever-present devices: it

forces the numbers of Access Points and the size of the wired networks to scale with the number

of devices.

One can infer that the future will be in ad-hoc, meshed networking (see Fig. 3.3, bottom-right)

[21]. since this type of networking allows for data communication without a wired infrastructure



10 State of the Art

Figure 3.2: Technology roadmap for the evolution into the Internet of Things[20]

network.

Each device in the network can be abstracted as a node: it has computing power and can

receive or send messages to other nodes.

Mesh networks generally allow transmission only to a node’s nearest neighbour. Multiple

paths to a same destination give this network configuration immense versatility and robustness.

Nodes are considered identical in the general case, but they need not be. Certain nodes can be

designated as "group leaders" of some sort and carry out additional functions besides those of

their peers (supernodes) . This leads to a network that has a mesh topology and a hierarchy.

As nodes are added to a network, the problem of finding the best path for a message to travel

(routing) tends toward NP complexity. Breaking up the network into smaller, hierarchical net-

works helps break up this complex problem into smaller ones that can be solved faster as a whole.

In this case, the entry node to a specific cluster is usually designated as the group leader [4].

One can look at the example of the Optimized Link-State Routing protocol (OLSR). OLSR is

a routing protocol developed by the Internet Engineering Task Force (IETF) specifically for ad-hoc

mobile networks, similar to another Link-State routing protocol: OSPF.

The flooding process used by OSPF is not appropriate for wireless ad-hoc networks: if every

node floods its routing information the media is not used efficiently and any change in network

topology (which in the case of wireless networks is much more common than in wired ones) leads

to the network being flooded. Also, in the case of mobile networks one wants to keep the number

of transmissions to a minimum in order to conserve battery life.

To solve these problems OLSR implements the notion of hierarchical nodes: by sending

"Hello" messages each node discovers its two hop neighbours and performs a distributed elec-

tion of a node to be its Multi-Point Relay (MPR). The MPR acts as the router for a subset of the



3.2 MOM 11

Figure 3.3: Basic Network Topologies[4]

network’s nodes and floods the networks with messages pertaining to topology changes on behalf

of the other nodes in its group. This means that only the MPR has to send messages and greatly

reduces the number and frequency of messages flooding the network [22].

3.2 Message Oriented Middleware

With the continuous advances in networking technology and with current networking paradigms

creeping ever-closer to the Internet of Things/Everything multiple heterogeneous systems that

once were regarded as completely independent now have to be integrated with one another. Sys-

tems have also been becoming distributed. Although this provides us with many advantages it

makes systems inherently more complex. This gives us numerous problems when one wants to

integrate these completely different systems. Altering every single component to work correctly

with each other is simply not practical.

A solution that has been proposed in [7] and works by acting like a "glue" of some sort between

two different systems (as can be seen in Fig. 3.4) is a Middleware. The idea behind middleware

is that it acts like a translator between two or more systems that allow them to talk to one an-

other without them being altered. Using a middleware allows one to easily integrate normally

incompatible and often pre-existing systems without altering them.

Different applications can be linked by transmitting messages between them. Because of this,

this type of middleware based on events, or messages, is usually called Message Oriented Middle-

ware (MOM).



12 State of the Art

(a)

(b)

Figure 3.4: In order to fit two pieces of a puzzle together, one can either: Fig. 3.4a alter them

individually so that they fit or Fig. 3.4b create an intermediary that fits both.

Some MOM’s are based on the Publish/Subscribe model. In this model each client registers

either as a publisher or subscriber of messages. Messages have their own Information Spaces

and can be traded between spaces using Message Flow Graphs that specify how the messages

are transformed and propagated. This structure can be used to drop obsolete messages, to buffer

messages to subscribers that have been off-line and this makes the whole system much more

streamlined.

The Publish/Subscribe scheme allows for time, space, and synchronization decoupling. Space

decoupling allows two parties to share information between them without actually knowing each

other. This is achieved because they both transmit and receive their information using the middle-

ware as a proxy. The subscribers need not know where the information they need is located, they

just subscribe to a topic or content type and the middleware is responsible to get their messages

to them. Time decoupling allows those same two parties to not need to be participating in the

interaction with the middleware simultaneously in order for the information to be transferred. In

this case the middleware acts as a buffer and stores messages for a subscriber and sends them to

that subscriber when it is online. Synchronization decoupling means that publishers need not be

blocked when producing events and subscribers can get notified in a non-blocking manner when

new messages are available for them.

3.2.1 Protocols

A number of different protocols have been developed for MOM. In this section we describe

three popular ones: Advanced Message Queuing Protocol (AMQP), Simple (or Streaming) Text

Orientated Messaging Protocol (STOMP) and Message Queue Telemetry Transport (MQTT).



3.2 MOM 13

3.2.1.1 AMQP

The AMQP is an open standard application layer protocol that has been an Organization for the

Advancement of Structured Information Standards (OASIS) standard since May 2014 [23]. It is

a binary, application layer, wire-level protocol and was designed to support many messaging ap-

plications. It provides flow control, message delivery guarantees and authentication/encryption.

AMQP has its own encoding scheme allowing for representation of a wide range of types, while

allowing data for being given extra meanings. For example, a string can be appended with addi-

tional information for it to be understood as an URL [24].

The protocol uses a set of nine frames to create/destroy connections, transfer data and provide

control information, these are: "open", "begin", "transfer", "flow", "disposition", "detach", "end"

and "close".

Links are the basic connection type in AMQP, they are unidirectional. Sessions are comprised

of multiple links and can be used for bidirectional transfer of data. A connection between two

peers can have multiple sessions. Links are initiated with "attach" and terminated with "detach"

frames. Similarly, sessions use the "begin" and "end" frames and connections the "open" and

"close" frames. Messages are sent over a link using the "transfe"r frame. The "flow" frames are

used for flow control, in order ensure QoS and prevent deadlocks. The disposition frame is used

for the peers to settle on the state of the transfer, for reliability guarantees.

Since AMQP is a wire-level protocol that represents data as a stream of octets, it can be used

in any application that understands messages in this format. Even though it usually relies on

Transmission Control Protocol (TCP) for transport purposes it is independent of the TCP/Internet

Protocol (TCP/IP) protocol stack.

One should note that in this paper we discuss only version 0.9.1 of AMQP as it is used in

RabbitMQ.

3.2.1.2 STOMP

The Simple (or Streaming) Text Orientated Messaging Protocol is another open standard mes-

saging protocol that is presented as an alternative to AMQP and other implementation specific

protocols. It tries to distinguish itself by being simple and lightweight, offering a small but useful

messaging API.

Similarly to AMQP STOMP is frame based, but it is modelled on/inspired by HyperText

Transfer Protocol (HTTP). Each frame consists of a command and, optionally, headers and a

payload. By default, it is text based (Universal Character Set + Transformation Format — 8-

bit (UTF8)), but supports different encodings, allowing, for example, binary messages to be sent.

Like AMQP, STOMP uses a reliable 2-way streaming protocol for its transport needs, such as

TCP, when implemented on the TCP/IP stack.

STOMP frames follow the structure:

COMMAND

header1:value1



14 State of the Art

header2:value2

Body^@

Several headers may be sent in a single STOMP message, as long if the keys for each header

value are distinct. If there are repeated keys, only the first value is used.

STOMP supports a function named heart-beating that allows two peers to test the healthiness

of the underlying TCP stream, this is useful for QoS purposes [25].

3.2.1.3 MQTT

MQTT is yet another open-source MOM protocol. MQTT was originally developed by IBM and

made open-source in the early 2010s.

Similarly to the other protocols presented here MQTT is Publish/Subscribe based, and simi-

larly to STOMP is designed with light weight in mind, but, unlike the other protocols, it is specific

to the TCP/IP stack. Unlike STOMP, MQTT’s messages are much less verbose and more compact

[26].

One specific advantage that MQTT has is a sub-specification: MQTT-SN or MQTT for Sensor

Networks. It is an even more trimmed down version of MQTT designed specifically for IoT and

Sensor Networking scenarios while being as close to MQTT as possible. It works on non TCP/IP

networks such as ZigBee. By using gateways and forwarders an MQTT network can be extended

into these sensor networks.

MQTT-SN also supports an offline keep-alive procedure that is used for supporting sleeping

clients. Clients that go into a sleep mode have their messages buffered at the gateway and are

delivered when they wake up [27].

3.2.2 Applications

The protocols that were mentioned in Section 3.2.1 are only that: protocols defined in specifica-

tions. In this section we mention three practical MOM implementations that use at least some of

these protocols.

3.2.2.1 RabbitMQ

RabbitMQ is an open-source MOM message broker written in the Erlang programming language.

RabbitMQ uses the AMQP protocol but the project includes gateways for the HTTP, STOMP, and

MQTT protocols. It also has a plugin platform that allows one to extend the base functionalities

provided.

The RabbitMQ server runs on all major operating systems with official clients written in Er-

lang, C# and Java, but there is a large community supporting the project offering clients written in

a multitude of other languages [28].



3.2 MOM 15

One should note that RabbitMQ offers several features for increased reliability and availability,

including queue mirroring. RabbitMQ also includes features that make debugging easy, such as a

graphical management User Interface (UI) and tracing support.

3.2.2.2 Mosquitto

Mosquitto is an open-source MQTT broker written in C. It is a project with a very small footprint

aimed at being deployed on low-power and embedded systems. It includes libraries written in C

with C++ and Python wrappers [29].

Mosquitto is perfect for being deployed in very low power systems. In [30] the developer

mentions that he had tested Mosquitto on a VIA Cyrix III 600 MHz based system processing 1500

messages per second.

3.2.2.3 ActiveMQ

ActiveMQ is yet another open-source message broker, but unlike the others presented here it is

written in Java. ActiveMQ supports the AMQP, OpenWire, MQTT and STOMP protocols [31].

Since ActiveMQ is written in Java it is supported in all major operating systems without need

for porting. With its compatibility with multiple MOM protocols, it supports clients written in

basically every language. It also does not require a broker to function and can be implemented in

a purely P2P fashion.

However, in benchmarks (such as the ones in Section 3.2.3) ActiveMQ tends to lag behind the

competition in performance.

3.2.2.4 ZeroMQ

ZeroMQ, often stylized ØMQ is an offshoot project of an AMQP implementation called Ope-

nAMQ. The company that runs the project stopped using AMQP because of concerns that it had

become overly complicated.

Unlike other MOM implementations presented in this paper, ZeroMQ is not a message broker,

it is in fact a small, fast networking library. It does not require a server running a dedicated

message broker in order for it to work. ZeroMQ has a base of tradeoffs: by decreasing complexity

it has achieved fantastic performance but at the expense of some commodities.

3.2.3 Comparison

Publish/Subscribe MOM is usually intended for very scalable applications. Like everything else,

how scalable these middlewares actually are must be quantified.

For this purpose, in 2007 the Standard Performance Evaluation Corporation (SPEC) devel-

oped SPECjms2007: an industry-standard performance test for MOM. The SPECjms2007 was



16 State of the Art

Figure 3.5: In [34] the author compared several different MOM solutions, including ActiveMQ,

ZeroMQ and RabbitMQ

extended in 2009 to form the jms2009-PS benchmark specifically for Publish/Subscribe middle-

ware [32, 33]. This benchmark has a real-world scenario behind its thinking and offers a close

approximation to how these products should perform in an actual application.

Although these standard testing procedures exist to evaluate the actual performance of the

middleware, sometimes performance must be sacrificed for useful features and ease of use. In this

section a relative comparison of the studied middlewares is presented.

In terms of raw performance, we can reference these two tests conducted in a non formal

fashion [34, 35] (Fig. 3.5 and Fig. 3.6). ZeroMQ is the clear winner, being the fastest with its fast

enqueue and dequeue times. RabbitMQ is a close second.

In terms of protocols, AMQP seems to outperform STOMP, which is to be expected, given the

latter’s increased verbosity.

In [36] another comparison between these protocols is made, but considering their features. In

Table 3.1 a similar qualitative comparison is made.

MQTT STOMP AMQP

QoS Levels 3 1 3

Subscription Types Hierarchical topics Topics Exchanges, Queues and bindings

Data Serialization — — AMQP type system or user defined

Standard OASIS standard OASIS standard —

Security Encryption

Authentication

SASL/TLS

SASL

—

Username/Password
SASL

Table 3.1: Comparison of different qualitative characteristics in the MQTT, STOMP and AMQP

protocols



3.3 Wireless Communication Solutions 17

Figure 3.6: In [35] another comparison is made with similar results to Fig. 3.5

3.3 Wireless Communication Solutions

In the last three decades a paradigm shift has taken place in computer networking: the advent and

popularization of wireless communication technologies. While certain technologies like Bluetooth

and Wi-Fi were developed for the consumer market they soon found other applications. In this

section we discuss prominent wireless communication technologies such as Bluetooth, ZigBee

and Wi-Fi and in Others we mention technologies that, although they aren’t especially useful for

our needs, we feel are worth mentioning.

The technologies presented here operate in the unlicensed Industrial, Scientific and Medical

(ISM) bands. These include the 2.4 GHz band for all technologies presented here, while others

can use multiple bands such as 5 GHz for WiFi and 900 MHz for ZigBee.

3.3.1 What is defined by the IEEE

The organization that is responsible for defining and standardizing these wireless technologies is

the IEEE trough the IEEE Standards Association (IEEE-SA). All technologies mentioned here

have been, to an extent, standardized by this organization under the IEEE 802 standard committee

for Local Area Network (LAN)/Metropolitan Area Network (MAN) connectivity with variable

sized packets.

While these technologies are defined by the IEEE, the IEEE only defines the Physical (PHY)

and Media Access Control (MAC) layers as defined by the Open Systems Interconnection (OSI)

model (Fig. 3.7), so that these standards can become viable commercial, functioning, products,

higher levels of the OSI model must be defined (Fig. 3.8). These are usually defined by company

alliances such as the Wi-Fi Alliance and the ZigBee Alliance.



18 State of the Art

Figure 3.7: The OSI model defines several abstraction layers for communication systems.

IEEE Standard Technologies

802.15.1 Bluetooth
Bluetooth

802.15.6 Wireless Body Area Network (BAN)

802.15.4 Wireless Sensor/Control Networks
ZigBee

WirelessHART

802.11 Wireless Networking Wi-Fi

802.15.3 High Rate Wireless Personal Area Networks (WPANs) Ultra-Wide Band (UWB) Radio

Table 3.2: Table of wireless technologies and respective IEEE standards

Figure 3.8: The ZigBee protocol stack. Note that it is built on top of the IEEE 802.15.4 MAC and

PHY layers[37]



3.3 Wireless Communication Solutions 19

3.3.2 Bluetooth

Bluetooth is a technology for WPANs. It was originally intended for cable replacement in situa-

tions where high data rates were not necessary, such as computer peripherals.

There are two types of networks defined in the Bluetooth standard: the piconet and the scat-

ternet. In a piconet one device serves as a master and one or more other devices serve as slaves.

A device can be a member in several piconets at once thereby promoting a data flow between

piconets, forming a scatternet. A Bluetooth device may be a slave in several piconets concurrently

but can be master only in one [38, 21].

3.3.2.1 Bluetooth HS/EDR

Bluetooth v2.0 also known as Bluetooth Enhanced Data Rate (EDR) was a new version of the

Bluetooth Core Specification that was released in 2004. This new version features faster data rates

up to 3.0Mb/s with the EDR optional feature.

Bluetooth v3.0 also known as Bluetooth High-Speed provides theoretical data rates up to

24 Mbit/s. Unlike v2.0 these data rates are not achieved through Bluetooth but rather Bluetooth

is used to send control information while the actual data transfer is done over 802.11. The High-

Speed feature in this specification was originally intended for UWB Radio[39].

These new specifications also featured other small improvements such as better power control.

3.3.2.2 Bluetooth Smart/BLE

BLE marketed as Bluetooth Smart is v4.0 of the Bluetooth standard. It is intended to provide

significantly reduced power consumption while maintaining a similar operation range.

This technology was originally introduced in 2006 by Nokia as Wibree [40] and was intended

as a low energy competitor for Bluetooth, but it was eventually merged into the new Bluetooth

specification.

BLE is marketed towards implementations such as beacons, wellness (eg. fitness bands) and

home automation [41, 42, 43].

However, BLE is not compatible with other versions of the Bluetooth standard, both in terms

of protocol as in terms of modulation. Bluetooth devices may implement both versions of the

protocol simultaneously in order to ensure compatibility.

3.3.3 ZigBee

ZigBee is a specification for low rate WPANs. It is intended for simple, low power devices that

typically operate in a range of 10m up to 100m depending on transmission power and weather

[44].

ZigBee provides, out of the box, self-organized, multi-hop and reliable mesh networking while

also maintaining power consumption low. ZigBee specifies two types of network devices: Full

Function Device (FFD) and Reduced Function Device (RFD). FFDs may act as Personal Area



20 State of the Art

Figure 3.9: An example ZigBee network topology.

Network (PAN) coordinators, coordinators or just devices. FFDs may communicate with all device

types while RFDs may only communicate with FFDs. In this way a hierarchical mesh topology is

established with FFDs acting as supernodes of sorts (see Section 3.1.3). The RFD implementation

is intended for simple devices that only need to send or receive small amounts of information with

very little processing involved. It can, therefore, be implemented on very low power, embedded

devices. The basic ZigBee cell is the star. In a star network (example topology in Fig. 3.9), one of

the FFD devices is chosen to be that star’s coordinator. In all the connected stars that make up a

ZigBee network, one FFD is chosen to act as overall coordinator [21].

3.3.4 Wi-Fi

WiFi was developed, like Bluetooth as a replacement for cables, but, for replacing Ethernet cabling

for LANs. It allows for transparent connectivity to upper layers of the protocol stack.

Wi-Fi supports connectivity in two modes: infrastructure and ad-hoc. Infrastructure is the

most common: wireless Access Point (AP)s provide wireless access to an underlying cabled in-

frastructure. In ad-hoc mode, different Wi-Fi enabled clients can connect directly to each other

without an intervening AP.

The basic WiFi cell is the Basic Service Set (BSS), which is a set of mobile or fixed stations

(eg. a wireless AP and connected clients). On top of this cell two others are defined: the Enhanced

Service Set (ESS) and Independent BSS (IBSS).An IBSS is formed when several stations commu-

nicate in Ad-Hoc mode without an AP. An ESS is made up of a set of BSSs with an underlying

distribution (often wired) network. Essentially the same network is presented via multiple APs

[21].

3.3.5 nRF24L01+

The Nordic nRF24L01+ is a highly integrated, Ultra Low Power (ULP) 2Mbps RF transceiver

Integrated Circuit (IC). It is listed in this paper as a technology because even though it is a hard-

ware solution, it does not conform to any standards imposed by the IEEE for wireless communi-

cation and therefore can be considered an independent technology in of itself.

The nRF24L01+ brings some interesting features to the table when compared with other tech-

nologies at the cost of mainstream device compatibility.



3.3 Wireless Communication Solutions 21

“The Nordic nRF24L01+ integrates a complete 2.4GHz RF transceiver, RF syn-

thesizer, and baseband logic including the Enhanced ShockBurst™ hardware protocol

accelerator supporting a high-speed Serial Peripheral Interface (SPI) interface for the

application controller. No external loop filter, resonators, or Voltage-Controlled Oscil-

lator (VCO) varactor diodes are required, only a low cost +-60ppm crystal, matching

circuitry, and antenna [45].”

The main advantages of this integrated wireless solution are its ultra low power consumption

(approximately 40 mW transmitting (at maximum output power), 50 mW receiving and 10 µW in

standby), hardware ShockBurst (a Nordic proprietary protocol supporting two-way data packet

communication including packet buffering, packet acknowledgement and automatic retransmis-

sion of lost packets) permitting the developer to offload some tasks from the MCU.

3.3.6 Others

In this section we present other wireless technologies that we feel we should mention because of

their characteristics/importance.

3.3.6.1 WirelessHART

WirelessHART is a wireless sensor networking technology that is built on the same IEEE standard

as ZigBee but implements the Highway Addressable Remote Transducer protocol (HART) on top.

Like HART it is meant as an industrial communication solution. WirelessHART was standardised

in 2011 as International Electrotechnical Commission (IEC) 62591, making it the first wireless

protocol to become an IEC standard.

3.3.6.2 UWB Radio

UWB radio is a standard for high rate, small range data transmission with a maximum bandwidth

of 480 Mbps. With this bandwidth UWB can easily support audio and video streaming and act

as a cable replacement for Universal Serial Bus (USB) and IEEE 1394 (FireWire). However due

to essentially bureaucratic reasons the standardization process was stalled until the need for the

technology diminished and the IEEE 802.15.3 Task Group 3c was put into hibernation in 2009.

Still some interest exists in developing this technology further [46, 47, 48, 21].

3.3.7 Comparison

In Table 3.3 a comparison of the different wireless technologies is presented.

1Maxium TX power is usually only limited by ISM band use legislation and not by the specification. However there

may be some implementation specific limitations in some hardware.
2No implementation or specification limit imposed, limited only by available resources.
3Power consuption depends greatly on implementation and operating conditions. Values presented here are rough

estimates from [53, 54, 55] and several datasheets from generic components compatible with these standards and should

only serve as a reference relative to one another. These values also refer only to when the device is transmitting.



22 State of the Art

Bluetooth ZigBee Wi-Fi nRF24L01+

Standard IEEE 802.15.1 IEEE 802.15.4 IEEE 802.11 —

Frequency Band(s) 2.4 GHz 2.4 GHz and 780/868/915MHz 2.4 GHz and 5 GHz 2.4 GHz

Maximum Signal Rate 2.1 Mbit/s or 100 kbit/s (for BLE) 250 kbit/s 54 Mbit/s up to 600 Mbit/s 670 kbit/s[49]

Range 10 m 10 m - 100 m 100 m 100 m[50]

Nominal TX power1
−100 dBm to 20 dBm −3 dBm to 20 dBm 0 dBm to 20 dBm −18 dBm to 0 dBm

Basic cell Piconet Star BSS —

Extended cell Scatternet Mesh ESS —

Maximum number of

cell nodes
8 65536 —2 —

Encryption E0 stream cipher AES block cipher RC4 stream cipher, AES block cipher —

Authentication Shared secret [51] CBC-MAC WEP/WPA/WPA2 —

Data integrity fields 16 bit CRC 16 bit CRC 32 bit CRC 8 or 16 bit

Average Power Consuption 3 <30 mW <60 mW <2 W <40 mW

Table 3.3: Comparison of different wireless technologies’ characteristics [52, 21]

Since with this system supporting smartphones without additional hardware was a great ad-

vantage, BLE was chosen.

3.4 Hardware Platforms

In this section we present multiple hardware platforms that can be used to implement the systems

that have been mentioned so far, either as a sole solution or used in combination.

3.4.1 Android Smartphone

Android is a mobile operating system based on a customized version of the Linux kernel and

developed by Google. It is primarily designed for touchscreen input mobile devices such as smart-

phones and tablets but also powers other types of devices, such as TVs, watches, game consoles,

PCs and others. Android is developed privately by google and is released as open-source code

[56].

Android is usually deployed on platforms with the ARM architecture, with x86 and MIPS also

being supported. As of Android 5.0 64 bit versions of these architectures are also supported.

Android supports multiple external components, with sensors such as accelerometers, gyro-

scopes, barometers, proximity sensors being specifically relevant to our interests.

Android applications are usually written in Java (although there exists some limited support

for apps written in C), packaged as Android application PacKage (APK)s and run on top of a

virtual machine: Dalvik or Android RunTime (ART) [57].

3.4.2 Raspberry Pi

The Raspberry Pi is a series of cheap credit card-sized single-board computers developed by the

Raspberry Pi foundation for teaching purposes. Due to the board’s low price (aimed at 35 USD)

and versatile hardware it has found numerous other applications from home media to embedded

systems. The Pi is based around an ARM System on (a) Chip (SoC) and is capable of running

anything that is usually released for that architecture, this includes most Linux operating systems,

Android, and as of the Raspberry Pi 2, Windows 10 [58].



3.4 Hardware Platforms 23

The Raspberry Pi has hardware more than capable of running most IoT related software. The

B+ model boasts a 700 MHz processor, 512 MB of RAM. It also has a rather powerful dual-core

Graphics Processing Unit (GPU), capable of decoding FullHD H.264 encoded video [59, 60].

Unfortunately, Wi-Fi connectivity is only supported via USB dongle.

Recently the Raspberry Pi Compute Module (Fig. 3.10) has been launched. In the form factor

of a 200-pin DDR2 SO-DIMM memory module it is intended to be used as a part of other products

by providing all the functions of a normal Raspberry Pi in a easy to integrate package [61].

Figure 3.10: A Raspberry Pi Compute Module (left) and a Raspberry Pi model B (right) [61]

3.4.3 SheevaPlug

The SheevaPlug (Fig. 3.11) is a plug computer developed by the Marvell Technology Group. The

computer itself is in the form factor of a common pluggable AC-DC adapter. SheevaPlug uses

an ARM compatible SoC produced by Marvell Semiconductor with a 1.2 GHz Central Processing

Unit (CPU), 512 MB of flash memory and 512 MB of DDR2 RAM. Similarly to the Raspberry Pi,

the SheevaPlug offers Gigabit Ethernet connectivity and USB 2.0. Yet, it’s a bit more costly, with

the SheevaPlug Dev kit being sold for 99 USD [62, 63].

Figure 3.11: The Marvell SheevaPlug computer with I/O ports showing [64]

3.4.4 TelosB

The TelosB is an Open-Source platform developed by MEMSIC essencially for the research com-

munity. It bundles, in a very small package, USB programming capability, an IEEE 802.15.4 radio



24 State of the Art

with integrated antenna, a low-power MCU (8 MHz Texas Instruments (TI) MSP430 microcon-

troller) with extended memory and an optional sensor suite. The TelosB is made to be powered

with two AA batteries [65].

(a)

(b)

Figure 3.12: In Fig. 3.12a the TelosB module is shown, and it’s respective block diagram in

Fig. 3.12b.

3.4.5 TI CC2540

The TI CC2540 is a low cost, low power, SoC chip developed for BLE applications. It combines an

RF transceiver with an 8051 MCU in a single package. Integrated in a Printed Circuit Board (PCB)

with other components and connectors it can prove a very good solution for low power sensors

and actuators that are in sleep mode most of the time [66].

3.4.6 Nordic nRF51822

The Nordic nRF51822 is a powerful and flexible SoC by Nordic Semiconductor for BLE solutions

built around an ARM Cortex-M0 MCU and featuring a 2.4 GHz transceiver designed for the ISM

band. It supports several analogue and digital peripherals though 31 General Purpose Input Output

(GPIO)s. These peripherals can communicate with each other without CPU intervention though

the use of a Programmable Peripheral Interconnect (PPI) system. A specific version of the MCU

that is available to us, the nRF51822AA has a total of 256 kB of flash and 16 kB of RAM. This

SoC is compatible with Nordic’s Gazelle protocol, ANT protocol and the Bluetooth Smart protocol

[67].

3.5 Indoor Location Solutions

Indoor location has been a topic of discussion in academia for quite some time without a conclu-

sion being made as to a good solution for the problem. Global location systems such as GPS aren’t

accurate enough or simply not practical in most situations (GPS requires line-of-site to work), so,

new specific solutions have to be developed. There is also an interest that these new solutions rely



3.5 Indoor Location Solutions 25

on existing, and commonplace systems, so that new investment to obtain new functionality is kept

to a minimum. In this section we discuss several proposed solutions for this problem.

3.5.1 BLE based

Although Bluetooth was originally intended for low bitrate communication it can be applied for

localization purposes.

The Bluetooth specification forces each Bluetooth-enabled device to report Received Signal

Strength Indicator (RSSI) to upper protocol layers for power-control purposes, but this information

can be used for location through trilateration. This process has two main disadvantages:

1. So that the RSSI value can be used for trilateration, each node participating in the location

process needs to be transmitting at full power. This has two more implicit disadvantages:

(a) For the node to be constantly transmitting at full power it must be in discovery mode,

and therefore cannot be simultaneously used to transmit data.

(b) Increased power consumption.

2. Since there is no clock synch mechanism between Bluetooth nodes, measurements used

for trilateration may not have been made at the same time. This introduces errors in the

measurement, especially if the target is moving [68]. The main advantage of this technology

is that it can be found in most consumer-grade electronics equipment that is capable of

communication.

In [6] the use of this technology is explored for a location-aware sign on system, in [69] a guide

application was developed based on this technology and in [70] an application for cat tracking is

developed to a certain degree of success.

3.5.2 ZigBee based

The ZigBee technology is similar to Bluetooth and most location solutions hover around the same

processes proposed in Section 3.5.1, and use the RSSI indicator.

However, some diferent interesting approaches have been developed for this technology. In

[71] and in [72] two different algorithms have been proposed that increase effectiveness in loca-

tion systems. In [71] the tree network topology for ZigBee is exploited to allow for a statistical

maximum-likelihood location approximation. In [72] the implemented algorithm divides the space

in between different ZigBee beacons in different zones that can, themselves, be divided into sub-

zones. The algorithm predicts in what zone the node is more probable to be located. Location

errors obtained were generally less than 2 m.

3.5.3 Wi-Fi

Similarly to the other alternatives presented here, Wi-Fi location techniques revolve around the

same method of trilateration based on RSSI and the placing of beacons. However, due to the



26 State of the Art

Figure 3.13: System architecture proposed in [5]

nature of the technology and it’s higher transmission power (typically 20 dBm) it is more prone to

be affected by multipath propagation and reflection, so huge errors are typically associated with

the use of Wi-Fi for location. Therefore, typically Wi-Fi location systems resort to some kind of

geotagging system: when the client connects to a different AP it is assumed to be in a certain place

[73].

3.6 Applied Research

In this section we present some practical, working, systems that were implemented in real-world

scenarios leveraging some of the technologies that were exposed in this chapter.

3.6.1 Health sensor systems

This type of system has been applied for health purposes to some extent. In [9] a system to inte-

grate multiple health sensors by creating a rule engine was proposed. In [74] a health monitoring

system is fabricated by integrating sensors and transducers into textiles, offering a less intrusive

way to collect this type of data.

3.6.2 Agriculture

In [5] (see system architecture in Fig. 3.13) a sensor network was developed using the ZigBee pro-

tocol along with the Sheevaplug and TelosB hardware platforms. The purpose of this product was

wireless monitoring of greenhouses for agricultural purposes. The authors were able to provide an

interesting and effective solution, being able to squeeze up to 53 weeks (one year) of battery pow-

ered node operation. The companion web and mobile apps that were developed offered a simple

interface to the farmers that ran these greenhouses, helping with their management.



3.6 Applied Research 27

3.6.3 Ambient Assisted Living

There has been a lot of research interest in the EU, in part due to the Ambient Assisted Living

Joint Programme: an ongoing funding effort running since 2006. Some notable projects include:

eCAALYX, a project to enable a commercially viable solution to permit remote monitoring of

elderly by healthcare professionals and caretakers [1, 75].

The Cockwork project used a number of hardware and software platforms, including a WSN

with sensors and actuators and was targeted mainly at shift workers that were greatly affected by

chronodisruption. The project’s objective was to help users maintain a healthy day-night cycle by

manipulating their environment [76].

ALMA was a project with the objective of providing a modular, low-cost, integrated system

to support autonomous mobility and orientation for elders [77].



28 State of the Art



Chapter 4

Development tools

In this section we present the various tools used to develop our proposed solution.

4.1 Fraunhofer Pandlet

Figure 4.1: The Fraunhofer Pandlet CORE (right, square, 28.4 mm wide). 1C coin (left) for

reference.

The Fraunhofer Pandlet is an integrated sensor and processing platform still in active develop-

ment at Fraunhofer Portugal, based around the Nordic nRF51822.

The modules created with the pandlets are composed of several building blocks, that can be

interconnected in order to provide for extra hardware functionality. The base building block is

called the pandlet CORE and includes, in a small package (Fig. 4.1) a Nordic nRF51822 SoC with

a Bluetooth 4.0 interface and 16 MHz ARM M0+ CPU; support for Qi wireless charging and Iner-

tial (IMU) and Environmental (EMU) Measurement Units. The IMU contains an accelerometer, a

gyroscope and a magnetometer. The EMU contains a humidity sensor, an air pressure sensor and

a temperature sensor.

In addition to the CORE module, currently there are two more modules available: the Memory

module and the Sensing+ module (Fig. 4.2). These modules extend the capabilities of the original

CORE module. The Memory module adds a Micro USB port for wired charging and a Micro SD

card slot to allow for large quantities of local, persistent storage. The Sensing+ module allows

for the connection of extra external sensors through various ports, including two BNC connectors.

29



30 Development tools

The sensor’s outputs can be connected directly to one of the MCU’s GPIOs for direct reading or

for I2C communication or to an external Analog-to-Digital Converter (ADC).

With further development of the platform, new form factors and blocks may be developed.

Figure 4.2: The Fraunhofer Pandlet, complete with Memory and Sensing+ modules.

4.2 Development Boards

4.2.1 PCA10001

The PCA10001 (Fig. 4.3) is a MBED-enabled development board distributed by Nordic Semicon-

ductor. MBED is a platform and operating system designed for fast development and prototyping

of MCU platforms, namely Cortex-M 32 bit MCUs such as the Nordic nRF51822. MBED pro-

vides APIs to abstract differences between supported MCUs to make sure that most things work

between platforms out of the box. Although the preferred way to program for MBED platforms is

with an online Integrated Development Environment (IDE) and compiler provided by MBED, it is

also compatible with offline toolchains. We will use the GNU ARM GCC toolchain to develop our

application for this board. After the application is successfully compiled, one can simply connect

the PCA10001 board to a computer and it will be identified as a thumb drive. The MCU can then

be programmed by dragging the resulting binary file into the thumb drive. This is an advantage

over traditional programming since no debugger/flasher is necessary, however, despite supporting

communication with the MCU with Universal Asynchronous Receiver/Transmitter (UART) over

USB, MBED does not support on-chip code debugging [78, 79].

Figure 4.3: Nordic’s PCA10001 development board [79]



4.3 The Softdevice 31

Figure 4.4: Nordic’s PCA20006 development board

4.2.2 PCA20006

The PCA20006 (Fig. 4.4) is a development board that, similarly to the PCA10001, is built around

the Nordic nRF51822. However, it is much smaller, and is not MBED-enabled. As such, it must

be programmed using a Joint Test Action Group (JTAG)/Serial Wire Debug (SWD) emulator such

as, and in our case, the SEGGER J-Link EDU.

4.3 The Softdevice

The Nordic protocol stacks are called Soft Devices.

Nordic SD are pieces of pre-compiled, pre-linked software that implement the required pro-

tocol stacks, in this case Bluetooth Low Energy. They give the developer the important ability

to not have to implement a full protocol stack and interact with proprietary technology. The SD

implements the full Bluetooth stack, so that the developer doesn’t have to. The SD’s functions are

accessed through a pure C API. The SD is flashed onto the microcontroler alongside the applica-

tion and at compile time the linker generates jumps to positions in memory where SD instructions

are located.

This SD does have its disadvantages. Firstly, it is proprietary, so a developer that relies on it is

completely reliant on Nordic Semi for support. Secondly, since it requires the use of pre-compiled

binary files, it forces the developer to use the same toolchain that Nordic initially used to produce

the binary files, or one will experience linker errors and warnings. Using the SD also severely

limits the available resources that the developer has available. In our case, the SD requires half of

all the available flash and memory. 1500 B are also used by the SD for its call stack in the RAM

region addition to 500 B more used by the application call stack. This means that by using the

SD one effectively gets restricted to 128 kB of memory and about 4 kB of RAM [80, 81]. Despite

these disadvantages we feel that using the SD is more than worth the risk.



32 Development tools

Figure 4.5: An example of the full software stack running on the MCU, featuring the SD pro-

grammed alongside the application [80]

Figure 4.6: The Bluetooth Smart stack that is implemented by the SD [80]



4.4 nRF51 SDK 33

Figure 4.7: An example of an IoT network communicating by using BLE links with 6LoWPAN

support [82]

Nordic’s BLE SDs come in several flavors: The S100 series and the S300 series SDs. The

S100 series SDs only implement a BLE stack; The S110 SD can communicate in a peripheral role

and the S120 SD can communicate in a central role, while the S130 SD can switch between those

two modes of operation. The S300 series SDs, containing only the S310 SD implement BLE in

both modes of operation and also the ANT protocol (proprietary) concurrently.

For our specific needs, the S110 SD was chosen, due to its reliability and simplicity.

4.4 nRF51 SDK

A Software Development Kit (SDK) is a set of tools that allow for the development of applica-

tions for a certain platform. The nRF51 SDK is one such set of tools that is provided by Nordic

Semiconductor to developers using their series of nRF51 SoCs. Besides containing all the header

files and such that are required for application development for that specific platform using BLE,

it also contains relevant SDs, documentation and examples for that specific technology and also

other protocols that can be used with this platform that are proprietary to Nordic, mainly featuring

low power, simple types of communication.

4.5 IoT SDK

The IoT SDK is a prototype (not yet production ready), modified, version of the nRF51 SDK that

is capable of communicating via IP version 6 (IPv6) by implementing the 6LoWPAN standard

proposed by the IETF. The 6LoWPAN standard proposes encapsulation and header compression

mechanisms that allow IPv6 packets to be transfered in IEEE 802.15.4 networks such as BLE and

ZigBee. The purpose of this standard is to allow the most low powered devices to be addressable by

IPv6, giving them access to the broader Internet and to the Cloud [83]. The IoT SDK also includes

a complete Internet Protocol Suite including Internet Control Message Protocol (ICMP), User

Datagram Protocol (UDP), TCP, Constrained Application Protocol (CoAP) and MQTT protocols,

and examples on how to develop applications using them. Devices using this SDK implement

a Bluetooth profile designed specifically for this type of communication, and it is through this

profile that packets are transfered between the IoT device and another, WPAN-enabled device,

connected to the Internet, that will act as an IPv6 access point and/or router. The SDK also



34 Development tools

contains instructions on how to set-up a Raspberry Pi to act as a router, and a pre-compiled kernel

that has to be enabled on the Pi to enable 6LoWPAN support [84].

The IoT SDK available when development started for this solution was v0.7.0, and due to nu-

merous API and structure differences between versions, it was retained even after Nordic released

v0.8.0 of the SDK.

4.5.1 The LWIP IP stack

The Lightweight IP (LwIP) protocol stack is a very small TCP/IP stack aimed at being deployed

in ultra low power embedded systems originally developed by Adam Dunkels and now maintained

as an open source project with a modified Berkeley Software Distribution (BSD) license. Nordic

ported this stack for the nrf51822 MCU and distributed it with the IoT SDK.

LwIP’s main features include [85]:

• Protocols: Internet Protocol (IP), ICMP, UDP, TCP, Internet Group Management Proto-

col (IGMP), Address Resolution Protocol (ARP), Point-to-Point Protocol (PPP) over Serial

(PPPoS), PPP over Ethernet (PPPoE), Dynamic Host Configuration Protocol (DHCP) client,

Domain Name Service (DNS) client, AutoIP/Automatic Private IP Addressing (APIPA)

(Zeroconf), Simple Network Management Protocol (SNMP) agent (private Management

Information Base (MIB) support)

• APIs: specialized APIs for enhanced performance, optional Berkeley-alike socket API

• Extended features: IP forwarding over multiple network interfaces, TCP congestion con-

trol, Round Trip Time (RTT) estimation and fast recovery and retransmission

As is mentioned in their website [85] and as one can deduce by the list of features, one of

the main objectives of LwIP is to provide a complete TCP/IP stack while making it as resource-

efficient as possible.

The LwIP stack is modular and features can be added/removed as required. The first version

of the IoT SDK released by Nordic did not support, for example, DNS and SNMP. These features

were, however, added in a subsequent release.

Use of these functions in the MCU requires one to part with use of about 60 kB of flash

memory (Fig. 4.8).

4.6 Other software

In this section we mention software that, though not especially fundamental to this solution, was

nonetheless used.

The fundamental programming (and scripting) languages used were C (gnu99), Java (Android)

and Python. Bash scripting was fundamental in automating repetitive tasks.

The IDEs used were Eclipse by the Eclipse Foundation, Android Studio and Android SDK by

Google and PyCharm Community Edition by JetBrains.



4.6 Other software 35

Figure 4.8: A graphical representation of a memory map file generated by [86] from a map file

produced by the linker used in our solution. As one can see, the biggest slices of memory being

used belong to LwIP (e.g. liblwip.a, 12 kB).

SEGGER’s J-Link EDU debugger was used for SWD on-chip software debugging.

GNU make and the GNU arm toolchain were essential for compiling and flashing the applica-

tion onto the MCU.

RabbitMQ was run on a Raspbery Pi computer, with its MQTT plugin to provide an AMQP

and MQTT broker, along with the BlueZ Bluetooth stack and a Linux kernel with 6LoWPAN

support provided by Nordic to enable the MCU to communicate with the Raspberry Pi over BLE.

An Android app by Nordic Semiconductor, nRF Master Control panel, was used to connect to

the Pandlet and debug BLE characteristics and services.



36 Development tools



Chapter 5

The BlueWarnAAL solution

In this chapter we present the BlueWarnAAL solution. In Section 5.1 the whole designed system

is broken down into its building blocks and each one of them explained. In Section 5.2 each of the

solution’s components are explained more in-depth.

This solution allows for a user to load rules onto a computing node based on the Fraunhofer

Pandlet, and for those rules to be evaluated and processed dynamically. Different actions can be

taken depending on the defined rule and on the current context.

5.1 The solution broken down

BlueWarnAAL Soluion

AndroidPandlet Raspberry Pi

Figure 5.1: Block diagram of the solution’s three main components

The solution can be broken down into three macro components: the Pandlet application, the An-

droid application and the Raspberry Pi application that are explained in more detail in Section 5.2.

The Pandlet is the base of the system. It is the part of the system that contains the rules,

processes them and then applies the results to the outputs. It also estimates the distance to a

client based on the RSSI from the BLE link and offers this distance as an input to the rule engine.

37



38 The BlueWarnAAL solution

The Android application enables the smartphone to connect to the Pandlet and start the ranging

process. It also presents a graphical frontend for configuration by the user. It uses Fraunhofer

Portugal’s Smart Companion library for design to make the application more intuitive and the

UI more accessible for older people [87]. The Raspberry Pi application is basically a script that

searches for BlueWarnAAL Pandlet nodes and instructs the BlueZ stack to connect to them. This

brings up a Bluetooth interface in the Raspberry’s IP stack and enables IP communication.

The described system can best be visualised by the examples provided in Fig. 5.2; Here, an

example rule is configured, and is triggered when the user gets too far away from the stove. The

context of the situation is inferred from the distance information.

The wireless technologies used between network nodes are represented in fig:wirelessconnections.png!

(fig:wirelessconnections.png!).

5.2 Components

5.2.1 FhP Pandlet developments

The Pandlet application is also made up of three different components (Fig. 5.4): The rule engine,

the BLE stack services and characteristics, and the RSSI distance engine.

5.2.1.1 BLE Stack

Characteristics In order to logically group all the characteristics that were required for our

solution a new BLE service was created with a custom UUID to differentiate it from Bluetooth

Special Interest Group (SIG)’s reserved UUID.

In our service there are four types of characteristics defined. For each of these characteristics

only one example characteristic was created in our prototype. A description of what the character-

istic signifies is stored in the "Characteristic User Description" field. These characteristic expose

device functionality to the Android application.

• User Configuration Characteristic: This type of characteristic is used to store values that

are used in the configuration of the device. In our case, the characteristic selected was named

"Device_Name" and its value is used as the device name in advertisements.

• Input Characteristic: These characteristics represent inputs. These inputs can be received

directly from external sensors (e.g. a voltage level from a fotodiode) or can be from pro-

cessed values. In our case, the characteristic is named "Distance" and its value represents

the distance to the currently connected device. If no device is currently connected the char-

acteristic has the value 255 (maximum value that can be represented in one byte).

• Output Characteristic: These characteristics are similar to Input Characteristics, but are

tied directly to ouputs. Our characteristic is named "Actuator_Value" and represents the cur-

rent (boolean) value of a GPIO output on the development board. That GPIO is connected



5.2 Components 39

(a) The user is 5 meters away from the stove, the actuator is off

(b) The user is 21 meters away from the stove, the output from the rule is now false

and the stove is turned off

(c) The user is away from home and wants to check the status of the system

Figure 5.2: Example diagrams of typical situations in which the BlueWarnAAL system would

work, in Fig. 5.2a and Fig. 5.2a the configured rule is Distance < 20



40 The BlueWarnAAL solution

Figure 5.3: The different wireless technologies used for node to node communication. Between

the Pandlet and the smartphone, BLE is used, for the connection between the Pandlet and the

Raspberry Pi 6LoWPAN and for the Raspberry Pi connection to the internet, Wi-Fi is used.

Pandlet Applicaion

BLE StackRule Engine RSSI Engine

Figure 5.4: Block diagram of the Pandlet’s three components



5.2 Components 41

Figure 5.5: Exploded view showing the structure of an AltBeacon advertisement packet [89]

to an LED to provide a visual representation of the characteristic value. These character-

istics can also be used as Input Characteristics, fostering composition. These Characteris-

tic User Descriptions must be a name and suffixed with "_Value" (e.g. Actuator_Value or

LED_Value).

• Rule Characteristic: This is where the actual rules are stored. The rules are stored as

UTF8 strings and must be evaluable to boolean values. Rule characteristic’s Characteristic

User Descriptions must follow the following convention: the user Description of the Output

Characteristic corresponding to this rule must be suffixed with "_Rule" (e.g. TV_Rule or

Chandelier_Rule). Our characteristic was named "Actuator_Rule" and by default contained

the value "Distance < 10".

Advertising In order to enable for future use of the Pandlet as a Beacon, for ranging purposes

from a smartphone, its advertisement packets were made to conform to the AltBeacon specifica-

tion. The structure of an advertisement packet can be seen in Fig. 5.5. Since the fields required by

the specification are 31 B one cannot send any more information in this advertisement packet[88].

It was opted to include in the advertisement the device’s name, so that the user could configure

friendlier and meaningful names (e.g. "Living Room Pandlet") and have them appear in Bluetooth

device searches. For this, the Scan Response, a packet of extra advertisement data sent to the

scanner after a scan attempt, was used.

5.2.1.2 Estimating Distance

The Bluetooth standard calls for the RSSI to be passed to the application from the Bluetooth stack.

In our solution this information is used for ranging. According to [90], RSSI varies with distance

with a relationship expressed by 5.1, where d is the distance, n is the signal propagation constant

(free space value is 2) and A is the average RSSI as measured at 1 m from the emitter (−61 dBm

for the Nordic nRF51822).

RSSI(d) =−(10 ·n · log10 (d)+A) (5.1)

By solving 5.1 for d, we get 5.2. The IoT SDK allows the developer to implement a handler

function that is called every time that the RSSI value in the current link changes. We leveraged



42 The BlueWarnAAL solution

this function to estimate a new distance value when the RSSI value changed on the current link.

However, we found that this RSSI value changed much too often and with values too large to be

used as a reliable measure of distance all by itself: for example, the distance value estimated from

this RSSI would often, in the space of just 10 s change in excess of 20 m.

d(RSSI) = 10(
A−R
10·n ) (5.2)

The chosen solution was to implement a rolling average: Whenever a new RSSI value was

read, it was inserted in a circular buffer large enough to hold about 50 samples. The average value

of all these samples was then used to estimate the distance. This meant that sudden variations in

reported RSSI took longer (a few seconds) to produce visible effects in the distance estimation,

however, sudden changes in RSSI were effectively smoothed out.

5.2.1.3 Implementing a Rule Engine

One of the challenges of this solution was to allow rules present on the Pandlet to be modified

at-will by the user. While there is no lack of solutions for this problem that work in average,

modern systems, in our specific case this is non-trivial. For one to evaluate rules in run-time, one

has to be able to receive a mathematical expression in string form at run time (e.g. 2 > 1) and

evaluate it into a result (e.g. true), this is beyond the standard capabilities of the C programming

language. One solution to overcome this problem is usually embedding another programming

language in our program. Languages such as Lua and Tcl provide for these situations by offering

APIs, written in C, to allow for programmers to embed them. When these languages are embedded,

they essentially act as virtual machines, running on top of the memory and resources allocated to

the underlying application. This would allow us to simply pass an expression to be evaluated to

the embedded language’s interpreter. However, either these languages were easily embeddable

and their requirements surpassed the nRF51822’s capabilities, or the process of porting them was

far too complex. The chosen solution was to use a small number of efficient, tiny libraries that,

put together, constituted a, somewhat limited, but functional, interpreter.

Having the "intelligence" of the system in the MCU gives us several advantages. The increased

battery life that comes with using BLE for communication mainly stems from the fact that it

usually communicates at low power and for limited amounts of time. BLE devices can go for

weeks or even months without establishing a connection, which is the most taxing in terms of

energy use when compared with undirected advertisements. By having all of the processing done

locally on the MCU we are, in fact, conserving battery life, since the Android smartphone needs

only to be connected for configuration and ranging purposes. This also allows the system to work

"offline". Since the smartphone doesn’t need to be connected for data processing to happen, this

allows the MCU to do its job without having a connection active either to a central server or to

the smartphone. This allows for a "fire and forget" kind of operation, where one leaves rules and

simply allows the MCU to apply them. This, together with IP connectivity, gives this system great

flexibility.



5.2 Components 43

Example string to evaluate: 

“Distance < 10”

Parse the string for 

variables corresponding to 

Characterisic User 

Descripions

Match is found

Replace text with value 

loaded from corresponding 

characterisic (e.g. 2)

Final string: “2 < 10”

Figure 5.6: First stage of interpreting a rule



44 The BlueWarnAAL solution

Figure 5.7: Flowchart of the different stages of rule processing for an example situation where the

user is 5 m away from the Pandlet.

The different steps of rule processing are presented in Fig. 5.7. The first stage of processing

a rule (e.g. Distance < 10), is to find variables, i.e. substrings, that match Characteristic User

Descriptions, and replace those substrings with the current values of the corresponding charac-

teristics. A diagram corresponding to this process can be consulted in Fig. 5.6 and the matter is

discussed more in-depth in Section 5.2.1.4. The second stage is to convert the resulting mathemat-

ical expression from inflix notation (common arithmetic expression notation) into postfix notation

or Reverse Polish Notation (RPN). This is necessary because it is far less complex to evaluate

expressions in that notation, simply leveraging a basic stack as the underlying data structure. In

Fig. 5.8 the example string 2 < 10 is converted into its RPN equivalent, 2 10 <. This is further

discussed in Section 5.2.1.5.

The final stage is to parse the resulting RPN expression into a final result. This is also accom-

plished with a stack, and is further discussed in Section 5.2.1.6. Once we have the final result,

true or f alse one simply loads this value into the corresponding Output Characteristic and sets the

corresponding actuator value, as can be seen in Fig. 5.9.

5.2.1.4 String Replacement Algorithms

There is no standard C function to search a string for a certain substring and replace it (akin

to Java’s String.replace). This is mainly due to the fact that replacing a substring with another

substring may or may not involve memory reallocation depending on the size of the new substring

in relation to the old substring. Nevertheless, this problem is left to be solved by the programmer.

In our case, the Boyer-Moore string search algorithm was initially used to search for substring

occurrences and return a pointer to the instance of the substring, being the string subsequently

replaced, with memory kept, expanded or freed depending on what was necessary. This approach,

however efficient CPU-wise, proved not to be very efficient in terms of used-up RAM. Since

this was our main bottleneck (having only about 4 kB free), we opted for a more RAM efficient,

custom, alternative.



5.2 Components 45

String “2 < 10”

Convert to Reverse 

Polish Notaion

Obtain “2 10 <”

Figure 5.8: Second stage of interpreting a rule

String “2 10 <”

Evaluate string for 

result

Obtain “1” or “true”

Set corresponding 

BLE output 

characterisic to “1”

Set actuator to “on” 

state

Figure 5.9: Third and last stage of interpreting a rule



46 The BlueWarnAAL solution

Boyer-Moore string search algorithm The Boyer-Moore string search algorithm was devel-

oped by Robert S. Boyer and J Strother Moore, both members of faculty of the University of

Texas at Austin. It is a fast algorithm and is considered the standard benchmark for perfor-

mance in string searching algorithms. The Boyer-Moore algorithm requires pre-computation

of a so-called "Bad Match Table", from the pattern that is to be searched. The Bad Match Ta-

ble is calculated by assigning a value to each unique letter present in the pattern calculated by

max(1, patternlength− index−1), only being stored the value for the last occurrence of the let-

ter, the table is then suffixed with the character ∗, repenting "every other letter" and having a value

equal to the length of the pattern. A special case is the last letter in the word, that either keeps

its value if it has already been defined (having other occurrences), or the length of the pattern is

attributed as its value. We will take the pattern "tooth" in the string "trusthardtoothbrushes" as

an example, taking inspiration from [91]. The Bad Match Table for "tooth" can be consulted in

Fig. 5.10.

T O O T H

0 1 2 3 4

Letter T O H *

Value 4 1 3 2 5 5

1. T: 5−0−1 = 4

2. O: 5−1−1 = 3

3. O: 5−2−1 = 2

4. T: 5−3−1 = 1

5. H: length = 5

Figure 5.10: Bad Match Table and calculation process

One essentially begins the process by aligning the pattern with the string and matching the last

character in the pattern with the character in the string (Fig. 5.11a), since there is no match, one

looks up the letter from the string in the Bad Match Table. In this case, the letter agains witch

there was no match was the letter T, that has a value 1 in Fig. 5.10, so one advances the pattern in

relation to the string by 1, this method aligns the T in the text with the last T in the pattern. If the

letter isn’t present explicitly in the table, it will match against the asterisk and have a value of 5.

After the first iteration, a match is found for the letter H, as can be seen in Fig. 5.11b.

One starts to match the pattern against the string backwards. In this case, the pattern matches

until we reach the letter S in the string (Fig. 5.11c). When the mismatch is found, one looks up the

next "jump" by looking up the value for H, since this was the first letter that was matched.

As can be seen in Fig. 5.11d, after the jump the letter H is mismatched against the letter O.

Looking up O in the Bad Match Table, we get a next jump of 2, resulting in Fig. 5.11f with yet

another mismatch at T. So, we advance the pattern by 1.



5.2 Components 47

T R U S T H A R D T O O T H B R U S H E S

T O O T H

(a) First algorithm iteration

T R U S T H A R D T O O T H B R U S H E S

T O O T H

(b) Second algorithm iteration

T R U S T H A R D T O O T H B R U S H E S

T O O T H

(c) Backwards matching, mismatch is found at S

T R U S T H A R D T O O T H B R U S H E S

T O O T H

(d) Backwards matching, mismatch is found at S

T R U S T H A R D T O O T H B R U S H E S

T O O T H

(e) Fourth iteration

T R U S T H A R D T O O T H B R U S H E S

T O O T H

(f) Fifth iteration

T R U S T H A R D T O O T H B R U S H E S

T O O T H

(g) Sixth and final iteration, match is found

Figure 5.11: The different stages of the Boyer-Moore algorithm on an example string

In the algorithm’s sixth iteration (Fig. 5.11g) a match is found for the pattern. The last index of

the matched substring can then be returned, and its first index corresponds to lastindex− length.

The algorithm can continue until the end of the string is found, thereby returning all occurrences

of a particular substring.

This algorithm has a good performance for most string searching applications, however it has

a worst case O
(

n2
)

complexity [92, 93].

Custom Alternative The custom alternative we present here is based off the, so called, naïve

string search algorithm. One simply iterates over the string’s characters for the first character of

a pattern. One then continues iterating over the string for the remaining characters in the pattern.

If all characters are successfully matched, a match for the pattern is found, if not, one simply

continues iterating over the string. Despite its obvious disadvantages, including an average O(n2)

complexity, we found it to be the most simple in ease of implementation, in code footprint and on,

already strained, MCU resources. A flowchart for this algorithm can be consulted in Fig. 5.12.



48 The BlueWarnAAL solution

Start with string to search, 

patern to be searched for 

and index “i=0”

Grab character from 

string’s index “i” 

Character matches 

first character of 

patern?

Increment “i”N

End of string?N

End

Y

Increment “i”

Set index “j=1”

Y

End of string?

Y

Grab character from 

string’s index “i” 

and patern’s index 

“j”

Characters 

match?
End of patern?Y

Match found

Y

Increment “i” and 

“j”

N

N

N

Figure 5.12: The naïve algorithm



5.2 Components 49

(((3 + 6)× (2− 4)) + 7)

3 6 + 2 4 − × 7 +

Figure 5.13: Arithmetic expression in common inflix notation (above) and its equivalent expres-

sion in postfix notation (below) [94]

5.2.1.5 Transforming a mathematical expression into Reverse Polish Notation

So that one is able to efficiently parse an expression in a computer, one has to first convert it from

inflix notation to postfix, or Reverse Polish, notation (see Fig. 5.13 for an example). In this type

of notation no parentheses are used to establish operator precedence, it is solely specified by the

order in which the members are ordered. Evaluation of expressions of this type is explained in

Section 5.2.1.6.

The conversion from inflix notation to postfix notation can be done using the Shunting-Yard

algorithm. This stack-based algorithm was invented by Edsger Dijkstra, renown computer scien-

tist, in the ’60s, and first described in [95]. It gets its name from its operation resemblance to

the method in which railroad cars are sorted in some railroad yards called "shunting-yards". In

addition to supporting unary and binary operations this algorithm also supports functions, making

it extremely versatile.

The algorithm requires two variables: the input and the output, in addition to an auxiliary

stack in which to hold operators that haven’t been added to the output. It also requires a table

in which operators are stored and that stores the operator type (unary, binary, or function) and its

associativity (left or right).

This algorithm has O(n) running time complexity [96].

The operation of this algorithm is descibed in Fig. 5.14.

The code that was used in our solution is a modified version of this [97] C Shunting-Yard

implementation.

5.2.1.6 The Recursive Descent Parser

Having the expression to be evaluated in the correct notation, it is necessary to do the actual

evaluating. This is done with a Recursive Descent Parser.

Expressions in this notation are evaluated from left to right. One essentially iterates over the

expression until one finds an operator. That operator is applied to the two operands (numbers)

before it. One goes back to the beginning of the expression and starts over until only one operand

is left (the final result) and the expression is successfully evaluated. A step by step evaluation of an

equation can be consulted in Fig. 5.15 [98] and the flowchart for this algorithm can be consulted

in Fig. 5.16.



50 The BlueWarnAAL solution

While there are tokens, 

operands or operators 

coninue reading

Read a token

Number?
Closing bracket 

‘)’?

Opening bracket 

‘(‘?
Operator?N N N N

Add to output 

queue

Y

Push to operator 

stack

Push to operator 

stack

Y Y

Operator stack 

empty?

Pop value from 

stack

N

Is value = ‘(‘

Add value to output 

queue

Y

Y

Is the operator 

stack empty?

Y

Push token to 

operator stack
Y

Pop value from 

stack

N

Is it an 

operator?

Does token operator 

have higher 

precedence?

Y

Add popped value 

to output queue

N

Push token to stack

Push popped value  

back into the stack

Push token operator 

into the stack

N

Y

Figure 5.14: Flowchart of the shunting yard algorithm



5.2 Components 51

In this system the RPN parser is implemented using code adapted from [99].

7 10 5 / + 6 2 ∗ +

7 2 + 6 2 ∗ +

7 2 + 6 2 ∗ +

9 6 2 ∗ +

9 6 2 ∗ +

9 12 +

9 12 +

21

Figure 5.15: Step by step solving of an RPN expression

The main switch block in the code (as can be seen in Fig. 5.17) is where the actual parsing

stage happens. When one pops an operator from the stack it is applied to both previous operands

(a and b) and the result is pushed back onto the stack. As can be inferred from the code, our

RPN parser supports arithmetic operations: addition, subtraction, multiplication, division and

exponentiation (with ipow, an integer only version of the pow function) and relational operations:

greater than, less than and equal to. This allows for a certain degree of freedom in rule construc-

tion, certainly providing far more liberty than most users would need. However, this RPN parser

can be easily extended to support boolean operators and and or.

The current limitation of this parser is that unary operations are not supported, at least without

the use of a dummy operand, e.g. to evaluate not(1) expressed as 0 ! 1 so that push(a ! b) would

yield the correct result. However, with some code refactoring (a small decision block before the

switch block, where one would test if the operator was binary or unary and re-push unneeded

operands onto the stack) this parser can easily be made to support almost any operator.

5.2.2 Android developments

In this section we discuss the different developments on Android.

5.2.2.1 The Android BLE Stack

The Android BLE stack took longer than typical to develop for Google. Although some third

parties like Samsung and Motorola supported BLE with their own APIs, native Android support

for BLE only came with the Android 4.3 release [100]. Although BLE was subsequently natively

supported, Android’s BLE stack was known to be buggy. The BLE stack is known to be far more



52 The BlueWarnAAL solution

While input stack 

not empty

Pop token from 

stack

Is operand?
Push into working 

stack
Y

From working stack:

A = pop()

B = pop()

N

Operator is ‘+’?

Operator is ‘-‘?

Operator is ‘*’?

Operator is ‘/’?

Operator is ‘^’?

Operator is ‘>’?

Operator is ‘<’?

Operator is ‘=’?

N

N

N

N

N

N

N

N

Error N

Push into working 

stack result of A*B

Push into working 

stack result of  A/B

Push into working 

stack result of A^B

Push into working 

stack result of A+B

Push into working 

stack result of  A-B

Push into working 

stack result of A>B

Push into working 

stack result of A<B

Push into working 

stack result of A==B

Y

Y

Y

Y

Y

Y

Y

Y

Is operator

Figure 5.16: Flowchart of the RPN parser algorithm



5.2 Components 53

sw i t c h (* s ) {

c ase ’+ ’ :

push ( a + b ) ;

break ;

c ase ’− ’ :

push ( a − b ) ;

break ;

c ase ’ * ’ :

push ( a * b ) ;

break ;

c ase ’ / ’ :

push ( a / b ) ;

break ;

c ase ’ ^ ’ :

push ( ipow ( a , b ) ) ;

break ;

c ase ’> ’ :

push ( a > b ) ;

break ;

c ase ’< ’ :

push ( a < b ) ;

break ;

c ase ’= ’ :

push ( a == b ) ;

break ;

d e f a u l t :

/ / f ound an unknown o p e r a t o r

* e r r _ c o d e = RPN_UNKOWN_OPERATOR;

re turn 0 ;

break ;

}

Figure 5.17: Main switch block of our RPN parser code



54 The BlueWarnAAL solution

stable in Android 5.0 (API level 21), so that is the version we chose to support. It should be noted

that this release added the capability for an Android device to act as a Peripheral device (to send

advertisement packets), however, few are the devices that support this mode of operation [101], so

we chose to work around this limitation. Despite these improvements, the stack remains, in our

opinion, buggy and far from perfect.

Usually one would create a BLE service to run in the background with applications of this

type. But for ease of implementation we opted to have all BLE related code in the main application

Activity and have extra required configuration windows pop-up at the user via Dialogs. This is

further discussed in Section 5.2.2.3.

5.2.2.2 The Smart Companion graphical library

The Smart Companion is a project by Fraunhofer Portugal to build a smartphone app (Fig. 5.18)

launcher that is a constant companion to both elderly and their caregivers and relatives. The Smart

Companion’s UI was developed with test groups and usability tests in order to be user-friendly

to the elderly while maintaining functionality. The Smart Companion team then released a set

of rules and guidelines on how to develop applications according to this model, and released an

Android library to help develop applications that fit into this launcher and provide ease of use to

the elderly [87].

Figure 5.18: The Smart Companion Launcher [87]



5.2 Components 55

Main features of using this library include a fixed status bar on top of the main application fea-

turing relevant status info, such as Wi-Fi connection status, cellular connection status and battery

level, more visual navigation menus such as an allways-on backwards navigation bar answering

common questions asked by the elderly such as "Where am I?", "What does this screen show

me?" and "What can I do from here?". Font types and sizes are also specified by the library and

are stored in eXtensible Markup Language (XML) files, that can be referenced from inside the

Android application.

The base visual of the application can easily be made to conform to the Smart Companion

visual standard by editing just a couple lines of code: first, one must add the library either as a

. jar or an .aar file to the Android project’s dependencies and one must define the application’s

theme as being of the type "SAActivityStyle". After these two steps are done, for the whole of the

application one just needs to add a couple snippets of code per Android Activity to conform to the

Smart Companion standard.

5.2.2.3 The Application

The application itself is just a frontend for the configuration of the Nordic MCU since all of the

processing of data happens there. The Android frontend just exposes the ability to alter the values

of BLE characteristics present in the MCU thereby modifying its behaviour.

The application consists of two Activities: a loading activity and a main activity; and extra

settings are configured via Android Dialogs (pop-ups). A flowchart of all the actions available to

the user can be consulted in Fig. 5.19.

5.2.3 Raspberry Pi developments

Unfortunately the Raspberry Pi was the least developed platform with which we worked. De-

spite this, developments can be consulted in this section: Middleware service can be consulted in

Section 5.2.3.1 and the python application that was developed can be consulted in Section 5.2.3.2.

One should note that for 6LoWPAN to work with the Raspberry Pi one has to install a kernel

different from those usually distributed for the Raspberry Pi. This is due to the relatively recent

nature of the support for this feature in the Linux kernel. Compiling such a kernel is an overnight

affair when one is compiling directly on the PI, luckily one can either cross-compile on a common

x86 system using the GNU ARM Toolchain or use the pre-compiled kernel provided by Nordic

Semi with its IoT SDK. We opted for the latter.

One should note that for the Nordic client to obtain a globally routable IPv6 address, one has

to correctly install and configure the Router Advertisement Daemon (radvd) on the Raspberry Pi.

5.2.3.1 RabbitMQ

The first step in Pi development consisted on the installation of the RabbitMQ package (with a

simple apt-get command) and the activation of RabbitMQ’s MQTT plugin. The whole affair is



56 The BlueWarnAAL solution

Applicaion is 

launched

Loading screen

Bluetooth device list 

acivity

Bluetooth 

acive?

Y

Prompt user to 

acivate Bluetooth
N

Connect to Device

Device 

compaible?N

Rule List acivity

Y

Seings prompt

Modify Rules
Change device 

name

Scan for devices

From this point the devices are connected and 

distance informaion is obtained at the MCU

Figure 5.19: Android application UI flow

pretty straightforward. After this, the RabbitMQ server is ready to accept connections either using

the AMQP protocol or the MQTT protocol.

5.2.3.2 Python application

Since support for this kind of connectivity is still very much recent, connecting to 6LoWPAN

enabled devices has to be instructed to the Linux kernel running on the Raspberry Pi via com-

mands echoed to the /sys/kernel/debug/bluetooth/6lowpan_psm file, as can be consulted in [102],

it was chosen to develop a Python-based application to control to which devices the Raspberry Pi

connected and subsequently offered a 6LoWPAN connection to the Internet.

This application leverages the hcidump and hcitool lescan shell utilities to obtain a dump of

scanned BLE advertisement packets, and then parses them to figure out what packets are pertaining

to our application and which packets can be simply discarded. It then calls for the Linux kernel to

connect to these selected devices and to allow for them to have an Internet connection for about

30 s. It then promptly disconnects and iterates over to the next BlueWarnAAL device that it has

found from advertisements. It repeats this process until all nodes have had 30 s to talk to the

Middleware, it then sleeps for about 30 min and repeats this process. This allows for all nodes to

be able to talk to the Middleware in regular intervals. Since the MQTT specification calls for every



5.2 Components 57

node to be able to store up to a limited number of messages [103] this introduces some latency in

the system, but allows for automated rotation of Internet access for all nodes without any type of

user intervention. This is necessary since this connection has to be initiated by the Raspberry Pi.



58 The BlueWarnAAL solution



Chapter 6

Testbed and Results

In this section we present the process that was undertaken to test out the BlueWarnAAL system.

6.1 The proposed scenario

The main use case scenario, as presented in Section 1.1, is considered for testing. To simulate a

real-world environment, a testbed was developed. The development process can be consulted in

Section 6.1.1.

6.1.1 The testbed

The testbed was planned to simulate, on a small scale, real world functioning of the system. Es-

sentially, this testbed is a small table with AC power connections, a power switching circuit and

the Fraunhofer Pandlet.

Any type of ordinary home appliance can be connected to the AC power outlet and work

exactly like it would normally, with one crucial exception: AC power can be switched on or off

via the power circuit, that is connected to the Fraunhofer Pandlet, depending on the rule configured

on the Pandlet by the user.

6.1.1.1 Planning

Planning consisted of two phases: designing the power circuit and designing the table.

The power circuit The objective of this circuit is to allow for the MCU, with the help of a relay,

to switch the appliance on or off. The schematic for the circuit can be seen in Fig. 6.1. It is

very simple and includes only 5 components: a resistor, a NPN Bipolar Junction Transistor (BJT),

a diode, a Zenner diode and a relay. All the components besides the relay are only there for

protection against current spikes that are common when relays switch on or off.

After the circuit’s design was decided on, it was simulated using National Instruments (NI)’s

Multisim software (Fig. 6.2). The 10 Ω resistor is meant to simulate a 2.2 kW load. Current

59



60 Testbed and Results

Figure 6.1: Schematic of the power switching circuit incorporating a relay

probes (virtual devices that convert amperage to voltage, so that one is able to measure current in

an oscilloscope) were attached in places deemed critical.

The simulation confirmed that the circuit worked as expected. In Fig. 6.3 one can see the

output waveform as measured at the load, having the switch S1 been toggled. As expected voltage

drops to 0 when the switch is turned off.

As can be seen in Fig. 6.4, the current in the diode branch spikes (negatively due to inversed

polarity from the oscilloscope referential) when the circuit is switched. However, there are no

current spikes in the BJT, it can therefore be concluded that the circuit is working as expected.

Finally, having the circuit been validated via simulation, the required components were or-

dered. The bill of materials is available in Table 6.1.

Description Product

Zener Diode Central Semiconductor CZ5344B TR

BJT Central Semiconductor 2N3904

Diode NXP Semiconductors BYV29FX-600,127

Relay TE Connectivity T9AS1D12-5

Table 6.1: Circuit bill of materials

6.2 Functional tests

The system was tested with the following procedure:

1. The system was turned on (with the default rule of Distance< 10) and with an led connected

to the actuator output;



6.3 Distance estimation tests 61

Figure 6.2: The circuit recreated in NI’s Multisim

2. One stood close to the MCU and progressively stepped back until the LED turned off. One

would then measure the distance to the MCU;

3. The distance rule in the MCU was changed, and the procedure repeated.

The system was deemed accurate with an error of about 2 m, up to a distance of about 70 m

with a clear line of sight. Without line of sight the error rate after a distance of 20 m makes the

system unusable. However, for our purposes, the system is reliable enough.

6.3 Distance estimation tests

Two tests were conducted to ascertain the accuracy of the distance estimation algorithm: one was

conducted in open space (Fig. 6.5), and one, in a 70 m long corridor (Fig. 6.7). The open space

results were satisfactory, with a small error in relation to the real distance. The corridor tests

showed a behaviour that was expected: Bluetooth location based on RSSI is prone to errors due to

reflexions and refractions. The corridor in which the measurements were taken (Fig. 6.6) acts as a

wave guide, and leads to stronger RSSI measurements than would be expected in open space.



62 Testbed and Results

Figure 6.3: Oscilloscope plot of voltage at the load

6.4 Connectivity tests

The connectivity tests that were conducted essencialy consisted on running the Raspberry Pi app

and verifying whether there was IPv6 connectivity. As can be seen from Fig. 6.8, this was, ef-

fectively the case, since IPv6 Neighbour Solicitations and Router Announcements were traded

between the Raspberry Pi and the Norcic MCU.



6.4 Connectivity tests 63

Voltage at BJT collector

Current at diode branch

Current at BJT collector

Not connected

Figure 6.4: Voltage and current for different points in the circuit, being the relay switched through-

out. For current measurements 1mA = 1V

Figure 6.5: Open space plot of estimated distance

Figure 6.6: Fraunhofer Portugal’s main corridor (first floor)



64 Testbed and Results

Figure 6.7: Corridor plot of estimated distance

Figure 6.8: TCPDump utility output during connection with the Nordic MCU



Chapter 7

Conclusion

In this dissertation we were able to develop a complete, peer to peer, assisted living solution to help

the elderly in their daily lives. As was discussed in Chapter 5, this solution was developed in three

fronts: on the Nordic nRF51822, on the Raspberry Pi and on an Android smartphone. Although

these systems are very much different, the BLE technology was instrumental on allowing these

systems to talk to each other and to convey state information while keeping energy consumption

down. The Smart Companion library allowed us to develop a powerful, yet extremely simple and

usable application without having to worry about the tried and tested graphical design. Bleeding

edge technology such as the Nordic’s IoT stack and the Linux kernel’s support for 6LoWPAN,

allowed us to pave the way for future scalability.

Our main achievements are exposed in Section 7.1 and future work in Section 7.2.

7.1 Achievements

• Nordic:

– Distance: We were able to accurately estimate distance from a Bluetooth client to our

MCU based only on RSSI;

– Rule engine: A completely functional rule engine was developed that was capable of

evaluating rules customizable by the user;

– IP stack: The LwIP IP stack was set up correctly and is able to send and receive

packets;

• Android: A functional UI for interacting with the system was developed;

• Raspberry Pi: An application that is able to automate the process of connecting to various

nodes was developed;

• Scalling: IPv6 connectivity was assured.

65



66 Conclusion

7.2 Future Work

Throughout the development work several factors contributed for us not to be able to complete all

the initial objectives that we proposed ourselves to complete. Also, new ways in which this system

can be further developed were thought up. All these tasks are rounded up in this section.

7.2.1 Pi application

The Raspberry Pi application needs to be refined, it is a very simple utility and could easily be

expanded into a full fledged command line utility and daemon, since there are no utilities available

that allow for this type of functionality. An addition that would require intervention also on the

Nordic side would be to add another field to the Scan Response that would be set to true whenever

the MCU had data it needed to send via the IPv6 interface. This would allow the Pi to initiate

a connection only when necessary, allowing the Nordic to sleep for larger periods of time and

conserving power, while also avoiding the requirement for the Pi to connect to each MCU and

subscribe for notifications (in order to use BLE’s native notification system).

7.2.2 MCU

As it stands, each second the MCU wakes up to gather data and update rule results. This could,

and should, be changed into an event driven approach in order to allow the MCU to sleep for

longer. Currently there is also a bug in the neighbour discovery section of the LwIP stack that isn’t

allowing the MCU to obtain a Global Address and crash. This means that while it can contact

hosts in its subnet and use them as proxies it currently cannot communicate directly with hosts on

the Internet. The cause of the bug is still uncertain, but the two main candidates are: a bug in the

IoT SDK or lack of available RAM. Since Nordic announced in [104] that the next version of the

IoT SDK would be released for the nRF52, if the cause was a bug in the SDK, the solution would

be to migrate to the nRF52. Another way to get around this problem would be to port another,

even lighter IP stack to the nRF51, such as µIP ([105]). However despite the effort of porting the

IP stack, we would be giving up the vast functionality provided by LwIP.

7.2.3 nRF52

While nearing the conclusion of this dissertation, Nordic Semiconductor announced the nRF52,

the successor to the nRF51. Main features include: 32-bit ARM Cortex-M4F Processor, 512 kB

flash + 64 kB RAM, On-chip NFC tag for Out Of Band (OOB) pairing and Advanced Encryption

Standard (AES) hardware encryption and lower power consumption. Since the new MCU is,

for the most part, compatible with the previous series, migrating would fix both the problems

mentioned in Section 7.2.2 and provide us with a more robust and powerful platform to work on.



7.2 Future Work 67

7.2.4 Interfacing with the Middleware

As priorities changed during the dissertation this initial objective got pushed back. Since the IoT

SDK has native support for MQTT and IPv6 connectivity is already assured, this is just a matter

of implementing a few more functions on the MCU.

7.2.5 Sensor remote control

One great way to expand on the developed functionality would be to allow rules to be altered from

a web interface, or to override actuator states remotely. One can also introduce the concept of

local rule and remote rule. The first would be evaluated in the MCU and would only have the

context that is available to it; The second would be processed on the remote server and only the

result would be sent to the different nodes in the system. Priorities could be established for these

rules in a node by node basis.

7.2.5.1 Pimatic

This functionality could be implemented using Pimatic: an open source home automation frame-

work running on node.js. Since it supports external scripting via an API, one would need to write

a small plugin to interface with the middleware, and one could then control all the system’s func-

tionalities via the polished Pimatic UI (Fig. 7.1), while interfacing this system with other home

automation systems [106].

Figure 7.1: The Pimatic UI



68 Conclusion

7.2.6 Scaling up

It would be interesting and more powerful, especially from an IoT perspective, to explore Rab-

bitMQ’s message aggregation and queue mirroring capabilities to expand this system into a hi-

erarchical one. This way one could have a RabbitMQ server that processes messages from a

household, and, for example, another that processes messages from various households or even a

city. this would allow this system to be applied in far more complex situations while retaining its

flexibility.

7.2.7 Calibration

Since this system is meant to be installed in an elder’s home a calibration procedure that could

be run when the system was first set up would greatly improve the distance results obtained in

Section 6.3. Even a small corrective gain factor could bring our distance estimation results very

close to the real distance.



References

[1] S. Prescher, A. K. Bourke, F. Koehler, A. Martins, H. Sereno Ferreira, T. Boldt Sousa,

R. N. Castro, A. Santos, M. Torrent, S. Gomis, M. Hospedales, and J. Nelson, “Ubiqui-

tous ambient assisted living solution to promote safer independent living in older adults

suffering from co-morbidity.”, Conference proceedings : ... Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in

Medicine and Biology Society. Annual Conference, vol. 2012, pp. 5118–21, Jan. 2012,

ISSN: 1557-170X. DOI: 10.1109/EMBC.2012.6347145. [Online]. Available: http:

//www.ncbi.nlm.nih.gov/pubmed/23367080.

[2] P. Rashidi and A. Mihailidis, “A survey on ambient-assisted living tools for older adults”,

IEEE Journal of Biomedical and Health Informatics, vol. 17, pp. 579–590, 2013, ISSN:

21682194. DOI: 10.1109/JBHI.2012.2234129.

[3] Kleinberger Thomas, M. Becker, E. Ras, A. Holzinger, and P. Müller, “Ambient Intel-

ligence in Assisted Living: Enable Elderly People to Handle Future Interfaces”, Uni-

versal Access in Human-Computer Interaction. Ambient Interaction, pp. 103–112, 2007,

ISSN: 03029743. DOI: 10.1007/978-3-540-73281-5\_11. [Online]. Available:

http://user.medunigraz.at/andreas.holzinger/holzinger/papers%

20en/B41%5C_KLEINBERGER%20BECKER%20RAS%20HOLZINGER%20MUELLER%

20(2007)%20ambient%20intelligence%20elderly%20people%20LNCS.

pdf.

[4] F. L. Lewis, “Wireless sensor networks”, Smart environments: technologies, protocols,

and applications, pp. 11–46, 2004.

[5] F. G. Montoya, J. Gómez, A. Cama, A. Zapata-Sierra, F. Martínez, J. L. De La Cruz,

and F. Manzano-Agugliaro, “A monitoring system for intensive agriculture based on mesh

networks and the android system”, Computers and Electronics in Agriculture, vol. 99,

pp. 14–20, Nov. 2013, ISSN: 0168-1699. DOI: http://dx.doi.org/10.1016/j.

compag.2013.08.028. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0168169913002068.

[6] M. Portnoi and C.-C. Shen, “Location-aware sign-on and key exchange using attribute-

based encryption and Bluetooth beacons”, ser. 2013 IEEE Conference on Communica-

tions and Network Security (CNS), Dept. of Comput. Inf. Sci., Univ. of Delaware, Newark,

69

http://dx.doi.org/10.1109/EMBC.2012.6347145
http://www.ncbi.nlm.nih.gov/pubmed/23367080
http://www.ncbi.nlm.nih.gov/pubmed/23367080
http://dx.doi.org/10.1109/JBHI.2012.2234129
http://dx.doi.org/10.1007/978-3-540-73281-5\_11
http://user.medunigraz.at/andreas.holzinger/holzinger/papers%20en/B41%5C_KLEINBERGER%20BECKER%20RAS%20HOLZINGER%20MUELLER%20(2007)%20ambient%20intelligence%20elderly%20people%20LNCS.pdf
http://user.medunigraz.at/andreas.holzinger/holzinger/papers%20en/B41%5C_KLEINBERGER%20BECKER%20RAS%20HOLZINGER%20MUELLER%20(2007)%20ambient%20intelligence%20elderly%20people%20LNCS.pdf
http://user.medunigraz.at/andreas.holzinger/holzinger/papers%20en/B41%5C_KLEINBERGER%20BECKER%20RAS%20HOLZINGER%20MUELLER%20(2007)%20ambient%20intelligence%20elderly%20people%20LNCS.pdf
http://user.medunigraz.at/andreas.holzinger/holzinger/papers%20en/B41%5C_KLEINBERGER%20BECKER%20RAS%20HOLZINGER%20MUELLER%20(2007)%20ambient%20intelligence%20elderly%20people%20LNCS.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.compag.2013.08.028
http://dx.doi.org/http://dx.doi.org/10.1016/j.compag.2013.08.028
http://www.sciencedirect.com/science/article/pii/S0168169913002068
http://www.sciencedirect.com/science/article/pii/S0168169913002068


70 REFERENCES

DE, United States BT - 2013 IEEE Conference on Communications and Network Secu-

rity (CNS), 14-16 Oct. 2013: IEEE, 2013, pp. 405–406. DOI: 10.1109/CNS.2013.

6682750. [Online]. Available: http://dx.doi.org/10.1109/CNS.2013.

6682750.

[7] G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A case for message oriented middle-

ware”, in Distributed Computing, Springer, 1999, pp. 1–17.

[8] NEST, Life with Nest Thermostat, 2015. [Online]. Available: https://nest.com/

thermostat/life-with-nest-thermostat/ (visited on 02/18/2015).

[9] H. S. Ferreira, T. B. Sousa, and A. Martins, “Scalable integration of multiple health sensor

data for observing medical patterns”, in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 7467 LNCS, 2012, pp. 78–84.

[10] K. Lee, “IEEE 1451: A standard in support of smart transducer networking”, in Instru-

mentation and Measurement Technology Conference, 2000. IMTC 2000. Proceedings of

the 17th IEEE, IEEE, vol. 2, 2000, pp. 525–528.

[11] E. Mackensen, M. Lai, and T. M. Wendt, “Bluetooth low energy (BLE) based wireless

sensors”, ser. 2012 IEEE Sensors, Univ. of Appl. Sci. Offenburg, Offenburg, Germany BT

- 2012 IEEE Sensors, 28-31 Oct. 2012: IEEE, 2012, 4 pp. DOI: 10.1109/ICSENS.

2012.6411303. [Online]. Available: http://dx.doi.org/10.1109/ICSENS.

2012.6411303.

[12] J. Moy, “OSPF Version 2”, IETF, RFC 2328, 1998, pp. 1–244. [Online]. Available: http:

//tools.ietf.org/html/rfc2328.

[13] C. Harrison, J. Wiese, and A. K. Dey, Achieving Ubiquity: The New Third Wave, 2010.

DOI: 10.1109/MMUL.2010.53.

[14] Merriam-Webster, Ubiquitous Definition, 2014. [Online]. Available: http : / / www .

merriam-webster.com/dictionary/ubiquitous.

[15] OCLF, ORNL Debuts Titan Supercomputer, 2012.

[16] A. Greenfield, Everyware: The dawning age of ubiquitous computing. New Riders, 2010.

[17] M. Rouse, Definition - machine-to-machine (M2M), 2010. [Online]. Available: http://

whatis.techtarget.com/definition/machine-to-machine-M2M (visited

on 01/21/2015).

[18] S. Bushell and P. Budde, M-commerce key to ubiquitous Internet - Computerworld, 2000.

[Online]. Available: http://www.computerworld.com.au/article/84178/m-

commerce%5C_key%5C_ubiquitous%5C_internet/ (visited on 01/23/2015).

[19] CMU SCS Students, MIT Coke Machine History, 2005. [Online]. Available: https://

www.cs.cmu.edu/~coke/history%5C_long.txt (visited on 01/23/2015).

http://dx.doi.org/10.1109/CNS.2013.6682750
http://dx.doi.org/10.1109/CNS.2013.6682750
http://dx.doi.org/10.1109/CNS.2013.6682750
http://dx.doi.org/10.1109/CNS.2013.6682750
https://nest.com/thermostat/life-with-nest-thermostat/
https://nest.com/thermostat/life-with-nest-thermostat/
http://dx.doi.org/10.1109/ICSENS.2012.6411303
http://dx.doi.org/10.1109/ICSENS.2012.6411303
http://dx.doi.org/10.1109/ICSENS.2012.6411303
http://dx.doi.org/10.1109/ICSENS.2012.6411303
http://tools.ietf.org/html/rfc2328
http://tools.ietf.org/html/rfc2328
http://dx.doi.org/10.1109/MMUL.2010.53
http://www.merriam-webster.com/dictionary/ubiquitous
http://www.merriam-webster.com/dictionary/ubiquitous
http://whatis.techtarget.com/definition/machine-to-machine-M2M
http://whatis.techtarget.com/definition/machine-to-machine-M2M
http://www.computerworld.com.au/article/84178/m-commerce%5C_key%5C_ubiquitous%5C_internet/
http://www.computerworld.com.au/article/84178/m-commerce%5C_key%5C_ubiquitous%5C_internet/
https://www.cs.cmu.edu/~coke/history%5C_long.txt
https://www.cs.cmu.edu/~coke/history%5C_long.txt


REFERENCES 71

[20] Sri, “Appendix F: the internet of things (background)”, Disruptive civil technologies con-

ference report (CR . . ., pp. 1–19, 2008. [Online]. Available: http://www.internet-

of-things.eu/resources/documents/appendix-f.pdf.

[21] I. F. Akyildiz, “A survey on wireless mesh networks”, IEEE Communications Magazine,

vol. 43, no. 9, S23–S30, 2005, ISSN: 0163-6804. DOI: 10.1109/MCOM.2005.1509968.

[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=1509968.

[22] T. Clausen and P. Jacquet, RFC 3626 - Optimized Link State Routing Protocol (OLSR),

2003.

[23] C. Geyer and OASIS, ISO and IEC Approve OASIS AMQP Advanced Message Queu-

ing Protocol, 2014. [Online]. Available: https://www.oasis-open.org/news/

pr/iso-and-iec-approve-oasis-amqp-advanced-message-queuing-

protocol (visited on 01/31/2015).

[24] OASIS, “OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0. 29”, OASIS

Standard, no. October, 2012. [Online]. Available: http://docs.oasis-open.org/

amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf.

[25] STOMP Specification Group, STOMP specification v1.2, 2012. [Online]. Available: https:

//stomp.github.io/stomp-specification-1.2.html (visited on 01/31/2015).

[26] A. Banks and R. Gupta, “MQTT Version 3.1.1”, OASIS Standard, no. October, 2014.

[Online]. Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/

mqtt-v3.1.1-os.html.

[27] A. Stanford-Clark, H. L. Truong, and MQTT, “MQTT For Sensor Networks ( MQTT-SN

) Protocol Specification”, p. 27, 2013.

[28] Pivotal Software, RabbitMQ Documentation, 2015. [Online]. Available: https://www.

rabbitmq.com/documentation.html (visited on 02/01/2015).

[29] Atchoo.org, An Open Source MQTT v3.1 Broker. [Online]. Available: http://mosquitto.

org/ (visited on 02/01/2015).

[30] .net - C# client library for subscribing/publishing MQTT (Really Small Message Bro-

ker) - Stack Overflow, 2011. [Online]. Available: https://stackoverflow.com/

questions/6635440/ (visited on 02/01/2015).

[31] Apache ActiveMQ ™ – How does ActiveMQ compare to AMQP. [Online]. Available:

http : / / activemq . apache . org / how - does - activemq - compare - to -

amqp.html (visited on 02/01/2015).

[32] K. Sachs, S. Kounev, S. Appel, and A. Buchmann, “A Performance Test Harness For

Publish/Subscribe Middleware”, in SIGMETRICS/Performance, Citeseer, 2009.

http://www.internet-of-things.eu/resources/documents/appendix-f.pdf
http://www.internet-of-things.eu/resources/documents/appendix-f.pdf
http://dx.doi.org/10.1109/MCOM.2005.1509968
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1509968
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1509968
https://www.oasis-open.org/news/pr/iso-and-iec-approve-oasis-amqp-advanced-message-queuing-protocol
https://www.oasis-open.org/news/pr/iso-and-iec-approve-oasis-amqp-advanced-message-queuing-protocol
https://www.oasis-open.org/news/pr/iso-and-iec-approve-oasis-amqp-advanced-message-queuing-protocol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/stomp-specification-1.2.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/documentation.html
http://mosquitto.org/
http://mosquitto.org/
https://stackoverflow.com/questions/6635440/
https://stackoverflow.com/questions/6635440/
http://activemq.apache.org/how-does-activemq-compare-to-amqp.html
http://activemq.apache.org/how-does-activemq-compare-to-amqp.html


72 REFERENCES

[33] S. Appel, K. Sachs, and A. Buchmann, “Towards benchmarking of AMQP”, in Proceed-

ings of the Fourth ACM International Conference on Distributed Event-Based Systems,

ACM, 2010, pp. 99–100.

[34] M. Hadlow, Message Queue Shootout!, 2011. [Online]. Available: http://mikehadlow.

blogspot.pt/2011/04/message-queue-shootout.html (visited on 02/02/2015).

[35] M. Salvan, A quick message queue benchmark: ActiveMQ, RabbitMQ, HornetQ, QPID,

Apollo... [Online]. Available: http://blog.x-aeon.com/2013/04/10/a-quick-

message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/

(visited on 12/07/2014).

[36] M. Klas, “Porovnání protokolů pro M2M komunikaci.”, Masarykova Univerzita, 2014,

p. 42.

[37] Gilles Thonet, “ZigBee FAQ”, vol. 1, no. 7, pp. 1–7, 2006.

[38] IEEE Computer Society, Part 15.1: Wireless medium access control (MAC) and physi-

cal layer (PHY) specifications for wireless personal area networks (WPANs), June. 2005,

vol. 2005, ISBN: 0738147079. DOI: 10.1109/IEEESTD.2003.94389.

[39] G. Fleishman and Ars Technica, UWB group shutters, sends tech to Bluetooth, USB groups,

2009. [Online]. Available: http : / / arstechnica . com / gadgets / 2009 / 03 /

ultrawideband-groups-disbands-doesnt-despair/ (visited on 02/03/2015).

[40] B. news, Bluetooth rival unveiled by Nokia, 2006. [Online]. Available: http://news.

bbc.co.uk/2/hi/technology/5403564.stm.

[41] Bluetooth SIG, Bluetooth Smart Beacons in Retail, 2015. [Online]. Available: http:

//www.bluetooth.com/Pages/beacons-retail-location.aspx (visited on

02/03/2015).

[42] ——, Bluetooth technology creates huge opportunities in medical, 2015. [Online]. Avail-

able: http://www.bluetooth.com/Pages/Health-Wellness-Market.aspx

(visited on 02/03/2015).

[43] ——, Bluetooth Technology Makes Wireless Home Automation Possible, 2015. [Online].

Available: http://www.bluetooth.com/Pages/Smart-Home-Market.aspx

(visited on 02/03/2015).

[44] ZigBee Alliance, ZigBee Specification FAQ. [Online]. Available: http://old.zigbee.

org/Specifications/ZigBee/FAQ.aspx.

[45] Nordic Semiconductor, “nRF24L01+ Product specification v1.0”, vol. 21, no. September,

pp. 21–22, 2008. DOI: 10.1080/09613219308727250. [Online]. Available: https:

//www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P.

[46] WPAN IEEE 802.15 3c Task Group, IEEE 802.15 WPAN Task Group 3c (TG3c) Millime-

ter Wave Alternative PHY, 2009. [Online]. Available: http://www.ieee802.org/

15/pub/TG3c.html (visited on 02/03/2015).

http://mikehadlow.blogspot.pt/2011/04/message-queue-shootout.html
http://mikehadlow.blogspot.pt/2011/04/message-queue-shootout.html
http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/
http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/
http://dx.doi.org/10.1109/IEEESTD.2003.94389
http://arstechnica.com/gadgets/2009/03/ultrawideband-groups-disbands-doesnt-despair/
http://arstechnica.com/gadgets/2009/03/ultrawideband-groups-disbands-doesnt-despair/
http://news.bbc.co.uk/2/hi/technology/5403564.stm
http://news.bbc.co.uk/2/hi/technology/5403564.stm
http://www.bluetooth.com/Pages/beacons-retail-location.aspx
http://www.bluetooth.com/Pages/beacons-retail-location.aspx
http://www.bluetooth.com/Pages/Health-Wellness-Market.aspx
http://www.bluetooth.com/Pages/Smart-Home-Market.aspx
http://old.zigbee.org/Specifications/ZigBee/FAQ.aspx
http://old.zigbee.org/Specifications/ZigBee/FAQ.aspx
http://dx.doi.org/10.1080/09613219308727250
https://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
https://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
http://www.ieee802.org/15/pub/TG3c.html
http://www.ieee802.org/15/pub/TG3c.html


REFERENCES 73

[47] “IEEE Standard for Information Technology - Telecommunications and Information Ex-

change Between Systems - Local and Metropolitan Area Networks - Specific Require-

ments Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications f”, IEEE Std 802.15.3-2003, 0_1–315, 2003. DOI: 10.1109/IEEESTD.

2003.94395.

[48] IEEE Computer Society, 60 GHz WPAN, PHY and MAC. 2009, ISBN: 9780738160504.

[49] L. Yuansheng and H. Xi, Analysis of the Maximal Transmission Rate Based on NRF24L01

Chip System, 2010. DOI: 10.1109/ICIECS.2010.5678223.

[50] C.-H. Hallard, NRF24L01 real life range test, 2013. [Online]. Available: http://hallard.

me/nrf24l01-real-life-range-test/ (visited on 02/05/2015).

[51] A. Opel, “Bluetooth - Authentication - Authorisation - Encryption”, p. 1, 2003.

[52] Atmel, “Atmel AT02845 : Coexistence between ZigBee and Other 2.4GHz Products”,

Application Note, 2013.

[53] R. Balani, “Energy consumption analysis for bluetooth, wifi and cellular networks”, Net-

worked & Embedded Systems Laboratory, NESL Technical Report TR-UCLA-NESL-200712-

01, 2007.

[54] ATMEL, “AT03663 : Power Consumption of ZigBee End Device”, 2014.

[55] D. P. Consumption, D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “Demystify-

ing 802.11n Power Consumption”, Proceedings of the 2010 Workshop on Power Aware

Computing and Systems (HotPower’10), pp. 2–6, 2010. DOI: 10.1.1.173.7044.

[56] Android Developers, What is Android, 2011. [Online]. Available: http://developer.

android.com/guide/basics/what-is-android.html.

[57] AOSP, ART and Dalvik | Android Developers. [Online]. Available: http://source.

android.com/devices/tech/dalvik/ (visited on 02/05/2015).

[58] Microsoft, Windows 10 for Raspberry Pi 2, 2015. [Online]. Available: https://dev.

windows.com/en-us/featured/raspberrypi2support (visited on 02/05/2015).

[59] Raspberry Pi Foundation, What is a Raspberry Pi? [Online]. Available: http://www.

raspberrypi.org/help/what-is-a-raspberry-pi/ (visited on 02/05/2015).

[60] ——, “Raspberry Pi Model B+ datasheet”, p. 1, 2014.

[61] ——, Raspberry Pi Compute Module: new product!, 2014. [Online]. Available: http:

//www.raspberrypi.org/raspberry-pi-compute-module-new-product/

(visited on 02/05/2015).

[62] Marvell Technology Group, “Sheeva Plug”, 2012. [Online]. Available: https://www.

globalscaletechnologies.com/p-46-sheevaplug-dev-kit.aspx.

[63] Marvel Semiconductor, “Marvell MV78200 SoC with Sheeva Technology”, pp. 1–2,

http://dx.doi.org/10.1109/IEEESTD.2003.94395
http://dx.doi.org/10.1109/IEEESTD.2003.94395
http://dx.doi.org/10.1109/ICIECS.2010.5678223
http://hallard.me/nrf24l01-real-life-range-test/
http://hallard.me/nrf24l01-real-life-range-test/
http://dx.doi.org/10.1.1.173.7044
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://source.android.com/devices/tech/dalvik/
http://source.android.com/devices/tech/dalvik/
https://dev.windows.com/en-us/featured/raspberrypi2support
https://dev.windows.com/en-us/featured/raspberrypi2support
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://www.raspberrypi.org/raspberry-pi-compute-module-new-product/
http://www.raspberrypi.org/raspberry-pi-compute-module-new-product/
https://www.globalscaletechnologies.com/p-46-sheevaplug-dev-kit.aspx
https://www.globalscaletechnologies.com/p-46-sheevaplug-dev-kit.aspx


74 REFERENCES

[64] PlugPBX Project, About. [Online]. Available: http://www.plugpbx.org/ (visited

on 02/06/2015).

[65] Memsic, “TelosB datasheet”, 2013. [Online]. Available: http://www.memsic.com/

userfiles/files/DataSheets/WSN/telosb%5C_datasheet.pdf.

[66] Texas Instruments, “2.4-GHz Bluetooth ® low energy System-on-Chip”, no. June, 2013.

[67] Nordic Semiconductor, nRF51822 Product Specification v3.1, 2014.

[68] J. Figueiras, H. Schwefel, and I. Kovacs, “Accuracy and timing aspects of location in-

formation based on signal-strength measurements in Bluetooth”, in Personal, Indoor and

Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International Symposium

on, vol. 4, 2005, 2685–2690 Vol. 4. DOI: 10.1109/PIMRC.2005.1651931.

[69] M. Barahim, “Low-cost bluetooth mobile positioning for location-based application”, In-

ternet, 2007. ICI 2007. . . ., 2007. [Online]. Available: http://ieeexplore.ieee.

org/xpls/abs%5C_all.jsp?arnumber=4401707.

[70] S. Malik and H. Maidasani, Cat Gear, College Park, 2014. [Online]. Available: http:

//cmsc838f-s14.wikispaces.com/Cat+Gear.

[71] C. H. O. Hyunggi, K. Myungseok, K. I. M. Jonghoon, and K. I. M. Hagbae, “Zigbee based

location estimation in home networking environments”, IEICE transactions on informa-

tion and systems, vol. 90, no. 10, pp. 1706–1708, 2007.

[72] W.-H. Kuo, Y.-S. Chen, G.-T. Jen, and T.-W. Lu, “An intelligent positioning approach:

RSSI-based indoor and outdoor localization scheme in Zigbee networks”, in Machine

Learning and Cybernetics (ICMLC), 2010 International Conference on, vol. 6, 2010,

pp. 2754–2759. DOI: 10.1109/ICMLC.2010.5580783.

[73] J. Rekimoto, T. Miyaki, and T. Ishizawa, “LifeTag: WiFi-based continuous location log-

ging for life pattern analysis”, in LoCA, vol. 2007, 2007, pp. 35–49.

[74] R. Paradiso, G. Loriga, and N. Taccini, “A wearable health care system based on knitted

integrated sensors”, Information Technology in Biomedicine, IEEE Transactions on, vol.

9, no. 3, pp. 337–344, 2005, ISSN: 1089-7771. DOI: 10.1109/TITB.2005.854512.

[75] Fundació Privada CETEMMSA, Telefónica Investigación y Desarrollo, INESC Porto –

Instituto de Engenharia de Sistemas e Computadores do Porto, University of Plymouth

Enterprise Ltd, University of Limerick, Corscience GmbH & Co KG, Fundació Hospital

Comarcal Sant Antoni Abat, Fraunhofer Portugal, L. TeleMedic Systems, Zentrum für

Kardiovaskuläre Telemedizin GmbH, and G. National University of Ireland, “eCAALYX”,

2009. [Online]. Available: http://www.aal-europe.eu/projects/ecaalyx/.

[76] Fraunhofer Portugal AICOS, BCB Informática y Control SL, Università degli Studi di

Ferrara, KOHS PIMEX, Portugal Telecom Comunicações, Ab.Acus Srl, Grado Zero Es-

pace, and K. RK Tech, “Clockwork”, 2014. [Online]. Available: http://www.aal-

europe.eu/projects/clockwork/.

http://www.plugpbx.org/
http://www.memsic.com/userfiles/files/DataSheets/WSN/telosb%5C_datasheet.pdf
http://www.memsic.com/userfiles/files/DataSheets/WSN/telosb%5C_datasheet.pdf
http://dx.doi.org/10.1109/PIMRC.2005.1651931
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4401707
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=4401707
http://cmsc838f-s14.wikispaces.com/Cat+Gear
http://cmsc838f-s14.wikispaces.com/Cat+Gear
http://dx.doi.org/10.1109/ICMLC.2010.5580783
http://dx.doi.org/10.1109/TITB.2005.854512
http://www.aal-europe.eu/projects/ecaalyx/
http://www.aal-europe.eu/projects/clockwork/
http://www.aal-europe.eu/projects/clockwork/


REFERENCES 75

[77] Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), D. d. E. e. I. Politec-

nico di Milano, Info Solution SpA, VCA Technology Ltd., Istituti Sociali di Chiasso,

Clinica Hildebrand, and University of Wurzburg, “ALMA”, 2013. [Online]. Available:

http://www.aal-europe.eu/projects/alma/.

[78] C. Styles and ARM Ltd, mbed FAQs, 2010. [Online]. Available: https://developer.

mbed.org/media/uploads/chris/mbedqa%5C_v1.0.pdf.

[79] Nordic Semiconductor, “nRF51822 Evaluation Kit User Guide v1.2”, 2013.

[80] ——, Introduction to the S110 SoftDevice, 2011. [Online]. Available: https://devzone.

nordicsemi.com/documentation/nrf51/4.2.0/html/group%5C_%5C_

nrf518%5C_%5C_lib%5C_%5C_ble%5C_%5C_s110%5C_%5C_intro.html.

[81] Region RAM overflowed with stack - Nordic Developer Zone. [Online]. Available: https:

//devzone.nordicsemi.com/question/38781/region-ram-overflowed-

with-stack/ (visited on 06/15/2015).

[82] ——, nRF51 IoT SDK Documentation. [Online]. Available: https://developer.

nordicsemi.com/nRF51%5C_IoT%5C_SDK/doc/iot/html/index.html

(visited on 06/16/2015).

[83] J. Hui and P. Thubert, “RFC 6282”, 2011.

[84] Nordic Semiconductor, nRF51 SDK for Internet of Things applications using Bluetooth

Smart. [Online]. Available: https://www.nordicsemi.com/eng/Products/

Bluetooth- Smart- Bluetooth- low- energy/nRF51- IoT- SDK (visited on

06/15/2015).

[85] lwIP - A Lightweight TCP/IP stack - Summary [Savannah]. [Online]. Available: https:

//savannah.nongnu.org/projects/lwip/ (visited on 06/16/2015).

[86] E. Stock, Memory, 2015. [Online]. Available: https://github.com/eliotstock/

memory.

[87] Fraunhofer Portugal, Smart Companion UI Design & SC-Lib, 2014.

[88] What’s the maximum size for an advertisement package? - Nordic Developer Zone. [On-

line]. Available: https://devzone.nordicsemi.com/question/75/whats-

the-maximum-size-for-an-advertisement-package/ (visited on 06/19/2015).

[89] Radius Networks, AltBeacon Protocol Specification v1.0, 2015. [Online]. Available: https:

//github.com/AltBeacon/spec.

[90] E.-E.-L. Lau, B.-G. Lee, S.-C. Lee, and W.-Y. Chung, “Enhanced RSSI-based high ac-

curacy real-time user location tracking system for indoor and outdoor environments”, In-

ternational Journal on Smart Sensing and Intelligent systems, vol. 1, no. 2, pp. 534–548,

2008.

[91] M. Slade, Boyer Moore Horspool Algorithm - YouTube, 2014. [Online]. Available: https:

//www.youtube.com/watch?v=PHXAOKQk2dw (visited on 06/22/2015).

http://www.aal-europe.eu/projects/alma/
https://developer.mbed.org/media/uploads/chris/mbedqa%5C_v1.0.pdf
https://developer.mbed.org/media/uploads/chris/mbedqa%5C_v1.0.pdf
https://devzone.nordicsemi.com/documentation/nrf51/4.2.0/html/group%5C_%5C_nrf518%5C_%5C_lib%5C_%5C_ble%5C_%5C_s110%5C_%5C_intro.html
https://devzone.nordicsemi.com/documentation/nrf51/4.2.0/html/group%5C_%5C_nrf518%5C_%5C_lib%5C_%5C_ble%5C_%5C_s110%5C_%5C_intro.html
https://devzone.nordicsemi.com/documentation/nrf51/4.2.0/html/group%5C_%5C_nrf518%5C_%5C_lib%5C_%5C_ble%5C_%5C_s110%5C_%5C_intro.html
https://devzone.nordicsemi.com/question/38781/region-ram-overflowed-with-stack/
https://devzone.nordicsemi.com/question/38781/region-ram-overflowed-with-stack/
https://devzone.nordicsemi.com/question/38781/region-ram-overflowed-with-stack/
https://developer.nordicsemi.com/nRF51%5C_IoT%5C_SDK/doc/iot/html/index.html
https://developer.nordicsemi.com/nRF51%5C_IoT%5C_SDK/doc/iot/html/index.html
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51-IoT-SDK
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRF51-IoT-SDK
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://github.com/eliotstock/memory
https://github.com/eliotstock/memory
https://devzone.nordicsemi.com/question/75/whats-the-maximum-size-for-an-advertisement-package/
https://devzone.nordicsemi.com/question/75/whats-the-maximum-size-for-an-advertisement-package/
https://github.com/AltBeacon/spec
https://github.com/AltBeacon/spec
https://www.youtube.com/watch?v=PHXAOKQk2dw
https://www.youtube.com/watch?v=PHXAOKQk2dw


76 REFERENCES

[92] R. S. Boyer and J. S. Moore, “A fast string searching algorithm”, Communications of the

ACM, vol. 20, no. 10, pp. 762–772, 1977.

[93] A. Hume and D. Sunday, “Fast string searching”, Software: Practice and Experience, vol.

21, no. 11, pp. 1221–1248, 1991.

[94] L. Olimex, Weekend Programming Challenge Issue 16 – Infix to Postfix converter. [On-

line]. Available: https://olimex.wordpress.com/2013/07/05/weekend-

programming-challenge-issue-16-infix-to-postfix-converter/ (vis-

ited on 06/23/2015).

[95] E. W. Dijkstra, ALGOL-60 translation. Mathematisch Centrum, 1961.

[96] Stack Overflow, c++ - What is the running time of the translation of infix to postfix using

queue and stack? [Online]. Available: https://stackoverflow.com/questions/

5305215/what-is-the-running-time-of-the-translation-of-infix-

to-postfix-using-queue-and (visited on 06/28/2015).

[97] Rosetta Code, Parsing/Shunting-yard algorithm. [Online]. Available: http://rosettacode.

org/wiki/Parsing/Shunting-yard%5C_algorithm (visited on 06/23/2015).

[98] S. R. Schmitt, RPN Calculator, 2004. [Online]. Available: http://www.abecedarical.

com/javascript/script%5C_reverse%5C_polish.html (visited on 06/23/2015).

[99] Rosetta Code, Parsing/RPN calculator algorithm. [Online]. Available: http://rosettacode.

org/wiki/Parsing/RPN%5C_calculator%5C_algorithm%5C#C (visited on

06/23/2015).

[100] A. Dobie and Android Central, Bluetooth Low Energy support coming to future Android

version | Android Central. [Online]. Available: http://www.androidcentral.

com/bluetooth-low-energy-support-coming-future-android-version

(visited on 06/23/2015).

[101] Stack Overflow, bluetooth lowenergy - Does BluetoothLeAdvertiser work on a Nexus 5

with Android 5.0? - Stack Overflow. [Online]. Available: https://stackoverflow.

com/questions/26441785/does-bluetoothleadvertiser-work-on-a-

nexus-5-with-android-5-0/26441948%5C#26441948 (visited on 06/28/2015).

[102] Nordic Semiconductor, nRF51 IoT SDK Documentation, 2014.

[103] OASIS, MQTT Version 3.1.1. [Online]. Available: http://docs.oasis-open.org/

mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html (visited on 06/28/2015).

[104] Nordic Semiconductor, IoT SDK v0.8.0 Changelog, 2015. [Online]. Available: https:

//www.nordicsemi.com/eng/nordic/Products/nRF51-IoT-SDK/nRF51-

IoT-SDK-zip/41601 (visited on 06/26/2015).

[105] A. Dunkels, uIP, 2013. [Online]. Available: https://github.com/adamdunkels/

uip (visited on 06/29/2015).

https://olimex.wordpress.com/2013/07/05/weekend-programming-challenge-issue-16-infix-to-postfix-converter/
https://olimex.wordpress.com/2013/07/05/weekend-programming-challenge-issue-16-infix-to-postfix-converter/
https://stackoverflow.com/questions/5305215/what-is-the-running-time-of-the-translation-of-infix-to-postfix-using-queue-and
https://stackoverflow.com/questions/5305215/what-is-the-running-time-of-the-translation-of-infix-to-postfix-using-queue-and
https://stackoverflow.com/questions/5305215/what-is-the-running-time-of-the-translation-of-infix-to-postfix-using-queue-and
http://rosettacode.org/wiki/Parsing/Shunting-yard%5C_algorithm
http://rosettacode.org/wiki/Parsing/Shunting-yard%5C_algorithm
http://www.abecedarical.com/javascript/script%5C_reverse%5C_polish.html
http://www.abecedarical.com/javascript/script%5C_reverse%5C_polish.html
http://rosettacode.org/wiki/Parsing/RPN%5C_calculator%5C_algorithm%5C#C
http://rosettacode.org/wiki/Parsing/RPN%5C_calculator%5C_algorithm%5C#C
http://www.androidcentral.com/bluetooth-low-energy-support-coming-future-android-version
http://www.androidcentral.com/bluetooth-low-energy-support-coming-future-android-version
https://stackoverflow.com/questions/26441785/does-bluetoothleadvertiser-work-on-a-nexus-5-with-android-5-0/26441948%5C#26441948
https://stackoverflow.com/questions/26441785/does-bluetoothleadvertiser-work-on-a-nexus-5-with-android-5-0/26441948%5C#26441948
https://stackoverflow.com/questions/26441785/does-bluetoothleadvertiser-work-on-a-nexus-5-with-android-5-0/26441948%5C#26441948
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.nordicsemi.com/eng/nordic/Products/nRF51-IoT-SDK/nRF51-IoT-SDK-zip/41601
https://www.nordicsemi.com/eng/nordic/Products/nRF51-IoT-SDK/nRF51-IoT-SDK-zip/41601
https://www.nordicsemi.com/eng/nordic/Products/nRF51-IoT-SDK/nRF51-IoT-SDK-zip/41601
https://github.com/adamdunkels/uip
https://github.com/adamdunkels/uip


REFERENCES 77

[106] O. Schneider, Pimatic, 2014. [Online]. Available: http://pimatic.org/ (visited on

06/26/2015).

http://pimatic.org/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	Acronyms and Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 System Requirements
	1.4 Objectives

	2 Research Problem
	2.1 The System
	2.2 The Testbed

	3 State of the Art
	3.1 WSN
	3.1.1 Ubiquitous Computing
	3.1.2 Internet of Things/Everything
	3.1.3 Meshed and Multi-hop Networks

	3.2 MOM
	3.2.1 Protocols
	3.2.2 Applications
	3.2.3 Comparison

	3.3 Wireless Communication Solutions
	3.3.1 What is defined by the IEEE
	3.3.2 Bluetooth
	3.3.3 ZigBee
	3.3.4 Wi-Fi
	3.3.5 nRF24L01+
	3.3.6 Others
	3.3.7 Comparison

	3.4 Hardware Platforms
	3.4.1 Android Smartphone
	3.4.2 Raspberry Pi
	3.4.3 SheevaPlug
	3.4.4 TelosB
	3.4.5 TI CC2540
	3.4.6 Nordic nRF51822

	3.5 Indoor Location Solutions
	3.5.1 BLE based
	3.5.2 ZigBee based
	3.5.3 Wi-Fi

	3.6 Applied Research
	3.6.1 Health sensor systems
	3.6.2 Agriculture
	3.6.3 Ambient Assisted Living


	4 Development tools
	4.1 Fraunhofer Pandlet
	4.2 Development Boards
	4.2.1 PCA10001
	4.2.2 PCA20006

	4.3 The Softdevice
	4.4 nRF51 SDK
	4.5 IoT SDK
	4.5.1 The LWIP IP stack

	4.6 Other software

	5 The BlueWarnAAL solution
	5.1 The solution broken down
	5.2 Components
	5.2.1 FhP Pandlet developments
	5.2.2 Android developments
	5.2.3 Raspberry Pi developments


	6 Testbed and Results
	6.1 The proposed scenario
	6.1.1 The testbed

	6.2 Functional tests
	6.3 Distance estimation tests
	6.4 Connectivity tests

	7 Conclusion
	7.1 Achievements
	7.2 Future Work
	7.2.1 Pi application
	7.2.2 MCU
	7.2.3 nRF52
	7.2.4 Interfacing with the Middleware
	7.2.5 Sensor remote control
	7.2.6 Scaling up
	7.2.7 Calibration


	References

