
i 
 

 

 

 

Continuum Modelling and Numerical Simulation of Damage for 

Ductile Materials 

 

Dissertation presented to the Faculty of Engineering, University of Porto, as a 

requirement to obtain the Ph.D. degree in Mechanical Engineering, carried out under 

the supervision of Professor Francisco Manuel Andrade Pires, Associate Professor, 

Faculty of Engineering, University of Porto and Professor José Manuel de Almeida 

César de Sá, Full Professor, Faculty of Engineering, University of Porto 

 

 

Lucival Malcher 

 

Faculdade de Engenharia Universidade do Porto 

 

Porto 

 

2012 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

 

 

 

 

 

 

 

 

à minha família 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

AGRADECIMENTOS 

 

Em primeiro lugar, gostaria de agradecer o apoio dado pelo meus orientadores Dr. 

Francisco Manuel de Andrade Pires e Dr. José César de Sá, durante o desenvolvimento 

deste trabalho e principalmente pela oportunidade de ter feito este doutoramento na 

FEUP. Gostaria de agradecer também a Fundação para a Ciência e Tecnologia - FCT, 

pelo apoio financeiro dado. 

Agradecimentos especiais vão também aos colegas de estudo e grandes amigos Dr. 

Filipe Xavier Costa Andrade, Dr. Thiago Doca e Dr. Fabio José Pinho Reis. Obrigado pelo 

apoio, conversas, discussões e pela grande troca de experiência e influência no tema 

deste trabalho. Agradeço o sempre apoio do Professor Dr. José Carlos Balthazar, da 

Universidade de Brasília, que foi meu orientador tanto durante minha graduação 

quanto no mestrado concluído na UnB. 

Agradeço à minha mãe (Graça Malcher Ávila) e pai (Antonio Ávila) pelo grande 

incentivo em levar estes estudos com garra até o seu fim.  

Por fim, meus maiores agradecimentos vão para minha esposa Cyntia de Souza 

Malcher, que acreditou no meu sonho e vontade de seguir estes estudos fora de nosso 

conforto e país. 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

RESUMO 

A correta determinação da fratura em materiais dúcteis tem avançado enormemente 

nos últimos anos e assim, o aperfeiçoamento de novas formulações e técnicas que 

sejam capazes de melhorar o comportamento preditivo de modelos constitutivos 

tornou-se um grande objeto de estudo para pesquisadores em todo o mundo. O 

avanço da indústria e a procura de técnicas que possibilitem o aumento da 

competitividade, fez com que tais desenvolvimentos acadêmicos passassem a ser 

adotados por inúmeros setores como o automobilístico, o aeroespacial, o naval, entre 

outros. Desta forma, nesta tese, procura-se contribuir para o desenvolvimento e 

aperfeiçoamento de modelos constitutivos e numéricos que sejam capazes de 

determinar, da maneira mais realística possível, o comportamento mecânico de 

materiais metálicos. Para isto, como primeira etapa do trabalho, sugere-se um 

algoritmo de integração numérica implícita para um modelo elasto-plástico avançado, 

que inclui a influência da pressão hidrostática e do terceiro invariante do tensor 

desviador, na lei de fluxo plástico de um material metálico. Após esta proposição, 

busca-se avaliar o comportamento preditivo de três formulações constitutivas 

disponíveis na literatura para determinação do correto local e momento de início de 

uma fenda dúctil. São então avaliados, o modelo de Bai e Wierzbicki, o modelo de 

Lemaitre e o modelo de Gurson em uma versão modificada e conhecida por GTN. 

Como etapa seguinte desta tese, procurou-se avaliar o desempenho de dois 

mecanismos de corte, um proposto por Xue e outro por Nahshon et al., acoplados ao 

modelo GTN e aplicados à região de baixa triaxialidade. Nesta etapa, avaliou-se a 

influência da relação entre a condição de calibração dos parâmetros materiais e a 

condição de uso, na capacidade preditiva dos modelos com variáveis interna de dano 

acoplada. Com base nos resultados observados, na etapa seguinte, propõe-se um novo 

modelo constitutivo, baseado na formulação de Gurson e na dedução geométrica da 

lei de evolução do mecanismo de corte de Xue, de maneira a aumentar a capacidade 

preditiva no que se refere a: determinação do nível esperado de deformação plástica 

equivalente na fratura, o nível de deslocamento na fratura e o potencial local para 

início da fratura dúctil, bem como reduzir a influência do ponto de calibração na 

precisão dos resultados numéricos obtidos quando o modelo é aplicado a largas faixas 

de triaxialidade. Por fim, o modelo desenvolvido com base na teoria de Gurson, que 

agora passa a denominar de "extended GTN model", é testado em condições 

complexas de carregamento, com o intuito de se avaliar a influência da história do 

carregamento no comportamento mecânico de materiais e a capacidade preditiva do 

modelo. Para isto, introduz-se o efeito de Bauschinger no modelo, através do 

acoplamento da lei de fluxo plástico com uma lei de endurecimento cinemático, como 

proposto por Prager.  
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ABSTRACT 

Accurate determination of fractures in ductile materials has improved significantly in 

recent years, and so the development of new formulations and techniques to improve 

the performance of predictive constitutive models has become a major topic of study 

for researchers worldwide. Industry progress and demand for techniques that allow for 

increased competitiveness caused such academic developments to spread into 

numerous industries, such as the automotive, aerospace and shipbuilding sectors, 

among others. Thus, this thesis seeks to contribute to the development and 

refinement of constitutive and numerical models to determine the mechanical 

behavior of metallic materials as realistically as possible. To this end, the first step is to 

propose an implicit numerical integration algorithm for an advanced elasto-plastic 

model, which includes the influence of hydrostatic pressure and third invariant of 

deviator tensor on the plastic flow rule for a metallic material. Once this proposition 

has been made, the predictive performance of three constitutive formulations 

available in the literature are analyzed for determining the exact place and time of 

development of a ductile crack. The Bai and Wierzbicki model, the Lemaitre model and 

the Gurson model are then evaluated in a modified version known as GTN. The next 

step in this thesis was to evaluate the performance of two shear mechanisms – a 

mechanism proposed by Xue and another mechanism proposed by Nahshon et al., 

coupled with the GTN model and applied to the range of low stress triaxiality. In this 

step, the influence of the relationship between the calibration condition material 

parameters and use condition was evaluated with regard to the predictive ability of 

the models with coupled internal damage variables. Based on the results, in the 

following step a new constitutive model is proposed that is based on Gurson’s 

formulation and the geometric deduction of Xue’s evolution law for the shear 

mechanism so as to increase predictive ability with respect to: determining the 

expected level of equivalent plastic strain at fracture, the level of displacement at 

fracture and the local potential for development of a ductile fracture, as well as 

reducing the influence of the calibration point on the accuracy of numerical results 

obtained when the model is applied to wide range of stress triaxiality. Finally, the 

model based on Gurson’s theory – now called the “extended GTN model” – is tested 

under complex loading conditions in order to evaluate the influence of the loading 

history on the mechanical behavior of materials and predictive ability of the model. To 

this end, the Bauschinger effect is introduced in the model by coupling the plastic flow 

rule with a kinematic hardening law as proposed by Prager for the evolution of the 

back stress.  
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CHAPTER 1 

Introduction 

 

1.1 GENERAL CONSIDERATIONS 

The correct prediction of fracture in ductile materials has become, in recent 

years, a matter of great importance for several competitive sectors of industry 

such as automotive, aerospace, marine, military, among others. For example, 

weight reduction in vehicle structures such as chassis and bodies, without loss of 

performance and competitiveness, has used design criteria that neglect the 

determination of the correct time and place for the start of a crack. This approach 

has clearly significant limitations and the design of new products requires careful 

planning of each step for its development, and manufacturing optimization. 

In the last two decades, there has been a substantial increase in the 

awareness, of the industrial environment, of the great potential that emerges from 

the application of scientific methods for the design of these new products. At each 

step, you must ensure that the products developed and the applied processes are 

optimized, especially in competitive sectors of the industry, such as metallurgical 

industry, and simultaneously meet the functionality requirements and low cost of 

production. To overcome the problems encountered during the design and 

development phases, and still maintain a competitive advantage, it is of the utmost 

importance to be constantly updated with the latest scientific and technological 

progress.  

Since the end of the sixties, a number of mathematical models have been 

formulated to describe the macroscopic behavior of ductile metallic materials, like 

steel, aluminum alloys, among others. The model proposed by McClintock (1968), 

which assumes the void within a metal matrix in the form of a cylinder, the model 

proposed by Rice and Tracey (1969) that considers the void as a perfect sphere, 

the Gurson-Tvergaard-Needleman (GTN) model (1977 and 1984) which describes 

the elastic-plastic behavior of porous materials, the model proposed by Lemaitre 
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(1985) that assumes the principles of continuous damage mechanics, the models 

proposed by Oyane (1978), Cockcroft and Latham (1968) and Johnson and Cook 

(1985) based on experimental observations, are some of the best-known models in 

the literature to describe the elastic-plastic behavior of ductile materials. Figure 

1.1 shows some examples of the use of mathematical models, within the finite 

element framework, to design and optimize structures and mechanical 

components. Such models can be used both in the simulation of failure of 

structures, stress analysis of mechanical components and optimization of 

production processes.   

 

  

(a) 
 
 

 
(b) 

 

 

Figure 1.1. Examples of the use of constitutive models to describe the elastic-plastic 

behavior of structures and mechanical components, (Bai, 2008). 
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1.2 EVOLUTION AND IMPORTANCE OF DAMAGE MECHANICS 

Since the pioneering work of Kachanov (1958), many developments in 

applied mechanics were made in order to formulate new constitutive models that 

are able to describe the internal degradation of solids, according to the principles 

of Continuum Mechanics. After five decades of research, significant progress has 

been observed and the so-called Continuum Damage Mechanics (CDM) theory has 

emerged as an alternative approach for the introduction of new state variables in 

constitutive models (Lemaitre, 1985). 

The material behavior can be modeled by constitutive equations, taking into 

account its progressive deterioration. These models are based on the assumption 

that the internal damage can effectively be represented by one or more internal 

variables, which may be of scalar, vector or tensorial nature. These variables, 

called damage variables can represent a measure of defects within a 

representative volume (RV). Its development should comply with constitutive 

thermodynamic relations, usually represented by a system of differential 

equations in time. Based on CDM, many different constitutive models have already 

been proposed, such as Lemaitre (1985) model to characterize damage caused by 

plastic flow, Chaboche (1984) and Murakami & Ohmo (1981) models to describe 

fretting damage, Krajeinovic & Fonseka (1981) model for fragile damage, among 

others. 

In recent years, the need to have robust and reliable models for use in 

engineering projects, coupled with the advent and the popularity of digital 

computers, led to the progressive development of numerical techniques. The 

constant improvement of numerical models and associated algorithms, together 

with the significant increase in processing capacity versus the cost of computers, 

made a significant impact on the acceptance of numerical techniques within the 

academic and industrial environments. The numerical methods, mainly based on 

the Finite Element Method, have been continuously developed and improved, for 

both linear and nonlinear applications. Particularly, in the solution of nonlinear 

problems of solid mechanics, there have been considerable advances in several 

topics of research. In many areas, the numerical methods have achieved a high 
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degree of predictive ability and, today, are of great help to the designer and an 

essential tool for solving real engineering problems.  

During the development of numerical algorithms for the analysis of stress, 

the description of the constitutive response of the material was dominated by the 

theory of elasticity and elastic-(visco) plasticity. Over the years, the finite element 

techniques based on these constitutive models have been continuously modified 

and adapted to deal with more complex deformations, which may include: large 

deflections, finite deformations, viscous effects, among others. In particular, the 

advances made in the numerical simulation of large deformation problems in the 

presence of finite inelastic deformations (Peri'C & Owen, 2004), had a major 

impact on the simulation of metal forming.  

Despite these advances, many questions remain open, such as the modeling 

problems related to failure (fracture) of materials resulting from the progressive 

deterioration associated with micro structural deformations. In such cases, the 

development of new and more sophisticated constitutive models deserves careful 

consideration and therefore, the subject remains an important area of research 

and development. 

There are several technological processes, which should greatly benefit from 

a better understanding and quantification of the different physical phenomena that 

occur close to rupture of ductile materials. Metal cutting, for example, is a 

technological process used to manufacture a large number of products and is 

currently used by a large number of companies. The importance of this process is 

underlined by the fact that almost every object we use in our society, has one or 

more machined surfaces. Due to its massive use, the effectiveness of this process 

has a considerable impact on the quality and cost of the products obtained. 

Therefore, understanding the process of removing the chip is of vital importance in 

material selection and design tools, as well as in ensuring the dimensional 

accuracy and surface integrity of the final product. 

1.3 LAYOUT  

The thesis is divided into eight chapters. In the first one, the introduction and 

motivation of the work is undertaken. After that, Chapter 2 presents a brief review 
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over the physical aspects of the structure of metals and the theoretical aspects 

related to damage mechanics. In addition, the kinematics of deformation, the stress 

and equilibrium, the fundamental laws of thermodynamics, the constitutive theory, 

the weak equilibrium and the finite element modeling of finite strain plasticity are 

also addressed. 

Chapter 3 describes in detail the derivation of an implicit solution for numerical 

integration of a new elastic-plastic model, which is dependent on both pressure 

and Lode angle. The constitutive model is presented as well as the numerical 

strategy employed. Several numerical tests are carried out in order to demonstrate 

the efficiency of the algorithm proposed. 

In chapter 4, three well established ductile failure models employed to determine 

fracture onset are presented: the Gurson´s theory, highlighting the Gurson-

Tvergaard-Needleman (GTN) model as well as the Lemaitre’s model both with 

isotropic hardening and isotropic damage. Besides these, an advanced elastic-

plastic model coupled with a fracture indicator is chosen, in order to perform an 

assessment of isotropic damage constitutive models under high and low stress 

triaxiality. 

In chapter 5, a theoretical and numerical study is done, based on Gurson-

Tvergaard-Needleman (GTN) model, in order to evaluate the prediction of fracture 

initiation under a low level of stress triaxiality. Some recently proposed shear 

mechanisms are presented and assessed as damage variables in the constitutive 

formulation. Besides that, the influence of the calibration point on the numerical 

results for coupled damage models is studied, presenting some numerical results 

for two different calibration points. 

In chapter 6, an extension to the Gurson-Tvergaard-Needleman (GTN) model is 

proposed, in order to predict fracture onset. A new shear mechanism is presented 

and two independent nucleation mechanisms are created in order to trigger the 

growth contribution. The complete constitutive formulation and the numerical 

strategy are described in detail together with several numerical tests. 

The loading history effect on ductile fracture is studied on chapter 7, based on the 

micromechanical formulation proposed in chapter 6. Three different loading 
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conditions are simulated and the numerical results are discussed, based on 

experimental data. Finally, in chapter 8, a short summary and the conclusions of 

this work are presented along with suggestions for future research. 

 

 

 

 

 



7 
 

CHAPTER 2 

Continuum Mechanics, Laws of Thermodynamics and 

Constitutive Theory  

 

In this chapter, a brief summary of the basic concepts of continuum 

mechanics is presented, as well as, the fundamental laws of thermodynamics of 

continuous media and the use of internal variables to formulate constitutive 

models of dissipative materials. The main subjects addressed are: the kinematics of 

deformation, stress and equilibrium, the laws of thermodynamics, constitutive 

theory and weak equilibrium through the principle of virtual.  

2.1. KINEMATICS OF DEFORMATION 

In this section, the theory related to the description of kinematics of 

deformation is presented where the concepts of motion and deformation are 

addressed. 

2.1.1. Configurations and motions of continuum bodies 

Within the three-dimensional Euclidean space, a continuum body,  , with 

each particle labeled by the coordinates,    , is analyzed at a given instant of 

time,  . Furthermore, the reference configuration is assumed to coincide with the 

initial configuration, and each material particle is expressed as a function of the 

coordinates of  . In the deformed configuration, the continuum body,  , occupies 

the region  ( ) with boundary  (  ) defined through the deformation map  . 

Thus, the current position of a particle   of   in the deformed configuration can be 

defined as: 

    ( )  , (2.1) 

where   represents the current position,  (  ) is the deformation map and   

represents a particle embedded in the continuum body. 

Then, the displacement of particle   can be represented by the vector  ( ), 

which can be expressed by the relation: 
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 ( )   ( )     , (2.2) 

where  (  ) represents the displacement vector. However, substituting Equation 

(2.1) into (2.2), the current position of a particle,  , can also be rewritten as 

function of initial configuration,   ,  and the displacement of particle  ( ): 

      ( ). (2.3) 

Figure 2.1 represents the initial and deformed configuration of the 

continuum body   and the reference and current position of particle  , regarding a 

displacement  ( ). 

 

 

                                            

 

 

 

 

Figure 2.1. Configurations of a deformable body. 

If we consider a rigid deformation, the deformation of the continuum body, 

 , preserves the distances between all material particles of the body, and can be: a 

translation, a rotation or a combination of a translation and a rotation. A rigid 

translation is a deformation with constant displacement vector, which is 

represented by: 

 ( )       . (2.4) 

For a rigid rotation, the deformation is mathematically expressed as: 

 ( )      (   ) , (2.5) 

E 3 

E 1 

E 2   

  

e 3 

e 1 e 2 

 ( ) 

    ( ) 
 ( ) 
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where   represents a proper orthogonal tensor (a rotation tensor) and   

represents the point about which   is rotated. A deformation is rigid, containing 

translations and rotations, if and only if it can be expressed as: 

 ( )   ( )    (   ) , (2.6) 

where the above expression represents a deformation map for a rigid translation 

with displacement  ( )   , superimposed on a rigid rotation   about point  . 

A time-dependent deformation of the continuum body  , is called like a 

motion of body  . Thus, the motion can be defined by a function   so that for each 

time  , the map  (   ) is a deformation of  . Now, regarding the motion  , the 

position   of a material particle   at time   is expressed by: 

    (   ) . (2.7) 

Furthermore, the deformed configuration of the continuum body,  (   ), 

denotes the region of three dimensional space occupied by the body   at time  . 

Typically, the current position of these particles is located, by the coordinates   

with respect to an alternative Cartesian basis    (see Figure 2.1). If we consider the 

displacement field, the motion can be expressed by: 

 (   )      (   ) , (2.8) 

where  (   ) represents the displacement of particle   at time  . Since at each 

time   the map  (   ) is one-to-one by assumption, the material points can be 

expressed as a function of the place that each one occupies at a time   by: 

     (   )      (   (   )  ) , (2.9) 

where     represents the reference map. In finite deformation analysis, no 

assumption is made for the magnitude of the displacement,  (   ), indeed it may 

even exceed the initial dimensions of the body as in the case, for instance, of metal 

forming. Nevertheless, in infinitesimal deformation analysis the displacement 

 (   ) is assumed to be small in comparison with the dimensions of the continuum 

body, and geometrical changes can be, a priori, ignored. 
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Time dependence 

For non-linear problems, the dependency of deformation on the time,  (   ), 

must be considered. Throughout a motion,  , the velocity and acceleration of a 

material particle,  , can be determined by the first and second derivatives of the 

motion with respect to time. Equation (2.10) represents both quantities: 

where  ̇(   ) and  ̈(   ) represent, respectively, the first and second derivatives 

of the motion in respect to time. Using the reference map,    , the following 

functions can be defined: 

where   and   denote the spatial description of the velocity field and acceleration 

field, respectively.  

2.1.2. Material and spatial descriptions 

Under finite deformations, a judicious distinction has to be made between the 

coordinate systems that can be chosen to describe the behavior of the continuum 

body  . Considering, for the sake of simplicity, a scalar time dependent quantity,  , 

defined over the body  . 

(a) Material description: if the value of   is expressed as a function of material 

particles,  , and time,  , with respect to the domain     , then   can be called as 

a material field, defined as: 

  (   ). (2.12) 

(b) Spatial description: otherwise, if the value of   is expressed as a function of a 

spatial position,  , and time,  , with respect to the domain   ( )   
 , then   can 

be called as a spatial field, defined as: 

  (   ). (2.13) 

The above descriptions are also employed for both vector and tensor fields. 

The material and spatial descriptions are alternatively referred to as Lagrangian 

and Eulerian descriptions, respectively. 

 ̇(   )  
  (   )

  
 and  ̈(   )  

   (   )

   
    (2.10) 

 (   )   ̇(   (   )  ) and  (   )   ̈(   (   )  ) , (2.11) 
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Material and spatial gradients, divergences and time derivatives 

If we consider a scalar field  , the material and spatial gradients can be 

defined by the following expressions: 

where     and     denote, respectively, the material and spatial gradients, which 

are the derivatives of   with respect to   and   holding   fixed. In addition, the 

material and spatial divergence of a vector field  , are respectively, given by: 

Considering now, a tensor field T, the spatial and material divergence are 

given, in Cartesian components, by: 

Similarly, the material and spatial time derivatives of  , denoted respectively 

 ̇  and  ̇ , are defined by: 

The material time derivative  ̇  measures the rate of change of   at a fixed 

material particle  . The spatial time derivative  ̇ , on the other hand, measures the 

rate of change of   observed at a fixed spatial position  . 

2.1.3. The deformation gradient 

Let us examine the deformation gradient of the motion  , which establishes 

the relation between quantities before deformation to corresponding quantities 

after (or during) deformation. Mathematically, the deformation gradient is defined 

by a second order tensor: 

 (   )     (   )  
   
  
    (2.18) 

where   represents the deformation gradient. Having in mind Equation (2.5), the 

second order tensor   can be written as: 

           (2.19) 

    
 

  
  (   ) and     

 

  
  (   )    (2.14) 

        (   ) and         (   ) . (2.15) 

(     )  
    

   
 and (     )  

    

   
    (2.16) 

 ̇  
 

  
  (   ) and  ̇  

 

  
  (   )    (2.17) 
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where   represents the second order identity tensor. The deformation gradient can 

also be expressed as function of Cartesian components: 

    
   
   
     

   
   
    (2.20) 

where the term    represents the components of   . Furthermore, recalling the 

reference map, the tensor   may be expressed by the following expression: 

 (   )  [   
  (   )]   [     ]

      (2.21) 

Considering an infinitesimal volume,   , which can be written as a function 

of the infinitesimal vectors   ,    and   , that originates from the material particle 

  in the reference configuration (see Figure 2.2), the term    is mathematically 

expressed by    (     )   . 

 

                                    

 

Figure 2.2. The determinant of the deformation gradient. 

Consider now, a deformation map    applied to the infinitesimal volume    

(see Figure 2.2). After mapping the infinitesimal vectors, the deformed 

infinitesimal volume is expressed as: 

   (         )       . (2.22) 

After some tensor manipulations, the determinant of the deformation 

gradient can also be denoted by Equation (2.23), which represents the volume 

after deformation per unit reference volume, 

     
(         )     

(     )   
 
  

  
    (2.23) 

 

    ( ) 

   
   

   

  

   

    

    

    

  

           

 

   

reference 

configuration 
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where the term      represents the determinant of the deformation gradient. In 

Continuum Mechanics, the term   is frequently employed to denote the 

determinant of  . 

        . (2.24) 

From the analysis of Equation (2.23), it can be concluded that if     then 

the infinitesimal volume has collapsed into a material particle, which represents a 

physically unacceptable situation. In the reference configuration the deformation 

gradient is equal to the second order identity,     and, consequently, the 

determinant of   is a unit,    . Thus, a configuration with     cannot be 

reached from the reference configuration without having, at some stage,    . 

Therefore, in any deformed configuration of a body,   satisfies: 

    . (2.25) 

 
Isochoric/volumetric split of the deformation gradient 

The deformation gradient,  , can also, locally, be decomposed as a purely 

volumetric deformation followed by an isochoric deformation or as an isochoric 

deformation followed by a pure volumetric deformation. Mathematically, the 

multiplicative split of the deformation gradient is expressed by: 

                  , (2.26) 

where the purely volumetric component    is defined as: 

    (    )
 

    , (2.27) 

and the isochoric component     , which is volume preserving or unimodular, is 

expressed by: 

      (    )
 

    . (2.28) 

It is important highlight that, by construction,    corresponds indeed to a purely 

volumetric deformation and, since 

       [(    )
 

  ]
 

       , (2.29) 

   produces the same volume change as  . The isochoric component, in turn, 

represents a volume preserving deformation, that is, 
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         [(    )
 
  ]
 

          (2.30) 

2.1.4. Polar decomposition: Stretches and rotation 

The deformation gradient   can be decomposed in terms of stretch and 

rotation components, by applying the polar decomposition, which is expressed as: 

        , (2.31) 

where   is the right stretch tensor, with a basis in the reference configuration, and 

  is the left stretch tensor, which is an object in the current configuration. The 

second order tensor   is a proper orthogonal tensor, which is a local rotation 

tensor, connecting both configurations. The right and left stretch tensors can be 

related by the rotation tensor, as: 

      , (2.32) 

where, the term    represents the transposed of the rotation tensor. In fact, the 

following expressions can relate the tensors  ,   and  : 

where   and   are called, respectively, as the right and left Cauchy-Green tensors. 

However, both Cauchy-Green tensors can also be defined as: 

where    denotes the transposed of the deformation gradient. 

Both right and left stretch tensors, which are represented by   and   

respectively, are symmetric tensors. Therefore, according to the spectral theorem, 

they admit the spectral decomposition and can further be written as: 

where the set of parameters {        } are the eigenvalues of   and   called the 

principal stretches. The vectors    and    are also unit eigenvectors of   and  , 

respectively. The triads {        } and {        } form orthonormal bases for 

the space   of vectors in   . They are called, respectively, the Lagrangian and 

Eulerian triads and define the Lagrangian and Eulerian principal directions. 

  √  and   √  , (2.33) 

         and         , (2.34) 

  ∑       

 

   

 and   ∑        
 
     , (2.35) 
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Performing the substitution of Equation (2.32) into (2.35), the relationship 

between the eigenvectors of   and   can be established, which highlights that each 

vector    differs from the corresponding    by a rotation  : 

        . (2.36) 

The spectral decomposition of the right and left stretch tensors implies that 

in any deformation, the local stretching from a material particle can always be 

expressed as a superposition of stretches along three mutually orthogonal 

directions. 

 

2.1.5. Strain Measures 

Within an infinitesimal neighbourhood of a generic material particle  , pure 

rotations can be distinguished from pure stretching by means of the polar 

decomposition of the deformation gradient  . Furthermore, subjected to the action 

of pure rotations, the distances between particles within this neighbourhood 

remain fixed. In this case, the difference between the deformed neighbourhood of 

  and its reference configuration is a rigid deformation. 

Otherwise, pure stretching is characterized by   or   and changes the 

distance between material particles. To quantify straining, which evaluates how 

much the tensor   or   departs from a rigid deformation  , some type of strain 

measure has to be defined. In fact, the definition of a strain measure is somewhat 

arbitrary and a specific choice is usually dictated by mathematical and physical 

convenience. A well known family of Lagrangian strain tensors, which is based on 

the Lagrangian triad, is defined by: 

 ( )  {
 

 
(    )    

  [ ]                  
   , (2.37) 

where   is a real number and   [ ] denotes the tensor logarithm of the right 

stretch tensor  . Considering the spectral decomposition, the above expression 

can be rewritten as: 

 ( )  ∑  (  )     
 
     , (2.38) 

where, the term  (  ) is defined according to: 
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 (  )  {

 

 
(  
   )    

  [  ]                  
 . (2.39) 

Examining particular members of the family of Lagrangian strain tensors,   

the Green-Lagrange strain tensor  ( ) arises for    , the Biot strain tensor when 

   , the Hencky (   ) and Almansi (    ) strain tensors. Note that for any 

 , the associated strain tensor vanishes if and only if the deformation gradient 

represents, locally, a rigid deformation: 

 ( )              . (2.40) 

The same representation can also be employed to define tensors that 

measure strain along the principal Eulerian directions or Eulerian strain tensors. 

Based on the left stretch tensor, the Eulerian counterpart of the Lagrangian family 

of strain measures above is defined by: 

 ( )  {
 

 
(    )    

  [ ]                  
 , (2.41) 

or, employing the Eulerian triad, 

 ( )  ∑ (  )     

 

   

    (2.42) 

The relation between the Lagrangian and Eulerian strain tensors can be 

mathematically expressed by the equation below: 

 ( )     ( )   . (2.43) 

Both strain tensors differ by the local rotation  . 

 

2.1.6. The velocity gradient: Rate of deformation and spin 

Equation (2.11) denotes the velocity,  (   ), as a function of the spatial 

coordinates. The derivative of this expression with respect to spatial coordinates 

defines the velocity gradient tensor as: 

      , (2.44) 

where   represents the velocity gradient tensor. Applying the chain rule, the 

velocity gradient can be rephrased as: 
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(
  

  
) 
  

  
  ̇        (2.45) 

The tensor   can be split into its symmetric and skew parts. The symmetric 

component is named as the rate of deformation tensor,  , and the skew component 

as spin tensor,  , which are defined by: 

The following notation has been used to represent both parts of the velocity 

gradient tensor: 

 
2.1.7. Superimposed rigid body motions and objectivity 

The concept of objectivity can be understood by studying the effect of a rigid 

body motion superimposed on the deformed configuration. From the point of view 

of an observer attached to and rotating with a solid, many quantities describing the 

behavior of the solid remain unchanged. Such quantities, like the distance between 

two particles or the state of stress in the body, amongst others are said to be 

objective (see Holzapfel, 2000). 

Although the intrinsic nature of these quantities remains unchanged, their 

spatial description may change. Let us consider an elemental vector    in the 

initial configuration that deforms to    and is subsequently rotated to   ̆ as 

represented in Figure 2.3. 

                                                   

                                                                      
 

           Figure 2.3. Superimposed rigid body motion. 

     ( ) and       ( ) . (2.46) 

   ( )  
 

 
[( )  ( ) ]  and     ( )  

 

 
[( )  ( ) ] . (2.47) 

E 3 
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 ̌ 

  ̌ 

  

 ̌ 
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The relationship between these elemental vectors can be established by:  

  ̆           , (2.48) 

where   denotes an orthogonal tensor describing the superimposed rigid body 

rotation. Even though the vector   ̆ is diferent from   , their magnitudes are 

obviously equal. In this sense it can be said that    is objective under rigid body 

motions. This definition is extended to any vector   that transforms according to 

    . From Equation (2.48) it is possible to note that the deformation gradients 

with respect to the current and rotated configurations are related as, 

        (2.49) 

The next step consists in extending the definition of objectivity to second-

order tensors. Objective second order tensors,  , transform as 

          (2.50) 

Obviously, material tensors (defined in the reference configuration), such as   and 

 , are unchanged under superimposed rigid body motions. 

 

2.2 STRESS AND EQUILIBRIUM 

The stresses and equilibrium concepts need to be introduced for a 

deformable body subjected to a finite motion. It should be noted that, so far, no 

reference has been made to forces and how they are transferred within continuum 

bodies. Regarding the description of surface forces, the concept of stress as well as 

the different ways of quantifying it are presented in this section. The Cauchy’s 

axiom is extremely important for the description of surface forces, and is stated in 

what follows. Consider a body   in an arbitrarily deformed configuration. Let   be 

an oriented surface of   with unit normal vector   at a point  . 

 

Figure 2.4. Surface forces. The Cauchy stress. 

    

  

      

  



19 
 

Cauchy’s axiom states that: At  , the surface force, or the force per unit area, 

exerted across   by the material on the side of   into which   is pointing upon the 

material on the other side of   depends on   only through its normal  . This means 

that identical forces are transmitted across any surface with normal   at  . This 

force (per unit area) is called the Cauchy stress vector and is represented by: 

 ( ) , (2.51) 

with dependence on   and time omitted for notational convenience. If   belongs to 

the boundary of   then the Cauchy stress vector represents the contact force 

exerted by the surrounding environment on  . 

2.2.1 The Cauchy stress tensor 

The dependency of the surface force   on the normal   is linear . This implies 

that there exists a tensor field  ( ) such that the Cauchy stress vector is given by: 

 (   )   ( )  . (2.52) 

The tensor   is called the Cauchy stress tensor, which is symmetric: 

       (2.53) 

where    represents the transposed stress tensor. 

 

Deviatoric and hydrostatic stresses 

Regarding constitutive modeling, it is often convenient to split the stress 

tensor   into two parts: a spherical and a traceless component, which are 

represented by: 

       , (2.54) 

where the term   is a scalar that represents the hydrostatic pressure, which is 

defined as: 

  
 

 
    , (2.55) 

and the component   is a traceless tensor named the deviatoric stress or stress 

deviator: 
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       [  
 

 
   ]    , (2.56) 

where   is a forth order unit tensor. The spherical stress tensor can be determined 

by the following operation: 

   
 

 
(   )   , (2.57) 

and the hydrostatic pressure   is an invariant of the stress tensor. 

 

Stress objectivity 

Since the Cauchy stress tensor is of key importance to establish any 

equilibrium or constitutive equation, it is decisive to inquire whether   is 

objective, as defined previously. Let us consider the transformations of the normal 

and traction vectors implied by the superimposed rigid body motion   as: 

 ̆( ̆)    ( ) 

 ̆        
(2.58) 

with dependence on   and time omitted for notational convenience. Using the 

relationship between the traction vector and stress tensor (Equation 2.52), in 

conjunction with the above quantities gives, 

       . (2.59) 

The rotation of   given by the above equation conforms with the definition of 

objectivity for a second order tensor. 

 

2.2.2 Alternative stress tensors 

Numerous definitions of stress tensors have been proposed in the literature. 

Most of their components do not have a direct physical interpretation: 

The Kirchhoff stress tensor: Often it is convenient to work with the so-called 

Kirchhoff stress tensor ,   , which differs from the Cauchy by the volume ratio  , 

and is defined by: 

     . (2.60) 

Due to the symmetry of  , the Kirchhoff stress is also symmetric. 
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The first Piola-Kirchhoff stress tensor: The traction vector   measures the force 

exerted across a material surface per unit deformed area. Since in many situations 

the deformed configuration of   is not known in advance, it is convenient to define 

the first Piola-Kirchhoff stress tensor, 

       . (2.61) 

This definition derives from the counterpart vector   of   that measures, at the 

point of interest, the current force per unit reference area. The tensor   is often 

referred to as the nominal or engineering stress. Note that in contrast to the 

Cauchy stress,   is generally unsymmetric. 

 
The second Piola-Kirchhoff  stress tensor: It is possible to contrive a totally 

material symmetric stress tensor, known as the second Piola-Kirchhoff stress 

tensor  , defined by: 

           . (2.62) 

It often represents a very useful stress measure in computational mechanics and in 

the formulation of constitutive equations, in particular, for solids. In spite of the 

mathematical convenience, it does not admit a physical interpretation in terms of 

surface tractions. 

 

2.3 FUNDAMENTAL LAWS OF THERMODYNAMICS 

Firstly, it is necessary to introduce the scalar fields  ,  ,   and   defined over 

  which denote, respectively, the temperature, specific internal energy, specific 

entropy and the density of heat production. In addition,   and   will denote the 

vector fields corresponding, respectively, to the body force (force per unit volume 

in the deformed configuration) and heat flux. 

 

2.3.1 Conservation of mass 

The postulate of conservation of mass requires that: 

 ̇        ̇    , (2.63) 

where      ̇ represents the spatial divergence of  ̇. 
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2.3.2 Momentum balance 

The momentum balance can be expressed by the following equations: 

          ̈     ( )

         (  )
    (2.64) 

where the momentum balance is expressed in local form. The term   is the 

outward unit vector normal to the deformed boundary  (  ) of  ,   is the 

boundary traction vector field on  (  ). The above momentum balance equations 

are formulated in the spatial (deformed) configuration. Equivalently, they may be 

expressed in the reference (or material) configuration of   in terms of the first 

Piola-Kirchhoff stress tensor as: 

       ̅   ̅ ̈     

          
 , (2.65) 

where       represents the material divergence,  ̅ is the body force measured per 

unit reference volume,  ̅ is the density in the reference configuration, which can be 

determined by: 

 ̅     , (2.66) 

  is the boundary traction force per unit reference area and   is the outward 

normal to the boundary of   in its reference configuration. 

 

2.3.3 The first principle 

The first principle of thermodynamics postulates the conservation of energy. 

Before stating this principle, it is convenient to introduce the product: 

    , (2.67) 

which represents the stress power per unit volume in the deformed configuration 

of a body. The first principle of thermodynamics is mathematically expressed by 

the equation: 

  ̇               . (2.68) 

The previous equation states that the rate of internal energy per unit deformed 

volume must equal the sum of the stress power and heat production per unit 

deformed volume minus the spatial divergence of the heat flux. 
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2.3.4 The second principle 

The second principle of thermodynamics postulates the irreversibility of 

entropy production. It is expressed by means of the inequality: 

  ̇      [
 

 
]  
  

 
      (2.69) 

2.3.5 The Clausius-Duhem inequality 

With the first and second principles stated above, the Clausius-Duhem 

inequality is obtained by a combination of both principles. After some 

mathematical manipulation, it can be expressed by: 

  ̇      [
 

 
]  
 

 
(  ̇           )      (2.70) 

The introduction of the specific free energy  , which is also known as the 

Helmholtz free energy per unit mass, defined by: 

       , (2.71) 

together with the relation: 

    [
 

 
]  
 

 
      

 

  
        (2.72) 

into in the Clausius-Duhem inequality, leads to: 

     ( ̇    ̇)  
 

 
        (2.73) 

where the term   is defined as:        . 

 

2.4 CONSTITUTIVE THEORY 

The balance principles presented so far are valid for any continuum body, 

regardless of the material of which the body is made. In order to distinguish 

between different types of material, a constitutive model must be introduced. In 

this section, the use of internal variables to formulate constitutive models of 

dissipative materials is addressed. 
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2.4.1 Thermodynamics with internal variables 

An effective alternative to describe the dissipative constitutive behavior is 

the adoption of the so-called thermodynamics with internal variables. The starting 

point of the thermodynamics with internal variables is the hypothesis that at any 

instant of a thermodynamical process the thermodynamic state (defined by  ,  ,   

and  ) at a given point   can be completely determined by the knowledge of a 

finite number of state variables. The thermodynamic state depends only on the 

instantaneous value of the state variables and not on their past history. This 

hypothesis is intimately connected with the assumption of the existence of a 

(fictitious) state of thermodynamic equilibrium known as the local accompanying 

state (Kestin & Bataille, 1977) described by the current value of the state variables. 

In other words, every process is considered to be a succession of equilibrium 

states. Therefore, despite the success of the internal variable approach in 

numerous fields of continuum physics, phenomena induced by very fast external 

actions (at time scales comparable to atomic vibrations) which involve states far 

from thermodynamic equilibrium are excluded from representation by internal 

variable theories. 

 

The state variables 

Consider that at any time  , the thermodynamic state at a point is defined by 

the set of state variables, as follows: 

 {       }   (2.74) 

where the terms     and   are the instantaneous values of the deformation 

gradient, temperature and the temperature gradient. The term   represents the 

set of internal variables containing, in general, entities of scalar, vector and tensor 

nature associated with dissipative mechanisms,     . 

 

Thermodynamic potential: Stress constitutive equation 

Following the above hypothesis, the specific free energy is assumed to have 

the form: 

   (     )    (2.75) 
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so that its rate of change is given by: 

 ̇  
  

  
  ̇  
  

  
 ̇  
  

   
 ̇     (2.76) 

where summation over   is implied. In that case, using the connection: 

          ̇    (2.77) 

for the stress power, one obtains for the Clausius-Duhem inequality: 

(      
  

  
)   ̇   (  

  

  
)  ̇   

  

   
 ̇  
 

 
        (2.78) 

Equivalently, in terms of power per unit reference volume, we have: 

(   ̅
  

  
)   ̇   ̅ (  

  

  
)  ̇   ̅

  

   
 ̇  

 

 
         (2.79) 

Equation (2.79) must remain valid for any pair of functions {  ̇ ( )  ̇( )}. This 

implies the well known constitutive equations: 

   ̅
  

  
       

  

  
    (2.80) 

for the first Piola-Kirchhoff stress and entropy. Equation (2.80) is equivalent to the 

following constitutive relations for the Cauchy and Kirchoff stress tensors: 

  
 

 
 ̅
  

  
          ̅

  

  
       (2.81) 

Thermodynamical forces 

For each internal variable    of the set  , we define the conjugate 

thermodynamical force: 

    ̅
  

   
    (2.82) 

With this definition and the identities (see Equation 2.80), the Clausius-Duhem 

inequality can be rewritten as: 

    ̇  
 

 
         (2.83) 

In what follows, we will adopt for convenience the notation: 
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  {  }    (2.84) 

for the set of thermodynamical forces. 

 
Dissipation. Evolution of the internal variables 

In order to completely characterize a constitutive model, complementary 

laws associated with the dissipative mechanisms are required. Namely, 

constitutive equations for the flux variables 
 

 
  and  ̇ must be postulated. In the 

general case, we assume that the flux variables are given functions of the state 

variables. The following constitutive equations are then postulated: 

 ̇   (       )    

 

 
   (       )    

(2.85) 

The Clausius-Duhem inequality, now expressed by Equation (2.83), must 

hold for any process. This requirement places restrictions on the possible forms of 

the general constitutive functions   and   in (Equation 2.85) (see Coleman & 

Gurtin, 1967; Truesdell, 1969). It is also important to mention that when internal 

variables of vectorial or tensorial nature are present, it is frequently convenient to 

re-formulate (Equation 2.85) in terms of so-called objective rates rather than the 

standard material time derivative of  . Objective rates are insensitive to rigid body 

motions and may be essential in the definition of frame invariant evolution laws 

for variables representing physical states associated with material directions.  

 
Dissipation potential. Normal dissipativity 

 An effective way of ensuring that (Equation 2.83) is satisfied consists in 

postulating the existence of a scalar-valued dissipation potential of the form: 

   (         )    (2.86) 

where the state variables   ,   and    appear as parameters. The potential   is 

assumed convex with respect to each    and  , non-negative and zero valued at 

the origin, {   }    {   }. In addition, the hypothesis of normal dissipativity is 

introduced, which mean that flux variables are assumed to be determined by the 

laws: 
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 ̇   
  

   
    

 

 
   

  

  
    (2.87) 

A constitutive model defined by Equations (2.75), (2.80) and (2.87) satisfies 

“a priori” the dissipation inequality. It should be noted, however, that the 

constitutive description by means of convex potentials as described above is not a 

consequence of thermodynamics but, rather, a tool for formulating constitutive 

equations without violating thermodynamics. Examples of constitutive models 

supported by experimental evidence which do not admit representation by means 

of dissipation potentials are discussed by Onat & Leckie (1988). 

 
2.4.2 Phenomenological and micromechanical approaches 

The success of a constitutive model intended to describe the behavior of a 

particular material depends crucially on the choice of an appropriate set of 

internal variables. Since no plausible model will be general enough to describe the 

response of a material under all processes, we should have in mind that the choice 

of internal variables must be guided not only by the specific material in question 

but also by the material process. In general, due to the difficulty involved in the 

identification of the underlying dissipative mechanisms, the choice of the 

appropriate set of internal variables is somewhat subtle and tends to be biased by 

the preferences and background of the investigator. 

In simple terms, we can say that constitutive modeling by means of internal 

variables relies either on a micromechanical or on a phenomenological approach. 

The micromechanical approach involves the determination of mechanisms and 

related variables at the atomic, molecular or crystalline levels. In general, these 

variables are discrete quantities and their continuum (macroscopic) counterparts 

can be defined by means of homogenization techniques. The phenomenological 

approach, on the other hand, is based on the study of the response of the 

representative volume element, which is the element of matter large enough to be 

regarded as a homogeneous continuum. The internal variables in this case will be 

directly associated with the dissipative behavior observed at the macroscopic level 

in terms of continuum quantities (such as strain, stress, temperature, etc.). Despite 

the macroscopic nature of theories derived on the basis of the phenomenological 

methodology, it should be expected that “good” phenomenological internal 
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variables will be somehow related to the underlying microscopic dissipation 

mechanisms (de Souza Neto et al., 2008). 

 
2.4.3 The purely mechanical theory 

Thermal effects are ignored in the constitutive theories addressed in this 

thesis. It is, therefore, convenient at this point to summarize the general internal 

variable-based constitutive equations in the purely mechanical case. By removing 

the thermally-related terms of the above theory, we end up with the following set 

of mechanical constitutive equations: 

   (   )    

   ̅
  

  
    

 ̇   (   )    

(2.88) 

 

2.4.4 The constitutive initial value problem 

Our basic constitutive problem is defined as follows: “Given the history of the 

deformation gradient (and the history of temperature and temperature gradient, if 

thermal effects are considered), find the free-energy and stress (plus entropy and 

heat flux, in the thermo mechanical case) according to the constitutive law”. If the 

internal variable approach is adopted in the formulation of the constitutive 

equations, the generic constitutive problem reduces to the following fundamental 

mechanical initial value problem. 

 
Problem 2.4.1 (The mechanical constitutive initial value problem) 

Given the initial values of the internal variables  (  ) and the history of the 

deformation gradient 

 ( )       [    ]    (2.89) 

find the functions  ( ) and  ( ), for the first Piola-Kirchhoff stress and the set of 

internal variables, such that the constitutive equations: 

 ( )   ̅
  

  
|
 
 

 ̇( )   ( ( )  ( ))  , 

(2.90) 
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are satisfied for    [    ]. 

 

2.5 WEAK EQUILIBRIUM. THE PRINCIPLE OF VIRTUAL WORK 

The strong (point-wise, local or differential) forms of the momentum balance 

have been stated in Section 2.3 by expressions (2.64) and (2.65). In this section, we 

state the momentum balance equations in their corresponding weak (global or 

integral) forms. The weak equilibrium statement – the Principle of Virtual Work – 

is fundamental to the definition of the basic initial boundary value problem and, is 

the starting point of finite element procedures. 

Again, let us consider the body   which occupies the region      with 

boundary    in its reference configuration, subjected to body forces in its interior 

and surface tractions on its boundary. In its deformed configuration,   occupies 

the region  ( ) with boundary  (  ) defined through the deformation map  . 

 

2.5.1 The spatial version 

The spatial version of the principle of virtual work states that the body   is in 

equilibrium if and only if its Cauchy stress field,  , satisfies the equation: 

∫ [      (    ̈)  ]  
 ( )

 ∫       
 (  )

                 (2.91) 

where   and   are the body force per unit deformed volume and boundary traction 

per unit deformed area and   is the space of virtual displacements of   , or in 

other words the space of sufficiently regular arbitrary displacements. 

   ( )        (2.92) 

 
2.5.2 The material version 

The virtual work equation can be equivalently expressed in the reference 

configuration of  . The corresponding material (or reference) version of the 

Principle of Virtual Work states that   is in equilibrium if and only if its first Piola-

Kirchhoff stress field,  , satisfies: 
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∫ [      ( ̅   ̅ ̈)  ]  
 

 ∫  ̅     
  

                 (2.93) 

where  ̅       is the reference body force and  ̅ is the boundary traction per unit 

reference area. The space of virtual displacements,  , is accordingly defined as the 

space of sufficiently regular arbitrary displacement fields:  

          (2.94) 

The material version of the virtual work equation is obtained by introducing, in its 

spatial counterpart, the identities: 

  
 

 
              

      (2.95) 

where the second expression holds for a generic vector field  , and making use of 

the standard relation (Gurtin, 1981): 

∫  ( )  
 ( )

 ∫  ( ) ( ( ))
 

       (2.96) 

valid for any scalar field  . 
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CHAPTER 3 
 

An Implicit Numerical Integration Algorithm for an 
Elasto-plastic Model with Three Invariants 

 

This chapter describes a simple and robust algorithm for numerical integration of 

a new model for metal plasticity and fracture. The constitutive model was 

proposed by Bai & Wierzbicki (2007) and critically includes both the pressure 

effect, through the stress triaxiality, and the effect of the third invariant of the 

deviatoric stress tensor, through the Lode angle, in the constitutive description of 

the material. These effects are directly introduced on the hardening rule of the 

material, which is typically only a function of the equivalent plastic strain. This 

approach is in contrast with the classical theory of metal plasticity, the so-called J2 

theory, which assumes that both hydrostatic pressure and third invariant of the 

deviatoric stress tensor have a negligible effect on the material strain hardening 

and the flow stress. The model proposed by Bai and Wierzbicki was selected from 

the models available in literature for a detailed study and an implicit solution for 

numerical integration of Bai & Wierzbicki’s model is developed and implemented 

in an implicit quasi-static finite element environment. The algorithm is based on 

the operator split methodology, which to determine the stress update procedure, 

employs a fully implicit elastic predictor and plastic corrector (return mapping) 

step with general non-linear (piece-wise linear) isotropic hardening and the 

computation of the consistent tangent matrix (Simo et al., 1985 and 1987). Then, to 

illustrate the accuracy and stability of the integration algorithm in practical 

situations (Ortiz & Popov, 1985), iso-error maps are built for specific cases. At the 

end, the robustness of the numerical integration algorithm is demonstrated by a 

large group of numerical simulations where the numerical results are compared 

with experimental results for classical specimens as: a cylindrical smooth bar and a 

cylindrical notched bar modelled as two dimensional problems together with a flat 

grooved plate specimen simulated in three-dimensions. 
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3.1    INTRODUCTION 

The theory based on the second invariant of the deviatoric stress tensor,   , 

more widely known through von Mises’s model is one of the most used 

formulations to describe the behavior of metals, during the elasto-plastic regime. 

The von Mises’s model assumes that the effect of hydrostatic stress is negligible on 

the evolution of the plastic flow for ductile materials. The hydrostatic stress is a 

parameter responsible for controlling the size of the yield surface (Bardet, 1990; 

Bai, 2008). Furthermore, in the von Mises’s formulation, the effect of the third 

invariant of the deviatoric stress tensor, normally denoted by   , is also ignored. 

The third invariant is a parameter used in the definition of the Lode angle or 

Azimuth angle, which is responsible for the shape of the yield surface (Bardet, 

1990; Bai, 2008). Over the last five years, the importance of both hydrostatic stress 

and Lode angle, in the description of the behavior of ductile materials, has been 

clearly recognized and detail studies were conducted by several authors (Bai et al., 

2007; Bai, 2008; Driemeier et al., 2010; Mirone et al., 2010; Gao et al., 2011). Many 

researchers have done extensive experimental studies as Richmond & Spitzing 

(1980 and 1984), who were the first researchers to study the effects of pressure on 

yielding of aluminum alloys. Latter, Bardet (1990), proposed a methodology to 

describe the Lode angle dependence for some constitutive models, and  Wilson 

(2002), which conducted studies on notched 2024-T351 aluminum bars in tensile 

test and verified the importance of these effects. Brunig et al. (1999) proposed a 

constitutive model with three invariants that could be applied in metal plasticity 

and fracture. According to Mirone et al. (2010), the phenomenon of ductile failure 

is influenced by the relation with the variables from the stress–strain 

characterization and the failure prediction is better described by plastic strain, 

stress triaxiality and Lode angle parameters. An experimental program to study 

the influence of the stress tensor invariants in ductile failure was presented by 

Driemeier et al. (2010). This methodology can be seen as an efficient tool to 

investigate the effects of the stress intensity, stress triaxiality and Lode angle. 

Recently, Gao et al. (2011) have proposed an elasto-plastic model, which is a 

function of the hydrostatic stress as well as the second and third invariants of the 

stress deviator. These authors have carried out tests in specimens with a high level 

of stress triaxiality showing the dependence of the plastic flow rule on both stress 
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triaxiality and Lode angle. By examining these contributions, it is posible to 

conclude that ductile fracture is a local phenomenon and the stress and strain 

states over the expected fracture onset must be determined with accuracy. The 

fracture initiation is often preceded by large plastic deformation and there are 

considerable stress and strain gradients around the point of fracture. In this case, 

the    theory is not accurate enough to capture the physical effects and more 

refined plasticity models have to be developed to be used in a large range of 

loading conditions. 

3.2    PRELIMINARIES 

Several factors have been systematically analyzed in the study of ductile 

fracture, nevertheless, there are three factors which have gained increased 

interest: the hydrostatic stress (  , stress triaxiality ( ), and the Lode angle     

expressed by Equations (3.1-3.3) respectively (Brunig et al., 2008; Bai & 

Wierzbicki, 2008; Zadpoor et al., 2009; Tvergaard, 2008; Nahshon et al., 2008). 

       
 

 
          (3.1) 

   
 

 
    (3.2) 

       {
 

√ 
[ (

     

     
)   ]}    (3.3) 

where    √  ⁄      is the von Mises equivalent stress,        is the 

deviatoric stress tensor and   ,    and    are the components of the deviatoric 

stress tensor in the principal plane. The Lode angle can also be written as a 

function of the so-called normalized third invariant of the deviatoric stress tensor 

as: 

  
 

 
             (3.4) 

where   represents the normalized third invariant, that can be mathematically 

determined by a ratio between the third invariant and the von Mises equivalent 

stress: 
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  (
 

 
)
 

    (3.5) 

The term    represents the third invariant, alternatively, defined by Bai et al. 

(2007) and can be determined as: 

  [
  

 
   ]

 
 ⁄

 [
  

 
       ]

 
 ⁄

    (3.6) 

where    is the third invariant of the deviatoric stress tensor,  . The Lode angle can 

also be normalized ( ̅  and this parameter is known as the normalized Lode angle 

parameter (Bai & Wierzbicki, 2008). 

    
  

 
    (3.7) 

The range of  ̅ is     ̅   . 

 

3.2.1 Lode Angle Parameter 

The definition of the Lode angle,  , can be better understood by analyzing the 

representation of the stress vector,   ⃑⃑ ⃑⃑  ⃑, on the space of principal stresses 

illustrated in Figure 3.1(a). 

 

(a) (b) 

Figure 3.1. (a) Schematic representation of the stress vector   ⃑⃑ ⃑⃑  ⃑ on the principal 

stresses space and (b) definition of the Lode angle on the π-plane. Adapted from 

Bai (2008). 
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The stress vector can be decomposed into a deviatoric  𝐴⃑⃑⃑⃑  ⃑ and a hydrostatic 

   ⃑⃑ ⃑⃑ ⃑⃑  ⃑part. The ratio between the hydrostatic and deviatoric part is, by definition, the 

stress triaxiality which is associated with the angle 𝜙, which is obtained between 

the stress vector   ⃑⃑ ⃑⃑  ⃑ and the π-plane. This angle, named elevator angle, is 

responsible for the size of the yield surface. The Lode angle is defined on the π-

plane or deviatoric plane, see Figure 3.1b, and is the smallest angle between the 

line of pure shear and the projection of the stress tensor on the deviatoric plane. 

Bardet (1990) conducted several studies on the influence of the Lode angle on the 

shape of the yield surface and concluded, for exemple, that the Drucker-Prager 

model is Lode angle independent and Tresca and Mohr-Coulomb models are Lode 

angle dependent (Figure 3.1b). 

In the context of ductile fracture, some researchers have suggested the 

introduction of the effect of the Lode angle either into the standard von Mises 

elasto-plastic constitutive model or into some damage evolution laws. In 

particular, Bao et al. (2004), Brünig et al. (2000) and Bai & Wierzbicki (2008) have 

proposed new elasto-plastic models that include the three invariants of the stress 

tensor on the definition of the material yield surface. On the other hand, in order to 

improve the evolution of the porosity obtained by Gurson’s theory for low level of 

stress triaxiality, Nahshon & Hutchinson (2008), Barsoum & Faleskog (2007) and 

Xue (2008) have proposed the introduction of new shear mechanisms on the 

damage evolution law of Gurson’s model, which are Lode angle dependent. 

3.2.2 Fracture Surface 

Experimental evidence of ductile fracture under high, low or even negative 

stress triaxiality has been presented by several authors (McClintock, 1971; 

Johnson and Cook, 1985). Nevertheless, recently Bao (2003) and Bao & Wierzbicki 

(2004) have conducted several tests in specimens with different geometries to 

determine the fracture location under a range of triaxiality. Figure 4.3 shows the 

behavior of two ductile materials on the three dimensional fracture locus for a 

range of stress triaxiality between [-1, 1]. The surfaces were originally proposed by 

Bai (2008) for an aluminum alloy and for steel. 
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(a) (b) 

Figure 3.2. Behavior of ductile materials in the three dimensional fracture loci: (a) 

material with a strong dependence of both hydrostatic pressure and Lode angle, 

the 2024-T351 aluminum alloy and (b) material with a weak dependence, the 

1045 steel. Data adapted from Bai (2008). 

The results have shown that the fracture strain does not have to be a 

monotonically decreasing function of the stress triaxiality (Bao et al., 2004) for 

materials which are strongly dependent on both pressure and Lode angle (Figure 

3.2a). In particular, Bai (2008) has studied the behavior of an aluminum alloy and 

proposed a three dimensional fracture locus where the fracture strain depends on 

both stress triaxiality and Lode angle. For a high level of stress triaxiality, where 

the spherical void growth mechanism plays a major role in the damage process, the 

equivalent plastic strain decreases with the increase of the stress triaxiality. 

However, within the range of zero and low level of stress triaxiality, where the 

elongation of voids is the predominant mechanism, the equivalent plastic strain 

increases with the increase of the stress triaxiality. This specific behavior is 

completely different for materials weakly dependent on pressure and Lode angle 

where the equivalent plastic strain decreases with the increase of the stress 

triaxiality (Figure 3.2b). The stress states which are promoted by specimens, 

employed in metal plasticity, can also be individually represented in the plane of 

stress triaxiality versus Lode angle. A representation of the initial stress state on 

the plane of stress triaxiality versus Lode angle is shown in Figure 3.3 where the 

influence of the Lode angle can be appreciated.  
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Figure 3.3. Representation on the space of stress triaxiality versus Lode angle. 

Adapted from Bai (2008). 

Area “A” represents the region where we have the most significant 

contribution of shear effects on the material internal degradation, and in this case, 

both the stress triaxiality and the Lode angle are around zero. This behavior is 

observed under pure shear loading conditions, where the elongation of void drives 

the degradation of the material properties. In area “ ” there is still a strong 

influence of shear effects, and this behavior is commonly observed in combined 

compression-shear and tensile-shear loading conditions, where both spherical and 

elongated void growths are present. Finally, in area “C” shear effects are 

neglectable and the predominant mechanism is the spherical void growth in the 

damage evolution. 

 

3.3     CONSTITUTIVE MODEL 

Bai & Wierzbicki (2007) have proposed an elasto-plastic model that includes 

the effect of pressure, through the stress triaxiality, and the effect of the third 

invariant, through the Lode angle. The effects are introduced on the well 

established von Mises model by redefining the hardening rule of the material. It is 

important to remark that in the classic von Mises model, the hardening rule is only 
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a function of the accumulated plastic strain     ̅
   and, in the Bai & Wierzbicki’s 

model, the hardening rule becomes a function of  the accumulated plastic strain, 

the stress triaxiality and the Lode angle through the parameter 𝜇   ,      ̅
    𝜇 . 

Thus, the new definition of the hardening rule can be obtained as: 

    ̅
    𝜇      ̅

  [          ] [  
     

     
  (𝜇  

𝜇   

   
)]    (3.8) 

where     ̅
   is the material strain hardening function,      

    
  , and   are 

experimental parameters,    is the reference value of the stress triaxiality, and 

𝜇    is a parameter defined as a function of the Lode angle: 

𝜇    
      ⁄  

        ⁄  
[

 

        ⁄  
  ]        [        ⁄    ]    (3.9) 

The effect of the stress triaxiality and the Lode angle are included on the 

hardening rule through the functions [          ] and [  
     

     
  (𝜇  

    

   
)], respectively. The new yield criterion replaces the standard hardening rule, 

    ̅
  , by     ̅

    𝜇  on the    theory, such that the new yield surface can be 

expressed by: 

        ̅
    𝜇     (3.10) 

Substituting Equation (3.8) into Equation (3.10), we can obtain the yield 

function for Bai & Wierzbicki’s model: 

        ̅
  [          ] [  

     
     

  (𝜇  
𝜇   

   
)]    (3.11) 

From Equation (3.11), it is possible to express the pressure effect and Lode 

angle dependence by functions 𝐴    and   𝜇 , respectively. The functions can be 

defined by Equations (3.12) and (3.13), as: 

𝐴    [          ]    (3.12) 

  𝜇  [  
     

     
  (𝜇  

𝜇   

   
)]    (3.13) 

Thus, Equation (3.11) can be re-written as: 
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        ̅
  𝐴     𝜇     (3.14) 

The influence of the material parameters (     
    

       ) on the behavior 

of the constitutive model can be analyzed as follows. The parameter    is a 

material constant and needs to be experimentally calibrated. This parameter 

describes the hydrostatic stress effect on material plasticity. If     , the model 

loses the dependence of the stress triaxiality or the hydrostatic stress effect and 

recovers, as a limiting case, the behavior of the von Mises’s model. 

The triaxiality reference,   , depends on the type of test performed and the 

geometry of the specimen. For a cylindrical smooth bar, subjected to a tensile test, 

    takes the value equal to   ⁄ . Regarding the same specimen, now under a 

compressive test,    takes the value equal to    ⁄ . Finally, for a torsion and a 

shear test     . It is important to remark that the hydrostatic stress effect, 

introduced by Bai & Wierzbicki, is a linear function. Nervertheless, some 

researchers (Karr et al., 1989), have claimed that this effect is non-linear for some 

materials, such as ice. Analyzing the third invariant effect, the experimental 

parameter   
   can assume one of two forms, according to the type of loading 

(tension/compression) applied or the value of the Lode angle: 

  
   {

  
                                      ̅   

  
                                      ̅   

    (3.15) 

The parameters   
 ,   

  and   
  also depend on the type of test. For example, if 

a smooth bar is used in a tensile test   
   , if a torsion test is performed   

   , if 

a cylindrical specimen is used in a compressive test   
   . The convexity of the 

yield surface is controlled by the ratio of these parameters. The range of the 

parameter 𝜇 is between    𝜇   . When 𝜇    it corresponds to plane strain or 

shear condition, when 𝜇    it corresponds to an axisymmetric problem. The 

introduction of the term  𝜇      ⁄   is done to ensure the smoothness of the 

yield surface and its differentiability with respect to Lode angle around 𝜇   . 

More details about the calibration of the material parameters can be found in Bai 

(2008). In Box 3.1, a summary of the Bai & Wierzbicki´s model is presented. Details 

of how to determine the plastic flow rule and the evolution equation for the 

equivalent plastic strain can be found in appendix “A”. 



40 
 

Box 3.1.  ai & Wierzbicki’s model with isotropic hardening. 
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(i) Elasto-plastic split of the strain tensor 

(ii) Elastic law 

(iii) Yield function 

with 𝐴 and   given by: 

𝐴  [          ] ;   [  
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and,     𝜇  
      ⁄  

        ⁄  
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(iv) Plastic flow rule and evolution equation for  ̇
 
 

where: 

and  ,   and  :  

(v) Loading/unloading criterion 
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3.4 NUMERICAL STRATEGY FOR THE INTEGRATION ALGORITHM 

In this section, the constitutive equations of Bai and Wierzbicki's model, 

presented in section 3.3, will be treated and implemented within a finite element 

framework. The main contribution of this chapter is the development of an implicit 

numerical integration algorithm. The use of a path dependent constitutive model, 

as is the case of the model described in this chapter, invariably leads to the need 

for formulation of algorithms for numerical integration of the evolution equations. 

The problem consists in formulating numerical integration procedures for 

updating the known state variables, generically denoted by   , at a certain time    

to obtain the state variables      at time     , where the incremental strain    is 

assumed given. Therefore, the discretization of the constitutive equations within a 

generic pseudo-time interval [  ,     ] was performed for the Bai and Wierzbicki's 

model, which is summarized in Box 3.2, based on the backward Euler scheme 

(Simo & Hughes, 1998). Since the model was implemented in an implicit quasi-

static finite element framework, it was also necessary to derive the tangent matrix 

which is consistent with the integration algorithm.  

The stress update procedure is based on the so-called operator split concept 

(see Simo & Hughes, 1998; De Souza Neto, 2008), which is especially suitable for 

the numerical integration of the evolution problem and has been widely used in 

computational plasticity (see Simo & Hughes, 1998; De Souza Neto et al., 2008). 

This method, which was used in this development, consists in splitting the problem 

in two parts: an elastic predictor, where the problem is assumed to be elastic and, a 

plastic corrector, in which the system of residual equations comprising the 

elasticity law, plastic consistency and the rate equations is solved, taking the 

results of the elastic predictor stage as initial conditions. In the case of violation of 

the yield condition, the plastic corrector stage has to be initiated and the Newton- 

Raphson procedure is used to solve the discretised set of equations. The Newton-

Raphson procedure was chosen motivated by the quadratic rates of convergence 

achieved, which results in return mapping procedures computationally efficient 

(see Simo & Hughes, 1998; De Souza Neto, 2008).  The steps required to determine 

the state update procedure for the present model are described in the following. 
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3.4.1 State update procedure 

Let us consider what happens in a typical Gauss point of a finite element 

mesh, within pseudo-time interval [  ,     ]. Given the incremental strain, the total 

strain at time      can be determined as: 

              (3.16) 

where      represents the total strain at time     ,    is the total strain at time    

and    represents the incremental strain. Knowing also the values of the internal 

variables   
  and   ̅

  at time   , the numerical integration algorithm should obtain 

the updated values at the end of the interval for     ,     
  and   ̅  

 , in a manner 

consistent with the constitutive equations of the model. 

 
The elastic trial state 
 

Assuming the incremental strain,   , as purely elastic, we have no evolution 

of the internal variables, which for this model is only the plastic strain tensor. In 

this case, the first step of the algorithm is evaluate the so-called elastic trial state. 

Hence, the elastic trial strain and the trial accumulated plastic strain at time       

are given by: 

    
          

           and           ̅  
          ̅

     (3.17) 

The corresponding trial stress tensor is computed through a double 

contraction between the elasticity matrix and the elastic trial strain tensor. 

    
             

           (3.18) 

where    is the standard isotropic elasticity tensor. Equivalently, in terms of 

deviatoric stress tensor and hydrostatic stress, Equation (3.18) can be split as: 

    
              

             and           
             

          (3.19) 

where       
        is the deviatoric elastic trial strain tensor,       

                 
        ,  

and       
        is the volumetric elastic trial strain,       

                   
        .  The 

parameters   and   represent, respectively, the bulk and shear modulu. 

The trial yield stress is defined, in this case, as a function of the accumulated 

plastic strain at time   , which includes isotropic hardening. 
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        (  ̅

 
)         ̅

 
    (3.20) 

where   represents the isotropic hardening modulu. The next step of the 

algorithm is to check whether     
      lies inside or outside of the trial yield surface. 

With the variable   ̅
  frozen at time   , we compute: 
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)[    (    

        )] [  
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𝜇   
        

   
)]  (3.21) 

If        is less than or equal to zero, the process is elastic within the interval 

and the trial state coincides with the updated state at time     . In this case, there 

is no plastic flow evolution within the interval and the trial state,       
       is equal 

to the real state,       . 

             
         (3.22) 

Otherwise, if  trial   , it is necessary to apply the plastic corrector or return 

mapping algorithm whose step-by-step derivation is described in the following. 

The plastic corrector step or return mapping algorithm 
 

The plastic corretor step starts from the trial state. Firstly, the incremental 

strain is split in an elastic and plastic contributions. Hence, the increment of the 

plastic strain needs to be subtracted from the elastic trial strain at time      

(Equation 3.17). Thus, the elastic strain can be computed as: 

    
      

                
                   

    
      

          [
 

     
         

 

     
          

 

 
     ]    

(3.23) 

where     represents the flow vector. The equivalent plastic strain at time       is 

also given by: 

  ̅  
    ̅

     ̅    ̅
    √        (3.24) 

where the terms      ,     ,      and     are defined as: 
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The parameter      is calculated through the following expression: 

              
     

     𝜇   
  

      ⁄  

        ⁄  

           ⁄  
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     (3.29) 

Equations (3.23) and (3.24) must be complemented by the so-called 

consistency condition that guarantees that the stress state at the end of the plastic 

step lies on the updated yield surface: 

         (  ̅  
 )𝐴              𝜇        (3.30) 

The previous set of discrete evolution equations needs to be solved for the 

unknowns variables     
 ,   ̅  

  and   . Obtained the solution of the above system 

of non-linear equations, the plastic strain tensor can be updated according to 

following equation: 

    
    

    [
 

     
         

 

     
          

 

 
     ]    (3.31) 

In the classical von Mises model, the system of equations to be solved for the 

plastic corrector state can be reduced by means of simple algebraic substitutions 

to a single non-linear equation having the incremental plastic multiplier,   , as 

variable (De Souza Neto et al., 2008). Nevertheless, in Bai & Wierzbicki´s model, we 

cannot reduce the system of equations to a single non-linear equation for   . 

Therefore, a system of couple equations needs to be solved at each integration 

(Gauss) point. In order to obtain this system of equations, let us start by re-writing 

Equation (3.23) as a function of the stress tensor, by multiplying the elastic 
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constants (Equation 3.18). After this manipulation, the following system of 

equation can be formulated for the unknowns     ,   ̅  
  and   . 

{
 
 

 
 
          

                                                                                                                    

  ̅  
 

   ̅
 
        

  
 

 
    

    
         

         
          

         

         

         (  ̅  
 

)𝐴              𝜇                                                         

  (3.32) 

More details about how to obtain the flow vector          the plastic flow 

rule for the incremetal plastic strain      
  and the accumulated plastic strain   ̅  

 , 

can be found in Appendix “A”. 

 

System of equations return mapping: The system of equations represented above 

is fully coupled and highly non-linear. Hence, we will describe in the following the 

procedure required to solve a non-linear system, which will lead to a 

computationally more efficient return mapping algorithm. The previous set of 

discrete evolution equations needs to be solved for the unknowns     ,   ̅  
  and 

  . The Newton-Raphson method (N-R) is one of most efficient methods that can 

be used for the solution of the return mapping system of equations (Equation 

3.32). Regarding the application of the N-R method, we firstly have to define the 

residual equations, based on the system above (Equation 3.32): 

[

  (       ̅  
    )

  ̅ (       ̅  
    )

   (       ̅  
    )

]  [

         
               

  ̅  
    ̅

    √   

       (  ̅  
 )𝐴              𝜇    

]    (3.33) 

where   ,   ̅  and     represent the residual equations for     ,   ̅  
  and   , 

respectively. The term    represents a second order tensor, and both   ̅  and     

represent scalar equations. 

According to the Newton-Raphson method, to obtain a new guess for each 

variable of the problem, we have to perform the linearization of the above residual 

equations. After some algebraic manipulations, we can obtain the system of 

equations in the linearized form, according to Equation (3.34): 
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     (3.34) 

where the terms          ⁄ ,       ̅   
 ⁄  and        ⁄  represent the derivatives of 

each residual equation in relation to the stress tensor, equivalent plastic strain and 

plastic multiplier, respectively. By performing the derivatives and substituting 

them into Equation (3.34), we have: 
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  (3.35) 

where   represents the fourth order identity tensor. 

In the above linearized system of equations, the first part on the left hand 

side of Equation (3.35) represents the derivative of each residual equation 

(Equation 3.33) with regard to each variable of the problem (     ,   ̅  
  and     at 

iteration  . Then, on the second term of the left hand side part, we have the 

incremental values of each variable of the problem at iteration,    , and the third 

part on the right hand side of Equation (3.35) represents the value of each residual 

equation at iteration  . Once the solution of the problema is obtained, we have the 

new guess for each variable (     ,   ̅  
  and    , and the other state variables 

need to be updated, as     
  and     

 . The overall algorithm for numerical 

integration is summarized in Box 3.2 and Box 3.3 in pseudo-code format. More 

details on how to obtain the derivative of each residual equation, can be found in 

Appendix “B”. 
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Box 3.2. Fully implicit Elastic predictor/Return mapping algorithm. 
 

i) Evaluate the elastic trial state: Given the incremental strain     and the state 
variables at time   : 

    
          

     ;  ̅   
       

  ̅ 
 

 

    
              

        ;     
             

        

ii) Check plastic admissibility: 

IF       
        (  ̅  

       
)𝐴   

         
         THEN  

      set              
       (elastic step) 

      GO TO (v) – “Exit” 

ELSE 

      GO TO (iii) – “Continue”  

 

iii) Return mapping (plastic step): 

Solve the system of equations below for     ,   ̅  
  and   , using the Newton-Raphson 

method: 
 

{

         
               

  ̅  
    ̅

    √   

       (  ̅  
 )𝐴              𝜇    

}  {
 
 
 
} 

 

 

         
  

 

 
    

    
         

         
          

         

         
 

GOTO Box 3.3 (Newton Raphson procedure) 
 
 

iv) Update the other state variables: 

 

       
  

 

  
     ;        

  
 

 
     ;     

    
         

 

v) Exit 
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Box 3.3. The Newton-Raphson algorithm for solution of the return mapping system 
of equations. 

 

1) Initialize iteration counter,     , set initial guess for     
   

   
   

, 

       ,    ̅  
    

   ̅
  and corresponding residual: 

[

  (       ̅  
    )

  ̅ (       ̅  
    )

   (       ̅  
    )

]  [

         
               

  ̅  
    ̅

    √   

       (  ̅  
 )𝐴              𝜇    

] 

 

 
2) Perform Newton-Raphson iteration 
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  [
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]

   

   [

  (       ̅  
    )

  ̅ (       ̅  
    )

   (       ̅  
    )

]

 

 

 

New guess for     ,   ̅  
  and   : 

         
         

      

  ̅  
 

   ̅  
    

    ̅  
      

 

                  

 Update other state variables: 

    
  [  ]            ;          

 

 
              ;                      

 

3) Check for convergence 
 

 ̃         (  ̅  
 

)[             ] [  
     

     
  ( 𝜇    

 𝜇   
   

   
)] 

    IF | ̃|       THEN 

 
       Return to Box 3.2. 
 

4) GOTO  step (2) 
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3.4.2 Accuracy and stability 

In order to ascertain the accuracy and stability of the integration algorithm in 

practical situations, we can determine the so-called iso-error maps. This method of 

analysis was introduced by Krieg & Krieg (1977) and discussed by Ortiz & Popov 

(1985), Simo & Taylor (1985), De Souza Neto et al. (2008), among others. To 

generate a typical iso-error map, le tus consider an arbitrary stress state at a point 

on the yield surface of Bai and Wierzibicki elasto-plastic model (see Figure 3.4).  

 

Figure 3.4. Iso-error map. Trial stress incremental directions. 

 
From this point, a sequence of strain increments is applied corresponding to 

specified normalized elastic trial stress increments of the form: 

        
   

 
   

   

 
      (3.36) 

where   and   are , respectively, the unit normal and tangent vectors to the yield 

surface and   is the von Mises equivalent stress. For each increment of the trial 

stress, we obtain a “numerical solution”,     , with the above described algorithm 

in one step. In addition, a solution assumed to be “exact”,       , is obtained with 

the same algorithm by dividing the corresponding strain (and time) increment into 

1000 sub-increments of equal size. For each point, where a “numerical” and “exact” 

solution are obtained, the error associated with each increment is defined as: 

      
√                           

√               
          (3.37) 
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The material properties adopted for the present analysis, are listed in Table 

3.1. These parameters were taken from Bai (2008) for an aluminium alloy. 

Table 3.1. Basic material properties for aluminum 2024-T351. Taken from Bai 
(2008). 

 

                        Parameter                                       Symbol          Value 

Young’s modulus   [   ]       

Poisson´s ratio        

Yield stress     [   ]     

Stress strain curve     ̅
  [   ]              ̅         

Hydrostatic stress influence         

Triaxiality ratio reference         

Lode dependence - shear   
        

Lode dependence - tensile   
      

Lode dependence - compression   
      

Lode dependence - exponent       

 

 

By varying the prescribed increment sizes     and    , respectively, 

associated with the tangential and normal directions to the yield surface, an error 

field is obtained. In Figure 3.5, we present the iso-error maps for Bai & 

Wierzbicki's model without pressure and Lode dependence, with only pressure 

effect dependence and with both effects. It is possible to conclude that the range of 

the integration error is almost the same for all cases and it attains a maximum 

value of 21%. Nevertheless, some differences can be noticed on the shape of the 

iso-error map when pressure (Figure 3.5b) or both pressure and Lode angle 

dependence (Figure 3.5c) are activated in the algorithm. When we change the 

experimental parameters for Bai & Wierzbicki model, the convergence of the 

return mapping algorithm is not significantly affected. 
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Figure 3.5.  Iso-error maps for Bai & Wierzbicki state update algorithm. (a) without 

pressure effect and Lode dependence. (b) with only pressure dependence. (c) with 

dependence of both pressure and Lode angle. 

 
Figure 3.6 presents iso-error maps for Bai & Wierzbicki's state update 

algorithm with only pressure effect introduced. In this case, the analysis of the 

behavior of the integration error for different triaxiality reference values,    , is 

undertaken. The integration maps for the triaxiality reference value equal to 0.0, 

0.3, 0.9 and 1.3, were obtained. When this experimental parameter changes for Bai 

& Wierzbicki´s model, the convergence of the return mapping algorithm is not 

affected. 

 

Figure 3.6.  Iso-error maps for Bai & Wierzbicki model with triaxiality reference 

equal to (a) 0.0, (b) 0.3, (c) 0.9 and (d) 1.3, respectively. 

(d) (c) 

(b) (a) 

(a) (b) (c) 
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3.4.3 Consistent tangent operator 

In this section, we describe the procedure to obtain a symbolic expression for 

the elasto-plastic tangent operator, consistent with the implicit return mapping 

algorithm for Bai & Wierzbicki's model, which was presented in Box 3.2. The 

tangent operator consistent with the above integration scheme is required for the 

assembly of the tangent stiffness matrix of the elements into the global stiffness. 

In the elasto-plastic case, i.e, when it is assumed that plastic flow accurs 

within the step, the tangent operator is called the elasto-plastic consistent tangent 

and is denoted by  ̂  . The consistent tangent operator is simply a derivative of the 

implicit function  ̂ for the updated stress defined by the return mapping procedure 

as a function of the elastic trial strain tensor: 

 ̂   
  ̂

     
       

    (3.38) 

Its follows the standard procedure for differentiation of implicit functions. 

Since the return mapping algorithm cannot be reduced to one-equation, in the 

present case, it is not possible to obtain a closed form expression for  ̂  . To obtain 

the tangent operator, the first step (in its derivation) is to obtain the linearized 

form for the corresponding return mapping system of equations for the general 

implicit algorithm. The residual system of equations can be represented by: 

{

         
               

  ̅  
    ̅

    √   

       (  ̅  
 )𝐴              𝜇    

}  {
 
 
 
}   (3.39) 

After some algebraic manipulations, the linearized return mapping system of 

equations can be expressed in the following form: 

[
 
 
 
 
 
 

   

     

   

   ̅  
 

   

   

   ̅ 

     

   ̅ 

   ̅  
 

   ̅ 

   

    

     

    

   ̅  
 

    

   ]
 
 
 
 
 
 

  [

     

   ̅  
 

   

]   [
     

       

 
 

]    (3.40) 

Finally, by inverting the above linear relation, we can obtain: 
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]    (3.41) 

The above linear relation can be rewritten in a compressed form, as: 

[

     

   ̅  
 

   

]  [
         

         

         

]  [
     

       

 
 

]    (3.42) 

where     represents a fourth order tensor;    ,    ,     and     represent 

second order tensors and     ,     ,     and     are scalars. 

From the above representation, it is possible to obtain the tangent operator 

that is consistent with the implicit return mapping algorithm, proposed in Box 3.2. 

The elasto-plastic consistent tangent operator can be expressed by: 

               
        (3.43) 

 
or, 
 

    
     

     
       

       (3.44) 

 

3.4.4 Convergence of the equilibrium problem 

In order to show that the quadratic convergence is also attained for large 

excursions outside the elastic domain, in this section we tested the convergence of 

the global Newton-Raphson algorithm, represented by the solution of the 

equilibrium problem. We present here, the so-called relative residual of the 

solution for some typical load increments, which has both effects disabled, the 

pressure effect active and both pressure effect and Lode angle dependence active. 

The global Newton-Raphson iterations are repeated until, in some iteration 

(m), the following convergence criterion is satisfied (see Equation 3.45): 
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|    |

|    

   
|
              (3.45) 

where      is the residual or out-of-balance force vector and     

   
 represents the 

external force vector, which can be calculated as: 

            
   

    and        
     ∑   

      
       

     
   

|
 
    (3.46) 

where      is the load factor,   
  represents the strain matrix that is generally 

composed by the derivatives of the shape functions and     
   

 represents the 

incremental constitutive function for the stress tensor. 

The problem was solved using 25 pseudo-load steps and a tolerance of 

         was imposed. The convergence rates obtained, for all cases, were 

quadratic, see Table 3.2 that represets the global convengence for a smooth bar 

specimen under tensile loading. 

Table 3.2. Relative residual for the global problem. 

Increment 

without effects 
introduced 

with only pressure 
effect 

with both pressure 
effect and lode angle 

dependence 

Iter. 
relative 
residual 

Iter. 
relative 
residual 

Iter. 
relative 
residual 

5/25 

1 1.14708 1 1.20068 1 1.30510 

2 0.216182E-02 2 0.296808E-02 2 0.124367E-01 

3 0.233401E-07 3 0.600232E-07 3 0.690970E-05 

4 ---- 4 ---- 4 0.684965E-08 

15/25 

1 1.19274 1 1.20787 1 1.21652 

2 0.102427E-02 2 0.371704E-02 2 0.154117E-01 

3 0.724211E-08 3 0.779755E-07 3 0.569143E-04 

4 ---- 4 ---- 4 0.567116E-07 

25/25 

1 3.24953 1 3.32520 1 0.201128 

2 0.670759 2 0.743644 2 0.659221E-02 

3 0.567872E-01 3 0.564556E-01 3 0.121698E-06 

4 0.105264E-02 4 0.734190E-06 4 ---- 

 
5 0.684967E-08 5 ---- 5 ---- 
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3.5 NUMERICAL SIMULATION 

In this section, several numerical examples are presented to illustrate the 

robustness of the proposed implicit algorithm with two types of materials: 

aluminum alloy 2024-T351 and 1045 steel. Tensile tests on cylindrical smooth 

bars with necking and on notched bars specimens are initially used and for 

complementary analysis, flat grooved specimens are also employed. The materials 

properties for the aluminum alloy are listed in Table 3.1, and for the 1045 steel can 

be observed in Table 3.3. 

Table 3.3. Material properties for 1045 steel. Taken from Bai (2008) 
 

          Parameter                                        Symbol Value 

Young’s modulus   [   ]         

Poisson´s ratio        

Yield stress     [   ]     

Stress strain curve     ̅
  [   ]                    ̅    

Hydrostatic stress influence         

Triaxiality ratio reference          

Lode dependence - shear   
      

Lode dependence - tensile   
      

Lode dependence - compression   
      

Lode dependence - exponent       

  

3.5.1 Geometry and mesh definition 

In the following, the geometries of each specimen, which will be used in the 

numerical simulations, are presented as well as the mesh definition. Regarding the 

aluminum alloy, both cylindrical bars have a gauge equal to        , and for the 

1045 steel, the gauge used was equal to        . The notched bars have a notch 

radius of          and           for the aluminum alloy and steel, 

respectively. For the flat grooved, grooves of           and           were 

used for the aluminum alloy and steel, respectively. In both cases, the gauge used 
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was equal to         . Figure 3.7 shows the dimensions for both cylindrical 

smooth and notched bars and for the flat grooved plate specimens. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 3.7. Geometry of the cylindrical smooth and notched bars, and for the flat 

grooved plate specimens (dimensions in mm), see Bai (2008). 
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In order to capture the necking pattern and the evolution of internal 

variables, a relatively fine discretisation is used in the region surrounding the 

smaller cross-section of the specimens (see Figure 3.8). The standard eight-noded 

axisymmetric quadrilateral element, with four Gauss integration points, is adopted 

for both cylindrical bars. The initial mesh discretization of the specimens for the 

two types of materials is illustrated in Figure 3.8, where only one symmetric 

quarter of the problem, with the appropriate symmetric boundary conditions 

imposed to the relevant edges, is modeled.  

  

  
(a) (b) 

Figure 3.8. Finite element meshes for the cylindrical smooth and notched bar 

specimens. (a) aluminum alloy and (b) 1045 steel. 

A total number of 1800 elements have been used in the discretization of both 

smooth and notched bars, amounting to a total of 5581 nodes.  
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The stretching of flat grooved plates is also undertaken. The initial geometry 

of the specimen is shown in Figure 3.7(d). Due to symmetry, only half of the 

geometry is modeled, with appropriate boundary conditions imposed to the 

symmetry planes. A three dimensional hexahedra mesh of eight noded elements 

(F-Bar), with four Gauss integration points, is used to discretise half of the 

specimen. A total number of 4500 elements have been used amounting to a total of 

5712 nodes for the specimen with a groove equal to           (see Figure 

3.9a), and 2700 elements amounting to a 3472 nodes for the specimen with 

Groove equal to           (see Figure 3.9b). 

(a) 

 

(b) 

 

Figure 3.9. Three dimensional finite element meshes for the flat grooved plate 

specimen. (a)           for aluminum alloy and (b)           for steel. 

3.5.2 Numerical results 

Numerical simulations were carried out for three types of specimens with 

two different materials. The results obtained with the Bai & Wierzbicki's model 

have been grouped into three different cases: “case 1 (c1)”, which represents the 

Bai & Wierzbicki model without the pressure effect and Lode angle dependence, 

“case 2 (c2)”, which represents the model with only pressure effect and “case 3 

(c3)”, which represents the model with both pressure effect and Lode angle 

dependence (see Figures 3.10 and 3.11). 
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 Figure 3.10 presents the numerical results obtained from the numerical 

simulations for the force (reaction) versus displacement curve, together with the 

experimental ones, for the specimens selected. In Figure 3.10(a), we have the 

numerical results for an aluminum alloy and Figure 3.10(b), for a 1045 steel.  
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 (a) (b) 

Figure 3.10. Reaction versus displacement curves for (a) aluminum alloy and (b) 

1045 steel, regarding three different specimens. 
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From the analysis of Figure 3.10, it is possible to conclude that the agreement 

between numerical results with experimental ones improves when the effect of 

pressure and Lode angle are included in the model. The enhancement is 

particularly noticeable for the aluminum alloy. Table 3.4 represents the difference 

between numerical and experimental results for reaction versus displacement 

curves, in all the cases that have been studied. For the aluminum alloy and the 

notched bar specimen, the numerical results with both pressure and Lode angle 

dependence are more realistic than without both effects. In this case, the difference 

between the reaction versus displacement curve, without both effects, and the 

experimental curve is around 6%. When both effects are active for the same 

specimen, the difference reduces to less than 1%, which highlighs the importance 

of pressure and Lode angle in the behavior of some ductile materials. For the flat 

grooved plate specimen, the correction on the reaction versus displacement curve, 

when both effects are active, is more visible and, in this case, the difference 

between the model without effects and the experimental curve is around 20%. 

This value is reduced to less than 2%, when both pressure effect and Lode angle 

dependence are active. Nevertheless, for the 1045 steel, the numerical results 

agree well with experimental data with or without the inclusion of the dependence 

of pressure and Lode angle. Hence, we can conclude that the aluminum alloy is a 

material strongly dependent on both pressure and Lode angle and the 1045 steel is 

weakly dependent on both effects.  

Table 3.4. Difference between numerical and experimental results for the 

reaction versus displacement curve, regarding two types of materials. 

 

Specimen Case 1 Case 2 Case 3 

A
lu

m
i

n
u

m
 a

ll
o

y
 

Smooth bar 1% 1% 1% 

Notched bar          6% 4% 1% 

Flat grooved           20% 16% 1% 

1
0

4
5

 
st

ee
l 

Smooth bar 1% 1% 1% 

Notched bar           1% 1% 1% 

Flat grooved           2% 2% 2% 

The contribution of both effects to the plastic flow rule can also be observed 

through the evolution of the equivalent plastic strain on the central node of the 
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specimens (see Figure 3.11). From the analysis of the results for the aluminum 

alloy (Figure 3.11a), it is possible to conclude that only on the smooth bar and the 

flat grooved plate the differences on the evolution of the equivalent plastic strain 

can be noticed. In particular, for the flat grooved plate specimen, the evolution of 

this internal variable has presented different evolutions (see Figure 3.11a).  
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 (a) (b) 

Figure 3.11. Evolution of the equivalent plastic strain for (a) aluminum alloy and 

(b) 1045 steel, regarding three different specimens. 
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Nevertheless, regarding the behavior of 1045 steel, the evolution of the 

equivalent plastic strain was the same, for all specimens, whether pressure effect 

and Lode angle dependence are active or not. For this type of material, the 

contribution of both effects to the plastic flow rule is negligible, and the von Mises’ 

model can adequately represent the material behavior, which is not true, for the 

behavior of an aluminum alloy.  

The contour of the equivalent plastic strain can also be analyzed, in order to 

study the influence of both effects on the ability to predict the location to crack 

initiation. Some authors, such as Freudenthal (1950), Gillemont (1976) and Datsko 

(1966) have suggested the use of the plastic strain as a fracture indicator, throught 

the total plastic work or the equivalent plastic strain criterions. Nevertheless, 

several researchers (Wilson, 2002; Gouveia, 1995) have also shown that this 

parameter alone is not enough to characterize fracture initiation, and in some 

cases, can indicate potential sites to fracture initiation in disagreement with 

experimental evidence. According to Wilson (2002), for both smooth and notched 

bars specimens, the crack begins on the center and grows to the surface of the 

specimens. Analyzing Figure 3.12 and 3.13 and considering the equivalent plastic 

strain as a fracture indicator, both numerical results for the smooth bars 

specimens agree with experimental evidence (see Figure 3.12a and 3.13a). For the 

notched bars specimens, this internal variable has a maximum on the surface, for 

the aluminum alloy (see Figure 3.12b), and by this reason cannot be employed as a 

criterion for the prediction of fracture onset. Nevertheless, regarding the 1045 

steel, the numerical predition agrees with the experimental observation (see 

Figure 3.13b). In addition, we can also observe, that for both cylindrical specimens, 

the activation of pressure effect and Lode angle dependence does not influence the 

location of the maximum value of the equivalent plastic strain. However, according 

to experimental tests conducted by Bai (2008) for the flat grooved plate specimen, 

the crack starts on center of the specimen and propagates towards the surface. 

This behavior is only captured when both effects are active, for the aluminum alloy 

(see Figure 3.12c), and is captured by all cases for the 1045 steel (see Figure 

3.13c). 
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Figure 3.12. Contour of the equivalent plastic strain: (a) a smooth bar specimen, (b) 

a notched bar specimen with         , and (c) a flat grooved plate specimen 

with          , for the aluminum alloy. 
 



64 
 

 (a) (b) (c) 
C

as
e 

1
 

  

 

    

C
as

e 
2

 

  

 

    

C
as

e 
3

 

  

 

Figure 3.13. Contour of the equivalent plastic strain: (a) a smooth bar specimen, (b) 

a notched bar specimen with          , and (c) a flat grooved plate specimen 

with          , for the steel 1045. 
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3.6    CONCLUSIONS 

In this chapter, an implicit numerical integration algorithm for Bai & 

Wierzbicki´s model was developed based on the operator split method. As 

expected, a quadratic rate of convergence is achieved by using the Newton 

Raphson method at both local and global problems and from the analysis of the 

iso-error maps, it is possible to conclude that the integration error is lower than 

    for all cases studied (see Figure 3.5 and 3.6). In addition, cylindrical smooth 

and notched (       and          ) bars specimens and flat grooved 

(          and          ) plate specimens were used to illustrate the 

robustness of the proposed algorithm, for two types of materials (aluminum alloy 

and steel). According to numerical and experimental results, we can conclude that 

both pressure effect and Lode angle dependence cannot be neglected and have to 

be taken into account in the plastic flow rule of the aluminum alloy. From the 

analysis of the reaction versus displacement curves of the aluminum alloy (Figure 

3.10a) and steel (Figure 3.10b), we can suggest the following classification of 

materials: strongly dependent on both pressure and Lode angle, such as the 

aluminum alloy that achieved the best agreement for case 3 (see Table 3.4), and 

weakly dependent on both effects, such as the 1045 steel that without the 

introduction of any effect had a good agreement with experimental results. 

 Regarding the evolution of the equivalent plastic strain, Figure 3.11a has 

shown different rates of evolution for this internal variable, depending on the 

activation of both effects, which can also be used to demonstate the importance of 

both parameters in the behavior of ductile materials. At the end, analyzing the 

contour of the equivalent plastic strain, we can observe that the introduction of 

additional effects does not change the maximum location of the contour plot for 

the tests conducted. Nevertheless, for the flat grooved plate of aluminum alloy (see 

Figure 3.12c), the introduction of both effects brought a correction in the fracture 

onset location. 
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CHAPTER 4 
 

An Assessment of Isotropic Constitutive Models for 
Ductile Fracture under High and Low Stress 

Triaxiality 

 

In this chapter, a numerical assessment of three isotropic constitutive models is 

performed in order to identify their applicability and reliability in the prediction of 

ductile failure under a wide range of stress triaxiality. The well established 

isotropic coupled damage models proposed by Gurson-Tvergaard-Needleman 

(GTN), which is based on micromechanical grounds and here extended with a 

shear mechanism, and by Lemaitre, which is based on continuum damage 

mechanics, are selected and investigated. Besides these, an uncoupled damage 

elasto-plastic model proposed by Bai and Wierzibicki and presented in Chapter 3, 

which includes the effect of three invariants of the stress tensor, is also selected 

and examined. All constitutive formulations are implemented in a quasi-static 

finite element scheme and applied to simulate the behavior of the 2024-T351 

aluminum alloy, which is strongly dependent on both pressure and Lode angle. To 

assess the predictive ability of the constitutive models under different levels of 

stress triaxiality, specimens with different geometries and dimensions are used, 

such as: smooth and notched cylindrical bars, a plate hole specimen and a butterfly 

specimen. The evaluation of the models is initially carried out under pure tensile 

loading conditions and then under shear dominated deformation modes. In 

addition, a combination of both tensile and shear loading is also studied. Finally, 

the results obtained from the numerical simulations are analyzed and critically 

compared with experimental results available in the literature. The performance of 

each constitutive approach under each range of stress triaxiality is highlighted and 

the main observations are discussed. 
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4.1 INTRODUCTION AND MOTIVATION 

The prediction of ductile failure in metals still represents an important 

challenge for the simulation of rupture in structural components and for the design 

of both sheet and bulk metal forming processes. According to Kachanov (1986), 

large deformations in metals, which can induce the phenomenon of initiation and 

growth of cavities and micro cracks, has been studied in detail leading to the 

concept of ductile fracture. Pioneering work undertaken on the subject was carried 

out by McClintock (1968) and Rice and Tracey (1969), where the effect of the 

geometry of defects in a continuous matrix was taken into account in the study of 

ductile damage. Experimental evidence has shown that the nucleation and growth 

of voids and micro cracks, which accompany large plastic flow, causes a reduction 

of the elastic modulus, induces a softening effect in the material and can be 

strongly influenced by the level of stress triaxiality (McClintock, 1968; Rice & 

Tracey, 1969; Hancock & Mackenzie, 1976). The equivalent plastic strain at 

fracture and the level of stress triaxiality were initially employed to characterize 

material ductility in engineering applications (Bridgman, 1952; McClintock, 1968; 

Rice & Tracey, 1969; Johnson & Cook, 1985). A simple exponential expression for 

the evolution of the equivalent strain with stress triaxiality was established by 

McClintock (1968) and Rice and Tracey (1969) based on the analysis of void 

growth under hydrostatic loads, which is usually referred to as the two 

dimensional fracture loci. The work performed by Mirza et al. (1996) on pure iron, 

mild steel and aluminum alloy BS1474 over a wide range of strain rates confirmed 

the strong dependence of the equivalent strain to crack formation with the level of 

stress triaxiality. 

The ductile fracture phenomenon can be described, based on 

micromechanical analysis by the growth of micro cavities, especially for the 

fracture computation within local approaches to fracture (Pineau, 1981; Mudry, 

1985; Rousselier, 1987; Besson et al., 2001). Alternatively, it can be rooted in the 

Continuum Damage Mechanics theory within a thermodynamic  framework, either 

phenomenological or micromechanically based, such as the model proposed by 

Lemaitre (1985) for damage caused by plastic flow, Chaboche (1984) and 

Murakami and Ohno (1981) for creep damage, Krajčinović & Fonseka (1981) for 
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brittle damage, among many others. The current two principal methodologies for 

ductile damage modeling can be summarized by Lemaitre and Gurson theories 

(Chaboche et al., 2006). These well established theories have been extended and 

modified by many researchers in order to circumvent some limitations and also to 

improve the ability of predicting both the loss of stiffness of the material and the 

correct fracture location. This has mainly been accomplished through the 

introduction of additional effects either on the constitutive formulation or the 

damage evolution law, such as: the pressure effect, temperature, viscoplastic 

effects, crack closure effects, among others (e.g. Rousselier, 1980 and 2001; 

Tvergaard & Needleman, 1984; Lemaitre and Chaboche, 1990; Voyiadjis and 

Kattan, 1999; Chaboche, 2003; Andrade Pires et al., 2004; Chaboche et al., 2006). 

For a recent review on constitutive models, which were developed to simulate 

ductile failure, see Besson (2010) and references therein.  

A different strategy has also been pursued by some researchers which 

combines elasto-plastic constitutive formulations with the so-called fracture 

indicators to predict the ductile behavior of materials. The use of fracture 

indicators to predict the collapse in problems subjected to plastic deformation 

emerged when a criterion based on the total plastic work was proposed by 

Freudenthal (1950). Since then, many others indicators were proposed such as 

Datsko´s criterion (1966) based on the equivalent plastic strain, the criterion of 

Rice and Tracey (1969) based on the geometry of defects, the criterion proposed 

by Cockcroft and Lathan (1968) based on the mechanism of void growth driven by 

the principal stress, among others. The development of experimental techniques 

and plasticity models helped the study of these strategies in plastic forming 

operations, as presented by Clift et al. (1990), Cescotto and Zhu (1995) and 

Gouveia et al. (1996). These uncoupled approaches have been adopted due to its 

simple formulation and ease of calibration. The development of fracture criteria 

was pursued later within the continuum damage mechanics framework (Lemaitre, 

1985; Tai and Yang, 1986, 1987; Vaz Jr., 1998). 

Recently, several researchers (Kim et al., 2003; Kim et al., 2004; Bao and 

Wierzbicki, 2004; Gao et al., 2005; Gao et al., 2006, Kim et al., 2007; Barsoum and 

Faleskog, 2007a; Barsoum and Faleskog, 2007b; Bai and Wierzbicki, 2008; Brünig 
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et al., 2008; Gao et al., 2009) have shown that the Lode angle, which is associated 

to the third invariant of the deviatoric stress tensor, is an essential parameter in 

the characterization of the effect of the stress state on material yielding and on 

ductile fracture. In particular, Bai and Wierzbicki (2008) have suggested a three 

dimensional fracture loci on the space of equivalent strain, stress triaxiality and 

Lode angle. This fracture surface is clearly different for materials weakly or 

strongly dependent on both pressure and Lode angle and can be calibrated by 

means of conventional and butterfly specimens. Mirone et al. (2010) have 

proposed a local viewpoint for evaluating the influence of the stress triaxiality and 

Lode angle on ductile failure, analyzing three theories, namely the Tresca criteria 

and two models proposed by Wierzbicki. According to Mirone et al. (2010), the 

phenomenon of ductile failure is influenced by the relation with the variables from 

the stress–strain characterization and failure predictions are better described by 

plastic strain, stress triaxiality and Lode angle parameters. An experimental 

program to study the influence of the stress tensor invariants in ductile failure was 

presented by Driemeier et al. (2010). This methodology can be seen as an efficient 

tool to investigate the effects of the stress intensity, stress triaxiality and Lode 

angle. Gao et al. (2011) have proposed a new elasto-plastic model, which is a 

function of the hydrostatic stress as well as the second and third invariants of the 

stress deviator, and carried out tests in specimens with a high level of stress 

triaxiality showing the dependence of the plastic flow rule of both stress triaxiality 

and Lode angle. 

The study of the previous references allows us to conclude that the 

appropriate modeling of the physical mechanisms that precede ductile fracture is 

by no means trivial. This is particularly true when volumetric and shear effects are 

combined through complex strain paths. Figure 4.1 schematically illustrates the 

micromechanical behavior of a ductile material under shear and tensile loading 

conditions. 
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 (a) 

 
      (b) 

Figure 4.1. Schematic representation of: (a) elongated and (b) spherical void 

growth. Adapted from Pineau & Pardoen (2003) and Engelen (2005). 

Under shear dominated loads, see Figure 4.1a, the material nucleates micro 

voids (stage 1 in Figure 4.1a) that elongate when the load increases (stage 2 in 

Figure 4.1a). Then, coalescence of elongated voids occurs (stage 3 in Figure 4.1a) 

due to instabilities in the shear bands. Under tensile dominant loads, see Figure 

4.1b, the micro voids nucleate and expand (stages 1 and 2 in Figure 4.1b) due to 

high tensile hydrostatic stresses and, at the end, coalescence occurs due to the 

impingement of neighboring voids (stage 3 in Figure 4.1b). 

Although significant research efforts have been devoted to the understanding 

of the phenomenon of ductile fracture and to the formulation of constitutive 

models, the improper application of the models to various deformations processes 

may result in misleading ductile fracture predictions. This is critical in many 

practical applications where the prediction of the material ductile failure behavior 

is vital for the design and optimization of structures and components. In addition, 

there are not many systematic evaluations of the predictive ability of constitutive 

models, under the same circumstances, and it is still difficult to know which model 

to use. These facts have restricted their widespread application to practical 

problems (Zadpoor et al., 2009). A recent contribution to this discussion was 

presented by Li et al. (2011) that conducted a thorough assessment of the 

performance of a posteriori fracture indicators and two coupled damage models: 

the Gurson-Tvergaard-Needleman (GTN) model and Lemaitre´s model. The 

authors concluded that there is no approach that works well on the entire range of 

stress triaxiality. Nevertheless, new models have been formulated that have the 

1

2

3
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3
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potential to address some of the identified shortcomings. Therefore, the main 

objective of this contribution is to perform a comparison between recently 

improved coupled isotropic ductile damage models, based on Lemaitre and 

Gurson´s frameworks (Gurson, 1977; Lemaitre, 1985), and a newly developed 

uncoupled damage elasto-plastic model, formulated by Bai and Wierzbicki (2008) 

that includes both the effect of pressure and the Lode angle dependence on the 

material behavior. A critical analysis of the results of the models is made in order 

to verify their ability to predict the location of fracture, under both high and low 

levels of stress triaxiality, for the 2024-T351 aluminum alloy that strongly depends 

on both pressure and Lode angle.  

The layout of this chapter is as follows. The set of equations that govern the 

behavior of the Gurson-Tvergaard-Needleman (GTN) model, Lemaitre´s model and 

Bai and Wierzbicki´s model will be firstly reviewed and summarized. In addition, 

an improved version of the GTN model, proposed by Xue (2007), and a fracture 

indicator, introduced by Bao and Wierzbicki (2004), which can be employed in 

conjunction with the Bai and Wierzbicki´s model, will also be described. The 

numerical strategy adopted in this work to solve the evolution problem, for each 

constitutive model, will be then presented. It is based on the well established 

operator split methodology (Simo & Hughes, 1998). A comprehensive set of 

numerical examples is later presented for specimens subjected to high and low 

levels of stress triaxiality. The evolution of representative variables close to 

fracture is critically analyzed. In particular, the evolution of the equivalent plastic 

strain, damage and reaction force together with the contour plots of the internal 

variables at the critical zones. Finally, some conclusions will be drawn based on 

comparisons of numerical and experimental results. 

 

4.2 CONSTITUTIVE MODELS FOR DUCTILE FRACTURE 

The governing equations of the constitutive models under analysis are briefly 

reviewed in this section together with the basic concepts and hypothesis 

underlying each of them. Firstly, the Gurson-Tvergaard-Needleman (GTN) model, 

which includes nucleation, growth and coalescence of microvoids (Gurson, 1977; 

Tvergaard & Needleman, 1984) is presented, then Lemaitre’s model with both 
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isotropic hardening and isotropic damage (Lemaitre, 1985) and, finally Bai & 

Wierzbicki model (Bai et al., 2008) that includes both the pressure effect and the 

Lode angle dependence. In addition, a shear mechanism proposed by Xue (2008) is 

described and incorporated in the GTN model to enhance the behavior under shear 

dominated loads, as well as Bao’s fracture indicator (Bao, 2003), which is used in 

conjunction with Bai & Wierzbicki model to allow the prediction of damage with 

this model.  

4.2.1 The Gurson-Tvergaard-Needleman Model 

Inspired by the work of Gurson (1977), Tvergaard and Needleman (1984) 

have proposed a model for the description of damage and fracture in ductile 

materials. The original Gurson model introduces a strong coupling between plastic 

strain and damage (Chaboche et al., 2006) and the presence of micro voids in the 

formulation leads to a yield surface that depends on both the hydrostatic pressure 

and porosity. The material degradation is measured through a parameter called 

the void volume fraction, which is represented by the variable  . This parameter is 

defined by the ratio between the volume of micro voids,       , and the 

representative volume element,      . 

  
      
    

    (4.1) 

The Gurson-Tvergaard-Needleman (GTN) model, which is one of the most 

well known extensions of Gurson’s model, assumes both isotropic hardening and 

damage. Nevertheless, the damage variable in this model is represented by an 

effective porosity   . The flow potential is generalized into the form: 

 

 (      )    ( )  
 

 
{     

       
     (

    

   
)}   

     (4.2) 

where,    represents the second invariant of the deviatoric stress tensor,    is the 

isotropic hardening law and   represents the isotropic hardening internal variable. 

The parameters   ,    and    are introduced into the yield surface definition in 

order to bring the model predictions into closer agreement with full numerical 

analyses of a periodic array of voids and   represents the hydrostatic pressure. 
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The evolution of spherical voids can be reproduced by three simultaneous or 

successive steps: nucleation, growth and coalescence of voids (Tvergaard & 

Needleman, 1984). The effective porosity is determined by the following bilinear 

function: 

   {

                            

   (
 

  
   )

(    )

(     )
     

 (4.3) 

where the parameter   represents the porosity, the constant    is the porosity to 

trigger coalescence and the parameter    represents the porosity at fracture. The 

evolution of the porosity is given by the sum of both the nucleation and growth 

mechanisms, as: 

 ̇   ̇   ̇     (4.4) 

The nucleation mechanism is driven by the plastic strain and can be 

represented as:  

 ̇  
  

  √  
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(
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]  ̇
 
    (4.5) 

where    represents the volume fraction of all second-phase particles (see Figure 

4.1b) with potential for micro void nucleation,    and    are the mean strain for 

void nucleation and its standard deviation. The variable  
 

 represents the 

equivalent plastic strain and  ̇
 

 is the rate of the equivalent plastic strain.  

The most significant contribution to the evolution of spherical voids is the 

growth mechanism, which is obtained from the condition of plastic 

incompressibility of the matrix material, and can be expressed by: 

 ̇  (   )   ( ̇ )  (   )  ̇
     (4.6) 

where  ̇  represents the rate of the plastic strain tensor and   ̇
  is the rate of the 

volumetric plastic strain. In this work, the GTN’s model implementation includes 

both nucleation and growth of micro voids. The coalescence effect was not 

addressed since our main objective is the prediction of fracture onset. 
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4.2.1.1 Shear Mechanism 

One important limitation associated with Gurson based models is that shear 

effects are not considered in the formulation, which excludes the possibility of 

predicting shear localization and fracture under conditions of low stress triaxiality. 

Under shear dominated loading conditions, the distortion of voids and inter-void 

linking play a critical role in the evolution of the material internal degradation. 

Therefore, in order to improve the GTN´s model predictive ability, under both zero 

and low levels of stress triaxialities, Xue (2008) has proposed the introduction of a 

shear mechanism. The mechanism is based on geometrical considerations of a unit 

cell structure, containing a circular void at the center, which is subjected to a 

simple shear strain (Xue, 2008). The evolution of shear damage, according to Xue 

(2008), depends on the porosity, the equivalent strain and the Lode angle. After 

some straightforward algebraic manipulations, the rate of this mechanism can be 

mathematically expressed by (Xue, 2008): 

 ̇         
         ̇     (4.7) 

where    and    are parameters related to two or three dimensional problems. For 

two dimensional problems         and        and for three dimensional 

problems         and       . The variable   represents the porosity,     is the 

equivalent strain and    is a parameter that introduces the Lode angle dependence 

in the shear mechanism. If the Lode angle function    is different from zero, the 

mechanism is triggered and shear effects are taken into account. However, if    is 

null, there is no effect of the shear mechanism, on the damage evolution, and only 

the nucleation and growth mechanisms are active. The Lode angle function,   , can 

be defined by: 

     
 | |

 
    (4.8) 

where   is the Lode angle that is determined according to Equation (3.4). The 

shear mechanism proposed by Xue (2008) can be included in the GTN’s model, 

which already features the mechanisms of nucleation and growth of micro voids. 

Thus, the evolution of the porosity originally expressed by Equation (4.4), for this 

model, is re-defined as: 
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 ̇   ̇   ̇   ̇         (4.9) 

The evolution of damage in the material inevitably reduces the overall elastic 

properties. However, this effect is small when compared to the influence of damage 

on the plastic behavior. Therefore, the evolution of damage due to shear effects, 

employed in this work, will neglect the influence of damage on elasticity as is 

usually done in this type of model. The shear damage evolution law is redefined as 

a function of both the accumulated plastic strain and the rate of the accumulated 

plastic strain instead of the total strain and total strain rate (see Equation 4.7): 

 ̇         
     

 
 ̅̇     (4.10) 

The Lode angle function can also be rewritten as a function of the normalized 

third invariant, such as:  

     | |    (4.11) 

where   represents the normalized Lode angle that is a function of the normalized 

third invariant, such as: 

    
  

 
   

 

 
           (4.12) 

where   represents the normalized third invariant that is calculated by: 
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 ⁄
    

(4.13) 

where,   
  represents the deviatoric elastic strain tensor. Box 4.1 summarizes the 

GTN constitutive model that includes the shear mechanism on the damage 

evolution law. It is important to remark that the set of constitutive equations listed 

in Box 4.1, has got as a particular case, the previously described GTN model (when 

    ). The original Gurson´s model can also be recovered as a limiting case, by 

appropriately setting the constants        and   . 
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Box 4.1. GT ’s model including nucleation, growth of micro voids and a shear 
mechanism. 
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(i) Elasto-plastic split of the strain tensor 

(ii) Elastic law 

(iii) Yield function 

(iv) Plastic flow and evolution equations for   and   

and, 
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(v) Loading/unloading criterion 
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4.2.2 Lemaitre’s Damage Model 

The constitutive equations for ductile damage, described in this section, have 

been proposed by Lemaitre (1985). Based on the concept of effective stress and 

the hypothesis of strain equivalence, Lemaitre’s model includes the evolution of 

internal damage, as well as non-linear isotropic and kinematic hardening in the 

description of the behavior of ductile materials. The constitutive formulation starts 

from the definition of the Helmholtz specific free energy that can be taken as the 

state potential of the material and is a function of all state variables. The free 

energy can be expressed as a function of the set {      } of state variables: 

   (      )    (4.14) 

where,   represents the specific free energy,    is the elastic strain tensor,   is the 

isotropic hardening internal variable and   represents the isotropic damage 

internal variable. 

Under the hypothesis of decoupling between elasticity-damage and plastic 

hardening, the specific free energy is assumed to be given by the sum: 

     (    )    ( )    (4.15) 

where     represents the elastic-damage contribution and    is the plastic 

contribution to the free energy. The elastic-damage contribution for the free 

energy can be postulated by the following expression (Lemaitre, 1985): 

 ̅   (    )  
 

 
   (   )         (4.16) 

where    represents the isotropic elasticity tensor. The plastic potential can be 

represented by the isotropic hardening contribution as (if we disregard kinematic 

hardening): 

 ̅  ( )   ̅  ( )    (4.17) 

The elasticity law is obtained by performing the derivative of the elastic-

damage potential (Equation 4.16) in order to the elastic strain tensor, as: 

   ̅
    

   
 (   )         (4.18) 
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The thermodynamical forces conjugated with damage and isotropic 

hardening internal variable are obtained, respectively, by performing the 

derivative of the elastic-damage contribution,  ̅   (    ) (Equation 4.16) with 

regard to the damage variable,  , and by taking the derivative of the plastic 

potential,  ̅  ( ) (Equation 4.17) with regard to the isotropic hardening variable, 

 , respectively (Lemaitre et al., 2005): 
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    (4.19) 

    ̅
   

  
  ( )    (4.20) 

where   represents the thermodynamic force associated with damage,   is the von 

Mises equivalent stress,   is the hydrostatic pressure,   is the shear elasticity 

modulus,   is the elastic compressibility modulus and   represents the 

thermodynamic force associated with the isotropic hardening variable. 

The evolution of the internal variable can be obtained by assuming the 

existence of the flow potential,  , given by: 
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    (4.21) 

where the parameters   and   are damage evolution constants and   represents 

the yield function, which is, defined as: 
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      ( )    (4.22) 

where     is the initial uniaxial yield stress. According to the hypothesis of 

generalized normality, the plastic flow is given by: 
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where  ̇ is the plastic multiplier,   represents the flow vector and   is the 

deviatoric stress tensor. The evolution law for damage and for the isotropic 
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hardening internal variable can be established by performing, firstly, the derivative 

of the flow potential (Equation 4.21) with regard to the thermodynamic force 

associated with damage, Y, and, secondly, with regard to the isotropic hardening 

variable, r, respectively:  

 ̇   ̇
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    (4.25) 
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  ̇    (4.26) 

The complementary law of rate-independent plasticity also needs to be 

fulfilled: 

 ̇             ̇      (4.27) 

The constitutive equations of Lemaitre’s model with isotropic hardening and 

isotropic damage, employed in this work, are conveniently summarized in Box 4.2. 

Box 4.2. Lemaitre’s model with isotropic hardening and isotropic damage.  
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(ii) Coupled elastic-damage law 

(iii) Yield function 
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4.2.3 Bai & Wierzbicki Model 

The elasto-plastic model proposed by Bai & Wierzbicki (2008), which was 

presented in detail in Chapter 3, will de employed in the numerical assessment 

described in this chapter. More detail about Bai & Wierzbicki (2008) model, see 

Box 3.1 in the previous chapter. 

Due to the fact that Bai & Wierzbicki’s model (Bai et al., 2008) does not 

include a damage variable in the constitutive formulation, we will use in our 

comparisons with the previously described damage models a fracture indicator 

that was proposed by Bao (2003). This fracture indicator is a post-processed 

variable, which was developed after conducting a thorough experimental 

investigation on the behavior of ductile crack formation, expressed by: 

  ∫
 

 

  

 

             (4.28) 

where   represents the equivalent strain,    is the equivalent strain to fracture and 

    is the so-called stress triaxiality average. The Lode angle average,    , is also a 

parameter widely used to represent the three dimensional fracture locus and both 

parameters can be expressed by: 
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      (4.29) 

More details about this fracture indicator can be obtained in References (Bai, 2008; 

Bai & Wierzbicki, 2008).  

 

4.3 NUMERICAL SOLUTION STRATEGY 

In this section, the numerical solution strategy adopted in this work to 

perform the numerical simulations is summarized. The use of path dependent 

constitutive models, as is the case of the models described in this chapter, 

invariably leads to the need for formulation of algorithms for numerical 

integration of the evolution equations. The problem consists in formulating 
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numerical integration procedures for updating the known state variables, 

generically denoted by   , at a certain time    to obtain the state variables      at 

time     , where the incremental strain    is assumed given. Therefore, the 

discretization of the constitutive equations within a generic pseudo-time interval 

[  ,     ] was performed for all models, which are summarized in Boxes 4.1, 4.2 

and 3.1 (see Chapter 3), based on the backward Euler scheme (Simo & Hughes, 

1998). Since the models were implemented in a quasi-static finite element 

framework, it was also necessary to derive the tangent matrix which is consistent 

with the integration algorithm.  

Stress update procedures, which are based on the so-called operator split 

concept (see Simo & Hughes, 1998; De Souza Neto et al., 2008), are specially 

suitable for the numerical integration of the evolution problem and have been 

widely used in computational plasticity (see Simo & Hughes, 1998; De Souza Neto 

et al., 2008). This method, which was used in our developments, consists in 

splitting the problem in two parts: an elastic predictor, where the problem is 

assumed to be elastic and, a plastic corrector, in which the system of residual 

equations comprising the elasticity law, plastic consistency and the rate equations 

is solved, taking the results of the elastic predictor stage as initial conditions. In the 

case of violation of the yield condition, the plastic corrector stage has to be 

initiated and the Newton- Raphson procedure is used to solve the discretised set of 

equations. The Newton-Raphson procedure was chosen motivated by the 

quadratic rates of convergence achieved, which results in return mapping 

procedures computationally efficient (see Simo & Hughes, 1998; De Souza Neto et 

al., 2008).  In Figure 4.2, a schematic representation of the procedure, which 

departs from the initial value problem to the elastic predictor/plastic corrector 

integration algorithm, is illustrated. 
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Figure 4.2. Schematic diagram of the procedure from the initial value problem to 

the elastic predictor/plastic corrector integration algorithm (adapted from De 

Souza Neto et al., 2008). 

In a typical return mapping algorithm, the following steps are required: given 

the values of the elastic strain,   
  , and internal variables set,   , at the beginning of 

the pseudo-time interval [  ,     ], and given the prescribed incremental strain,    

for this interval, the elastic trial state needs to be computed: 
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where,     

      and     
      are respectively the elastic trial stress and elastic trial 

internal force. The constant   is the reference mass density and   represents the 

free energy function of the constitutive model under consideration.  

The next step is to check whether the trial state lies inside or outside the 

yield surface: 

IF   (    
          

     )    THEN, 

( )    ( )   
       and EXIT 

(4.31) 

If the above condition is satisfied, the final state is equal to the trial state. 

Nevertheless, if the elastic trial state is out of the elastic domain or on the yield 

surface, the plastic corrector procedure is required to update the state variables at 

Elasto-plastic 

initial value 

problem

Incremental elasto-plastic 

constituive problem

Elastic Predictor Plastic Corrector 
(return mapping algorithm)

Euler pseudo-time 

discretisation

solution procedure
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time     . In the following, the non linear system of equations that was employed 

for each model, on the return mapping stage, is briefly described. The Newton 

Raphson procedure is used in all models to solve a linearized system of equations. 

(a) Return mapping of Gurson-Tvergaard-Needleman damage model 

For the Gurson-Tvergaard-Needleman constitutive model summarized in the 

Box 4.1, the implicit numerical integration algorithm was derived by the authors. 

The non linear system of equations can be reduced to a system of only four non 

linear scalar equations. The Newton-Raphson procedure has to be solved for the 

set of unknowns {  ,     ,     ,     }. The fully implicit elastic predictor/return 

mapping algorithm for GT ’s model with shear mechanism is summarized in Box 

4.3. More details about the linearization of the non linear system of equation for 

GTN model can be found in Appendix “C” and “D”. 

 

Box 4.3. Fully implicit Elastic predictor/Return mapping algorithm for GTN model 
with shear mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

(i) Evaluate elastic trial state: Given the incremental strain     and the state variables at   : 
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continue Box 4.3. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

(b) Return mapping of Lemaitre´s damage model 

The implicit numerical integration algorithm for Lemaitre´s constitutive 

model (see Box 4.2) was proposed by De Souza Neto (2002). The non linear system 

of equations, in this case, was reduced, through algebraic manipulations, to a single 

scalar non linear equation, which is solved by the Newton-Raphson (N-R) method, 

for the unknown   . Box 4.4 describes, in pseudo-code format, the fully implicit 

elastic predictor/return mapping algorithm for Lemaitre’s model. 
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(iv) Update the other state variables: 
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(v) Exit 
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Box 4.4. Fully implicit Elastic predictor/Return mapping algorithm for Lemaitre´s 
model. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

(c) Return mapping of Bai & Wierzbicki´s constitutive model 

A fully implicit solution was derived by the authors (Malcher et al., 2009) for 

Bai & Wierzbicki´s constitutive model (Bai & Wierzbicki, 2008), which is 

summarized in Box 3.1 (see Chapter 3). The return mapping consists on the 

solution of a non linear system of eight equations, for three dimensional problems, 

and six equations, for two dimensional problems. The set of unknowns is 

(i) Evaluate elastic trial state: Given the incremental strain     and the state variables at   : 
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         ;     
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     ‖ (    )⁄  

(ii) Check plastic admissibility: 

IF         ̃   
        

     (    
     )    THEN  

set ( )    ( )   
       (elastic step) and go to (v) 

ELSE go to (iii) 

(iii) Return mapping (plastic step): Solve the equation below for   , using N-R method. 
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(iv) Update the other state variables: 
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(v) Exit 
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composed by tensor and scalar variables {     ,   ̅  
 

,   }. Box 3.2 of chapter 3 

describes the fully implicit elastic predictor/return mapping algorithm. More 

details about the linearization of the non linear system of equation for the Bai & 

Wierzbicki model can be found in Appendix “A” and “B”. 

Finally, it is remarked that the extension of the models to the finite strain 

range was done by adopting the well established multiplicative hyperelasto-plastic 

framework (see Peric´ et al., 1992; Eterovic & Bathe, 1990). 

 

 

4.4 NUMERICAL EXAMPLES 

In this section, the results obtained by performing numerical simulations of 

several specimens with the previously described constitutive formulations, will be 

presented and discussed. Firstly, the description of specimens with different 

geometries, which promote a wide range of stress triaxiality, is undertaken. Then, 

the calibration of the material parameters for the 2024-T351 aluminum alloy is 

performed in order to determine both the true stress-strain curve of the material, 

up to the point of fracture, and the critical value for the damage variable. Finally, 

the predictive ability of the constitutive models is assessed and compared for 

specimens who promote different levels of stress triaxiality. 

4.4.1 General Information  

In order to compare, both qualitatively and quantitatively, the constitutive 

models, based on different levels of stress triaxiality, several specimens were 

chosen such that they promote representative points on the graph of the 

equivalent plastic strain versus stress triaxiality and Lode angle (see Figure 3.2). 

The specimens can be grouped as follows: specimens that promote a high level of 

stress triaxiality (  ⁄     ), and specimens that promote a low level of stress 

triaxiality (      ⁄ ). For a high level of stress triaxiality, four different 

specimens were selected. Two notched bars, one with a notch radius equal to 

       and other with        , a smooth bar specimen and a plate hole 

specimen. In all four cases, a tensile stress state was monotonically applied. For a 

low level of stress triaxiality, a butterfly specimen, which was initially proposed by 

Bai & Wierzbicki (see Bai, 2008; Bai et al., 2008), was selected and both pure shear 
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and combined tensile-shear loading conditions were applied. Figure 4.3 

schematically represents the specimen’s geometry as a function of the initial level 

of stress triaxiality. 

In order to perform the numerical simulations, it is indispensable to obtain 

the material properties, the stress-strain curve and the damage parameters 

employed by the constitutive models. The elastic properties, the density and the 

initial yield stress adopted in the present analysis were taken from Bao and 

Wierzbicki (2004). The damage parameters of Lemaitre´s model, namely the 

exponent, s, and denominator, S, of the evolution law, were obtained from Teng 

(2008) that conducted a study on the numerical prediction of slant fracture with 

continuum damage mechanics. The set of parameters required by the GTN model 

with the inclusion of shear effects were taken from Xue (2007) and references 

therein. Finally, the set of parameters of Bai & Wierzbicki´s model were acquired 

from Reference (Bai & Wierzbicki, 2008). All the aforementioned parameters are 

conveniently listed in Table 4.1. 

Specimen 

Butterfly 

(pure 

shear) 

Butterfly 

(tension/ 

shear, 10º) 

Smooth bar 
Plate with 

hole 

Notched bar 

(R=12mm) 

Notched bar       

(R=4 mm) 

  = 0 

  = 0 

  = 0.11 

  = 0.22 

  = 0.33 

  = 1  

  = 0.37 

  = 1 

  = 0.47 

   = 1 

  = 0.75 

   = 1 
  

 

  

 

 

Figure 4.3. The specimens’ geometry is represented as a function of the initial level 
of stress triaxiality and normalized Lode angle. 

 

The stress-strain curve and the critical damage values, necessary for the 

different material models, were not taken from the literature but instead 

numerically determined. This procedure is described in detail in Section 4.4.3. 

Low Stress Triaxiality High Stress Triaxiality 
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Table 4.1. Material properties for the 2024-T351 aluminum alloy. 

Description Symbol Value Reference 

Density   2.7 x 103 [Kg/m3] Bao (2004) 

Elastic Modulus   72.400 [MPa] Bao (2004) 

Poisson’s ratio   0.33 Bao (2004) 

Initial yield stress     352 [MPa] Bao (2004) 

Damage data (exponent)   1 Teng (2008) 

Damage data (denominator)   6 [MPa] Teng (2008) 

GTN material parameter    1.5 Xue (2007) 

GTN material parameter    1.0 Xue (2007) 

GTN material parameter    2.25 Xue (2007) 

Xue shear mechanism parameter    1.69 (2D) / 1.86 (3D) Xue (2007) 

Xue shear mechanism parameter    0.50 (2D) / 0.33 (3D) Xue (2007) 

Volume fraction of void nucleation    0.04 Xue (2007) 

Stand. dev. plas. strain of void nucl.    0.1 Xue (2007) 

Mean plas. strain dist. of void nucl.    0.2 Xue (2007) 

Bai pressure parameter    0.09 Bai (2008) 

Triaxiality reference    0.33 Bai (2008) 

Bai tensile parameter   
  1.0 Bai (2008) 

Bai compression parameter   
  0.9 Bai (2008) 

Bai shear parameter   
  0.855 Bai (2008) 

Bai exponent parameter   6 Bai (2008) 

 
 

4.4.2 Geometry and Mesh Definition   

In the following, the geometry of each specimen, which will be used in the 

numerical simulations under high level of stress triaxiality, is presented as well as 

the mesh definition. Figure 4.4 shows the dimensions for both cylindrical notched 

bars, one with a notch radius equal to        and other with        ,  

together with a smooth bar specimen. 
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(a) 

 

(b) 

 

(c) 

 
 

Figure 4.4. Geometry of the cylindrical notched bars and the smooth bar specimen 

(dimensions in mm). The specimens were reproduced from Teng (2008). 

In order to capture the necking pattern and the evolution of internal 

variables, a relatively fine discretization is used in the region surrounding the 

smaller cross-section of the specimens (see Figure 4.5). The standard eight-noded 

axisymmetric quadrilateral element, with four Gauss integration points, is adopted. 

The initial mesh discretization for the three cases is illustrated in Figure 4.5, where 

only one symmetric quarter of the problem, with the appropriate symmetric 

boundary conditions imposed to the relevant edges, is modeled.  
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(a) (b) (c) 

Figure 4.5. Finite element meshes for the cylindrical notched bar specimens (a) 

      , (b)          and for the (c) smooth bar specimen. 

A total number of 1800 elements has been used in the discretization of both 

the smooth bar (see Figure 4.5c) and the notched bar with radii of        (see 

Figure 4.5a), amounting to a total of 5581 nodes. The mesh of the notched bar with 

radii of          (see Figure 4.5b) has got 2250 elements and 681 nodes. In all 

cases, the gauge used is equal to        . 

The stretching of a plate with a circular hole is also used. The initial geometry 

of the specimen is shown in Figure 4.6. Due to symmetry, only one quarter of the 

geometry is simulated, with appropriate boundary conditions imposed to the 

symmetry planes (see Figure 4.7). A three dimensional mesh of twenty noded 

elements, with eight Gauss integration points, is used to discretize one quarter of 

the specimen. A total number of 2280 elements have been used amounting to a 

total of 2768 nodes (see Figure 4.7). 
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Figure 4.6. Geometry of the plate hole specimen (dimensions in mm). The specimen 

was taken from Bao (2003). 

 

 
 

Figure 4.7. Finite element mesh for the plate hole specimen and critical zone to 
fracture. 

The characterization of the material behavior under the range of low stress 

triaxiality, (      ⁄ ), has been an extremely challenging task according to 

several authors (Bai, 2008). This is due to the fact that the magnitude of both local 

stresses and strains depend, to a large extent, on the shape of the free boundary. 

Nevertheless, a new type of flat compound curvature specimens was proposed 

recently (Bai, 2008) to characterize fracture behavior of metals under a wide range 

critical zone 
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of stress triaxiality. This specimen will be used here for low stress triaxiality tests. 

The geometry of the specimen, called “butterfly specimen”, is illustrated in Figure 

4.8. A three dimensional finite element mesh of 3392 twenty noded elements, with 

eight Gauss integration points, is used amounting to 17465 nodes (see Figure 4.9). 

 
Figure 4.8. Geometry of the butterfly specimen (dimensions in mm). The specimen 

was reproduced from Bai (2008). 

 

 

 

 
 

 
 

Figure 4.9. Finite elements mesh of the butterfly specimen and shear zone to 
fracture. 

 
 

shear zone 
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4.4.3 Calibration of Material Parameters for 2024-T351 Al  

The strategy employed to determine the undamaged stress-strain curves and 

the critical damage values for the constitutive models was the following. Having at 

hand the displacement to fracture (          ) together with the force-

displacement curve for a smooth bar tensile specimen, which were experimentally 

obtained by Bao and Wierzbicki (2004), an inverse and iterative methodology was 

conducted. The objective is to identify the stress-strain curve for each constitutive 

model such that the force-displacement curve is as close as possible to the 

experimental one. Figure 4.10a shows the reaction curves obtained for all the 

constitutive models after the application of the inverse identification method. It 

was possible to obtain a close agreement for all constitutive models. 

  

(a) (b) 

Figure 4.10. (a) Force versus displacement curve for all models and experimental 

results. (b) Critical damage parameter calibrated for the experimental 

displacement to fracture (          ). 

 

The critical value for the damage variable, of each constitutive model, was 

also obtained from the simulation of the stretching of the smooth bar. The value of 

the critical damage variable, of each constitutive model, is set to the value of the 

internal variable, which is used on the numerical simulation, when the numerical 

displacement is equal to the experimental displacement to fracture. The critical 

damage values obtained are listed in Table 4.2. 
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Table 4.2. Critical values for damage. 

Model Critical Value 

Lemaitre    = 0.26 

GTN    = 0.06  

Bao    = 0.21 

The results of the calibration procedure for the stress-strain curves of all 

models can be observed in Figure 4.11. The undamaged stress-strain curve 

obtained for Lemaitre’s model has got a more pronounced hardening than the 

GTN´s model and both are notably different. It is worth mentioning that the stress-

strain curve used in Bai & Wierzbicki´s model (Bai & Wierzbicki, 2008), which is 

depicted in Figure 4.11 and labeled as “uncoupled damage model”, is the curve that 

includes the effect of damage in the hardening. 

 

Figure 4.11. Stress-strain curves for all constitutive models. 

It is important to mention that the material properties, the stress-strain 

curve and the damage parameters employed by Lemaitre’s and GT ´s constitutive 

models can be obtained from one single experimental test, which is the stretching 

of a smooth round specimen. On the other hand, the parameters needed by the 

uncoupled model proposed by Bai & Wierzbicki, which are listed in Table 4.1, 

require four types of experimental tests (Bai & Wierzbicki, 2008): a smooth round 

bar tensile test, a notched round bar tensile test, a tensile test of flat grooved plate 

and an upsetting test. 

Remark 4.1: In order to study the influence of the spatial discretization on the 

numerical results, several numerical simulations were performed using different 
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mesh refinements. It was possible to conclude that, although the numerical results 

can be affected by the discretization, there is no strong dependence of the 

numerical results with the level of mesh refinement. The location of fracture onset 

was also not affected by the level of mesh refinement. This is mainly due to the fact 

that the level of damage attained by the specimens is still relatively low, for the 

applied displacement to fracture, and the overall softening effect is very small (see 

Figure 4.10a). Therefore, the meshes selected and used in this paper have given 

numerical results that do not change noticeably with the spatial discretization and 

the conclusions of the assessment are not perceptibly affected.  

4.5 NUMERICAL RESULTS 

The predictive ability of the constitutive models is assessed here for the 

specimens illustrated in Figure 4.3 using the properties listed in Table 4.1 together 

with the calibrated parameters. Before proceeding, it is important to summarize 

the experimental results that will serve as reference for comparison. In Table 4.3, 

the initial stress triaxiality, the initial Lode angle, the equivalent strain at fracture 

and displacement at fracture are listed for each specimen. The displacements to 

fracture of the butterfly specimen, in both pure shear and combined tensile/shear 

loading conditions, were not available in the literature. The expected location for 

crack formation, experimentally observed is also included. The information 

presented in Table 4.3 was obtained from Bao (2003) and Bai (2008).  

The displacement at fracture, listed in Table 4.3, was determined by 

measurements made during the experiments and the force-displacement behavior 

of the material (Bao, 2003). The determination of the equivalent strain at fracture, 

listed in Table 4.3, was accomplished using a combined experimental numerical 

method. The strain calculated by the finite element simulation at the critical 

location for the measured displacement at fracture, is considered the equivalent 

strain at fracture (Bao, 2003). 

All the numerical simulations, which are presented in Sections 4.5.1 and 

4.5.2, were conducted following the same strategy. The simulation was performed 

until the damage variable of the particular constitutive model, at any point in the 

specimen, reached the critical value that is listed in Table 4.2. Therefore, the value 
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of the displacement and effective plastic strain variables calculated from the finite 

element simulation, when the damage variable reaches its critical value, are 

understood as the displacement at fracture and effective strain at fracture from the 

numerical simulations.  

Remark 4.2: On the forthcoming examples, for each particular specimen, the 

distributions of the effective plastic strain obtained by the models described in 

Section 4.2 will be presented for the sake of completeness. The objective is not to 

judge the models by comparing them directly to reference values, which were 

obtained with a particular constitutive model, since how each model determines 

the direction of plastic flow is different and the strain path is highly nonlinear. The 

intention is solely to highlight the fact that the effective plastic strain value and 

contour plot might not be an adequate criterion to analyze material fracture has 

advocated by several authors (McClintock, 1968; Rice & Tracey, 1969; Johnson & 

Cook, 1985; Mirza et al., 1996; Bao, 2003). 

Table 4.3. Reference values for different specimens of the 2024-T351 ( Bao, 

2003; Bai, 2008). 

Specimen         ̅    (mm) Fracture Location 

Notched bar R=4 mm 0.75 1 0.17 0.70 Center of specimen 

Notched bar R=12 mm 0.47 1 0.28 1.40 Center of specimen 

Smooth bar 0.33 1 0.47 6.65 Center of specimen 

Plate hole 0.37 1 0.31 2.50 
Middle of thickness 

on critical zone 

Butterfly (pure shear) 0 0 0.21 --- Surface of shear zone 

Butterfly (tension/shear, 
10º) 

0.11 0.22 0.26 --- 
Middle of thickness 

on shear zone 

 
 
4.5.1 High Stress Triaxiality (  ⁄     ) 

The numerical results obtained for the cylindrical notched bars, the 

cylindrical smooth bar and the plate hole specimens are presented in Table 4.4. 

The critical displacement to fracture, the stress triaxiality average, the Lode angle 

average and the equivalent plastic strain to fracture predicted by the numerical 

simulations are listed for the point, of each specimen, that reached the critical 
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value of damage. For ease of comparison, the values of the displacement to fracture 

and equivalent strain at fracture, which were obtained from references (Bao, 2003; 

Bai, 2008), are also included. 

Analyzing Table 4.4, it is possible to conclude that for both notched bar 

specimens, the critical displacements obtained by Bai & Wierzbicki’s model are in 

closer agreement with experimental values than the damage models. The 

prescribed displacements required to reach the critical damage values, for both 

Lemaitre and GTN model, were clearly higher than the experimental values. The 

difference between the numerical and experimental displacement to fracture, 

predicted by all models, is larger for the notched bar with a radius, R = 4 mm, than 

with a radius, R = 12 mm. This might be due to the fact that the notched bar with a 

radius, R = 4 mm, has got an initial triaxiality,    = 0.75, that is higher than the 

notched bar with a radius, R = 12 mm, which is equal to,    = 0.47 (see Table 4.3). 

This means that the notched bar with a radius, R = 12 mm, has got a stress 

triaxiality that is closer to the smooth bar (   = 0.33), which was employed to 

calibrate the material properties. The equivalent plastic strain at fracture 

predicted numerically by all models is generally higher than the equivalent strain 

at fracture (see Table 4.4). Lemaitre´s model consistently predicts higher values 

than the other models. For the cylindrical notched bars, where there is a dominant 

tensile stress state, there was no perceptible difference between the original and 

modified GTN models and only the results of the original GTN model are included 

in Table 4.4.    

In the case of the plate hole specimen, which has got an initial stress 

triaxiality and Lode angle that are close to the cylindrical smooth bar (see Table 

4.3), all models predicted a displacement to fracture higher than the reference 

value. It is interesting to note that, due to the presence of shear effects, Lemaitre´s 

model and the enhanced GTN model were able to predict lower values for the 

displacement to fracture. The displacements obtained by these two models are 

closer to the experimentally determined value. The original GTN model, that does 

not include shear mechanisms in the formulation, gave the worst prediction. For 

this specimen, the equivalent plastic strain at fracture predicted numerically by all 
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models is again higher than the reference value, particularly for Lemaitre´s model 

(see Table 4.4).     

 
Table 4.4. Numerical results obtained with the constitutive models for the 2024-

T351 aluminum alloy. Specimens subjected to a high level of stress triaxiality. 

Specimen Model 
   

(mm) 

   

(mm)* 
         ̅     ̅ 

Notched 
bar 

       

Bai & Wierzbicki 0.94 

0.70 

0.95 1.00 0.25 

0.17 Lemaitre 1.19 1.03 1.00 0.39 

GTN 1.10 0.99 1.00 0.31 

Notched 
bar 

        

Bai & Wierzbicki 1.55 

1.40 

0.64 1.00 0.32 

0.28 Lemaitre 1.82 0.71 1.00 0.50 

GTN 1.70 0.66 1.00 0.38 

Smooth 
bar 

Bai & Wierzbicki 6.65 

6.65 

0.42 1.00 0.50 

0.47 Lemaitre 6.65 0.45 1.00 0.57 

GTN 6.65 0.40 1.00 0.48 

Plate hole 

Bai & Wierzbicki 3.87 

2.50 

0.42 0.80 0.59 

0.31 
Lemaitre 3.71 0.43 0.67 0.60 

GTN original 4.00 0.41 0.83 0.54 

 GTN modified 3.73 0.40 0.84 0.49 

 

In general, for high levels of stress triaxiality, it is possible to see that the 

difference between predicted and observed values for the coupled damage models, 

such as Lemaitre and GTN, is not constant in terms of the displacement at fracture 

and fracture location over the entire range of high stress triaxiality (  ⁄     ). 

In addition, the coupled damage models lose their predictive capability when the 

conditions, of stress triaxiality and Lode angle of the specimen, are further way 

from the calibration point. This fact limits their applicability and reliability. The 

uncoupled constitutive model proposed Bai and Wierzbicki (Bai & Wierzbicki, 

2008) has a more uniform behavior for different levels of stress triaxiality and 

Lode angle parameter. Nevertheless, it is important to mention that some of the 

parameters of the model, which are listed in Table 4.1, were obtained with a set of 

experimental tests that include the smooth and round bars analyzed in this 

contribution.  
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The force versus displacement curves, obtained from the numerical 

simulation of the constitutive models, for the cylindrical notched bars are plotted 

in Figure 4.12. The curve for each model is plotted till the moment that the critical 

damage is reached and it is possible to observe a close agreement between all 

models and the experimental results. 

  
(a) (b) 

Figure 4.12. Force-displacement curves for a notched bar with: (a)        and 

(b)        . 

The critical displacement to fracture is highlighted in Figure 4.12, for both 

notched bars, and it is possible to observe a very small softening on the material 

behavior at the end of the analysis.  Nevertheless, since the displacement observed 

at the beginning of the softening is almost the same as the displacement to 

fracture, there is almost no dependence of the results with the spatial 

discretization.  

The evolution of the equivalent plastic strain is presented in Figure 4.13 for 

all specimens and, in general, it can be observed that the growth rate of this 

variable is higher for Lemaitre’s model. The level of equivalent plastic strain 

reached by Lemaitre is, in fact, very high and in disagreement with the level of the 

equivalent strain at fracture cited in literature (see Table 4.4). 
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(a) (b) 

  
(c) (d) 

Figure 4.13. Equivalent plastic strain as a function of the prescribed displacement: 

notched bar specimens with (a)       , (b)        , and for (c) smooth bar 

specimen and (d) plate hole specimen. 

The equivalent plastic strain contours are shown in Figure 4.14 for the two 

notched bars and the smooth bar specimen, where the distribution of this variable 

for all constitutive models can be analyzed. The displacement to fracture, which is 

reached when the damage variable attains the critical value, is included in the 

same Figure for all models and specimens. It can be seen, for the notched bar 

specimen with a radius,       , that the equivalent plastic strain contour has a 

tendency to predict higher values on the outer surface for the three models (see 

Figure 4.14a, 4.14b and 4.14c). Nevertheless, the maximum values of equivalent 

plastic strain predicted by Lemaitre (Figure 4.14b) and GTN (Figure 4.14c) models 

also extend towards the center of the specimen. 
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           (a)              (b)      (c) 

Figure 4.14. Equivalent plastic strain contours for notched bars and smooth bar 

specimens. (a) Bai & Wierzbicki model, (b) Lemaitre’s model and (c) GTN model. 
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Experimental evidence has shown that fracture onset occurs at the centre of 

the specimen. Therefore, special care should be taken if the effective plastic strain 

is used as a fracture indicator, as suggested by Bao (2003), since none of the 

models clearly predicts a concentrated distribution of effective plastic strain at the 

centre of the specimen.  For the two other specimens, namely the notched bar 

(R=12 mm) and the smooth bar, all constitutive models were able to predict the 

maximum location of the effective plastic strain at the central region of the 

specimen, which is in agreement with the location for fracture onset observed in 

the experimental tests.  

The equivalent plastic strain contours, for the plate with a hole, are presented 

in Figure 4.15 together with the displacement to fracture predicted by each model. 

The maximum value for the internal variable is observed at the cross section of the 

specimen and close to the interior surface of the hole.  

           

  

           

  
    

(a) (b) 
  

           

  

           

  
    

(c) (d) 
  

Figure 4.15. Equivalent plastic strain contours for the plate hole specimen.  (a) Bai 

& Wierzbicki model, (b) Lemaitre’s model, (c) GTN model and (d) GTN modified 

model. 
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Although the behavior is similar for all models, in Figure 4.16 is possible to 

appreciate in more detail the evolution of the normalized plastic strain at the 

nodes of the critical zone. Each model has got a slightly different evolution. As 

mentioned before, the level of equivalent plastic strain attained by Lemaitre’s 

model is relatively high. In addition, it can be noticed that the introduction of the 

shear mechanism on the original GTN model, improved the prediction of the 

model. 

 

 
 External Surface                                                                                 Hole 

Figure 4.16. Equivalent plastic strain distribution at the critical zone for the plate 

with a hole specimen. 

The damage variable field obtained in the finite element analysis is illustrated 

in Figure 4.17 for the cylindrical smooth bar and the two notched bars specimens.  

The contour plots show the distribution of damage when one point of the 

problem reaches the critical damage for a specific constitutive model (see Table 

4.2). The displacement to fracture, which is reached when the damage variable 

attains the critical value, is included in the same figure for all models and 

specimens. The location of the maximum damage occurs at the center of the 

specimen’s and is correctly predicted by all models. This is in agreement with 

experimental evidence. 

 

 

 
̅ 

  ̅
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             (a)              (b)      (c) 

Figure 4.17. Damage contours for the notched bars and smooth bar specimens:  (a) 

Bai & Wierzbicki’s model, (b) Lemaitre’s model, (c) GTN’s model. 
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The damage variable field obtained in the numerical simulation for the plate 

hole specimen is illustrated by the contour plots shown in Figure 4.18. The 

maximum value of damage is predicted at the critical cross section of the specimen 

for all constitutive models, nevertheless, within the cross-section there are 

different evolutions for the damage variable.  

 

           

  

           

  
    

(a) (b) 
  

           

  

           

  
    

(c) (d) 

Figure 4.18. Damage contours for the plate hole specimen:  (a) Bai & Wierzbicki’s 

model, (b) Lemaitre’s model, (c) GT ’s model and (d) GT  modified model. 
 

In Figure 4.19, it is possible to observe the evolution of the normalized 

damage at the critical cross section of the specimen. Lemaitre´s model predicts 

higher values of damage in the region close to the central hole attaining the 

maximum value at the edge on the surface of the hole. On the other hand, all the 

other models predict the maximum value inside the cross section, which is in 

agreement with experimental results (Bao et al., 2004). Bai & Wierzbicki´s model 

together with the modified GTN models have a sharp prediction of damage around 

node 8 in Figure 4.19.   
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                     External Surface                                                                  Hole 

 
Figure 4.19. Damage evolution at the critical zone for the plate with a hole 

specimen. 

4.5.2 Low Stress Triaxiality (      ⁄ ) 

In this section, numerical results for the butterfly specimen, which is depicted 

in Figure 4.9, are presented. The focus here is to study the behavior of the 

constitutive models, previously described, under a low level of stress triaxiality 

and verify their ability to predict the correct fracture location. The butterfly 

specimen was simulated in both pure shear and combined tension/shear (10º with 

the x-axis) conditions. In Table 4.5, the numerical results, obtained by the finite 

element simulation, for the displacement at fracture, stress triaxiality average, 

Lode angle average and the equivalent plastic strain at fracture can be examined. 

In both loading scenarios, the prescribed displacement was imposed until the 

damage variable of the particular constitutive model, at any point in the specimen, 

reached its critical value, previously calibrated (see Table 4.2). The value of the 

displacement and effective plastic strain variables calculated from the finite 

element simulation, when the damage variable reaches its critical value, are 

understood as the displacement at fracture and effective strain at fracture from the 

numerical simulations. 

The results obtained with the original GTN model, under shear dominated 

loading conditions, clearly emphasize the limitation of the model for predicting 

fracture under conditions of low stress triaxiality. In Table 4.5, it is possible to see 

that, according to this model, the critical damage value would never be reached for 
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pure shear stress states. Under combined tension/shear (10º with the x-axis) the 

predicted displacement to fracture is very high, when compared with the other 

models, since damage evolution is only due to the volumetric growth of voids. The 

displacements to fracture predicted by Lemaitre´s model,            , and the 

GTN modified model,            , are more or less close for pure shear. There 

is a slightly better agreement between the predicted displacements to fracture for 

these two models for combined tension/shear stress states: Lemaitre´s model 

predicts,            , and the GTN modified model predicts,           . 

Nevertheless, there is a marked difference between the levels of predicted 

equivalent plastic strain obtained with Lemaitre´s model and the GTN modified 

model for both loading conditions, which are clearly different from the reference 

value of the effective plastic strain listed in Table 4.3. Through the analysis of the 

results obtained by Bai & Wierzbicki´s model coupled with Bao´s fracture indicator 

(see Table 4.5), it is possible to conclude that the overall prediction is not 

satisfactory. In particular, for pure shear loading conditions the model predicts for 

both parameters, displacement and equivalent plastic strain to fracture, very high 

values (        ;  ̅      ) that are different from the reference values in 

Table 4.3. These results clearly suggest that Bao’s damage fracture indicator 

coupled with Bai & Wierzbicki´s model might not be a good parameter to predict 

fracture under low level of stress triaxiality. 

 

Table 4.5. A summary of the numerical results obtained by the damage 

constitutive models studied on aluminum alloy 2024-T351. Specimens subjected to 

a low level of stress triaxiality. 

Specimen Model 
   

(mm) 
         ̅     ̅ 

Butterfly                
(pure shear) 

Bai & Wierzbicki 0.700 0.00 0.00 1.40 

0.21 
Lemaitre 0.464 0.08 0.04 0.64 

GTN original -- 0.02 0.06 -- 

GTN modified 0.348 0.02 0.04 0.31 

Butterfly  
(tensile/shear 10º) 

Bai & Wierzbicki 0.540 0.22 0.43 0.67 

0.25 
Lemaitre 0.408 0.34 0.19 0.60 

GTN original 0.642 0.30 0.47 0.64 

GTN modified 0.340 0.27 0.43 0.35 
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Figure 4.20 shows the evolution of the equivalent plastic strain for pure 

shear and combined shear/tensile (10º with the x-axis) loading conditions. It can 

be observed that the growth rate of this parameter for both Lemaitre and Bai & 

Wierzbicki models accelerates significantly after a particular value of the applied 

displacement. The GTN based models do not show this considerable increase. 

While the original GTN model predicts a very slow evolution for this variable, 

which is not realistic, the modified GTN model, under both loading conditions, 

predicts a faster evolution for the accumulated plastic strain.  

  
(a) (b) 

Figure 4.20. Numerical results for the butterfly specimen in, (a) pure shear and (b) 

combined shear/tensile loading conditions. 

The equivalent plastic strain contour for pure shear and combined 

shear/tensile (10º with the x-axis) loading conditions, for the constitutive models 

under analysis, can be observed in Figures 4.21 and 4.22, respectively. For the sake 

of completeness, the value of the displacement to fracture for each model is also 

included. Under pure shear loading (see Figure 4.21), the predicted location for the 

maximum value of the equivalent plastic strain, for all constitutive models, is on 

the surface of the shear zone. Since it is at this location that fracture onset is 

experimentally observed (Bai, 2008), the equivalent plastic strain could be used, in 

this case, as fracture indicator. From the analysis of Figure 4.21, it is possible to 

notice that the distribution of the maximum value of the equivalent plastic strain is 

more concentrated, on the surface of the shear zone, for Lemaitre´s model (Figure 

4.21b) and less concentrated for both GTN´s original and modified models (Figure 

4.21c and 4.21d). Although the maximum value of the equivalent plastic strain for 
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Bai and Wierzbicki´s model is on the surface of the shear zone, the distribution also 

spreads towards the centre of the specimen (see Figure 4.21a). 

  
(a)            (b)             

 

 

 

 
(c)             (d)              

Figure 4.21. Equivalent plastic strain contours, for a butterfly specimen, under pure 

shear conditions. (a) Bai & Wierzbicki´s model, (b) Lemaitre’s model, (c) GTN´s 

model and (d) GTN´s modified model. 

However, under combined shear/tensile (10º with the x-axis) loading (see 

Figure 4.22), the predicted location for the maximum value of the equivalent 

plastic strain, for all constitutive models, is again on the surface of the shear zone. 

Since for this loading condition fracture onset is experimentally observed at the 

middle of the thickness on the shear zone (Bai, 2008), the equivalent plastic strain 

field would give a wrong prediction of the fracture location. From the analysis of 

Figure 4.22, it is possible to conclude that the distribution of the maximum value of 

the equivalent plastic strain is more concentrated, on the surface of the shear zone, 

for Bai and Wierzbicki´s model (Figure 4.22a). This maximum for Lemaitre´s 

model, GTN´s model and GTN´s modified model is on the surface of the shear zone 

but the distribution also spreads towards the centre of the specimen. 
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(a)             (b)             

  
(c)              (d)              

Figure 4.22. Equivalent plastic strain contours for the butterfly specimen under 

combined shear/tensile loading condition.  (a) Bai & Wierzbicki , (b) Lemaitre (c) 

GTN original and (d) GTN modified models. 
 

The evolution of the damage parameter, at the point where the damage 

variable reaches the maximum value, can be examined in Figure 4.23. The critical 

damage value for each model, which is listed in Table 4.2, is reached at different 

levels of displacement. 

  
(a) (b) 

Figure 4.23. Evolution of damage in (a) pure shear and, (b) combined shear/tensile 

loading conditions. 
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The evolution of the damage variable for the GTN original model under shear 

loading illustrates its limitation to predict shear localization and fracture under 

conditions of low triaxiality. After an initial increase of the damage variable, which 

is due to void nucleation, there is no further evolution of damage (see Figure 

4.23a). Under a combined shear/tensile loading, this model predicts damage 

evolution. Nevertheless, since this growth is only due to volume void growth, the 

overall damage evolution is slow and the model predicts a high value for the 

displacement to fracture, which is not in agreement with experimental evidence. 

The inclusion of shear effects on the formulation of the model, here labeled 

modified GTN model, clearly improves the ability of the model to predict damage 

growth under shear and combined shear/tensile (10º with the x-axis) loading 

conditions since the distortion of voids and inter-void linking are taken into 

account in the model (see Figure 4.23a and 4.23b). It is important to observe that 

Lemaitre´s model can predict the evolution of damage under conditions of low 

stress triaxiality. In addition, Bao’s damage fracture indicator coupled with Bai & 

Wierzbicki´s model is also able to predict the evolution of damage. 

The damage distribution for each constitutive model, when the critical 

damage is attained, can be seen on Figure 4.24 for pure shear loading. 

Experimental evidence has shown that the potential zone for crack formation 

occurs on the surface of the shear zone. Both Lemaitre´s and GTN´s modified 

models, depicted in Figures 24b and 24d, have been able to predict the correct 

location of fracture onset. On the other hand, Bao’s damage fracture indicator 

coupled with Bai & Wierzbicki´s model, depicted in Figures 24a, has predicted 

fracture at the middle of the thickness on the critical zone, which is wrong. The 

original GTN model predicts damage over the central region of the critical zone, 

never reaching the critical value (see Figures 24c). 
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(a)            (b)             

 

  
(c)             (d)              

Figure 4.24. Damage contours for the butterfly specimen under pure shear 

conditions.  (a) Bai & Wierzbicki´s model, (b) Lemaitre’s model, (c) GTN´s model 

and (d) GTN´s modified model. 
 

The damage variable field obtained in the numerical simulation, for a 

combined tensile/shear loading condition, is illustrated by the contour plots 

shown in Figure 4.25. For this loading condition, fracture onset is experimentally 

observed at the center of the shear zone. Therefore, from the analysis of Figure 

4.25 it is possible to conclude that Bao’s damage fracture indicator coupled with 

Bai & Wierzbicki´s model is able to predict the correct fracture location. The same 

happens with the GTN original model that also predicts fracture onset at the centre 

of the specimen. However, the damage evolution for these two models is relatively 

slow and consequently they predict a large displacement to fracture. In contrast, 

Lemaitre´s model and the GTN´s modified model have predicted fracture onset at 

the surface of the critical zone, which is in disagreement with experimental 

evidence. Therefore, these two models have not been able to predict the correct 

location of fracture under combined tensile/shear loading conditions.          
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(a)             (b)             

  

  
(c)              (d)              

Figure 4.25. Damage contours for a butterfly specimen under combined 

shear/tensile load. (a) Bai & Wierzbicki, (b) Lemaitre (c) GTN original and (d) GTN 

modified models. 

The inclusion of shear effects on the GTN model has got a significant impact 

on the evolution of the equivalent plastic strain. Due to the strong coupling 

between plastic flow and damage, which exists on the modified GTN model (see 

Box 4.1), an increase of overall damage due to the combination of void growth with 

the distortion of voids leads to an increase of the equivalent plastic strain. This 

enhances the model that predicts a level of equivalent plastic strain to fracture 

close to the expected value. In order to discuss the predictive ability of Lemaitre´s 

model, different values for the critical damage    were critically selected and the 

damage variable field obtained from the numerical simulation is illustrated by the 

contour plots shown in Figure 4.26. It is important to remark, that this is merely an 

exercise and the authors have not performed any additional calibration procedure.  
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(a) (b) (c) 

Figure 4.26. Lemaitre´s damage contour for the butterfly specimen under 

combined shear/tensile loading condition.  (a)        , (b)         and (c) 

       . 

 

From the analysis of the results depicted in Figure 4.26, it is possible to 

conclude that if the critical value of damage is increased, the location of fracture 

onset moves from the surface of the shear zone to the center of the shear zone. 

Therefore, for a high value of critical damage,        , the prediction of  fracture 

onset of Lemaitre´s model would be in agreement with experimental observations. 

  

4.5.3 Discussion 

A comprehensive set of numerical simulations, regarding specimens with 

different geometries, has been carried out to generate diverse stress and strain 

states covering a wide range of triaxiality and Lode angle. In Table 4.6, a qualitative 

summary of the predictive ability of the constitutive models for the specimens 

studied is presented. The classification takes primarily into account the correct 

prediction of the fracture location, the displacement to fracture predicted by the 

model and also the level of the accumulated plastic strain. The highest predictive 

ability is denoted by “+ + +” and the worst by “-“. 

Under a high level of stress triaxiality (          ), the model proposed 

by Bai & Wierzbicki coupled with Bao’s damage fracture indicator had the best 

performance. This conclusion is achieved through the combined analysis of the 

prediction of the fracture location, the displacement to fracture and the equivalent 

plastic strain to fracture. The model predictions, for all specimens, are in close 

agreement with experimental evidence. The coupled damage constitutive models 

(Lemaitre, GTN original and GTN modified) were also able to predict the correct 
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location for fracture regarding the cylindrical and smooth bars. Nevertheless, the 

predicted displacements to fracture and equivalent plastic strains to fracture lose 

their accuracy whenever the stress and strain states are far from the calibration 

point. The model proposed by Lemaitre consistently predicts high levels of 

equivalent plastic strain to fracture. For the plate with a hole specimen, Lemaitre´s 

model predicts the edge node of the critical zone as the potential location for crack 

initiation, which is in disagreement with experimental data. The other constitutive 

models are able to predict the correct location for fracture initiation. 

 

Table 4.6. Qualitative summary of the predictive ability of the constitutive 
models for ductile fracture. 

Model 

Specimen 

Notched 
bar       

(    ) 

Notched 
bar 

(    ) 

Plate 
hole 

Smooth 
bar 

Butterfly 
(tension/ 

shear 10º) 

Butterfly 
(pure 
shear) 

  = 0.75 

   = 1 

  = 0.47 

   = 1 

  = 0.37 

  = 1 

  = 0.33 

  = 1 

  = 0.11 

  = 0.22 

  = 0 

  = 0 

Bai & 
Wierzbicki 

+ + + + + + + + + + + - 

Lemaitre + + - + + + - + 

GTN original + +  + +  + + + + + - 

GTN modified + + + + + + + + + + - + + 
 

For a low level of stress triaxiality (      ⁄  ), it is possible to conclude 

that the GTN modified model is the model in closer agreement with experimental 

results with regard to the equivalent plastic strain. However, under combined 

loading condition, the model predicted the surface of critical zone as potential zone 

to crack initiation, which is not in accordance with experimental observations. 

Under this loading condition, only Bai & Wierzbicki´s model and the GTN original 

model predicted the correct fracture location. Nevertheless, they also incorrectly 

predict a large equivalent plastic strain to fracture. Lemaitre’s model, for combined 

loading, is not able to predict both the correct fracture location and the equivalent 

plastic strain to fracture. Under a pure shear loading condition, the GTN modified 

model has the best agreement with regard to the equivalent plastic strain together 
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with the prediction of the fracture location. The model proposed by Lemaitre has 

been able to predict the correct zone to crack formation; nevertheless, the level of 

equivalent plastic strain to fracture is in complete disagreement with experimental 

results. The fracture indicator proposed by Bao is not appropriate for the 

prediction of fracture under a low level of stress triaxiality. 

The predictive ability of the constitutive models is intimately related to their 

formulation. The fact that the effect of the stress state is taken into account on the 

behavior of the yield surface of Bai & Wierzbicki´s model, through the dependence 

of both pressure and triaxiality, can justify the more uniform performance of the 

model under a wide range of stress triaxiality. The loss of accuracy of the model 

under low level of stress triaxiality is due to the selection of a fracture indicator, 

which is not able to capture well shear effects on the damage evolution. The effect 

of the stress state on the yielding behavior is also considered in the GTN model, 

through the inclusion of the hydrostatic pressure. Nevertheless, the effect of the 

Lode angle is not included on the yield behavior. This fact combined with a damage 

evolution law based on volumetric void growth leads to a good behavior for high 

levels of stress triaxiality. The GTN modified model already includes this effect on 

the damage evolution law, which clearly improves the predictive ability of the 

model under low stress triaxiality. On the other hand, Lemaitre´s model does not 

include the effect of the stress state on the behavior of the yield surface but 

includes the effect of stress triaxiality on the damage evolution law. 

With regard to the number of material properties and parameters, the 

constitutive models have different requirements. All of them necessitate the 

determination of the material´s elastic properties and hardening curve. 

Nevertheless, it is important to highlight that each of them involve the 

determination of several extra parameters. Bai & Wierzbicki´s model requires the 

determination of seven parameters obtained through four different specimens, the 

GTN´s model requires the determination of nine parameters obtained from one 

specimen and Lemaitre´s model requires the determination of three parameters 

obtained from one specimen (see Table 4.1 and 4.2). 
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4.5.4 Fracture Locus Representation 

One of the pioneering methods to analyze material ductility in engineering 

applications was based on the level of effective plastic strain at fracture for specific 

stress triaxiality (McClintock, 1968; Rice and Tracey, 1969). More recently, other 

researchers (Johnson & Cook, 1985; Mirza et al., 1996; Bai and Wierzbicki, 2008, 

among others) have developed fracture criteria, which also define limit values for 

the strain for different stress states. In particular, Bai and Wierzbicki (2008) have 

proposed a three dimensional fracture surface, which defines the boundary 

between the fracture and no-fracture zone, on the space of equivalent plastic strain 

versus stress triaxiality average and Lode angle. This surface, which is based on 

boundary limit curves, requires the determination of six parameters that need to 

be calibrated for each specific material.  

The three dimensional fracture locus for the 2024-T351 aluminium alloy has 

been obtained by Bai and Wierzbicki (2008) that employed the material fracture 

data points obtained by Bao (2003) to interpolate the surface. This surface can be 

mathematically represented by the following expression (Bai and Wierzbicki, 

2008): 

  ̂ (   )   [
 

 
 (                                )                ]  

 
 

  
 

 
 (                                )                  . 

(4.32) 

The numerical results obtained in sections 4.5.1 and 4.5.2 for different 

constitutive models can be represented in this three dimensional space of 

equivalent plastic strain versus stress triaxiality average and Lode angle. 

Nevertheless, for the sake of clarity, we will represent the surface by its 

projections, for different values of the normalized Lode angle, on the space of 

equivalent plastic strain versus stress triaxiality. In Figure 4.27, three projections of 

the surface that correspond to normalized Lode angle values of 0.0, 0.5 and 1.0 are 

depicted together with the results obtained in Section 6 for the different 

constitutive models. It is important to recall that the smooth bar and notched bars 

have a normalized Lode angle equal to unity but the plate with a hole has an 

average normalized Lode angle less than unity (see Table 4.4). Furthermore, the 
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butterfly specimen under pure shear has a normalized Lode angle equal to zero, 

but under tensile/shear the normalized Lode angle is higher than zero (see Table 

4.5). 

The representation has revealed that GTN´s modified model, for low level of 

stress triaxiality, is able to reasonably follow the fracture surface trend. For high 

level of stress triaxiality, Bai and Wierzbicki´s model has the closest behavior with 

the reference values. It is also possible to conclude that Lemaitre’s model predicts 

a high level of equivalent plastic strain to fracture for both high and low levels of 

stress triaxiality. Finally, the GTN original model has only been able to predict the 

behavior under conditions of high stress triaxiality exhibiting obvious limitations 

under low levels of stress triaxiality. 

 
 

Figure 4.27. Fracture locus for an aluminum alloy 2024-T351 on the space of 

equivalent plastic strain versus stress triaxiality average. 

 

4.6 CONCLUSIONS 

In this contribution, the well established coupled damage constitutive 

models, proposed by Lemaitre and GTN, together with a recent constitutive 

formulation, proposed by Bai and Wierzbicki, were assessed in order to verify their 

ability to predict ductile failure under a wide range of stress triaxiality. To achieve 



120 
 

this objective, the constitutive formulations were implemented in a quasi-static 

finite element scheme and several numerical simulations, regarding specimens 

with different geometries, have been performed to generate diverse stress states. 

The behavior of some variables was critically analyzed such as, the displacement at 

fracture, the equivalent plastic strain at fracture, the evolution of the damage 

variable, force versus displacement curves as well as the contour plots of damage 

and equivalent plastic strain. 

The results from the simulation have shown that for high levels of stress 

triaxiality, the constitutive model proposed by Bai and Wierzbicki combined with 

Bao´s fracture indicator is in closer agreement with experimental results and 

presents a uniform behavior for stress states close and far from the calibration 

point. The GTN model is also able to predict ductile failure with reasonable 

accuracy and Lemaitre´s model is the less accurate model. One possibility to 

enhance the predictive ability of the coupled damage models, which does not 

require changes in the constitutive formulation of the model, would be to calibrate 

them for stress states close to the loading condition. Under a low level of stress 

triaxiality, all constitutive models have limitations. These can be on the value of the 

displacement to fracture, the equivalent plastic strain to fracture or in terms of the 

prediction of fracture location. Therefore, it is possible to conclude that under 

combined loading, all models need to be improved. Under a pure shear loading 

condition, the GTN modified model has shown the ability of predicting ductile 

failure with reasonable accuracy. 

Based on the results, it is possible to suggest further studies and 

developments. In particular, the assessment of the performance of the Bai and 

Wierzbicki constitutive model combined with other fracture indicators, which are 

able to capture shear effects, is recommended. The introduction of a shear 

mechanism, which depends on the Lode angle, on the GTN damage evolution law 

clearly improved the behavior of the model under low stress triaxiality. Therefore, 

new damage evolution laws should be developed to increase the ability of the 

model to capture ductile failure under more complex loading conditions. The same 

suggestion can be made for Lemaitre’s model. 
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CHAPTER 5 
 

Evaluation of Shear Mechanisms and Influence  
of the Calibration Point on the Numerical  

Results of the GTN Model  

 
In this chapter, a numerical comparative study is undertaken based on Gurson-

Tvergaard-Needleman (GTN) original model and two recent enhancements that 

include shear mechanisms, employing two different strategies to calibrate the 

material parameters. The assessment is motivated by the fact that the accuracy of 

the numerical results obtained with coupled damage models is strongly dependent 

on the calibration point. Hence, the numerical results obtained with these models 

are more realistic and in agreement with experimental evidence when the external 

loading conditions are close to the calibration point. Two distinct shear 

mechanisms, proposed by Xue and Nahshon & Hutchison, were selected and added 

into damage variable of GTN model, in order to allow the prediction of crack 

formation when predominant shear loading conditions are present. This chapter is 

structured as follows: In the first part of this study, the mathematical formulations 

that describe both mechanisms are presented as well as the GTN original model. In 

addition, the numerical strategy followed in this work is described, based on an 

implicit quasi-static finite element framework. In the following section, a specimen 

under high and other under low stress triaxiality are used as calibration points and 

by using an inverse method, the material parameters are identified. Regarding the 

performance of the numerical results and its dependence with the calibration 

point, numerical tests are carried out for a set of loading conditions, such as: pure 

shear, combinations of shear/tensile and pure tensile conditions. These 

simulations were conducted assuming first, the material parameters obtained by 

the first calibration point and then, using the properties which resulted from the 

second calibration point. Both numerical results are compared with experimental 

data, regarding the ability to predict the correct fracture location and the 

determination of the correct displacement at fracture. 
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5.1     INTRODUCTION 

The formulations proposed by Gurson (1977) and Lemaitre (1985) are the 

most well established ductile damage theories to describe the material internal 

degradation (see Chaboche et al., 2006). These classical coupled damage models 

have the ability to predict the correct fracture location under a specific range of 

stress triaxialities (see Xue, 2007; Nahshon et al.; 2008; Teng,  2008) and are 

extremely accurate for loading conditions close to the calibration point (see Reis et 

al., 2010; Malcher et al., 2012). For example, within the range of high levels of 

stress triaxiality, where the spherical void growth is the predominant mechanism, 

the models based on Gurson’s theory, like the Gurson-Tvergaard-Needleman 

model (GTN), have a good performance in the prediction of both the location of 

fracture onset and the displacement at fracture. However, under shear dominated 

loads, where failure is mainly driven by the shear localization of plastic strain of 

the inter-voids ligaments due to void rotation and distortion, the model has an 

irregular performance, (see Engelen, 2005; Chaboche, 2006). Figure 5.1 illustrates 

the ductile failure mechanism, which can occur by internal necking (Figure 5.1a), 

where the large primary voids are formed due to high stress triaxiliaty and the 

inter ligaments are created mainly by a sharp volumetric growth, or by void 

sheeting (Figure 5.1b), where primary voids remain small due to low stress 

triaxiality and the inter ligament occurs mainly by elongation of voids and 

formation of secondary voids in strain localization bands. 

 

 
(a) (b) 

 

Figure 5.1. Schematic representation of ductile failure mechanism (a) internal 

necking and (b) void sheeting. Adapted from Besson, (2010). 
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The GTN original model is able to predict fracture in ductile materials, 

especially when the damage mechanism is caused by a significant growth of the 

volume void fraction (Figure 5.1a) and has got limitations when the material 

damage is induced predominantly by the elongation of voids (see Xue, 2007; 

Nahshon et al.; 2008). 

In the following sections, mathematical aspects related to GTN model and 

shear mechanisms are discussed and an assessment between both mechanisms is 

performed, based on two calibration strategies. 

 

5.2    CONSTITUTIVE MODEL 

The model proposed by Gurson (1977) is one of the first micromechanical 

based models for the description of ductile damage and fracture, which introduces 

a strong coupling between plastic strain and damage, in the presence of finite 

strains. It mainly includes the description of the void growth stage and was based 

on the Rice and Tracey analysis of an isolated void (Rice and Tracey 1969). Gurson 

(1977) suggested the appearance of micro voids associated with a large plastic 

deformation as the internal degradation mechanism. The governing equations of 

the model were established by assuming a spherical cavity embedded in a cubic 

rigid-plastic matrix without hardening (see Figure 5.2) and use of the upper bound 

plasticity theorem. The degradation of the material is measured through the 

relation between the volume of the void and the volume of the representative 

volume element.   

  
     

    
  (5.1) 

where    represents the void volume fraction,       is the volume of the void and 

      denotes the volume of the representative volume element. 
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Figure 5.2: Schematic representation of the representative volume element with a 
spherical void (adapted from Gurson, 1977). 

 

The relationship between the degradation of the material micro structure, 

which is due to the presence of micro voids or the formation of new ones in the 

material matrix, and the macroscopic loading evolution can be illustrated by Figure 

5.3 for tensile dominant loads. In the elastic domain, the material is represented by 

stage (a), there is no appreciable change in the micro structure. Nevertheless, with 

the increase of the macroscopic load the nucleation of micro voids is trigged due to 

existence of localized plastic strain (stage b). In stage (c), the growth of micro voids 

is promoted by the high tensile hydrostatic stresses followed by coalescence of 

voids in stage (d). 

 

Figure 5.3: Schematic representation of the process of nucleation, growth, and 
coalescence of micro voids and the relationship with the macroscopic load 

(Adapted from Pineau & Pardoen, 2003). 
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The evolution of the volume void fraction predicted by Gurson´s model 

follows as a direct consequence of the requirement for mass conservation of a 

rigid-plastic material assuming plastic incompressibility. Hence, the density of a 

representative volume element of a material with voids (Figure 5.2) can be 

determined by: 

    

  
    

   (5.2) 

where,   represents the density of the    ,    represents the density of the 

matrix of the material and    is the volume of the matrix of the material. Thus, the 

relationship between the volume of the matrix of the material,   , and the void 

volume fraction,  , can be established by: 

  
    

 (   )  (5.3) 

Substituting Equation (5.3) into Equation (5.2), we have: 

    (   )  (5.4) 

The density rate of the representative volume element,  ̇, can be expressed as 

a relation between the density rate of the material matrix,  ̇ , and the volume void 

fraction rate,  ̇, by time differentiation of Equation (5.4): 

 ̇   ̇ (   )     ̇  (5.5) 

The matrix material is assumed to be plastically incompressible. In addition, 

the elastic volumetric strains are neglected by assumption. Therefore, the principle 

of mass conservation requires that  ̇   . Thus, substituting Equation (5.4) into 

Equation (5.5) and after some algebraic manipulations, the following expression 

can be obtained: 

 ̇   
 ̇

  
  

 ̇

 
(   )  (5.6) 

The principle of mass conservation establishes that the volumetric strain rate 

is determined by: 
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 ̇

 
   ̇    ̇

    ̇
   (5.7) 

where, the elastic and plastic strain rate contributions are represented by   ̇
  and 

  ̇
 , respectively. In Gurson´s model the matrix material is assumed to be rigid-

plastic, therefore, by disregarding the elastic contribution Equation (5.6) can be re-

written as: 

 ̇   
 ̇

  
   ̇

 (   )  (5.8) 

The previous equation is the most significant contribution to the degradation 

of a porous material and expresses the evolution law for the void volume fraction. 

The original yield function derived by Gurson (1977) for a void-matrix aggregate is 

expressed by: 

 (     )  (
 

  
)

 

       (
   

   
)        (5.9) 

where,   is the von Mises equivalent stress,    is the isotropic hardening rule, 

which can be defined as         , where   represents the thermodynamical 

force associated to the isotropic hardening state variable and    is initial yield 

stress. The pressure-sensitive yield function proposed by Gurson (1977) can 

alternatively be expressed by: 

 (     )    ( )  
 

 
{           (

  

   
)}  

   (5.10) 

where,    represents the second invariant of the deviatoric stress tensor and   is 

the hydrostatic pressure. 

According to the hypothesis of generalized normality, the plastic flow rule is 

given by  

 ̇   ̇
  

  
   ̇

    ̇
   ̇  

 

 
 ̇       (

  

   
)    (5.11) 

where the plastic strain rate tensor,  ̇ , involves two terms: the deviatoric,   ̇
 , and 

volumetric plastic strains,   ̇
 , and  ̇ represents the plastic multiplier. With the 

volumetric flow,   ̇
 

,  constitutive equation (Equation 5.11), it is possible to obtain 



127 

 

the evolution law for the void volume fraction,  ̇, after the substitution of    ̇
 

 in 

Equation (5.8):    

 ̇  (   )  ̇
  (    ) ̇      (

  

   
)  (5.12) 

5.2.1 Gurson–Tvergaard–Needleman (GTN)´s Model  

One of the shortcomings of the Gurson model is the fact that, whatever strain 

history the material might be subjected; no void volume fraction evolution will be 

predicted if the initial void ratio is zero. Therefore, in order to enhance the model, 

several mechanisms for damage nucleation have been proposed such that voids 

can nucleate depending on the strain history. One of the most well known 

nucleation laws was proposed by Chu & Needleman (1980) and latter used by 

Tvergaard–Needleman (1984) in the GTN model. The damage evolution is 

represented by three simultaneous or successive mechanisms: nucleation, growth 

and coalescence of voids. The effective porosity,   ,  is determined by the following 

bilinear function: 

   {

                            

   (
 

  
   )

(    )

(     )
     

     (5.13) 

where    represents the critical void volume fraction and    is the void volume 

fraction at fracture. The effective porosity,   , is obtained from both nucleation and 

growth mechanisms if the void volume fraction is less than the critical value,   . 

The coalescence mechanism becomes active when the void volume fraction is 

higher than the critical value,   . The void volume fraction rate,  ̇, is given by the 

sum of the nucleation and growth mechanism as: 

 ̇   ̇   ̇   (5.14) 

The nucleation mechanism can be driven either by plastic strain or hydrostatic 

pressure. The definition of the nucleation mechanism based on the equivalent 

plastic strain is given by:  

 ̇  
  

  √  
   [ 

 

 
(
 
 

   

  
)

 

]  ̇
 
  (5.15) 
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where,    represents the volume fraction of all particles with potential for 

microvoid nucleation,    and    are the mean strain/pressure for void nucleation 

and its standard deviation. The variable  
 

 represents the equivalent plastic strain 

and  ̇
 

 is the rate of the accumulated plastic strain. The nucleation mechanism only 

occurs if the hydrostatic pressure is greater than zero,    . If the hydrostatic 

pressure is less or equal to zero,    , the nucleation rate is equal to zero. The 

evolution of the growth mechanism in the GTN model is given by the same 

expression as the original Gurson model (see Equation 5.8).  

The yield function of the GTN’s model, which assumes isotropic hardening and 

isotropic damage, is expressed by: 

 (     )    ( )  
 

 
{     

       
     (

    

   
)}   

   (5.16) 

where the parameters   ,    and    are introduced to bring the model predictions 

into closer agreement with full numerical analyses of a periodic array of voids. 

5.2.2 Shear Mechanisms  
 

The original formulation of Gurson based models did not include shear 

effects, which excludes the possibility of predicting shear localization and fracture 

under conditions of low triaxiality. Under shear dominated loading conditions, the 

distortion of voids and inter-void linking promotes an effective increase in the 

material internal degradation and contributes to the material softening. Therefore, 

in order to improve Gurson based models predictive ability, under both zero and 

low levels of stress triaxialities, several researchers (Barsoum & Faleskog, 2007; 

McVeigh et al., 2007; Xue, 2008; Nahshon & Hutchinson, 2008; Butcher et al., 2009) 

have suggested the introduction of shear effects. The formulation of shear 

mechanisms, which can be based on geometrical or phenomenological 

considerations, resulted in evolutions laws that include the influence of the third 

invariant of the deviatoric stress tensor, the plastic strain tensor and its rate.  

The shear damage mechanism proposed by Xue (2007) is based upon the 

solution of McClintock et al. (1968) for the coalescence of holes in a shear band. 

Due to its geometrical and physical appeal, we will revise here the shear damage 
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mechanism proposed by Xue (2008) and also describe an extended version 

proposed by Butcher & Zhen (2009). The mechanism is based on geometrical 

considerations of a representative square cell, containing a circular void at the 

center, which is subjected to a simple shear strain (see Figure 5.4). The length of 

the cell is equal to L and the radius of the central void is given by R. When the cell 

structure is loaded, the void rotates and elongates in the preferred direction. Due 

to the requirement of volume conservation of the cell structure, Xue (2008) 

assumes that the relative position of the void does not change with respect to the 

cell (see Figure 5.4). As the shear strain increases, the distance between the free 

surface of the void and the boundary of the representative volume element 

decreases. Figure 5.4 shows the cell structure in the initial configuration (a) and in 

the deformed configuration (b). 

 

 

(a) (b) 

Figure 5.4. Void shear mechanism: (a) initial configuration; (b) deformed 
configuration (adapted from Xue, 2007). 

 

The minimum distance between the free surface of the void and the 

boundary of the    , which is represented by the parameter  , can be expressed 

by the relation between the length of the cell and the radius of the void (see Figure 

5.4a): 

  
 

 
    

(5.17) 

The application of a simple shear strain,  , leads to the appearance of a 

deformation angle,  , on the deformed configuration given by: 

α 
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        (5.18) 

The minimum distance at the deformed configuration can be related with the 

initial distance,  , and the deformation angle,  . In addition, it can also be related 

with the simple shear strain as: 

          √
 

    
   (5.19) 

An artificial strain can be defined (Xue, 2008), using the logarithmic 

definition of strain, which can be associated with the reduction of this minimum 

distance as: 

       
 

  
   √    . (5.20) 

The fracture initiation in a shear band, according to McClintock et al. (1968), 

can be defined by the boundary contact condition of the sheared void with the 

longitudinal direction of the shear band. For small void volume fraction, Xue 

(2008) expressed the failure macroscopic shear strain in the shear band as: 

           
 

  
   (5.21) 

Consequently, the damage associated with the shearing of the void,       , is 

defined by the ratio of the artificial and the macroscopic shear strain in a shear 

band (Xue, 2008): 

       
    

          
 

  √    

 
  

  (5.22) 

Xue (2008) performed a Taylor series expansion and simplified the 

expression of the artificial strain term to: 

     
 

 
    (5.23) 

The shear strain can be expressed as a function of the von Mises equivalent 

strain,   √    . Therefore, for simple shear and for small void volume fractions, 

Equation (5.22) can be approximated by: 
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√ 
 (  ⁄ )   

   (5.24) 

where        ⁄  is the void volume fraction of the cell in a two dimensional 

problem. For the three dimensional case, with a spherical void of radius   at the 

center of the representative cell of length  , the void volume fraction is expressed 

by          ⁄  for the cell. A similar three dimensional relation can also be 

obtained: 

       
 

 
(
 

 
)

(  ⁄ )

 (  ⁄ )   
   (5.25) 

The evolution of shear damage can be represented in the rate form as: 

 ̇         
       ̇ , (5.26) 

where    and    are geometrical parameters that can be defined for two or three 

dimensional problems. For a two dimensional problem,    
 

√ 
 and    (  ⁄ ) 

and for a three dimensional problem,    
 

 
(

 

 
)
(  ⁄ )

 and    (  ⁄ ). 

A modified shear damage expression was later derived by Butcher & Zhen 

(2009) that, contrary to Xue (2008), did not perform a Taylor series expansion of 

the artificial strain (Equation 5.20) and expressed the failure strain with the 

logarithmic definition as: 

       
    

          
 

  √    

  √ 
 ⁄

  (5.27) 

where the parameter   is the ligament size ratio defined for two or three 

dimensional problems, respectively, as: 

      ⁄  (
 

 
 

  

  
)

 
 
        ⁄  (

 

 
 

  

  
)

 
 
  (5.28) 

The parameters    and    are the void aspect ratios defined by: 
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   (5.29) 

where    and    represent the radii of the void in the direction   and  . The 

dimensions    and    are the length of the cell in the direction   and  . The ratios 

   and    are equal to one in Xue´s model (Xue, 2008), which implies that the 

rotation of the cell structure is proportional to elongation of the void. According to 

Butcher & Zhen (2009), these parameters can more generically be expressed as a 

function of the stress state and, as a result, the evolution of the ligament size ratio 

is related to the normal strains.  

Under the assumption of simple shear and small void volume fractions, the 

shear strain is related to the equivalent von Mises strain as   √     and the 

evolution of shear damage is given by: 

 ̇      
 

  √ 
 ⁄

(
    

      
 
)   ̇    (5.30) 

Butcher & Zhen (2009) have shown that the shear damage expression 

(Equation 5.27) complies with McClintock criterion while Xue´s expression 

(Equation 5.24) does not. In addition, it was emphasized that the simplifications 

proposed by Xue (2008) have a critical role on the shear damage criterion and 

evolution rule. 

In order to understand the role of the different shear damage evolutions, 

expressed by Equations 5.26 and 5.30, on a square cell subjected to a pure shear 

loading condition, we have coupled both evolutions with the GTN constitutive 

model. The results obtained from the numerical simulations for both models, 

which have exactly the same geometry and material properties, can be analyzed in 

Figure 5.5. It is possible to conclude that for the same applied displacement, the 

level of both equivalent plastic strain and shear damage predicted by Butcher and 

Zhen (2009) are significantly higher than Xue’s model. Therefore, Butcher’ model 

will predict failure before Xue’s model, being extremely conservative on the 

moment of crack initiation whenever shear effects are present.  
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(a) (b) 

Figure 5.5. Evolution of (a) the shear damage parameter and (b) the equivalent 

plastic strain by Xue and Butcher, coupled with the GTN’s model. 

 

Nahshon & Hutchinson (N&H) have also suggested a shear mechanism, based 

on phenomenological aspects that can be expressed by (see Nahshon et al, 2008): 

 ̇          
    

 
   (5.31) 

where,   is a material parameter and needs to be calibrated,    denotes the plastic 

strain tensor,   represents the deviatoric stress tensor,   is the von Mises 

equivalent stress and   represents the volume void fraction. According to Nahshon 

(2008) the term      can be replaced by     , which represents the plastic work. 

Hence, Equation 5.21 can be re-written as: 

 ̇          
    

 
      ̇

 
    (5.32) 

where, the term  ̇
 

 represents the equivalent plastic strain rate. 

Thus, the rate of the damage variable (Equation 5.14) can be re-written 

according to Equation 5.33.  

 ̇   ̇   ̇   ̇        (5.33) 

When either of shear mechanisms is introduced in the GTN original model in 

order to improve the ability to predict failure in dominant shear loading 

conditions, a so-called Lode angle function, which can assumes values        
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according to loading condition, needs to be introduced to generalize the shear 

damage evolution for arbitrary stress state. In predominant tensile load conditions, 

the function showed assumes a value equal to 0 and the shear mechanism is not 

active. However, when predominant shear load is presented, the function showed 

assumes a value equal to 1 or an intermediate value, allowing the activation of the 

mechanism. Thus, in Equations 5.26, 5.30 and 5.32 a Lode angle dependent 

function, which is represented by    is also included. 

5.2.3 Lode Angle Function  

The shear damage evolutions, which were described for a pure shear loading 

condition in Section 5.2.2, need to be generalized for arbitrary stress states. This 

can be accomplished with the introduction of a Lode angle dependence function. 

The Lode angle, which is associated to the third invariant of the deviatoric stress 

tensor, is an essential parameter in the characterization of the effect of the stress 

state on ductile fracture (Kim et al., 2003 and 2004; Bao and Wierzbicki, 2004; Gao 

et al., 2005; Barsoum and Faleskog, 2007a and 2007b; Bai and Wierzbicki, 2008; 

Gao et al., 2009). The Lode angle dependence function ranges between 0, for 

dominant tensile stress states, and 1, for shear dominant stress states. For 

intermediate values there is a combined stress state and the function should define 

the relative magnitude of each stress condition. The Lode angle dependence 

function proposed by Xue (2008) is defined by a linear expression of the 

normalized Lode angle, as: 

     | ̅|  (5.34) 

where    represents the so-called Lode angle function and  ̅ is the normalized 

Lode angle (see Equation 3.7). 

 An alternative Lode angle dependence function as been proposed by 

Nahshon & Hutchinson (2008), which discriminates between uniaxial and biaxial 

tension and expresses a quadratic relation with the normalized third invariant: 

       . (5.35) 

where   represents the normalized third invariant (see Equation 3.5). 

Expressions (5.34) and (5.35) can be used to activate the shear mechanisms, 
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described in Section 5.2.2, whenever shear effects are present. Figure 5.6 

represents the shape of both functions with regard to the third invariant of the 

deviatoric stress tensor. 

 

 

  
  

 

 

 

 
 

  

Figure 5.6. Evolution of the Lode angle functions,   , with regard to the normalized 
third invariant,  , proposed by Xue (2008) and by Nahshon & Hutchinson (2008). 

 

The shear damage evolutions, expressed by Equations 5.26, 5.30 and 5.32, 

can be rephrased for arbitrary loading conditions as: 

 

 ̇        (   
       ̇ ), (5.36) 

 ̇        [
 

  √  ⁄
(

    

      
 
)   ̇ ]  (5.37) 

 ̇             ̇
 
   (5.38) 

 

In Box 5.1, a summary of the GTN model extended with the shear 

mechanisms is presented. Details about how to determine the plastic flow rule and 

evolution equation for the internal variables can be found in Appendix “C”.  

Remark: In this study, the Xue shear damage evolution law (Equations 5.36) is 

redefined as a function of both equivalent plastic strain and its rate instead of the 

total strain and total strain rate. 
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Box 5.1. GTN model extended with shear mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3     NUMERICAL INTEGRATION ALGORITHM 

The constitutive equations of the GTN original model extended with the shear 

mechanisms, described in section 5.2 were integrated using an implicit solution 

based on the operator split methodology (see Simo & Hughes, 1998; De Souza Neto 

et al., 2008). This method consists of splitting the problem in two parts: an elastic 
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(i) Elasto-plastic split of the strain tensor :         
 

(ii) Elastic law :         

(iii) Yield function :  (     )    ( )  
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(iv) Plastic flow and evolution equations for   and   

where, 

 

(v) Loading/unloading criterion 

 ̇             ̇   . 
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predictor, where the problem is assumed to be elastic and, a plastic corrector, in 

which the system of residual equations comprising the elasticity law, plastic 

consistency and the rate equations is solved, taking the results of the elastic 

predictor stage as initial conditions. Straightforward (pseudo)-time discretization 

of the constitutive equations for the plastic regime, which are listed in Box 5.1, 

leads to the following system of non-linear residual equations: 

{
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 (5.39) 

which needs to be solved for   ,     ,      and     . In the previous system of 

residual equations, the terms   and   represent, respectively, the bulk and shear 

modulus. The terms    ,         and    are defined according to: 
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)     (5.40) 

       

 {
       

   (  | ̅   |)    ̅  
     ̅                 

                             (      
 )   ̅                     

 
(5.41) 

   
  

(      )
{                (

       

   
)

 
 

 
  [        

             (
       

   
)]}    

(5.42) 

Here, when the yield condition has been violated, the plastic corrector stage 

is initiated and the Newton- Raphson procedure is used to solve the non-linear 

residual system of equations. The Newton-Raphson procedure was chosen 

motivated by the quadratic rates of convergence achieved, which results in return 

mapping procedures computationally efficient (see Simo & Hughes, 1998; De 

Souza Neto et al., 2008). The residual system of equations in the linearized form 
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can be expressed by: 
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 (5.43) 

where, the terms      ( )⁄  represent the derivative of each residual equation 

with regard to the variables of the problem. Details about the determination of 

these derivatives can be found in Appendix “D”. The overall algorithm for 

numerical integration is summarized in Box 5. 2. 

 

Box 5.2. Fully implicit Elastic predictor/Return mapping algorithm for the GTN 

model extended with shear mechanisms. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

(i) Evaluate the elastic trial state: Given the incremental strain     and the state 
variables at   : 
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(iii) Return mapping (plastic step): Solve the system of equations below for 
  ,    ,     and     , using Newton-Raphson method.  
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Continue Box 5.2. 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

5.3.1 The consistent tangent operator 

Under the elastic loading condition, the tangent operator for this constitutive 

formulation is the standard linear elasticity tensor. Nevertheless, for the plastic 

step, the elasto-plastic tangent operator is obtained by the linearization procedure 

of the above system of residual equations. Hence, the first step for determining the 

operator is to differentiate the stress tensor updated expression:  

where, 
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(iv) Update the others state variables: 
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(v) Exit 
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           (5.44) 

After some algebraic manipulation, the above equation can be re-written in 

its differentiate form as: 

      
  

[      ]
       

        {
  

[      ]
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                     (5.45) 

The terms     and       can be obtained by the linearization procedure of 

the residual system of equations. After some algebraic manipulation, the term     

and       can be expressed by: 
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where, the terms      belong to the C matrix, which is the matrix obtained by 

inverting the linearized system of residual equations in order to each variable of 

the problem. Finally, the elasto-plastic operator is determined by: 

    
d    

d    
       

    (5.47) 

5.4     CALIBRATION PROCEDURE 

Regarding the determination of the material parameters for the GTN original 

model and the GTN model improved with shear mechanisms, two different 

calibration points are investigated. The material parameters obtained with the first 

calibration point are used to perform a comparative study between Xue’s (2008) 

and Nahshon’s (2008) shear mechanisms. In particular, the ability to predict the 

correct displacement and equivalent plastic strain at fracture as well as the correct 

potential location to crack formation. In addition, a second calibration point is used 

in order to assess the influence of the calibration point in the predictive ability of 

the coupled damage models.  
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The conventional cylindrical smooth bar specimen subjected to a tensile 

loading condition is used for the first calibration point and a butterfly specimen 

under a pure shear loading condition, is employed for the second calibration point. 

In both cases, the hardening law,   ( ), for the undamaged material is determined 

as well as the set of parameters required for the nucleation of micro voids 

[        ] and the critical value for the damage variable,   . Experimental data for 

a steel 1045 is used in both tensile and pure shear calibration conditions. Based on 

an inverse method and optimisation procedure, the material parameters are 

identified and used in the following simulations. 

5.4.1 Inverse method for parameter identification 

In this section, the procedure used for parameter identification is described 

based on a simple optimisation algorithm. The method starts from the definition of 

an objective function that can be expressed by: 

 (  )  √
 

 
∑(

    
   (  )    

   

  
   )

  

   

    (5.48) 

where    is the vector of variables of the problem,   represents the number of 

experimental points,   
    is the value of the experimental point,   

    is the value 

of the numerical point,   
    is the value of the numerical point determined by 

linear interpolation for a specific displacement. The optimisation procedure forces 

the numerical solution to be, as close as possible to the experimental results. In 

other words, the difference between numerical and experimental curves, which is 

measured by the objective function, is given by the sum of the differences between 

numerical and experimental forces to the square. During the parameter 

identification procedure, it is expected that the objective function,  (  ), is equal to 

zero, which means that the numerical curve is equal to the experimental curve. 

However, in practical situations, this ideal condition is never reached and a value 

very small for  (  ) is expected. Figure 5.7 represents the difference between 

experimental and numerical data for an optimisation procedure. 
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Figure 5.7. Optimisation procedure and difference between numerical and 
experimental data. Adapted from Trentin (2009). 

In a general approach, it is necessary to assign upper and lower values for the 

variables of the problem, where the optimisation procedure could be presented as: 
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    (5.49) 

In order to minimize the objective function, which is established for the two 

specimens under scrutiny, an optimization algorithm based on sequential 

quadratic programming is used (see Schittkowski, 2001). The method requires the 

determination of the derivative of objective function, with regard to the variable of 

the problem, to be used in the sensitivity analysis. Equation (5.50) was used for 

calculating the sensitivity matrix. 
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   (5.50) 

where, the term 
   

   

   
 is determined with the finite difference method. In this 

approach, the vector   , which represents the set of unknowns variables of the 

problem, is composed by the set of parameters {           }, where    represents 

the hardening law which is defined by   ( )           (    ). 
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5.4.2 Geometry and mesh definition 

In order to identify the material properties for the first calibration point, a 

classical smooth bar specimen is used and Figure 5.8a presents the dimensions 

employed. In order to trigger necking, a dimensional reduction of 5% in the central 

diameter of the specimen is used. Besides that, based on the experimental data, a 

gauge section of 20.6 mm is also used. The standard eight-noded axsymmetric 

quadrilateral element, with four Gauss integration points, is adopted. The initial 

mesh discretization is illustrated in Figure 5.8b, where only one symmetric quarter 

of the problem, with the appropriate symmetric boundary conditions imposed to 

the relevant edges, is modelled. A total number of 1800 elements have been used 

in the discretization of the smooth specimen, amounting to a total of 5581 nodes. 

 
 

  
(a) (b) 

Figure 5.8. (a) The geometry for the smooth bar specimen (dimension in mm). 

Reproduced from Teng (2008). (b) Finite element mesh, regarding the gauge 

section. 

 
For the second calibration point and for all numerical tests that will be 

presented to assess the influence of the calibration point, on the predictive ability 

of the constitutive models, a butterfly specimen is used. The specimen was initially 

designed by Bai (2008) and the geometry and general dimensions can be verified 

in Figure 5.9. In this case, a three dimensional finite element mesh of 3.392 twenty 

noded elements, with eight Gauss integration points, is used amounting to 17.465 

nodes is employed. 
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(a) (b) 

Figure 5.9. (a) The geometry for butterfly specimen (Dimensions in mm). 

Reproduced from Bai (2008). (b) Finite elements mesh for the butterfly specimen. 

 

5.4.3 First Calibration Point: smooth bar specimen (tensile loading test) 

In the present section, the hardening law,   ( ), for the undamaged material 

is determined as well as the set of parameters for the nucleation of micro voids 

{        } and the critical value for the damage variable,   . By performing the 

numerical simulation of experimental tests conducted by Bai 2008, the reaction 

versus displacement curve is determined as well as the stress-strain curve for an 

elasto-plastic model of von Mises type. The inverse method, described in the 

previous sections, is adopted in order to identify the material parameters for the 

coupled damage model by forcing the numerical solution to be, as close as possible 

to the experimental results. Figure 5.10a shows the reaction curve obtained for the 

model after the application of the inverse method. A good agreement between the 

experimental and numerical results can be observed. Furthermore, the critical 

volume void fraction is also determined from the numerical simulation at the point 

where the model attains the displacement to fracture, experimentally observed 

(see Figure 5.10b). The critical value obtained is         . 
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(a) (b) 

Figure 5.10. (a) Reaction curve. (b) Critical volume void fraction parameter. 

The results of the calibration procedure, in terms of stress-strain curve, can 

also be observed in Figure 5.11, where the curves, for uncoupled and coupled 

damage models, were presented. 

 

Figure 5.11. Stress-strain curves determined for an uncoupled and coupled models. 

 

The material properties and other parameters related to the micro void 

nucleation mechanism obtained by employing an inverse method are listed in 

Table 5. 1: 

Table 5.1. Materials properties and parameters related to the nucleation of 

micro-void mechanism, for steel 1045. Based on the first calibration point. 

Material                        (   )   

GTN                                              
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5.4.4  Second Calibration Point: butterfly specimen (shear loading test) 

In this calibration point, also the hardening law,   ( ), for the undamaged 

model is determined as well as the set of parameters for nucleation of micro void 

mechanism {        } and the critical value for the damage variable,   . The 

butterfly specimen is used here under a pure shear loading condition and the 

displacement to fracture was experimental determined by Bai (2008). The inverse 

method described in section 5.4.1 is also adopted, for the identification of the 

parameters by forcing the numerical results to be as close as possible to the 

experimental data. A critical damage value is obtained from the simulation, when 

the numerical displacement matches the experimental one for each shear 

mechanism and the results obtained for the second calibration can be observed in 

Figure 5.12. 

 

  
(a) (b) 

Figure 5.12. (a) Reaction versus displacement curve. (b) Shear damage parameter. 

 

The results of the calibration procedure for the stress-strain curve can also 

be observed in Figure 5.13, for the uncoupled and coupled damage models. The 

material parameters related to the micro void nucleation mechanism can be found 

in Table 5.2. 
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Figure 5.13. Stress-strain curves determined for the uncoupled and coupled 
models. 

 

Table 5.2. Material parameters related to the nucleation of micro-voids 

mechanism, for the steel 1045. Based on the second calibration point.  

Material                        (   )   

N&H                                              

Xue                                              

 
 
 
5.5     NUMERICAL RESULTS 

In this section, numerical simulations are carried out in order to assess the 

predictive ability of the GTN improved models, with regard to the determination of 

fracture onset, the correct displacement and the level of equivalent plastic strain at 

fracture. Therefore, both improved models are tested with the material parameters 

determined by the first and second calibration points (see Table 5.1 and 5.2). 

The numerical results were conducted following the same strategy. The 

simulation was performed until the damage variable of the improved GTN models, 

at any point in the specimen reaches the critical value listed in Table 5.1 and 5.2. 

Several numerical simulations with different loading conditions are conducted: 

pure shear, pure tensile and a combination of shear/tensile loading with an angle 

of prescribed displacement equal to 10°, 22° and 30°. The value of some 

parameters, such as, the equivalent plastic strain and displacement at fracture as 

well as the ability to predict the correct site to crack initiation are evaluated for 
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each calibration point. Tables 5.3 and 5.4 list the numerical results obtained after 

the numerical simulations for both calibration points. 

 

Table 5.3. Numerical results for butterfly specimen. Based on the first calibration 
point. 

Angle 
Experimental data Numerical results 

     ̅
         ̅        

0° 1.03 0.860 
N&H 1.0 1.03 0.57 0.00 0.00 

Xue --- 0.37 0.32 0.00 0.00 

10° 0.421 0.355 
N&H 1.0 0.60 0.47 0.12 0.23 

Xue --- 0.37 0.35 0.11 0.33 

22° 0,287 0.276 
N&H 1.0 0.36 0.37 0.25 0.45 

Xue --- 0.36 0.37 0.25 0.49 

30° 0,219 0.235 
N&H 1.0 0.27 0.33 0.33 0.65 

Xue --- 0.26 0.30 0.33 0.65 

90° 0,101 0.156 
N&H 1.0 0.12 0.28 0.61 0.75 

Xue --- 0.11 0.25 0.61 0.75 

 

Table 5.4. Numerical results for butterfly specimen. Based on the second 

calibration point. 

Angle 
Experimental data Numerical results 

     ̅
         ̅        

0° 1.03 0.860 
N&H 1.0 1.03 0.75 0.00 0.00 

Xue --- 1.03 0.60 0.00 0.00 

10° 0.421 0.355 
N&H 1.0 0.46 0.51 0.12 0.23 

Xue --- 1.00 0.70 0.11 0.33 

22° 0.287 0.276 
N&H 1.0 0.32 0.42 0.25 0.49 

Xue --- 0.39 0.53 0.25 0.49 

30° 0.219 0.235 
N&H 1.0 0.24 0.36 0.33 0.65 

Xue --- 0.27 0.45 0.33 0.65 

90° 0.101 0.156 
N&H 1.0 0.11 0.30 0.61 0.75 

Xue --- 0.12 0.35 0.61 0.75 

* Reference value of the equivalent strain at fracture, which was obtained using a combined 

experimental/numerical method with the von Mises model (Bai, 2008). 
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5.5.1 Equivalent plastic strain at fracture 

In order to discuss the values obtained by each model for the equivalent 

strain at fracture, in this section, the numerical results determined for this 

parameter are compared with the fracture criteria proposed by Bai & Wierzbicki 

(2008). The criteria can be geometrically represented by a three dimensional 

fracture surface, which defines the boundary between the fracture and no-fracture 

zone, on the space of equivalent plastic strain versus stress triaxiality average and 

Lode angle. This surface, which is based on boundary limit curves, requires the 

determination of six parameters that need to be calibrated for each specific 

material. The three dimensional fracture locus for the 1045 steel has been 

obtained by Bai and Wierzbicki (2008) that employed the material fracture data 

points obtained by Bao (2003) to interpolate the surface. This surface can be 

mathematically represented by the following expression, calibrated by butterfly 

specimens, (Bai and Wierzbicki, 2008): 

  ̂ (   )   [
 

 
 (                                   )                   ]  

 
 

  
 

 
 (                                   )                     . 

(5.51) 

The numerical results obtained with both shear mechanisms can be 

represented in this three dimensional space of equivalent plastic strain versus 

stress triaxiality average and Lode angle. Nevertheless, for the sake of clarity, we 

will represent the surface by its projections, for different values of the normalized 

Lode angle, on the space of equivalent plastic strain versus stress triaxiality. In 

Figure 5.14, three projections of the surface that correspond to normalized Lode 

angle values of 0.0, 0.5 and 1.0 are depicted together with the numerical results, 

obtained for the first and second calibration points. 
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Figure 5.14. Fracture locus for a 1045 steel on the space of equivalent plastic strain 

versus stress triaxiality average. 

Based on these results, it can be concluded that the numerical results 

obtained with the second calibration point agree better with Bai et al. (2008) 

fracture locus than the numerical results obtained with the first calibration point. 

 

5.5.2 Evolution of damage parameter 

In this section, the numerical results for the damage evolution are presented 

and discussed. The butterfly specimen was simulated for several loading 

conditions until the damage variable, at any critical point of the specimen, reached 
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the critical value. The numerically predicted displacements are listed in Table 5.5 

against the experimentally observed ones for the material properties determined 

from the first calibration point (see Table 5.1). In Figure 5.15, the evolution of 

damage (volume void fraction) at the critical point, which may be different for each 

model, is depicted for each loading condition. The following comments can be 

made: Under pure shear, the GTN model with Xue’s shear mechanism behaves very 

conservatively, reaching the critical damage value for a small displacement, around 

178% less than what is experimentally observed. On the other hand, for the GTN 

model with N&H shear mechanism under the same loading condition, the critical 

value was reached for a displacement very similar to the experimental data. For a 

combination shear/tensile of 10 degree, different critical damage points for both 

shear mechanisms were verified. The surface of the critical zone was indicated by 

Xue and the centre of the thickness by N&H (see Figure 5.17). According to the 

evolution of the damage parameter, regarding these critical points, Xue has 

predicted the beginning of failure for a displacement 14% less than the 

experimental data and N&H for a displacement 30% higher (see Figure 5.15). For 

the other two combinations of loading conditions studied (22° and 30°), both shear 

mechanisms have reached the critical damage for displacements around the same 

value and both are higher that the experimentally observed. Under a pure tensile 

loading (90°), Xue shear mechanism behaves more accurate than N&H mechanism. 

 

Table 5.5. Error between experimental and numerical displacement at fracture. 

Material properties determined from the first calibration point. 

Loading 

condition 
   experimental 

   numerical Error % 

N&H Xue N&H Xue 

0° 1.03 1.03 0.37 0 -178 

10° 0.421 0.60 0.37 30 -14 

22° 0.287 0.36 0.36 20 20 

30° 0.219 0.27 0.26 19 16 

90° 0.101 0.12 0.11 16 8 
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Pure shear 0° Combined shear/tensile 10° 
  

  
Combined shear/tensile 22° Combined shear/tensile 30° 

  

 
Pure tensile 90° 

Figure 5.15. Evolution of the damage parameter. Based on the first calibration 

point. 
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Following a similar approach, we will now assess the predictive ability of 

both models, using the material properties obtained from the second calibration 

point. Focus will be placed on the evolution of damage and predicted displacement 

at fracture. For a loading combination of shear/tensile with an angle of 10°, it was 

found that different critical points are predicted by each shear mechanism. Xue’s 

shear mechanism indicates the surface and N&H ‘s shear mechanism indicates the 

centre of the specimen (see Figure 5.18). Xue’s shear mechanism, in this loading 

scenario, behaves very poorly, with a 58% of error in the predicted displacement 

at fracture. 

For the other loading conditions, N&H’s shear mechanism has indicated the 

displacement at fracture very similar to the experimental observation. Table 5.6 

presents the values of displacement at fracture predicted by both shear 

mechanism, and the experimental data. 

Table 5.6. Error between experimental and numerical displacement at fracture. 

Regarding the second calibration point. 

Loading 

condition 
   experimental 

   numerical Error % 

N&H Xue N&H Xue 

0° 1.03 1.03 1.03 0 0 

10° 0.421 0.46 1.00 8 58 

22° 0.287 0.32 0.39 10 26 

30° 0.219 0.24 0.27 9 19 

90° 0.101 0.11 0.12 8 16 

 

Figure 5.16 presents the evolution of both damage models, until they reach 

the critical value. Based on the above numerical results, it can be concluded that 

the N&H’s shear mechanism has presented the best agreement with experimental 

results when the material properties are obtained from the second calibration 

point. For this calibration point, the shear mechanism proposed by N&H has got a 

maximum error of 10%. However, analysing the results of Xue’s shear mechanism 

with both calibration points, it is not possible to claim that one point is better than 

the other. For the second calibration procedure, the mechanism has got a 

maximum error of 58% versus 178% for the first calibration point. Nevertheless, 
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for the other loading conditions, the results for the first calibration procedure were 

in closer agreement with experimental results. 

  
Pure shear 0° Combined shear/tensile 10° 

  

  
Combined shear/tensile 22° Combined shear/tensile 30° 

  

 
Pure tensile 90° 

Figure 5.16. Evolution of the damage parameter. Based on the second calibration 

point. 
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5.5.3 Determination of fracture onset 

Another important aspect to be analyzed, in order to validate the accuracy of 

both shear mechanisms using two different calibration points, is the ability to 

predict the correct fracture location. Reis et al. (2010) and Malcher et al. (2012) 

have shown that the shear mechanisms already proposed in literature, fail in the 

prediction of the correct location to crack formation when combined loading 

condition is applied. Based on experimental tests performed by Bai (2008), using 

the butterfly specimen, it can be observed that in pure shear loading condition, the 

micro crack is initially formed in the surface of the critical zone. However, when 

combined shear/tensile loading condition is applied, the crack is formed in the 

middle of the thickness and grows toward the surface of the critical zone. Figure 

5.17 and Figure 5.18 present the contour of the damage parameter at fracture for 

both calibration points. 

It can be observed that the damage contour plots obtained with the second 

calibration procedure were in closer agreement with experimental evidence than 

the contours obtained with the first calibration. Furthermore, the maximum value 

of the damage parameter is much localized in a specific zone.  Nevertheless, Xue’s 

shear mechanism fails the prediction for combined shear/tensile of 10°, indicating 

the surface of the specimen as the potential site to fracture onset, which is in 

disagreement with experimental observation.  
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Figure 5.17. Contour of the damage parameter for both shear mechanisms. Based 

on the first calibration point. 
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Figure 5.18. Contour of the damage parameter for both shear mechanisms. Based 

on the second calibration point. 
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5.6    CONCLUSIONS 

In this chapter, an assessment of two different shear mechanisms was 

performed using the set of material parameters, calibrated in two different points. 

A specimen that promotes high stress triaxiality as well as a specimen under a 

pure shear loading condition were chosen to perform the calibration procedure. 

The material properties obtained from both calibration specimens were then used 

to simulate the material behaviour under several loading scenarios. The evolution 

of the equivalent plastic strain, the damage parameter and displacement at 

fracture were analyzed as well as the ability to predict the correct site to crack 

initiation. The results obtained, highlighted that for coupled damage models, the 

specimen chosen for the calibration of the material properties has a great influence 

on the numerical results. The accuracy of the coupled damage models is strongly 

dependent on the calibration point and the best performance of these models is 

found when the external loading condition applied is close to the loading condition 

selected for the calibration point. For these analyses including all numerical 

results, the second calibration point has the best agreement with experimental 

results and can be suggested for use when dominant shear loading conditions are 

present. In addition, the N&H’s shear mechanism is in closer agreement with 

experimental observation, regarding a combination of 10 degrees between shear 

and tensile loading, which cannot be observed by Xue’s shear mechanism. 
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CHAPTER 6 
 

An Extended GTN Model for Ductile Fracture under 
High and Low Stress Triaxiality 

In this chapter, an extended GTN model for the prediction of the fracture location 

under low level of stress triaxiality is proposed. In the new micromechanical 

damage model, two distinct damage parameters are introduced as internal 

variables and an effective damage is defined as a sum of both contributions in a 

post-processed step. The first damage parameter is established according to 

Gurson’s original model and the volume void fraction is defined, based on 

conservation mass law. This damage contribution is able to capture spherical void 

growth, which plays the main role when dominant tensile loading conditions are 

present. In addition, a second damage parameter is proposed to account for shear 

effect, based on geometrical and phenomenological arguments. This variable is a 

function of the equivalent plastic strain, Lode angle and stress triaxiality. 

Regarding its formulation, the shear mechanism is independent of the volume void 

fraction and requires a new nucleation of micro-defects law to trigger the shear 

growth contribution. This mechanism is able to capture elongated void growth, 

which is present in pure shear and combined shear/tensile or shear/compression 

loading conditions. Both damage parameters are coupled in the constitutive 

formulation in order to affect the hydrostatic stress component and the deviatoric 

stress contribution, respectively. This chapter is organized as follows: In the first 

part, a review of the Gurson model and its most well known version is done. After 

that, the new formulation is discussed and an implicit numerical integration 

algorithm is derived, based on the operator split methodology, as well as the 

calibration of material parameters. Numerical tests are performed for a butterfly 

specimen using two types of materials, aluminum alloy 2024-T351 and steel 1045, 

for a wide range of stress triaxiality     ⁄      ⁄ . The behavior of the internal 

variables is analyzed such as, the evolution of both damage parameters, the 

evolution of the equivalent plastic strain, the force versus displacement curve and 

the contour of the effective damage parameter. The numerical results are 
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compared with experimental evidence and show that the present formulation 

performs well, with regard to the prediction of the correct fracture location, the 

determination of the displacement and the equivalent plastic strain at fracture 

under low level of stress triaxiality. 

6.1 INTRODUCTION  
 

Due to the shortcomings observed on the GTN model in Chapter 4 and the 

limitations of the enhanced GTN models presented in Chapter 5, in this chapter, a 

new extension to the GTN model is proposed in order to improve the ability to 

predict the correct fracture location and determine the internal parameters at 

fracture. A new independent damage parameter is suggested to capture the 

elongation of micro-defects and coupled to the constitutive equations to affect only 

the deviatoric stress component. A nucleation of general micro defects is 

introduced to trigger the shear mechanism which gives more accuracy to the 

model in the prediction of ductile failure under mixed loading condition.  

The great majority of engineering alloys contains several populations of 

inclusions corresponding to different length scales. Typically, it is possible to 

distinguish two main populations: one composed by primary inclusions, which are 

large particles embedded in the matrix, and one composed of secondary inclusions 

(or second phase particles), which can be 10-1000 orders of magnitude smaller. 

The phenomenon of ductile failure is usually induced by primary inclusions and 

second phase particles where micro-voids nucleate either by decohesion of 

inclusions (or second phase particles) from the surrounding matrix of by fracture 

of inclusions. The nucleated damage grows consistently with the applied stress 

state and the material degrades rapidly with the coalescence of multiple damage 

sites.  

 
 

     (a) 

 

(b) 

Figure 6.1. Schematic representation of ductile failure micro mechanisms: (a) 

internal necking and (b) void sheeting (Adapted from Besson, 2010). 
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Two ductile failure micro mechanisms have be identified: 

(a) Failure by internal necking where large primary voids nucleate, grow and 

coalesce promoting the necking and failure of the inter-void ligaments (see 

Figure 6.1a). This mechanism is associated with high triaxiality loading; 

(b) Failure by void sheeting where tiny secondary voids are nucleated due to a 

process of shear localization linking larger voids (see Figure 6.1b). This 

mechanism is associated with low triaxiality loading. 

 

6.2 EXTENDED CONSTITUTIVE FORMULATION  

Due to the limitation of Gurson based models, in the prediction of fracture 

onset under conditions of low stress triaxiality, several researchers (Barsoum & 

Faleskog, 2007; McVeigh et al., 2007; Xue, 2008; Nahshon & Hutchinson, 2008) 

have proposed the introduction of shear effects (see Section 6.3.3) on the 

formulation. Although the results obtained with the modified GTN models (Xue, 

2008; Nahshon & Hutchinson, 2008) have shown improvements in the prediction 

of damage, it has also been observed (Reis et al., 2011; Malcher et al., 2012), that 

both models have inherent limitations. In particular, the prediction of the location 

of fracture, the displacement to fracture and the equivalent plastic strain to 

fracture, for combined stress states, is not adequate. Therefore, in order to 

overcome these shortcomings, in this contribution, a new extended GTN model is 

proposed that incorporates a new nucleation law for second-phase particles, the 

yield surface is modified to include two distinct damage mechanisms (volumetric 

void growth and shear damage), a modified Lode angle dependence function is 

introduced and a new criterion for coalescence is proposed.     

6.2.1 Nucleation mechanism 

The nucleation of voids associated with the GTN model, described by 

Equation (5.15), was proposed by Chu & Needleman (1980). This specific form for 

the nucleation of primary voids is strain rate controlled and was introduced on a 

purely phenomenological basis. Nevertheless, as described previously, engineering 

alloys loaded under shear conditions create localization bands due to the 

nucleation of secondary voids through a void sheeting mechanism. Although, 

secondary nucleation might be hard to detect in some materials, we will introduce 
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here a new independent nucleation mechanism that triggers void sheeting and 

localization. This nucleation mechanism is a result of second-phase particle 

debonding and cracking.  

Following the same approach of Chu & Needleman (1980), we consider a 

normal distribution of all second-phase particles with potential for nucleation as:  

 ̇  
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    (6.1) 

where    represents the fraction of all second-phase particles with potential for 

nucleation,   
  and   

  are the mean strain for second-phase nucleation and its 

standard deviation. This set of parameters {     
    

 } needs to be calibrated under 

a pure shear loading condition. The calibration of material parameters will be 

discussed latter in a specific section. 

The extended GTN model, proposed in this chapter, incorporates two 

independent nucleation mechanisms. The first one, which is the conventional 

nucleation mechanism of the GTN model (Equation 5.15), triggers the evolution of 

the void volume fraction. The second, described by Equation (6.1), triggers the 

evolution of the shear mechanism. The activation of these nucleation mechanisms 

under pure volumetric and shear conditions is relatively straightforward to 

establish. Nevertheless, under arbitrary stress states that may include 

combinations of tensile/shear or compressive/shear is not so easy to define. It is 

necessary to couple both mechanisms and also establish their relative magnitude. 

Here, we introduce the Lode angle function (see section 5.2.3),   , to combine both 

nucleation mechanisms. Therefore, Equation (5.15) and Equation (6.1) are re-

defined as:        
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Under pure tensile loading conditions, the function    is equal to zero and 

only primary nucleation of voids occurs (Equation 6.2). For pure shear loading 

conditions, the function    is equal to one and only secondary nucleation occurs 

(Equation 6.3). For combined tensile/shear stress states, both mechanisms are 

active and the Lode angle function defines the relative importance of each 

component. Finally, if a combination of shear/compressive conditions is present 

there is no nucleation of primary voids and secondary nucleation takes place with 

the function    defining the relative magnitude.  

6.2.2 Incorporation of Shear Effects  

As mentioned previously, several modified versions of the Gurson model, 

which include damage growth under low triaxiality straining for shear dominated 

stress states, have been proposed in the literature (Barsoum & Faleskog, 2007; 

McVeigh et al., 2007; Xue, 2008; Nahshon & Hutchinson, 2008). Nevertheless, the 

incorporation of shear effects on the Gurson model has been mainly accomplished 

through the introduction of additional terms on the evolution of the void volume 

fraction,  ̇, as: 

 ̇   ̇   ̇    ̇   (6.4) 

where the term  ̇  does not represent a physical value of the porosity but ensures 

the detrimental effect of void distortion and inter-void linking, associated with low 

triaxiality, in the material. Therefore, the void volume fraction,  , in the modified 

versions of Gurson´s model, does not represent the plastic volume change of the 

material as in the original Gurson model. Alternatively, this scalar variable,  , 

measures the total accumulation of different types of damage in the material in an 

average sense. 

In contrast with this approach, in this work, we use two separate damage 

variables. The first one is the evolution of the volume void fraction employed in the 

GTN model, rewritten here with appropriate modifications, as: 
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The second variable is the evolution of damage due to shear effects, which is 

defined by an independent scalar variable, as: 
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       (6.6) 

where  ̇ represents the evolution of the shear damage variable,  ̇  represents its 

nucleation, which was introduced in Equation (6.3), and  ̇      is the evolution of 

shear effects that can be defined based on geometrical considerations (see 

Equations 5.36 and 5.37) or phenomenological considerations (see Equation 5.38). 

The parameter    is a numerical constant, calibrated for a specific material, which 

defines the magnitude of the damage growth rate in shear. 

The extended GTN model proposed here has two scalar damage variables: a 

volumetric damage component characterized by the void volume fraction,  , and a 

deviatoric damage component described by shear damage,  . Each of these 

variables will be coupled with a specific component of the stress tensor: the 

hydrostatic pressure,  , will be related with the void volume fraction,   and the 

deviatoric component of the stress tensor,  , will be associated with the shear 

damage variable,  . The yield function of the model is therefore, defined by the 

following equation: 
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According to the principle of maximum dissipation, the yield function is taken 

as the dissipation potential of the model. Therefore, the evolution law for the 

plastic flow, assuming the hypothesis of generalized normality, is given by:  
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where  ̇ represents the plastic multiplier,   represents the deviatoric component 

of the stress tensor and   is a second order identity tensor. From the previous 

equation, it is possible to observe that each component of the plastic strain rate 

tensor is affected by a different damage variable. In addition, only the deviatoric 
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plastic strain rate,   ̇
 

, was altered, when compared with the Gurson model 

(Equation 5.16), due to the introduction of a distinct shear damage variable. 

Remark: Due to the fact that we have proposed two distinct damage variables in 

the formulation of the extended GTN model, the evolution of the volumetric plastic 

strain,   ̇
 , predicted by the model (see Equation 6.8) will be different from 

previously proposed modifications of the Gurson model (Xue, 2008; Nahshon & 

Hutchinson, 2008). In these models, the volumetric plastic strain is coupled with 

an effective porosity (or damage variable),  , which includes both the volume void 

growth and shear damage. In addition, in these models, the deviatoric plastic strain 

rate,   ̇
 , is not affected by the material degradation. 

The evolution law for the hardening variable, R, is determined by performing 

the derivative of the yield function with regard to the hardening force,  : 
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where the term (     ) is introduced to account for the softening effect on the 

material evolution law. The equivalent plastic strain rate, for the present model, 

can be determined from: 
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It is important to mention that the extended GTN model, described by the 

previous set of equations, does not change the original model under stress states 

where shear effects are not present. The extension only modifies the predictions 

for stress states that include shear, i.e. for problems with a Lode angle function,     

different from zero.     

6.2.3 Damage Evolution  

The evolution law for the volume void fraction,  ̇  has got two components 

(see Equation 6.5): nucleation and growth. The most significant contribution to the 

evolution of spherical voids is the growth mechanism,  ̇ , which depends on the 
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evolution of the  volumetric plastic strain,   ̇
 

, established on Equation (6.8). 

Therefore, with the substitution of the rate of the volumetric plastic strain,   ̇
 , on 

Equation (6.5) we obtain the evolution law for the void volume fraction,  ̇  of the 

model:  
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Two possible evolution laws for the shear damage, based on geometrical 

considerations, were described by Equations (5.36) and (5.37). The evolution of 

damage in the material inevitably reduces the overall elastic properties. However, 

this effect is small when compared to the influence of damage on the plastic 

behavior. Therefore, the evolution of damage due to shear effects, employed in this 

work, will neglect the influence of damage on elasticity as is usually done in this 

type of model. The shear damage evolution laws are redefined as a function of both 

the accumulated plastic strain  
 
  and the rate of the accumulated plastic strain,  ̅̇   

instead of the equivalent strain,    , and equivalent strain rate,   ̇   
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In addition, due to the introduction of two separate damage variables, the 

shear damage evolutions described by Equations (5.36) and (5.37), for the present 

model, do not depend on the current void volume fraction,  , but on the current 

value of the shear damage variable, D. With the substitution of the equivalent 

plastic strain rate,  ̅̇ , established on Equation (6.10), on the shear damage 

evolution law based on Xue’s work (Equation 6.12), we obtain: 
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On the other hand, with the substitution of the equivalent plastic strain rate, 

 ̅̇ , established on Equation (6.10), on the shear damage evolution law based on 

Butcher´s work (Equation 6.13), we obtain: 
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}   (6.15) 

 

6.2.4 Modified Lode Angle Dependence Function  

The Lode angle dependence functions proposed by Xue (2008) and Nahshon 

& Hutchinson (2008), described in section 5.2.3, were introduced to generalize a 

pure shear damage evolution for arbitrary stress states. They critically include the 

effect of the deviatoric stress tensor through the Lode angle. The relative 

magnitude of shear and volumetric effects under combined stress states is defined 

by these functions, whose behavior was presented in Figure 5.6. Nevertheless, in 

this contribution, we suggest the introduction of the stress triaxiality parameter,  , 

defined by Equation (3.2) on the definition of the Lode angle dependence function, 

  . This modification, which can be performed on either of the functions described 

in section 5.2.3, has the following exponential form: 

  
 (   )  [  ( )]

 
| |      (6.16) 

where   
  is the modified function,   represents the stress triaxiality and   is a 

numerical constant that needs to be calibrated for each material. If either the Lode 

angle dependence function proposed by Xue or Nahshon & Hutchinson,     is 

selected; the modified function is expressed by: 

  
 (   )  [  | ̅|]

 
| |   [  |  

 

 
    ( )|]

 
| |  

  (6.17) 

 

  
 (   )  [    ]

 
| |    (6.18) 

Figure 6.2 illustrates the behavior of the original functions (Equations 5.34 

and 5.35) on the space of {      } and Figure 6.3 represents the behavior of the 

modified function (Equations 6.17 and 6.18)  on the same space.  
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(a) (b) 

Figure 6.2. Three dimensional representation of the Lode angle functions,   : (a) 

Xue´s model (b) Nahshon & Hutchinson´s model. 

 

The influence of stress triaxiality will be dominant whenever the value of 

stress triaxiality is within the range of [   ⁄    ⁄ ]. 

 

  

(a) (b) 

Figure 6.3. Three dimensional representation of the modified Lode angle 

dependence function,   
 : (a) Xue´s model (b) Nahshon & Hutchinson´s model. 

 

In order to analyze the influence of the new exponential term on the Lode 

angle dependence function, let us restrict ourselves, for instance, to the function 

described by Equation (6.17) that was proposed by Xue (2008). The constant   

introduced in the exponent can be better understood through the analysis of 
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Figures 6.4 and 6.5. Figure 6.4 illustrates the shape of the modified Lode angle 

function,   
   when the stress triaxiality is zero,      and we assign different 

values to the constant  . If the constant is equal to one,    , the value of the 

exponent will be equal to 1 (since the stress triaxiality is zero) and we obtain the 

same evolution for the modified Lode angle function as the original one (see Figure 

6.2). For values of constant, k, higher than unity, the modified Lode angle function 

will be higher than the original function. If the value of the constant, k, is smaller 

than 1 but higher than zero, the modified Lode angle function will be lower than 

the original function.  

 

 

  
  

 

 

 

 

 

  

Figure 6.4. Influence of the constant   on the behavior of the function   
  with 

regard to the third invariant fixing the stress triaxiality to zero (   ). 

 

Figure 6.5 illustrates the shape of the modified Lode angle function,   
   when 

the normalized third invariant is near of zero, or in other words, when dominate 

shear load is presented  and we assign different values to the constant  . If the 

constant,  , is equal to zero, it is possible to appreciate the influence of the stress 

triaxiality,    on the modified Lode angle function.   It can be observed that for high 

values of the parameter,  , the modified Lode angle function,   
   is less affected by 

both third invariant and stress triaxiality. Nevertheless, for low values of the 

constant,  , the impact of the value of the parameters is very significant. Therefore, 

we recommend that the range of this value should be defined within the interval 

[      ⁄ ]. 
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Figure 6.5. Influence of the constant   on the behavior of the function   
  with 

regard to stress triaxiality. 

 

Figure 6.6 also presents the influence of the parameter   on the global shape of 

the function   
 . In particular, Figure 6.6 (a) represents the original Lode angle 

function (without the introduction of the dependence of stress triaxiality) 

proposed by Xue (2008) and the set of Figures 6.6 (b)-(c)-(d) represent the global 

shape of the modified function for different values of the parameter  . When the 

value of   is low, we have a stronger dependence on the stress triaxiality and when 

  is high, the modified function is less dependent on stress triaxiality, recovering in 

the limit the original Lode angle function. 
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(a) (b) 

  
(c) (d) 

Figure 6.6. Behavior of the modified Lode angle dependence function   
  for 

different values of  : (a) without dependence; (b)    ; (c)      ; (d)      . 

 

6.2.5 Coalescence Criterion  

The definition of a criterion for void coalescence is extremely important for 

the prediction of fracture onset and for the simulation of crack formation and 

propagation. The simplest criterion for void coalescence is to assume a constant 

critical value of the void volume fraction,   . Once this value is reached, the 

mechanism of coalescence accelerates the rate of increase of the void volume 

fraction,  ̇, which will lead to final failure. The void coalescence process can be 

simulated by the function,   , introduced by Tvergaard & Needleman (1984) 

described by Equation (5.13). This criterion has been followed by several authors 

(Needleman &Tvergaard, 1987; Xia et al., 1995; Faleskog et al., 1998). 

Nevertheless, further research on the topic focused on whether the volume 

fraction of voids could be regarded as a constant for different loading conditions. 
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Several researchers (Berzerga et al., 1999; Zhang et al., 2000; Pardoen & 

Hutchinson, 2000; Kim et al., 2004) employing unit cell models have shown that 

the void volume fraction of voids,   , is not sufficient to describe the initiation of 

fracture and established that it depends on several factors, such as the void shape 

and spacing, stress triaxiality, material hardening, etc. Recently, criterions based 

on either the effective strain or effective stress has been proposed to trigger the 

coalescence of voids. In particular, Gao et al. (2009) employed the Gologanu-

Leblond-Devaux model (1985), with the modification proposed by Pardoen & 

Hutchinson (2000), to describe void growth and the macroscopic plastic response 

of cell elements containing non-spherical micro voids. They concluded that when 

the macroscopic effective strain of the element reaches a critical value, void 

coalescence occurs. On the other hand, Jackiewicz (2011) has proposed a 

coalescence criterion based on the assumption that a singular value of the effective 

stress triggers the coalescence of micro voids in materials.  

In the present model, we have used two separate scalar damage variables, 

namely the void volume fraction,  , and the shear damage variable, D. Therefore, 

we will have two distinct critical values: the critical void volume fraction,   ,  which 

is the critical void volume fraction employed in the GTN model, and the critical 

shear damage value,   , which is regarded as a material constant that needs to be 

obtained. Each of the critical values will have to be determined under different 

conditions: the critical void volume fraction,   , will be obtained from a specimen 

subjected to tensile dominant loading conditions (associated with high triaxiality) 

and the critical shear damage value,   , will be obtained from a specimen subjected 

to a pure shear loading condition (associated with low triaxiality). More details will 

be given on section 6.4.  

The coalescence criterion proposed here introduces an effective damage 

variable,    , which is conveniently normalized, to combine both critical damage 

parameters (   and   ). The determination of fracture onset is established 

whenever the effective damage variable,      reaches unity. 
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 (6.19) 

The coalescence criterion based on the effective damage,    ,  has three 

possible cases: 

- Under generalized tension (  
   ), where the spherical void growth drives 

the damage evolution, the effective damage is given by the ratio    ⁄  and 

fracture onset is predicted when the void volume fraction,    reaches the 

critical volume fraction,   ; 

- Under generalized shear (  
   ), where the distortion of  voids and inter-

void linking promotes damage evolution, the effective damage variable is given 

by the ratio    ⁄  and fracture is predicted when the shear damage variable,    

attains the critical shear damage,   ;  

- Under combined stress states, both the void growth under hydrostatic tension 

and shear localization compete with each other and the prediction of fracture 

onset is a combination of both contributions (   ⁄      ⁄ ). In addition, in 

order to account for stress multiaxiality, we will introduce an additional term  

(      ⁄ ) in the definition of the effective damage variable. This term will 

accelerate the prediction of fracture onset.   

The effective damage variable is evaluated in the model in a post processed 

manner and does not affect the evolution of the two independent scalar damage 

variables. Critically, the criterion proposed allows fracture initiation at different 

values of the void volume fraction,  , and at different values of the shear damage 

variable, D. Furthermore, in the case of axsymmetric uniaxial tension, this criterion 

(employed in conjunction with the extended GTN model proposed) recovers the 

original GTN model criterion with critical    as a particular case, where   
    and 

the damage shear evolution is zero. 

In Box 6.1, the basic constitutive equations and evolution laws for the 

internal variables and damage are summarized: 
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Box 6.1. GTN’s extended modified model including nucleation, growth and shear 
effects. 
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(i) Elasto-plastic split of the strain tensor 

(ii) Elastic law 

(iii) Yield function 

(iv) Plastic flow and evolution equations for  ,   and   

where, 

 

and, 
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(v) Loading/unloading criterion 
 

 ̇             ̇    
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6.3 NUMERICAL INTEGRATION ALGORITHM  

In this section, the numerical solution strategy adopted to perform the 

numerical simulations is summarized. The algorithm developed is based on 

operator split methodology which is especially suitable for the numerical 

integration of the evolution problem and have been widely used in computational 

plasticity (see Simo & Hughes, 1998; De Souza Neto et al., 2008). The model was 

implemented in a quasi-static finite element framework based on the infinitesimal 

strain theory. The extension of the model to the finite strain range was done by 

adopting the well established multiplicative hyperelasto-plastic framework (Peric´ 

et al., 1992; Eterovic & Bathe, 1990). 

Let us consider what happens to a typical Gauss point of the finite element mesh 

within pseudo-time interval [  ,     ]. Given the incremental strain,   , and the 

values of   ,   
 ,   ̅

 ,   ,    and    at time   , the numerical integration algorithm 

should obtain the updated values at the end of the interval,     ,     
 ,   ̅  

 ,     , 

     and     , in a manner consistent with the constitutive equations of the model. 

 

6.3.1 The Elastic Trial Step  

The first step in the algorithm is the evaluation of the elastic trial state, where 

the increment is assumed purely elastic with no evolution of internal variables. 

The elastic trial strain and trial state variables are given by: 

    
          

     ;   ̅  
          ̅

  ;     
         

(6.20) 

    
         ;     

         

The corresponding elastic trial stress tensor is computed 

    
             

           (6.21) 

where    is the standard isotropic elasticity tensor. Equivalently, in terms of stress 

deviator and hydrostatic pressure, we have 

    
              

               
             

          (6.22) 
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where       
        is the deviatoric elastic trial strain tensor and       

        is the 

volumetric elastic trial strain. The material constants   and   represent the shear 

and bulk moduli.  

The trial yield stress is defined, in this case, as a function of the internal 

hardening variable at time   : 

  
        (  )                  (6.23) 

where    is the thermodynamical force  associated with the isotropic hardening 

internal variable,   . 

The next step of the algorithm is to check whether     
      lies inside or outside 

of the trial yield surface. With variables    ̅          frozen at time    we 

compute: 
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(6.24) 

If         , the process is indeed elastic within the interval and the elastic 

trial state coincides with the updated state at     . In other words, there is no 

plastic flow evolution within the interval and the trial state is equal to real state, 

 

( )    ( )   
      .  (6.25) 

Otherwise, if         , it is necessary to apply the plastic corrector or return 

mapping algorithm whose derivation is described in the following. 

 

6.3.2 The Plastic Corrector Step or Return Mapping Algorithm  

Following a straightforward specialization of standard return mapping 

procedure for the present constitutive equations, leads to the numerical 

integration of the evolution equations for   
 ,   ̅

 ,   ,    and    having the trial state 

as the initial condition. The discretization of the elastic strain tensor reads: 
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With the application of Hooke’s Law to the above expression, it is possible to 

determine the evolution of the stress tensor: 
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Equation (6.27) can be split into a deviatoric and a hydrostatic contribution. 

The updating relation for each component is given by: 
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Furthermore, the discrete counterparts of the other variables of the problem read: 
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where the incremental shear damage component,        , can be either defined by 

Equation (6.14) or (6.15). Due to the fact that the Lode angle dependence function 

proposed by Nahshon & Hutchinson (2008) is continuous and does not have 

singular points (see Figure 6.2), it is more convenient for numerical 

implementation. Therefore, in our derivations, we will use this function. 



178 
 

Furthermore, the updating relation for the equivalent plastic strain can be 

obtained from: 
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(6.31) 

The above equations must be complemented by the so-called consistency 

condition that guarantees that the stress state at the end of the plastic step lies on 

the updated yield surface: 
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(6.32) 

Since it is possible to express the deviatoric stress tensor,     , as a function 

of the plastic multiplier,     the shear damage,     , and the trial stress state, 

    
     , (Equation 6.28) it is possible to eliminate the deviatoric stress tensor from 

the initial system of equations, which is composed by ten equations in the three-

dimensional case. The return mapping scheme can therefore be reduced to a set of 

only five coupled non-linear equations, which need to be solved for the unknowns 

    ,     ,     ,      and   , for any stress state. After the solution of the system, 

all other variables need to be conveniently updated. The overall algorithm for 

numerical integration is summarized in Box 6.2. 
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Box 6.2. Fully implicit Elastic predictor/Return mapping algorithm. 
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(i) Evaluate the elastic trial state: Given the incremental strain     and the 
state variables at   : 
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(ii) Check plastic admissibility: 
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THEN  

Set ( )    ( )   
       (elastic step) and go to (v) 

ELSE go to (iii) 

(iii) Return mapping (plastic step): Solve the system of equations for 
  ,    ,    ,      and      
 

{
 
 
 
 

 
 
 
 

     
     

[  (
     

      
)]

 

(      )

 
 

 
[        

             (
       

   

)]   
 

         
                       (

       

   

)

         
             

         
        

         
                   }

 
 
 
 

 
 
 
 

  

{
 
 

 
 
 
 
 
 
 }
 
 

 
 

 

where, 
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continue Box 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The previous set of discrete equations needs to be solved for the unknowns 

    ,     ,     ,      and   . The Newton-Raphson (NR) method will be used for 

solving the return mapping system of equations due to the asymptotic rate of 

quadratic convergence of the method. Let us rewrite the non-linear scalar system 

of residual equations, in the following form: 
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(iv) Update the other state variables: 
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(v) Exit 
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  (6.33) 

To obtain a new guess for each variable of the problem, it is necessary to 

solve a linearized system of equations given by: 
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   (6.34) 

In the above system, the terms in the matrix are composed by the derivative 

of each residual equation (see Equation 6.33) with regard to each variable of the 

problem (    ,     ,     ,      and   ) at iteration  . The matrix is multiplied by a 

vector with the incremental values of each variable at iteration,    . The vector 

on the right hand side represents the residual of each variable at iteration  . After 

solving the system for the unknowns and obtaining a new guess for each variable, 

the convergence needs to be checked. More details of the linearization procedure 

for the present model can be found in Appendix “E”. The overall algorithm for 

numerical integration is summarized in Box 6.3 in pseudo-code format. 
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Box 6.3. The Newton-Raphson algorithm for solution of the return mapping system 
of equations. 

 

1) Initialize iteration counter,     , set initial guess for   ( )   ,     
( )
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,     
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2) Perform Newton-Raphson iteration 
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New guess for     ,     ,     ,      and   : 
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3) Check for convergence 
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    IF ‖ ̃‖       THEN  RETURN to Box 6.2. 

 

4) GO TO ( 2 ) 
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6.3.3 The Consistent Tangent Operator  
 

Under the elastic loading condition, the tangent operator for this constitutive 

formulation is the standard linear elasticity tensor. Nevertheless, for the plastic 

step, the elasto-plastic tangent operator is obtained by the linearization procedure 

of the system of residual equations described in section 6.3.2. Hence, the first step 

for determining the operator is to differentiate the stress tensor update 

expression:  
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        . (6.35) 

After some algebraic manipulation, the differentiation of Equation 6.35 can 

be expressed by: 
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(6.36) 

The terms    ,       and       can be obtained by the linearization 

procedure of the residual system of equations. Furthermore, the elasto-plastic 

operator can be determined by: 

    
     

     
       

    (6.37) 
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The linearized system of residual equations for the plastic corrector 

algorithm at the converged state results in the following identity: 
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    (6.38) 

In order to determine the terms    ,      ,      ,       and      , the 

inversion of the above system of derivatives is required and can be re-written as: 
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    (6.39) 

where the matrix C results from the inversion matrix of the linearized residual 

equations in order to each variable of the problem. After some algebraic 

manipulation, the term    ,       and       can be written as: 
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Substituting the above expressions into Equation 6.36, the close form for the 

tangent operator can be determined. More details about how to obtain the 

derivative of each residual equation in function of the elastic strain tensor can be 

found in Appendix “E”.  

 

6.4  CALIBRATION PROCEDURE 
 

In order to determine the materials parameters for the proposed constitutive 

model, two calibration points are required. The first point will be characterized by 

a specimen at a high level of stress triaxiality, where a conventional smooth bar 

specimen is used. For this specimen, the hardening law,   ( ), for the undamaged 

material is determined as well as the set of parameters for the nucleation of micro 

voids [        ]. The second calibration point will be characterized by a specimen 

under a pure shear loading condition, where the numerical parameter,   , is 

determined as well as the set of parameters for the nucleation of micro defects 

under shear [     
    

 ]. Here, a butterfly specimen is used under pure shear 

loading condition. 

The new constitutive model will be assessed for two different materials. One 

of them, strongly and the other weakly dependent on the Lode angle, such as: the 

aluminum alloy 2024-T351 and the steel 1045, respectively. Furthermore, for both 

materials, the numerical tests are conducted for three different loading conditions: 

pure shear, shear/tensile and shear/compression loading conditions. The 

numerical tests presented here have been performed with Xue’s shear mechanism. 

 
6.4.1 Geometry and mesh definition    

 
In order to obtain the material properties for the first calibration point, a 

classical smooth bar specimen is used where the geometry employed is depicted in 

Figure 6.7: 
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Figure 6.7. Geometry for the smooth bar specimen (dimension in mm). Specimen 

reproduced from Teng (2008). 

 
In order to trigger necking, a dimensional reduction of 5% in the central 

diameter of the specimen is used. However, different gauges sections are taken 

regarding the experimental data (see Teng, 2008). For the aluminum alloy and 

steel, gauges sections of 25.4 mm and 20.6 mm are used, respectively. The 

standard eight-nodded axsymmetric quadrilateral element, with four Gauss 

integration points, is adopted. The initial mesh discretization for both cases is 

illustrated in Figure 6.8, where only one symmetric quarter of the problem, with 

the appropriate symmetric boundary conditions imposed to the relevant edges, is 

modeled. A total number of 1800 elements have been used in the discretization of 

both smooth bar specimens, amounting to a total of 5581 nodes.  

  
(a) (b) 

Figure 6.8. Finite elements meshes for (a) aluminum alloy and (b) steel, regarding 

the gauge section. 
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For the second calibration point and for the numerical assessment of the 

behavior of the constitutive model proposed, a butterfly specimen is used. The 

specimen was initially designed by Bai (2008) and the geometry and general 

dimensions can be found in Figure 6.9. 

 
Figure 6.9. Geometry of the butterfly specimen (dimension in mm). Reproduced 

from Bai (2008). 

 
In this case, a three dimensional finite element mesh of 3.392 twenty nodded 

elements, with eight Gauss integration points, is used amounting to 17.465 nodes 

(see Figure 6.10). 

 

 
  

Figure 6.10. Finite element mesh for the butterfly specimen. 
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6.4.2 First Calibration Point: smooth bar under tensile loading condition 

In the present section, the stress-strain curves and the parameters required 

for simulating the micro void nucleation mechanism of the GTN model are 

calibrated by a tensile test on a cylindrical smooth bars. Through experimental 

tests conducted on both materials (see Teng 2008 and Bai 2008), the reaction 

versus displacement curves were determined as well as the stress-strain curves for 

an elasto-plastic model of von Mises type. An inverse method is adopted in order to 

calibrate the material parameters for the proposed coupled damage model by 

forcing the numerical solution of the reaction versus displacement curve to be, as 

close as possible to the experimental one. Figure 6.11a and Figure 6.12a show 

reaction curves obtained by the proposed model after the application of inverse 

method. A good agreement between the experimental and numerical results can be 

observed. Furthermore, the critical volume void fraction is also determined at the 

point where the model attains the displacement to fracture, experimentally 

observed (see Figure 6.11b and Figure 6.12b). The critical values obtained are 

        and          , for the aluminum alloy 2024-T351 and the steel 1045, 

respectively. 

  
(a) (b) 

 

Figure 6.11. (a) Reaction versus displacement curve for GTN model and 

experimental results of the aluminum alloy 2024-T351. (b) Critical volume void 

fraction parameter calibrated for the material. 
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(a) (b) 

 

Figure 6.12. (a) Reaction versus displacement curve for GTN model and 

experimental results of the steel 1045. (b) Critical volume void fraction parameter 

calibrated for the material. 

The results of the calibration procedure, in terms of stress-strain curve, can 

also be observed in Figure 6.13, where both curves, for uncoupled and coupled 

damage models, were determined. 

  
(a) (b) 

Figure 6.13. Stress-strain curves determined for an uncoupled and coupled models 

for: (a) aluminum alloy 2024-T351 and (b) steel 1045. 

The material properties and other parameters related to the micro void 

nucleation mechanism obtained by employing an inverse method are listed in 

Table 6.1. 
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Table 6.1: Materials properties for the aluminum alloy 2024-T351 and the steel 

1045 and materials parameter related to the nucleation of micro-void.  

Material                        (   )   

Aluminum alloy  
2024-T351 

                                            

Steel 1045                                              

 
 
6.4.3 Second Calibration Point: pure shear loading condition. 

From this calibration point, the parameters related to the micro defects 

nucleation mechanism are determined as well as the critical value for the shear 

damage variable,   . Furthermore, details related to the determination of the 

numerical parameter,   , are described. The butterfly specimen is used under a 

pure shear loading condition and the displacement to fracture, experimentally 

determined for both materials by Bai (2008), is imposed to the specimen. An 

inverse method is also adopted, for the calibration of the parameters by forcing the 

numerical results to be as close as possible to the experimental data. 

The behavior of the parameter    can be better understood by looking at 

Figure 6.14, where the evolution of the effective damage parameter, included in the 

definition of the shear mechanism proposed by Xue, is observed for different 

values of   . According to the value of the numerical parameter, a different critical 

shear damage value,   , is also established. Figure 6.15 represents the critical 

shear damage as a function of the value of   .  

  
(a) (b) 

Figure 6.14. Evolution of the shear damage parameter according to the value of    

selected for: (a) steel 1045 and (b) aluminum alloy 2024-T351. 
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Figure 6.15. Representation of the critical shear damage,   , as a function of the 

numerical parameter,   . 

Table 6.2 lists the best material parameters obtained after conducting the 

inverse numerical procedure. The parameters will be used during all numerical 

simulations. 

Table 6.2: Materials parameters for the aluminum alloy 2024-T351 and the steel 

1045, related to the nucleation and growth of micro-defects. 

Material                  

Aluminum alloy 2024-T351                               

Steel 1045                               

 
 

6.5    NUMERICAL RESULTS 

In order to perform a systematic assessment of the new constitutive 

formulation at a low level of stress triaxiality, several numerical tests are 

performed using the butterfly specimen and the implicit algorithm described in 

section 6.3. Three different loading conditions are enforced: pure shear (0°), 

shear/tensile (10°) and shear/compression (-5°), for two materials: aluminum 

alloy 2024-T351 and steel 1045. The behavior of some parameters such as the 

equivalent plastic strain and the displacement at fracture together with the ability 

to predict the correct fracture location are evaluated. Finally, the numerical results 

obtained by the new formulation are compared with the results obtained by the 

GTN models improved with the shear mechanism proposed by as Xue (2008) and 

by Nahshon & Hutchinson (2008). 
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6.5.1  Evolution of equivalent plastic strain and damage parameters 

The experimental results obtained by Bai (2008), which will be used as 

reference for comparison, are listed in Table 6.3. In particular, the displacement at 

fracture,   , the equivalent strain at fracture,   ̅, and the location of crack initiation 

are listed for each loading condition and material. 

Table 6.3. Reference values for different loading scenarios of two materials. 

Angle 

Aluminum alloy 2024-T351 Steel 1045 

     ̅ Fracture location      ̅ Fracture location 

0° 0.70 0.22 
Surface of the critical 

zone 
1.03 0.50 

Surface of the 
critical zone 

10° 0.50 0.26 
Middle of the critical 

zone 
0.42 0.36 

Middle of the 
critical zone 

-5° 1.00 0.22 
Surface of the critical 

zone 
1.71 0.60 

Surface of the 
critical zone 

 

All the numerical results obtained with the new model, which will be 

presented in this section, were conducted following the same approach. For each 

simulation, the butterfly specimen was subjected to a prescribed displacement that 

matches with the respective critical one experimentally observed that is listed in 

Table 6.3. The evolution of the damage variables and of the equivalent plastic 

strain for each loading condition and material are presented in Figures 6.16, 6.17, 

6.18 and 6.19. For a pure shear loading condition, we can observe in Figures 6.16a 

and 6.17a, for the steel 1045 and the aluminum alloy, respectively, that there is an 

evolution of the shear damage parameter with the applied displacement and the 

volume void fraction does not grow and remains equal to zero. Hence, the 

introduction of the new damage variable allows the prediction of failure with the 

GTN original model and, in this case, plays the main damage role. 

Under a combined shear/tensile loading with an angle of 10°, it is possible to 

observe in Figures 6.16c and 6.17c an evolution of both the shear damage variable 

and the void volume fraction variable. For this loading case, the prediction of crack 

initiation is established when the, previously defined, effective damage variable 

reaches unity (see Equation 6.19). Due to the presence of a multi axial stress state, 
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an additional factor is introduced by the term (      ⁄ ) in Equation (6.19), to 

accelerate the prediction of fracture. 

In Figures 6.16e and 6.17e we have a combined shear/compression loading 

condition and, the shear damage parameter also plays a dominant role in the 

prediction of fracture. In this case, there is a crack closure effect and the 

degradation of material occurs due to the formation of shear bands, which can be 

captured by the proposed shear mechanism. The volume void fraction, in this case, 

is reduce to zero due to a negative hydrostatic pressure. 

In Figures 6.16b, 6.16d and 6.16f, the evolution of equivalent plastic strain 

parameter is shown for different numerical parameter,   , using the steel 1045. We 

can observe that the numerical parameter does not have a strong influence over 

the evolution of this internal variable. However, it is expected that the parameter 

   affects the evolution of the shear damage variable and effective damage, which 

can be seem in Figure 6.18 that presents the evolution of the effective damage 

parameter for different values of   , for both combined loading conditions and 

pure shear, for the 1045 steel. According to the value of the numerical parameter, 

the failure condition is established. From the analysis of Figure 6.15, for       , 

       and       , the failure condition is met when the shear damage variable 

is equal to        ,         and        , respectively. Based on the results 

presented in Figure 6.18, we can observe that when       , for the 1045 steel, 

the constitutive formulation predicts a crack formation closer to experimental 

evidence. 

For the aluminum alloy 2024-T351, the evolution of equivalent plastic strain 

is represented by Figures 6.17b, 6.17d and 6.17e and a similar behavior is also 

observed, since the numerical constant,   , has a small impact in the evolution. For 

this material, it is possible to conduct a similar analysis for the value of the 

constant   , though the examination of Figures 6.15 and 6.19, and conclude that 

       also predicts failure closer to experimental evidence than the other values 

(see Figure 6.19). The set of all results can also be analyzed in Table 6.3 and Table 

6.4 which list all the numerical results and expected values, experimentally 

observed, for the equivalent plastic strain and displacement at fracture. 
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(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

Figure 6.16. Evolution of damage parameter and evolution of equivalent plastic 

strain for the 1045 steel. (a) and (b) pure shear – (0°), (c) and (d) shear/tensile – 

(10°) and (e) and (f) shear/compression – (-5°) loading conditions. 
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(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

Figure 6.17. Evolution of damage parameter and evolution of equivalent plastic 

strain for 2024-T351 alloy. (a) and (b) pure shear – (0°), (c) and (d) shear/tensile – 

(10°) and (e) and (f) shear/compression – (-5°) loading conditions. 
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Figure 6.18. Evolution of effective damage parameter for the 1045 steel, under: (a) 

pure shear – (0°), (b) shear/tensile - (10°) and (c) shear/compression - (-5°) 

loading conditions. 

 

 

 

 

 
 

  
(a) (b) 

 

 
(c) 
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(a) (b) 

 

 
(c) 

 
Figure 6.19. Evolution of effective damage parameter for 2024-T351 alloy. (a) pure 

shear - (0°), (b) shear/tensile - (10°) and (c) shear/compression - (-5°) loading 

conditions. 

 
Based on numerical results presented, we can conclude that the new 

formulation has the ability to predict the correct moment to crack formation by 

appropriately calibrating the numerical constants and parameters of the model. 

Both the equivalent plastic strain and the displacement, calculated by present 

formulation, are in close agreement with the experimental data for both loading 

conditions and materials applied (see Table 6.4 and Table 6.5). 
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Table 6.4: Numerical results for butterfly specimen using the 1045 steel under 

different loading conditions. 

Angle 
Experimental data Numerical results 

     ̅        ̅              

0º 1.03 0.50 

0.5 1.03 0.516 0.022 0.061 0.000 0.122 

1.0 1.03 0.522 0.022 0.060 0.000 0.160 

1.5 1.03 0.528 0.021 0.057 0.000 0.204 

10º 0.42 0.36 

0.5 0.33 0.257 0.241 0.477 0.018 0.045 

1.0 0.44 0.353 0.245 0.485 0.026 0.053 

1.5 0.59 0.440 0.257 0.507 0.030 0.061 

-5º 1.71 0.60 

0.5 1.71 0.611 -0.066 -0.173 0.000 0.100 

1.0 1.71 0.612 -0.065 -0.173 0.000 0.126 

1.5 1.71 0.616 -0.065 -0.173 0.000 0.153 

 

 

 

Table 6.5: Numerical results for butterfly specimen using the aluminum alloy 

2024-T351 under different loading conditions. 

Angle 
Experimental data Numerical results 

     ̅        ̅              

0º 0.70 0.22 

1.0 0.70 0.292 0.018 0.048 0.000 0.084 

2.0 0.70 0.298 0.017 0.048 0.000 0.107 

3.0 0.70 0.305 0.017 0.047 0.000 0.137 

4.0 0.70 0.318 0.017 0.046 0.000 0.179 

10º 0.50 0.26 

1.0 0.55 0.230 0.250 0.486 0.013 0.032 

2.0 0.63 0.271 0.254 0.492 0.017 0.039 

3.0 0.75 0.336 0.257 0.494 0.021 0.051 

4.0 0.75 0.337 0.264 0.502 0.021 0.056 

-5º 1.00 0.22 

1.0 1.00 0.414 -0.066 -0.176 0.000 0.084 

2.0 0.98 0.424 -0.065 -0.173 0.000 0.110 

3.0 0.95 0.432 -0.064 -0.169 0.000 0.140 

4.0 0.93 0.455 -0.063 -0.165 0.000 0.190 
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6.5.2 Prediction of the correct fracture location 

Another important feature to be analyzed, in order to validate the new 

constitutive formulation, is the ability to predict the correct fracture location. 

Based on experimental tests performed by Bai (2008), using the butterfly 

specimen, it can be observed that under a pure shear loading condition, the micro 

crack is initiated in the surface of the critical zone. However, when combined 

shear/tensile loading condition is applied, the crack is formed in the middle of the 

thickness and grows toward the surface of the critical zone. Under a combined 

shear/compression loading (-5°), the surface of the critical zone is also the location 

of crack formation. 

Figures 6.20 and 6.21 present the contour of effective damage for the steel 

1045 and the aluminum alloy 2024-T351, respectively, at fracture. It is possible to 

conclude that the new damage formulation has the ability to predict the correct 

fracture location in all loading conditions. 

 

           

 

           

 

           

 

 
(a) (b) (c) 

Figure 6.20. Effective damage contour for the butterfly specimen using the 1045 

steel, under: (a) shear/compression - (-5°), (b) pure shear - (0°) and (c) 

shear/tensile -     (-10°) loading conditions. 
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(a) (b) (c) 

Figure 6.21. Effective damage contour for the butterfly specimen using the 

aluminum 2024-T351 alloy, under: (a) shear/compression - (-5°), (b) pure shear - 

(0°) and (c) shear/tensile -     (-10°) loading conditions. 

The predictive ability of the new model, in terms of fracture location, can also 

be compared against two recent extensions of the GTN model, which were 

presented in Chapter 5 of this thesis. The accuracy of the three models in the 

prediction of the fracture location is evaluated here for a combined shear tensile 

loading of 10° for the steel 1045. Figure 6.22a illustrates the contour of the damage 

parameter for Nahshon & Hutchinson shear mechanism (Nahshon & Hutchinson, 

2008), Figure 22b for Xue shear mechanism (Xue, 2008) and Figure 6.22c for the 

new model. We can observe that only the new model predicts the initiation of 

failure in agreement with experimental evidence. The prediction of the GTN model 

extended with Xue’s shear mechanism is in complete disagreement with 

experimental evidence and the prediction of the GTN model extended with 

Nahshon & Hutchison shear mechanism is somewhat spread along the critical 

section, which may suggest a certain vagueness to the model. 
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(a) (b) 

           

 
(c) 

Figure 6.22. Damage parameter contour for the butterfly specimen using the 1045 

steel. (a) Nahshon & Hutchinson shear mechanism, (b) Xue shear mechanism and 

(c) new model. Section AA at the critical zone. 

 
6.5.3 Representation in the three dimensional fracture locus 

In order to qualitatively judge the constitutive model, we can represent the 

numerical results, listed in Tables 6.4 and 6.5, within the so-called three 

dimensional fracture locus, originally proposed by Bai (2008). For the 1045 steel, 

Bai (2008) proposed a surface represented by the interpolation of the equivalent 

plastic strain, stress triaxiality and Lode angle. The fracture locus for the steel 1045 

was calibrated by classical specimens in different loading condition, see Bao 

(2004) and Bai (2008). Figure 6.23 represents the projection of the three 

dimensional fracture locus on the space of equivalent plastic strain versus stress 

triaxiality. We can observe that the numerical results, obtained by the new model, 

have a good agreement with the calibrated curve for different levels of the Lode 

angle. In the same Figure, the numerical results obtained by the Nahshon & 

Hutchinson and Xue formulations are also plotted, using only pure shear and 

combined shear/tensile loading conditions. In both cases, these formulations do 

not present an uniform behavior in the prediction of results. Nahshon & 

Hutchinson’s model is more accurate than Xue’s model under pure shear loading 

condition and Xue agrees better with experimental results under combined loading 

conditions. However, the new model is in agreement with the fracture surface for 

both conditions. 
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Figure 6.23. Projection of three dimensional fracture loci for steel 1045. 

 
6.6    CONCLUSIONS 

In this chapter, a new formulation was proposed to improve the original GTN 

model, regarding the ability to predict ductile fracture under a low level of stress 

triaxiality. Firstly, a new shear mechanism was proposed that is a function of the 

equivalent plastic strain, stress triaxiality and Lode angle. This mechanism can 

capture the elongation of micro-defects, when shear loading condition is present. 

Furthermore, a new micro-defects nucleation mechanism was proposed which is 

responsible for triggering the evolution of the shear damage parameter, since the 

new mechanism is independent on the volume void fraction. Then, the new 

damage parameter was coupled in GTN constitutive formulation in such a way that 

only affects the deviatoric stress contribution. Thus, the new model has two 

independent damage parameters: first one affecting only the hydrostatic stress 

component and the other affecting the deviatoric stress component. 

Numerical tests were conducted, with an implicit integration algorithm, in 

order to evaluate the formulation ability to predict the crack formation. A butterfly 

specimen was employed and two different materials: the steel 1045 and the 

aluminum alloy 2024-T351 were used. In all loading conditions, the model behaves 

well, either in the determination of the correct level of equivalent plastic strain and 

displacement at fracture, or in prediction of the location of crack formation.  

The introduction of two damage parameters affecting separate components 

of the stress tensor stress critically affects the evolution of internal variables and 
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allows more accurate values at the time of crack formation. Furthermore, the 

introduction of a new micro-defects nucleation mechanism facilitates the 

calibration model and thus an improved performance for a wide range of stress 

triaxiality. The introduction of the stress triaxiality dependence in the evolution of 

shear damage parameter also enhanced the prediction of the fracture location 

under combined loading conditions, since this parameter influences the behavior 

of material under low stress triaxiality. An effective damage variable is determined 

in post-processed step as a function of both volume void fraction and shear 

damage parameter. A penalization factor is introduced in order to accelerate the 

damage evolution due to the presence of multi axial loading conditions. 

In spite of the best performance of this formulation when compared to the 

models available in the literature, the introduction of more parameters that need 

to be calibrated requires special attention. In particular, two calibration points are 

required to fully define the model. A calibration point at high triaxiality, which was 

already required in GTN original model, and now a new point at low triaxiality, to 

obtain the parameters that govern the new shear damage evolution law.  In 

summary, the new model was formulated in order to perform well in all loading 

conditions and for different materials. From the results presented, it is possible to 

conclude that the objective was achieved for the cases tested. 
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CHAPTER 7 
 
An Enhanced Micromechanical Constitutive Model for 

the Prediction of the Loading History Effect  
with Ductile Fracture 

 

 

7.1 INTRODUCTION 
 

The loading history to which a material is subjected is an effect that has been 

studied for several decades by numerous researchers, such as Muschenborn and 

Sonne (1975), Graf and Hosford (1994) and Stoughton (2000), among others, in 

order to characterize ductile fracture under proportional and non-proportional 

loading conditions. This effect has an important impact on the mechanical behavior 

of ductile materials, which has been clearly observed on strain-based forming limit 

diagrams, since the material response is not unique under non-proportinal loading 

conditions (Stoughton, 2000; Cao et al, 2000; Chow et al, 2001; Bai et al, 2007). In 

addition, the material parameters used in fracture models are commonly 

calibrated based on monotonic tests. Therefore, under more complex loading 

conditions, several researchers (Johnson and Cook, 1985; Bao, 2003; Bao et al, 

2004; Bai et al, 2006) have shown that this calibration strategy, leads to an 

incorrect prediction when complex loading conditions are present. 

In this chapter, the extended GTN model proposed in Chapter 6 is enhanced 

with a kinematic hardening rule in order to improve its predictive ability when 

subjected to more complex loading scenarios. Firstly, the set of equations that 

govern the evolution of the internal variables of the model are described with 

emphasis on the nonlinear kinematic hardening law employed. Then, the 

numerical treatment required for the implementation of the constitutive model 

within an implicit quasi-static finite element framework is described in detail. The 

performance of the enhanced model was analyzed using the “butterfly” specimen 

and with the aluminum alloy 2024-T351. Details of the calibration procedure 

carried out within the context of this study are also described in detail. Three 
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numerical tests with complex external loading conditions were conducted: i) pure 

shear (+0º) followed by combined shear/tensile (+30º) loading condition; ii) 

compression (-90º) followed by traction (+90º) and finally iii) a reversal shear 

loading (−0º followed by +0º). At the end of each numerical simulation the 

behavior of the internal variables was analyzed. In particular, the evolution of both 

damage parameters, the evolution of the equivalent plastic strain, the reaction 

versus displacement curve and the contours of the effective damage parameter. 

Finally, the numerical results obtained with the enhanced model were compared 

with experimental data. As observed in the present work, the new model is able to 

capture the onset of fracture in close agreement with experimental evidence when 

the specimen is subjected to complex external loading conditions. 

 

 

7.2 CONSTITUTIVE MODEL WITH A MIXED HARDENING RULE 

In order to evaluate the effect of the loading history on the mechanical 

behavior of ductile materials and thus measure its internal degradation, the so-

called Bauschinger effect was incorporated in the extended GTN model (see 

Lemaitre, 2001). This important effect recognizes that the yield stress of a metal is 

different in opposite directions (for example traction and compression), when the 

plastic regime is reached. In order to capture this behavior, phenomenological 

models introduce the so-called kinematic hardening. Figure 7.1 shows 

schematically the effect of Bauschinger for a traction/compression loading 

condition, as well as, the isotropic hardening effect. In Figure 7.1,    represents the 

initial yield stress of the material,   is the thermodynamic force associated with 

the isotropic hardening and   represent the so-called backstress tensor. 
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Figure 7.1. Stress-strain curve including mixed isotropic and kinematic hardening. 

In this work, the evolution law for the backstress tensor employed was the 

one proposed by Prager (see De Souza Neto, 2008), which considers a nonlinear 

kinematic hardening, according to: 

 ̇  
 

 
  ( ) ̇   (7.1) 

where  ̇ represents the rate of growth for the backstress,  ̇  is the rate of the 

equivalent plastic strain and    is the kinematic hardening modulos that is 

determined by the function: 

  ( )  
  ̅( )

  
  (7.2) 

where  ̅( ) represents a scalar function of the backstress with relation to the 

internal variable associated with the isotropic hardening. It can be mentioned that 

other evolution equations for the backstress are suggested in literature, such as the 

Armstrong and Frederick model (see De Souza Neto et al, 2008), Morz model ( see 

Lemaitre 2001), among of others. 

Thus, a new yield function for the extended GTN model can be established as 

follow: 
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     (7.3) 

where   represents the so-called reference tensor, that can be determined as: 

         (7.4) 

where   represents the deviatoric stress tensor and    is now the second invariant 

of the reference tensor. The governing equations of the extended GTN model with 

mixed nonlinear isotropic and kinematic hardening are summarized in Box 7.1. 

 

Box 7.1. Extended GTN model with nonlinear isotropic and kinematic hardening. 
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(i) Elasto-plastic split of the strain tensor 

(ii) Elastic law 

(iii) Yield function 

 

 

(iv) Plastic flow and evolution equations for  ,  ,   and  . 
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continue Box 7.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3 NUMERICAL TREATMENT 

In this section, the numerical strategy employed to derive the integration 

algorithm for the extended GTN model with mixed isotropic and kinematic 

hardening is presented. A finite strain algorithm to extend the infinitesimal theory 

is introduced for the kinematic hardening evolution (see De Souza Neto et al, 

2008). 

7.3.1 Return Mapping Algorithm for Small Strains 

Analogously to what was done in previous chapters, for the present model, 

the stress update procedure is also based on the so-called operator split concept 

(see Simo & Hughes, 1998; De Souza Neto et al., 2008), which consists in splitting 

the problem in two parts: an elastic predictor, where the problem is assumed to be 

elastic and, a plastic corrector, in which the system of residual equations 

comprising the elasticity law, plastic consistency and the rate equations is solved, 

taking the results of the elastic predictor stage as initial conditions. It is important 

to highlight that in the present formulation, an additional evolution equation is 

introduced in the plastic corrector to represent the evolution of the backstress 

tensor (see Equation 7.1). Box 7.2 summarizes the overall return mapping 
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algorithm for the extended GTN model with isotropic and kinematic nonlinear 

hardening at infinitesimal strains. 

Box 7.2. Fully implicit Elastic predictor/Return mapping algorithm. 
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(i) Evaluate the elastic trial state: Given the incremental strain     and the state 

variables at   : 
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(ii) Check plastic admissibility: 
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       (elastic step) and go to (v) 

ELSE go to (iii) 

(iii) Return mapping (plastic step): Solve the system of equations below for 
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continue Box 7.2. 
 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.2 Finite Strain Extension of Infinitesimal Theory 

In this section, an overall integration scheme for an exponential map-based 

numerical integration algorithm for finite strain is presented, for mixed isotropic 

and kinematic hardening, that maintains the small-strain scheme (Box 7.2). The 
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(iv) Update the others state variables: 

(v) Exit 
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integration scheme adopted was proposed by De Souza Net et al (2008) and is 

based on the use of logarithmic strains and the multiplicative elasto-plastic 

splitting. The computational implementation starts from retrieving the elastic 

logarithmic strain,   
 , at pseudo-time   , and computing the corresponding elastic 

Cauchy-Green tensor, with the expression: 

  
     [   

 ]     (7.5) 

where   
  represents the elastic left Cauchy-Green tensor. Then, it is necessary to 

computer the trial state and the elastic trial left Cauchy-Green tensor,     
       , is 

obtained by: 

    
            

       (    
       )

 
     

 (  )
     (7.6) 

where     
        represents the elastic trial deformation gradient and    is the 

incremental deformation gradient. Based on the elastic trial left Cauchy-Green 

tensor,     
       , the elastic trial logarithmic strain tensor is calculated as follows: 

    
        

 

 
   [    

       ] (7.7) 

With regard to the inclusion of the kinematic hardening effect, the so-called 

trial backstress tensor,     
     , needs to be computed.  In order to do so, the 

incremental elastic rotation needs to be determined by the relation: 

       
       (  

 )     (7.8) 

where    represents the incremental elastic rotation,      
        is the elastic trial 

rotation tensor and   
  is the elastic rotation tensor at pseudo-time   . Thus, 

knowing the backstress tensor at   ,   , the trial backstress tensor,     
     , is 

determined by: 

    
          (  )

  (7.9) 

Having determined the elastic trial logarithmic strain tensor, the trial 

backstress tensor and knowing the values of the internal variable at pseudo-time 

  , the return mapping algorithm derived for infinitesimal strains (see Box 7.2) can 
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be used to update the so-called Kirchhoff stress tensor,     ,  and the other state 

variables. In order to update the Cauchy stress tensor, the following relation is 

employed: 

        [    ]
          (7.10) 

where      represents the Cauchy stress tensor,      is the Kirchhoff stress tensor 

and      is the gradient deformation at pseudo-time     . The elastic gradient 

deformation can be determined as: 

    
      

     
     (7.11) 

where     
  represents the elastic left stretch tensor, that can be computed by: 

    
     [    

 ]    (7.12) 

and     
  represents the elastic rotation gradient, which is equal to the trial state 

    
      

       . Box 7.3 contents a brief summary of the numerical integration 

algorithm for the general multiplicative finite strain elasto-plasticity model with 

kinematic hardening.  

 

Box 7.3. Finite Strain Extension of the small strain algorithm 
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i) Given incremental displacement   , update the deformation gradient: 
 

 

 
ii) Compute elastic trial state 
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continue Box 7.3. 

 

 

 

 

 

 

 

 

 

7.3.3 Consistent Tangent Operator 

In this section, the consistent tangent operator for the present model will be 

obtained following a similar procedure to the one employed in previous chapters. 

Hence, the first step for determining the operator is to differentiate the stress 

tensor update expression with regard to the elastic trial strain tensor,     
       : 

         
          

    

(      )
          (7.13) 

where      represents the update stress tensor. Therefore, the tangent operator 

can be computed through: 

    
     

     
       

    (7.14) 

Performing similar mathematical operations and algebraic manipulation, the 

following expression can be obtained: 
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iii) Use small strain algorithm to update the Kirchhoff stress tensor, the 
backstress tensor and other state variables. 

 
iv) Update Cauchy stress tensor and the elastic deformation gradient: 
 
 

 

 

 

v) End. 
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(7.15) 

The terms    ,       and       represent the derivative of   ,      and      

with regard to the elastic strain tensor,     
       . They can be obtained by the 

linearization procedure of the residual system of equations. However, the term 

     , that represents the derivative of      with regard to the elastic strain 

tensor, has to be computed by the differentiation of the update relative tensor 

expression. 
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(7.16) 

The final expression for the consistent tangent operator of the extended GTN 

model including kinematic hardening can be found in Appendix E. The extension, 

of the small strain consistent tangent operator, to the finite strains regime is more 

complex than the isotropic counterpart. The additional degree of complexity is due 

to the fact that the elastic trial state of the backstress tensor,     
     , (Equation 7.9) 

is not fixed. It is a function of the backstress tensor,   , at instant    and the 

incremental elastic rotation   . The incremental elastic rotation, which is given by 

Equation (7.8), is a function itself of the elastic trial deformation gradient,     
       . 

Therefore, the derivative of the Kirchhoff stress tensor with respect to the 

deformation gradient, for the spatial tangent modulus, is given by: 



 

216 
 

     

     
       

     
       

     
       

 
     

       

     
      

     
     

     
       

 
     

       

     
 (7.17) 

where     is the standard infinitesimal elasto-plastic consistent tangent operator 

(see Equation 7.14) and    represents a fourth-order tensor that is the tangent 

relation between the updated Kirchhoff stress tensor and the trial backstress: 

    
     

     
     

  (7.18) 

More details about the linearization of the extended GTN model with kinematic 

hardening can be found in Appendix E. 

 

7.4 CALIBRATION STRATEGY AND MESH DEFINITION 

The determination of the material parameters, which are indispensable for 

using the extended GTN model with mixed isotropic and kinematic hardening, 

follows the same calibration procedure described in the previous chapter (see 

Chapter 6). In the present chapter only the experimental results for the aluminum 

alloy 2024-T351 are employed (see Bai, 2008) and only two experimental tests 

need to be conducted to determine all the parameters required by the extended 

model. As already described previously (Chapter 6), a so-called high stress 

triaxiality point is adopted, which is experimentally accomplished with a 

cylindrical smooth bar specimen subjected to a pure tensile loading condition. 

With this calibration point the parameters for the micro voids nucleation 

mechanism [        ] and hardening curve   ( ) are determined. Regarding the 

so-called low stress triaxiality calibration point, a butterfly specimen subjected to 

pure shear loading is used in the experimental test. At this point, all parameters 

required for the micro defects nucleation mechanism (under shear) [     
    

 ] 

and the constants   and    are determined. Table 7.1 shows the parameters 

determined for the aluminum alloy 2024-T351 based on both calibration points. 
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Table 7.1: Materials properties for the aluminum alloy 2024-T351, regarding the 

first and second calibration points.  

Calibration 
point 

  /     /  
    /  

    /    /        /      (   )   

Traction                                             

Shear                          -      - - 

 

The same specimen, the so-called butterfly specimen, was employed in the 

calibration and during the simulation of the various loading scenarios. The 

specimen was discretized with a three dimensional finite element mesh of 3.392 

twenty nodded elements, with eight Gauss integration points, amounting to 17.465 

nodes. 

The numerical studies were conducted for three cases that can be described 

as follows: Case 1) pure shear (+0º) followed by combined shear/tensile (+30º) 

loading condition; Case 2) compression (-90º) followed by traction (+90º) and 

finally Case 3) a reversal shear loading (−0º followed by +0º). Figure 7.2 

schematically represents the three loading scenarios studied with the extended 

GTN model. 
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Figure 7.2. Schematic representation of the types of loads under study. 

 

7.5 NUMERICAL RESULTS 

For the cases under study, the following results are quantitatively analyzed: 

the reaction versus displacement curve, the evolution of effective damage 
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parameter and the rate of evolution for the equivalent plastic strain. In all cases, 

the numerical results obtained by the extended GTN model are compared with 

experimental results found by Bai (see Bai, 2008). Furthermore, the ability to 

predict the location of fracture onset is analyzed when the loading history effect 

needs to be accounted in the plastic flow rule for ductile materials. 

7.5.1 Reaction versus displacement curve 

Figure 7.3 presents numerical and experimental results determined for the 

reaction versus displacement curve, for each case.  

Case 1 Case 2 

  
Case 3 

 

Figure 7.3. Reaction curve determined by numerical simulation, regarding 

cases 1, 2 e 3, with the extended GTN model. 

Based on the analysis of the results presented in Figure 7.3, it is possible to 

conclude that there is a good agreement between experimental and numerical 

results using the proposed model. The small differences observed in the figure, can 

be justified by the use of the evolution law proposed by Prager for the backstress 
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tensor, which grows in a direction collinear to the plastic flow rule of the material. 

According to some researchers, in some cases (see Jiang, 1996; Stoughton, 2000; 

Lemaitre, 2001), due to non-proportionality of the loading applied, the evolution of 

the backstress and the plastic flow rule do not follow the same direction. In these 

cases, a more sophisticated evolution law needs to be considered, such as: the 

Morz model (see Lemaitre, 2001) and the Armstrong and Frederick model (see De 

Souza Neto et al, 2008). 

 

7.5.2 Evolution of the effective damage parameter 

The evolution of the effective damage parameter,    , which was introduced 

in Equation (6.19) of Chapter 6, is presented in Figure 7.4. For each loading 

scenario, the effective damage evolution obtained from the numerical simulation is 

plotted against the applied displacement. From the results, it is possible to 

conclude, that the critical damage (     ) is reached for displacements at 

fracture, which are in close agreement with experimental evidence. 

The biggest difference between the numerical and experimental results for 

the so-called displacement at fracture is observed for the first case. For this loading 

scenario, the displacement at fracture predicted but the extended GTN model is 

around           , and the experimentally observed is around           . 

For the other two cases (cases 2 and Case 3), the numerical and experimental 

results have a 5% of difference. Table 7.2 presents the critical displacement values 

obtained with the proposed model and the experimentally determined values 

obtained by Bai (see Bai, 2008). 

 

Table 7.2. Critical displacement at fracture for all cases. 

    numerical [mm]    experimental [mm] 

Case 1 0.85 0.72 

Case 2 0.80 0.84 

Case 3 0.48 0.51 
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Figure 7.4 illustrates the evolution of the effective damage and the 

determination of the critical displacement at fracture, regarding cases 1, 2 and 3. 

Case 1 Case 2 

  
Case 3 

 

Figure 7.4. Evolution of effective damage for all cases 1, 2 and 3. 

 

7.5.4 Effective damage contour 

The predictive ability of the model, regarding the correct prediction of the 

potential site for ductile crack initiation, is the last feature to judge. In this 

evaluation, the numerical results obtained by the extended model are compared 

with experimental data reported by Bai (see Bai, 2008). Figure 7.5 shows the 

contour of the effective damage parameter for the three cases under analysis. 

displacement 

at fracture 
displacement 

at fracture 

displacement 

at fracture 
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Figure 7.5. Contour of the effective damage parameter. 
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From the results obtained for cases 1 and 3, it is possible to observe that the 

crack starts at the surface of the critical region of the specimen. Nevertheless, for 

the second case, it is observed that crack initiation occurs at the center of thickness 

of the critical region of the specimen. According to experimental observations, 

reported by Bai (Bai, 2008), in all cases, the numerical prediction of the potential 

site to crack initiation was in agreement with the experimental evidences. 

7.6 CONCLUSIONS 

 

In this chapter, the extended GTN model proposed in Chapter 6 was 

improved with an evolution law for the backstress tensor proposed by Prager (De 

Souza Net et al, 2008), in order to increase its predictive ability under combined 

loading. The set of equations that govern the behavior of the model, including 

nonlinear kinematic hardening, was presented and the integration algorithm 

developed was described in detail. An assessment of the model was then 

conducted for three loading conditions, such as (case 1) pure shear (+0 °) followed 

by combined shear / tensile (+30 °) loading, (case 2) compression (-90 °) followed 

by traction (+90 °) and finally (case 3 ) the reversal shear loading (Followed by +0 

° -0 ° ). The evolution of the reaction curve of the material, the evolution of the 

damage parameter and predictive ability of the model were then evaluated. In all 

loading cases the numerical model has shown good results when compared to 

experimental results available in the literature (see Bai, 2008). Thus, it can be 

concluded that the mechanical behavior for ductile materials, in the presence of 

proportional and non proportional loadings, may be represented by the proposed 

model, which introduces two damage variables and the effect of both isotropic and 

kinematic hardening, through nonlinear evolution laws. 

As a further development to the extended GTN model, the addition of more 

complex evolution laws for the backstress tensor is suggested, in order to improve 

the prediction of the numerical critical displacement at fracture. The evolution law 

for the backstress tensor proposed by Armostrong and Frederick (see De Souza 

Neto et al, 2008), which assumes no collinearity between the backstress tensor and 

the plastic flow rule, and the model suggested by Morz (see Lemaitre, 2001), which 

assumes multi yield surface, might be able to increase the predictive ability of the 

proposed extended model. 
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CHAPTER 8 
 

Final Remarks 

 
 

8.1 CONCLUSIONS 

The  study of the mechanical behavior of metallic materials is a topic of great 

importance and, in recent years, has been subjected to numerous studies regarding 

the formulation of mathematical models capable of describing the mechanical 

behavior in the most realistic way possible. The introduction of new effects, both in 

the plastic flow rule of the material and in the evolution law for internal variables 

like damage, are among the topics more discussed and improved in the last decade. 

These scientific developments bring to the industry, in general, competitive gains 

in relation to the development of more efficient and durable mechanical 

components as well as the improvement of manufacturing processes. Coupled with 

the development of new constitutive models for materials, the numerical 

techniques used to simulate the real behavior of structures, the materials 

characterization, the simulation of manufacturing processes, among others, have 

also been enhanced and spread by industries such as: automobile, aerospace, 

naval, among others. 

Thus, in this thesis, we have investigated many different elasto-plastic 

formulations with damage as internal variable, and propose improvements to 

increase their accuracy, with regard to their ability to predict the loss of stiffness 

and the fracture initiation in ductile materials. Among other advances, we 

attempted to discuss the importance of the third invariant of the deviatoric stress 

tensor in the mechanical behavior of metallic materials and introduce this effect in 

the plastic flow rule. It was also found that the predictive behavior of many 

different constitutive models, such as: Lemaitre's model, Bai's model and Gurson's 

model (in GTN version), as well as some recent extensions of the GTN model, is 

limited regarding the ability to predict failure in predominant shear loading 

conditions. An extended GTN model, which includes calibration points in the so-
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called high and low stress triaxiality zone, distinct mechanisms for nucleation of 

defects regarding shear and tensile predominant loading conditions, as well as two 

internal variables for damage evolution that are combined to provide an effective 

damage scalar variable which triggers the coalescence mechanism, has been 

proposed. Finally, we have addressed the influence of the loading history effect on 

the predictive ability of the model, i.e., the study of proportional and non-

proportional loads. To this end, the so-called Bauschinger effect was added, 

through the coupling of kinematic hardening in accordance with what was 

proposed by Prager. In following paragraphs, the advances made in each chapter of 

the thesis are described in detail. 

 

Chapter 3 

In this chapter, an implicit numerical integration algorithm for an elasto-

plastic model developed by Bai et al. (see Bai, 2008) was studied and proposed. 

The constitutive model introduces in the hardening law of the material, the effect 

of hydrostatic pressure by the so-called stress triaxiality, and the effect of the third 

invariant of the deviatoric stress tensor by the so-called Lode angle. Regarding the 

development of the numerical algorithm, the operator split methodology (see Simo 

et al, 1998) was used and its implementation was done in a quasi-static academic 

finite element framework. Some numerical tests for different specimens and two 

engineering metallic materials (aluminum alloy and steel 1045) were conduced, 

regarding the demonstration of the robustness of the proposed algorithm, as well 

as validation of the predictive gain, when both pressure and Lode angle effects are 

coupled in the plastic flow rule. The quadratic convergence of the numerical model 

was shown by the so-called isoerror maps, as well as by the convergence of the 

local and global problem. Considering the mechanical behavior of engineering 

materials and the introduction of the effects under study, the numerical results 

depicted more accurately the experimental data. It also verified a distinct 

mechanical behavior for the aluminum alloy and the steel, regarding the effect of 

the third invariant. In this direction, a material classification was proposed 

according to the sensitivity to the stress triaxiality and the Lode angle, such as: 
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strongly dependent (aluminum alloy) and weakly dependent (steel 1045) on the 

pressure and the third invariant. 

 

Chapter 4 

In order to evaluate several approaches for determining ductile fracture 

onset, in this chapter, an attempt was made to make a qualitative and quantitative 

comparison of the numerical results predicted according to the Bai's model (2008), 

Lemaitre's model (1985) and Gurson' model, in the GTN version model with a 

shear mechanism coupled (1984). For this, we tested specimens under low and 

high stress triaxiality, based on an aluminum alloy. For Bai's model,  an implicit 

integration algorithm proposed in the previous chapter was used. However, for the 

Lemaitre's model, we used the integration algorithm, with only one scalar equation 

for  the plastic multiplier, suggested by De Souza Neto et al (2002). In the GTN 

version of Gurson's model, with the shear mechanism proposed by Xue (2008) 

coupled, an implicit algorithm based on operator split methodology was 

developed. All algorithms were implemented in a quasi-static finite element 

academic framework. The numerical results were evaluated through several 

parameters such as: the reaction curve obtained for each model, the evolution of 

the equivalent plastic strain, the evolution of damage variable, the numerical 

displacement at fracture as well as the ability to predict the potential location for 

ductile fracture initiation. It has been shown that several models are unable to 

achieve a good predictive capacity when applied to a large range of stress 

triaxiality. It was found that the GTN's model with the shear mechanism coupled 

does not behave well under mixed tensile/shear loading conditions. Lemaitre's 

model has predicted a very high level of plastic strain at fracture, when used in 

predominantly shear loading conditions. For Bai's model, there was a good 

response when used under high stress triaxiality, but due to lack of an internal 

variable of damage, it has a limited range of application. Finally, it can be 

concluded that both elasto-plastic and damage models have a great dependence of 

the calibration condition. It was also observed that when the load condition under 

study is far from the loading condition used for calibration of the material 

parameters, the predictive ability of models is compromised. 
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Chapter 5 

In this chapter, the evaluation of various shear mechanisms proposed to 

improve the GTN's model, under predominant shear loading conditions, was 

conducted. The effect of the calibration condition was also assessed as regards the 

predictive fracture onset ability of models. For this purpose, two independent 

calibration points were used to determine the material parameters: one of them at 

high and the other at low level of stress triaxiality. It was found that, in general, the 

shear mechanisms evaluated do not have a good predictive capacity for both pure 

shear and shear/tensile combined loading conditions. By using the material 

parameters calibrated for high stress triaxiality, it was found that Xue's shear 

mechanism behaved rather conservative in predicting fracture onset, when a pure 

shear loading condition was applied. Regarding the same loading and calibration 

conditions, the mechanism proposed by Nahshon & Hutchinson showed excellent 

predictive ability. For combined loading, both Xue and Nahshon & Hutchinson 

shear mechanisms showed predictive ability in disagreement with experimental 

observations. Regarding the material parameters obtained by the second 

calibration point (in low stress triaxiality), the performance of all mechanisms was 

in accordance with the experimental observations, when predominant shear 

loading conditions was used, but under combined loading conditions, limitations 

were observed in predicting the correct displacement at fracture. Thus, after the 

numerical tests performed, it is possible to conclude that there is a procedure for 

improving the GTN's model performance under predominantly shear and the 

response of the constitutive formulation. Since the models, with internal damage 

variable coupled, are strongly dependent on the relationship between the 

calibration condition used to determined the material parameters and the real 

loading condition under study, they can be calibrated close to the loading 

condition. 

 

 

 

 



229 
 

Chapter 6 

Based on information from the performance of the constitutive models 

evaluated in the previous chapters, this chapter, attempted to develop a 

constitutive formulation that enhances the capability of predicting fracture 

initiation for ductile materials, with regard to the determination of the correct 

displacement at the fracture, the correct level of the expected equivalent plastic 

strain at fracture, and the correct determination of the potential site for fracture 

initiation. For this goal, a model based on the micromechanic of defects, such as the 

GTN's model was adopted, and the geometric deduction of the evolution law for 

the shear mechanism proposed by Xue. Thus, a new coupling of the so-called 

deviatoric damage variable was proposed. The deviatoric stress component was 

affected by only the so-called shear damage (or deviatoric damage) and the 

volumetric component of the stress tensor by the so-called volume void fraction 

that plays a volumetric damage role. With this proposition, a better relationship 

between the internal damage variables and the components of the stress tensor 

was observed. In order to reduce the dependence of the model with respect to the 

calibration condition employed, a new nucleation mechanism for the shear damage 

was created, based on the concept that the defects are generated in a different 

manner and speed for predominant tensile or shear loading conditions. Thus, the 

new model, here called as extended GTN model, requires two calibration points 

combined to determine all material parameters: one under high and other under 

low level of stress triaxiality. A so-called effective damage variable has also been 

suggested, with the aim of combining the two independent internal damage 

variables and determine clearly the correct fracture initiation under general 

loading conditions. An implicit numerical integration algorithm for the extended 

GTN model is proposed and implemented within a quasi-static finite element 

framework. The model was then tested under different loading conditions and a 

good performance was observed for all situations employed. Finally, it can be 

concluded that the extended GTN model is a more reliable formulation that can be 

applied for wide range of stress triaxiality.  
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Chapter 7 

In this chapter, the influence of the loading history in the correct prediction 

of fracture was studied. To reach this goal, the effect of the so-called kinematic 

hardening, as proposed by Prager, was added into the extended GTN model. An 

implicit integration based on the operator split methodology was suggested and 

implemented in a academic finite element tool. In this case, an extension of the 

integration algorithm developed for small deformation to large deformation was 

also carried out. The method suggested by De Souza Neto et al (2008) was used. 

The extended GTN model with isotropic and kinematic hardening was tested under 

three different loading conditions, such as: pure shear followed by combined 

shear/traction, compression followed by traction and reversible shear. In all 

loading cases, the reaction curves obtained, the evolution of the effective damage 

and the determination of the potential site to fracture initiation were studied. In 

general, the numerical results presented reasonable agreement with the 

experimental data found in literature. It was observed, differences around 10% 

between the reaction forces determined numerically and the experimental 

observations. 

   

8.2 SUGGESTIONS FOR FUTURE WORK 

After the studies and advances proposed to improve the predictive ability of 

the elasto-plastic models and damage models, based mainly on the 

micromechanics of defects, in this section, some suggestions for future work are 

made: 

 

Elasto-plastic model with the influence of     in the equivalent stress 

In this case, the study of the influence of the third invariant of the deviatoric 

stress tensor in the mechanical behavior of the material is recommended. For 

some researchers the third invariant has an influence in the shape of the yield 

surface. Thus, the development of a new yield function, which has the so-called 

equivalent stress as a function of  both    and    , could be an interesting possibility. 
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This suggestion has the goal, in addition to the inclusion of the influence of the 

effect of the third invariant, of facilitating the process of determining the numerical 

model. 

 (     )     ( ̅
 )    

 

 

Reducing the dependence of the calibration point in Lemaitre's model 

As evaluated in Chapter 4, Lemaitre's model also has a large dependence of 

the relationship between the calibration procedure and the real loading condition 

under study. Thus, it is suggested to develop an improvement in Lemaitre's 

damage evolution law to contemplate the influence of two calibration points: one 

under high and other under low level of stress triaxiality. This influence can be 

included, for example, by having two denominators of damage: one for 

predominant tensile loading,   , (using the smooth bar specimen under tensile 

loading) and other for predominant shear loading  conditions,    . 

 ̇  
 ̇

   
[
  

 (     )
]
 

  

 

Coupling other evolution laws for backstress tensor 

In assessing the effect of loading history, it is suggested as future study, the 

coupling with other evolution laws for the backstress tensor, knowing that the 

Prager proposition, used in this thesis, considers the principle of co linearity 

between the evolution of backstress tensor and the plastic flow rule of the 

material. This condition may not satisfy the saturation level of the internal 

variable. Thus, the Armstrong and Frederick model could be a suggestion for 

implementation and evaluation. 

 ̇  
 

 
  ( ) ̇   ̇   
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APPENDIX A 
 

Determine the flow vector and plastic flow rule for 
Bai & Wierzbicki elasto-plastic model 

 

 

a) Define the yield function for the specific model: 

      ( ̅
 )[    (    )] [  

  (  
     

 ) (  
    

   
)] (a.1) 

where,   is the von Mises equivalent stress,   ( ̅
 ) is the isotropic hardening rule, 

 ̅  is the accumulated plastic strain,   is the stress triaxiality,   is the parameter 

responsible for introducing Lode angle dependence.   ,   ,   
 ,   

   and   are 

experimental parameters. 

We can define functions  ( ) and  ( ) according to Equations (a.2) and (a.3), and 

re-write Equation (a.1) as follow: 

 ( )  [    (    )] (a.2) 

 ( )  [  
  (  

     
 ) (  

    

   
)] 

(a.3) 

      ( ̅
 )  ( ) ( ) (a.4) 

Remark: The von Mises equivalent stress, stress triaxiality and parameter   can be 

defined as: 

  √    √
 

 
    √

 

 
‖ ‖ (a.5) 
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( )

 
 

(a.6) 

  
   (  ⁄ )

     (  ⁄ )
[

 

   (    ⁄ )
  ]        [   (    ⁄ )   ] 

(a.7) 

  (
 

 
)
 

 
  

 

   ( )

  
    (  ) 

(a.8) 

 

b) The flow vector is defined as a derivative of the yield function in 

relation to the stress tensor, as: 

  
  

  
 (a.9) 

After some algebraic manipulation, we can re-write the above equation as: 

  
 [ ]

  
   ( ̅

 ) {
 [ ( )]

  
 ( )   ( )

 [ ( )]

  
} (a.10) 

In order to determine the closed equation for the flow vector, we have to 

determine the derivative of the von Mises equivalent stress, function  ( ) and 

 ( ) in relation to the stress tensor. The procedure to determine the required 

derivatives are described below: 

 [ ]

  
 
 

  
[
 

 
(    

  

  
)] (a.11) 

The derivative of the deviatoric stress tensor in relation to the stress tensor is 

determined as: 

  

  
   

 

 
    (a.12) 

where,   represents the fourth order identity tensor and   represents the second 

order identity tensor. 
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Substituting Equation (a.12) in to Equation (a.11) and after some algebraic 

manipulation, we have: 

 [ ]

  
 
 

  
  (a.13) 

 

Proof.:    (  
 

 
   )    

    (  
 

 
   )      

 

 
       

      ( )    (a.14) 

         

 

The derivative of function  ( ) can be obtained according to Equation (a.15): 

 [ ( )]

  
    

 [ ]

  
 (a.15) 

We have to determine the derivative of the stress triaxiality in relation to the stress 

tensor. After some algebraic manipulations, the derivative of the stress triaxiality 

can be written as: 

 [ ]

  
 
 [ ]

  

 

 
 
 

 

 [ ]

  
 
 

  
  

  

   
  (a.16) 

where,  [ ]   ⁄  (  ⁄ )  . 

Substituting Equation (a.16) in to Equation (a.15), we can obtain the derivative of 

function  ( ) in relation to the stress tensor: 

 [ ( )]

  
    [

 

  
  

  

   
 ]    [

  

   
  

 

  
 ] (a.17) 

The derivative of the function  ( ) can be obtained according Equation (a.18): 
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 [ ( )]

  
 (  

     
 )(    )

 [ ]

  
 (a.18) 

We have to determine the derivative of the parameter  . Then, the closed form can 

be obtained according the equation below: 

 [ ]

  
 

   (  ⁄ )

     (  ⁄ )

   (    ⁄ )

   (    ⁄ )

 [ ]

  
 (a.19) 

where,  [ ]   ⁄  represents derivative of the Lode angle in relation to stress tensor 

and can be determined according Equation (a.20): 

 [ ]

  
 
 [
 
       

( )]

  
  

 

 

 

√    

 [ ]

  
 (a.20) 

where,  [ ]   ⁄  represents derivative of the normalized third invariant in relation 

to stress tensor and can also be determined according Equation (a.21): 

 [ ]

  
 
 [(

 
 
)
 

]

  
   (

 [ ]

  

 

 
 
 [ ]

  

 

 
) (a.21) 

where,  [ ]   ⁄  represents derivative of the third invariant of the stress tensor in 

relation to stress tensor. The derivative of [ ] can be obtained according Equation 

(a.22). 

 [ ]

  
 

 [√
  
    

( )
 

]

  
 

 

   
 [   ( )]

  
 

(a.22) 

The derivative of the deviatoric stress tensor determinant in relation to stress 

tensor can be written as:   

 [   ( )]

  
 
 [   ( )]

  
 
  

  
    

 

 
  (  )      (a.23) 

where,   [   ( )]   ⁄             , and   and    represents the first and 

second invariants of the stress tensor. Then, we can define a new second order 
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tensor  , in order to re-write the derivative of the deviatoric stress tensor 

determinant in relation to the stress tensor, as: 

     
 

 
  (  )  (a.24) 

Substituting Equation (a.24) in to Equation (a.23), we have: 

 [   ( )]

  
       (a.25) 

However, substituting Equation (a.25) in to Equation (a.22), and the result 

together with Equation (a.13) in to Equation (a.21), we have the derivative of the 

normalized third invariant in relation to stress tensor. Preceding the substitution 

of the results since Equation (a.21) until Equation (a.18), we can determine a 

closed equation for the derivative of parameter  ( ) in relation to stress tensor, 

as: 

 [ ( )]

  
   [(

 

   
 
   
   

)   
 

   
 ] (a.26) 

where,   is defined as: 

 ( )  (  
     

 )(    )
   (  ⁄ )

     (  ⁄ )

   (    ⁄ )

   (    ⁄ )

 

     
 

(a.27) 

 

In order to determine the closed form for the flow vector, we have to substitute 

Equations (a.13), (a.17) and (a.26) in to Equation (a.10). Thus, after some algebraic 

manipulation, the flow vector can be calculated as: 

  
 

  
   

 

  
    

 

 
   (a.28) 

where  ,         are parameter defined according Equation (a.29), (a.30) and 

(a.31). 

    
  ( ̅

 )

 
[        (     

  

  
)] (a.29) 
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  ( ̅

 )   

 
 

(a.30) 

  
   ( ̅

 )  

  
 

(a.31) 

 

c) The plastic flow rule: 

 

The evolution of the plastic strain can be defined according Equation (a.32), as: 

          [
 

  
   

 

  
    

 

 
  ] (a.32) 

where,     is the incremental plastic strain,    is the plastic multiplier and   is the 

flow vector defined according Equation (a.28). The equivalent plastic strain can 

also be determined through Equation (a.33): 

  ̅  √
 

 
(       ) (a.33) 

Substituting Equation (a.32) in to Equation (a.33) and after some algebraic 

manipulation, we can obtain: 

  ̅    √   
 

 
     

   

   
      

   

   
 (a.34) 
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APPENDIX B 
 

Linearization procedure for Bai & Wierzbicki  
elasto-plastic model 

 

 

a) Defining the yield function for Bai & Wierzbicki elasto-plastic model 

according Equation (b.1) below: 

      ( ̅
 )  ( ) ( ) 

      ( ̅
 )[    (    )] [  

  (  
     

 ) (  
    

   
)] 

(b.1) 

where   is the equivalent stress,   ( ̅
 ) is the yield stress that is a function of the 

accumulated plastic strain  ̅  ,  ( ) is the parameter that introduce the pressure 

effect on the hardening rule through the triaxiality ratio,  , and  ( ) is the 

parameter that introduce the Lode dependence on the hardening rule. 

b) The flow vector, plastic flow rule and evolution for the equivalent plastic 

strain 

The flow vector 

  
 

  
   

 

  
    

 

 
   (b.2) 

where,   represents the flow vector,   is the deviatoric stress tensor,   is the 

second order identity tensor and  ,   and   are parameters defined according 

below: 

    
  ( ̅

 )

 
[        (     

  

  
)] (b.3) 
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  ( ̅

 )   

 
 (b.4) 

  
   ( ̅

 )  

  
 (b.5) 

 ( )  (  
     

 )(    )
   (  ⁄ )

     (  ⁄ )

   (    ⁄ )

   (    ⁄ )

 

     
 (b.6) 

 

The plastic flow rule 

The evolution of the plastic strain tensor is defined as follow: 

      (
 

  
   

 

  
    

 

 
  ) (b.7) 

where,     is the increment of the plastic strain and    is the plastic multiplier. 

 

Evolution of the equivalent plastic strain 

The evolution of the equivalent plastic strain is defined as follow: 

  ̅    √   
 

 
     

   

   
      

   

   
 (b.8) 

where,   ̅  is the increment of the accumulated plastic strain. 

 

c) Determining the residual system of equations 

The update equation for the stress tensor can be determined as: 

      
  (    

           )      
                (b.9) 

where,      is the stress tensor at time     ,     
      is the trial stress tensor at time 

     and    is the elasticity matrix. 
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Then, the residual system of equations can be determined by the update equation 

for the stress tensor (Equation b.9), update equation for the equivalent plastic 

strain (Equation b.8) and the complementary Equation (Equation b.1), as: 

{
 
 

 
 
            

                                                                                                   

  ̅    ̅  
    ̅  

      
   √   

 

 
     

   

   
      

   

   
                            

           (  ̅  
 )                                                                                            

 (b.10) 

 

d) Write the nonlinear residual system of equation in the linearized form 

Equation (b.10) can be written in the linearized form according Equation (b.11), 

as: 

[
 
 
 
 
 
 
   
     

   

   ̅  
 

   
   

   ̅ 

     

   ̅ 

   ̅  
 

   ̅ 

   

    

     

    

   ̅  
 

    

   ]
 
 
 
 
 
 
 

  [

     
   ̅  

 

   

]

   

   [

  (       ̅  
    )

  ̅ (       ̅  
    )

   (       ̅  
    )

]

 

 (b.11) 

where,  ( )      ⁄ ,  ( )    ̅  
 ⁄  and  ( )    ⁄  represent the derivative of each 

residual equation in relation to each variable of the problem. After some algebraic 

manipulations, Equation (b.11) can be re-written as: 

[
 
 
 
 
        

     
     

  
     

   ̅  
        

   
 √( )

     
    

 √( )

   ̅  
  √( )

               ]
 
 
 
 
 
 

  [

     
   ̅  

 

   

]

   

   [

  (       ̅  
 
   )

  ̅ (       ̅  
 
   )

   (       ̅  
 
   )

]

 

 (b.15) 

where, 
     

     
 , 
     

  ̅   
  represent the derivative of the flow vector in relation to stress 

tensor and accumulated plastic strain, respectively. The terms 
 √( )

     
 and 

 √( )

  ̅   
  

represent the derivative of the auxiliary square root in relation to stress tensor and 

accumulated plastic strain. 
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√( )  √   
 
 
 
 
  

    
   

      
   
   

 (b.16) 

 

In order to determine the derivative of the flow vector in relation to stress tensor 

and equivalent plastic strain, we have: 

     
     

 
 [

 
     

        ]

     
 
 [

 
     

         ]

     
 
 [
 
      ]

     
 

(b.17) 

 

where: 

 

 [
 
    ]

  
 
 

 
[
 

 
(
  

  
)   

 

 
(
  

  
)  

 

  
(
  

  
)  ] (b.18) 

 

 [
 
    ]

  
 
 

 
[
 

 
(
  

  
)   

 

 
(
  

  
)  

 

  
(
  

  
)  ] (b.19) 

 

 [
 
   ]

  
 
 

 
(
  

  
)   

(b.20) 

 

     

   ̅  
  

 [
 

     
        ]

   ̅  
  

 [
 

     
        ]

   ̅  
  

 [
 
      ]

   ̅  
  (b.21) 

 

where, 
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 [
 
    ]

   
 
 

  
(
  

   
)   

(b.22) 

 

 [
 
    ]

   
 
 

  
(
  

   
)  

(b.23) 

 

 [
 
   ]

   
 
 

 
(
  

   
)   

(b.24) 

 

In order to determine the derivative of √( ) in relation to stress tensor and 

equivalent plastic strain, we have: 

 [√( )]

  
 

 

 √( )
[  (

  

  
)  

 

 
 (
  

  
)  

 

  
(  

   

   
)   

 

  
(  

   

   
)] (b.25) 

 

where, 

 

  
(  

   

   
)    (

  

  
)
   

   
  [  (

  

  
)]
  

   
  [  (

  

  
)] (  

   

   
) (b.26) 

 

 
 

  
(  

   

   
)   [ (

  

  
)
   

   
   (

  

  
)
   

   
 
  

   
(
  

  
     

  

  
)

    
   

(   ) 
(  

  

  
)] 

(b.27) 
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 [√( )]

   
 

 

 √( )
[  (

  

   
)  

 

 
 (
  

   
)    (

  

   
)
   

   
   (

  

   
)
   

   

   (
  

   
)
   

   
] 

(b.28) 

 

Other required derivatives can be defined as following: 

  

  
 
 

  
  (b.29) 

 

  

  
   

 

 
    (b.30) 

 

  

  
 [(

   

  
)  

 

 
(
     

  
)  ]  

  

  
 (b.31) 

 

(
   

  
)  (

   

  
)  (

  

  
) (b.32) 

 

(
   

  
)     (b.33) 

 

(
     

  
)      

  

  
 (b.34) 
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   ( ̅
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[        (     
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)

 
  ( ̅

 )

 
[  (

  

  
   

  

  
)

 (
  

  
    

  

  
    

  

  
)(     

  

  
)

     (
   
  

  

  
 
    

  
  

  
 
    

 

  
  

  
)] 

(b.35) 

 

  

  
   ( ̅

 )  [(
  

  
)
 

 
 
 

  
(
  

  
)] (b.36) 

 

  

  
    ( ̅

 ) [(
  

  
)
 

  
 (
  

  
)
 

  
 
   

  
(
  

  
)] (b.37) 

 

  

   
 
  

 
[        (     

  

  
)] (b.38) 

 

  

   
 
    

 
 (b.39) 

 

  

   
 
    

  
 (b.40) 
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 [ ( )]

  
    [

 

  
  

  

   
 ]    [

  

   
  

 

  
 ] (b.41) 

 

 [ ( )]

  
   [(

 

   
 
   
   

)   
 

   
 ] (b.42) 

where,   is defined as: 

 

 ( )  (  
     

 )(    )
   (  ⁄ )

     (  ⁄ )

   (    ⁄ )

   (    ⁄ )

 

     
 

(b.43) 

 

 [ ( )]

  
 

     ⁄

       ⁄

(  
     

 )

      (  )
[     

     ⁄

       ⁄
 
    (    ⁄ )

    (    ⁄ )

 (    )
(       (    ⁄ ))

   (    ⁄ )

 (    )
   (    ⁄ )

   (    ⁄ )

   (  )

   (  )
] (
  

  
) 

(b.44) 
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APPENDIX C 
 

Determine the flow vector and plastic flow rule for 
GTN model with shear mechanism 

 

a) Define the yield function for the specific model: 

 (     )  (
   

  
)
 

         (
     

   
)       

  (c.1) 

where,     is the von Mises equivalent stress,    is the isotropic hardening rule 

which can be defined as          ,   represents the isotropic hardening state 

variable,   represents the effective porosity and   ,    and    are material 

constants. Equation (c.1) can be re-written as: 

 (     )    ( )  
 

 
{     

          (
    

   
)}   

  (c.2) 

where,    represents the second invariant of the deviatoric stress tensor and   is 

the pressure which can be defined as   
 

 
   . 

The evolution of the porosity can be verified below, which we have the 

mechanisms of nucleation, growth of volumetric void and shear: 

 ̇    ̇    ̇   ̇      (c.3) 

where,   ̇ represents the volumetric void nucleation mechanism,   ̇ represents the 

volumetric void growth mechanism and  ̇      represents the shear mechanism. 

The evolutions of the volume void nucleation, growth of void and shear 

mechanisms can be obtained by Equations (c.4 – c.6), respectively. 



248 
 

  ̇  
  

  √  
   [ 

 

 
(
 
 

   

  
)

 

]  ̇
 

 (c.4) 

where,    represents the volume fraction of all second-phase particles with 

potential for microvoid nucleation,    and    are the mean strain for void 

nucleation and its standard deviation. The term  
 

 represents the equivalent 

plastic strain and  ̇
 

 is the evolution of the accumulated plastic strain. 

  ̇  (   )  ̇
  (c.5) 

where,   ̇
  represents the incremental plastic volumetric strain. Then, the evolution 

law for the shear mechanism can be defined according Xue (2008) or Nahshon et 

al. (2008), as: 

 ̇      {

  (  | ̅|)     ̅  ̇
 
                                           

  (    ) ̇
 
                                         

 (c.6) 

 

where,   ,    and   are constants. The terms  ̅ and   represent the normalized 

Lode angle and normalized third invariant, respectively. 

 

b) The flow vector is defined as: 

  
  

  
 

 [  ( )]

  
 

 

 

 [{     
          (

    
   

)}   
 ]

  
 

(c.7) 

In order to determine the closed equation for the flow vector, we have to 

determine the following derivative: 

 [  ( )]

  
 

 [
 
    ]

  
   

  

  
   (c.8) 

The derivative of the second term of Equation (c.7) can be determined as: 



249 
 

 [{     
          (

    
   

)}   
 ]

  
        

 
 [    (

    
   

)]

  
 

(c.9) 

Remark: The derivative of  (     ( )   ⁄ ) is equal to     ( ). 

Thus, after some algebraic manipulation, the above derivative can be written as: 

 [{     
          (

    
   

)}   
 ]

  
             (

    

   
)   (c.10) 

However, the flow vector for GTN´s model can be obtained as: 

    
 

 
           (

    

   
)   (c.11) 

 

c) The plastic flow rule: 

 

The incremental plastic strain can be defined according Equation (c.12), as: 

 ̇   ̇    ̇ [  
 

 
           (

    

   
)  ] (c.12) 

where,  ̇  represents the incremental plastic strain and  ̇ is the plastic multiplier. 

Thus, the incremental plastic volumetric strain can be obtained by Equation below: 

  ̇
   ̇           (

    

   
) (c.13) 

The evolution of the isotropic hardening variable is defined as: 

 ̇    ̇
  

  
 (c.14) 

where,  ̇ represents the evolution of the isotropic hardening variable,   is the 

isotropic hardening state variable which can be defined as       and   is the 

hardening modulus. After some algebraic manipulation, the above derivative of the 

yield function in relation to the isotropic hardening state variable can be written 

as:  
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  {          (

    

   
)  

 

 
[     

          (
    

   
)]   } (c.15) 

Substituting the above result into Equation (c.14) we can obtain: 

 ̇   ̇
{          (

    
   

)  
 
 [     

          (
    
   

)]   }

(   )
 (c.16) 

The term (   ) into the denominator of the equation (c.18) is responsible for 

introduce the softening effect into the GTN´s model. 

 

The accumulated plastic strain can be determined by Equation (c.19): 

 ̇
 

 √
 

 
( ̇   ̇ ) (c.17) 

Substituting Equation (c.12) into Equation (c.17) and after some algebraic 

manipulation, we can obtain: 

 ̇
 

  ̇ √
 

 
{    

 

 
[           (

    

   
)]

 

} (c.18) 

 

d) The stress tensor: 

 

The updated stress tensor can be obtained as: 

         
             

  (c.19) 

 

Substituting Equation (c.12) into Equation (c.19), we have: 

         
          [     

 

 
              (

       

   
)  ] (c.20) 

We can split the trial stress tensor into deviatoric and volumetric parts as: 
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           [     
 

 
              (

       

   
)  ] (c.21) 

Then, after some algebraic manipulations, the updated deviatoric and volumetric 

parts of the stress tensor can be obtained as:  

     
    

     

(      )
 (c.22) 

 

      [    
      

 

 
                  (

       

   
)]   (c.23) 

 

Using above equations, the evolution of the accumulated plastic strain and the 

updated form for the yield function can be determined as: 

     
    [

    
     

(      )
 

 

 
              (

       

   
)  ] (c.24) 

 

     
 

   √
 

 
{
    

          
     

(      ) 
 

 

 
[              (

       

   
)]

 

} (c.25) 

 

 (     )  
 

 

    
          

     

(      ) 

 
 

 
{        

             (
       

   
)}   

  
(c.26) 
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APPENDIX D 
 

Linearization procedure for GTN’s model  
with shear mechanism 

 

a) Constitutive model 

Define the yield function 

The yield function for GTN´s model can be defined according the equation below: 

 (     )  
 

 

    
          

     

(      ) 

 
 

 
{        

             (
       

   
)}   

  
(d.1) 

where,    is the isotropic hardening rule which can be defined as          ,   

represents the isotropic hardening state variable,   represents the porosity and   ,    

and    are material constants. 

 

The flow vector 

  
  

  
 [

    
     

(      )
 

 

 
              (

       

   
)  ] (d.2) 

where,   represents the flow vector,   is the deviatoric stress tensor,   is the second 

order identity tensor 

 

The plastic flow rule 

Plastic strain: 

      [
    

     

(      )
 

 

 
              (

       

   
)  ] (d.3) 

where,     represents the increment of the plastic strain and    is the plastic multiplier. 
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Accumulated plastic strain: 

  ̅    √
 

 
{
    

          
     

(      ) 
 

 

 
[              (

       

   
)]

 

} (d.4) 

where,   ̅  represents the increment of the accumulated plastic strain. 

Evolution of the isotropic hardening variable 

   
  

(      )
{ 

 
 

 
            (

 
 
     

   

)

 
 

 
[   

 
    

 
   

 
        (

 
 
     

   

)]  } 
(d.5) 

The term (      ) into the denominator of Equation (d.5) is responsible for introduce 

the softening effect into the GTN´s model. 

Evolution of the porosity 

The evolution of the damage variable which is called here for porosity or volume void 

fraction, can be defined as: 

   
  

  √  
   [ 

 

 
(
  ̅  

    

  
)

 

]  ̅ 

 (      )                 (
       

   
)      

(d.6) 

where,     represents the increment of the shear contribution and can be determined as: 

    {
        

     ̅  
 

  ̅                     

         ̅                         
 (d.7) 
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Update stress tensor 

         
          [     

 

 
              (

       

   
)  ] (d.8) 

The updated equations for deviatoric and volumetric parts of the stress tensor can be 

obtained as:  

     
    

     

(      )
 (d.9) 

and, 

      [    
      

 

 
                 (

       

   
)]   (d.10) 

where,      is the stress tensor at time     ,     
      is the trial stress tensor at time      

and   is the elasticity matrix. 

 

b) Return mapping algorithm 

The system of equations below needs to be solved for   ,     ,      and      , by 

Newton_Raphson method. 

{
 
 
 
 

 
 
 
  (     )  
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]      
 

 (   )       
 

    

         
           

 (d.11) 

 

The equivalent plastic strain can be determined as: 

    
 

     
       

      
 

 (d.12) 
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Linearization procedure: 

Define the residual system of equations: 

{
 
 
 
 

 
 
 
     

 

 

             

(      ) 
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 (d.13) 

 

Newton Raphson: using N-R method, the following linearized system of equations 

needs to be solver for   ,     ,      and      

[
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   (        )

  (        )

  (        )

  (        ) ]
 
 
 
 
 

 (d.14) 

We can represent above system of equation as:  

[
  

 ( )   
]
 

  [  ]      [ ( )]  (d.15) 

After some algebraic manipulation, the derivative of each residual equation in relation 

to each variable of the problem can be obtained as:  

    

   
  [

  

(      )
]
  

 
      

              
        (d.16) 
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) (d.17) 
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Consistent tangent operator 

The consistent tangent operator for GTN´s model can be obtained through the 

differentiating the stress update equation (c.21) which gives: 
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The system of equations of the plastic corrector phase is differentiated at the converged 

state resulting in the expression: 
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The inversion of the above equations can be written as: 
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Thus, through the above system, we can remove the expression for     and      . 
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Substituting the above equations into the expressions (d.40) and after some algebraic 

manipulation, the consistent tangent operator for GTN´s model can be obtained as: 
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APPENDIX E 
 

Linearization procedure for extended GTN’s model 

 

The yield function for the extended GTN model is defined as: 
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     (e.1) 

where the evolution equation for the volume void fraction is: 

 ̇   ̇   ̇     (e.2) 

The terms  ̇  and  ̇  represent respectively the evolution of the nucleation and growth 

mechanisms and mathematically represented by: 
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(e.3) 

Then, the evolution of the shear damage is represented by: 
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where  ̇  and  ̇  are mathematically represented by: 
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where      (  ‖ ̅‖)
  

‖ ‖   . 

The flow vector can be obtained as: 
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The plastic flow rule can be computed as: 
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Evolution equation for  ̇ is determined by: 
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where              , and: 
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Updating the strain tensor 
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Updating the stress tensor 
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The deviatoric and hydrostatic contributions are determined as: 



267 
 

      
      

      
     

    
      

 

    
          

          
               

      
        

      
 

     
    
     

[  (
    

      
)]

 

       [    
      

 

 
                 (

       
   

)]      

 

(e.13) 

Updating other elasto-plastic variables 
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Brief summary of the extended GTN model with isotropic hardening 

i) Elasto-plastic split of the strain tensor 

        

ii) Elastic law 

        

iii) Yield function 
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Residual equations for the extended model: 
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Residual system of nonlinear equation in the linearized form: 
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where: 
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The Consistent tangent operator can be determined by the derivative of the above 

equation in relation to the elastic trial strain: 
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The deviatoric contribution is obtained as: 
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The derivative of   ,      and      in relation to the elastic trial strain are determined by 

the solution of the system of equation:  
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The above system written in the inverse model can be computed as: 
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where: 
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Regarding the introduction of the kinematic hardening in the extended model, the 

yield function can be rewritten as: 
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where   ( ) represents the second invariant of the relative stress tensor:      . In 

this case, the system of the following nonlinear equations needs to be solve: 
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where        is computed as: 
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The other terms as defined similarly to the original extended model. The relative 

stress tensor and the plastic flow rule are computed as: 
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Regarding the linearization procedure,  the following linearized system of 

equations needs to be solved by Newton Raphson method: 
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