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RESUMO

A correta determinacdo da fratura em materiais dulcteis tem avancado enormemente
nos ultimos anos e assim, o aperfeicoamento de novas formulacdes e técnicas que
sejam capazes de melhorar o comportamento preditivo de modelos constitutivos
tornou-se um grande objeto de estudo para pesquisadores em todo o mundo. O
avan¢o da industria e a procura de técnicas que possibilitem o aumento da
competitividade, fez com que tais desenvolvimentos académicos passassem a ser
adotados por inumeros setores como o automobilistico, o aeroespacial, o naval, entre
outros. Desta forma, nesta tese, procura-se contribuir para o desenvolvimento e
aperfeicoamento de modelos constitutivos e numéricos que sejam capazes de
determinar, da maneira mais realistica possivel, o comportamento mecanico de
materiais metdlicos. Para isto, como primeira etapa do trabalho, sugere-se um
algoritmo de integracdo numérica implicita para um modelo elasto-plastico avancado,
que inclui a influéncia da pressdo hidrostatica e do terceiro invariante do tensor
desviador, na lei de fluxo pldstico de um material metalico. Apds esta proposicao,
busca-se avaliar o comportamento preditivo de trés formulagGes constitutivas
disponiveis na literatura para determinagado do correto local e momento de inicio de
uma fenda ductil. S3o entdo avaliados, o modelo de Bai e Wierzbicki, o modelo de
Lemaitre e o modelo de Gurson em uma versao modificada e conhecida por GTN.
Como etapa seguinte desta tese, procurou-se avaliar o desempenho de dois
mecanismos de corte, um proposto por Xue e outro por Nahshon et al., acoplados ao
modelo GTN e aplicados a regido de baixa triaxialidade. Nesta etapa, avaliou-se a
influéncia da relacdo entre a condicdo de calibracdo dos parametros materiais e a
condicdo de uso, na capacidade preditiva dos modelos com varidveis interna de dano
acoplada. Com base nos resultados observados, na etapa seguinte, propde-se um novo
modelo constitutivo, baseado na formulacdao de Gurson e na dedu¢dao geométrica da
lei de evolu¢dao do mecanismo de corte de Xue, de maneira a aumentar a capacidade
preditiva no que se refere a: determinacdo do nivel esperado de deformacdo plastica
equivalente na fratura, o nivel de deslocamento na fratura e o potencial local para
inicio da fratura ductil, bem como reduzir a influéncia do ponto de calibracdo na
precisdo dos resultados numéricos obtidos quando o modelo é aplicado a largas faixas
de triaxialidade. Por fim, o modelo desenvolvido com base na teoria de Gurson, que
agora passa a denominar de "extended GTN model", é testado em condicGes
complexas de carregamento, com o intuito de se avaliar a influéncia da histéria do
carregamento no comportamento mecanico de materiais e a capacidade preditiva do
modelo. Para isto, introduz-se o efeito de Bauschinger no modelo, através do
acoplamento da lei de fluxo pldstico com uma lei de endurecimento cinematico, como
proposto por Prager.
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ABSTRACT

Accurate determination of fractures in ductile materials has improved significantly in
recent years, and so the development of new formulations and techniques to improve
the performance of predictive constitutive models has become a major topic of study
for researchers worldwide. Industry progress and demand for techniques that allow for
increased competitiveness caused such academic developments to spread into
numerous industries, such as the automotive, aerospace and shipbuilding sectors,
among others. Thus, this thesis seeks to contribute to the development and
refinement of constitutive and numerical models to determine the mechanical
behavior of metallic materials as realistically as possible. To this end, the first step is to
propose an implicit numerical integration algorithm for an advanced elasto-plastic
model, which includes the influence of hydrostatic pressure and third invariant of
deviator tensor on the plastic flow rule for a metallic material. Once this proposition
has been made, the predictive performance of three constitutive formulations
available in the literature are analyzed for determining the exact place and time of
development of a ductile crack. The Bai and Wierzbicki model, the Lemaitre model and
the Gurson model are then evaluated in a modified version known as GTN. The next
step in this thesis was to evaluate the performance of two shear mechanisms — a
mechanism proposed by Xue and another mechanism proposed by Nahshon et al.,
coupled with the GTN model and applied to the range of low stress triaxiality. In this
step, the influence of the relationship between the calibration condition material
parameters and use condition was evaluated with regard to the predictive ability of
the models with coupled internal damage variables. Based on the results, in the
following step a new constitutive model is proposed that is based on Gurson’s
formulation and the geometric deduction of Xue’s evolution law for the shear
mechanism so as to increase predictive ability with respect to: determining the
expected level of equivalent plastic strain at fracture, the level of displacement at
fracture and the local potential for development of a ductile fracture, as well as
reducing the influence of the calibration point on the accuracy of numerical results
obtained when the model is applied to wide range of stress triaxiality. Finally, the
model based on Gurson’s theory — now called the “extended GTN model” — is tested
under complex loading conditions in order to evaluate the influence of the loading
history on the mechanical behavior of materials and predictive ability of the model. To
this end, the Bauschinger effect is introduced in the model by coupling the plastic flow
rule with a kinematic hardening law as proposed by Prager for the evolution of the
back stress.
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CHAPTER 1

Introduction

1.1 GENERAL CONSIDERATIONS

The correct prediction of fracture in ductile materials has become, in recent
years, a matter of great importance for several competitive sectors of industry
such as automotive, aerospace, marine, military, among others. For example,
weight reduction in vehicle structures such as chassis and bodies, without loss of
performance and competitiveness, has used design criteria that neglect the
determination of the correct time and place for the start of a crack. This approach
has clearly significant limitations and the design of new products requires careful

planning of each step for its development, and manufacturing optimization.

In the last two decades, there has been a substantial increase in the
awareness, of the industrial environment, of the great potential that emerges from
the application of scientific methods for the design of these new products. At each
step, you must ensure that the products developed and the applied processes are
optimized, especially in competitive sectors of the industry, such as metallurgical
industry, and simultaneously meet the functionality requirements and low cost of
production. To overcome the problems encountered during the design and
development phases, and still maintain a competitive advantage, it is of the utmost
importance to be constantly updated with the latest scientific and technological

progress.

Since the end of the sixties, a number of mathematical models have been
formulated to describe the macroscopic behavior of ductile metallic materials, like
steel, aluminum alloys, among others. The model proposed by McClintock (1968),
which assumes the void within a metal matrix in the form of a cylinder, the model
proposed by Rice and Tracey (1969) that considers the void as a perfect sphere,
the Gurson-Tvergaard-Needleman (GTN) model (1977 and 1984) which describes

the elastic-plastic behavior of porous materials, the model proposed by Lemaitre
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(1985) that assumes the principles of continuous damage mechanics, the models
proposed by Oyane (1978), Cockcroft and Latham (1968) and Johnson and Cook
(1985) based on experimental observations, are some of the best-known models in
the literature to describe the elastic-plastic behavior of ductile materials. Figure
1.1 shows some examples of the use of mathematical models, within the finite
element framework, to design and optimize structures and mechanical
components. Such models can be used both in the simulation of failure of
structures, stress analysis of mechanical components and optimization of

production processes.

(b)

Figure 1.1. Examples of the use of constitutive models to describe the elastic-plastic

behavior of structures and mechanical components, (Bai, 2008).



1.2 EVOLUTION AND IMPORTANCE OF DAMAGE MECHANICS

Since the pioneering work of Kachanov (1958), many developments in
applied mechanics were made in order to formulate new constitutive models that
are able to describe the internal degradation of solids, according to the principles
of Continuum Mechanics. After five decades of research, significant progress has
been observed and the so-called Continuum Damage Mechanics (CDM) theory has
emerged as an alternative approach for the introduction of new state variables in

constitutive models (Lemaitre, 1985).

The material behavior can be modeled by constitutive equations, taking into
account its progressive deterioration. These models are based on the assumption
that the internal damage can effectively be represented by one or more internal
variables, which may be of scalar, vector or tensorial nature. These variables,
called damage variables can represent a measure of defects within a
representative volume (RV). Its development should comply with constitutive
thermodynamic relations, usually represented by a system of differential
equations in time. Based on CDM, many different constitutive models have already
been proposed, such as Lemaitre (1985) model to characterize damage caused by
plastic flow, Chaboche (1984) and Murakami & Ohmo (1981) models to describe
fretting damage, Krajeinovic & Fonseka (1981) model for fragile damage, among

others.

In recent years, the need to have robust and reliable models for use in
engineering projects, coupled with the advent and the popularity of digital
computers, led to the progressive development of numerical techniques. The
constant improvement of numerical models and associated algorithms, together
with the significant increase in processing capacity versus the cost of computers,
made a significant impact on the acceptance of numerical techniques within the
academic and industrial environments. The numerical methods, mainly based on
the Finite Element Method, have been continuously developed and improved, for
both linear and nonlinear applications. Particularly, in the solution of nonlinear
problems of solid mechanics, there have been considerable advances in several

topics of research. In many areas, the numerical methods have achieved a high



degree of predictive ability and, today, are of great help to the designer and an

essential tool for solving real engineering problems.

During the development of numerical algorithms for the analysis of stress,
the description of the constitutive response of the material was dominated by the
theory of elasticity and elastic-(visco) plasticity. Over the years, the finite element
techniques based on these constitutive models have been continuously modified
and adapted to deal with more complex deformations, which may include: large
deflections, finite deformations, viscous effects, among others. In particular, the
advances made in the numerical simulation of large deformation problems in the
presence of finite inelastic deformations (Peri'C & Owen, 2004), had a major

impact on the simulation of metal forming.

Despite these advances, many questions remain open, such as the modeling
problems related to failure (fracture) of materials resulting from the progressive
deterioration associated with micro structural deformations. In such cases, the
development of new and more sophisticated constitutive models deserves careful
consideration and therefore, the subject remains an important area of research

and development.

There are several technological processes, which should greatly benefit from
a better understanding and quantification of the different physical phenomena that
occur close to rupture of ductile materials. Metal cutting, for example, is a
technological process used to manufacture a large number of products and is
currently used by a large number of companies. The importance of this process is
underlined by the fact that almost every object we use in our society, has one or
more machined surfaces. Due to its massive use, the effectiveness of this process
has a considerable impact on the quality and cost of the products obtained.
Therefore, understanding the process of removing the chip is of vital importance in
material selection and design tools, as well as in ensuring the dimensional

accuracy and surface integrity of the final product.
1.3 LAYOUT

The thesis is divided into eight chapters. In the first one, the introduction and

motivation of the work is undertaken. After that, Chapter 2 presents a brief review
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over the physical aspects of the structure of metals and the theoretical aspects
related to damage mechanics. In addition, the kinematics of deformation, the stress
and equilibrium, the fundamental laws of thermodynamics, the constitutive theory,
the weak equilibrium and the finite element modeling of finite strain plasticity are

also addressed.

Chapter 3 describes in detail the derivation of an implicit solution for numerical
integration of a new elastic-plastic model, which is dependent on both pressure
and Lode angle. The constitutive model is presented as well as the numerical
strategy employed. Several numerical tests are carried out in order to demonstrate

the efficiency of the algorithm proposed.

In chapter 4, three well established ductile failure models employed to determine
fracture onset are presented: the Gurson’s theory, highlighting the Gurson-
Tvergaard-Needleman (GTN) model as well as the Lemaitre’s model both with
isotropic hardening and isotropic damage. Besides these, an advanced elastic-
plastic model coupled with a fracture indicator is chosen, in order to perform an
assessment of isotropic damage constitutive models under high and low stress

triaxiality.

In chapter 5, a theoretical and numerical study is done, based on Gurson-
Tvergaard-Needleman (GTN) model, in order to evaluate the prediction of fracture
initiation under a low level of stress triaxiality. Some recently proposed shear
mechanisms are presented and assessed as damage variables in the constitutive
formulation. Besides that, the influence of the calibration point on the numerical
results for coupled damage models is studied, presenting some numerical results

for two different calibration points.

In chapter 6, an extension to the Gurson-Tvergaard-Needleman (GTN) model is
proposed, in order to predict fracture onset. A new shear mechanism is presented
and two independent nucleation mechanisms are created in order to trigger the
growth contribution. The complete constitutive formulation and the numerical

strategy are described in detail together with several numerical tests.

The loading history effect on ductile fracture is studied on chapter 7, based on the

micromechanical formulation proposed in chapter 6. Three different loading

5



conditions are simulated and the numerical results are discussed, based on
experimental data. Finally, in chapter 8, a short summary and the conclusions of

this work are presented along with suggestions for future research.



CHAPTER 2

Continuum Mechanics, Laws of Thermodynamics and
Constitutive Theory

In this chapter, a brief summary of the basic concepts of continuum
mechanics is presented, as well as, the fundamental laws of thermodynamics of
continuous media and the use of internal variables to formulate constitutive
models of dissipative materials. The main subjects addressed are: the kinematics of
deformation, stress and equilibrium, the laws of thermodynamics, constitutive

theory and weak equilibrium through the principle of virtual.

2.1. KINEMATICS OF DEFORMATION
In this section, the theory related to the description of kinematics of
deformation is presented where the concepts of motion and deformation are

addressed.

2.1.1. Configurations and motions of continuum bodies

Within the three-dimensional Euclidean space, a continuum body, Q, with
each particle labeled by the coordinates, p € Q, is analyzed at a given instant of
time, t. Furthermore, the reference configuration is assumed to coincide with the
initial configuration, and each material particle is expressed as a function of the
coordinates of p. In the deformed configuration, the continuum body, Q, occupies
the region @ (Q) with boundary ¢(9Q) defined through the deformation map ¢.
Thus, the current position of a particle p of Q in the deformed configuration can be

defined as:

x= ¢, (2.1)

where x represents the current position, ¢(.) is the deformation map and p
represents a particle embedded in the continuum body.
Then, the displacement of particle p can be represented by the vector u(p),

which can be expressed by the relation:



u(p) =@ —p, (2.2)

where u(.) represents the displacement vector. However, substituting Equation
(2.1) into (2.2), the current position of a particle, x, can also be rewritten as

function of initial configuration, p, and the displacement of particle u(p):

x=p+ ulp). (2.3)

Figure 2.1 represents the initial and deformed configuration of the
continuum body Q and the reference and current position of particle p, regarding a

displacement u(p).

€1

€3

Figure 2.1. Configurations of a deformable body.

If we consider a rigid deformation, the deformation of the continuum body,
Q, preserves the distances between all material particles of the body, and can be: a
translation, a rotation or a combination of a translation and a rotation. A rigid
translation is a deformation with constant displacement vector, which is

represented by:

o(P)=p+ u. (2.4)

For a rigid rotation, the deformation is mathematically expressed as:

@) =q+ R(p—q), (2.5)



where R represents a proper orthogonal tensor (a rotation tensor) and gq
represents the point about which Q is rotated. A deformation is rigid, containing

translations and rotations, if and only if it can be expressed as:

o) =9@+ RPp-9q), (2.6

where the above expression represents a deformation map for a rigid translation

with displacement ¢@(q) — q, superimposed on a rigid rotation R about point q.

A time-dependent deformation of the continuum body Q, is called like a
motion of body €. Thus, the motion can be defined by a function ¢ so that for each
time t, the map ¢@(+,t) is a deformation of Q. Now, regarding the motion ¢, the

position x of a material particle p at time t is expressed by:

x= @(pt). (2.7)

Furthermore, the deformed configuration of the continuum body, ¢@(Q,t),
denotes the region of three dimensional space occupied by the body Q at time t.
Typically, the current position of these particles is located, by the coordinates x
with respect to an alternative Cartesian basis e; (see Figure 2.1). If we consider the

displacement field, the motion can be expressed by:

o(@t) =p+ ulpt), (2.8)

where u(p,t) represents the displacement of particle p at time t. Since at each
time t the map ¢(-,t) is one-to-one by assumption, the material points can be

expressed as a function of the place that each one occupies at a time t by:

p=¢ '(xt) =x— ule~'(x1),t), (2.9)

where ¢! represents the reference map. In finite deformation analysis, no
assumption is made for the magnitude of the displacement, u(p, t), indeed it may
even exceed the initial dimensions of the body as in the case, for instance, of metal
forming. Nevertheless, in infinitesimal deformation analysis the displacement
u(p, t) is assumed to be small in comparison with the dimensions of the continuum

body, and geometrical changes can be, a priori, ignored.



Time dependence

For non-linear problems, the dependency of deformation on the time, @ (p, t),
must be considered. Throughout a motion, ¢, the velocity and acceleration of a
material particle, p, can be determined by the first and second derivatives of the

motion with respect to time. Equation (2.10) represents both quantities:

dp(p,t ?p(p,t
1,0 = 222D and 4,0 = LB, (2.10)

where x(p,t) and X(p, t) represent, respectively, the first and second derivatives

of the motion in respect to time. Using the reference map, ¢, the following

functions can be defined:

v(x,t) = x(@ 1 (x,t),t) and a(xt) =x(p 1(xt),t), (2.11)

where v and a denote the spatial description of the velocity field and acceleration

field, respectively.

2.1.2. Material and spatial descriptions

Under finite deformations, a judicious distinction has to be made between the
coordinate systems that can be chosen to describe the behavior of the continuum
body Q. Considering, for the sake of simplicity, a scalar time dependent quantity, «,

defined over the body Q.

(a) Material description: if the value of «a is expressed as a function of material
particles, p, and time, t, with respect to the domain Q X R3, then « can be called as

a material field, defined as:

am(p, t). (2.12)

(b) Spatial description: otherwise, if the value of « is expressed as a function of a
spatial position, x, and time, t, with respect to the domain ¢.(Q) % R3, then a can

be called as a spatial field, defined as:
as(x,t). (2.13)

The above descriptions are also employed for both vector and tensor fields.
The material and spatial descriptions are alternatively referred to as Lagrangian

and Eulerian descriptions, respectively.

10



Material and spatial gradients, divergences and time derivatives
If we consider a scalar field a, the material and spatial gradients can be
defined by the following expressions:
Vya = iam(p, t) and V,a = iogs(x, t), (2.14)
op ox
where V,a and V,a denote, respectively, the material and spatial gradients, which
are the derivatives of @ with respect to p and x holding t fixed. In addition, the

material and spatial divergence of a vector field r, are respectively, given by:

div,r = tr(Vpr) and div,r =tr(V,r). (2.15)

Considering now, a tensor field T, the spatial and material divergence are
given, in Cartesian components, by:

oT;;
(dinT)i = apl; and (div,T); =

(2.16)
Similarly, the material and spatial time derivatives of «, denoted respectively
a,, and dg, are defined by:

) 9
= —an(@,t) and d =—a(x0) . (2.17)

The material time derivative ¢,, measures the rate of change of a at a fixed

Am

material particle p. The spatial time derivative ¢, on the other hand, measures the

rate of change of a observed at a fixed spatial position x.

2.1.3. The deformation gradient

Let us examine the deformation gradient of the motion ¢, which establishes
the relation between quantities before deformation to corresponding quantities
after (or during) deformation. Mathematically, the deformation gradient is defined

by a second order tensor:

0x;
op ’

where F represents the deformation gradient. Having in mind Equation (2.5), the

F(p,t) =Vye(p,t) = (2.18)

second order tensor F can be written as:

F=I1+V,u, (2.19)

11



where I represents the second order identity tensor. The deformation gradient can

also be expressed as function of Cartesian components:

axi aui
Fij = o, =6 + ; (2.20)

where the term x; represents the components of x;. Furthermore, recalling the

reference map, the tensor F may be expressed by the following expression:
F(x,t) = [Vao t(x, )]t =[1—-V,u]™?t. (2.21)

Considering an infinitesimal volume, dV, which can be written as a function
of the infinitesimal vectors da, db and dc, that originates from the material particle
p in the reference configuration (see Figure 2.2), the term dV is mathematically

expressed by dV = (da x db).dc.

dv idetF dv
VY
’
‘ Fda
x

Fdb

reference
configuration

Figure 2.2. The determinant of the deformation gradient.

Consider now, a deformation map ¢; applied to the infinitesimal volume dV
(see Figure 2.2). After mapping the infinitesimal vectors, the deformed

infinitesimal volume is expressed as:
dv = (Fda x Fdb).F dc . (2.22)

After some tensor manipulations, the determinant of the deformation
gradient can also be denoted by Equation (2.23), which represents the volume

after deformation per unit reference volume,

(Fdax Fdb).Fdc dv

F = -
det daxdb).dc _dv’

(2.23)
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where the term detF represents the determinant of the deformation gradient. In
Continuum Mechanics, the term ] is frequently employed to denote the

determinant of F.
J = detF . (2.24)

From the analysis of Equation (2.23), it can be concluded that if /] = 0 then
the infinitesimal volume has collapsed into a material particle, which represents a
physically unacceptable situation. In the reference configuration the deformation
gradient is equal to the second order identity, F =1 and, consequently, the
determinant of F is a unit, / = 1. Thus, a configuration with / < 0 cannot be
reached from the reference configuration without having, at some stage, ] = 0.

Therefore, in any deformed configuration of a body, J satisfies:

J>0. (2.25)

Isochoric/volumetric split of the deformation gradient

The deformation gradient, F, can also, locally, be decomposed as a purely
volumetric deformation followed by an isochoric deformation or as an isochoric
deformation followed by a pure volumetric deformation. Mathematically, the

multiplicative split of the deformation gradient is expressed by:
F =Fi, F, =F, Fi,, (2.26)
where the purely volumetric component F,, is defined as:
1
F, = (detF)s I, (2.27)

and the isochoric component Fjg,, which is volume preserving or unimodular, is

expressed by:

1
Fis, = (detF)s F. (2.28)

It is important highlight that, by construction, F, corresponds indeed to a purely

volumetric deformation and, since

1.3
detF, = [(detF)E] I = detF, (2.29)

F, produces the same volume change as F. The isochoric component, in turn,

represents a volume preserving deformation, that is,

13



113
detFiy, = [(detF)§] detF =1 . (2.30)

2.1.4. Polar decomposition: Stretches and rotation
The deformation gradient F can be decomposed in terms of stretch and

rotation components, by applying the polar decomposition, which is expressed as:
F=RU =VR, (2.31)

where U is the right stretch tensor, with a basis in the reference configuration, and
V is the left stretch tensor, which is an object in the current configuration. The
second order tensor R is a proper orthogonal tensor, which is a local rotation
tensor, connecting both configurations. The right and left stretch tensors can be

related by the rotation tensor, as:
V = RURT, (2.32)

where, the term RT represents the transposed of the rotation tensor. In fact, the

following expressions can relate the tensors F, U and V:

U=+VC and vV =+b, (2.33)

where C and b are called, respectively, as the right and left Cauchy-Green tensors.

However, both Cauchy-Green tensors can also be defined as:

C=U?=F"F and b=V?=FFT, (2.34)

where FT denotes the transposed of the deformation gradient.
Both right and left stretch tensors, which are represented by U and V
respectively, are symmetric tensors. Therefore, according to the spectral theorem,

they admit the spectral decomposition and can further be written as:

3
U= ZALNL®NL and V= Zl'3=1 lini®ni , (235)

=1
where the set of parameters {1;,1,, 13} are the eigenvalues of U and V called the
principal stretches. The vectors N; and n; are also unit eigenvectors of U and V,
respectively. The triads {N;, N,, N5} and {n,,n,, n;} form orthonormal bases for
the space U of vectors in R3. They are called, respectively, the Lagrangian and

Eulerian triads and define the Lagrangian and Eulerian principal directions.
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Performing the substitution of Equation (2.32) into (2.35), the relationship
between the eigenvectors of V and U can be established, which highlights that each

vector n; differs from the corresponding N; by a rotation R:

The spectral decomposition of the right and left stretch tensors implies that
in any deformation, the local stretching from a material particle can always be
expressed as a superposition of stretches along three mutually orthogonal

directions.

2.1.5. Strain Measures

Within an infinitesimal neighbourhood of a generic material particle p, pure
rotations can be distinguished from pure stretching by means of the polar
decomposition of the deformation gradient F. Furthermore, subjected to the action
of pure rotations, the distances between particles within this neighbourhood
remain fixed. In this case, the difference between the deformed neighbourhood of

p and its reference configuration is a rigid deformation.

Otherwise, pure stretching is characterized by U or V and changes the
distance between material particles. To quantify straining, which evaluates how
much the tensor U or V departs from a rigid deformation I, some type of strain
measure has to be defined. In fact, the definition of a strain measure is somewhat
arbitrary and a specific choice is usually dictated by mathematical and physical
convenience. A well known family of Lagrangian strain tensors, which is based on
the Lagrangian triad, is defined by:

1

, 2.37
In[U], m=20 ( )

where m is a real number and In[U] denotes the tensor logarithm of the right
stretch tensor U. Considering the spectral decomposition, the above expression

can be rewritten as:
EM™ =Y3% f(1)N;®N; , (2.38)

where, the term f(4;) is defined according to:
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;(Alm—l), m+0

. 2.39
In[A,], m=0 (239

f(/'lz)={

Examining particular members of the family of Lagrangian strain tensors,
the Green-Lagrange strain tensor E® arises for m = 2, the Biot strain tensor when
m = 1, the Hencky (m = 0) and Almansi (m = —2) strain tensors. Note that for any
m, the associated strain tensor vanishes if and only if the deformation gradient

represents, locally, a rigid deformation:
EM™=0oU=1 F=R. (2.40)

The same representation can also be employed to define tensors that
measure strain along the principal Eulerian directions or Eulerian strain tensors.
Based on the left stretch tensor, the Eulerian counterpart of the Lagrangian family

of strain measures above is defined by:

Loym_
g(m):{m(v D, m=#0 (2.41)

)

In[V], m=20

or, employing the Eulerian triad,

3
e = Zf(/li)ni®ni : (2.42)
i=1

The relation between the Lagrangian and Eulerian strain tensors can be
mathematically expressed by the equation below:

M = R EMRT (2.43)

Both strain tensors differ by the local rotation R.

2.1.6. The velocity gradient: Rate of deformation and spin
Equation (2.11) denotes the velocity, v(x,t), as a function of the spatial
coordinates. The derivative of this expression with respect to spatial coordinates

defines the velocity gradient tensor as:
1=V, (2.44)

where [ represents the velocity gradient tensor. Applying the chain rule, the

velocity gradient can be rephrased as:
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=_(_‘p)_p=FF—1 .
Jdt\dp/ ox

The tensor I can be split into its symmetric and skew parts. The symmetric

(2.45)

component is named as the rate of deformation tensor, d, and the skew component

as spin tensor, w, which are defined by:

d =sym(l) and w = skew(l). (2.46)

The following notation has been used to represent both parts of the velocity

gradient tensor:

sym() =3[+ 7] and skew() =3[ = ()], (2.47)

2.1.7. Superimposed rigid body motions and objectivity

The concept of objectivity can be understood by studying the effect of a rigid
body motion superimposed on the deformed configuration. From the point of view
of an observer attached to and rotating with a solid, many quantities describing the
behavior of the solid remain unchanged. Such quantities, like the distance between
two particles or the state of stress in the body, amongst others are said to be
objective (see Holzapfel, 2000).

Although the intrinsic nature of these quantities remains unchanged, their
spatial description may change. Let us consider an elemental vector dp in the
initial configuration that deforms to dx and is subsequently rotated to dX¥ as

represented in Figure 2.3.

SO
¢_. &

Figure 2.3. Superimposed rigid body motion.
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The relationship between these elemental vectors can be established by:
dX = Qdx = QFdp, (2.48)

where Q denotes an orthogonal tensor describing the superimposed rigid body
rotation. Even though the vector dX is diferent from dx, their magnitudes are
obviously equal. In this sense it can be said that dx is objective under rigid body
motions. This definition is extended to any vector a that transforms according to
a - Qa. From Equation (2.48) it is possible to note that the deformation gradients

with respect to the current and rotated configurations are related as,
F - QF . (2.49)

The next step consists in extending the definition of objectivity to second-

order tensors. Objective second order tensors, G, transform as
G- QGQT . (2.50)

Obviously, material tensors (defined in the reference configuration), such as € and

E, are unchanged under superimposed rigid body motions.

2.2 STRESS AND EQUILIBRIUM

The stresses and equilibrium concepts need to be introduced for a
deformable body subjected to a finite motion. It should be noted that, so far, no
reference has been made to forces and how they are transferred within continuum
bodies. Regarding the description of surface forces, the concept of stress as well as
the different ways of quantifying it are presented in this section. The Cauchy’s
axiom is extremely important for the description of surface forces, and is stated in
what follows. Consider a body Q in an arbitrarily deformed configuration. Let § be

an oriented surface of Q with unit normal vector n at a point x.

Figure 2.4. Surface forces. The Cauchy stress.
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Cauchy’s axiom states that: At x, the surface force, or the force per unit area,
exerted across § by the material on the side of § into which n is pointing upon the
material on the other side of § depends on § only through its normal n. This means
that identical forces are transmitted across any surface with normal n at x. This

force (per unit area) is called the Cauchy stress vector and is represented by:
t(n), (2.51)

with dependence on x and time omitted for notational convenience. If § belongs to
the boundary of Q then the Cauchy stress vector represents the contact force

exerted by the surrounding environment on Q.

2.2.1 The Cauchy stress tensor
The dependency of the surface force £ on the normal n is linear . This implies

that there exists a tensor field a(x) such that the Cauchy stress vector is given by:
t(x,n) =cx)n. (2.52)
The tensor o is called the Cauchy stress tensor, which is symmetric:
o=oT", (2.53)

where o7 represents the transposed stress tensor.

Deviatoric and hydrostatic stresses
Regarding constitutive modeling, it is often convenient to split the stress
tensor ¢ into two parts: a spherical and a traceless component, which are

represented by:
o=S8+pl, (2.54)

where the term p is a scalar that represents the hydrostatic pressure, which is

defined as:

p = %tra, (2.55)

and the component § is a traceless tensor named the deviatoric stress or stress

deviator:
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S=o-pl=[1-3I1Q1|:0, (2.56)

where I is a forth order unit tensor. The spherical stress tensor can be determined

by the following operation:

pl=-(IQD:0, (2.57)
and the hydrostatic pressure p is an invariant of the stress tensor.

Stress objectivity
Since the Cauchy stress tensor is of key importance to establish any
equilibrium or constitutive equation, it is decisive to inquire whether o is
objective, as defined previously. Let us consider the transformations of the normal
and traction vectors implied by the superimposed rigid body motion Q as:
t(n) = Qt(n)

n=0Qn,

(2.58)

with dependence on x and time omitted for notational convenience. Using the
relationship between the traction vector and stress tensor (Equation 2.52), in

conjunction with the above quantities gives,
o - QoQ". (2.59)

The rotation of o given by the above equation conforms with the definition of

objectivity for a second order tensor.

2.2.2 Alternative stress tensors

Numerous definitions of stress tensors have been proposed in the literature.
Most of their components do not have a direct physical interpretation:
The Kirchhoff stress tensor: Often it is convenient to work with the so-called
Kirchhoff stress tensor , T, which differs from the Cauchy by the volume ratio J,

and is defined by:
T=]Jo. (2.60)

Due to the symmetry of a, the Kirchhoff stress is also symmetric.
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The first Piola-Kirchhoff stress tensor: The traction vector £ measures the force
exerted across a material surface per unit deformed area. Since in many situations
the deformed configuration of  is not known in advance, it is convenient to define

the first Piola-Kirchhoff stress tensor,
P =JoFT, (2.61)

This definition derives from the counterpart vector t of ¢ that measures, at the
point of interest, the current force per unit reference area. The tensor P is often
referred to as the nominal or engineering stress. Note that in contrast to the

Cauchy stress, P is generally unsymmetric.

The second Piola-Kirchhoff stress tensor: It is possible to contrive a totally
material symmetric stress tensor, known as the second Piola-Kirchhoff stress

tensor S, defined by:
S=JF loFT. (2.62)

It often represents a very useful stress measure in computational mechanics and in
the formulation of constitutive equations, in particular, for solids. In spite of the
mathematical convenience, it does not admit a physical interpretation in terms of

surface tractions.

2.3 FUNDAMENTAL LAWS OF THERMODYNAMICS

Firstly, it is necessary to introduce the scalar fields 0, e, s and r defined over
Q which denote, respectively, the temperature, specific internal energy, specific
entropy and the density of heat production. In addition, f and q will denote the
vector fields corresponding, respectively, to the body force (force per unit volume

in the deformed configuration) and heat flux.

2.3.1 Conservation of mass

The postulate of conservation of mass requires that:
p+pdiv,u=0, (2.63)

where div, 1 represents the spatial divergence of 1.
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2.3.2Momentum balance
The momentum balance can be expressed by the following equations:

I o @1
where the momentum balance is expressed in local form. The term n is the
outward unit vector normal to the deformed boundary ¢(0Q) of Q, # is the
boundary traction vector field on ¢@(dQ). The above momentum balance equations
are formulated in the spatial (deformed) configuration. Equivalently, they may be
expressed in the reference (or material) configuration of Q in terms of the first
Piola-Kirchhoff stress tensor as:
div, P+ f=pit inQ

t=Pm in 0Q

where div,, P represents the material divergence, f is the body force measured per

(2.65)

unit reference volume, p is the density in the reference configuration, which can be

determined by:

p=Jp, (2.66)

t is the boundary traction force per unit reference area and m is the outward

normal to the boundary of Q in its reference configuration.

2.3.3 The first principle
The first principle of thermodynamics postulates the conservation of energy.

Before stating this principle, it is convenient to introduce the product:
o:d, (2.67)

which represents the stress power per unit volume in the deformed configuration
of a body. The first principle of thermodynamics is mathematically expressed by

the equation:
pé =o0:d+pr —div, q. (2.68)

The previous equation states that the rate of internal energy per unit deformed
volume must equal the sum of the stress power and heat production per unit

deformed volume minus the spatial divergence of the heat flux.
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2.3.4The second principle
The second principle of thermodynamics postulates the irreversibility of
entropy production. It is expressed by means of the inequality:

r
ps + div, [g - % >0. (2.69)

2.3.5 The Clausius-Duhem inequality
With the first and second principles stated above, the Clausius-Duhem
inequality is obtained by a combination of both principles. After some

mathematical manipulation, it can be expressed by:
N ) B P :
p$ + div, [5] ~3 (pé —o:d +div,q) = 0. (2.70)

The introduction of the specific free energy 1, which is also known as the

Helmholtz free energy per unit mass, defined by:

Y =e—0s, (2.71)

together with the relation:

o1 1
div, [5] = Edlvx q- 5349 v,0, (2.72)

into in the Clausius-Duhem inequality, leads to:

; . 1
a:d—p(¢+59)—5q.920, (2.73)
where the term g is definedas: g = V,6.

2.4 CONSTITUTIVE THEORY

The balance principles presented so far are valid for any continuum body,
regardless of the material of which the body is made. In order to distinguish
between different types of material, a constitutive model must be introduced. In
this section, the use of internal variables to formulate constitutive models of

dissipative materials is addressed.
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2.4.1 Thermodynamics with internal variables

An effective alternative to describe the dissipative constitutive behavior is
the adoption of the so-called thermodynamics with internal variables. The starting
point of the thermodynamics with internal variables is the hypothesis that at any
instant of a thermodynamical process the thermodynamic state (defined by o, Y, s
and q) at a given point p can be completely determined by the knowledge of a
finite number of state variables. The thermodynamic state depends only on the
instantaneous value of the state variables and not on their past history. This
hypothesis is intimately connected with the assumption of the existence of a
(fictitious) state of thermodynamic equilibrium known as the local accompanying
state (Kestin & Bataille, 1977) described by the current value of the state variables.
In other words, every process is considered to be a succession of equilibrium
states. Therefore, despite the success of the internal variable approach in
numerous fields of continuum physics, phenomena induced by very fast external
actions (at time scales comparable to atomic vibrations) which involve states far
from thermodynamic equilibrium are excluded from representation by internal

variable theories.

The state variables
Consider that at any time t, the thermodynamic state at a point is defined by

the set of state variables, as follows:
{F,0,9,a}, (2.74)

where the terms F,0 and g are the instantaneous values of the deformation
gradient, temperature and the temperature gradient. The term a represents the
set of internal variables containing, in general, entities of scalar, vector and tensor

nature associated with dissipative mechanisms, a = «a.

Thermodynamic potential: Stress constitutive equation
Following the above hypothesis, the specific free energy is assumed to have

the form:

Y =y(F,6,a), (2.75)
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so that its rate of change is given by:

1/}=—:F+—0+7ak, (2.76)

where summation over k is implied. In that case, using the connection:

o:d=0oFT:F, (2.77)

for the stress power, one obtains for the Clausius-Duhem inequality:

(aF‘T —lp):F—p(s+Z—lg>9—pa—¢ak—lq.g20. (2.78)

Equivalently, in terms of power per unit reference volume, we have:

(P pglﬁ)F p<s+%)9 paa:iak—éq.gzo. (2.79)

Equation (2.79) must remain valid for any pair of functions { F (t), 8(t)}. This

implies the well known constitutive equations:

0 0
- =__T 2.80
P=p-r, s 50 (2.80)
for the first Piola-Kirchhoff stress and entropy. Equation (2.80) is equivalent to the

following constitutive relations for the Cauchy and Kirchoff stress tensors:

1 0
o= lpFT oY

— ~_ T T
7P oF T=pon FT. (2.81)

Thermodynamical forces
For each internal variable a; of the set a, we define the conjugate

thermodynamical force:

Ay

_0Y
pa— (2.82)

With this definition and the identities (see Equation 2.80), the Clausius-Duhem

inequality can be rewritten as:

—Ad) — éq.g =>0. (2.83)

In what follows, we will adopt for convenience the notation:
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A={A}, (2.84)

for the set of thermodynamical forces.

Dissipation. Evolution of the internal variables
In order to completely characterize a constitutive model, complementary

laws associated with the dissipative mechanisms are required. Namely,
constitutive equations for the flux variables %q and & must be postulated. In the

general case, we assume that the flux variables are given functions of the state

variables. The following constitutive equations are then postulated:

a=f(F0,g9a),

1 (2.85)
5q =h(F,0,9,a) .

The Clausius-Duhem inequality, now expressed by Equation (2.83), must
hold for any process. This requirement places restrictions on the possible forms of
the general constitutive functions f and h in (Equation 2.85) (see Coleman &
Gurtin, 1967; Truesdell, 1969). It is also important to mention that when internal
variables of vectorial or tensorial nature are present, it is frequently convenient to
re-formulate (Equation 2.85) in terms of so-called objective rates rather than the
standard material time derivative of a. Objective rates are insensitive to rigid body
motions and may be essential in the definition of frame invariant evolution laws

for variables representing physical states associated with material directions.

Dissipation potential. Normal dissipativity
An effective way of ensuring that (Equation 2.83) is satisfied consists in

postulating the existence of a scalar-valued dissipation potential of the form:

==Z2(4,9:F60,a) , (2.86)

where the state variables F , 8 and «a appear as parameters. The potential Z is
assumed convex with respect to each A, and g, non-negative and zero valued at
the origin, {4,g} = {0,0}. In addition, the hypothesis of normal dissipativity is
introduced, which mean that flux variables are assumed to be determined by the

laws:
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9% 1 Flo
04, 0

a = (2.87)

A constitutive model defined by Equations (2.75), (2.80) and (2.87) satisfies
“a priori” the dissipation inequality. It should be noted, however, that the
constitutive description by means of convex potentials as described above is not a
consequence of thermodynamics but, rather, a tool for formulating constitutive
equations without violating thermodynamics. Examples of constitutive models
supported by experimental evidence which do not admit representation by means

of dissipation potentials are discussed by Onat & Leckie (1988).

2.4.2 Phenomenological and micromechanical approaches

The success of a constitutive model intended to describe the behavior of a
particular material depends crucially on the choice of an appropriate set of
internal variables. Since no plausible model will be general enough to describe the
response of a material under all processes, we should have in mind that the choice
of internal variables must be guided not only by the specific material in question
but also by the material process. In general, due to the difficulty involved in the
identification of the underlying dissipative mechanisms, the choice of the
appropriate set of internal variables is somewhat subtle and tends to be biased by
the preferences and background of the investigator.

In simple terms, we can say that constitutive modeling by means of internal
variables relies either on a micromechanical or on a phenomenological approach.
The micromechanical approach involves the determination of mechanisms and
related variables at the atomic, molecular or crystalline levels. In general, these
variables are discrete quantities and their continuum (macroscopic) counterparts
can be defined by means of homogenization techniques. The phenomenological
approach, on the other hand, is based on the study of the response of the
representative volume element, which is the element of matter large enough to be
regarded as a homogeneous continuum. The internal variables in this case will be
directly associated with the dissipative behavior observed at the macroscopic level
in terms of continuum quantities (such as strain, stress, temperature, etc.). Despite
the macroscopic nature of theories derived on the basis of the phenomenological

methodology, it should be expected that “good” phenomenological internal
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variables will be somehow related to the underlying microscopic dissipation

mechanisms (de Souza Neto et al., 2008).

2.4.3 The purely mechanical theory

Thermal effects are ignored in the constitutive theories addressed in this
thesis. It is, therefore, convenient at this point to summarize the general internal
variable-based constitutive equations in the purely mechanical case. By removing
the thermally-related terms of the above theory, we end up with the following set

of mechanical constitutive equations:

Y=y(F a),

_ 9
P=por, (2.88)
a=f(Fa) .

2.4.4 The constitutive initial value problem

Our basic constitutive problem is defined as follows: “Given the history of the
deformation gradient (and the history of temperature and temperature gradient, if
thermal effects are considered), find the free-energy and stress (plus entropy and
heat flux, in the thermo mechanical case) according to the constitutive law”. If the
internal variable approach is adopted in the formulation of the constitutive
equations, the generic constitutive problem reduces to the following fundamental

mechanical initial value problem.

Problem 2.4.1 (The mechanical constitutive initial value problem)
Given the initial values of the internal variables a(t,) and the history of the

deformation gradient

F(t) te€ [tyt], (2.89)

find the functions P(t) and a(t), for the first Piola-Kirchhoff stress and the set of
internal variables, such that the constitutive equations:
_ay
p —

oFl, (2.90)
a(t) = f(F@), a(?)) ,

P(t) =
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are satisfied for t € [t,, t].

2.5 WEAK EQUILIBRIUM. THE PRINCIPLE OF VIRTUAL WORK

The strong (point-wise, local or differential) forms of the momentum balance
have been stated in Section 2.3 by expressions (2.64) and (2.65). In this section, we
state the momentum balance equations in their corresponding weak (global or
integral) forms. The weak equilibrium statement - the Principle of Virtual Work -
is fundamental to the definition of the basic initial boundary value problem and, is
the starting point of finite element procedures.

Again, let us consider the body @ which occupies the region Q@ c R3 with
boundary dQ in its reference configuration, subjected to body forces in its interior
and surface tractions on its boundary. In its deformed configuration,  occupies

the region ¢ (Q) with boundary ¢ (9Q) defined through the deformation map ¢.

2.5.1 The spatial version
The spatial version of the principle of virtual work states that the body  is in
equilibrium if and only if its Cauchy stress field, o, satisfies the equation:
f [a:Vxn—(f—pii).n]dv—f tnda=0 Vnev, (2.91)
(@) »(0Q)
where f and t are the body force per unit deformed volume and boundary traction

per unit deformed area and V is the space of virtual displacements of Q , or in

other words the space of sufficiently regular arbitrary displacements.

n:9(B) —U. (2.92)

2.5.2 The material version

The virtual work equation can be equivalently expressed in the reference
configuration of Q. The corresponding material (or reference) version of the
Principle of Virtual Work states that Q is in equilibrium if and only if its first Piola-

Kirchhoff stress field, P, satisfies:
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f [P:Vpn—(f—ﬁil).n]dv—f tnda=0 Vnev, (2.93)
Q 0Q

where f = ] f is the reference body force and £ is the boundary traction per unit
reference area. The space of virtual displacements,V , is accordingly defined as the

space of sufficiently regular arbitrary displacement fields:

70 —-U. (2.94)

The material version of the virtual work equation is obtained by introducing, in its

spatial counterpart, the identities:

L -1
o=- , a=V,a , .
]PF Y Vp F (2.95)

where the second expression holds for a generic vector field a, and making use of

the standard relation (Gurtin, 1981):

| atav=| j@alew) av., (2.96)
(@) Q

valid for any scalar field a.
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CHAPTER 3

An Implicit Numerical Integration Algorithm for an
Elasto-plastic Model with Three Invariants

This chapter describes a simple and robust algorithm for numerical integration of
a new model for metal plasticity and fracture. The constitutive model was
proposed by Bai & Wierzbicki (2007) and critically includes both the pressure
effect, through the stress triaxiality, and the effect of the third invariant of the
deviatoric stress tensor, through the Lode angle, in the constitutive description of
the material. These effects are directly introduced on the hardening rule of the
material, which is typically only a function of the equivalent plastic strain. This
approach is in contrast with the classical theory of metal plasticity, the so-called J»
theory, which assumes that both hydrostatic pressure and third invariant of the
deviatoric stress tensor have a negligible effect on the material strain hardening
and the flow stress. The model proposed by Bai and Wierzbicki was selected from
the models available in literature for a detailed study and an implicit solution for
numerical integration of Bai & Wierzbicki’s model is developed and implemented
in an implicit quasi-static finite element environment. The algorithm is based on
the operator split methodology, which to determine the stress update procedure,
employs a fully implicit elastic predictor and plastic corrector (return mapping)
step with general non-linear (piece-wise linear) isotropic hardening and the
computation of the consistent tangent matrix (Simo et al., 1985 and 1987). Then, to
illustrate the accuracy and stability of the integration algorithm in practical
situations (Ortiz & Popov, 1985), iso-error maps are built for specific cases. At the
end, the robustness of the numerical integration algorithm is demonstrated by a
large group of numerical simulations where the numerical results are compared
with experimental results for classical specimens as: a cylindrical smooth bar and a
cylindrical notched bar modelled as two dimensional problems together with a flat

grooved plate specimen simulated in three-dimensions.
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3.1 INTRODUCTION

The theory based on the second invariant of the deviatoric stress tensor, /5,
more widely known through von Mises’s model is one of the most used
formulations to describe the behavior of metals, during the elasto-plastic regime.
The von Mises’s model assumes that the effect of hydrostatic stress is negligible on
the evolution of the plastic flow for ductile materials. The hydrostatic stress is a
parameter responsible for controlling the size of the yield surface (Bardet, 1990;
Bai, 2008). Furthermore, in the von Mises’s formulation, the effect of the third
invariant of the deviatoric stress tensor, normally denoted by J3, is also ignored.
The third invariant is a parameter used in the definition of the Lode angle or
Azimuth angle, which is responsible for the shape of the yield surface (Bardet,
1990; Bai, 2008). Over the last five years, the importance of both hydrostatic stress
and Lode angle, in the description of the behavior of ductile materials, has been
clearly recognized and detail studies were conducted by several authors (Bai et al.,
2007; Bai, 2008; Driemeier et al., 2010; Mirone et al., 2010; Gao et al., 2011). Many
researchers have done extensive experimental studies as Richmond & Spitzing
(1980 and 1984), who were the first researchers to study the effects of pressure on
yielding of aluminum alloys. Latter, Bardet (1990), proposed a methodology to
describe the Lode angle dependence for some constitutive models, and Wilson
(2002), which conducted studies on notched 2024-T351 aluminum bars in tensile
test and verified the importance of these effects. Brunig et al. (1999) proposed a
constitutive model with three invariants that could be applied in metal plasticity
and fracture. According to Mirone et al. (2010), the phenomenon of ductile failure
is influenced by the relation with the variables from the stress-strain
characterization and the failure prediction is better described by plastic strain,
stress triaxiality and Lode angle parameters. An experimental program to study
the influence of the stress tensor invariants in ductile failure was presented by
Driemeier et al. (2010). This methodology can be seen as an efficient tool to
investigate the effects of the stress intensity, stress triaxiality and Lode angle.
Recently, Gao et al. (2011) have proposed an elasto-plastic model, which is a
function of the hydrostatic stress as well as the second and third invariants of the
stress deviator. These authors have carried out tests in specimens with a high level

of stress triaxiality showing the dependence of the plastic flow rule on both stress

32



triaxiality and Lode angle. By examining these contributions, it is posible to
conclude that ductile fracture is a local phenomenon and the stress and strain
states over the expected fracture onset must be determined with accuracy. The
fracture initiation is often preceded by large plastic deformation and there are
considerable stress and strain gradients around the point of fracture. In this case,
the J, theory is not accurate enough to capture the physical effects and more
refined plasticity models have to be developed to be used in a large range of

loading conditions.

3.2 PRELIMINARIES

Several factors have been systematically analyzed in the study of ductile
fracture, nevertheless, there are three factors which have gained increased
interest: the hydrostatic stress (p), stress triaxiality (n), and the Lode angle (8)
expressed by Equations (3.1-3.3) respectively (Brunig et al, 2008; Bai &
Wierzbicki, 2008; Zadpoor et al., 2009; Tvergaard, 2008; Nahshon et al., 2008).

p=—on=—3tr(), (3.1)
n = —g , (3.2)
o (L E22) 1) -

where q = \/m is the von Mises equivalent stress, § = o —pl is the
deviatoric stress tensor and S;, S, and S; are the components of the deviatoric
stress tensor in the principal plane. The Lode angle can also be written as a
function of the so-called normalized third invariant of the deviatoric stress tensor

as:

0 = %arccos(f) , (3.4)

where ¢ represents the normalized third invariant, that can be mathematically
determined by a ratio between the third invariant and the von Mises equivalent

stress:
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£ = (5)3 . (3.5)

The term r represents the third invariant, alternatively, defined by Bai et al.

(2007) and can be determined as:

27

r=[5 ] " = det(S)]1/3 , (3.6)

where /3 is the third invariant of the deviatoric stress tensor, S. The Lode angle can
also be normalized (@) and this parameter is known as the normalized Lode angle

parameter (Bai & Wierzbicki, 2008).

6=1——. (3.7)
s

The range of fis —1 <0 < 1.

3.2.1 Lode Angle Parameter

The definition of the Lode angle, 6, can be better understood by analyzing the

representation of the stress vector, 0B, on the space of principal stresses

illustrated in Figure 3.1(a).

Bai&Wierzbicki
. ———  Drucker-Prager
03 e Mohr-Coulomb

(a) (b)

Figure 3.1. (a) Schematic representation of the stress vector OB on the principal
stresses space and (b) definition of the Lode angle on the m-plane. Adapted from
Bai (2008).
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The stress vector can be decomposed into a deviatoric 04 and a hydrostatic

00 part. The ratio between the hydrostatic and deviatoric part is, by definition, the

stress triaxiality which is associated with the angle ¢, which is obtained between

the stress vector OB and the m-plane. This angle, named elevator angle, is
responsible for the size of the yield surface. The Lode angle is defined on the m-
plane or deviatoric plane, see Figure 3.1b, and is the smallest angle between the
line of pure shear and the projection of the stress tensor on the deviatoric plane.
Bardet (1990) conducted several studies on the influence of the Lode angle on the
shape of the yield surface and concluded, for exemple, that the Drucker-Prager
model is Lode angle independent and Tresca and Mohr-Coulomb models are Lode

angle dependent (Figure 3.1b).

In the context of ductile fracture, some researchers have suggested the
introduction of the effect of the Lode angle either into the standard von Mises
elasto-plastic constitutive model or into some damage evolution laws. In
particular, Bao et al. (2004), Briinig et al. (2000) and Bai & Wierzbicki (2008) have
proposed new elasto-plastic models that include the three invariants of the stress
tensor on the definition of the material yield surface. On the other hand, in order to
improve the evolution of the porosity obtained by Gurson’s theory for low level of
stress triaxiality, Nahshon & Hutchinson (2008), Barsoum & Faleskog (2007) and
Xue (2008) have proposed the introduction of new shear mechanisms on the

damage evolution law of Gurson’s model, which are Lode angle dependent.
3.2.2 Fracture Surface

Experimental evidence of ductile fracture under high, low or even negative
stress triaxiality has been presented by several authors (McClintock, 1971;
Johnson and Cook, 1985). Nevertheless, recently Bao (2003) and Bao & Wierzbicki
(2004) have conducted several tests in specimens with different geometries to
determine the fracture location under a range of triaxiality. Figure 4.3 shows the
behavior of two ductile materials on the three dimensional fracture locus for a
range of stress triaxiality between [-1, 1]. The surfaces were originally proposed by

Bai (2008) for an aluminum alloy and for steel.
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(a) (b)

Figure 3.2. Behavior of ductile materials in the three dimensional fracture loci: (a)
material with a strong dependence of both hydrostatic pressure and Lode angle,
the 2024-T351 aluminum alloy and (b) material with a weak dependence, the
1045 steel. Data adapted from Bai (2008).

The results have shown that the fracture strain does not have to be a
monotonically decreasing function of the stress triaxiality (Bao et al, 2004) for
materials which are strongly dependent on both pressure and Lode angle (Figure
3.2a). In particular, Bai (2008) has studied the behavior of an aluminum alloy and
proposed a three dimensional fracture locus where the fracture strain depends on
both stress triaxiality and Lode angle. For a high level of stress triaxiality, where
the spherical void growth mechanism plays a major role in the damage process, the
equivalent plastic strain decreases with the increase of the stress triaxiality.
However, within the range of zero and low level of stress triaxiality, where the
elongation of voids is the predominant mechanism, the equivalent plastic strain
increases with the increase of the stress triaxiality. This specific behavior is
completely different for materials weakly dependent on pressure and Lode angle
where the equivalent plastic strain decreases with the increase of the stress
triaxiality (Figure 3.2b). The stress states which are promoted by specimens,
employed in metal plasticity, can also be individually represented in the plane of
stress triaxiality versus Lode angle. A representation of the initial stress state on
the plane of stress triaxiality versus Lode angle is shown in Figure 3.3 where the

influence of the Lode angle can be appreciated.
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Figure 3.3. Representation on the space of stress triaxiality versus Lode angle.

Adapted from Bai (2008).

Area “A” represents the region where we have the most significant
contribution of shear effects on the material internal degradation, and in this case,
both the stress triaxiality and the Lode angle are around zero. This behavior is
observed under pure shear loading conditions, where the elongation of void drives
the degradation of the material properties. In area “B” there is still a strong
influence of shear effects, and this behavior is commonly observed in combined
compression-shear and tensile-shear loading conditions, where both spherical and
elongated void growths are present. Finally, in area “C” shear effects are
neglectable and the predominant mechanism is the spherical void growth in the

damage evolution.

3.3 CONSTITUTIVE MODEL

Bai & Wierzbicki (2007) have proposed an elasto-plastic model that includes
the effect of pressure, through the stress triaxiality, and the effect of the third
invariant, through the Lode angle. The effects are introduced on the well
established von Mises model by redefining the hardening rule of the material. It is

important to remark that in the classic von Mises model, the hardening rule is only
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a function of the accumulated plastic strain ay(Ep) and, in the Bai & Wierzbicki’s

model, the hardening rule becomes a function of the accumulated plastic strain,

the stress triaxiality and the Lode angle through the parameter u(6), 0, (&?,n, p).

Thus, the new definition of the hardening rule can be obtained as:

'um+1
0, (&P,m, 1) = 0, (eP)[1 = C,(n — no)] ICé + (Cg" — Cp) <u T 1)] , (3.8)
where ¢, (&7) is the material strain hardening function, C,,Cg,Cg”*, and m are

experimental parameters, 7, is the reference value of the stress triaxiality, and

u(6) is a parameter defined as a function of the Lode angle:

cos(m/6) 1
— cos(m/6) lcos(6 — 1 /6)

u(®) =~ - 1] _ 6.4641[sec(0 —1/6)—1] .  (3.9)

The effect of the stress triaxiality and the Lode angle are included on the

hardening rule through the functions [1 — C,(n — n0)] and [cg + (C5* - C) (,u —

m+1

— )], respectively. The new yield criterion replaces the standard hardening rule,

g, (&P), by 0,(€7,n,u) on the J, theory, such that the new yield surface can be

expressed by:

¢ =q-o0,E,nu . (3.10)

Substituting Equation (3.8) into Equation (3.10), we can obtain the yield

function for Bai & Wierzbicki’s model:

m+1
® =q—o0,(e")[1-C,(n —1no)] [cg +(C&*-C§ (u - :1—+1>l . (3.11)

From Equation (3.11), it is possible to express the pressure effect and Lode
angle dependence by functions A(n) and B(u), respectively. The functions can be
defined by Equations (3.12) and (3.13), as:

Am =[1-C,(n—np)] . (3.12)

m+1
st <[+ - s )| am

Thus, Equation (3.11) can be re-written as:
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® = g — 0, (EAMBW) . (3.14)

The influence of the material parameters (Cn' Cs,C§ o, m) on the behavior
of the constitutive model can be analyzed as follows. The parameter C, is a
material constant and needs to be experimentally calibrated. This parameter
describes the hydrostatic stress effect on material plasticity. If C;, = 0, the model
loses the dependence of the stress triaxiality or the hydrostatic stress effect and

recovers, as a limiting case, the behavior of the von Mises’s model.

The triaxiality reference, 1), depends on the type of test performed and the
geometry of the specimen. For a cylindrical smooth bar, subjected to a tensile test,
ny takes the value equal to 1/3. Regarding the same specimen, now under a
compressive test, 7, takes the value equal to —1/3. Finally, for a torsion and a
shear testn, = 0. It is important to remark that the hydrostatic stress effect,
introduced by Bai & Wierzbicki, is a linear function. Nervertheless, some
researchers (Karr et al., 1989), have claimed that this effect is non-linear for some
materials, such as ice. Analyzing the third invariant effect, the experimental
parameter C4* can assume one of two forms, according to the type of loading

(tension/compression) applied or the value of the Lode angle:

N IV

8 . (3.15)

D

cox _ {Cé for 0
Cs for
The parameters Cj, C; and C§ also depend on the type of test. For example, if
a smooth bar is used in a tensile test Cg = 0, if a torsion test is performed Cj = 1, if
a cylindrical specimen is used in a compressive test C5 = 1. The convexity of the
yield surface is controlled by the ratio of these parameters. The range of the
parameter u is between 0 < u < 1. When u = 0 it corresponds to plane strain or
shear condition, when u =1 it corresponds to an axisymmetric problem. The
introduction of the term u™*!/m + 1 is done to ensure the smoothness of the
yield surface and its differentiability with respect to Lode angle around u = 1.
More details about the calibration of the material parameters can be found in Bai
(2008). In Box 3.1, a summary of the Bai & Wierzbicki’s model is presented. Details
of how to determine the plastic flow rule and the evolution equation for the
equivalent plastic strain can be found in appendix “A”.
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Box 3.1. Bai & Wierzbicki’s model with isotropic hardening.

(i) Elasto-plastic split of the strain tensor

e=¢g°+¢P
(ii) Elastic law
o =D¢:&°
(iii) Yield function
®=q—o0,(éP)AB
with 4 and B given by:
— s ax _ rs _
A=[1-Ctn—n0)] ; B = [C9+(C9 Cy) (Ii
__ cos(m/6) 1 _
and, " 1—cos(r/6) Lcos(8—-m/6) ]

. . . . -Dp
(iv) Plastic flow rule and evolution equation for ¢

'lf’—'(’)(b—'N—'(3 S+3/1M+1 1)
& =ys-=VN=y|-a 24 313

2q
. 2 M:M SSM
g =)'/\/a2 toB AR 2ad

where:

1
M=5%- §tr(SZ)I

and a, § and A:
oy (&P) q°
a=1- p C,Bn + AD§ 1+311r_3
B o, (€P)C,B
q
30, (EP)AD
A= T

cos(m/6) tan(6 —m/6)

D = (C§" — €A - ™)

(v) Loading/unloading criterion

y=0, d<o0,

1 — cos(m/6) cos(f — m/6) sin 36

m+1

m+1

7@ = 0.

)
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3.4 NUMERICAL STRATEGY FOR THE INTEGRATION ALGORITHM

In this section, the constitutive equations of Bai and Wierzbicki's model,
presented in section 3.3, will be treated and implemented within a finite element
framework. The main contribution of this chapter is the development of an implicit
numerical integration algorithm. The use of a path dependent constitutive model,
as is the case of the model described in this chapter, invariably leads to the need
for formulation of algorithms for numerical integration of the evolution equations.
The problem consists in formulating numerical integration procedures for
updating the known state variables, generically denoted by «,,, at a certain time ¢,
to obtain the state variables «,,; at time ¢, ;, where the incremental strain A¢ is
assumed given. Therefore, the discretization of the constitutive equations within a
generic pseudo-time interval [t,, t,+;] was performed for the Bai and Wierzbicki's
model, which is summarized in Box 3.2, based on the backward Euler scheme
(Simo & Hughes, 1998). Since the model was implemented in an implicit quasi-
static finite element framework, it was also necessary to derive the tangent matrix

which is consistent with the integration algorithm.

The stress update procedure is based on the so-called operator split concept
(see Simo & Hughes, 1998; De Souza Neto, 2008), which is especially suitable for
the numerical integration of the evolution problem and has been widely used in
computational plasticity (see Simo & Hughes, 1998; De Souza Neto et al., 2008).
This method, which was used in this development, consists in splitting the problem
in two parts: an elastic predictor, where the problem is assumed to be elastic and, a
plastic corrector, in which the system of residual equations comprising the
elasticity law, plastic consistency and the rate equations is solved, taking the
results of the elastic predictor stage as initial conditions. In the case of violation of
the yield condition, the plastic corrector stage has to be initiated and the Newton-
Raphson procedure is used to solve the discretised set of equations. The Newton-
Raphson procedure was chosen motivated by the quadratic rates of convergence
achieved, which results in return mapping procedures computationally efficient
(see Simo & Hughes, 1998; De Souza Neto, 2008). The steps required to determine

the state update procedure for the present model are described in the following.
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3.4.1 State update procedure
Let us consider what happens in a typical Gauss point of a finite element
mesh, within pseudo-time interval [¢,, t,,;;]. Given the incremental strain, the total

strain at time t,,, ; can be determined as:

Eny1 = & + A, (3.16)

where &, represents the total strain at time ¢, ;, €, is the total strain at time ¢,
and Ae represents the incremental strain. Knowing also the values of the internal
variables £f and &) at time t,,, the numerical integration algorithm should obtain

=P

the updated values at the end of the interval for a,,,;, sfl” and & _;, in a manner

consistent with the constitutive equations of the model.

The elastic trial state

Assuming the incremental strain, Ag, as purely elastic, we have no evolution
of the internal variables, which for this model is only the plastic strain tensor. In
this case, the first step of the algorithm is evaluate the so-called elastic trial state.
Hence, the elastic trial strain and the trial accumulated plastic strain at time ¢,,,;

are given by:
' ptrial _
gl =g + Ae and &7 =& . (3.17)

The corresponding trial stress tensor is computed through a double

contraction between the elasticity matrix and the elastic trial strain tensor.

o4t =De:eg i, (3.18)
where D¢ is the standard isotropic elasticity tensor. Equivalently, in terms of

deviatoric stress tensor and hydrostatic stress, Equation (3.18) can be split as:

trial _ e trial trial _ etrial
Sn+1 - 2G‘gdn+1 and Pn+1 _K‘Svn+1 ’ (3-19)
where €449 is the deviatoric elastic trial strain tensor, €441 = dev (£217%),
and £ is the volumetric elastic trial strain, "% = trace (2Y/%). The

parameters K and G represent, respectively, the bulk and shear modulu.

The trial yield stress is defined, in this case, as a function of the accumulated

plastic strain at time t,,, which includes isotropic hardening.
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offdt = g,(&) = gy + HEL | (3.20)

where H represents the isotropic hardening modulu. The next step of the
algorithm is to check whether /7% lies inside or outside of the trial yield surface.

With the variable & frozen at time t,,, we compute:

, 3 . .
e = f5||sml|| ~ o (@)1= 6,1 - )]

utriam
i n
cs + (e - e w1 )|

(3.21)

If &' is less than or equal to zero, the process is elastic within the interval
and the trial state coincides with the updated state at time t,,, ;. In this case, there
trial

is no plastic flow evolution within the interval and the trial state, (*);/;7, is equal

to the real state, (*),4 1.

(Dnsr = (O (3.22)

Otherwise, if @™ > ¢, it is necessary to apply the plastic corrector or return

mapping algorithm whose step-by-step derivation is described in the following.

The plastic corrector step or return mapping algorithm

The plastic corretor step starts from the trial state. Firstly, the incremental
strain is split in an elastic and plastic contributions. Hence, the increment of the
plastic strain needs to be subtracted from the elastic trial strain at time ¢,

(Equation 3.17). Thus, the elastic strain can be computed as:

e _ eetrial _ ceétrial
€n+1 = €n+1 Ae? = En+1 AVNn+1 ,

, (3.23)
04 = 257t — oy |

3 3 1
zqn+1 an+1sn+1 + 2—n+1 An+1Mn+1 + §,3n+1l ’

where N, , ;represents the flow vector. The equivalent plastic strain at time ¢,,,; is

also given by:
e =&+ AP =& + Ay (%) , (3.24)

where the terms a,,;1, Brn+1, An+1 and (*) are defined as:

0&(é£+1)

dn+1

2
n+1
Ony1 = 1- Can+1nn+1 + An+1Dn+lfn+1 (1 + 311(an+1) = 3)] i (325)

Th+1
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(0GB (326)
n+1 — )
An+1

_ 30y(&%,1)An+1Dnia (3.27)
Any1 = > :
qn+1

Sn+1: Mn+1

Mn+1: Mn
Sne1:Sne1 (3.28)

+1
+ 2a{n+1)~n+1

2
= Z4— 24 )2
(*) an+1 9:8n+1 Sn+1: Sn+1

The parameter D, 4 is calculated through the following expression:

cos(m/6) tan(B,,, — 1/6) 1

_ (rax _ ;s _
D1 (Bnia) = (6" = Co)(A = na™) 1— cos(/6) cos(041 — 7/6)sin30,,, = (3:29)

Equations (3.23) and (3.24) must be complemented by the so-called
consistency condition that guarantees that the stress state at the end of the plastic

step lies on the updated yield surface:

D =qpiq — ay(§£+1)An+1(nn+1)Bn+1(.un+1) . (3-30)

The previous set of discrete evolution equations needs to be solved for the
unknowns variables €2, £/, and Ay. Obtained the solution of the above system
of non-linear equations, the plastic strain tensor can be updated according to

following equation:

3

3 1
S — 1M = I] : 31
an+1 On+19n+1 + zqn+1 n+17n+1 + 3 .Bn+1 (3 3 )

e . =& + Ay [

In the classical von Mises model, the system of equations to be solved for the
plastic corrector state can be reduced by means of simple algebraic substitutions
to a single non-linear equation having the incremental plastic multiplier, Ay, as
variable (De Souza Neto et al., 2008). Nevertheless, in Bai & Wierzbicki’s model, we
cannot reduce the system of equations to a single non-linear equation for Ay.
Therefore, a system of couple equations needs to be solved at each integration

(Gauss) point. In order to obtain this system of equations, let us start by re-writing

Equation (3.23) as a function of the stress tensor, by multiplying the elastic
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constants (Equation 3.18). After this manipulation, the following system of

equation can be formulated for the unknowns ., 4, -, and Ay.

(On+1 =074 — Ay D®:Nyyy

M 1: My, Sn+1:Mpiq
n+1_£ + Ay an+1 +3 ﬁn+1 Azn—+2an+1ln+1% (332)
Sn+1:Sn+1 Sn+1'Sn+1

k D =qnsy1 — O-y(éﬁ+1)An+1(nn+1)Bn+1(.un+1)
More details about how to obtain the flow vector N, ; and the plastic flow
rule for the incremetal plastic strain Aefl +1 and the accumulated plastic strain e_fz oy

can be found in Appendix “A”.

System of equations return mapping: The system of equations represented above
is fully coupled and highly non-linear. Hence, we will describe in the following the
procedure required to solve a non-linear system, which will lead to a
computationally more efficient return mapping algorithm. The previous set of
discrete evolution equations needs to be solved for the unknowns o,,, 1, s‘f;H and
Ay. The Newton-Raphson method (N-R) is one of most efficient methods that can
be used for the solution of the return mapping system of equations (Equation
3.32). Regarding the application of the N-R method, we firstly have to define the

residual equations, based on the system above (Equation 3.32):

. L .
ra(an+1r 55+1'AV) On+1 — o'fzr-:ci + AyD®: Ny yq
=D
rep(Ons1, €, AY) | = &, — & — Ay (® , (3.33)
rAy (an+1' §£+1' Ay) n+1 — O-y (€n+1)An+1(nn+1)Bn+1(.un+1)
where r,, 7e» and 1, represent the residual equations for 6,4, g’ . and Ay,
respectively. The term r, represents a second order tensor, and both 7z and r,,

represent scalar equations.

According to the Newton-Raphson method, to obtain a new guess for each
variable of the problem, we have to perform the linearization of the above residual
equations. After some algebraic manipulations, we can obtain the system of

equations in the linearized form, according to Equation (3.34):
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[ ara aro’ aro-_

00,41 o&? dAy ~ ,

o ore ar| [00wn] " [Te(Onen i dy)

00,41 0&° Ay | 65721)"'1 = - r?p(o-n+1' §£+1'AV) ) (3.34)
n n+1 SAV r (O' gp A )

aT'Ay aTAy aTAy Ay\Yn+1 n+10 Y

00,1 0&-,, 0AY]

where the terms 9(*)/06,,4, 0(%)/0¢,, and d(x)/dAy represent the derivatives of
each residual equation in relation to the stress tensor, equivalent plastic strain and
plastic multiplier, respectively. By performing the derivatives and substituting

them into Equation (3.34), we have:

aNn+1 aNTL+1 .
I+AyDe:—2 Ay pey 3 K
On+1 a£s+1 m On+1 . r"(anﬂ’ 85“’ A)/)
8/ (%) ENIO) 6é8,, —|rev(onsr 8,0 0y)| . (3.35)
Ay —— 1-4y— = (%) SA »
| 6an+1 65n+1 | 14 7"Ay(a'n+1:“3n+1JAV)
Nosr ~ApirBaH 0]

where [ represents the fourth order identity tensor.

In the above linearized system of equations, the first part on the left hand
side of Equation (3.35) represents the derivative of each residual equation
(Equation 3.33) with regard to each variable of the problem ( 7,,,4, e‘fl’ﬂ and Ay) at
iteration k. Then, on the second term of the left hand side part, we have the
incremental values of each variable of the problem at iteration, k + 1, and the third
part on the right hand side of Equation (3.35) represents the value of each residual
equation at iteration k. Once the solution of the problema is obtained, we have the
new guess for each variable (6,4, &, and Ay), and the other state variables
need to be updated, as €2, and & ,. The overall algorithm for numerical
integration is summarized in Box 3.2 and Box 3.3 in pseudo-code format. More
details on how to obtain the derivative of each residual equation, can be found in

Appendix “B”.
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Box 3.2. Fully implicit Elastic predictor/Return mapping algorithm.

i)  Evaluate the elastic trial state: Given the incremental strain Ae and the state
variables at time t,,:

etrial _ e . —p trial —p
i =&, + As ; g =&,

trial _ e trial . trial _ e trial
Sn+1 - ZGsd n+1 4 Pn+1 = K‘gvn+1

ii)  Check plastic admissibility:
IF & = qi7i5" — oy (571" ) AT BT < 0 THEN
set (Jnp1 = (714! (elastic step)
GO TO (v) - “Exit”
ELSE
GO TO (iii) - “Continue”

iii) Return mapping (plastic step):

Solve the system of equations below for 6,1, e_ﬁﬂ and Ay, using the Newton-Raphson
method:

Ons1 — Oy + AyD®: Nppyy 0
5_111)+1 - E_ﬁ — Ay (%) = {0}
0

dn+1 — O-y (g£+1)An+1 (nn+1)Bn+1 (.un+1)

2 M,,+M Sns1tM
*) = 24— 2 + A2 n4lr P n4d +2 2 ont+l- " n+l
( ) An+1 9ﬁn+1 Sn+1:sn+1 Un+1n+1 Sn+15sn+1
GOTO Box 3.3 (Newton Raphson procedure)
iv) Update the other state variables:
1 1 P _ P
€3 ny1 = Esn+1 TS Epn+1 ; Env1 = En T AYNpig

v)  Exit
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Box 3.3. The Newton-Raphson algorithm for solution of the return mapping system

of equations.

1) Initialize iteration counter, k:= 0, set initial guess for a() (0)

Ay @ =0, &, @

ra(an+1: 524.1’ AV) ‘ I o-n+1 glr-lfcil + AyD® N1
qn+1 —

= £! and corresponding residual:

Tgp (an+1ﬁ 5164.1; A}’) A)/,l (*
Tay (Gn+1' 8_1;1)+1' AV) Oy (£n+1)An+1 (77n+1)Bn+1 (.Un+1)

2) Perform Newton-Raphson iteration

r 0r, or, ara'k
00,.1 0 0Ay )
arn—p a:_:;l ar_p 60-Tl+1 et rd’(a-n+1r 8124.1; A)/)
g g € 6 = —|r= (o- gp A )
do o0& Ay €n+1 e\ On+1 €y BY
n+1 n+1 oAy ( S )
arAy aTAV aTAV rAV o-n+1’€n+1l )4
_aan+1 6 n+1 aA]/_

_p .
New guess for 6,44, &, ,, and Ay:

k+1
On+1 = O'n+1(k) + 50n+1( =
-p () p  (k+1)
£n+1 n+1 +46€ n+1

Ay = Ay + sAy K+D
Update other state variables:
- 1
g1 =D 0041 Prer = gtr(ﬂnﬂ) 5 Sn+1 = Ong1 — Pnal

3) Check for convergence
= T
P = dn+1 — O-y(55+1)[1 - Cn(nn+1 - 770)] [Cg + (ng - Cg) (.un+1 - m—-l-l)]

IF |®| < €, THEN
Return to Box 3.2.

4) GOTO step (2)
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3.4.2 Accuracy and stability

In order to ascertain the accuracy and stability of the integration algorithm in
practical situations, we can determine the so-called iso-error maps. This method of
analysis was introduced by Krieg & Krieg (1977) and discussed by Ortiz & Popov
(1985), Simo & Taylor (1985), De Souza Neto et al. (2008), among others. To
generate a typical iso-error map, le tus consider an arbitrary stress state at a point

on the yield surface of Bai and Wierzibicki elasto-plastic model (see Figure 3.4).

A

01

Figure 3.4. Iso-error map. Trial stress incremental directions.

From this point, a sequence of strain increments is applied corresponding to

specified normalized elastic trial stress increments of the form:

. Ao Ao
Agtrial = —qT T+ —qN N, (3.36)

where T and N are , respectively, the unit normal and tangent vectors to the yield

surface and q is the von Mises equivalent stress. For each increment of the trial

num

stress, we obtain a “numerical solution”, ™™, with the above described algorithm

exact js obtained with

in one step. In addition, a solution assumed to be “exact”, o
the same algorithm by dividing the corresponding strain (and time) increment into
1000 sub-increments of equal size. For each point, where a “numerical” and “exact”

solution are obtained, the error associated with each increment is defined as:

\/(o-exact — o-num): (o-exact — o-num)
ERROR = N X100 . (3.37)
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The material properties adopted for the present analysis, are listed in Table

3.1. These parameters were taken from Bai (2008) for an aluminium alloy.

Table 3.1. Basic material properties for aluminum 2024-T351. Taken from Bai

(2008).

Parameter Symbol Value

Young’s modulus E [MPa] 71500
Poisson’s ratio v 0.33
Yield stress Oyo [MPa] 370

Stress strain curve 0, (€P)[MPa] 908. (0.0058 + £P)0-1742

Hydrostatic stress influence Gy 0.09
Triaxiality ratio reference Mo 0.33

Lode dependence - shear Cs 0.855
Lode dependence - tensile Ch 1.0
Lode dependence - compression Cg 0.9
Lode dependence - exponent m 6.0

By varying the prescribed increment sizes Ao and Aoy, respectively,
associated with the tangential and normal directions to the yield surface, an error
field is obtained. In Figure 3.5, we present the iso-error maps for Bai &
Wierzbicki's model without pressure and Lode dependence, with only pressure
effect dependence and with both effects. It is possible to conclude that the range of
the integration error is almost the same for all cases and it attains a maximum
value of 21%. Nevertheless, some differences can be noticed on the shape of the
iso-error map when pressure (Figure 3.5b) or both pressure and Lode angle
dependence (Figure 3.5c) are activated in the algorithm. When we change the
experimental parameters for Bai & Wierzbicki model, the convergence of the

return mapping algorithm is not significantly affected.
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Figure 3.5. Iso-error maps for Bai & Wierzbicki state update algorithm. (a) without
pressure effect and Lode dependence. (b) with only pressure dependence. (c) with
dependence of both pressure and Lode angle.

Figure 3.6 presents iso-error maps for Bai & Wierzbicki's state update
algorithm with only pressure effect introduced. In this case, the analysis of the
behavior of the integration error for different triaxiality reference values, 7, is
undertaken. The integration maps for the triaxiality reference value equal to 0.0,
0.3, 0.9 and 1.3, were obtained. When this experimental parameter changes for Bai

& Wierzbicki’s model, the convergence of the return mapping algorithm is not

affected.
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Figure 3.6. Iso-error maps for Bai & Wierzbicki model with triaxiality reference
equal to (a) 0.0, (b) 0.3, (c) 0.9 and (d) 1.3, respectively.
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3.4.3 Consistent tangent operator

In this section, we describe the procedure to obtain a symbolic expression for
the elasto-plastic tangent operator, consistent with the implicit return mapping
algorithm for Bai & Wierzbicki's model, which was presented in Box 3.2. The
tangent operator consistent with the above integration scheme is required for the

assembly of the tangent stiffness matrix of the elements into the global stiffness.

In the elasto-plastic case, i.e, when it is assumed that plastic flow accurs
within the step, the tangent operator is called the elasto-plastic consistent tangent
and is denoted by D°P. The consistent tangent operator is simply a derivative of the
implicit function @ for the updated stress defined by the return mapping procedure
as a function of the elastic trial strain tensor:

do
—_— (3.38)

e trial
d£n+1

De?

Its follows the standard procedure for differentiation of implicit functions.
Since the return mapping algorithm cannot be reduced to one-equation, in the
present case, it is not possible to obtain a closed form expression for D?. To obtain
the tangent operator, the first step (in its derivation) is to obtain the linearized
form for the corresponding return mapping system of equations for the general

implicit algorithm. The residual system of equations can be represented by:

On+1 — a';r-ﬁclu + AyD®: N1 0
Enir — & — Ayy () = {0} (3.39)
0

An+1 — Oy (§£+1)An+1(T]n+1)Bn+1(ﬂn+1)
After some algebraic manipulations, the linearized return mapping system of

equations can be expressed in the following form:

[ 0T, or, 0rg]
aan+1 ag-rz:_'_l aAy

Orgzp  O0rzp Org ‘(jjo_'gﬂ dee trial a0
- . g — O .
00,41 08, 0Ay dz;l X

aTAy aTAy aTAy
_aan+1 agrz:_l_l aAy_

Finally, by inverting the above linear relation, we can obtain:
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i ON ON 1
I+AyDe:—22  Ay—2*  peN,.,
d 9&P .
do,41 On+1 En+1 dereﬁt—qlal
Wol=l W0 NG [ 0 ] (341)
day 007+ agrzi+1 0
- Nni1 —An+1BniH 0 -

The above linear relation can be rewritten in a compressed form, as:

de? My, My, Mas 0

n+1
day M3, Mz, Ms; 0

dony M1 My, My3] [deglrial
where M;; represents a fourth order tensor; M,,, M,;, M;3 and M3; represent

second order tensors and M,, , M,3 , M5, and M35 are scalars.

From the above representation, it is possible to obtain the tangent operator
that is consistent with the implicit return mapping algorithm, proposed in Box 3.2.

The elasto-plastic consistent tangent operator can be expressed by:

Aoy = Myq: deg T (3.43)
or,
doyiq

3.4.4 Convergence of the equilibrium problem

In order to show that the quadratic convergence is also attained for large
excursions outside the elastic domain, in this section we tested the convergence of
the global Newton-Raphson algorithm, represented by the solution of the
equilibrium problem. We present here, the so-called relative residual of the
solution for some typical load increments, which has both effects disabled, the

pressure effect active and both pressure effect and Lode angle dependence active.

The global Newton-Raphson iterations are repeated until, in some iteration

(m), the following convergence criterion is satisfied (see Equation 3.45):
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|
-ext
n+1

< tolerance , (3.45)

—ext
where 7™ is the residual or out-of-balance force vector and f,,; represents the

external force vector, which can be calculated as:
_ gint wext int ._ yngausp - oT (k)
r=f"—2,,..f and figy: =% w; j;B; o

i=1 n+1 i g

(3.46)

where A,,,; is the load factor, B represents the strain matrix that is generally

(k)

ni1 represents the

composed by the derivatives of the shape functions and o

incremental constitutive function for the stress tensor.

The problem was solved using 25 pseudo-load steps and a tolerance of
1.0x107® was imposed. The convergence rates obtained, for all cases, were
quadratic, see Table 3.2 that represets the global convengence for a smooth bar

specimen under tensile loading.

Table 3.2. Relative residual for the global problem.

with both pressure

CIENNE ISR effect and lode angle

with only pressure

Increment LTI G dependence
lter. relative lter. relative lter. relative
residual residual residual
1 1.14708 1 1.20068 1 1.30510
2 0.216182E-02 2 0.296808E-02 2 0.124367E-01
>/25 3 0.233401E-07 3 0.600232E-07 3 0.690970E-05
4 4 4 0.684965E-08
1 1.19274 1 1.20787 1 1.21652
2 0.102427E-02 2 0.371704E-02 2 0.154117E-01
15/25 3 0.724211E-08 3 0.779755E-07 3 0.569143E-04
4 4 4 0.567116E-07
1 3.24953 1 3.32520 1 0.201128
2 0.670759 2 0.743644 2 0.659221E-02
25/25 3 0.567872E-01 3 0.564556E-01 3 0.121698E-06
4 0.105264E-02 4 0.734190E-06 4
5 0.684967E-08 5 5
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3.5 NUMERICAL SIMULATION

In this section, several numerical examples are presented to illustrate the
robustness of the proposed implicit algorithm with two types of materials:
aluminum alloy 2024-T351 and 1045 steel. Tensile tests on cylindrical smooth
bars with necking and on notched bars specimens are initially used and for
complementary analysis, flat grooved specimens are also employed. The materials
properties for the aluminum alloy are listed in Table 3.1, and for the 1045 steel can

be observed in Table 3.3.

Table 3.3. Material properties for 1045 steel. Taken from Bai (2008)

Parameter Symbol Value
Young’s modulus E [MPa] 220.000
Poisson’s ratio v 0.33
Yield stress Oyo [MPa] 830
Stress strain curve oy (éP)[MPa] 830 —500(1 — exp(—0.4£"))
Hydrostatic stress influence G, 0.00
Triaxiality ratio reference Mo —-0.76
Lode dependence - shear Cs 1.0
Lode dependence - tensile Cs 1.0
Lode dependence - compression Cs 1.0
Lode dependence - exponent m 6.0

3.5.1 Geometry and mesh definition

In the following, the geometries of each specimen, which will be used in the
numerical simulations, are presented as well as the mesh definition. Regarding the
aluminum alloy, both cylindrical bars have a gauge equal to 25.4 mm, and for the
1045 steel, the gauge used was equal to 20.6 mm. The notched bars have a notch
radius of R =4.0mm and R = 10.5mm for the aluminum alloy and steel,
respectively. For the flat grooved, grooves of R = 1.59 mm and R = 3.97 mm were

used for the aluminum alloy and steel, respectively. In both cases, the gauge used
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was equal to 25.0 mm. Figure 3.7 shows the dimensions for both cylindrical

smooth and notched bars and for the flat grooved plate specimens.
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Figure 3.7. Geometry of the cylindrical smooth and notched bars, and for the flat
grooved plate specimens (dimensions in mm), see Bai (2008).
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In order to capture the necking pattern and the evolution of internal
variables, a relatively fine discretisation is used in the region surrounding the
smaller cross-section of the specimens (see Figure 3.8). The standard eight-noded
axisymmetric quadrilateral element, with four Gauss integration points, is adopted
for both cylindrical bars. The initial mesh discretization of the specimens for the
two types of materials is illustrated in Figure 3.8, where only one symmetric
quarter of the problem, with the appropriate symmetric boundary conditions

imposed to the relevant edges, is modeled.
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Figure 3.8. Finite element meshes for the cylindrical smooth and notched bar
specimens. (a) aluminum alloy and (b) 1045 steel.

A total number of 1800 elements have been used in the discretization of both

smooth and notched bars, amounting to a total of 5581 nodes.
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The stretching of flat grooved plates is also undertaken. The initial geometry
of the specimen is shown in Figure 3.7(d). Due to symmetry, only half of the
geometry is modeled, with appropriate boundary conditions imposed to the
symmetry planes. A three dimensional hexahedra mesh of eight noded elements
(F-Bar), with four Gauss integration points, is used to discretise half of the
specimen. A total number of 4500 elements have been used amounting to a total of
5712 nodes for the specimen with a groove equal to R = 1.59 mm (see Figure
3.9a), and 2700 elements amounting to a 3472 nodes for the specimen with

Groove equal to R = 3.97 mm (see Figure 3.9b).

(a)

iy
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]
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i,

i

Figure 3.9. Three dimensional finite element meshes for the flat grooved plate
specimen. (a) R = 1.59 mm for aluminum alloy and (b) R = 3.97 mm for steel.

3.5.2 Numerical results

Numerical simulations were carried out for three types of specimens with
two different materials. The results obtained with the Bai & Wierzbicki's model
have been grouped into three different cases: “case 1 (c1)”, which represents the
Bai & Wierzbicki model without the pressure effect and Lode angle dependence,
“case 2 (c2)”, which represents the model with only pressure effect and “case 3
(c3)”, which represents the model with both pressure effect and Lode angle

dependence (see Figures 3.10 and 3.11).
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Figure 3.10 presents the numerical results obtained from the numerical

simulations for the force (reaction) versus displacement curve, together with the

experimental ones, for the specimens selected. In Figure 3.10(a), we have the

numerical results for an aluminum alloy and Figure 3.10(b), for a 1045 steel.
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Figure 3.10. Reaction versus displacement curves for (a) aluminum alloy and (b)
1045 steel, regarding three different specimens.
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From the analysis of Figure 3.10, it is possible to conclude that the agreement
between numerical results with experimental ones improves when the effect of
pressure and Lode angle are included in the model. The enhancement is
particularly noticeable for the aluminum alloy. Table 3.4 represents the difference
between numerical and experimental results for reaction versus displacement
curves, in all the cases that have been studied. For the aluminum alloy and the
notched bar specimen, the numerical results with both pressure and Lode angle
dependence are more realistic than without both effects. In this case, the difference
between the reaction versus displacement curve, without both effects, and the
experimental curve is around 6%. When both effects are active for the same
specimen, the difference reduces to less than 1%, which highlighs the importance
of pressure and Lode angle in the behavior of some ductile materials. For the flat
grooved plate specimen, the correction on the reaction versus displacement curve,
when both effects are active, is more visible and, in this case, the difference
between the model without effects and the experimental curve is around 20%.
This value is reduced to less than 2%, when both pressure effect and Lode angle
dependence are active. Nevertheless, for the 1045 steel, the numerical results
agree well with experimental data with or without the inclusion of the dependence
of pressure and Lode angle. Hence, we can conclude that the aluminum alloy is a
material strongly dependent on both pressure and Lode angle and the 1045 steel is

weakly dependent on both effects.

Table 3.4. Difference between numerical and experimental results for the
reaction versus displacement curve, regarding two types of materials.

Specimen Case 1 Case 2 Case 3
g E Smooth bar 1% 1% 1%
= TEG Notched bar R = 4.0 mm 6% 4% 1%
= Flat grooved R = 1.59 mm 20% 16% 1%
s Smooth bar 1% 1% 1%
S S Notched bar R = 105 mm 1% 1% 1%
" Flat grooved R = 3.97 mm 2% 2% 2%

The contribution of both effects to the plastic flow rule can also be observed

through the evolution of the equivalent plastic strain on the central node of the
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specimens (see Figure 3.11). From the analysis of the results for the aluminum

alloy (Figure 3.11a), it is possible to conclude that only on the smooth bar and the

flat grooved plate the differences on the evolution of the equivalent plastic strain

can be noticed. In particular, for the flat grooved plate specimen, the evolution of

this internal variable has presented different evolutions (see Figure 3.11a).
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Figure 3.11. Evolution of the equivalent plastic strain for (a) aluminum alloy and
(b) 1045 steel, regarding three different specimens.
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Nevertheless, regarding the behavior of 1045 steel, the evolution of the
equivalent plastic strain was the same, for all specimens, whether pressure effect
and Lode angle dependence are active or not. For this type of material, the
contribution of both effects to the plastic flow rule is negligible, and the von Mises’
model can adequately represent the material behavior, which is not true, for the

behavior of an aluminum alloy.

The contour of the equivalent plastic strain can also be analyzed, in order to
study the influence of both effects on the ability to predict the location to crack
initiation. Some authors, such as Freudenthal (1950), Gillemont (1976) and Datsko
(1966) have suggested the use of the plastic strain as a fracture indicator, throught
the total plastic work or the equivalent plastic strain criterions. Nevertheless,
several researchers (Wilson, 2002; Gouveia, 1995) have also shown that this
parameter alone is not enough to characterize fracture initiation, and in some
cases, can indicate potential sites to fracture initiation in disagreement with
experimental evidence. According to Wilson (2002), for both smooth and notched
bars specimens, the crack begins on the center and grows to the surface of the
specimens. Analyzing Figure 3.12 and 3.13 and considering the equivalent plastic
strain as a fracture indicator, both numerical results for the smooth bars
specimens agree with experimental evidence (see Figure 3.12a and 3.13a). For the
notched bars specimens, this internal variable has a maximum on the surface, for
the aluminum alloy (see Figure 3.12b), and by this reason cannot be employed as a
criterion for the prediction of fracture onset. Nevertheless, regarding the 1045
steel, the numerical predition agrees with the experimental observation (see
Figure 3.13b). In addition, we can also observe, that for both cylindrical specimens,
the activation of pressure effect and Lode angle dependence does not influence the
location of the maximum value of the equivalent plastic strain. However, according
to experimental tests conducted by Bai (2008) for the flat grooved plate specimen,
the crack starts on center of the specimen and propagates towards the surface.
This behavior is only captured when both effects are active, for the aluminum alloy
(see Figure 3.12c), and is captured by all cases for the 1045 steel (see Figure
3.13¢).
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Figure 3.12. Contour of the equivalent plastic strain: (a) a smooth bar specimen, (b)

a notched bar specimen with R = 4.0 mm, and (c) a flat grooved plate specimen
with R = 1.59 mm, for the aluminum alloy.

63



10.3

5.15
i
5]
7]
34}
|
0
0 295 45 0 225 45 . Equivalel;t:;l:stic Strain 0007 v
Equivalent Plastic Strain Y Equivalent Plastic Strain Y mm : _ 7;~Z
0 0.23 046 z X 0 0.1 02 |z X
N . |
10.3
5.15
N
5]
7]
v}
&)
0
0 295 45 0 225 45 . Equivaler:(l):l:stic Strain o007 v
Equivalent Plastic Strain Y Equivalent Plastic Strain Y mm : _ TZ
0 0.23 046 z X 0 0.1 0.2 @x
N . | I
10.3 10.3
5.15 5.15 —! N
o eSS \
A e —
3+ >
Q N a—— i S R 1}
[d]
0 0
0 295 45 0 225 45 . Equivalen;t;l:stic Strain o007 v
Equivalent Plastic Strain Y Equivalent Plastic Strain Y mm : _ z
0 0.23 046 z X 0 0.1 0.2 @x
N . | I
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3.6 CONCLUSIONS

In this chapter, an implicit numerical integration algorithm for Bai &
Wierzbicki’s model was developed based on the operator split method. As
expected, a quadratic rate of convergence is achieved by using the Newton
Raphson method at both local and global problems and from the analysis of the
iso-error maps, it is possible to conclude that the integration error is lower than
21% for all cases studied (see Figure 3.5 and 3.6). In addition, cylindrical smooth
and notched (R =4mm and R = 10.5mm) bars specimens and flat grooved
(R =1.56mm and R = 3.97 mm) plate specimens were used to illustrate the
robustness of the proposed algorithm, for two types of materials (aluminum alloy
and steel). According to numerical and experimental results, we can conclude that
both pressure effect and Lode angle dependence cannot be neglected and have to
be taken into account in the plastic flow rule of the aluminum alloy. From the
analysis of the reaction versus displacement curves of the aluminum alloy (Figure
3.10a) and steel (Figure 3.10b), we can suggest the following classification of
materials: strongly dependent on both pressure and Lode angle, such as the
aluminum alloy that achieved the best agreement for case 3 (see Table 3.4), and
weakly dependent on both effects, such as the 1045 steel that without the

introduction of any effect had a good agreement with experimental results.

Regarding the evolution of the equivalent plastic strain, Figure 3.11a has
shown different rates of evolution for this internal variable, depending on the
activation of both effects, which can also be used to demonstate the importance of
both parameters in the behavior of ductile materials. At the end, analyzing the
contour of the equivalent plastic strain, we can observe that the introduction of
additional effects does not change the maximum location of the contour plot for
the tests conducted. Nevertheless, for the flat grooved plate of aluminum alloy (see
Figure 3.12c), the introduction of both effects brought a correction in the fracture

onset location.
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CHAPTER 4

An Assessment of Isotropic Constitutive Models for
Ductile Fracture under High and Low Stress
Triaxiality

In this chapter, a numerical assessment of three isotropic constitutive models is
performed in order to identify their applicability and reliability in the prediction of
ductile failure under a wide range of stress triaxiality. The well established
isotropic coupled damage models proposed by Gurson-Tvergaard-Needleman
(GTN), which is based on micromechanical grounds and here extended with a
shear mechanism, and by Lemaitre, which is based on continuum damage
mechanics, are selected and investigated. Besides these, an uncoupled damage
elasto-plastic model proposed by Bai and Wierzibicki and presented in Chapter 3,
which includes the effect of three invariants of the stress tensor, is also selected
and examined. All constitutive formulations are implemented in a quasi-static
finite element scheme and applied to simulate the behavior of the 2024-T351
aluminum alloy, which is strongly dependent on both pressure and Lode angle. To
assess the predictive ability of the constitutive models under different levels of
stress triaxiality, specimens with different geometries and dimensions are used,
such as: smooth and notched cylindrical bars, a plate hole specimen and a butterfly
specimen. The evaluation of the models is initially carried out under pure tensile
loading conditions and then under shear dominated deformation modes. In
addition, a combination of both tensile and shear loading is also studied. Finally,
the results obtained from the numerical simulations are analyzed and critically
compared with experimental results available in the literature. The performance of
each constitutive approach under each range of stress triaxiality is highlighted and

the main observations are discussed.
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4.1 INTRODUCTION AND MOTIVATION

The prediction of ductile failure in metals still represents an important
challenge for the simulation of rupture in structural components and for the design
of both sheet and bulk metal forming processes. According to Kachanov (1986),
large deformations in metals, which can induce the phenomenon of initiation and
growth of cavities and micro cracks, has been studied in detail leading to the
concept of ductile fracture. Pioneering work undertaken on the subject was carried
out by McClintock (1968) and Rice and Tracey (1969), where the effect of the
geometry of defects in a continuous matrix was taken into account in the study of
ductile damage. Experimental evidence has shown that the nucleation and growth
of voids and micro cracks, which accompany large plastic flow, causes a reduction
of the elastic modulus, induces a softening effect in the material and can be
strongly influenced by the level of stress triaxiality (McClintock, 1968; Rice &
Tracey, 1969; Hancock & Mackenzie, 1976). The equivalent plastic strain at
fracture and the level of stress triaxiality were initially employed to characterize
material ductility in engineering applications (Bridgman, 1952; McClintock, 1968;
Rice & Tracey, 1969; Johnson & Cook, 1985). A simple exponential expression for
the evolution of the equivalent strain with stress triaxiality was established by
McClintock (1968) and Rice and Tracey (1969) based on the analysis of void
growth under hydrostatic loads, which is usually referred to as the two
dimensional fracture loci. The work performed by Mirza et al. (1996) on pure iron,
mild steel and aluminum alloy BS1474 over a wide range of strain rates confirmed
the strong dependence of the equivalent strain to crack formation with the level of

stress triaxiality.

The ductile fracture phenomenon can be described, based on
micromechanical analysis by the growth of micro cavities, especially for the
fracture computation within local approaches to fracture (Pineau, 1981; Mudry,
1985; Rousselier, 1987; Besson et al., 2001). Alternatively, it can be rooted in the
Continuum Damage Mechanics theory within a thermodynamic framework, either
phenomenological or micromechanically based, such as the model proposed by
Lemaitre (1985) for damage caused by plastic flow, Chaboche (1984) and
Murakami and Ohno (1981) for creep damage, Krajcinovi¢ & Fonseka (1981) for
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brittle damage, among many others. The current two principal methodologies for
ductile damage modeling can be summarized by Lemaitre and Gurson theories
(Chaboche et al., 2006). These well established theories have been extended and
modified by many researchers in order to circumvent some limitations and also to
improve the ability of predicting both the loss of stiffness of the material and the
correct fracture location. This has mainly been accomplished through the
introduction of additional effects either on the constitutive formulation or the
damage evolution law, such as: the pressure effect, temperature, viscoplastic
effects, crack closure effects, among others (e.g. Rousselier, 1980 and 2001;
Tvergaard & Needleman, 1984; Lemaitre and Chaboche, 1990; Voyiadjis and
Kattan, 1999; Chaboche, 2003; Andrade Pires et al., 2004; Chaboche et al., 2006).
For a recent review on constitutive models, which were developed to simulate

ductile failure, see Besson (2010) and references therein.

A different strategy has also been pursued by some researchers which
combines elasto-plastic constitutive formulations with the so-called fracture
indicators to predict the ductile behavior of materials. The use of fracture
indicators to predict the collapse in problems subjected to plastic deformation
emerged when a criterion based on the total plastic work was proposed by
Freudenthal (1950). Since then, many others indicators were proposed such as
Datsko’s criterion (1966) based on the equivalent plastic strain, the criterion of
Rice and Tracey (1969) based on the geometry of defects, the criterion proposed
by Cockcroft and Lathan (1968) based on the mechanism of void growth driven by
the principal stress, among others. The development of experimental techniques
and plasticity models helped the study of these strategies in plastic forming
operations, as presented by Clift et al. (1990), Cescotto and Zhu (1995) and
Gouveia et al. (1996). These uncoupled approaches have been adopted due to its
simple formulation and ease of calibration. The development of fracture criteria
was pursued later within the continuum damage mechanics framework (Lemaitre,

1985; Tai and Yang, 1986, 1987; Vaz Jr., 1998).

Recently, several researchers (Kim et al., 2003; Kim et al., 2004; Bao and
Wierzbicki, 2004; Gao et al., 2005; Gao et al., 2006, Kim et al., 2007; Barsoum and
Faleskog, 2007a; Barsoum and Faleskog, 2007b; Bai and Wierzbicki, 2008; Briinig
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et al.,, 2008; Gao et al., 2009) have shown that the Lode angle, which is associated
to the third invariant of the deviatoric stress tensor, is an essential parameter in
the characterization of the effect of the stress state on material yielding and on
ductile fracture. In particular, Bai and Wierzbicki (2008) have suggested a three
dimensional fracture loci on the space of equivalent strain, stress triaxiality and
Lode angle. This fracture surface is clearly different for materials weakly or
strongly dependent on both pressure and Lode angle and can be calibrated by
means of conventional and butterfly specimens. Mirone et al. (2010) have
proposed a local viewpoint for evaluating the influence of the stress triaxiality and
Lode angle on ductile failure, analyzing three theories, namely the Tresca criteria
and two models proposed by Wierzbicki. According to Mirone et al. (2010), the
phenomenon of ductile failure is influenced by the relation with the variables from
the stress-strain characterization and failure predictions are better described by
plastic strain, stress triaxiality and Lode angle parameters. An experimental
program to study the influence of the stress tensor invariants in ductile failure was
presented by Driemeier et al. (2010). This methodology can be seen as an efficient
tool to investigate the effects of the stress intensity, stress triaxiality and Lode
angle. Gao et al. (2011) have proposed a new elasto-plastic model, which is a
function of the hydrostatic stress as well as the second and third invariants of the
stress deviator, and carried out tests in specimens with a high level of stress
triaxiality showing the dependence of the plastic flow rule of both stress triaxiality

and Lode angle.

The study of the previous references allows us to conclude that the
appropriate modeling of the physical mechanisms that precede ductile fracture is
by no means trivial. This is particularly true when volumetric and shear effects are
combined through complex strain paths. Figure 4.1 schematically illustrates the
micromechanical behavior of a ductile material under shear and tensile loading

conditions.
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Figure 4.1. Schematic representation of: (a) elongated and (b) spherical void
growth. Adapted from Pineau & Pardoen (2003) and Engelen (2005).

Under shear dominated loads, see Figure 4.1a, the material nucleates micro
voids (stage 1 in Figure 4.1a) that elongate when the load increases (stage 2 in
Figure 4.1a). Then, coalescence of elongated voids occurs (stage 3 in Figure 4.1a)
due to instabilities in the shear bands. Under tensile dominant loads, see Figure
4.1b, the micro voids nucleate and expand (stages 1 and 2 in Figure 4.1b) due to
high tensile hydrostatic stresses and, at the end, coalescence occurs due to the

impingement of neighboring voids (stage 3 in Figure 4.1b).

Although significant research efforts have been devoted to the understanding
of the phenomenon of ductile fracture and to the formulation of constitutive
models, the improper application of the models to various deformations processes
may result in misleading ductile fracture predictions. This is critical in many
practical applications where the prediction of the material ductile failure behavior
is vital for the design and optimization of structures and components. In addition,
there are not many systematic evaluations of the predictive ability of constitutive
models, under the same circumstances, and it is still difficult to know which model
to use. These facts have restricted their widespread application to practical
problems (Zadpoor et al., 2009). A recent contribution to this discussion was
presented by Li et al. (2011) that conducted a thorough assessment of the
performance of a posteriori fracture indicators and two coupled damage models:
the Gurson-Tvergaard-Needleman (GTN) model and Lemaitre’s model. The
authors concluded that there is no approach that works well on the entire range of

stress triaxiality. Nevertheless, new models have been formulated that have the
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potential to address some of the identified shortcomings. Therefore, the main
objective of this contribution is to perform a comparison between recently
improved coupled isotropic ductile damage models, based on Lemaitre and
Gurson’s frameworks (Gurson, 1977; Lemaitre, 1985), and a newly developed
uncoupled damage elasto-plastic model, formulated by Bai and Wierzbicki (2008)
that includes both the effect of pressure and the Lode angle dependence on the
material behavior. A critical analysis of the results of the models is made in order
to verify their ability to predict the location of fracture, under both high and low
levels of stress triaxiality, for the 2024-T351 aluminum alloy that strongly depends

on both pressure and Lode angle.

The layout of this chapter is as follows. The set of equations that govern the
behavior of the Gurson-Tvergaard-Needleman (GTN) model, Lemaitre’s model and
Bai and Wierzbicki’s model will be firstly reviewed and summarized. In addition,
an improved version of the GTN model, proposed by Xue (2007), and a fracture
indicator, introduced by Bao and Wierzbicki (2004), which can be employed in
conjunction with the Bai and Wierzbicki’'s model, will also be described. The
numerical strategy adopted in this work to solve the evolution problem, for each
constitutive model, will be then presented. It is based on the well established
operator split methodology (Simo & Hughes, 1998). A comprehensive set of
numerical examples is later presented for specimens subjected to high and low
levels of stress triaxiality. The evolution of representative variables close to
fracture is critically analyzed. In particular, the evolution of the equivalent plastic
strain, damage and reaction force together with the contour plots of the internal
variables at the critical zones. Finally, some conclusions will be drawn based on

comparisons of numerical and experimental results.

4.2 CONSTITUTIVE MODELS FOR DUCTILE FRACTURE

The governing equations of the constitutive models under analysis are briefly
reviewed in this section together with the basic concepts and hypothesis
underlying each of them. Firstly, the Gurson-Tvergaard-Needleman (GTN) model,
which includes nucleation, growth and coalescence of microvoids (Gurson, 1977;

Tvergaard & Needleman, 1984) is presented, then Lemaitre’s model with both
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isotropic hardening and isotropic damage (Lemaitre, 1985) and, finally Bai &
Wierzbicki model (Bai et al., 2008) that includes both the pressure effect and the
Lode angle dependence. In addition, a shear mechanism proposed by Xue (2008) is
described and incorporated in the GTN model to enhance the behavior under shear
dominated loads, as well as Bao’s fracture indicator (Bao, 2003), which is used in
conjunction with Bai & Wierzbicki model to allow the prediction of damage with

this model.

4.2.1 The Gurson-Tvergaard-Needleman Model

Inspired by the work of Gurson (1977), Tvergaard and Needleman (1984)
have proposed a model for the description of damage and fracture in ductile
materials. The original Gurson model introduces a strong coupling between plastic
strain and damage (Chaboche et al., 2006) and the presence of micro voids in the
formulation leads to a yield surface that depends on both the hydrostatic pressure
and porosity. The material degradation is measured through a parameter called
the void volume fraction, which is represented by the variable f. This parameter is
defined by the ratio between the volume of micro voids,V,,;45, and the

representative volume element, Vi .

Vvoids

f_

7 (4.1)

The Gurson-Tvergaard-Needleman (GTN) model, which is one of the most
well known extensions of Gurson’s model, assumes both isotropic hardening and
damage. Nevertheless, the damage variable in this model is represented by an

effective porosity f*. The flow potential is generalized into the form:

2 Oy

B(a,r,f1) = Jo(S) - 1{1 +qsf " — 2quf* cosh <"23p>} 02, (4.2)

3
where, ], represents the second invariant of the deviatoric stress tensor, gy, is the
isotropic hardening law and r represents the isotropic hardening internal variable.
The parameters q;, q; and g3 are introduced into the yield surface definition in
order to bring the model predictions into closer agreement with full numerical

analyses of a periodic array of voids and p represents the hydrostatic pressure.
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The evolution of spherical voids can be reproduced by three simultaneous or
successive steps: nucleation, growth and coalescence of voids (Tvergaard &
Needleman, 1984). The effective porosity is determined by the following bilinear

function:

f o f<fe

pol 1 NG 3)
gy 12

where the parameter f represents the porosity, the constant f; is the porosity to
trigger coalescence and the parameter fr represents the porosity at fracture. The

evolution of the porosity is given by the sum of both the nucleation and growth

mechanisms, as:

f=fV+£9. (4.4)
The nucleation mechanism is driven by the plastic strain and can be

represented as:

o 1/ — &g\ |op
fN—SNmexp[—§< Sn )]8 ) (4.5)

where fy represents the volume fraction of all second-phase particles (see Figure
4.1b) with potential for micro void nucleation, &y and sy are the mean strain for

void nucleation and its standard deviation. The variable £ represents the

. . . ~D . . . .
equivalent plastic strain and ¢ is the rate of the equivalent plastic strain.

The most significant contribution to the evolution of spherical voids is the
growth mechanism, which is obtained from the condition of plastic

incompressibility of the matrix material, and can be expressed by:

fO=QQ-Her@E)=>0-1er, (4.6)
where &P represents the rate of the plastic strain tensor and ! is the rate of the
volumetric plastic strain. In this work, the GTN’s model implementation includes

both nucleation and growth of micro voids. The coalescence effect was not

addressed since our main objective is the prediction of fracture onset.
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4.2.1.1 Shear Mechanism

One important limitation associated with Gurson based models is that shear
effects are not considered in the formulation, which excludes the possibility of
predicting shear localization and fracture under conditions of low stress triaxiality.
Under shear dominated loading conditions, the distortion of voids and inter-void
linking play a critical role in the evolution of the material internal degradation.
Therefore, in order to improve the GTN’s model predictive ability, under both zero
and low levels of stress triaxialities, Xue (2008) has proposed the introduction of a
shear mechanism. The mechanism is based on geometrical considerations of a unit
cell structure, containing a circular void at the center, which is subjected to a
simple shear strain (Xue, 2008). The evolution of shear damage, according to Xue
(2008), depends on the porosity, the equivalent strain and the Lode angle. After
some straightforward algebraic manipulations, the rate of this mechanism can be

mathematically expressed by (Xue, 2008):
fShear = qzlqugogeqéeq ’ (4.7)

where q, and g5 are parameters related to two or three dimensional problems. For
two dimensional problems q, = 1.69 and gs; = 1/2 and for three dimensional
problems g, = 1.86 and g5 = 1/3. The variable f represents the porosity, &, is the
equivalent strain and g, is a parameter that introduces the Lode angle dependence
in the shear mechanism. If the Lode angle function g, is different from zero, the
mechanism is triggered and shear effects are taken into account. However, if g, is
null, there is no effect of the shear mechanism, on the damage evolution, and only
the nucleation and growth mechanisms are active. The Lode angle function, g,, can

be defined by:

Jo = 1—-——, (48)

where 6 is the Lode angle that is determined according to Equation (3.4). The
shear mechanism proposed by Xue (2008) can be included in the GTN’s model,
which already features the mechanisms of nucleation and growth of micro voids.
Thus, the evolution of the porosity originally expressed by Equation (4.4), for this

model, is re-defined as:
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f — fN +fG _l_fShear ) (4.9)

The evolution of damage in the material inevitably reduces the overall elastic
properties. However, this effect is small when compared to the influence of damage
on the plastic behavior. Therefore, the evolution of damage due to shear effects,
employed in this work, will neglect the influence of damage on elasticity as is
usually done in this type of model. The shear damage evolution law is redefined as
a function of both the accumulated plastic strain and the rate of the accumulated

plastic strain instead of the total strain and total strain rate (see Equation 4.7):
fShear — q4qugogp§17 ) (4.10)

The Lode angle function can also be rewritten as a function of the normalized

third invariant, such as:
go=1-19], (4.11)

where 6 represents the normalized Lode angle that is a function of the normalized

third invariant, such as:

60 2
1——=1——arccos¢ , (4.12)
T T

7

where ¢ represents the normalized third invariant that is calculated by:
_ 27 det &

? (% £g: 83)3/2 | (13

where, € represents the deviatoric elastic strain tensor. Box 4.1 summarizes the
GTN constitutive model that includes the shear mechanism on the damage
evolution law. It is important to remark that the set of constitutive equations listed
in Box 4.1, has got as a particular case, the previously described GTN model (when
q4 = 0). The original Gurson’s model can also be recovered as a limiting case, by

appropriately setting the constants q;, g, and q3.
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Box 4.1. GTN’s model including nucleation, growth of micro voids and a shear
mechanism.

(i) Elasto-plastic split of the strain tensor
e=¢g°+¢P
(ii) Elastic law
o =D¢ ¢

(iii) Yield function

1 ,3
®(a,r,f) =/2(8) - 5{1 +q3f* — 2q;f cosh <q20p>} o,
y

(iv) Plastic flow and evolution equations for r and f

o 1 - (4923p
&&=y [S +§q1q2fay 51nh< 20, )Il

G142/ psinh (ngp) +21+45f? - 2011 cosh <q23p> o
R =y 20y 3 20, y
- a7

f — fN +fG +f5‘hear
_ fn _l(gp - €N>2
= SN.mexp > -

—p=D
+quf B5got €

2 1 q23p 2
-p . . 2
& =y\/§{S:S+§[q1q2ny sinh (ﬁ)] }

£+ (1-f)eP

and,

D . (923p —
£) = V192f 0y sinh (7> go=1-16|
y
(v) Loading/unloading criterion
y=0, <0, yd =
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4.2.2 Lemaitre’s Damage Model

The constitutive equations for ductile damage, described in this section, have
been proposed by Lemaitre (1985). Based on the concept of effective stress and
the hypothesis of strain equivalence, Lemaitre’s model includes the evolution of
internal damage, as well as non-linear isotropic and kinematic hardening in the
description of the behavior of ductile materials. The constitutive formulation starts
from the definition of the Helmholtz specific free energy that can be taken as the
state potential of the material and is a function of all state variables. The free

energy can be expressed as a function of the set {&°, 7, D} of state variables:

Y =y(,1,D), (4.14)
where, Y represents the specific free energy, €° is the elastic strain tensor, r is the

isotropic hardening internal variable and D represents the isotropic damage

internal variable.

Under the hypothesis of decoupling between elasticity-damage and plastic

hardening, the specific free energy is assumed to be given by the sum:

=9, D) +yP (1) , (4.15)
where 1®? represents the elastic-damage contribution and y? is the plastic

contribution to the free energy. The elastic-damage contribution for the free

energy can be postulated by the following expression (Lemaitre, 1985):

1
pypei(ef, D) = S&:(1-D)D% &, (4.16)

where D? represents the isotropic elasticity tensor. The plastic potential can be
represented by the isotropic hardening contribution as (if we disregard kinematic

hardening):

pYP(r) = pYi(r) . (4.17)
The elasticity law is obtained by performing the derivative of the elastic-

damage potential (Equation 4.16) in order to the elastic strain tensor, as:

a ed
o=p (;’[;e = (1-D)De: g° . (4.18)
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The thermodynamical forces conjugated with damage and isotropic
hardening internal variable are obtained, respectively, by performing the
derivative of the elastic-damage contribution, py¢? (g4, D) (Equation 4.16) with
regard to the damage variable, D, and by taking the derivative of the plastic
potential, pyP (r) (Equation 4.17) with regard to the isotropic hardening variable,
r, respectively (Lemaitre et al., 2005):

alped qz pz
v=_5; _ 4.19
Y =P sca-prz  2ka=D)" (4.19)
a 1
R= 2L =R, (4.20)

or
where Y represents the thermodynamic force associated with damage, g is the von
Mises equivalent stress, p is the hydrostatic pressure, G is the shear elasticity
modulus, K is the elastic compressibility modulus and R represents the

thermodynamic force associated with the isotropic hardening variable.

The evolution of the internal variable can be obtained by assuming the

existence of the flow potential, ¥, given by:

s+1

s _y
Y=t e TG D (T) ' (4.21)

where the parameters S and s are damage evolution constants and @ represents

the yield function, which is, defined as:

q

*=a-p”

ay, —R(r) , (4.22)

where oy, is the initial uniaxial yield stress. According to the hypothesis of

generalized normality, the plastic flow is given by:

oD
cP —y—=vN 4.23
&=y -=VN, (4.23)
38 _1 (4.24)

N= |[2i————,
2|Isll (1 —D)

where y is the plastic multiplier, N represents the flow vector and § is the

deviatoric stress tensor. The evolution law for damage and for the isotropic
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hardening internal variable can be established by performing, firstly, the derivative
of the flow potential (Equation 4.21) with regard to the thermodynamic force
associated with damage, Y, and, secondly, with regard to the isotropic hardening

variable, r, respectively:

p=; 1 (_Y)S (4.25)
Yoy T "a-p\s )’ '
v
izl 4.26
TEYSR =Y (4.26)

The complementary law of rate-independent plasticity also needs to be
fulfilled:

=0, d<0, yo=0. (4.27)

The constitutive equations of Lemaitre’s model with isotropic hardening and

isotropic damage, employed in this work, are conveniently summarized in Box 4.2.

Box 4.2. Lemaitre’s model with isotropic hardening and isotropic damage.

(i) Elasto-plastic split of the strain tensor
e=¢g%+¢P
(i) Coupled elastic-damage law
o= (1—-D)Dé: &

(iii) Vield function
_a
*=a-D»

oy, — R(r)

(iv) Plastic flow and evolution equations for » and D

$D — o — Ei 1
&€ =YN=Y 3isia-0)

T=v

D=y (1iu) (_Ty)s

with Y given by:

2 2
_y=_24 14

T 6G6(1-D)2 ' 2K(1-D)2

(v) Loading/unloading criterion

¥y =0, P<0, v =




4.2.3 Bai & Wierzbicki Model

The elasto-plastic model proposed by Bai & Wierzbicki (2008), which was
presented in detail in Chapter 3, will de employed in the numerical assessment
described in this chapter. More detail about Bai & Wierzbicki (2008) model, see

Box 3.1 in the previous chapter.

Due to the fact that Bai & Wierzbicki’'s model (Bai et al., 2008) does not
include a damage variable in the constitutive formulation, we will use in our
comparisons with the previously described damage models a fracture indicator
that was proposed by Bao (2003). This fracture indicator is a post-processed
variable, which was developed after conducting a thorough experimental

investigation on the behavior of ductile crack formation, expressed by:

Ef
D =] ng = Nav- & (4.28)
0

where € represents the equivalent strain, & is the equivalent strain to fracture and
Nav 1S the so-called stress triaxiality average. The Lode angle average, 6,,, is also a
parameter widely used to represent the three dimensional fracture locus and both

parameters can be expressed by:

L (7P 4 0 = [0 az 4.29
nav—goagy av—go £ . (4.29)
More details about this fracture indicator can be obtained in References (Bai, 2008;

Bai & Wierzbicki, 2008).

4.3 NUMERICAL SOLUTION STRATEGY

In this section, the numerical solution strategy adopted in this work to
perform the numerical simulations is summarized. The use of path dependent
constitutive models, as is the case of the models described in this chapter,
invariably leads to the need for formulation of algorithms for numerical

integration of the evolution equations. The problem consists in formulating
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numerical integration procedures for updating the known state variables,
generically denoted by ¢, at a certain time t,, to obtain the state variables &, at
time t,,q, where the incremental strain Ae is assumed given. Therefore, the
discretization of the constitutive equations within a generic pseudo-time interval
[tn, the1] was performed for all models, which are summarized in Boxes 4.1, 4.2
and 3.1 (see Chapter 3), based on the backward Euler scheme (Simo & Hughes,
1998). Since the models were implemented in a quasi-static finite element
framework, it was also necessary to derive the tangent matrix which is consistent

with the integration algorithm.

Stress update procedures, which are based on the so-called operator split
concept (see Simo & Hughes, 1998; De Souza Neto et al, 2008), are specially
suitable for the numerical integration of the evolution problem and have been
widely used in computational plasticity (see Simo & Hughes, 1998; De Souza Neto
et al, 2008). This method, which was used in our developments, consists in
splitting the problem in two parts: an elastic predictor, where the problem is
assumed to be elastic and, a plastic corrector, in which the system of residual
equations comprising the elasticity law, plastic consistency and the rate equations
is solved, taking the results of the elastic predictor stage as initial conditions. In the
case of violation of the yield condition, the plastic corrector stage has to be
initiated and the Newton- Raphson procedure is used to solve the discretised set of
equations. The Newton-Raphson procedure was chosen motivated by the
quadratic rates of convergence achieved, which results in return mapping
procedures computationally efficient (see Simo & Hughes, 1998; De Souza Neto et
al, 2008). In Figure 4.2, a schematic representation of the procedure, which
departs from the initial value problem to the elastic predictor/plastic corrector

integration algorithm, is illustrated.
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Figure 4.2. Schematic diagram of the procedure from the initial value problem to
the elastic predictor/plastic corrector integration algorithm (adapted from De
Souza Neto et al.,, 2008).

In a typical return mapping algorithm, the following steps are required: given
the values of the elastic strain, € , and internal variables set, a,,, at the beginning of
the pseudo-time interval [t,, t,41], and given the prescribed incremental strain, Ae

for this interval, the elastic trial state needs to be computed:

gelnial = g€ 4 A
trial _
Iny1 = Up (4 30)
trial trial
trial _ — al’b Atrial = 61/)
On+1 = P35 n+1 —
aé‘ n+1 aa n+1

where, o/ and A% are respectively the elastic trial stress and elastic trial
internal force. The constant p is the reference mass density and i represents the

free energy function of the constitutive model under consideration.

The next step is to check whether the trial state lies inside or outside the
yield surface:
IF ®(of, ATi4Y) < 0 THEN,
' (4.31)
(Dns1 = (74§ and EXIT
If the above condition is satisfied, the final state is equal to the trial state.
Nevertheless, if the elastic trial state is out of the elastic domain or on the yield

surface, the plastic corrector procedure is required to update the state variables at
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time t, ;. In the following, the non linear system of equations that was employed
for each model, on the return mapping stage, is briefly described. The Newton

Raphson procedure is used in all models to solve a linearized system of equations.

(a) Return mapping of Gurson-Tvergaard-Needleman damage model

For the Gurson-Tvergaard-Needleman constitutive model summarized in the
Box 4.1, the implicit numerical integration algorithm was derived by the authors.
The non linear system of equations can be reduced to a system of only four non
linear scalar equations. The Newton-Raphson procedure has to be solved for the
set of unknowns {4y, pni+1, fas1 Rns1}- The fully implicit elastic predictor/return
mapping algorithm for GTN’s model with shear mechanism is summarized in Box
4.3. More details about the linearization of the non linear system of equation for

GTN model can be found in Appendix “C” and “D”.

Box 4.3. Fully implicit Elastic predictor/Return mapping algorithm for GTN model
with shear mechanism.

(i) Evaluate elastic trial state: Given the incremental strain Ae and the state variables at t,,:

etrial _ e . sptrial _ -p . trial _
Eni1 =&, + As ; i1 =&y ; Ry:T" =Ry,

trial _ . trial _ e trial . trial _ e trial
nr1 = fn , Sni1 = 2Gen1, , Pny1 = K&ynia

(i) Check plastic admissibility:

. . . . trial .
IE thrlal :]é“rlal _% 14+ q3fnt-7|:l{112 _ qufrllfitlal cosh (3512Pn+1 )] (O.;rlal)z <0 THEN

ZG}t/rial
set (Dpeqr = (DI (elastic step) and go to (v)
ELSE go to (iii)

(iii) Return mapping (plastic step): Solve the system of equations below for Ay,p,i1.fns1
and R, 1, using Newton-Raphson method.

trial
D_}{Zznﬁy]z - % [1 + q3fn+1° — 241 fns1 cOSh (36122—1();“” oy o
) Pns1 — PIES + AyK o, q1qa fry Sinh (“%’":“) - J 8 !
_ 2
frr1 = fadtt = S;%EXP [—%(SEL)“S—N_SN> AEP — Af9 — Afshear [8 J
\ Rpy1 — R;ﬁ?l — AR y,
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continue Box 4.3.

where,

3qun+1>

Af9 = (1 — fr41)Ay0, 4192 fns1 sinh( >
Oy

shear _— qs P
Af = goqafns1 " 5n+1A5p

Ay . 3q2Pn+1
AR =-(Ij:72115{q1quh+1pn+1snﬂl<——§;§i—
2 3q2Pn+1
+ 20y |1+ g3fns1” — 2G1fns1 cOSH =
3 20y

(iv) Update the other state variables:

. strial 1 . (3q2Dn+1
£$l+1 = g%i?ilal _ A)/ [1-{-712—GA)/ + §O-yq1q2fn+1 sinh T";l |

trial
Sn+1

S 4 =—TlT
1T 4+ 26GAY

. 2 Strial: Strial 1 3 2
§ﬁ+1 = Eﬁ_f;zal + Ay\/_ {M + § [ququfn+1 sinh < qun+1>]

3|[1 + 2GAy]2 20,

(\\  Exit

(b) Return mapping of Lemaitre’s damage model

The implicit numerical integration algorithm for Lemaitre’s constitutive
model (see Box 4.2) was proposed by De Souza Neto (2002). The non linear system
of equations, in this case, was reduced, through algebraic manipulations, to a single
scalar non linear equation, which is solved by the Newton-Raphson (N-R) method,
for the unknown 4y. Box 4.4 describes, in pseudo-code format, the fully implicit

elastic predictor/return mapping algorithm for Lemaitre’s model.
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Box 4.4. Fully implicit Elastic predictor/Return mapping algorithm for Lemaitre’s
model.

(i) Evaluate elastic trial state: Given the incremental strain Ae and the state variables at t,,:

etrial _ e . trial _ . trial _
En+1 =& + Ae ' Rn+1 - Rn ! Dn+1 - Dn
Ctrial _ e trial . ~ _ e trial . ~trial _ |3||¢trial
Snr1 = 2G&n4, ; Pn+1 = K&ynt1 ' An+1 = \E”Sn+1 ”/(1 —Dy)

(i) Check plastic admissibility:
IF @trial = glrial _ glrial(RIrial) < 0 THEN
set (Dps1 = (DIE4L (elastic step) and go to (V)
ELSE go to (iii)

(iii) Return mapping (plastic step): Solve the equation below for Ay, using N-R method.

_ Ay (-Y(&p)\®
F(Ay):w(Ay)—wn+w(Ay)( 5 )—0

where,
3G.Ay
qg-ﬁl-illu — Oy (Rn + AV)

w(Ay) =1—Dpyq =

2 . 2
—Y(A}/) = [Gy(Rn + AV)] + Pn+1

6G 2K
(iv) Update the other state variables:
Pns1 = @(AY) Prsq ; qn+1 = w(4y) O_y(Rn+1)
_ CIn+1 otrial
Sni1 = Wsnr-ﬁ ) Oni1 = Sn+1 + Pnsal
n+1
e 1 e trial .
€ne1 = ESTHI + §£v n+1 1 ' Rypy1 = Rnp + Ay

(v) Exit

(c) Return mapping of Bai & Wierzbicki’s constitutive model

A fully implicit solution was derived by the authors (Malcher et al., 2009) for
Bai & Wierzbicki’s constitutive model (Bai & Wierzbicki, 2008), which is
summarized in Box 3.1 (see Chapter 3). The return mapping consists on the
solution of a non linear system of eight equations, for three dimensional problems,

and six equations, for two dimensional problems. The set of unknowns is
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composed by tensor and scalar variables { 6,1, s‘,’l’ﬂ, Ay}. Box 3.2 of chapter 3
describes the fully implicit elastic predictor/return mapping algorithm. More
details about the linearization of the non linear system of equation for the Bai &

Wierzbicki model can be found in Appendix “A” and “B”.

Finally, it is remarked that the extension of the models to the finite strain
range was done by adopting the well established multiplicative hyperelasto-plastic

framework (see Peric” et al., 1992; Eterovic & Bathe, 1990).

4.4 NUMERICAL EXAMPLES

In this section, the results obtained by performing numerical simulations of
several specimens with the previously described constitutive formulations, will be
presented and discussed. Firstly, the description of specimens with different
geometries, which promote a wide range of stress triaxiality, is undertaken. Then,
the calibration of the material parameters for the 2024-T351 aluminum alloy is
performed in order to determine both the true stress-strain curve of the material,
up to the point of fracture, and the critical value for the damage variable. Finally,
the predictive ability of the constitutive models is assessed and compared for

specimens who promote different levels of stress triaxiality.

4.4.1 General Information

In order to compare, both qualitatively and quantitatively, the constitutive
models, based on different levels of stress triaxiality, several specimens were
chosen such that they promote representative points on the graph of the
equivalent plastic strain versus stress triaxiality and Lode angle (see Figure 3.2).
The specimens can be grouped as follows: specimens that promote a high level of
stress triaxiality (1/3 <71 < 1), and specimens that promote a low level of stress
triaxiality (0 <7 < 1/3). For a high level of stress triaxiality, four different
specimens were selected. Two notched bars, one with a notch radius equal to
R = 4 mm and other with R = 12 mm, a smooth bar specimen and a plate hole
specimen. In all four cases, a tensile stress state was monotonically applied. For a
low level of stress triaxiality, a butterfly specimen, which was initially proposed by

Bai & Wierzbicki (see Bai, 2008; Bai et al., 2008), was selected and both pure shear
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and combined tensile-shear loading conditions were applied. Figure 4.3
schematically represents the specimen’s geometry as a function of the initial level

of stress triaxiality.

In order to perform the numerical simulations, it is indispensable to obtain
the material properties, the stress-strain curve and the damage parameters
employed by the constitutive models. The elastic properties, the density and the
initial yield stress adopted in the present analysis were taken from Bao and
Wierzbicki (2004). The damage parameters of Lemaitre’s model, namely the
exponent, s, and denominator, S, of the evolution law, were obtained from Teng
(2008) that conducted a study on the numerical prediction of slant fracture with
continuum damage mechanics. The set of parameters required by the GTN model
with the inclusion of shear effects were taken from Xue (2007) and references
therein. Finally, the set of parameters of Bai & Wierzbicki’s model were acquired
from Reference (Bai & Wierzbicki, 2008). All the aforementioned parameters are

conveniently listed in Table 4.1.

Specimen
Butterfly Butte_rfly Plate with [ Notched bar | Notched bar
(pure (tension/ | Smooth bar hole (R=12mm) (R=4 mm)
shear) shear, 10°)
1o=0 no=0.11 no=0.33 no=0.37 no=0.47 no=0.75
0,=0 0,=0.22 0,=1 0,=1 0,=1 0,=1

e = A

Low Stress Triaxiality > High Stress Triaxiality >

Figure 4.3. The specimens’ geometry is represented as a function of the initial level
of stress triaxiality and normalized Lode angle.

The stress-strain curve and the critical damage values, necessary for the
different material models, were not taken from the literature but instead

numerically determined. This procedure is described in detail in Section 4.4.3.
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Table 4.1. Material properties for the 2024-T351 aluminum alloy.

Description Symbol Value Reference

Density p 2.7 x 103 [Kg/m?] Bao (2004)

Elastic Modulus E 72.400 [MPa] Bao (2004)
Poisson’s ratio v 0.33 Bao (2004)

Initial yield stress Ty, 352 [MPa] Bao (2004)
Damage data (exponent) s 1 Teng (2008)
Damage data (denominator) 5 6 [MPa] Teng (2008)
GTN material parameter q1 1.5 Xue (2007)
GTN material parameter 2 1.0 Xue (2007)
GTN material parameter qs 2.25 Xue (2007)

Xue shear mechanism parameter qs 1.69 (2D) / 1.86 (3D) Xue (2007)
Xue shear mechanism parameter qs 0.50 (2D) / 0.33 (3D) Xue (2007)
Volume fraction of void nucleation I 0.04 Xue (2007)
Stand. dev. plas. strain of void nucl. SN 0.1 Xue (2007)
Mean plas. strain dist. of void nucl. EN 0.2 Xue (2007)
Bai pressure parameter Cy 0.09 Bai (2008)
Triaxiality reference o 0.33 Bai (2008)

Bai tensile parameter o3 1.0 Bai (2008)

Bai compression parameter c§ 0.9 Bai (2008)
Bai shear parameter Cs 0.855 Bai (2008)

Bai exponent parameter m 6 Bai (2008)

4.4.2 Geometry and Mesh Definition

In the following, the geometry of each specimen, which will be used in the
numerical simulations under high level of stress triaxiality, is presented as well as
the mesh definition. Figure 4.4 shows the dimensions for both cylindrical notched
bars, one with a notch radius equal to R = 4 mm and other with R = 12 mm,

together with a smooth bar specimen.
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Figure 4.4. Geometry of the cylindrical notched bars and the smooth bar specimen
(dimensions in mm). The specimens were reproduced from Teng (2008).

In order to capture the necking pattern and the evolution of internal
variables, a relatively fine discretization is used in the region surrounding the
smaller cross-section of the specimens (see Figure 4.5). The standard eight-noded
axisymmetric quadrilateral element, with four Gauss integration points, is adopted.
The initial mesh discretization for the three cases is illustrated in Figure 4.5, where
only one symmetric quarter of the problem, with the appropriate symmetric

boundary conditions imposed to the relevant edges, is modeled.
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Figure 4.5. Finite element meshes for the cylindrical notched bar specimens (a)
R =4 mm, (b) R = 12 mm and for the (c) smooth bar specimen.

A total number of 1800 elements has been used in the discretization of both
the smooth bar (see Figure 4.5c) and the notched bar with radii of R = 4 mm (see
Figure 4.5a), amounting to a total of 5581 nodes. The mesh of the notched bar with
radii of R = 12 mm (see Figure 4.5b) has got 2250 elements and 681 nodes. In all

cases, the gauge used is equal to 25.4 mm.

The stretching of a plate with a circular hole is also used. The initial geometry
of the specimen is shown in Figure 4.6. Due to symmetry, only one quarter of the
geometry is simulated, with appropriate boundary conditions imposed to the
symmetry planes (see Figure 4.7). A three dimensional mesh of twenty noded
elements, with eight Gauss integration points, is used to discretize one quarter of
the specimen. A total number of 2280 elements have been used amounting to a

total of 2768 nodes (see Figure 4.7).
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Figure 4.6. Geometry of the plate hole specimen (dimensions in mm). The specimen

was taken from Bao (2003).
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Figure 4.7. Finite element mesh for the plate hole specimen and critical zone to
fracture.

The characterization of the material behavior under the range of low stress
triaxiality, (0 <n < 1/3), has been an extremely challenging task according to
several authors (Bai, 2008). This is due to the fact that the magnitude of both local
stresses and strains depend, to a large extent, on the shape of the free boundary.
Nevertheless, a new type of flat compound curvature specimens was proposed

recently (Bai, 2008) to characterize fracture behavior of metals under a wide range
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of stress triaxiality. This specimen will be used here for low stress triaxiality tests.
The geometry of the specimen, called “butterfly specimen”, is illustrated in Figure
4.8. A three dimensional finite element mesh of 3392 twenty noded elements, with

eight Gauss integration points, is used amounting to 17465 nodes (see Figure 4.9).
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Figure 4.8. Geometry of the butterfly specimen (dimensions in mm). The specimen

was reproduced from Bai (2008).
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Figure 4.9. Finite elements mesh of the butterfly specimen and shear zone to
fracture.
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4.4.3 Calibration of Material Parameters for 2024-T351 Al

The strategy employed to determine the undamaged stress-strain curves and
the critical damage values for the constitutive models was the following. Having at
hand the displacement to fracture (u; = 6.65mm) together with the force-
displacement curve for a smooth bar tensile specimen, which were experimentally
obtained by Bao and Wierzbicki (2004), an inverse and iterative methodology was
conducted. The objective is to identify the stress-strain curve for each constitutive
model such that the force-displacement curve is as close as possible to the
experimental one. Figure 4.10a shows the reaction curves obtained for all the
constitutive models after the application of the inverse identification method. It

was possible to obtain a close agreement for all constitutive models.

35

O Lemaitre Model -

® GTN Model De=0.26
0.25/ * Bai& Wierzibicki Model
% Critical value

critical
2+ displacement -

O Lemaitre Model
® GTN Model

* Bai & Wierzibicki Model
O Experimental curve
X Critical value

===

2 3 4 5 6 7 0 2 4 6 8
Displacement (mm) Displacement (mm)

(a) (b)
Figure 4.10. (a) Force versus displacement curve for all models and experimental

results. (b) Critical damage parameter calibrated for the experimental
displacement to fracture (uy = 6.65 mm).

1

The critical value for the damage variable, of each constitutive model, was
also obtained from the simulation of the stretching of the smooth bar. The value of
the critical damage variable, of each constitutive model, is set to the value of the
internal variable, which is used on the numerical simulation, when the numerical
displacement is equal to the experimental displacement to fracture. The critical

damage values obtained are listed in Table 4.2.
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Table 4.2. Critical values for damage.

Model Critical Value
Lemaitre D.=0.26
GTN fc =0.06
Bao D.=0.21

The results of the calibration procedure for the stress-strain curves of all
models can be observed in Figure 4.11. The undamaged stress-strain curve
obtained for Lemaitre’s model has got a more pronounced hardening than the
GTN’s model and both are notably different. It is worth mentioning that the stress-
strain curve used in Bai & Wierzbicki’s model (Bai & Wierzbicki, 2008), which is
depicted in Figure 4.11 and labeled as “uncoupled damage model”, is the curve that

includes the effect of damage in the hardening.
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Figure 4.11. Stress-strain curves for all constitutive models.

It is important to mention that the material properties, the stress-strain
curve and the damage parameters employed by Lemaitre’s and GTN’s constitutive
models can be obtained from one single experimental test, which is the stretching
of a smooth round specimen. On the other hand, the parameters needed by the
uncoupled model proposed by Bai & Wierzbicki, which are listed in Table 4.1,
require four types of experimental tests (Bai & Wierzbicki, 2008): a smooth round
bar tensile test, a notched round bar tensile test, a tensile test of flat grooved plate

and an upsetting test.

Remark 4.1: In order to study the influence of the spatial discretization on the

numerical results, several numerical simulations were performed using different
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mesh refinements. It was possible to conclude that, although the numerical results
can be affected by the discretization, there is no strong dependence of the
numerical results with the level of mesh refinement. The location of fracture onset
was also not affected by the level of mesh refinement. This is mainly due to the fact
that the level of damage attained by the specimens is still relatively low, for the
applied displacement to fracture, and the overall softening effect is very small (see
Figure 4.10a). Therefore, the meshes selected and used in this paper have given
numerical results that do not change noticeably with the spatial discretization and

the conclusions of the assessment are not perceptibly affected.

4.5 NUMERICAL RESULTS

The predictive ability of the constitutive models is assessed here for the
specimens illustrated in Figure 4.3 using the properties listed in Table 4.1 together
with the calibrated parameters. Before proceeding, it is important to summarize
the experimental results that will serve as reference for comparison. In Table 4.3,
the initial stress triaxiality, the initial Lode angle, the equivalent strain at fracture
and displacement at fracture are listed for each specimen. The displacements to
fracture of the butterfly specimen, in both pure shear and combined tensile/shear
loading conditions, were not available in the literature. The expected location for
crack formation, experimentally observed is also included. The information

presented in Table 4.3 was obtained from Bao (2003) and Bai (2008).

The displacement at fracture, listed in Table 4.3, was determined by
measurements made during the experiments and the force-displacement behavior
of the material (Bao, 2003). The determination of the equivalent strain at fracture,
listed in Table 4.3, was accomplished using a combined experimental numerical
method. The strain calculated by the finite element simulation at the critical
location for the measured displacement at fracture, is considered the equivalent

strain at fracture (Bao, 2003).

All the numerical simulations, which are presented in Sections 4.5.1 and
4.5.2, were conducted following the same strategy. The simulation was performed
until the damage variable of the particular constitutive model, at any point in the

specimen, reached the critical value that is listed in Table 4.2. Therefore, the value
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of the displacement and effective plastic strain variables calculated from the finite
element simulation, when the damage variable reaches its critical value, are
understood as the displacement at fracture and effective strain at fracture from the

numerical simulations.

Remark 4.2: On the forthcoming examples, for each particular specimen, the
distributions of the effective plastic strain obtained by the models described in
Section 4.2 will be presented for the sake of completeness. The objective is not to
judge the models by comparing them directly to reference values, which were
obtained with a particular constitutive model, since how each model determines
the direction of plastic flow is different and the strain path is highly nonlinear. The
intention is solely to highlight the fact that the effective plastic strain value and
contour plot might not be an adequate criterion to analyze material fracture has
advocated by several authors (McClintock, 1968; Rice & Tracey, 1969; Johnson &
Cook, 1985; Mirza et al., 1996; Bao, 2003).

Table 4.3. Reference values for different specimens of the 2024-T351 ( Bao,
2003; Bai, 2008).

Specimen Mo 6, &  ug(mm) Fracture Location

Notched bar R=4 mm 075 1 0.17 0.70 Center of specimen
Notched bar R=12 mm 0.47 1 0.28 1.40 Center of specimen

Smooth bar 033 1 047 6.65 Center of specimen
Plate hole 037 1 031 250  Middleofthickness
on critical zone
Butterfly (pure shear) 0 0 0.21 Surface of shear zone
Butterfly (tension/shear, 011 022 0.26 . Middle of thickness
109) on shear zone

4.5.1 High Stress Triaxiality (1/3 <7n < 1)

The numerical results obtained for the cylindrical notched bars, the
cylindrical smooth bar and the plate hole specimens are presented in Table 4.4.
The critical displacement to fracture, the stress triaxiality average, the Lode angle
average and the equivalent plastic strain to fracture predicted by the numerical

simulations are listed for the point, of each specimen, that reached the critical
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value of damage. For ease of comparison, the values of the displacement to fracture
and equivalent strain at fracture, which were obtained from references (Bao, 2003;

Bai, 2008), are also included.

Analyzing Table 4.4, it is possible to conclude that for both notched bar
specimens, the critical displacements obtained by Bai & Wierzbicki’s model are in
closer agreement with experimental values than the damage models. The
prescribed displacements required to reach the critical damage values, for both
Lemaitre and GTN model, were clearly higher than the experimental values. The
difference between the numerical and experimental displacement to fracture,
predicted by all models, is larger for the notched bar with a radius, R = 4 mm, than
with a radius, R = 12 mm. This might be due to the fact that the notched bar with a
radius, R = 4 mm, has got an initial triaxiality, 7o = 0.75, that is higher than the
notched bar with a radius, R = 12 mm, which is equal to, ny = 0.47 (see Table 4.3).
This means that the notched bar with a radius, R = 12 mm, has got a stress
triaxiality that is closer to the smooth bar (1, = 0.33), which was employed to
calibrate the material properties. The equivalent plastic strain at fracture
predicted numerically by all models is generally higher than the equivalent strain
at fracture (see Table 4.4). Lemaitre’s model consistently predicts higher values
than the other models. For the cylindrical notched bars, where there is a dominant
tensile stress state, there was no perceptible difference between the original and
modified GTN models and only the results of the original GTN model are included
in Table 4.4.

In the case of the plate hole specimen, which has got an initial stress
triaxiality and Lode angle that are close to the cylindrical smooth bar (see Table
4.3), all models predicted a displacement to fracture higher than the reference
value. It is interesting to note that, due to the presence of shear effects, Lemaitre’s
model and the enhanced GTN model were able to predict lower values for the
displacement to fracture. The displacements obtained by these two models are
closer to the experimentally determined value. The original GTN model, that does
not include shear mechanisms in the formulation, gave the worst prediction. For

this specimen, the equivalent plastic strain at fracture predicted numerically by all
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models is again higher than the reference value, particularly for Lemaitre’s model

(see Table 4.4).

Table 4.4. Numerical results obtained with the constitutive models for the 2024-
T351 aluminum alloy. Specimens subjected to a high level of stress triaxiality.

) u Uu — _
Specimen Model (mfn} (mr];)* Nav [ EPp &
Notched  Bai & Wierzbicki 0.94 0.95 1.00 0.25
bar Lemaitre 1.19 0.70 1.03 1.00 0.39 0.17

R =4mm GTN 1.10 0.99 1.00 0.31

Notched Bai & Wierzbicki 1.55 0.64 1.00 0.32
bar Lemaitre 1.82 1.40 0.71 1.00 0.50 0.28

R =12mm GTN 1.70 0.66 1.00 0.38

Bai & Wierzbicki  6.65 0.42 1.00 0.50

Smooth .

bar Lemaitre 6.65 6.65 0.45 1.00 0.57 047

GTN 6.65 0.40 1.00 0.48

Bai & Wierzbicki 3.87 0.42 0.80 0.59

Plate hole Lemaitre 3.71 0.43 0.67 0.60
o 2.50 0.31

GTN original 4.00 0.41 0.83 0.54

GTN modified 3.73 0.40 0.84 0.49

In general, for high levels of stress triaxiality, it is possible to see that the
difference between predicted and observed values for the coupled damage models,
such as Lemaitre and GTN, is not constant in terms of the displacement at fracture
and fracture location over the entire range of high stress triaxiality (1/3 <n < 1).
In addition, the coupled damage models lose their predictive capability when the
conditions, of stress triaxiality and Lode angle of the specimen, are further way
from the calibration point. This fact limits their applicability and reliability. The
uncoupled constitutive model proposed Bai and Wierzbicki (Bai & Wierzbicki,
2008) has a more uniform behavior for different levels of stress triaxiality and
Lode angle parameter. Nevertheless, it is important to mention that some of the
parameters of the model, which are listed in Table 4.1, were obtained with a set of
experimental tests that include the smooth and round bars analyzed in this

contribution.
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The force versus displacement curves, obtained from the numerical
simulation of the constitutive models, for the cylindrical notched bars are plotted
in Figure 4.12. The curve for each model is plotted till the moment that the critical
damage is reached and it is possible to observe a close agreement between all

models and the experimental results.
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Figure 4.12. Force-displacement curves for a notched bar with: (a) R = 4 mm and
(b)R =12 mm.

The critical displacement to fracture is highlighted in Figure 4.12, for both
notched bars, and it is possible to observe a very small softening on the material
behavior at the end of the analysis. Nevertheless, since the displacement observed
at the beginning of the softening is almost the same as the displacement to
fracture, there is almost no dependence of the results with the spatial

discretization.

The evolution of the equivalent plastic strain is presented in Figure 4.13 for
all specimens and, in general, it can be observed that the growth rate of this
variable is higher for Lemaitre’s model. The level of equivalent plastic strain
reached by Lemaitre is, in fact, very high and in disagreement with the level of the

equivalent strain at fracture cited in literature (see Table 4.4).
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Figure 4.13. Equivalent plastic strain as a function of the prescribed displacement:
notched bar specimens with (a) R = 4 mm, (b) R = 12 mm, and for (c) smooth bar
specimen and (d) plate hole specimen.

The equivalent plastic strain contours are shown in Figure 4.14 for the two
notched bars and the smooth bar specimen, where the distribution of this variable
for all constitutive models can be analyzed. The displacement to fracture, which is
reached when the damage variable attains the critical value, is included in the
same Figure for all models and specimens. It can be seen, for the notched bar
specimen with a radius, R = 4 mm, that the equivalent plastic strain contour has a
tendency to predict higher values on the outer surface for the three models (see
Figure 4.14a, 4.14b and 4.14c). Nevertheless, the maximum values of equivalent

plastic strain predicted by Lemaitre (Figure 4.14b) and GTN (Figure 4.14c) models

also extend towards the center of the specimen.
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Figure 4.14. Equivalent plastic strain contours for notched bars and smooth bar
specimens. (a) Bai & Wierzbicki model, (b) Lemaitre’s model and (c) GTN model.
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Experimental evidence has shown that fracture onset occurs at the centre of
the specimen. Therefore, special care should be taken if the effective plastic strain
is used as a fracture indicator, as suggested by Bao (2003), since none of the
models clearly predicts a concentrated distribution of effective plastic strain at the
centre of the specimen. For the two other specimens, namely the notched bar
(R=12 mm) and the smooth bar, all constitutive models were able to predict the
maximum location of the effective plastic strain at the central region of the
specimen, which is in agreement with the location for fracture onset observed in

the experimental tests.

The equivalent plastic strain contours, for the plate with a hole, are presented
in Figure 4.15 together with the displacement to fracture predicted by each model.
The maximum value for the internal variable is observed at the cross section of the

specimen and close to the interior surface of the hole.
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Figure 4.15. Equivalent plastic strain contours for the plate hole specimen. (a) Bai
& Wierzbicki model, (b) Lemaitre’s model, (c) GTN model and (d) GTN modified
model.
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Although the behavior is similar for all models, in Figure 4.16 is possible to
appreciate in more detail the evolution of the normalized plastic strain at the
nodes of the critical zone. Each model has got a slightly different evolution. As
mentioned before, the level of equivalent plastic strain attained by Lemaitre’s
model is relatively high. In addition, it can be noticed that the introduction of the

shear mechanism on the original GTN model, improved the prediction of the

model.
1
0.9r i
0.8¢ i
R 0.7} 1
0.6- O Lemaitre Model
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"0 2 4 6 8 10 12
Node
External Surface Hole

Figure 4.16. Equivalent plastic strain distribution at the critical zone for the plate
with a hole specimen.
The damage variable field obtained in the finite element analysis is illustrated

in Figure 4.17 for the cylindrical smooth bar and the two notched bars specimens.

The contour plots show the distribution of damage when one point of the
problem reaches the critical damage for a specific constitutive model (see Table
4.2). The displacement to fracture, which is reached when the damage variable
attains the critical value, is included in the same figure for all models and
specimens. The location of the maximum damage occurs at the center of the
specimen’s and is correctly predicted by all models. This is in agreement with

experimental evidence.

104



ur = 0.94 mm

o M-

0 25 5 7.5
Damage

0 0.1 0.21

[

ur = 1.55 mm
12.7

0 25 5 75

Damage
0 0.11 0.21
[
ur = 6.65 mm
12.7

8.47

4.23

-

0 225 45

Damage
0 0.1 0.21
[
(a)

ur = 1.19 mm

ur = 1.82 mm
12.7

0 25 5 7.5
Damage

ur = 6.65 mm

12.7

8.47

4.23

—

0
0 2.25 4.5
Damage
0 0.13 0.26
[
(b)

ur = 1.10 mm

0 25 5 7.5
Damage Y

ur = 1.70 mm

0 25 5 7.5

Damage Y
0 0.03 0.06 @x
[ .
U = 6.65 mm
12.7

8.47

e

0 225 45

Damage Y
0 0.03 0.06 \L X
.
(c)

Figure 4.17. Damage contours for the notched bars and smooth bar specimens: (a)
Bai & Wierzbicki’s model, (b) Lemaitre’s model, (c) GTN’s model.
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The damage variable field obtained in the numerical simulation for the plate
hole specimen is illustrated by the contour plots shown in Figure 4.18. The
maximum value of damage is predicted at the critical cross section of the specimen
for all constitutive models, nevertheless, within the cross-section there are

different evolutions for the damage variable.
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Figure 4.18. Damage contours for the plate hole specimen: (a) Bai & Wierzbicki’s
model, (b) Lemaitre’s model, (c) GTN’s model and (d) GTN modified model.

In Figure 4.19, it is possible to observe the evolution of the normalized
damage at the critical cross section of the specimen. Lemaitre’s model predicts
higher values of damage in the region close to the central hole attaining the
maximum value at the edge on the surface of the hole. On the other hand, all the
other models predict the maximum value inside the cross section, which is in
agreement with experimental results (Bao et al., 2004). Bai & Wierzbicki’s model
together with the modified GTN models have a sharp prediction of damage around

node 8 in Figure 4.19.
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Figure 4.19. Damage evolution at the critical zone for the plate with a hole
specimen.

4.5.2 Low Stress Triaxiality (0 <n < 1/3)

In this section, numerical results for the butterfly specimen, which is depicted
in Figure 4.9, are presented. The focus here is to study the behavior of the
constitutive models, previously described, under a low level of stress triaxiality
and verify their ability to predict the correct fracture location. The butterfly
specimen was simulated in both pure shear and combined tension/shear (102 with
the x-axis) conditions. In Table 4.5, the numerical results, obtained by the finite
element simulation, for the displacement at fracture, stress triaxiality average,
Lode angle average and the equivalent plastic strain at fracture can be examined.
In both loading scenarios, the prescribed displacement was imposed until the
damage variable of the particular constitutive model, at any point in the specimen,
reached its critical value, previously calibrated (see Table 4.2). The value of the
displacement and effective plastic strain variables calculated from the finite
element simulation, when the damage variable reaches its critical value, are
understood as the displacement at fracture and effective strain at fracture from the

numerical simulations.

The results obtained with the original GTN model, under shear dominated
loading conditions, clearly emphasize the limitation of the model for predicting
fracture under conditions of low stress triaxiality. In Table 4.5, it is possible to see

that, according to this model, the critical damage value would never be reached for
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pure shear stress states. Under combined tension/shear (102 with the x-axis) the
predicted displacement to fracture is very high, when compared with the other
models, since damage evolution is only due to the volumetric growth of voids. The
displacements to fracture predicted by Lemaitre’s model, u = 0.464 mm, and the
GTN modified model, ur = 0.348 mm, are more or less close for pure shear. There
is a slightly better agreement between the predicted displacements to fracture for
these two models for combined tension/shear stress states: Lemaitre’s model
predicts, ur = 0.408 mm, and the GTN modified model predicts, ur = 0.34 mm.
Nevertheless, there is a marked difference between the levels of predicted
equivalent plastic strain obtained with Lemaitre’s model and the GTN modified
model for both loading conditions, which are clearly different from the reference
value of the effective plastic strain listed in Table 4.3. Through the analysis of the
results obtained by Bai & Wierzbicki’s model coupled with Bao’s fracture indicator
(see Table 4.5), it is possible to conclude that the overall prediction is not
satisfactory. In particular, for pure shear loading conditions the model predicts for
both parameters, displacement and equivalent plastic strain to fracture, very high
values (ur = 0.7mm; &P, = 1.4) that are different from the reference values in
Table 4.3. These results clearly suggest that Bao’s damage fracture indicator
coupled with Bai & Wierzbicki’s model might not be a good parameter to predict

fracture under low level of stress triaxiality.

Table 4.5. A summary of the numerical results obtained by the damage
constitutive models studied on aluminum alloy 2024-T351. Specimens subjected to
a low level of stress triaxiality.

Specimen Model (r:zl{n) Naw 0, &P, &
Bai & Wierzbicki 0.700 0.00 0.00 1.40
Butterfly Lemaitre 0.464 0.08 0.04 0.64 0.21
(pure shear) GTN original = 0.02  0.06 -- '

GTN modified  0.348 0.02 0.04 0.31

Bai & Wierzbicki 0.540 0.22 0.43 0.67

Butterfly Lemaitre 0408 034 019 0.60
(tensile/shear 10°) GTN original 0.642 030 047 0.64
GTN modified  0.340 0.27 0.43  0.35

0.25
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Figure 4.20 shows the evolution of the equivalent plastic strain for pure
shear and combined shear/tensile (102 with the x-axis) loading conditions. It can
be observed that the growth rate of this parameter for both Lemaitre and Bai &
Wierzbicki models accelerates significantly after a particular value of the applied
displacement. The GTN based models do not show this considerable increase.
While the original GTN model predicts a very slow evolution for this variable,
which is not realistic, the modified GTN model, under both loading conditions,

predicts a faster evolution for the accumulated plastic strain.
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Figure 4.20. Numerical results for the butterfly specimen in, (a) pure shear and (b)
combined shear/tensile loading conditions.

The equivalent plastic strain contour for pure shear and combined
shear/tensile (102 with the x-axis) loading conditions, for the constitutive models
under analysis, can be observed in Figures 4.21 and 4.22, respectively. For the sake
of completeness, the value of the displacement to fracture for each model is also
included. Under pure shear loading (see Figure 4.21), the predicted location for the
maximum value of the equivalent plastic strain, for all constitutive models, is on
the surface of the shear zone. Since it is at this location that fracture onset is
experimentally observed (Bai, 2008), the equivalent plastic strain could be used, in
this case, as fracture indicator. From the analysis of Figure 4.21, it is possible to
notice that the distribution of the maximum value of the equivalent plastic strain is
more concentrated, on the surface of the shear zone, for Lemaitre’s model (Figure
4.21b) and less concentrated for both GTN’s original and modified models (Figure

4.21c and 4.21d). Although the maximum value of the equivalent plastic strain for
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Bai and Wierzbicki’s model is on the surface of the shear zone, the distribution also

spreads towards the centre of the specimen (see Figure 4.21a).
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Figure 4.21. Equivalent plastic strain contours, for a butterfly specimen, under pure
shear conditions. (a) Bai & Wierzbicki’s model, (b) Lemaitre’s model, (c) GTN’s
model and (d) GTN’s modified model.

However, under combined shear/tensile (102 with the x-axis) loading (see
Figure 4.22), the predicted location for the maximum value of the equivalent
plastic strain, for all constitutive models, is again on the surface of the shear zone.
Since for this loading condition fracture onset is experimentally observed at the
middle of the thickness on the shear zone (Bai, 2008), the equivalent plastic strain
field would give a wrong prediction of the fracture location. From the analysis of
Figure 4.22, it is possible to conclude that the distribution of the maximum value of
the equivalent plastic strain is more concentrated, on the surface of the shear zone,
for Bai and Wierzbicki’'s model (Figure 4.22a). This maximum for Lemaitre’s
model, GTN’s model and GTN’s modified model is on the surface of the shear zone

but the distribution also spreads towards the centre of the specimen.
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Figure 4.22. Equivalent plastic strain contours for the butterfly specimen under
combined shear/tensile loading condition. (a) Bai & Wierzbicki, (b) Lemaitre (c)

0 0.3 0.6 KX

Equivalent Plastic Strain Yy z
0 0.17 0.35
| .

(d) ur = 0.340 mm

GTN original and (d) GTN modified models.

The evolution of the damage parameter, at the point where the damage

variable reaches the maximum value, can be examined in Figure 4.23. The critical

damage value for each model, which is listed in Table 4.2, is reached at different

levels of displacement.
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Figure 4.23. Evolution of damage in (a) pure shear and, (b) combined shear/tensile

loading conditions.
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The evolution of the damage variable for the GTN original model under shear
loading illustrates its limitation to predict shear localization and fracture under
conditions of low triaxiality. After an initial increase of the damage variable, which
is due to void nucleation, there is no further evolution of damage (see Figure
4.23a). Under a combined shear/tensile loading, this model predicts damage
evolution. Nevertheless, since this growth is only due to volume void growth, the
overall damage evolution is slow and the model predicts a high value for the
displacement to fracture, which is not in agreement with experimental evidence.
The inclusion of shear effects on the formulation of the model, here labeled
modified GTN model, clearly improves the ability of the model to predict damage
growth under shear and combined shear/tensile (102 with the x-axis) loading
conditions since the distortion of voids and inter-void linking are taken into
account in the model (see Figure 4.23a and 4.23b). It is important to observe that
Lemaitre’s model can predict the evolution of damage under conditions of low
stress triaxiality. In addition, Bao’s damage fracture indicator coupled with Bai &

Wierzbicki’s model is also able to predict the evolution of damage.

The damage distribution for each constitutive model, when the critical
damage is attained, can be seen on Figure 4.24 for pure shear loading.
Experimental evidence has shown that the potential zone for crack formation
occurs on the surface of the shear zone. Both Lemaitre’s and GTN’s modified
models, depicted in Figures 24b and 24d, have been able to predict the correct
location of fracture onset. On the other hand, Bao’s damage fracture indicator
coupled with Bai & Wierzbicki’s model, depicted in Figures 24a, has predicted
fracture at the middle of the thickness on the critical zone, which is wrong. The
original GTN model predicts damage over the central region of the critical zone,

never reaching the critical value (see Figures 24c).
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Figure 4.24. Damage contours for the butterfly specimen under pure shear
conditions. (a) Bai & Wierzbicki’s model, (b) Lemaitre’s model, (c) GTN’s model
and (d) GTN’s modified model.

The damage variable field obtained in the numerical simulation, for a
combined tensile/shear loading condition, is illustrated by the contour plots
shown in Figure 4.25. For this loading condition, fracture onset is experimentally
observed at the center of the shear zone. Therefore, from the analysis of Figure
4.25 it is possible to conclude that Bao’s damage fracture indicator coupled with
Bai & Wierzbicki’s model is able to predict the correct fracture location. The same
happens with the GTN original model that also predicts fracture onset at the centre
of the specimen. However, the damage evolution for these two models is relatively
slow and consequently they predict a large displacement to fracture. In contrast,
Lemaitre’s model and the GTN’s modified model have predicted fracture onset at
the surface of the critical zone, which is in disagreement with experimental
evidence. Therefore, these two models have not been able to predict the correct

location of fracture under combined tensile/shear loading conditions.
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Figure 4.25. Damage contours for a butterfly specimen under combined
shear/tensile load. (a) Bai & Wierzbicki, (b) Lemaitre (c) GTN original and (d) GTN
modified models.

The inclusion of shear effects on the GTN model has got a significant impact
on the evolution of the equivalent plastic strain. Due to the strong coupling
between plastic flow and damage, which exists on the modified GTN model (see
Box 4.1), an increase of overall damage due to the combination of void growth with
the distortion of voids leads to an increase of the equivalent plastic strain. This
enhances the model that predicts a level of equivalent plastic strain to fracture
close to the expected value. In order to discuss the predictive ability of Lemaitre’s
model, different values for the critical damage D, were critically selected and the
damage variable field obtained from the numerical simulation is illustrated by the
contour plots shown in Figure 4.26. It is important to remark, that this is merely an

exercise and the authors have not performed any additional calibration procedure.
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Figure 4.26. Lemaitre’s damage contour for the butterfly specimen under
combined shear/tensile loading condition. (a) D, = 0.26, (b) D, = 0.35 and (c)
D, = 0.50.

From the analysis of the results depicted in Figure 4.26, it is possible to
conclude that if the critical value of damage is increased, the location of fracture
onset moves from the surface of the shear zone to the center of the shear zone.
Therefore, for a high value of critical damage, D, = 0.50, the prediction of fracture

onset of Lemaitre’s model would be in agreement with experimental observations.

4.5.3 Discussion

A comprehensive set of numerical simulations, regarding specimens with
different geometries, has been carried out to generate diverse stress and strain
states covering a wide range of triaxiality and Lode angle. In Table 4.6, a qualitative
summary of the predictive ability of the constitutive models for the specimens
studied is presented. The classification takes primarily into account the correct
prediction of the fracture location, the displacement to fracture predicted by the
model and also the level of the accumulated plastic strain. The highest predictive

o «

ability is denoted by “+ + +” and the worst by “-“.

Under a high level of stress triaxiality (1/3 < 1 < 1), the model proposed
by Bai & Wierzbicki coupled with Bao’s damage fracture indicator had the best
performance. This conclusion is achieved through the combined analysis of the
prediction of the fracture location, the displacement to fracture and the equivalent
plastic strain to fracture. The model predictions, for all specimens, are in close
agreement with experimental evidence. The coupled damage constitutive models

(Lemaitre, GTN original and GTN modified) were also able to predict the correct
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location for fracture regarding the cylindrical and smooth bars. Nevertheless, the
predicted displacements to fracture and equivalent plastic strains to fracture lose
their accuracy whenever the stress and strain states are far from the calibration
point. The model proposed by Lemaitre consistently predicts high levels of
equivalent plastic strain to fracture. For the plate with a hole specimen, Lemaitre’s
model predicts the edge node of the critical zone as the potential location for crack
initiation, which is in disagreement with experimental data. The other constitutive

models are able to predict the correct location for fracture initiation.

Table 4.6. Qualitative summary of the predictive ability of the constitutive
models for ductile fracture.

Specimen
Notched Notched Plate Smooth Buttgrﬂy Butterfly
bar bar (tension/ (pure
hole bar A
Model (4 mm) (12mm) shear 10°) | shear)
No= 0.75 No= 047 No= 0.37 No= 0.33 No= 0.11 No= 0
0,=1 0,=1 0,=1 =1 | 6,=022 | 6,=0
Bai & ++ +++ + + ++ + + -
Wierzbicki
Lemaitre + + - ++ + - +
GTN original ++ ++ + +++ + -
GTN modified ++ ++ +++ +++ - ++

For a low level of stress triaxiality (0 < n <1 / 3), it is possible to conclude
that the GTN modified model is the model in closer agreement with experimental
results with regard to the equivalent plastic strain. However, under combined
loading condition, the model predicted the surface of critical zone as potential zone
to crack initiation, which is not in accordance with experimental observations.
Under this loading condition, only Bai & Wierzbicki’s model and the GTN original
model predicted the correct fracture location. Nevertheless, they also incorrectly
predict a large equivalent plastic strain to fracture. Lemaitre’s model, for combined
loading, is not able to predict both the correct fracture location and the equivalent
plastic strain to fracture. Under a pure shear loading condition, the GTN modified

model has the best agreement with regard to the equivalent plastic strain together
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with the prediction of the fracture location. The model proposed by Lemaitre has
been able to predict the correct zone to crack formation; nevertheless, the level of
equivalent plastic strain to fracture is in complete disagreement with experimental
results. The fracture indicator proposed by Bao is not appropriate for the

prediction of fracture under a low level of stress triaxiality.

The predictive ability of the constitutive models is intimately related to their
formulation. The fact that the effect of the stress state is taken into account on the
behavior of the yield surface of Bai & Wierzbicki’s model, through the dependence
of both pressure and triaxiality, can justify the more uniform performance of the
model under a wide range of stress triaxiality. The loss of accuracy of the model
under low level of stress triaxiality is due to the selection of a fracture indicator,
which is not able to capture well shear effects on the damage evolution. The effect
of the stress state on the yielding behavior is also considered in the GTN model,
through the inclusion of the hydrostatic pressure. Nevertheless, the effect of the
Lode angle is not included on the yield behavior. This fact combined with a damage
evolution law based on volumetric void growth leads to a good behavior for high
levels of stress triaxiality. The GTN modified model already includes this effect on
the damage evolution law, which clearly improves the predictive ability of the
model under low stress triaxiality. On the other hand, Lemaitre’s model does not
include the effect of the stress state on the behavior of the yield surface but

includes the effect of stress triaxiality on the damage evolution law.

With regard to the number of material properties and parameters, the
constitutive models have different requirements. All of them necessitate the
determination of the material’s elastic properties and hardening curve.
Nevertheless, it is important to highlight that each of them involve the
determination of several extra parameters. Bai & Wierzbicki’s model requires the
determination of seven parameters obtained through four different specimens, the
GTN’s model requires the determination of nine parameters obtained from one
specimen and Lemaitre’s model requires the determination of three parameters

obtained from one specimen (see Table 4.1 and 4.2).
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4.5.4 Fracture Locus Representation

One of the pioneering methods to analyze material ductility in engineering
applications was based on the level of effective plastic strain at fracture for specific
stress triaxiality (McClintock, 1968; Rice and Tracey, 1969). More recently, other
researchers (Johnson & Cook, 1985; Mirza et al., 1996; Bai and Wierzbicki, 2008,
among others) have developed fracture criteria, which also define limit values for
the strain for different stress states. In particular, Bai and Wierzbicki (2008) have
proposed a three dimensional fracture surface, which defines the boundary
between the fracture and no-fracture zone, on the space of equivalent plastic strain
versus stress triaxiality average and Lode angle. This surface, which is based on
boundary limit curves, requires the determination of six parameters that need to

be calibrated for each specific material.

The three dimensional fracture locus for the 2024-T351 aluminium alloy has
been obtained by Bai and Wierzbicki (2008) that employed the material fracture
data points obtained by Bao (2003) to interpolate the surface. This surface can be
mathematically represented by the following expression (Bai and Wierzbicki,
2008):

!
& (n,0) = [E (0.5862 135767 + 0.4859 ™07 1) — 0.217 e_°'°4’7] 0 (4.32)

+§ (0.5862 e1:3576M — 0.4859 ¢ 07M) § + 0.217 e~*047,

The numerical results obtained in sections 4.5.1 and 4.5.2 for different
constitutive models can be represented in this three dimensional space of
equivalent plastic strain versus stress triaxiality average and Lode angle.
Nevertheless, for the sake of clarity, we will represent the surface by its
projections, for different values of the normalized Lode angle, on the space of
equivalent plastic strain versus stress triaxiality. In Figure 4.27, three projections of
the surface that correspond to normalized Lode angle values of 0.0, 0.5 and 1.0 are
depicted together with the results obtained in Section 6 for the different
constitutive models. It is important to recall that the smooth bar and notched bars
have a normalized Lode angle equal to unity but the plate with a hole has an

average normalized Lode angle less than unity (see Table 4.4). Furthermore, the
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butterfly specimen under pure shear has a normalized Lode angle equal to zero,
but under tensile/shear the normalized Lode angle is higher than zero (see Table

4.5).

The representation has revealed that GTN’s modified model, for low level of
stress triaxiality, is able to reasonably follow the fracture surface trend. For high
level of stress triaxiality, Bai and Wierzbicki’s model has the closest behavior with
the reference values. It is also possible to conclude that Lemaitre’s model predicts
a high level of equivalent plastic strain to fracture for both high and low levels of
stress triaxiality. Finally, the GTN original model has only been able to predict the
behavior under conditions of high stress triaxiality exhibiting obvious limitations

under low levels of stress triaxiality.
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Figure 4.27. Fracture locus for an aluminum alloy 2024-T351 on the space of
equivalent plastic strain versus stress triaxiality average.

4.6 CONCLUSIONS

In this contribution, the well established coupled damage constitutive
models, proposed by Lemaitre and GTN, together with a recent constitutive
formulation, proposed by Bai and Wierzbicki, were assessed in order to verify their

ability to predict ductile failure under a wide range of stress triaxiality. To achieve
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this objective, the constitutive formulations were implemented in a quasi-static
finite element scheme and several numerical simulations, regarding specimens
with different geometries, have been performed to generate diverse stress states.
The behavior of some variables was critically analyzed such as, the displacement at
fracture, the equivalent plastic strain at fracture, the evolution of the damage
variable, force versus displacement curves as well as the contour plots of damage

and equivalent plastic strain.

The results from the simulation have shown that for high levels of stress
triaxiality, the constitutive model proposed by Bai and Wierzbicki combined with
Bao’s fracture indicator is in closer agreement with experimental results and
presents a uniform behavior for stress states close and far from the calibration
point. The GTN model is also able to predict ductile failure with reasonable
accuracy and Lemaitre’s model is the less accurate model. One possibility to
enhance the predictive ability of the coupled damage models, which does not
require changes in the constitutive formulation of the model, would be to calibrate
them for stress states close to the loading condition. Under a low level of stress
triaxiality, all constitutive models have limitations. These can be on the value of the
displacement to fracture, the equivalent plastic strain to fracture or in terms of the
prediction of fracture location. Therefore, it is possible to conclude that under
combined loading, all models need to be improved. Under a pure shear loading
condition, the GTN modified model has shown the ability of predicting ductile

failure with reasonable accuracy.

Based on the results, it is possible to suggest further studies and
developments. In particular, the assessment of the performance of the Bai and
Wierzbicki constitutive model combined with other fracture indicators, which are
able to capture shear effects, is recommended. The introduction of a shear
mechanism, which depends on the Lode angle, on the GTN damage evolution law
clearly improved the behavior of the model under low stress triaxiality. Therefore,
new damage evolution laws should be developed to increase the ability of the
model to capture ductile failure under more complex loading conditions. The same

suggestion can be made for Lemaitre’s model.
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CHAPTER 5

Evaluation of Shear Mechanisms and Influence
of the Calibration Point on the Numerical
Results of the GTN Model

In this chapter, a numerical comparative study is undertaken based on Gurson-
Tvergaard-Needleman (GTN) original model and two recent enhancements that
include shear mechanisms, employing two different strategies to calibrate the
material parameters. The assessment is motivated by the fact that the accuracy of
the numerical results obtained with coupled damage models is strongly dependent
on the calibration point. Hence, the numerical results obtained with these models
are more realistic and in agreement with experimental evidence when the external
loading conditions are close to the calibration point. Two distinct shear
mechanisms, proposed by Xue and Nahshon & Hutchison, were selected and added
into damage variable of GTN model, in order to allow the prediction of crack
formation when predominant shear loading conditions are present. This chapter is
structured as follows: In the first part of this study, the mathematical formulations
that describe both mechanisms are presented as well as the GTN original model. In
addition, the numerical strategy followed in this work is described, based on an
implicit quasi-static finite element framework. In the following section, a specimen
under high and other under low stress triaxiality are used as calibration points and
by using an inverse method, the material parameters are identified. Regarding the
performance of the numerical results and its dependence with the calibration
point, numerical tests are carried out for a set of loading conditions, such as: pure
shear, combinations of shear/tensile and pure tensile conditions. These
simulations were conducted assuming first, the material parameters obtained by
the first calibration point and then, using the properties which resulted from the
second calibration point. Both numerical results are compared with experimental
data, regarding the ability to predict the correct fracture location and the

determination of the correct displacement at fracture.
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5.1 INTRODUCTION

The formulations proposed by Gurson (1977) and Lemaitre (1985) are the
most well established ductile damage theories to describe the material internal
degradation (see Chaboche et al., 2006). These classical coupled damage models
have the ability to predict the correct fracture location under a specific range of
stress triaxialities (see Xue, 2007; Nahshon et al; 2008; Teng, 2008) and are
extremely accurate for loading conditions close to the calibration point (see Reis et
al, 2010; Malcher et al.,, 2012). For example, within the range of high levels of
stress triaxiality, where the spherical void growth is the predominant mechanism,
the models based on Gurson’s theory, like the Gurson-Tvergaard-Needleman
model (GTN), have a good performance in the prediction of both the location of
fracture onset and the displacement at fracture. However, under shear dominated
loads, where failure is mainly driven by the shear localization of plastic strain of
the inter-voids ligaments due to void rotation and distortion, the model has an
irregular performance, (see Engelen, 2005; Chaboche, 2006). Figure 5.1 illustrates
the ductile failure mechanism, which can occur by internal necking (Figure 5.1a),
where the large primary voids are formed due to high stress triaxiliaty and the
inter ligaments are created mainly by a sharp volumetric growth, or by void
sheeting (Figure 5.1b), where primary voids remain small due to low stress
triaxiality and the inter ligament occurs mainly by elongation of voids and

formation of secondary voids in strain localization bands.
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Figure 5.1. Schematic representation of ductile failure mechanism (a) internal
necking and (b) void sheeting. Adapted from Besson, (2010).
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The GTN original model is able to predict fracture in ductile materials,
especially when the damage mechanism is caused by a significant growth of the
volume void fraction (Figure 5.1a) and has got limitations when the material
damage is induced predominantly by the elongation of voids (see Xue, 2007;
Nahshon et al.; 2008).

In the following sections, mathematical aspects related to GTN model and
shear mechanisms are discussed and an assessment between both mechanisms is

performed, based on two calibration strategies.

5.2 CONSTITUTIVE MODEL

The model proposed by Gurson (1977) is one of the first micromechanical
based models for the description of ductile damage and fracture, which introduces
a strong coupling between plastic strain and damage, in the presence of finite
strains. It mainly includes the description of the void growth stage and was based
on the Rice and Tracey analysis of an isolated void (Rice and Tracey 1969). Gurson
(1977) suggested the appearance of micro voids associated with a large plastic
deformation as the internal degradation mechanism. The governing equations of
the model were established by assuming a spherical cavity embedded in a cubic
rigid-plastic matrix without hardening (see Figure 5.2) and use of the upper bound
plasticity theorem. The degradation of the material is measured through the
relation between the volume of the void and the volume of the representative

volume element.

Vvoid

f_

- )
VR VE

(5.1)

where f represents the void volume fraction, V,,,;4 is the volume of the void and

VryvEe denotes the volume of the representative volume element.
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Figure 5.2: Schematic representation of the representative volume element with a
spherical void (adapted from Gurson, 1977).

The relationship between the degradation of the material micro structure,
which is due to the presence of micro voids or the formation of new ones in the
material matrix, and the macroscopic loading evolution can be illustrated by Figure
5.3 for tensile dominant loads. In the elastic domain, the material is represented by
stage (a), there is no appreciable change in the micro structure. Nevertheless, with
the increase of the macroscopic load the nucleation of micro voids is trigged due to
existence of localized plastic strain (stage b). In stage (c), the growth of micro voids

is promoted by the high tensile hydrostatic stresses followed by coalescence of

voids in stage (d).

Reaction

A\ 4

Displacement

Figure 5.3: Schematic representation of the process of nucleation, growth, and
coalescence of micro voids and the relationship with the macroscopic load
(Adapted from Pineau & Pardoen, 2003).
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The evolution of the volume void fraction predicted by Gurson’s model
follows as a direct consequence of the requirement for mass conservation of a
rigid-plastic material assuming plastic incompressibility. Hence, the density of a
representative volume element of a material with voids (Figure 5.2) can be
determined by:

Vm

)
VR VE

P = Pm (5.2)
where, p represents the density of the RVE, p,, represents the density of the
matrix of the material and V;,, is the volume of the matrix of the material. Thus, the
relationship between the volume of the matrix of the material, 1}, and the void

volume fraction, f, can be established by:

Vo
=1~/ (5.3)

VRVE

Substituting Equation (5.3) into Equation (5.2), we have:

p=pm(l—f). (5.4)

The density rate of the representative volume element, g, can be expressed as
a relation between the density rate of the material matrix, p,,, and the volume void

fraction rate, f, by time differentiation of Equation (5.4):

p = pm(L=f) = puf. (5.5)
The matrix material is assumed to be plastically incompressible. In addition,
the elastic volumetric strains are neglected by assumption. Therefore, the principle
of mass conservation requires that p,, = 0. Thus, substituting Equation (5.4) into
Equation (5.5) and after some algebraic manipulations, the following expression
can be obtained:
p

P _ Py
f= o p(l f). (5.6)

The principle of mass conservation establishes that the volumetric strain rate

is determined by:
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—% - (5.7)

where, the elastic and plastic strain rate contributions are represented by £ and
P respectively. In Gurson’s model the matrix material is assumed to be rigid-
plastic, therefore, by disregarding the elastic contribution Equation (5.6) can be re-
written as:

f=—m=ga-p. (5.8)

m

The previous equation is the most significant contribution to the degradation
of a porous material and expresses the evolution law for the void volume fraction.

The original yield function derived by Gurson (1977) for a void-matrix aggregate is

expressed by:
g\’ tro
— —|—1—r2 5.9
&(o,k, f) <0y> +2fcosh<20y> 1-£2, (5.9)

where, q is the von Mises equivalent stress, g, is the isotropic hardening rule,
which can be defined as o, = k — g, , where k represents the thermodynamical
force associated to the isotropic hardening state variable and g, is initial yield
stress. The pressure-sensitive yield function proposed by Gurson (1977) can
alternatively be expressed by:
1 3p
®(a,k, ) =],(8) — 5{1 + f2? — 2f cosh <—>} 0y% (5.10)

2 ay

where, J, represents the second invariant of the deviatoric stress tensor and p is
the hydrostatic pressure.

According to the hypothesis of generalized normality, the plastic flow rule is

given by
p_0® 5 oy 1o (3p
&P = y% =E;+é&, =7S +§)/fay sinh 20, I, (5.11)

where the plastic strain rate tensor, £?, involves two terms: the deviatoric, ég, and

volumetric plastic strains, ¢, and y represents the plastic multiplier. With the

volumetric flow, é¢, constitutive equation (Equation 5.11), it is possible to obtain
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the evolution law for the void volume fraction, f, after the substitution of éf,’ in
Equation (5.8):

: P o o 3P

f =~ EL = (f - fyoysinh [ — ) (5.12)

ZO'y

5.2.1 Gurson-Tvergaard-Needleman (GTN)’s Model

One of the shortcomings of the Gurson model is the fact that, whatever strain
history the material might be subjected; no void volume fraction evolution will be
predicted if the initial void ratio is zero. Therefore, in order to enhance the model,
several mechanisms for damage nucleation have been proposed such that voids
can nucleate depending on the strain history. One of the most well known
nucleation laws was proposed by Chu & Needleman (1980) and latter used by
Tvergaard-Needleman (1984) in the GTN model. The damage evolution is
represented by three simultaneous or successive mechanisms: nucleation, growth

*

and coalescence of voids. The effective porosity, f*, is determined by the following

bilinear function:

f o f<f

o 1 NG o (5.13)
R =

where f. represents the critical void volume fraction and f; is the void volume
fraction at fracture. The effective porosity, f*, is obtained from both nucleation and
growth mechanisms if the void volume fraction is less than the critical value, f..
The coalescence mechanism becomes active when the void volume fraction is
higher than the critical value, f.. The void volume fraction rate, f, is given by the

sum of the nucleation and growth mechanism as:

f=fr+f9. (5.14)

The nucleation mechanism can be driven either by plastic strain or hydrostatic
pressure. The definition of the nucleation mechanism based on the equivalent

plastic strain is given by:

— 2
fn = n exp [_%(gp _ €N> ]EP' (5.15)




where, fy represents the volume fraction of all particles with potential for
microvoid nucleation, €y and sy are the mean strain/pressure for void nucleation

and its standard deviation. The variable " represents the equivalent plastic strain

and ¥ is the rate of the accumulated plastic strain. The nucleation mechanism only
occurs if the hydrostatic pressure is greater than zero, p > 0. If the hydrostatic
pressure is less or equal to zero, p < 0, the nucleation rate is equal to zero. The
evolution of the growth mechanism in the GTN model is given by the same

expression as the original Gurson model (see Equation 5.8).

The yield function of the GTN’s model, which assumes isotropic hardening and

isotropic damage, is expressed by:

— 1 *2 * q23p 2
®d(o,k, f) =],(8) — §{1 +q3f"" = 2q4f cosh( o )} ay”, (5.16)

y

where the parameters q4, g, and g3 are introduced to bring the model predictions

into closer agreement with full numerical analyses of a periodic array of voids.

5.2.2 Shear Mechanisms

The original formulation of Gurson based models did not include shear
effects, which excludes the possibility of predicting shear localization and fracture
under conditions of low triaxiality. Under shear dominated loading conditions, the
distortion of voids and inter-void linking promotes an effective increase in the
material internal degradation and contributes to the material softening. Therefore,
in order to improve Gurson based models predictive ability, under both zero and
low levels of stress triaxialities, several researchers (Barsoum & Faleskog, 2007;
McVeigh et al., 2007; Xue, 2008; Nahshon & Hutchinson, 2008; Butcher et al., 2009)
have suggested the introduction of shear effects. The formulation of shear
mechanisms, which can be based on geometrical or phenomenological
considerations, resulted in evolutions laws that include the influence of the third

invariant of the deviatoric stress tensor, the plastic strain tensor and its rate.

The shear damage mechanism proposed by Xue (2007) is based upon the
solution of McClintock et al. (1968) for the coalescence of holes in a shear band.

Due to its geometrical and physical appeal, we will revise here the shear damage
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mechanism proposed by Xue (2008) and also describe an extended version
proposed by Butcher & Zhen (2009). The mechanism is based on geometrical
considerations of a representative square cell, containing a circular void at the
center, which is subjected to a simple shear strain (see Figure 5.4). The length of
the cell is equal to L and the radius of the central void is given by R. When the cell
structure is loaded, the void rotates and elongates in the preferred direction. Due
to the requirement of volume conservation of the cell structure, Xue (2008)
assumes that the relative position of the void does not change with respect to the
cell (see Figure 5.4). As the shear strain increases, the distance between the free
surface of the void and the boundary of the representative volume element
decreases. Figure 5.4 shows the cell structure in the initial configuration (a) and in

the deformed configuration (b).

A

ry
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(a) (b)

Figure 5.4. Void shear mechanism: (a) initial configuration; (b) deformed
configuration (adapted from Xue, 2007).

The minimum distance between the free surface of the void and the
boundary of the RVE, which is represented by the parameter a, can be expressed
by the relation between the length of the cell and the radius of the void (see Figure
5.4a):

(5.17)

—Z_R
=3

The application of a simple shear strain, y, leads to the appearance of a

deformation angle, «, on the deformed configuration given by:
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tana =y. (5.18)

The minimum distance at the deformed configuration can be related with the
initial distance, a, and the deformation angle, a. In addition, it can also be related

with the simple shear strain as:

1
a'=acosa=a /Tyz (5.19)

An artificial strain can be defined (Xue, 2008), using the logarithmic
definition of strain, which can be associated with the reduction of this minimum

distance as:

Eqr = 1n§ =1In/1+y2 (5.20)

The fracture initiation in a shear band, according to McClintock et al. (1968),
can be defined by the boundary contact condition of the sheared void with the
longitudinal direction of the shear band. For small void volume fraction, Xue
(2008) expressed the failure macroscopic shear strain in the shear band as:

L

€shearband = 2R’ (5.21)

Consequently, the damage associated with the shearing of the void, Dgpeq;, is
defined by the ratio of the artificial and the macroscopic shear strain in a shear

band (Xue, 2008):

Eart  _ In{/1+y? 5 29
Eshearband L . ( ' )

2

Dshear -

Xue (2008) performed a Taylor series expansion and simplified the

expression of the artificial strain term to:

[E

2, (5.23)

Eart

N

The shear strain can be expressed as a function of the von Mises equivalent
strain, y = \/§seq. Therefore, for simple shear and for small void volume fractions,

Equation (5.22) can be approximated by:

130



1
2V’

3
Dshear = 1 — = _n_f(l/Z)gequ (5.24)
2 /f

where f = nR?/L? is the void volume fraction of the cell in a two dimensional

problem. For the three dimensional case, with a spherical void of radius R at the
center of the representative cell of length L, the void volume fraction is expressed
by f = 4mR3/3L3 for the cell. A similar three dimensional relation can also be

obtained:

1/3)

3 /6
Depoar = E(E) FA/e, 2. (5.25)

The evolution of shear damage can be represented in the rate form as:

Dshear = Q4qugeqéeq' (5.26)

where g, and g5 are geometrical parameters that can be defined for two or three

dimensional problems. For a two dimensional problem, g, = \/% and gz = (1/2)

3 76\ (1/3)
and for a three dimensional problem, q, =~ (;) and g5 = (1/3).

A modified shear damage expression was later derived by Butcher & Zhen
(2009) that, contrary to Xue (2008), did not perform a Taylor series expansion of
the artificial strain (Equation 5.20) and expressed the failure strain with the

logarithmic definition as:

D = Eart :lnw/1+)/2
shear €shearband In 1/ ' (5'27)
«’ X

where the parameter y is the ligament size ratio defined for two or three

dimensional problems, respectively, as:

1
3

x=R/le= (o 2) x=R/lo=(Cr ). G28)

T A 1

N =

The parameters A4; and 4, are the void aspect ratios defined by:
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== Ay =2, (5.29)

where R, and R, represent the radii of the void in the direction y and x. The
dimensions L,, and L, are the length of the cell in the direction y and x. The ratios
A4 and A, are equal to one in Xue’s model (Xue, 2008), which implies that the
rotation of the cell structure is proportional to elongation of the void. According to
Butcher & Zhen (2009), these parameters can more generically be expressed as a
function of the stress state and, as a result, the evolution of the ligament size ratio

is related to the normal strains.

Under the assumption of simple shear and small void volume fractions, the
shear strain is related to the equivalent von Mises strain as y = \/§seq and the

evolution of shear damage is given by:

b _ 1 ( 3&eq )é
shear " \/7 1+ 3eg,2) (5.30)
X

Butcher & Zhen (2009) have shown that the shear damage expression
(Equation 5.27) complies with McClintock criterion while Xue’s expression
(Equation 5.24) does not. In addition, it was emphasized that the simplifications
proposed by Xue (2008) have a critical role on the shear damage criterion and

evolution rule.

In order to understand the role of the different shear damage evolutions,
expressed by Equations 5.26 and 5.30, on a square cell subjected to a pure shear
loading condition, we have coupled both evolutions with the GTN constitutive
model. The results obtained from the numerical simulations for both models,
which have exactly the same geometry and material properties, can be analyzed in
Figure 5.5. It is possible to conclude that for the same applied displacement, the
level of both equivalent plastic strain and shear damage predicted by Butcher and
Zhen (2009) are significantly higher than Xue’s model. Therefore, Butcher’ model
will predict failure before Xue’s model, being extremely conservative on the

moment of crack initiation whenever shear effects are present.
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Figure 5.5. Evolution of (a) the shear damage parameter and (b) the equivalent
plastic strain by Xue and Butcher, coupled with the GTN’s model.

Nahshon & Hutchinson (N&H) have also suggested a shear mechanism, based

on phenomenological aspects that can be expressed by (see Nahshon et al, 2008):
(5.31)

_ka:ep
q )

Dshear

where, k is a material parameter and needs to be calibrated, € denotes the plastic

strain tensor, § represents the deviatoric stress tensor, g is the von Mises
equivalent stress and f represents the volume void fraction. According to Nahshon

(2008) the term S: &P can be replaced by a: €P, which represents the plastic work.

Hence, Equation 5.21 can be re-written as:
. o: P D
Dspear = kf T = kf g, (5.32)

=P . . .
where, the term € represents the equivalent plastic strain rate.
Thus, the rate of the damage variable (Equation 5.14) can be re-written

according to Equation 5.33.
(5.33)

f:fn+fg+Dshear-
When either of shear mechanisms is introduced in the GTN original model in

order to improve the ability to predict failure in dominant shear loading

conditions, a so-called Lode angle function, which can assumes values 0 < g, < 1
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according to loading condition, needs to be introduced to generalize the shear
damage evolution for arbitrary stress state. In predominant tensile load conditions,
the function showed assumes a value equal to 0 and the shear mechanism is not
active. However, when predominant shear load is presented, the function showed
assumes a value equal to 1 or an intermediate value, allowing the activation of the
mechanism. Thus, in Equations 5.26, 5.30 and 5.32 a Lode angle dependent

function, which is represented by g, is also included.

5.2.3 Lode Angle Function

The shear damage evolutions, which were described for a pure shear loading
condition in Section 5.2.2, need to be generalized for arbitrary stress states. This
can be accomplished with the introduction of a Lode angle dependence function.
The Lode angle, which is associated to the third invariant of the deviatoric stress
tensor, is an essential parameter in the characterization of the effect of the stress
state on ductile fracture (Kim et al,, 2003 and 2004; Bao and Wierzbicki, 2004; Gao
et al., 2005; Barsoum and Faleskog, 2007a and 2007b; Bai and Wierzbicki, 2008;
Gao et al, 2009). The Lode angle dependence function ranges between 0, for
dominant tensile stress states, and 1, for shear dominant stress states. For
intermediate values there is a combined stress state and the function should define
the relative magnitude of each stress condition. The Lode angle dependence
function proposed by Xue (2008) is defined by a linear expression of the
normalized Lode angle, as:

go=1-10], (5.34)

where g, represents the so-called Lode angle function and 8 is the normalized

Lode angle (see Equation 3.7).

An alternative Lode angle dependence function as been proposed by
Nahshon & Hutchinson (2008), which discriminates between uniaxial and biaxial

tension and expresses a quadratic relation with the normalized third invariant:
go =1—¢&2 (5.35)
where ¢ represents the normalized third invariant (see Equation 3.5).

Expressions (5.34) and (5.35) can be used to activate the shear mechanisms,
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described in Section 5.2.2, whenever shear effects are present. Figure 5.6
represents the shape of both functions with regard to the third invariant of the

deviatoric stress tensor.

1

0.81

0.4r

02 //

Lo

05 0 05 1
$

Figure 5.6. Evolution of the Lode angle functions, g,, with regard to the normalized
third invariant, &, proposed by Xue (2008) and by Nahshon & Hutchinson (2008).

The shear damage evolutions, expressed by Equations 5.26, 5.30 and 5.32,

can be rephrased for arbitrary loading conditions as:

Dshear = go(qzlqugeqéeq)' (5.36)

B _ 1 3&eq )
shear = Yo lnm 1+ 3€eq2 Eeq |- (5.37)
Dshear = gok pr (5:38)

In Box 5.1, a summary of the GTN model extended with the shear
mechanisms is presented. Details about how to determine the plastic flow rule and

evolution equation for the internal variables can be found in Appendix “C”.

Remark: In this study, the Xue shear damage evolution law (Equations 5.36) is
redefined as a function of both equivalent plastic strain and its rate instead of the

total strain and total strain rate.
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Box 5.1. GTN model extended with shear mechanisms.

(1) Elasto-plastic split of the strain tensor : € = &° + &P

(ii) Elasticlaw: o = D¢: &

(iii) Yield function : ®(a,1, ) = J,(S) — %{1 + q5f? — 2q,f cosh (%)} 0)°
y

(iv) Plastic flow and evolution equations for r and f

o 1 . (392p
& =y IS + §q1q2f0y smh< 20, )Il

{qlqup sinh (32qu) + % [1 +q3f? — 2q,f cosh (32q2p>] ay}
B =y %y Oy
! -5

f:fN+fG+Dshear

D . :
e +(1- f)sg + Dspear

where,

p 2 1 3q,p 2
: e 1 . 2
£ —y\/3{5.5+3lq1q2faysmh<2 y)l }

. . ., (3%p
£ =v4q:192f 0y sinh (H)

Qs f9 go € ép, for Xue's model

Dshear = { ) ,
kfgoe, for Nahshon's model

3 { 1—16|,  for Xue's model
g 1—¢&2,  for Nahshon's model

(v) Loading/unloading criterion

>0, d<0, yo =

5.3 NUMERICAL INTEGRATION ALGORITHM

The constitutive equations of the GTN original model extended with the shear

mechanisms, described in section 5.2 were integrated using an implicit solution

based on the operator split methodology (see Simo & Hughes, 1998; De Souza Neto

et al., 2008). This method consists of splitting the problem in two parts: an elastic
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predictor, where the problem is assumed to be elastic and, a plastic corrector, in
which the system of residual equations comprising the elasticity law, plastic
consistency and the rate equations is solved, taking the results of the elastic
predictor stage as initial conditions. Straightforward (pseudo)-time discretization
of the constitutive equations for the plastic regime, which are listed in Box 5.1,

leads to the following system of non-linear residual equations:

( ot 1 3q2Pn+1
Resp :”—“——[1+q3f+12—2q1f+1cosh< - )]02=0
Y 1+ 26Ay]2 3 n n 20, y
. ) 3q2Pn+1
< Resy = Pni1 — Prss’ + AvK0yq1q2frsr smh< 20’; =0 (5.39)

- 2
Res; = foq — trial_f_NeX _L(Enen AP — Af9 — AD =0
= Jn+1 n+1 S\ p 5 Sx shear =
N

Resg = Ry — R — AR =0

which needs to be solved for Ay, p,+1, fns1 and R,q. In the previous system of
residual equations, the terms K and G represent, respectively, the bulk and shear

modulus. The terms Af9, ADgp.qr and AR are defined according to:

: 3q2Pn+1
Af9 = (1= fur1)AY 0y G142 s sinh (T : (5.40)
y
ADshear
B { Qs foe1™ (1= |Onsa|) €., AEP,  for Xue's model (5.41)
B k frni1 (1 - fn+12) AEP, for Nahshon's model
Ay . 3q2Pn+1
AR = ————— h( /22
(1= ford) {Q1Qan+1Pn+1 Sin < 20,
) 3 (5.42)
+ 5 0y 1+ (I3fn+12 - 2(hfn+1 cosh M :
3 20,

Here, when the yield condition has been violated, the plastic corrector stage
is initiated and the Newton- Raphson procedure is used to solve the non-linear
residual system of equations. The Newton-Raphson procedure was chosen
motivated by the quadratic rates of convergence achieved, which results in return
mapping procedures computationally efficient (see Simo & Hughes, 1998; De

Souza Neto et al., 2008). The residual system of equations in the linearized form
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can be expressed by:

dRes,, ORes,, ORes,;, ORes,]
aAV apn+1 afn+1 aRn+1 Kk
dRes, 0Res, ORes, ORes, say 11 [Resy (4y,p, f, R)]
0By OPner Ofwer ORnes | [SPnrs| _ _|Res,(arpfiR) |
dRes; OResy 0Resy ORes;| |G6fns1 | Res¢(4y,p,f,R)

00y Opns1 Ofpsr ORyyr | LORnaa Resg(4y,p, f,R)
OResp,  OResp OResy  Odvy

- aAV apn+1 afn+1 aRn+1—

(5.43)

where, the terms dRes,/(*) represent the derivative of each residual equation
with regard to the variables of the problem. Details about the determination of
these derivatives can be found in Appendix “D”. The overall algorithm for

numerical integration is summarized in Box 5. 2.

Box 5.2. Fully implicit Elastic predictor/Return mapping algorithm for the GTN
model extended with shear mechanisms.

(i) Evaluate the elastic trial state: Given the incremental strain Ae and the state
variables at t,:

etrial _ ge . =btrial _ -p . trial _
T + Ag ’ En+1 =& ’ Rn+1 - Mn
mlal_f trial trial trial trial
n+t1 — Jn . rial _ e tria . rial _ etria
; Sni1 = 2Gen1, ; Pny1 = K&ynia

(ii) Check plastic admissibility:

. . . . trial .
IF q-_,trlal — jérlal _ % [1 + q3frf-1|:llalz _ qufrllfillal cosh (3512Pn+1 )] (O.;rlal)z < 0 THEN

trial
ZGy

set (Dp41 = (DI (elastic step) and go to (v)

ELSE go to (iii)

(iii) Return mapping (plastic step): Solve the system of equations below for
AY,Pns1.fne1 and Ry 1, using Newton-Raphson method.

( —]Ztrﬁl 1 2 3q2Pn+1 )
[+ 26877 ‘5[1 ¥ @afurs” = 21 uea cosh <T>] o3 .
i . 3q2Pn+1
< Pns1 — P + AyK oy q1 G2 fnsn Slnh< 20;‘ | ! 8 L
2
trial fN n+1 N
- - exp|—=(L——=) [A&P —Af9 —AD 0
fn+1 il SN\/% P [ 2 ( SN ) ] f shear

Rn+1 - thlr-i-i(fl — AR
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Continue Box 5.2.

where,

. (392Pn+1
Af9 = (1 — fr41)AY0yq1q2fn+1 sinh <Tn+
y

AD — { qs fn+1q5 (1 - |0_n+1|) §Z+1 Ag”, fOT Xue
shear k foer (1—&,01%) AP, for Nahshon
Ay . 3q2Pn+1
AR = m{‘h%fnﬂpnﬂ sinh <T;+
2 342Pn+1
+30y |1+ Gsfns1” — 241 fusr cosh | ——=
3 20,

(iv) Update the others state variables:

' SEid! 1 . 342Pn+1
£ = E41Y — A [—1 —0 Ay T30y 1d2fnra sinh —26;‘ I

trial
Sh+1

Snit =T 06ay

. 2 Strial: StTial 1 3q p 2
— pt l +1 +1 . 2FPn+1
sfzﬂ = 85+;l“ + Ay\/g {_[1”+ 2(;An_)/]2 + 3 [O'yQ1Q2fn+1 sinh <—2cry >]

(v) Exit

5.3.1 The consistent tangent operator

Under the elastic loading condition, the tangent operator for this constitutive
formulation is the standard linear elasticity tensor. Nevertheless, for the plastic
step, the elasto-plastic tangent operator is obtained by the linearization procedure
of the above system of residual equations. Hence, the first step for determining the

operator is to differentiate the stress tensor updated expression:
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trial
Sh+1

Tl = T 26A7] +Pnsr . (5.44)

After some algebraic manipulation, the above equation can be re-written in

its differentiate form as:

2

2G . 2G )
dopnq = mdfi oy - {m} e5midAy + dpnqI . (5.45)

The terms dAy and dp,,; can be obtained by the linearization procedure of
the residual system of equations. After some algebraic manipulation, the term dAy

and dp,,;; can be expressed by:

0Ty or, ory
day = _Cl,l gee trial B gee trial - Clv3 pgetrial’
dn+1 vn+1 dn+1
(5.46)
0rpy or, ory
dpn+1 - _szl dee trial 22 gee trial 23 geetrial’
dn+1 vn+l dn+1

where, the terms C;; belong to the C matrix, which is the matrix obtained by

inverting the linearized system of residual equations in order to each variable of

the problem. Finally, the elasto-plastic operator is determined by:

DeP = do-n+1

- etrial *
d‘gn+1

(5.47)

5.4 CALIBRATION PROCEDURE

Regarding the determination of the material parameters for the GTN original
model and the GTN model improved with shear mechanisms, two different
calibration points are investigated. The material parameters obtained with the first
calibration point are used to perform a comparative study between Xue’s (2008)
and Nahshon’s (2008) shear mechanisms. In particular, the ability to predict the
correct displacement and equivalent plastic strain at fracture as well as the correct
potential location to crack formation. In addition, a second calibration point is used
in order to assess the influence of the calibration point in the predictive ability of

the coupled damage models.
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The conventional cylindrical smooth bar specimen subjected to a tensile
loading condition is used for the first calibration point and a butterfly specimen
under a pure shear loading condition, is employed for the second calibration point.
In both cases, the hardening law, o, (R), for the undamaged material is determined
as well as the set of parameters required for the nucleation of micro voids
[fn,Sn, €xv] and the critical value for the damage variable, f.. Experimental data for
a steel 1045 is used in both tensile and pure shear calibration conditions. Based on
an inverse method and optimisation procedure, the material parameters are

identified and used in the following simulations.

5.4.1 Inverse method for parameter identification

In this section, the procedure used for parameter identification is described
based on a simple optimisation algorithm. The method starts from the definition of

an objective function that can be expressed by:

N 2

1O (FoiEF (b)) — B
S(b;) = NZ(OJ (ng : ) , (5.48)
i 2

=1

where b; is the vector of variables of the problem, N represents the number of

MEF
Fi

experimental points, Fiexp is the value of the experimental point, is the value

of the numerical point, F}’EF is the value of the numerical point determined by
linear interpolation for a specific displacement. The optimisation procedure forces
the numerical solution to be, as close as possible to the experimental results. In
other words, the difference between numerical and experimental curves, which is
measured by the objective function, is given by the sum of the differences between
numerical and experimental forces to the square. During the parameter
identification procedure, it is expected that the objective function, S (bj), is equal to
zero, which means that the numerical curve is equal to the experimental curve.
However, in practical situations, this ideal condition is never reached and a value

very small for S(bj) is expected. Figure 5.7 represents the difference between

experimental and numerical data for an optimisation procedure.
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Figure 5.7. Optimisation procedure and difference between numerical and
experimental data. Adapted from Trentin (2009).

In a general approach, it is necessary to assign upper and lower values for the

variables of the problem, where the optimisation procedure could be presented as:

[

o) = min] (157 (E ) = £
45(bj)=m1n|l NZ( e )

(5.49)

|
. |-
i=1 l J

Lwhere, biow < b < by,

In order to minimize the objective function, which is established for the two
specimens under scrutiny, an optimization algorithm based on sequential
quadratic programming is used (see Schittkowski, 2001). The method requires the
determination of the derivative of objective function, with regard to the variable of
the problem, to be used in the sensitivity analysis. Equation (5.50) was used for

calculating the sensitivity matrix.

1 N FiMEF(bj) —FiexP 2
N Fexp

MEF
—L is determined with the finite difference method. In this
Jj

_1/
21 2<FiMEF(bj)_Fi€xP> 1 dFMEF

Fexp Fexp db] ’

2 L

(5.50)

i=1

where, the term

approach, the vector b;, which represents the set of unknowns variables of the
problem, is composed by the set of parameters {fN, Sy €Ny ay}, where o, represents
the hardening law which is defined by o, (R) = g, + a; exp(—a;R).
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5.4.2 Geometry and mesh definition

In order to identify the material properties for the first calibration point, a
classical smooth bar specimen is used and Figure 5.8a presents the dimensions
employed. In order to trigger necking, a dimensional reduction of 5% in the central
diameter of the specimen is used. Besides that, based on the experimental data, a
gauge section of 20.6 mm is also used. The standard eight-noded axsymmetric
quadrilateral element, with four Gauss integration points, is adopted. The initial
mesh discretization is illustrated in Figure 5.8b, where only one symmetric quarter
of the problem, with the appropriate symmetric boundary conditions imposed to
the relevant edges, is modelled. A total number of 1800 elements have been used

in the discretization of the smooth specimen, amounting to a total of 5581 nodes.

103 i
o il
S . R7.200
o)) /‘
S
ol
S ]
= _ _ _ -
2 \
]
28.300
60.000
- - 0 EHHEHE
0 451Z X
(a) (b)

Figure 5.8. (a) The geometry for the smooth bar specimen (dimension in mm).
Reproduced from Teng (2008). (b) Finite element mesh, regarding the gauge
section.

For the second calibration point and for all numerical tests that will be
presented to assess the influence of the calibration point, on the predictive ability
of the constitutive models, a butterfly specimen is used. The specimen was initially
designed by Bai (2008) and the geometry and general dimensions can be verified
in Figure 5.9. In this case, a three dimensional finite element mesh of 3.392 twenty
noded elements, with eight Gauss integration points, is used amounting to 17.465

nodes is employed.
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Figure 5.9. (a) The geometry for butterfly specimen (Dimensions in mm).
Reproduced from Bai (2008). (b) Finite elements mesh for the butterfly specimen.

5.4.3 First Calibration Point: smooth bar specimen (tensile loading test)

In the present section, the hardening law, g, (R), for the undamaged material
is determined as well as the set of parameters for the nucleation of micro voids
{fn,Sn,€n} and the critical value for the damage variable, f,. By performing the
numerical simulation of experimental tests conducted by Bai 2008, the reaction
versus displacement curve is determined as well as the stress-strain curve for an
elasto-plastic model of von Mises type. The inverse method, described in the
previous sections, is adopted in order to identify the material parameters for the
coupled damage model by forcing the numerical solution to be, as close as possible
to the experimental results. Figure 5.10a shows the reaction curve obtained for the
model after the application of the inverse method. A good agreement between the
experimental and numerical results can be observed. Furthermore, the critical
volume void fraction is also determined from the numerical simulation at the point
where the model attains the displacement to fracture, experimentally observed

(see Figure 5.10b). The critical value obtained is f. = 0.076.
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Figure 5.10. (a) Reaction curve. (b) Critical volume void fraction parameter.

The results of the calibration procedure, in terms of stress-strain curve, can

also be observed in Figure 5.11, where the curves, for uncoupled and coupled

damage models, were presented.
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Figure 5.11. Stress-strain curves determined for an uncoupled and coupled models.

The material properties and other parameters related to the micro void

nucleation mechanism obtained by employing an inverse method are listed in

Table 5. 1:

Table 5.1. Materials properties and parameters related to the nucleation of
micro-void mechanism, for steel 1045. Based on the first calibration point.

Material fN SN En q1 q> q3 fC E (MPa) v

005 02 01 1.5 1.0 225 0076 220.000 0.33

GTN

145



5.4.4 Second Calibration Point: butterfly specimen (shear loading test)

In this calibration point, also the hardening law, ay(R), for the undamaged
model is determined as well as the set of parameters for nucleation of micro void
mechanism {fy,Sy, ey} and the critical value for the damage variable, f,. The
butterfly specimen is used here under a pure shear loading condition and the
displacement to fracture was experimental determined by Bai (2008). The inverse
method described in section 5.4.1 is also adopted, for the identification of the
parameters by forcing the numerical results to be as close as possible to the
experimental data. A critical damage value is obtained from the simulation, when
the numerical displacement matches the experimental one for each shear
mechanism and the results obtained for the second calibration can be observed in

Figure 5.12.

8000 : : : : -
0,24)— == mm e |
critical ;
value (Xue) :
AGOOO* critical @ 0 9F LT T T T T T T T T T T T T T g Ty >
:é, point %) critical :
o c% value (N&H) |
.S 4000f A i
R3] 1y !
3 3 0,1 i
Q Q i
~ % |
20001 © GTN N&H Model k=1.0| | ;

= GTN Xue Model o GTN N&H Model k=1.0
= Experimental curve = GTN Xue Model 5
% 02 04 06 08 1 % 02 04 06 08 1

Displacement (mm) Displacement (mm)
(a) (b)

Figure 5.12. (a) Reaction versus displacement curve. (b) Shear damage parameter.

The results of the calibration procedure for the stress-strain curve can also
be observed in Figure 5.13, for the uncoupled and coupled damage models. The
material parameters related to the micro void nucleation mechanism can be found

in Table 5.2.
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Figure 5.13. Stress-strain curves determined for the uncoupled and coupled
models.

Table 5.2. Material parameters related to the nucleation of micro-voids
mechanism, for the steel 1045. Based on the second calibration point.

Material fN SN Ev q1 q» qs3 fc E (MPa) v

N&H 0.10 0.15 01 1.5 1.0 225 0.19 220.000 0.33
Xue 010 0.15 01 1.5 1.0 225 024 220.000 0.33

5.5 NUMERICAL RESULTS

In this section, numerical simulations are carried out in order to assess the
predictive ability of the GTN improved models, with regard to the determination of
fracture onset, the correct displacement and the level of equivalent plastic strain at
fracture. Therefore, both improved models are tested with the material parameters

determined by the first and second calibration points (see Table 5.1 and 5.2).

The numerical results were conducted following the same strategy. The
simulation was performed until the damage variable of the improved GTN models,
at any point in the specimen reaches the critical value listed in Table 5.1 and 5.2.
Several numerical simulations with different loading conditions are conducted:
pure shear, pure tensile and a combination of shear/tensile loading with an angle
of prescribed displacement equal to 10°, 22° and 30°. The value of some
parameters, such as, the equivalent plastic strain and displacement at fracture as

well as the ability to predict the correct site to crack initiation are evaluated for
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each calibration point. Tables 5.3 and 5.4 list the numerical results obtained after

the numerical simulations for both calibration points.

Table 5.3. Numerical results for butterfly specimen. Based on the first calibration

point.
Experimental data Numerical results
Angle _—
Ur & k Uy & Mo 6o
N&H 1.0 103 057 0.00 000
0° 1.03 0860
Xue 037 032 000 0.00
N&H 1.0 060 047 012 023
10° 0421 0355
Xue 037 035 011 033
N&H 1.0 036 037 025 045
22° 0287 0276
Xue 036 037 025 049
N&H 1.0 027 033 033 065
30° 0219 0235
Xue 026 030 033 0.65
N&H 1.0 012 028 061 075
90° 0,101 0.156
Xue 0.11 025 061 075

Table 5.4. Numerical results for butterfly specimen. Based on the second
calibration point.

Experimental data Numerical results
Angle —
Us &r k Us v Mo 8o
N&H 1.0 103 075 000 0.00
0° 1.03 0860
Xue 1.03 060 000 0.00
N&H 1.0 046 0.51 012 023
10° 0421 0.355
Xue 1.00 070 011 0.33
N&H 1.0 032 042 025 049
22° 0287 0276
Xue 0.39 053 025 049
N&H 1.0 024 036 033 065
30° 0219 0.235
Xue 027 045 033 065
N&H 1.0 011 0.30 0.61 0.75
90° 0.101 0.156
Xue 012 035 061 0.75

* Reference value of the equivalent strain at fracture, which was obtained using a combined
experimental/numerical method with the von Mises model (Bai, 2008).
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5.5.1 Equivalent plastic strain at fracture

In order to discuss the values obtained by each model for the equivalent
strain at fracture, in this section, the numerical results determined for this
parameter are compared with the fracture criteria proposed by Bai & Wierzbicki
(2008). The criteria can be geometrically represented by a three dimensional
fracture surface, which defines the boundary between the fracture and no-fracture
zone, on the space of equivalent plastic strain versus stress triaxiality average and
Lode angle. This surface, which is based on boundary limit curves, requires the
determination of six parameters that need to be calibrated for each specific
material. The three dimensional fracture locus for the 1045 steel has been
obtained by Bai and Wierzbicki (2008) that employed the material fracture data
points obtained by Bao (2003) to interpolate the surface. This surface can be
mathematically represented by the following expression, calibrated by butterfly

specimens, (Bai and Wierzbicki, 2008):

— 1 ~
& (n,6) = [5 (0.7121 e~ 169687 4 07121 e~ 1:6968M) — 0.5187 e-1.9454,7] 5 551

+% (0_7121 e_1-696877 —0.7121 e—1.6968 7]) 5 + 0.5187 e—1.9454n_

The numerical results obtained with both shear mechanisms can be
represented in this three dimensional space of equivalent plastic strain versus
stress triaxiality average and Lode angle. Nevertheless, for the sake of clarity, we
will represent the surface by its projections, for different values of the normalized
Lode angle, on the space of equivalent plastic strain versus stress triaxiality. In
Figure 5.14, three projections of the surface that correspond to normalized Lode
angle values of 0.0, 0.5 and 1.0 are depicted together with the numerical results,

obtained for the first and second calibration points.
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Figure 5.14. Fracture locus for a 1045 steel on the space of equivalent plastic strain

Based on these results, it can be concluded that the numerical results
obtained with the second calibration point agree better with Bai et al. (2008)

fracture locus than the numerical results obtained with the first calibration point.

Stress triaxiality average

versus stress triaxiality average.

5.5.2 Evolution of damage parameter

In this section, the numerical results for the damage evolution are presented
and discussed. The butterfly specimen was simulated for several loading

conditions until the damage variable, at any critical point of the specimen, reached
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the critical value. The numerically predicted displacements are listed in Table 5.5
against the experimentally observed ones for the material properties determined
from the first calibration point (see Table 5.1). In Figure 5.15, the evolution of
damage (volume void fraction) at the critical point, which may be different for each
model, is depicted for each loading condition. The following comments can be
made: Under pure shear, the GTN model with Xue’s shear mechanism behaves very
conservatively, reaching the critical damage value for a small displacement, around
178% less than what is experimentally observed. On the other hand, for the GTN
model with N&H shear mechanism under the same loading condition, the critical
value was reached for a displacement very similar to the experimental data. For a
combination shear/tensile of 10 degree, different critical damage points for both
shear mechanisms were verified. The surface of the critical zone was indicated by
Xue and the centre of the thickness by N&H (see Figure 5.17). According to the
evolution of the damage parameter, regarding these critical points, Xue has
predicted the beginning of failure for a displacement 14% less than the
experimental data and N&H for a displacement 30% higher (see Figure 5.15). For
the other two combinations of loading conditions studied (22° and 30°), both shear
mechanisms have reached the critical damage for displacements around the same
value and both are higher that the experimentally observed. Under a pure tensile

loading (90°), Xue shear mechanism behaves more accurate than N&H mechanism.

Table 5.5. Error between experimental and numerical displacement at fracture.
Material properties determined from the first calibration point.

Loading _ uy numerical Error %
uy experimental

condition N&H Xue N&H Xue
0° 1.03 1.03 0.37 0 -178
10° 0.421 0.60 0.37 30 -14
22° 0.287 0.36 0.36 20 20
30° 0.219 0.27 0.26 19 16
90° 0.101 0.12 0.11 16 8
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Following a similar approach, we will now assess the predictive ability of
both models, using the material properties obtained from the second calibration
point. Focus will be placed on the evolution of damage and predicted displacement
at fracture. For a loading combination of shear/tensile with an angle of 10°, it was
found that different critical points are predicted by each shear mechanism. Xue’s
shear mechanism indicates the surface and N&H ‘s shear mechanism indicates the
centre of the specimen (see Figure 5.18). Xue’s shear mechanism, in this loading
scenario, behaves very poorly, with a 58% of error in the predicted displacement
at fracture.

For the other loading conditions, N&H’s shear mechanism has indicated the
displacement at fracture very similar to the experimental observation. Table 5.6
presents the values of displacement at fracture predicted by both shear

mechanism, and the experimental data.

Table 5.6. Error between experimental and numerical displacement at fracture.
Regarding the second calibration point.

Loading ur numerical Error %
uy experimental

condition N&H Xue N&H Xue
0° 1.03 1.03 1.03 0 0
10° 0.421 0.46 1.00 8 58
22° 0.287 0.32 0.39 10 26
30° 0.219 0.24 0.27 9 19
90° 0.101 0.11 0.12 8 16

Figure 5.16 presents the evolution of both damage models, until they reach
the critical value. Based on the above numerical results, it can be concluded that
the N&H’s shear mechanism has presented the best agreement with experimental
results when the material properties are obtained from the second calibration
point. For this calibration point, the shear mechanism proposed by N&H has got a
maximum error of 10%. However, analysing the results of Xue’s shear mechanism
with both calibration points, it is not possible to claim that one point is better than
the other. For the second calibration procedure, the mechanism has got a

maximum error of 58% versus 178% for the first calibration point. Nevertheless,
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for the other loading conditions, the results for the first calibration procedure were

in closer agreement with experimental results.
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5.5.3 Determination of fracture onset

Another important aspect to be analyzed, in order to validate the accuracy of
both shear mechanisms using two different calibration points, is the ability to
predict the correct fracture location. Reis et al. (2010) and Malcher et al. (2012)
have shown that the shear mechanisms already proposed in literature, fail in the
prediction of the correct location to crack formation when combined loading
condition is applied. Based on experimental tests performed by Bai (2008), using
the butterfly specimen, it can be observed that in pure shear loading condition, the
micro crack is initially formed in the surface of the critical zone. However, when
combined shear/tensile loading condition is applied, the crack is formed in the
middle of the thickness and grows toward the surface of the critical zone. Figure
5.17 and Figure 5.18 present the contour of the damage parameter at fracture for

both calibration points.

It can be observed that the damage contour plots obtained with the second
calibration procedure were in closer agreement with experimental evidence than
the contours obtained with the first calibration. Furthermore, the maximum value
of the damage parameter is much localized in a specific zone. Nevertheless, Xue’s
shear mechanism fails the prediction for combined shear/tensile of 10°, indicating
the surface of the specimen as the potential site to fracture onset, which is in

disagreement with experimental observation.
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5.6 CONCLUSIONS

In this chapter, an assessment of two different shear mechanisms was
performed using the set of material parameters, calibrated in two different points.
A specimen that promotes high stress triaxiality as well as a specimen under a
pure shear loading condition were chosen to perform the calibration procedure.
The material properties obtained from both calibration specimens were then used
to simulate the material behaviour under several loading scenarios. The evolution
of the equivalent plastic strain, the damage parameter and displacement at
fracture were analyzed as well as the ability to predict the correct site to crack
initiation. The results obtained, highlighted that for coupled damage models, the
specimen chosen for the calibration of the material properties has a great influence
on the numerical results. The accuracy of the coupled damage models is strongly
dependent on the calibration point and the best performance of these models is
found when the external loading condition applied is close to the loading condition
selected for the calibration point. For these analyses including all numerical
results, the second calibration point has the best agreement with experimental
results and can be suggested for use when dominant shear loading conditions are
present. In addition, the N&H'’s shear mechanism is in closer agreement with
experimental observation, regarding a combination of 10 degrees between shear

and tensile loading, which cannot be observed by Xue’s shear mechanism.
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CHAPTER 6

An Extended GTN Model for Ductile Fracture under
High and Low Stress Triaxiality

In this chapter, an extended GTN model for the prediction of the fracture location
under low level of stress triaxiality is proposed. In the new micromechanical
damage model, two distinct damage parameters are introduced as internal
variables and an effective damage is defined as a sum of both contributions in a
post-processed step. The first damage parameter is established according to
Gurson’s original model and the volume void fraction is defined, based on
conservation mass law. This damage contribution is able to capture spherical void
growth, which plays the main role when dominant tensile loading conditions are
present. In addition, a second damage parameter is proposed to account for shear
effect, based on geometrical and phenomenological arguments. This variable is a
function of the equivalent plastic strain, Lode angle and stress triaxiality.
Regarding its formulation, the shear mechanism is independent of the volume void
fraction and requires a new nucleation of micro-defects law to trigger the shear
growth contribution. This mechanism is able to capture elongated void growth,
which is present in pure shear and combined shear/tensile or shear/compression
loading conditions. Both damage parameters are coupled in the constitutive
formulation in order to affect the hydrostatic stress component and the deviatoric
stress contribution, respectively. This chapter is organized as follows: In the first
part, a review of the Gurson model and its most well known version is done. After
that, the new formulation is discussed and an implicit numerical integration
algorithm is derived, based on the operator split methodology, as well as the
calibration of material parameters. Numerical tests are performed for a butterfly
specimen using two types of materials, aluminum alloy 2024-T351 and steel 1045,
for a wide range of stress triaxiality —1/3 < n < 1/3. The behavior of the internal
variables is analyzed such as, the evolution of both damage parameters, the
evolution of the equivalent plastic strain, the force versus displacement curve and

the contour of the effective damage parameter. The numerical results are
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compared with experimental evidence and show that the present formulation
performs well, with regard to the prediction of the correct fracture location, the
determination of the displacement and the equivalent plastic strain at fracture

under low level of stress triaxiality.

6.1 INTRODUCTION

Due to the shortcomings observed on the GTN model in Chapter 4 and the
limitations of the enhanced GTN models presented in Chapter 5, in this chapter, a
new extension to the GTN model is proposed in order to improve the ability to
predict the correct fracture location and determine the internal parameters at
fracture. A new independent damage parameter is suggested to capture the
elongation of micro-defects and coupled to the constitutive equations to affect only
the deviatoric stress component. A nucleation of general micro defects is
introduced to trigger the shear mechanism which gives more accuracy to the

model in the prediction of ductile failure under mixed loading condition.

The great majority of engineering alloys contains several populations of
inclusions corresponding to different length scales. Typically, it is possible to
distinguish two main populations: one composed by primary inclusions, which are
large particles embedded in the matrix, and one composed of secondary inclusions
(or second phase particles), which can be 10-1000 orders of magnitude smaller.
The phenomenon of ductile failure is usually induced by primary inclusions and
second phase particles where micro-voids nucleate either by decohesion of
inclusions (or second phase particles) from the surrounding matrix of by fracture
of inclusions. The nucleated damage grows consistently with the applied stress
state and the material degrades rapidly with the coalescence of multiple damage
sites.

secondary
inclusions

[J primary
primary [ J inclusions

inclusions

(@) (b)

Figure 6.1. Schematic representation of ductile failure micro mechanisms: (a)
internal necking and (b) void sheeting (Adapted from Besson, 2010).
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Two ductile failure micro mechanisms have be identified:

(a) Failure by internal necking where large primary voids nucleate, grow and
coalesce promoting the necking and failure of the inter-void ligaments (see
Figure 6.1a). This mechanism is associated with high triaxiality loading;

(b) Failure by void sheeting where tiny secondary voids are nucleated due to a
process of shear localization linking larger voids (see Figure 6.1b). This

mechanism is associated with low triaxiality loading.
6.2 EXTENDED CONSTITUTIVE FORMULATION

Due to the limitation of Gurson based models, in the prediction of fracture
onset under conditions of low stress triaxiality, several researchers (Barsoum &
Faleskog, 2007; McVeigh et al., 2007; Xue, 2008; Nahshon & Hutchinson, 2008)
have proposed the introduction of shear effects (see Section 6.3.3) on the
formulation. Although the results obtained with the modified GTN models (Xue,
2008; Nahshon & Hutchinson, 2008) have shown improvements in the prediction
of damage, it has also been observed (Reis et al., 2011; Malcher et al, 2012), that
both models have inherent limitations. In particular, the prediction of the location
of fracture, the displacement to fracture and the equivalent plastic strain to
fracture, for combined stress states, is not adequate. Therefore, in order to
overcome these shortcomings, in this contribution, a new extended GTN model is
proposed that incorporates a new nucleation law for second-phase particles, the
yield surface is modified to include two distinct damage mechanisms (volumetric
void growth and shear damage), a modified Lode angle dependence function is

introduced and a new criterion for coalescence is proposed.

6.2.1 Nucleation mechanism

The nucleation of voids associated with the GTN model, described by
Equation (5.15), was proposed by Chu & Needleman (1980). This specific form for
the nucleation of primary voids is strain rate controlled and was introduced on a
purely phenomenological basis. Nevertheless, as described previously, engineering
alloys loaded under shear conditions create localization bands due to the
nucleation of secondary voids through a void sheeting mechanism. Although,

secondary nucleation might be hard to detect in some materials, we will introduce
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here a new independent nucleation mechanism that triggers void sheeting and
localization. This nucleation mechanism is a result of second-phase particle

debonding and cracking.

Following the same approach of Chu & Needleman (1980), we consider a

normal distribution of all second-phase particles with potential for nucleation as:

—p I\ 2
P Y2 1Y o
syVam 2\ sy

where Dy represents the fraction of all second-phase particles with potential for
nucleation, &y and sy are the mean strain for second-phase nucleation and its
standard deviation. This set of parameters {Dy, €y, Sy} needs to be calibrated under
a pure shear loading condition. The calibration of material parameters will be

discussed latter in a specific section.

The extended GTN model, proposed in this chapter, incorporates two
independent nucleation mechanisms. The first one, which is the conventional
nucleation mechanism of the GTN model (Equation 5.15), triggers the evolution of
the void volume fraction. The second, described by Equation (6.1), triggers the
evolution of the shear mechanism. The activation of these nucleation mechanisms
under pure volumetric and shear conditions is relatively straightforward to
establish. Nevertheless, under arbitrary stress states that may include
combinations of tensile/shear or compressive/shear is not so easy to define. It is
necessary to couple both mechanisms and also establish their relative magnitude.
Here, we introduce the Lode angle function (see section 5.2.3), g,, to combine both

nucleation mechanisms. Therefore, Equation (5.15) and Equation (6.1) are re-

defined as:
fi 1/8 —ey)’
fr= (1= go) —=exp ——( N) £, (62)
sNV2m 2\ sy
D 18 — e\’
p" = B ex ——< - N) . (6.3)
Yo SN2 p [ > st
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Under pure tensile loading conditions, the function g, is equal to zero and
only primary nucleation of voids occurs (Equation 6.2). For pure shear loading
conditions, the function g, is equal to one and only secondary nucleation occurs
(Equation 6.3). For combined tensile/shear stress states, both mechanisms are
active and the Lode angle function defines the relative importance of each
component. Finally, if a combination of shear/compressive conditions is present
there is no nucleation of primary voids and secondary nucleation takes place with

the function g, defining the relative magnitude.

6.2.2 Incorporation of Shear Effects

As mentioned previously, several modified versions of the Gurson model,
which include damage growth under low triaxiality straining for shear dominated
stress states, have been proposed in the literature (Barsoum & Faleskog, 2007;
McVeigh et al, 2007; Xue, 2008; Nahshon & Hutchinson, 2008). Nevertheless, the
incorporation of shear effects on the Gurson model has been mainly accomplished
through the introduction of additional terms on the evolution of the void volume

fraction, f, as:
f=fr+f9+ s, (6.4)

where the term f° does not represent a physical value of the porosity but ensures
the detrimental effect of void distortion and inter-void linking, associated with low
triaxiality, in the material. Therefore, the void volume fraction, f, in the modified
versions of Gurson’s model, does not represent the plastic volume change of the
material as in the original Gurson model. Alternatively, this scalar variable, f,
measures the total accumulation of different types of damage in the material in an
average sense.

In contrast with this approach, in this work, we use two separate damage
variables. The first one is the evolution of the volume void fraction employed in the

GTN model, rewritten here with appropriate modifications, as:

gp_

f=frefe=1-go). N)lé‘p+(1—f)é5- (65)

Nx/_
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The second variable is the evolution of damage due to shear effects, which is

defined by an independent scalar variable, as:

L : D 1(2" — ¢ : i
D = D™ + qgD*"" = go— N exp [——( - N) &P + qgDShear, (6.6)

syV2m 2\ sy

where D represents the evolution of the shear damage variable, D™ represents its

Dshear is the evolution of

nucleation, which was introduced in Equation (6.3), and
shear effects that can be defined based on geometrical considerations (see
Equations 5.36 and 5.37) or phenomenological considerations (see Equation 5.38).
The parameter g is a numerical constant, calibrated for a specific material, which

defines the magnitude of the damage growth rate in shear.

The extended GTN model proposed here has two scalar damage variables: a
volumetric damage component characterized by the void volume fraction, f, and a
deviatoric damage component described by shear damage, D. Each of these
variables will be coupled with a specific component of the stress tensor: the
hydrostatic pressure, p, will be related with the void volume fraction, f and the
deviatoric component of the stress tensor, S, will be associated with the shear
damage variable, D. The yield function of the model is therefore, defined by the

following equation:

—(ffsl))) — %{1 +q3f? — 2q,f cosh <q22:p>} % (6.7)

y

®(o,k,f,D) =

According to the principle of maximum dissipation, the yield function is taken
as the dissipation potential of the model. Therefore, the evolution law for the

plastic flow, assuming the hypothesis of generalized normality, is given by:

s'p—}'/acp—s'p+£'p—)'/ +)'/1qqf0 sinh<q23p>l (6.8)
=Y 3o = &g = 5 4192 ) .
90 v YA g3 y 20,

where y represents the plastic multiplier, S represents the deviatoric component
of the stress tensor and I is a second order identity tensor. From the previous
equation, it is possible to observe that each component of the plastic strain rate

tensor is affected by a different damage variable. In addition, only the deviatoric
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plastic strain rate, ég, was altered, when compared with the Gurson model

(Equation 5.16), due to the introduction of a distinct shear damage variable.

Remark: Due to the fact that we have proposed two distinct damage variables in
the formulation of the extended GTN model, the evolution of the volumetric plastic
strain, ¢, predicted by the model (see Equation 6.8) will be different from
previously proposed modifications of the Gurson model (Xue, 2008; Nahshon &
Hutchinson, 2008). In these models, the volumetric plastic strain is coupled with
an effective porosity (or damage variable), f, which includes both the volume void
growth and shear damage. In addition, in these models, the deviatoric plastic strain

rate, s'g, is not affected by the material degradation.

The evolution law for the hardening variable, R, is determined by performing

the derivative of the yield function with regard to the hardening force, k:

b, 0P _
R )
4 _ (3ap\ 2 X 3q,p '
(1_f—_D){CI1Qpr smh< 20, > +t30y [1 +asf° = 2q:f cosh( 20, )|

where the term (1 — f — D) is introduced to account for the softening effect on the
material evolution law. The equivalent plastic strain rate, for the present model,

can be determined from:

2
. ’2 2 ss 1  (3q,p
= |—¢gP:¢gP = _ h . 6.10
&P SEP:€ yj3{(1_D)2+3[0yq1q2f51n <20y>l } (6.10)

It is important to mention that the extended GTN model, described by the

previous set of equations, does not change the original model under stress states
where shear effects are not present. The extension only modifies the predictions
for stress states that include shear, i.e. for problems with a Lode angle function, g,,

different from zero.

6.2.3 Damage Evolution

The evolution law for the volume void fraction, f, has got two components
(see Equation 6.5): nucleation and growth. The most significant contribution to the

evolution of spherical voids is the growth mechanism, fg, which depends on the
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evolution of the volumetric plastic strain, &7, established on Equation (6.8).

Therefore, with the substitution of the rate of the volumetric plastic strain, e'f,? , on

Equation (6.5) we obtain the evolution law for the void volume fraction, f, of the

model:

._.Tl . _ _ fN _lfp—gNz .
f=fr it = (o) e 2( - )]g-p
(6.11)

+v %f(l — f) q1 92 0y sinh (3261;;9) L

Two possible evolution laws for the shear damage, based on geometrical
considerations, were described by Equations (5.36) and (5.37). The evolution of
damage in the material inevitably reduces the overall elastic properties. However,
this effect is small when compared to the influence of damage on the plastic
behavior. Therefore, the evolution of damage due to shear effects, employed in this
work, will neglect the influence of damage on elasticity as is usually done in this
type of model. The shear damage evolution laws are redefined as a function of both
the accumulated plastic strain, Ep, and the rate of the accumulated plastic strain, £,

instead of the equivalent strain, €., and equivalent strain rate, &,,:

Dshear = g,( q,DI5E" EP), (6.12)

. 1 3" . as
shear _— 24 = ’1_2
P g0 an/l/x (1 + 35’”2) ‘ l d (q“D ﬂl) ' (6-13)

In addition, due to the introduction of two separate damage variables, the
shear damage evolutions described by Equations (5.36) and (5.37), for the present
model, do not depend on the current void volume fraction, f, but on the current
value of the shear damage variable, D. With the substitution of the equivalent
plastic strain rate, £, established on Equation (6.10), on the shear damage

evolution law based on Xue’s work (Equation 6.12), we obtain:

2
, . 2 ss 1 (3,0
Dshear = y goq,D9s gp\/ 3 {m "3 lay taf Smh( 20 )l } e

y
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On the other hand, with the substitution of the equivalent plastic strain rate,
&P, established on Equation (6.10), on the shear damage evolution law based on

Butcher’s work (Equation 6.13), we obtain:

, 1 3" 2( s:8 1 3¢,p\|°
pshear — 5 = +- [a sinh < )] . (6.15

6.2.4 Modified Lode Angle Dependence Function

The Lode angle dependence functions proposed by Xue (2008) and Nahshon
& Hutchinson (2008), described in section 5.2.3, were introduced to generalize a
pure shear damage evolution for arbitrary stress states. They critically include the
effect of the deviatoric stress tensor through the Lode angle. The relative
magnitude of shear and volumetric effects under combined stress states is defined
by these functions, whose behavior was presented in Figure 5.6. Nevertheless, in
this contribution, we suggest the introduction of the stress triaxiality parameter, 7,
defined by Equation (3.2) on the definition of the Lode angle dependence function,
Jo- This modification, which can be performed on either of the functions described

in section 5.2.3, has the following exponential form:

1
go(§,m) = [go()IMF (6.16)

where g, is the modified function, n represents the stress triaxiality and k is a
numerical constant that needs to be calibrated for each material. If either the Lode
angle dependence function proposed by Xue or Nahshon & Hutchinson, g, is
selected; the modified function is expressed by:

|n|1+k = [1 _ |1 _ %acos(f)”m, (6.17)

go(&,m = [1-19]]

1

go(&,m) = [1 — 2]+, (6.18)

Figure 6.2 illustrates the behavior of the original functions (Equations 5.34
and 5.35) on the space of {g,, é,n} and Figure 6.3 represents the behavior of the

modified function (Equations 6.17 and 6.18) on the same space.
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Figure 6.2. Three dimensional representation of the Lode angle functions, g,: (a)
Xue’s model (b) Nahshon & Hutchinson’s model.

The influence of stress triaxiality will be dominant whenever the value of

stress triaxiality is within the range of [-1/3;1/3].

Triaxiality -1 Xi Triaxiality -1 Xi

Figure 6.3. Three dimensional representation of the modified Lode angle
dependence function, g;: (a) Xue’s model (b) Nahshon & Hutchinson’s model.

In order to analyze the influence of the new exponential term on the Lode
angle dependence function, let us restrict ourselves, for instance, to the function
described by Equation (6.17) that was proposed by Xue (2008). The constant k

introduced in the exponent can be better understood through the analysis of

168



Figures 6.4 and 6.5. Figure 6.4 illustrates the shape of the modified Lode angle
function, gy, when the stress triaxiality is zero, n = 0, and we assign different
values to the constant k. If the constant is equal to one, k = 1, the value of the
exponent will be equal to 1 (since the stress triaxiality is zero) and we obtain the
same evolution for the modified Lode angle function as the original one (see Figure
6.2). For values of constant, k, higher than unity, the modified Lode angle function
will be higher than the original function. If the value of the constant, k, is smaller
than 1 but higher than zero, the modified Lode angle function will be lower than

the original function.

9o

Figure 6.4. Influence of the constant k on the behavior of the function g, with
regard to the third invariant fixing the stress triaxiality to zero (n = 0).

Figure 6.5 illustrates the shape of the modified Lode angle function, gy, when
the normalized third invariant is near of zero, or in other words, when dominate
shear load is presented, and we assign different values to the constant k. If the
constant, k, is equal to zero, it is possible to appreciate the influence of the stress
triaxiality, n, on the modified Lode angle function. It can be observed that for high
values of the parameter, k, the modified Lode angle function, g, is less affected by
both third invariant and stress triaxiality. Nevertheless, for low values of the
constant, k, the impact of the value of the parameters is very significant. Therefore,
we recommend that the range of this value should be defined within the interval

[0.1;1/3].
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Figure 6.5. Influence of the constant k on the behavior of the function g with
regard to stress triaxiality.

Figure 6.6 also presents the influence of the parameter k on the global shape of
the function g,;. In particular, Figure 6.6 (a) represents the original Lode angle
function (without the introduction of the dependence of stress triaxiality)
proposed by Xue (2008) and the set of Figures 6.6 (b)-(c)-(d) represent the global
shape of the modified function for different values of the parameter k. When the
value of k is low, we have a stronger dependence on the stress triaxiality and when
k is high, the modified function is less dependent on stress triaxiality, recovering in

the limit the original Lode angle function.
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Figure 6.6. Behavior of the modified Lode angle dependence function g for

different values of k: (a) without dependence; (b) k = 0; (¢) k = 0.1; (d) k = 0.4.

6.2.5 Coalescence Criterion

The definition of a criterion for void coalescence is extremely important for
the prediction of fracture onset and for the simulation of crack formation and
propagation. The simplest criterion for void coalescence is to assume a constant
critical value of the void volume fraction, f.. Once this value is reached, the
mechanism of coalescence accelerates the rate of increase of the void volume
fraction, f, which will lead to final failure. The void coalescence process can be
simulated by the function, f*, introduced by Tvergaard & Needleman (1984)
described by Equation (5.13). This criterion has been followed by several authors

(Needleman &Tvergaard, 1987; Xia et al., 1995; Faleskog et al., 1998).

Nevertheless, further research on the topic focused on whether the volume

fraction of voids could be regarded as a constant for different loading conditions.
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Several researchers (Berzerga et al, 1999; Zhang et al, 2000; Pardoen &
Hutchinson, 2000; Kim et al.,, 2004) employing unit cell models have shown that
the void volume fraction of voids, f, is not sufficient to describe the initiation of
fracture and established that it depends on several factors, such as the void shape
and spacing, stress triaxiality, material hardening, etc. Recently, criterions based
on either the effective strain or effective stress has been proposed to trigger the
coalescence of voids. In particular, Gao et al (2009) employed the Gologanu-
Leblond-Devaux model (1985), with the modification proposed by Pardoen &
Hutchinson (2000), to describe void growth and the macroscopic plastic response
of cell elements containing non-spherical micro voids. They concluded that when
the macroscopic effective strain of the element reaches a critical value, void
coalescence occurs. On the other hand, Jackiewicz (2011) has proposed a
coalescence criterion based on the assumption that a singular value of the effective

stress triggers the coalescence of micro voids in materials.

In the present model, we have used two separate scalar damage variables,
namely the void volume fraction, f, and the shear damage variable, D. Therefore,
we will have two distinct critical values: the critical void volume fraction, f., which
is the critical void volume fraction employed in the GTN model, and the critical
shear damage value, D, which is regarded as a material constant that needs to be
obtained. Each of the critical values will have to be determined under different
conditions: the critical void volume fraction, f., will be obtained from a specimen
subjected to tensile dominant loading conditions (associated with high triaxiality)
and the critical shear damage value, D., will be obtained from a specimen subjected
to a pure shear loading condition (associated with low triaxiality). More details will

be given on section 6.4.

The coalescence criterion proposed here introduces an effective damage
variable, D¢/, which is conveniently normalized, to combine both critical damage
parameters (f. and D.). The determination of fracture onset is established

whenever the effective damage variable, D¢f, reaches unity.
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( D =1
DC ) gO_
fex(f D
Def=<(1+—)(—+—>, 0<gy<1 (6.19)
PNAVA) Jo
f
_ , "=
K f;; gO

The coalescence criterion based on the effective damage, D¢/, has three
possible cases:

- Under generalized tension (g, = 0), where the spherical void growth drives
the damage evolution, the effective damage is given by the ratio f/f. and
fracture onset is predicted when the void volume fraction, f, reaches the
critical volume fraction, f;

- Under generalized shear (gy; = 1), where the distortion of voids and inter-
void linking promotes damage evolution, the effective damage variable is given
by the ratio D/D, and fracture is predicted when the shear damage variable, D,
attains the critical shear damage, D_;

- Under combined stress states, both the void growth under hydrostatic tension
and shear localization compete with each other and the prediction of fracture
onset is a combination of both contributions (f/f. + D/D.). In addition, in
order to account for stress multiaxiality, we will introduce an additional term
(1 + f./D.) in the definition of the effective damage variable. This term will

accelerate the prediction of fracture onset.

The effective damage variable is evaluated in the model in a post processed
manner and does not affect the evolution of the two independent scalar damage
variables. Critically, the criterion proposed allows fracture initiation at different
values of the void volume fraction, f, and at different values of the shear damage
variable, D. Furthermore, in the case of axsymmetric uniaxial tension, this criterion
(employed in conjunction with the extended GTN model proposed) recovers the
original GTN model criterion with critical f, as a particular case, where gy = 0 and

the damage shear evolution is zero.

In Box 6.1, the basic constitutive equations and evolution laws for the

internal variables and damage are summarized:
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Box 6.1. GTN’s extended modified model including nucleation, growth and shear
effects.

(i) Elasto-plastic split of the strain tensor

e=¢%+¢P
(ii) Elastic law
o=D¢g®
(iii) Yield function
_ ]2 1 2 3q2p 2
Cb(a,r,f,D)—l_D 3 1+ q3f°— 2q,f cosh 20, oy

(iv) Plastic flow and evolution equations for R, f and D
& =yN
0D

R:—Vﬁ

. fn 1 /87 —ey\7] . .
f—(l—go)steXDl—§< S, )lf”+(1—f)€5

5 Dy 1 <E" — e,’v)
=go——€exp|—= -
Yo SR P=3

SN
where,

2 1

(&P + [go]MT+E g DSMear

g DISEP EP ,if Xue's shear mechanism

Dshear —

1 3e? \ . . , .
5 | €7, if Butcher's shear mechanism

Iny1/x\1 + 38"
1—16],  if Xue's Lode angle function
9o =
1-¢&2, if Nahshon's Lode angle function

and,

. 2 . .
g = /g(ép:ép) P = tr(&P)

(v) Loading/unloading criterion

y=0, <0, y® =0
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6.3 NUMERICAL INTEGRATION ALGORITHM

In this section, the numerical solution strategy adopted to perform the
numerical simulations is summarized. The algorithm developed is based on
operator split methodology which is especially suitable for the numerical
integration of the evolution problem and have been widely used in computational
plasticity (see Simo & Hughes, 1998; De Souza Neto et al., 2008). The model was
implemented in a quasi-static finite element framework based on the infinitesimal
strain theory. The extension of the model to the finite strain range was done by
adopting the well established multiplicative hyperelasto-plastic framework (Peric”

et al, 1992; Eterovic & Bathe, 1990).

Let us consider what happens to a typical Gauss point of the finite element mesh
within pseudo-time interval [t,, t,+;]. Given the incremental strain, Ag, and the
values of a,,, €0, &, R,,, f, and D,, at time t,,, the numerical integration algorithm
should obtain the updated values at the end of the interval, 6,47, €, &, Ryyq,

fn+z and D, 1, in @ manner consistent with the constitutive equations of the model.

6.3.1 The Elastic Trial Step
The first step in the algorithm is the evaluation of the elastic trial state, where
the increment is assumed purely elastic with no evolution of internal variables.

The elastic trial strain and trial state variables are given by:

etrial _ . sptrial _ -p . trial _
e " =& + Ae ; &yl = &p ; R =R,
(6.20)
trial _ trial _
n+1 _fn ; Dn+1 _Dn
The corresponding elastic trial stress tensor is computed
trial _ me. e trial
Ony1 = D% g™, (6.21)

where D¢ is the standard isotropic elasticity tensor. Equivalently, in terms of stress

deviator and hydrostatic pressure, we have

trial _ e trial trial _ etrial
Sn+1 = 265547, Prny1 = K&yn¥1, (6.22)
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where £5714 is the deviatoric elastic trial strain tensor and e¢{i¢! is the

volumetric elastic trial strain. The material constants ¢ and K represent the shear
and bulk moduli.
The trial yield stress is defined, in this case, as a function of the internal

hardening variable at time t,,:
o' = g,(R,) = 09 + k, = 0y + HR,,, (6.23)

where k, is the thermodynamical force associated with the isotropic hardening
internal variable, R,,.

The next step of the algorithm is to check whether ¢7'¢! lies inside or outside
of the trial yield surface. With variables R, &, fand D frozen at time t, we

compute:

trial
ptrial — 2
1— Dtrlal

n+1

1 qutrlal (6-24)
3 1+ q3ft1"lal _ quftrlal COSh< > t‘:ll:ll )l( tnal)

If @il < 0, the process is indeed elastic within the interval and the elastic
trial state coincides with the updated state at t, ;. In other words, there is no

plastic flow evolution within the interval and the trial state is equal to real state,

QI Ol (6.25)

Otherwise, if @3 > 0, it is necessary to apply the plastic corrector or return

mapping algorithm whose derivation is described in the following.

6.3.2 The Plastic Corrector Step or Return Mapping Algorithm

Following a straightforward specialization of standard return mapping
procedure for the present constitutive equations, leads to the numerical
integration of the evolution equations for &2, &°, R,,, f,, and D,, having the trial state

as the initial condition. The discretization of the elastic strain tensor reads:
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1

S ., (3q2p
g1 = e — Ay 1_”—511+§qu1q2fn+l sinh (T> 1]. (6.26)
n+ y

With the application of Hooke’s Law to the above expression, it is possible to

determine the evolution of the stress tensor:

3qun+1

S 1 .
A% _AVKqu1Qan+1 smh( 0

Oni1 = ]De:EfH_l - ZGAyl——Dl_ 3
n+ Yy

)1. (6.27)

Equation (6.27) can be split into a deviatoric and a hydrostatic contribution.

The updating relation for each component is given by:

Sﬁi?

Sn+1 = = )

2GAy (6.28)
1+ (—H—
1+ (=55)]
1 . 3q2Pn+1
pn+11—Ipﬁi‘i‘l—gAyKayqlqunﬂsmh(TM I. (6.29)
y

Furthermore, the discrete counterparts of the other variables of the problem read:

Ay . (392Pn41
Rny1 = R+ (1= foes — Dnry) {Q1Qan+1pn+1 sinh <T‘:

2 3q2Pn+1
T30y ll + qafus1’ — 2q1fpsq cosh <—n+

3 20,
2
1/8. . —ey
farr = 5+ (1= gons1) N\/—e p 2<%> ]Af_p (6.30)
. (3qzp
+ (1 — fn+1)AY0,q1q2 frn+1 sinh <Tn+1>
y

AP + qgADSeT,

2

Dy 1(&8  — ey

Dny1 = Dt + ——ex ——<—"+1

n+1 n+1 T Jon+1 Sllvm p[ ) St

where the incremental shear damage component, AD"€97, can be either defined by
Equation (6.14) or (6.15). Due to the fact that the Lode angle dependence function
proposed by Nahshon & Hutchinson (2008) is continuous and does not have
singular points (see Figure 6.2), it is more convenient for numerical

implementation. Therefore, in our derivations, we will use this function.
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Furthermore, the updating relation for the equivalent plastic strain can be

obtained from:

=t
( 2) 6.31
2 St sy 1 (3027 (6:31)
AV 3 2 + 2 10yq192fn4+1 Sinh | ——— .
2GAy , 3 20,
1+ (Z55)] a-pu)

The above equations must be complemented by the so-called consistency
condition that guarantees that the stress state at the end of the plastic step lies on

the updated yield surface:

] trial
Zn+1

1+ (2] - nen

1 3q2Pn+1
—5[(1+ Q3fn+12 — 2q1fn+1 cosh L Gf.
3 20,

Dy =

(6.32)

Since it is possible to express the deviatoric stress tensor, §,,;1, as a function
of the plastic multiplier, Ay, the shear damage, D, ,;, and the trial stress state,
strial (Equation 6.28) it is possible to eliminate the deviatoric stress tensor from
the initial system of equations, which is composed by ten equations in the three-
dimensional case. The return mapping scheme can therefore be reduced to a set of
only five coupled non-linear equations, which need to be solved for the unknowns
Pn+1> Rns1s fns1, Dnyq and Ay, for any stress state. After the solution of the system,

all other variables need to be conveniently updated. The overall algorithm for

numerical integration is summarized in Box 6.2.
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Box 6.2. Fully implicit Elastic predictor/Return mapping algorithm.

(i) Evaluate the elastic trial state: Given the incremental strain Ag and the
state variables at t,;:

etrial _ e . sbtrial _ -p . trial _
g1 =&y + Ag ; &1 =&, ; R,\T =R,

trial _ . trial _ . trial _ e trial
n1 = Ja ; Dryi” = Dy ; Sh+1 = 2G4y

trial _ etrial . trial _ trial
Pn+1 K‘gv n+1 ’ Oy - JY(Rn+1

(ii) Check plastic admissibility:

trial
J2

3q p_rtlrial 3 2
F ool = o — [1+q3f;ia“l — 2. fif cosh(zf,;r;% )] (oy7)" <0
THEN

Set (Vp41 = ()9 (elastic step) and go to (v)
ELSE go to (iii)

(iii) Return mapping (plastic step): Solve the system of equations for
AY,Pn+1.fnr1 Rnv1 and Dyyq

r trial 1 3
Japsy 2|1+ @sfna® = 201 fss cosh [ 221 | 2
[1 +( 2. Ay )] (1 = Dy41) 20y
n (0N
3 0
P+t — PRis’ + AYK0yq1G2 frsq sinh (%) = 0
y lol
fuss — fETI8 — AF™ — A o)
Rn+1 thlr-;clll AR
Dyay — DELSH — AD™ — qAD*hear
where,
2
Af" =0 =gon+1) —— \/— [ L) AgP
Sn
g . 3420041
Af9=(1 —fn+1)AV0yCI1CI2fn+1 sinh| ————
20y
Ay { 3q2Pn+1
AR = 4192 fn+1Pn+1 sinh <—
(1= fr+1 — Dny1) nrin ZO'y

2 3q20n+1
+ 3% [1 + qsfn+1” — 2q1fp41 cOSh <—n+

20y,
ADT — Dy 1 e —en
2\ s

= —eX
gOTH-lSI,Vm p
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continue Box 6.2.

[ [90 n+1]('”“+11'+k)q D5 &b  A&P ,if Xue's mechanism
ADshear — { ( 1 ) 1 3£—p
[Go nyq] Imeal+k ( ntl )Ag‘p ,if Butcher's mechanism
\ In1/x\1+38,,,°

Jon+1 = (1 — 5721+1)

1
(4 1z
|(—Dn+1—) , if 2D problem
T A
x=1 1
©puin 2, if 3D probl
\(E ”“/1_1) U 3Dproblem

(iv) Update the other state variables:

trial
Sn+ 1

1+ (1255 (1 = Das)

— getrial
Eny1 = Epyn — Ay

1 . [392Pn+1
+§“yQ1Q2fn+151nh<TZ+ I

trial
Sn+1

[1+ (7555

Ons1 = Spt1 + Pnsal

Sni1 =

Strtal Strtal 1

2
2 3
AgP = Ay |- ZGZ; s + 3 [UyCI1CI2fn+1 sinh ( q;ZnH)]
[+ (2o )] (1= Dpyr)?

y

-p —p trial =p
‘Sn+1 €n+1 + Ag
(v) Exit

The previous set of discrete equations needs to be solved for the unknowns
Pn+1, Rns1, fas1, Dny1 and Ay. The Newton-Raphson (NR) method will be used for
solving the return mapping system of equations due to the asymptotic rate of
quadratic convergence of the method. Let us rewrite the non-linear scalar system

of residual equations, in the following form:
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trial

trial

fn+1 — Jn+1 _‘Afn - Afg
Rppq — RIS — AR

Dn+1

_ ptrial
Dyy1

— AD™ — qGADshear

1 3 )
]2n+12 — |1+ qsfns1’ — 2q1fn41 cosh 22l op
[1+( 2GAy )] 1=D,.)) 3 20,
Tay 1-D,., n+1
rp trial . 3q2p‘n+1 6 33
Tr =9 Pn+1— Pr+i + AYK0,q1q2fneq Sinh 0. ». (6.33)
) y

To obtain a new guess for each variable of the problem, it is necessary to

solve a linearized system of equations given by:

_aTAy aTAy aTAy aTAV aTAV ¥
0Ay  0pn+1, Ofn+1 ORny1r 0Dpyy
or, or, or, or, or,
(’)Ay apn+1: afn+1 aRn+1 aDn+1
arf arf an arf an
0Ay  0pn+1, Ofn+1 ORny1r 0Dpyy
org drg drg org 1y
(’)Ay apn+1: afn+1 aRn+1 aDn+1
drp arp arp darp arp

_(’)Ay apn+1: afn+1 aRn+1 aDn+1—

[ 6Ay ]
|6pn+1 |
| 8fns1 |

[6Rn+1J
6Dn+1

j+1

N
B

N —— |

(6.34)

I
[

PN R

In the above system, the terms in the matrix are composed by the derivative

of each residual equation (see Equation 6.33) with regard to each variable of the

problem (P41, Rns1s fus1, Pns1 and Ay) at iteration j. The matrix is multiplied by a

vector with the incremental values of each variable at iteration, j + 1. The vector

on the right hand side represents the residual of each variable at iteration j. After

solving the system for the unknowns and obtaining a new guess for each variable,

the convergence needs to be checked. More details of the linearization procedure

for the present model can be found in Appendix “E”. The overall algorithm for

numerical integration is summarized in Box 6.3 in pseudo-code format.
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Box 6.3. The Newton-Raphson algorithm for solution of the return mapping system
of equations.

1) Initialize iteration counter, k:= 0, set initial guess for Ay©® =0, p,(q(l)l = p,(lo), © =

O
n+1 n

R, =R and D = p{? corresponding residual:
]Ztrial 1 3q2p
ZGAynHz -3 1+ q3fps1” — 241 fps1 cosh Tnﬂ o
= r _ y
my |1+ Dn+1)] (1 = Dnsa)
T'p 3
i . q2Pn+1
! Ty L = Pns1 = Pras’ + AyKayq1qzfoiq sinh <Tn+)
TR J ) y
LTD frr1— ntar-l{u_Afn_Afg

e Rgitlu —AR
Dnss — DETig! — AD™ — qgADSheer

2) Perform Newton-Raphson iteration

(0T,  OTpy,  OTpy  O7p,  OTpy 7

aA)/ apn+1: afn+1 aRn+1 aDn+1

ar, ar, ar, ar, ar, )

aA)/ apn+1: afn+1 aRn+1 aDn+1 S [T ]
arf arf arf an arf 6¢n+1 | T'p |
— =—17f
0Ay  0Ppy1, Ofpsr ORpyq 0Dpyy 5RT;:11 | TR |
ai a‘l"R 67"R aTR arR 6Dn+1 er J
0Ay  0pny1, Ofnsr ORpyq 0Dpyg

GTD GTD a‘l"D arD a’r'D
L0AY  OPny1, Ofns1r ORpyq 0Dpyql

New guess for p,,4+1, Rnt1s fre1) Dnyq @nd Ay:

AyUD = Ay D) 4 §AyU+D : LU+

pn+1(j+1) = pn+1(j) + 6Dn+

Ry U™ = Ry +6R, VY 5 DU = 0, 46D, U
fast 7 = faan? + 80UV

3) Check for convergence

trial

~ J2 1 3q2p
¢ = 2GAy n+12 -3 [1 + qsfn+1” — 241 fys1 cOsh (% oy
[1 + (12 Dn+1)] (1 = Dyya) g
IF ||®|| < €0 THEN RETURN to Box 6.2.
4)GOTO(2)
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6.3.3 The Consistent Tangent Operator

Under the elastic loading condition, the tangent operator for this constitutive
formulation is the standard linear elasticity tensor. Nevertheless, for the plastic
step, the elasto-plastic tangent operator is obtained by the linearization procedure
of the system of residual equations described in section 6.3.2. Hence, the first step
for determining the operator is to differentiate the stress tensor update

expression:

trial
Sn+1

On+1 = (2o +Dn+a I (6.35)

1-Dn+1

After some algebraic manipulation, the differentiation of Equation 6.35 can

be expressed by:

2G .

— etrial

do-n+1 - [1 +( ZGA)/ )] d‘gdn+1

1-="Dn4s

\ 2
2G , 1
— L g¢ trial dA
1+ (2SR )] M T Dus 4
\ 1-=Dytq (6.36)

2

. Ay
b eg el dD, s + dpual.
[1 + (ﬂ)]} (1 - Dn+1)

The terms dAy, dD,,; and dp,;; can be obtained by the linearization
procedure of the residual system of equations. Furthermore, the elasto-plastic

operator can be determined by:

Der — doy,4q

- etrial *
deg iy

(6.37)
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The linearized system of residual equations for the plastic corrector

algorithm at the converged state results in the following identity:

[0rny  Orpy  Orpy, O1py  OTay ] o, .
0y ap"+1’ afn+1 ORny1 0Dpyq del t:ml ggﬂ-ﬁl
or, or, or, or, or, g;l,+1
01 OPner Ofnea Ofnea O ddAy b o tz:‘ial g
ary ory oy oy ory d?]9Cn+1 _ 35:“ 63
0Ay  0Pnt1, Ofnsr ORnyr 0Dnyg dR?:.ll e t];lal Ry
darg darg darg arg darg db, ., de dn+10
aAV apn+1: afn+1 aRn.|.1 6Dn+1 arD '
drp orp orp orp arp 522 — gﬂ”_ﬁl
L0AY  O0pp+1, Ofns1 ORpyq 0Dpiql €an+1 -

In order to determine the terms dAy, dD,,,4, dfy4+1, dR,4+1 and dp,,.4, the

inversion of the above system of derivatives is required and can be re-written as:

arAV e trial
ol qoetrial “€dn+1
d n+1
Ciz Cia Cig) a7 e trial
e trial vn+
Caz Coa Cys | o4
C C C 6.39
33 L34 U35 ory otriarl ( )
Caz Caa Cys| [ggetrial “Cdn+l
d n+1
Cs3 Csa Css 0
arD e trial
| 9e® qoetrial “€dn+1
d n+1 E

where the matrix C results from the inversion matrix of the linearized residual

equations in order to each variable of the problem. After some algebraic

manipulation, the term dAy, dD,,;; and dp,,,; can be written as:

4 Oy or, O d1p
Ay = —C1,1 oee Agetrial  ~12 pee trial — (i3 oee Agetrial Cis et qge trial
€an+1 Evn+1 €an+1 €anv1
.. =—c O o % . 0% . O (6.40)
n+1 — 51 de e trial 52 e e trial 53 e e trial 55 0e e trial ’
€an+1 €rn+1 €an+1 €an+1
: 01y or, ors drp
Pn+1 = —C21 etrial 2.2 pee trial — (3 etrial Cas e trial
dn+1 Evn+1 dn+1 dn+1
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Substituting the above expressions into Equation 6.36, the close form for the
tangent operator can be determined. More details about how to obtain the
derivative of each residual equation in function of the elastic strain tensor can be

found in Appendix “E”.

6.4 CALIBRATION PROCEDURE

In order to determine the materials parameters for the proposed constitutive
model, two calibration points are required. The first point will be characterized by
a specimen at a high level of stress triaxiality, where a conventional smooth bar
specimen is used. For this specimen, the hardening law, ay(R), for the undamaged
material is determined as well as the set of parameters for the nucleation of micro
voids [fy, Sy, €x]. The second calibration point will be characterized by a specimen
under a pure shear loading condition, where the numerical parameter, g, is
determined as well as the set of parameters for the nucleation of micro defects
under shear [Dy, Sy, ey]. Here, a butterfly specimen is used under pure shear

loading condition.

The new constitutive model will be assessed for two different materials. One
of them, strongly and the other weakly dependent on the Lode angle, such as: the
aluminum alloy 2024-T351 and the steel 1045, respectively. Furthermore, for both
materials, the numerical tests are conducted for three different loading conditions:
pure shear, shear/tensile and shear/compression loading conditions. The

numerical tests presented here have been performed with Xue’s shear mechanism.

6.4.1 Geometry and mesh definition

In order to obtain the material properties for the first calibration point, a
classical smooth bar specimen is used where the geometry employed is depicted in

Figure 6.7:
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Figure 6.7. Geometry for the smooth bar specimen (dimension in mm). Specimen
reproduced from Teng (2008).

In order to trigger necking, a dimensional reduction of 5% in the central
diameter of the specimen is used. However, different gauges sections are taken
regarding the experimental data (see Teng, 2008). For the aluminum alloy and
steel, gauges sections of 25.4 mm and 20.6 mm are used, respectively. The
standard eight-nodded axsymmetric quadrilateral element, with four Gauss
integration points, is adopted. The initial mesh discretization for both cases is
illustrated in Figure 6.8, where only one symmetric quarter of the problem, with
the appropriate symmetric boundary conditions imposed to the relevant edges, is
modeled. A total number of 1800 elements have been used in the discretization of

both smooth bar specimens, amounting to a total of 5581 nodes.

12.7 I

10.3 1

o Y 0 EHEHE

0 452 X 0 4512 X

(a) (b)

Figure 6.8. Finite elements meshes for (a) aluminum alloy and (b) steel, regarding
the gauge section.
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For the second calibration point and for the numerical assessment of the
behavior of the constitutive model proposed, a butterfly specimen is used. The

specimen was initially designed by Bai (2008) and the geometry and general

dimensions can be found in Figure 6.9.

14,000
1,000

/9.800

3,000

Figure 6.9. Geometry of the butterfly specimen (dimension in mm). Reproduced
from Bai (2008).

In this case, a three dimensional finite element mesh of 3.392 twenty nodded

elements, with eight Gauss integration points, is used amounting to 17.465 nodes
(see Figure 6.10).
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Figure 6.10. Finite element mesh for the butterfly specimen.
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6.4.2 First Calibration Point: smooth bar under tensile loading condition

In the present section, the stress-strain curves and the parameters required
for simulating the micro void nucleation mechanism of the GTN model are
calibrated by a tensile test on a cylindrical smooth bars. Through experimental
tests conducted on both materials (see Teng 2008 and Bai 2008), the reaction
versus displacement curves were determined as well as the stress-strain curves for
an elasto-plastic model of von Mises type. An inverse method is adopted in order to
calibrate the material parameters for the proposed coupled damage model by
forcing the numerical solution of the reaction versus displacement curve to be, as
close as possible to the experimental one. Figure 6.11a and Figure 6.12a show
reaction curves obtained by the proposed model after the application of inverse
method. A good agreement between the experimental and numerical results can be
observed. Furthermore, the critical volume void fraction is also determined at the
point where the model attains the displacement to fracture, experimentally
observed (see Figure 6.11b and Figure 6.12b). The critical values obtained are

fo =0.06 and f, = 0.076, for the aluminum alloy 2024-T351 and the steel 1045,

respectively.
x10* 0.08 ‘
e GTN Model
1 :
' G008 .
> critical " i
; ® critical !
\Z/Z point H value i
g = i
= "50.04 !
3 5 |
5] 1
Q S i
gk =00 ;
' ©0.02- ;
i > i
' e GTN Model ;
x Experimental curve i
0 1 2 3 4 5 8 7 % 1 2 3 4 5 8 7
Displacement (mm) Displacement (mm)
(a) (b)

Figure 6.11. (a) Reaction versus displacement curve for GTN model and
experimental results of the aluminum alloy 2024-T351. (b) Critical volume void
fraction parameter calibrated for the material.
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Figure 6.12. (a) Reaction versus displacement curve for GTN model and
experimental results of the steel 1045. (b) Critical volume void fraction parameter
calibrated for the material.

The results of the calibration procedure, in terms of stress-strain curve, can

also be observed in Figure 6.13, where both curves, for uncoupled and coupled

damage models, were determined.
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™ “< 13001
ay oy
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35 0 0.1 0.2 0:3 014 0:5 0.6 7000 0.1 0.2 0.3 04 0.5
Eq. Plastic Strain Eq. Plastic Strain
(a) (b)

Figure 6.13. Stress-strain curves determined for an uncoupled and coupled models
for: (a) aluminum alloy 2024-T351 and (b) steel 1045.

The material properties and other parameters related to the micro void

nucleation mechanism obtained by employing an inverse method are listed in

Table 6.1.
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Table 6.1: Materials properties for the aluminum alloy 2024-T351 and the steel
1045 and materials parameter related to the nucleation of micro-void.

Material fN SN Ev q1 q> qs3 fc E (MPa) v

Aluminum alloy
2024-T351 004 02 01 15 1.0 225 0.060 72400 0.33

Steel 1045 005 02 01 1.5 1.0 225 0.076 220.000 0.33

6.4.3 Second Calibration Point: pure shear loading condition.

From this calibration point, the parameters related to the micro defects
nucleation mechanism are determined as well as the critical value for the shear
damage variable, D.. Furthermore, details related to the determination of the
numerical parameter, g4, are described. The butterfly specimen is used under a
pure shear loading condition and the displacement to fracture, experimentally
determined for both materials by Bai (2008), is imposed to the specimen. An
inverse method is also adopted, for the calibration of the parameters by forcing the

numerical results to be as close as possible to the experimental data.

The behavior of the parameter g4 can be better understood by looking at
Figure 6.14, where the evolution of the effective damage parameter, included in the
definition of the shear mechanism proposed by Xue, is observed for different
values of g¢. According to the value of the numerical parameter, a different critical
shear damage value, D, is also established. Figure 6.15 represents the critical

shear damage as a function of the value of gs.
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osl point | 08| * GTNSHEAR Model g6=3.0
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% 02 0.4 0.6 0.8 1 O ®®%1 02 03 04 05 06 07
Displacement (mm) Displacement (mm)
(a) (b)

Figure 6.14. Evolution of the shear damage parameter according to the value of g,
selected for: (a) steel 1045 and (b) aluminum alloy 2024-T351.
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Figure 6.15. Representation of the critical shear damage, D, as a function of the

numerical parameter, gg.

Table 6.2 lists the best material parameters obtained after conducting the
inverse numerical procedure. The parameters will be used during all numerical

simulations.

Table 6.2: Materials parameters for the aluminum alloy 2024-T351 and the steel
1045, related to the nucleation and growth of micro-defects.

Material dN SN En k qe DC
Aluminum alloy 2024-T351 0.08 0.15 0.10 0.10 1.00 0.08
Steel 1045 0.10 0.15 0.10 0.10 1.00 0.16

6.5 NUMERICAL RESULTS

In order to perform a systematic assessment of the new constitutive
formulation at a low level of stress triaxiality, several numerical tests are
performed using the butterfly specimen and the implicit algorithm described in
section 6.3. Three different loading conditions are enforced: pure shear (0°),
shear/tensile (10°) and shear/compression (-5°), for two materials: aluminum
alloy 2024-T351 and steel 1045. The behavior of some parameters such as the
equivalent plastic strain and the displacement at fracture together with the ability
to predict the correct fracture location are evaluated. Finally, the numerical results
obtained by the new formulation are compared with the results obtained by the
GTN models improved with the shear mechanism proposed by as Xue (2008) and
by Nahshon & Hutchinson (2008).
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6.5.1 Evolution of equivalent plastic strain and damage parameters

The experimental results obtained by Bai (2008), which will be used as
reference for comparison, are listed in Table 6.3. In particular, the displacement at

fracture, U, the equivalent strain at fracture, &, and the location of crack initiation

are listed for each loading condition and material.

Table 6.3. Reference values for different loading scenarios of two materials.

Aluminum alloy 2024-T351 Steel 1045
Angle
Us & Fracture location Us & Fracture location

0° 070 022 Surface of the critical 103 050 Su1.‘fgce of the
zone critical zone

10° 050 026 Middle of the critical 042 036 Mlldflle of the
zone critical zone

5o 100 022 Surface of the critical 171 0.60 Su1.‘fgce of the
zone critical zone

All the numerical results obtained with the new model, which will be
presented in this section, were conducted following the same approach. For each
simulation, the butterfly specimen was subjected to a prescribed displacement that
matches with the respective critical one experimentally observed that is listed in
Table 6.3. The evolution of the damage variables and of the equivalent plastic
strain for each loading condition and material are presented in Figures 6.16, 6.17,
6.18 and 6.19. For a pure shear loading condition, we can observe in Figures 6.16a
and 6.17a, for the steel 1045 and the aluminum alloy, respectively, that there is an
evolution of the shear damage parameter with the applied displacement and the
volume void fraction does not grow and remains equal to zero. Hence, the
introduction of the new damage variable allows the prediction of failure with the

GTN original model and, in this case, plays the main damage role.

Under a combined shear/tensile loading with an angle of 10°, it is possible to
observe in Figures 6.16c and 6.17c an evolution of both the shear damage variable
and the void volume fraction variable. For this loading case, the prediction of crack
initiation is established when the, previously defined, effective damage variable

reaches unity (see Equation 6.19). Due to the presence of a multi axial stress state,
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an additional factor is introduced by the term (1 + f./D.) in Equation (6.19), to

accelerate the prediction of fracture.

In Figures 6.16e and 6.17e we have a combined shear/compression loading
condition and, the shear damage parameter also plays a dominant role in the
prediction of fracture. In this case, there is a crack closure effect and the
degradation of material occurs due to the formation of shear bands, which can be
captured by the proposed shear mechanism. The volume void fraction, in this case,

is reduce to zero due to a negative hydrostatic pressure.

In Figures 6.16b, 6.16d and 6.16f, the evolution of equivalent plastic strain
parameter is shown for different numerical parameter, g4, using the steel 1045. We
can observe that the numerical parameter does not have a strong influence over
the evolution of this internal variable. However, it is expected that the parameter
qe affects the evolution of the shear damage variable and effective damage, which
can be seem in Figure 6.18 that presents the evolution of the effective damage
parameter for different values of g, for both combined loading conditions and
pure shear, for the 1045 steel. According to the value of the numerical parameter,
the failure condition is established. From the analysis of Figure 6.15, for g = 0.5,
qe¢ = 1.0 and g4 = 1.5, the failure condition is met when the shear damage variable
is equal to D, = 0.12, D, = 0.16 and D, = 0.20, respectively. Based on the results
presented in Figure 6.18, we can observe that when g4 = 1.0, for the 1045 steel,
the constitutive formulation predicts a crack formation closer to experimental

evidence.

For the aluminum alloy 2024-T351, the evolution of equivalent plastic strain
is represented by Figures 6.17b, 6.17d and 6.17e and a similar behavior is also
observed, since the numerical constant, g4, has a small impact in the evolution. For
this material, it is possible to conduct a similar analysis for the value of the
constant g4, though the examination of Figures 6.15 and 6.19, and conclude that
qe¢ = 1.0 also predicts failure closer to experimental evidence than the other values
(see Figure 6.19). The set of all results can also be analyzed in Table 6.3 and Table
6.4 which list all the numerical results and expected values, experimentally

observed, for the equivalent plastic strain and displacement at fracture.
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conditions.

Based on numerical results presented, we can conclude that the new
formulation has the ability to predict the correct moment to crack formation by
appropriately calibrating the numerical constants and parameters of the model.
Both the equivalent plastic strain and the displacement, calculated by present
formulation, are in close agreement with the experimental data for both loading

conditions and materials applied (see Table 6.4 and Table 6.5).
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Table 6.4: Numerical results for butterfly specimen using the 1045 steel under
different loading conditions.

Experimental data

Numerical results

Angle Ur & e ur ép Nav Oav f d
0.5 1.03 0.516 0.022 0.061 0.000 0.122
0¢ 1.03 0.50 1.0 1.03 0.522 0.022 0.060 0.000 0.160
1.5 1.03 0.528 0.021 0.057 0.000 0.204
0.5 0.33 0.257 0.241 0.477 0.018 0.045
10¢ 042 0.36 1.0 0.44 0.353 0245 0485 0.026 0.053
1.5 0.59 0.440 0.257 0.507 0.030 0.061
0.5 1.71 0.611 -0.066 -0.173 0.000 0.100
-5¢ 1.71 0.60 1.0 1.71 0.612 -0.065 -0.173 0.000 0.126
1.5 1.71 0.616 -0.065 -0.173 0.000 0.153

Table 6.5: Numerical results for butterfly specimen using the aluminum alloy
2024-T351 under different loading conditions.

Experimental data

Numerical results

Angle - -
ur &f de Us € Nav Oav f d

1.0 0.70 0292 0.018 0.048 0.000 0.084
2.0 0.70 0.298 0.017 0.048 0.000 0.107

0¢° 0.70 0.22
3.0 0.70 0.305 0.017 0.047 0.000 0.137
4.0 0.70 0.318 0.017 0.046 0.000 0.179
1.0 0.55 0230 0250 0486 0.013 0.032
2.0 0.63 0.271 0.254 0.492 0.017 0.039

10¢ 0.50 0.26
3.0 0.75 0.336 0.257 0.494 0.021 0.051
4.0 0.75 0.337 0.264 0.502 0.021 0.056
1.0 1.00 0414 -0.066 -0.176 0.000 0.084
2.0 0.98 0.424 -0.065 -0.173 0.000 0.110

-5¢ 1.00 0.22
3.0 0.95 0432 -0.064 -0.169 0.000 0.140
4.0 0.93 0.455 -0.063 -0.165 0.000 0.190
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6.5.2 Prediction of the correct fracture location

Another important feature to be analyzed, in order to validate the new
constitutive formulation, is the ability to predict the correct fracture location.
Based on experimental tests performed by Bai (2008), using the butterfly
specimen, it can be observed that under a pure shear loading condition, the micro
crack is initiated in the surface of the critical zone. However, when combined
shear/tensile loading condition is applied, the crack is formed in the middle of the
thickness and grows toward the surface of the critical zone. Under a combined
shear/compression loading (-5°), the surface of the critical zone is also the location

of crack formation.

Figures 6.20 and 6.21 present the contour of effective damage for the steel
1045 and the aluminum alloy 2024-T351, respectively, at fracture. It is possible to
conclude that the new damage formulation has the ability to predict the correct

fracture location in all loading conditions.

ur = 1.71 mm ur = 1.03mm ur = 0.44 mm

Figure 6.20. Effective damage contour for the butterfly specimen using the 1045
steel, under: (a) shear/compression - (-5°), (b) pure shear - (0°) and (c)
shear/tensile - (-10°) loading conditions.
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ur = 1.00 mm ur = 0.70 mm

Figure 6.21. Effective damage contour for the butterfly specimen using the
aluminum 2024-T351 alloy, under: (a) shear/compression - (-5°), (b) pure shear -
(0°) and (c) shear/tensile - (-10°) loading conditions.

The predictive ability of the new model, in terms of fracture location, can also
be compared against two recent extensions of the GTN model, which were
presented in Chapter 5 of this thesis. The accuracy of the three models in the
prediction of the fracture location is evaluated here for a combined shear tensile
loading of 10° for the steel 1045. Figure 6.22a illustrates the contour of the damage
parameter for Nahshon & Hutchinson shear mechanism (Nahshon & Hutchinson,
2008), Figure 22b for Xue shear mechanism (Xue, 2008) and Figure 6.22c for the
new model. We can observe that only the new model predicts the initiation of
failure in agreement with experimental evidence. The prediction of the GTN model
extended with Xue’s shear mechanism is in complete disagreement with
experimental evidence and the prediction of the GTN model extended with
Nahshon & Hutchison shear mechanism is somewhat spread along the critical

section, which may suggest a certain vagueness to the model.
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Figure 6.22. Damage parameter contour for the butterfly specimen using the 1045
steel. (a) Nahshon & Hutchinson shear mechanism, (b) Xue shear mechanism and
(c) new model. Section AA at the critical zone.

6.5.3 Representation in the three dimensional fracture locus

In order to qualitatively judge the constitutive model, we can represent the
numerical results, listed in Tables 6.4 and 6.5, within the so-called three
dimensional fracture locus, originally proposed by Bai (2008). For the 1045 steel,
Bai (2008) proposed a surface represented by the interpolation of the equivalent
plastic strain, stress triaxiality and Lode angle. The fracture locus for the steel 1045
was calibrated by classical specimens in different loading condition, see Bao
(2004) and Bai (2008). Figure 6.23 represents the projection of the three
dimensional fracture locus on the space of equivalent plastic strain versus stress
triaxiality. We can observe that the numerical results, obtained by the new model,
have a good agreement with the calibrated curve for different levels of the Lode
angle. In the same Figure, the numerical results obtained by the Nahshon &
Hutchinson and Xue formulations are also plotted, using only pure shear and
combined shear/tensile loading conditions. In both cases, these formulations do
not present an uniform behavior in the prediction of results. Nahshon &
Hutchinson’s model is more accurate than Xue’s model under pure shear loading
condition and Xue agrees better with experimental results under combined loading
conditions. However, the new model is in agreement with the fracture surface for

both conditions.
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Figure 6.23. Projection of three dimensional fracture loci for steel 1045.

6.6 CONCLUSIONS

In this chapter, a new formulation was proposed to improve the original GTN
model, regarding the ability to predict ductile fracture under a low level of stress
triaxiality. Firstly, a new shear mechanism was proposed that is a function of the
equivalent plastic strain, stress triaxiality and Lode angle. This mechanism can
capture the elongation of micro-defects, when shear loading condition is present.
Furthermore, a new micro-defects nucleation mechanism was proposed which is
responsible for triggering the evolution of the shear damage parameter, since the
new mechanism is independent on the volume void fraction. Then, the new
damage parameter was coupled in GTN constitutive formulation in such a way that
only affects the deviatoric stress contribution. Thus, the new model has two
independent damage parameters: first one affecting only the hydrostatic stress

component and the other affecting the deviatoric stress component.

Numerical tests were conducted, with an implicit integration algorithm, in
order to evaluate the formulation ability to predict the crack formation. A butterfly
specimen was employed and two different materials: the steel 1045 and the
aluminum alloy 2024-T351 were used. In all loading conditions, the model behaves
well, either in the determination of the correct level of equivalent plastic strain and

displacement at fracture, or in prediction of the location of crack formation.

The introduction of two damage parameters affecting separate components

of the stress tensor stress critically affects the evolution of internal variables and
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allows more accurate values at the time of crack formation. Furthermore, the
introduction of a new micro-defects nucleation mechanism facilitates the
calibration model and thus an improved performance for a wide range of stress
triaxiality. The introduction of the stress triaxiality dependence in the evolution of
shear damage parameter also enhanced the prediction of the fracture location
under combined loading conditions, since this parameter influences the behavior
of material under low stress triaxiality. An effective damage variable is determined
in post-processed step as a function of both volume void fraction and shear
damage parameter. A penalization factor is introduced in order to accelerate the

damage evolution due to the presence of multi axial loading conditions.

In spite of the best performance of this formulation when compared to the
models available in the literature, the introduction of more parameters that need
to be calibrated requires special attention. In particular, two calibration points are
required to fully define the model. A calibration point at high triaxiality, which was
already required in GTN original model, and now a new point at low triaxiality, to
obtain the parameters that govern the new shear damage evolution law. In
summary, the new model was formulated in order to perform well in all loading
conditions and for different materials. From the results presented, it is possible to

conclude that the objective was achieved for the cases tested.
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CHAPTER 7

An Enhanced Micromechanical Constitutive Model for
the Prediction of the Loading History Effect
with Ductile Fracture

7.1 INTRODUCTION

The loading history to which a material is subjected is an effect that has been
studied for several decades by numerous researchers, such as Muschenborn and
Sonne (1975), Graf and Hosford (1994) and Stoughton (2000), among others, in
order to characterize ductile fracture under proportional and non-proportional
loading conditions. This effect has an important impact on the mechanical behavior
of ductile materials, which has been clearly observed on strain-based forming limit
diagrams, since the material response is not unique under non-proportinal loading
conditions (Stoughton, 2000; Cao et al, 2000; Chow et al, 2001; Bai et al, 2007). In
addition, the material parameters used in fracture models are commonly
calibrated based on monotonic tests. Therefore, under more complex loading
conditions, several researchers (Johnson and Cook, 1985; Bao, 2003; Bao et al,
2004; Bai et al, 2006) have shown that this calibration strategy, leads to an

incorrect prediction when complex loading conditions are present.

In this chapter, the extended GTN model proposed in Chapter 6 is enhanced
with a kinematic hardening rule in order to improve its predictive ability when
subjected to more complex loading scenarios. Firstly, the set of equations that
govern the evolution of the internal variables of the model are described with
emphasis on the nonlinear kinematic hardening law employed. Then, the
numerical treatment required for the implementation of the constitutive model
within an implicit quasi-static finite element framework is described in detail. The
performance of the enhanced model was analyzed using the “butterfly” specimen
and with the aluminum alloy 2024-T351. Details of the calibration procedure

carried out within the context of this study are also described in detail. Three
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numerical tests with complex external loading conditions were conducted: i) pure
shear (+09) followed by combined shear/tensile (+302) loading condition; ii)
compression (-902) followed by traction (+902) and finally iii) a reversal shear
loading (-02 followed by +0%2). At the end of each numerical simulation the
behavior of the internal variables was analyzed. In particular, the evolution of both
damage parameters, the evolution of the equivalent plastic strain, the reaction
versus displacement curve and the contours of the effective damage parameter.
Finally, the numerical results obtained with the enhanced model were compared
with experimental data. As observed in the present work, the new model is able to
capture the onset of fracture in close agreement with experimental evidence when

the specimen is subjected to complex external loading conditions.

7.2 CONSTITUTIVE MODEL WITH A MIXED HARDENING RULE

In order to evaluate the effect of the loading history on the mechanical
behavior of ductile materials and thus measure its internal degradation, the so-
called Bauschinger effect was incorporated in the extended GTN model (see
Lemaitre, 2001). This important effect recognizes that the yield stress of a metal is
different in opposite directions (for example traction and compression), when the
plastic regime is reached. In order to capture this behavior, phenomenological
models introduce the so-called kinematic hardening. Figure 7.1 shows
schematically the effect of Bauschinger for a traction/compression loading
condition, as well as, the isotropic hardening effect. In Figure 7.1, o, represents the
initial yield stress of the material, R is the thermodynamic force associated with

the isotropic hardening and S represent the so-called backstress tensor.
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Figure 7.1. Stress-strain curve including mixed isotropic and kinematic hardening.

In this work, the evolution law for the backstress tensor employed was the
one proposed by Prager (see De Souza Neto, 2008), which considers a nonlinear

kinematic hardening, according to:
.2 .
B =3z H (R, (7.1)

where B represents the rate of growth for the backstress, & is the rate of the
equivalent plastic strain and HX is the kinematic hardening modulos that is

determined by the function:

dB(R) (7.2)

HE(R) ===,

where (R) represents a scalar function of the backstress with relation to the
internal variable associated with the isotropic hardening. It can be mentioned that
other evolution equations for the backstress are suggested in literature, such as the
Armstrong and Frederick model (see De Souza Neto et al, 2008), Morz model ( see

Lemaitre 2001), among of others.

Thus, a new yield function for the extended GTN model can be established as

follow:
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®(a,B,7,f,D) = { ZE"I)) —% 1+ gsf? — 2qyf cosh (32";70)] o2 (7.3)
y

where 7 represents the so-called reference tensor, that can be determined as:

n=S-8, (7.4)

where S represents the deviatoric stress tensor and J, is now the second invariant

of the reference tensor. The governing equations of the extended GTN model with

mixed nonlinear isotropic and kinematic hardening are summarized in Box 7.1.

Box 7.1. Extended GTN model with nonlinear isotropic and kinematic hardening.

(i) Elasto-plastic split of the strain tensor

e=¢g°4+¢"
(if) Elastic law
o =D &’
(i) Yield function
®(o,B,1,f,D) = L) _1 1+ q3f% — 2q4f cosh 3921 of
b7 1 1-D 3 qs q1 20, y

(iv) Plastic flow and evolution equations for 8, R, f and D.

. . n 1 , 3qzp
p—p|l— 4=
& y[(l )+3ayq1q2fsmh<20y>1]

B = %HK(R)?J’

: 14 o (34zp) |, 2 3q2p
R= (1—f——D){Mpr smh( 20, ) +39y [1 +qs3f?*— 2q1fcosh< P )]}

y

&P+ (1-f)éh

[ 1y 2
f=a go>SNmexp[ 2( - )
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continue Box 7.1.

1
&P + q¢D5[go (&)]TT+K

syV2m SN
where
DS = q,DsE"¢P go=1-¢
and,
wp_ (2] mm 1 q2p q2p
Y =vyo0. sinh
€ \/ {(1 D)Z [ayqlqusmh( 20, )] } = y0yq192f < 0y>

(v) Loading/unloading criterion

y=0, ¢ <0, yo =

7.3 NUMERICAL TREATMENT

In this section, the numerical strategy employed to derive the integration
algorithm for the extended GTN model with mixed isotropic and kinematic
hardening is presented. A finite strain algorithm to extend the infinitesimal theory
is introduced for the kinematic hardening evolution (see De Souza Neto et al,

2008).

7.3.1 Return Mapping Algorithm for Small Strains

Analogously to what was done in previous chapters, for the present model,
the stress update procedure is also based on the so-called operator split concept
(see Simo & Hughes, 1998; De Souza Neto et al., 2008), which consists in splitting
the problem in two parts: an elastic predictor, where the problem is assumed to be
elastic and, a plastic corrector, in which the system of residual equations
comprising the elasticity law, plastic consistency and the rate equations is solved,
taking the results of the elastic predictor stage as initial conditions. It is important
to highlight that in the present formulation, an additional evolution equation is
introduced in the plastic corrector to represent the evolution of the backstress

tensor (see Equation 7.1). Box 7.2 summarizes the overall return mapping
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algorithm for the extended GTN model with isotropic and kinematic nonlinear

hardening at infinitesimal strains.

Box 7.2. Fully implicit Elastic predictor/Return mapping algorithm.

(i) Evaluate the elastic trial state: Given the incremental strain A& and the state
variables at ¢t,,:

etrial _ e . =ptrial _ -p . trial _
Eni1 = &p HAE ' En+1 T &n ' Ry = Rn
trial _ . trial _ . trial _ e trial
n+1 - fn ! Dn+1 - D‘l’l ’ STL+1 = 26£n+1
trial _ e trial . trial _ . trial _ trial
Pn+1 = ng n+1 ’ n+1 — ﬂn ) ay - Uy(Rn+1
trial _ ctrial trial
Nn+1 = Sn+1 T Pn+1
(if) Check plastic admissibility:
trial(trial trial
trial _ J2 (’Tn+1 1 trial? trial 3q2Pn+1 trial?
IF P — T {_ptrial - 5 1+ q3fn+1 - 2q1fn+1 cosh 2gtrial Uy <0
n+1 y

THEN set (1),+1 = ()4 (elastic step) and go to (v)

ELSE go to (iii)

(iii) Return mapping (plastic step): Solve the system of equations below for
Ay . Pn+1:fns1, Rner @and Dy, 44, using Newton-Raphson method:

[ Jane1 1 3q2Pn+1
# 3 14 qsfus1’ — 2G1fns1 cosh | — ZJn oy
n+1 y (0
. . 3q2Pn41
) Prs1 — Pridt + AyKoyq1q2fne1 smh( 20; L — J 8 !
ot = FiTi8 = Af — 8f )
. 0
Rn+1 _ thlrlill — AR
Dny1 — Diii§t — AD™ — qgAD® /
where,
1 trial, ,,trial
Jans1 = 2Ghy 2HK Ay 2 Mn+1 *Mn+1

2 [1 T A =Dpr) T30 =Dpry)

. 2 . (3@ |
+§ AV§H 0yq1qz2fn+1 sinh Z—Uy

2
Dy 1/&° . —ep
AD™ = exp |—= L) AEP
9 §iv2n p[ 2( Sy
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continue Box 7.2.

ADS = [go](l/ll"n+1|+k)q4Dq5 P AP

=1- 5121+1)

n_(l ) 1 <ETrlz)+1_£N ’ AEP
Af 9o erp e £

3qun+1>

Af9 =1 — fr41)Av0, 0192 fne1 sinh( 5
Oy

Ay
AR = inh
(1= fres — Dnee) {Q1Qan+1pn+1 sin (

3qun+1)
Zay

2 3420041
tzoy |1+ Q3fne1° — 2G4 fne1 COSh —1zfn+l
3 ZO'y

(iv) Update the others state variables:

2 3
Mt — Ay gH 0y 0102 fr smh( qﬁpn“)
M1 = [ 2GAy 2HKAy ]
1+
1- Dn+1) 3(1 = Dny1)
STL+1 — Strial ZGAY

n+l (1——Dn+1)n”+1

Brn+1 = Mns1 + Sntq

Nn+1 1 3q20n+1
g8, = el — Ay [(171—1) + = 0yq1q42fn+1 Sinh <ﬁ> 1]
n+ y

2
M1 Mner | 1 42DPn+1
AP =A]/\/ {m‘l‘ [ququfn+1 smh< ZO'y >] }

7.3.2 Finite Strain Extension of Infinitesimal Theory

In this section, an overall integration scheme for an exponential map-based
numerical integration algorithm for finite strain is presented, for mixed isotropic

and kinematic hardening, that maintains the small-strain scheme (Box 7.2). The
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integration scheme adopted was proposed by De Souza Net et al (2008) and is
based on the use of logarithmic strains and the multiplicative elasto-plastic
splitting. The computational implementation starts from retrieving the elastic
logarithmic strain, &5, at pseudo-time t,, and computing the corresponding elastic

Cauchy-Green tensor, with the expression:

B¢ = exp[2€8], (7.5)

where B¢, represents the elastic left Cauchy-Green tensor. Then, it is necessary to
computer the trial state and the elastic trial left Cauchy-Green tensor, B4, is

obtained by:
. . o\T
Byt = Fo el (Faiia)" = FuBG(Fy)T (7.6)
where F¢!4 represents the elastic trial deformation gradient and F, is the
incremental deformation gradient. Based on the elastic trial left Cauchy-Green

tensor, B2 "%, the elastic trial logarithmic strain tensor is calculated as follows:

, 1 .
6ot = ~In[ B (7.7)

With regard to the inclusion of the kinematic hardening effect, the so-called
trial backstress tensor, ﬂ‘{l, needs to be computed. In order to do so, the

incremental elastic rotation needs to be determined by the relation:

A = RGTNRY)T (7.8)
where A, represents the incremental elastic rotation, R is the elastic trial
rotation tensor and RY, is the elastic rotation tensor at pseudo-time t,. Thus,

trial

knowing the backstress tensor at t,, B,, the trial backstress tensor, B;/7, is

determined by:
fﬁ‘il = ABrn(A)" (7.9)

Having determined the elastic trial logarithmic strain tensor, the trial
backstress tensor and knowing the values of the internal variable at pseudo-time

t,,, the return mapping algorithm derived for infinitesimal strains (see Box 7.2) can
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be used to update the so-called Kirchhoff stress tensor, 7,,1, and the other state
variables. In order to update the Cauchy stress tensor, the following relation is

employed:

Opi1 = det[Fpiq] " Ty (7.10)

where @,,,; represents the Cauchy stress tensor, T, is the Kirchhoff stress tensor
and F,,; is the gradient deformation at pseudo-time t,,,. The elastic gradient

deformation can be determined as:

m1 = ViR, (7.11)

where V5, ; represents the elastic left stretch tensor, that can be computed by:
Vi1 = explerql (7.12)

and R¢, ., represents the elastic rotation gradient, which is equal to the trial state
¢..=Rela Box 7.3 contents a brief summary of the numerical integration
algorithm for the general multiplicative finite strain elasto-plasticity model with

kinematic hardening.

Box 7.3. Finite Strain Extension of the small strain algorithm

i) Given incremental displacement Au, update the deformation gradient:
Fp:=1+V,[Au]
Fyy1:= FpFy
ii) Compute elastic trial state
Fiiat = FyFy,

: : : T
etrial, _ gpetrial e trial
Bn+1 L Fn+1 (Fn+1

. . 1 ,
etrial, _ etrial] etrial
Eny1 T ln[Vn+1 ] - Eln[3n+1
. — petrial pe\T
AA- - Rn+1 (Rn)

trial, — T
n+1 - AABnAA
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continue Box 7.3.

trial. _ T
n+1 - — AAﬁnAA

—=ptrial, _ —=p
n+1 = &n

iii) Use small strain algorithm to update the Kirchhoff stress tensor, the
backstress tensor and other state variables.

iv) Update Cauchy stress tensor and the elastic deformation gradient:

Ont1' = det[Fn+1]_1Tn+1

Vi1 = explen,q]

e ._ petrial
Rn+1'_ n+1

e — Y€ e
Fn+1 - Vn+1Rn+1

v) End.

7.3.3 Consistent Tangent Operator

In this section, the consistent tangent operator for the present model will be
obtained following a similar procedure to the one employed in previous chapters.
Hence, the first step for determining the operator is to differentiate the stress

tensor update expression with regard to the elastic trial strain tensor, ¢ {74

Nn+1

n+

— P+l (7.13)
where @,,,, represents the update stress tensor. Therefore, the tangent operator

can be computed through:

Der — doy,4q

- etrial *
deg iy

(7.14)

Performing similar mathematical operations and algebraic manipulation, the

following expression can be obtained:
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2G . n
d — d etrial __ ZGn—+1dA
T 1+ (250 )] R R N
1= Dnis (7.15)
— ZGAyLdD — zc;Ayd"— +dp,,. 1.
(1—Dpyp)? 1 (1= Dny1) e

The terms dAy, dD,,,; and dp,,, represent the derivative of Ay, D,,.; and p,4+1
with regard to the elastic strain tensor, €244, They can be obtained by the
linearization procedure of the residual system of equations. However, the term
dn,+1, that represents the derivative of 1,,,; with regard to the elastic strain
tensor, has to be computed by the differentiation of the update relative tensor

expression.

: 1 3q,p
dny [ — Ay3H q,9,4,f,,, cosh (573“) dpn+1®1

d =
fInt 2GAy 2H% Ay

[1+G—DMJ+3G—DMJ

; 2 p
trial K , 2 +1
[nnrﬁ —AygH"0,9,9,f 14 Smh . ] l 2GdAy
_ -

2 K
[1 + GAy + 2H" Ay
(1 _'Dn+1) 3(1'_ n+1)
2GAy . 2HX Ay .
+ —— +
(1 - Dn+1)2 i 3(1 - Dn+1)2 i

(7.16)

n+1)

The final expression for the consistent tangent operator of the extended GTN
model including kinematic hardening can be found in Appendix E. The extension,
of the small strain consistent tangent operator, to the finite strains regime is more
complex than the isotropic counterpart. The additional degree of complexity is due
to the fact that the elastic trial state of the backstress tensor, B4, (Equation 7.9)
is not fixed. It is a function of the backstress tensor, B,, at instant t, and the
incremental elastic rotation /4,. The incremental elastic rotation, which is given by
Equation (7.8), is a function itself of the elastic trial deformation gradient, F¢ i@,
Therefore, the derivative of the Kirchhoff stress tensor with respect to the

deformation gradient, for the spatial tangent modulus, is given by:
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where D®? is the standard infinitesimal elasto-plastic consistent tangent operator
(see Equation 7.14) and D represents a fourth-order tensor that is the tangent

relation between the updated Kirchhoff stress tensor and the trial backstress:

ot
DA = L (7.18)

trial
0Br+1

More details about the linearization of the extended GTN model with kinematic

hardening can be found in Appendix E.

7.4 CALIBRATION STRATEGY AND MESH DEFINITION

The determination of the material parameters, which are indispensable for
using the extended GTN model with mixed isotropic and kinematic hardening,
follows the same calibration procedure described in the previous chapter (see
Chapter 6). In the present chapter only the experimental results for the aluminum
alloy 2024-T351 are employed (see Bai, 2008) and only two experimental tests
need to be conducted to determine all the parameters required by the extended
model. As already described previously (Chapter 6), a so-called high stress
triaxiality point is adopted, which is experimentally accomplished with a
cylindrical smooth bar specimen subjected to a pure tensile loading condition.
With this calibration point the parameters for the micro voids nucleation
mechanism [fy, Sy, ey] and hardening curve o, (R) are determined. Regarding the
so-called low stress triaxiality calibration point, a butterfly specimen subjected to
pure shear loading is used in the experimental test. At this point, all parameters
required for the micro defects nucleation mechanism (under shear) [Dy, Sy, eyl
and the constants k and g, are determined. Table 7.1 shows the parameters

determined for the aluminum alloy 2024-T351 based on both calibration points.
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Table 7.1: Materials properties for the aluminum alloy 2024-T351, regarding the
first and second calibration points.

Calibration , ,
point fn/dy Sn/Sn en/en a1/k qz2/q6 93 fo/D. E(MPa) v

Traction 0.04 0.2 0.1 1.5 1.0 225 0.060 72400 0.33
Shear 0.08 0.15 0.10 0.10 1.00 - 0.08 - -

The same specimen, the so-called butterfly specimen, was employed in the
calibration and during the simulation of the various loading scenarios. The
specimen was discretized with a three dimensional finite element mesh of 3.392
twenty nodded elements, with eight Gauss integration points, amounting to 17.465

nodes.

The numerical studies were conducted for three cases that can be described
as follows: Case 1) pure shear (+02) followed by combined shear/tensile (+302)
loading condition; Case 2) compression (-902) followed by traction (+902) and
finally Case 3) a reversal shear loading (-02 followed by +02). Figure 7.2
schematically represents the three loading scenarios studied with the extended

GTN model.
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Figure 7.2. Schematic representation of the types of loads under study.

7.5 NUMERICAL RESULTS

For the cases under study, the following results are quantitatively analyzed:

the reaction versus displacement curve, the evolution of effective damage
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parameter and the rate of evolution for the equivalent plastic strain. In all cases,
the numerical results obtained by the extended GTN model are compared with
experimental results found by Bai (see Bai, 2008). Furthermore, the ability to
predict the location of fracture onset is analyzed when the loading history effect

needs to be accounted in the plastic flow rule for ductile materials.

7.5.1 Reaction versus displacement curve

Figure 7.3 presents numerical and experimental results determined for the

reaction versus displacement curve, for each case.
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Figure 7.3. Reaction curve determined by numerical simulation, regarding
cases 1, 2 e 3, with the extended GTN model.

Based on the analysis of the results presented in Figure 7.3, it is possible to
conclude that there is a good agreement between experimental and numerical
results using the proposed model. The small differences observed in the figure, can

be justified by the use of the evolution law proposed by Prager for the backstress

219



tensor, which grows in a direction collinear to the plastic flow rule of the material.
According to some researchers, in some cases (see Jiang, 1996; Stoughton, 2000;
Lemaitre, 2001), due to non-proportionality of the loading applied, the evolution of
the backstress and the plastic flow rule do not follow the same direction. In these
cases, a more sophisticated evolution law needs to be considered, such as: the
Morz model (see Lemaitre, 2001) and the Armstrong and Frederick model (see De

Souza Neto et al, 2008).

7.5.2 Evolution of the effective damage parameter

The evolution of the effective damage parameter, D¢/, which was introduced
in Equation (6.19) of Chapter 6, is presented in Figure 7.4. For each loading
scenario, the effective damage evolution obtained from the numerical simulation is
plotted against the applied displacement. From the results, it is possible to
conclude, that the critical damage (D¢ = 1) is reached for displacements at

fracture, which are in close agreement with experimental evidence.

The biggest difference between the numerical and experimental results for
the so-called displacement at fracture is observed for the first case. For this loading
scenario, the displacement at fracture predicted but the extended GTN model is
around Ur = 0.85 mm, and the experimentally observed is around ur = 0.72 mm.
For the other two cases (cases 2 and Case 3), the numerical and experimental
results have a 5% of difference. Table 7.2 presents the critical displacement values
obtained with the proposed model and the experimentally determined values

obtained by Bai (see Bai, 2008).

Table 7.2. Critical displacement at fracture for all cases.

ur numerical [mm] uy experimental [mm]
Case 1 0.85 0.72
Case 2 0.80 0.84
Case 3 0.48 0.51
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Figure 7.4 illustrates the evolution of the effective damage and the

determination of the critical displacement at fracture, regarding cases 1, 2 and 3.
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Figure 7.4. Evolution of effective damage for all cases 1, 2 and 3.

7.5.4 Effective damage contour

The predictive ability of the model, regarding the correct prediction of the
potential site for ductile crack initiation, is the last feature to judge. In this
evaluation, the numerical results obtained by the extended model are compared
with experimental data reported by Bai (see Bai, 2008). Figure 7.5 shows the

contour of the effective damage parameter for the three cases under analysis.
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Figure 7.5. Contour of the effective damage parameter.
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From the results obtained for cases 1 and 3, it is possible to observe that the
crack starts at the surface of the critical region of the specimen. Nevertheless, for
the second case, it is observed that crack initiation occurs at the center of thickness
of the critical region of the specimen. According to experimental observations,
reported by Bai (Bai, 2008), in all cases, the numerical prediction of the potential

site to crack initiation was in agreement with the experimental evidences.

7.6 CONCLUSIONS

In this chapter, the extended GTN model proposed in Chapter 6 was
improved with an evolution law for the backstress tensor proposed by Prager (De
Souza Net et al, 2008), in order to increase its predictive ability under combined
loading. The set of equations that govern the behavior of the model, including
nonlinear kinematic hardening, was presented and the integration algorithm
developed was described in detail. An assessment of the model was then
conducted for three loading conditions, such as (case 1) pure shear (+0 °) followed
by combined shear / tensile (+30 °) loading, (case 2) compression (-90 °) followed
by traction (+90 °) and finally (case 3 ) the reversal shear loading (Followed by +0
° -0 ° ). The evolution of the reaction curve of the material, the evolution of the
damage parameter and predictive ability of the model were then evaluated. In all
loading cases the numerical model has shown good results when compared to
experimental results available in the literature (see Bai, 2008). Thus, it can be
concluded that the mechanical behavior for ductile materials, in the presence of
proportional and non proportional loadings, may be represented by the proposed
model, which introduces two damage variables and the effect of both isotropic and

kinematic hardening, through nonlinear evolution laws.

As a further development to the extended GTN model, the addition of more
complex evolution laws for the backstress tensor is suggested, in order to improve
the prediction of the numerical critical displacement at fracture. The evolution law
for the backstress tensor proposed by Armostrong and Frederick (see De Souza
Neto et al, 2008), which assumes no collinearity between the backstress tensor and
the plastic flow rule, and the model suggested by Morz (see Lemaitre, 2001), which
assumes multi yield surface, might be able to increase the predictive ability of the

proposed extended model.
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CHAPTER 8

Final Remarks

8.1 CONCLUSIONS

The study of the mechanical behavior of metallic materials is a topic of great
importance and, in recent years, has been subjected to numerous studies regarding
the formulation of mathematical models capable of describing the mechanical
behavior in the most realistic way possible. The introduction of new effects, both in
the plastic flow rule of the material and in the evolution law for internal variables
like damage, are among the topics more discussed and improved in the last decade.
These scientific developments bring to the industry, in general, competitive gains
in relation to the development of more efficient and durable mechanical
components as well as the improvement of manufacturing processes. Coupled with
the development of new constitutive models for materials, the numerical
techniques used to simulate the real behavior of structures, the materials
characterization, the simulation of manufacturing processes, among others, have
also been enhanced and spread by industries such as: automobile, aerospace,

naval, among others.

Thus, in this thesis, we have investigated many different elasto-plastic
formulations with damage as internal variable, and propose improvements to
increase their accuracy, with regard to their ability to predict the loss of stiffness
and the fracture initiation in ductile materials. Among other advances, we
attempted to discuss the importance of the third invariant of the deviatoric stress
tensor in the mechanical behavior of metallic materials and introduce this effect in
the plastic flow rule. It was also found that the predictive behavior of many
different constitutive models, such as: Lemaitre's model, Bai's model and Gurson's
model (in GTN version), as well as some recent extensions of the GTN model, is
limited regarding the ability to predict failure in predominant shear loading

conditions. An extended GTN model, which includes calibration points in the so-
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called high and low stress triaxiality zone, distinct mechanisms for nucleation of
defects regarding shear and tensile predominant loading conditions, as well as two
internal variables for damage evolution that are combined to provide an effective
damage scalar variable which triggers the coalescence mechanism, has been
proposed. Finally, we have addressed the influence of the loading history effect on
the predictive ability of the model, i.e, the study of proportional and non-
proportional loads. To this end, the so-called Bauschinger effect was added,
through the coupling of kinematic hardening in accordance with what was
proposed by Prager. In following paragraphs, the advances made in each chapter of

the thesis are described in detail.

Chapter 3

In this chapter, an implicit numerical integration algorithm for an elasto-
plastic model developed by Bai et al. (see Bai, 2008) was studied and proposed.
The constitutive model introduces in the hardening law of the material, the effect
of hydrostatic pressure by the so-called stress triaxiality, and the effect of the third
invariant of the deviatoric stress tensor by the so-called Lode angle. Regarding the
development of the numerical algorithm, the operator split methodology (see Simo
et al, 1998) was used and its implementation was done in a quasi-static academic
finite element framework. Some numerical tests for different specimens and two
engineering metallic materials (aluminum alloy and steel 1045) were conduced,
regarding the demonstration of the robustness of the proposed algorithm, as well
as validation of the predictive gain, when both pressure and Lode angle effects are
coupled in the plastic flow rule. The quadratic convergence of the numerical model
was shown by the so-called isoerror maps, as well as by the convergence of the
local and global problem. Considering the mechanical behavior of engineering
materials and the introduction of the effects under study, the numerical results
depicted more accurately the experimental data. It also verified a distinct
mechanical behavior for the aluminum alloy and the steel, regarding the effect of
the third invariant. In this direction, a material classification was proposed

according to the sensitivity to the stress triaxiality and the Lode angle, such as:
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strongly dependent (aluminum alloy) and weakly dependent (steel 1045) on the

pressure and the third invariant.

Chapter 4

In order to evaluate several approaches for determining ductile fracture
onset, in this chapter, an attempt was made to make a qualitative and quantitative
comparison of the numerical results predicted according to the Bai's model (2008),
Lemaitre's model (1985) and Gurson' model, in the GTN version model with a
shear mechanism coupled (1984). For this, we tested specimens under low and
high stress triaxiality, based on an aluminum alloy. For Bai's model, an implicit
integration algorithm proposed in the previous chapter was used. However, for the
Lemaitre's model, we used the integration algorithm, with only one scalar equation
for the plastic multiplier, suggested by De Souza Neto et al (2002). In the GTN
version of Gurson's model, with the shear mechanism proposed by Xue (2008)
coupled, an implicit algorithm based on operator split methodology was
developed. All algorithms were implemented in a quasi-static finite element
academic framework. The numerical results were evaluated through several
parameters such as: the reaction curve obtained for each model, the evolution of
the equivalent plastic strain, the evolution of damage variable, the numerical
displacement at fracture as well as the ability to predict the potential location for
ductile fracture initiation. It has been shown that several models are unable to
achieve a good predictive capacity when applied to a large range of stress
triaxiality. It was found that the GTN's model with the shear mechanism coupled
does not behave well under mixed tensile/shear loading conditions. Lemaitre's
model has predicted a very high level of plastic strain at fracture, when used in
predominantly shear loading conditions. For Bai's model, there was a good
response when used under high stress triaxiality, but due to lack of an internal
variable of damage, it has a limited range of application. Finally, it can be
concluded that both elasto-plastic and damage models have a great dependence of
the calibration condition. It was also observed that when the load condition under
study is far from the loading condition used for calibration of the material

parameters, the predictive ability of models is compromised.
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Chapter 5

In this chapter, the evaluation of various shear mechanisms proposed to
improve the GTN's model, under predominant shear loading conditions, was
conducted. The effect of the calibration condition was also assessed as regards the
predictive fracture onset ability of models. For this purpose, two independent
calibration points were used to determine the material parameters: one of them at
high and the other at low level of stress triaxiality. It was found that, in general, the
shear mechanisms evaluated do not have a good predictive capacity for both pure
shear and shear/tensile combined loading conditions. By using the material
parameters calibrated for high stress triaxiality, it was found that Xue's shear
mechanism behaved rather conservative in predicting fracture onset, when a pure
shear loading condition was applied. Regarding the same loading and calibration
conditions, the mechanism proposed by Nahshon & Hutchinson showed excellent
predictive ability. For combined loading, both Xue and Nahshon & Hutchinson
shear mechanisms showed predictive ability in disagreement with experimental
observations. Regarding the material parameters obtained by the second
calibration point (in low stress triaxiality), the performance of all mechanisms was
in accordance with the experimental observations, when predominant shear
loading conditions was used, but under combined loading conditions, limitations
were observed in predicting the correct displacement at fracture. Thus, after the
numerical tests performed, it is possible to conclude that there is a procedure for
improving the GTN's model performance under predominantly shear and the
response of the constitutive formulation. Since the models, with internal damage
variable coupled, are strongly dependent on the relationship between the
calibration condition used to determined the material parameters and the real
loading condition under study, they can be calibrated close to the loading

condition.
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Chapter 6

Based on information from the performance of the constitutive models
evaluated in the previous chapters, this chapter, attempted to develop a
constitutive formulation that enhances the capability of predicting fracture
initiation for ductile materials, with regard to the determination of the correct
displacement at the fracture, the correct level of the expected equivalent plastic
strain at fracture, and the correct determination of the potential site for fracture
initiation. For this goal, a model based on the micromechanic of defects, such as the
GTN's model was adopted, and the geometric deduction of the evolution law for
the shear mechanism proposed by Xue. Thus, a new coupling of the so-called
deviatoric damage variable was proposed. The deviatoric stress component was
affected by only the so-called shear damage (or deviatoric damage) and the
volumetric component of the stress tensor by the so-called volume void fraction
that plays a volumetric damage role. With this proposition, a better relationship
between the internal damage variables and the components of the stress tensor
was observed. In order to reduce the dependence of the model with respect to the
calibration condition employed, a new nucleation mechanism for the shear damage
was created, based on the concept that the defects are generated in a different
manner and speed for predominant tensile or shear loading conditions. Thus, the
new model, here called as extended GTN model, requires two calibration points
combined to determine all material parameters: one under high and other under
low level of stress triaxiality. A so-called effective damage variable has also been
suggested, with the aim of combining the two independent internal damage
variables and determine clearly the correct fracture initiation under general
loading conditions. An implicit numerical integration algorithm for the extended
GTN model is proposed and implemented within a quasi-static finite element
framework. The model was then tested under different loading conditions and a
good performance was observed for all situations employed. Finally, it can be
concluded that the extended GTN model is a more reliable formulation that can be

applied for wide range of stress triaxiality.
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Chapter 7

In this chapter, the influence of the loading history in the correct prediction
of fracture was studied. To reach this goal, the effect of the so-called kinematic
hardening, as proposed by Prager, was added into the extended GTN model. An
implicit integration based on the operator split methodology was suggested and
implemented in a academic finite element tool. In this case, an extension of the
integration algorithm developed for small deformation to large deformation was
also carried out. The method suggested by De Souza Neto et al (2008) was used.
The extended GTN model with isotropic and kinematic hardening was tested under
three different loading conditions, such as: pure shear followed by combined
shear/traction, compression followed by traction and reversible shear. In all
loading cases, the reaction curves obtained, the evolution of the effective damage
and the determination of the potential site to fracture initiation were studied. In
general, the numerical results presented reasonable agreement with the
experimental data found in literature. It was observed, differences around 10%
between the reaction forces determined numerically and the experimental

observations.

8.2 SUGGESTIONS FOR FUTURE WORK

After the studies and advances proposed to improve the predictive ability of
the elasto-plastic models and damage models, based mainly on the
micromechanics of defects, in this section, some suggestions for future work are

made:

Elasto-plastic model with the influence of J; in the equivalent stress

In this case, the study of the influence of the third invariant of the deviatoric
stress tensor in the mechanical behavior of the material is recommended. For
some researchers the third invariant has an influence in the shape of the yield
surface. Thus, the development of a new yield function, which has the so-called

equivalent stress as a function of both J, and /3, could be an interesting possibility.
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This suggestion has the goal, in addition to the inclusion of the influence of the
effect of the third invariant, of facilitating the process of determining the numerical

model.

CIUZIJS) - O-y(gp) =0

Reducing the dependence of the calibration point in Lemaitre's model

As evaluated in Chapter 4, Lemaitre's model also has a large dependence of
the relationship between the calibration procedure and the real loading condition
under study. Thus, it is suggested to develop an improvement in Lemaitre's
damage evolution law to contemplate the influence of two calibration points: one
under high and other under low level of stress triaxiality. This influence can be
included, for example, by having two denominators of damage: one for
predominant tensile loading, S;, (using the smooth bar specimen under tensile

loading) and other for predominant shear loading conditions, S,.

y =Y
D=
1-DI15(5,52)

Coupling other evolution laws for backstress tensor

In assessing the effect of loading history, it is suggested as future study, the
coupling with other evolution laws for the backstress tensor, knowing that the
Prager proposition, used in this thesis, considers the principle of co linearity
between the evolution of backstress tensor and the plastic flow rule of the
material. This condition may not satisfy the saturation level of the internal
variable. Thus, the Armstrong and Frederick model could be a suggestion for

implementation and evaluation.

2
B = §HK(R)J€” — yYbB
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APPENDIX A

Determine the flow vector and plastic flow rule for
Bai & Wierzbicki elasto-plastic model

a) Define the yield function for the specific model:

m+1
¢ =q—0,(EP)[1-C,(n—1no)] lcg +(C&*-C§ <u — :l = 1)] (a.1)

where, g is the von Mises equivalent stress, ay (&€P) is the isotropic hardening rule,
&P is the accumulated plastic strain, 7 is the stress triaxiality, u is the parameter

responsible for introducing Lode angle dependence. C,, ny, C5, C§* and m are

experimental parameters.

We can define functions A(n) and B (u) according to Equations (a.2) and (a.3), and

re-write Equation (a.1) as follow:

A =[1-¢,(n—n0)] (a.2)

m+1 3

B(u) = [C5+(Cé“‘—05) <M—£+1)l (@3)
® =q—0,(&P) A(m)B() (a.4)

Remark: The von Mises equivalent stress, stress triaxiality and parameter u can be

defined as:
3 3
q=\3; = /§s=s= j;nsu (a5)
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_P_ %tr(a) (a.6)
T4 g
__cos(n/6) 1 ~ (a7)
= T cos(n/6) |cos@ —7/6) 1] = 6.4641[sec(6 —m/6) — 1]
= (93 227 det(S) — cos(36) (a.8)

b) The flow vector is defined as a derivative of the yield function in

relation to the stress tensor, as:

0P
N=— a9
o (a.9)
After some algebraic manipulation, we can re-write the above equation as:
dlql [A(n)] d[B (.U)]
N=———0,() { Bw) +AMm) ——— (a.10)

In order to determine the closed equation for the flow vector, we have to
determine the derivative of the von Mises equivalent stress, function A(n) and
B(u) in relation to the stress tensor. The procedure to determine the required

derivatives are described below:

L)

The derivative of the deviatoric stress tensor in relation to the stress tensor is

determined as:

as 1
— =] —-=IRI a.12
py 3 ® (a.12)

where, [ represents the fourth order identity tensor and I represents the second

order identity tensor.
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Substituting Equation (a.12) in to Equation (a.11) and after some algebraic

manipulation, we have:

aal _ 2 ¢ (a.13)

Proof:: §:(1-31®I) =
1 1
s=S: (]l —§1®1) = S:]1—§S:I®I

S:I=tr(S)=0 (a.14)

The derivative of function A(n) can be obtained according to Equation (a.15):

a[A(m] gyl
o0~ ag (315)

We have to determine the derivative of the stress triaxiality in relation to the stress
tensor. After some algebraic manipulations, the derivative of the stress triaxiality

can be written as:

Olnl _olpl1 _molgl _ 1, 3n g (a.16)

where, d[p]/de = (1/3)I.

Substituting Equation (a.16) in to Equation (a.15), we can obtain the derivative of

function A(n) in relation to the stress tensor:

A(n) [_ -3¢, [23;7 §— % 1] (@.17)

The derivative of the function B(u) can be obtained according Equation (a.18):
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o[B(W)] alu)

o = (- e — M= (a.18)

We have to determine the derivative of the parameter u. Then, the closed form can

be obtained according the equation below:

dlu]  cos(m/6) tan(6 —m/6) 0]
de 1—cos(m/6)cos(0 —m/6) do

(a.19)

where, [6]/00 represents derivative of the Lode angle in relation to stress tensor

and can be determined according Equation (a.20):

alel 0 [%arccos(f)] 1 1 9[g]
do do B _5\/1_—52¥

where, 0[¢]/d0 represents derivative of the normalized third invariant in relation

(a.20)

to stress tensor and can also be determined according Equation (a.21):

3
olg] _ 9 [(2) ] _ 3 <a[r] 1 dlq] 1) (a.21)
do do

where, d[r]/0d0 represents derivative of the third invariant of the stress tensor in
relation to stress tensor. The derivative of [r] can be obtained according Equation

(a.22).

s [27
a[r] al Tdet(s)l_ 9 d[det(S)] (2.22)

do do 212 Jdo

The derivative of the deviatoric stress tensor determinant in relation to stress

tensor can be written as:

dldet(S)] d[det(S)] oS

1
2 2 ] a.23
3 3 i S 3tr(S -1LS ( )

where, d[det(S)]/0S =S*—1,S+ I,I, and I;and I, represents the first and

second invariants of the stress tensor. Then, we can define a new second order
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tensor M, in order to re-write the derivative of the deviatoric stress tensor

determinant in relation to the stress tensor, as:

1
M =S*—2tr(s%)I (a.24)

Substituting Equation (a.24) in to Equation (a.23), we have:

w =M-1S8 (a.25)
However, substituting Equation (a.25) in to Equation (a.22), and the result
together with Equation (a.13) in to Equation (a.21), we have the derivative of the
normalized third invariant in relation to stress tensor. Preceding the substitution
of the results since Equation (a.21) until Equation (a.18), we can determine a

closed equation for the derivative of parameter B(u) in relation to stress tensor,

as:

d[B(w)] _ D [(i+9—f)s—iM] (a.26)

where, D is defined as:

cos(m/6) tan(@ —m/6) 1 (a.27)

D(0) = (ng - Cg)(l — ") 1 — cos(m/6) cos(6 — m/6) sin 30

In order to determine the closed form for the flow vector, we have to substitute
Equations (a.13), (a.17) and (a.26) in to Equation (a.10). Thus, after some algebraic

manipulation, the flow vector can be calculated as:

3 3 1
N=—aS+— M+ =pI 2
24 as + 24 + 3 B (a.28)
where a, f and A are parameter defined according Equation (a.29), (a.30) and

(a.31).

0y (&)

q

2
a=1- C,Bn + AD¢ <1 + 31 z—3>l (a.29)
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_ oy (E)GB (2.30)
q

1= 30, (eP)AD (a.31)
==

c) The plastic flow rule:

The evolution of the plastic strain can be defined according Equation (a.32), as:
Ae? = AyN = A > S+3/1M+1I 32

where, AeP is the incremental plastic strain, Ay is the plastic multiplier and N is the
flow vector defined according Equation (a.28). The equivalent plastic strain can

also be determined through Equation (a.33):

AP = /%(ASP:AEP) (a.33)

Substituting Equation (a.32) in to Equation (a.33) and after some algebraic

manipulation, we can obtain:

M:M SM
—_ a.34
S:S+2'a'AS:S ( )

2
A&P =Ay\/a2+§ﬁ2+/12
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APPENDIX B

Linearization procedure for Bai & Wierzbicki
elasto-plastic model

a) Defining the yield function for Bai & Wierzbicki elasto-plastic model

according Equation (b.1) below:

® = g - 0,(&") AB()

pm (b.1)
m+ 1)]

® =4 - oy @)1 - G0~ )] |65+ (65 - &) (-
where q is the equivalent stress, o,,(€7) is the yield stress that is a function of the
accumulated plastic strain éP , A(n) is the parameter that introduce the pressure
effect on the hardening rule through the triaxiality ratio,n, and B(u)is the

parameter that introduce the Lode dependence on the hardening rule.

b) The flow vector, plastic flow rule and evolution for the equivalent plastic

strain

The flow vector

3 3
N=Ea5+—/1M+ BI (b.2)

where, N represents the flow vector, S is the deviatoric stress tensor, I is the

second order identity tensor and @, A and f are parameters defined according

below:

L m

C, By + ADE <1 131, q2>l (b.3)
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_ o, (€P)C,B

(b.4)
d q
30, (€P)AD
A= YT (b.5)
cos(m/6) tan(@ —m/6) 1
D) =(C5*—CyHA —u™ b.6
(6) = (Co o)1 —u )1—cos(7r/6)cos(9—7t/6) sin 36 (b-6)
The plastic flow rule
The evolution of the plastic strain tensor is defined as follow:
AeP = A (3 S+ AM 42 1) b.7
£ = Ay (5oa8 + 5 M+ 36 (b.7)

where, AP is the increment of the plastic strain and Ay is the plastic multiplier.

Evolution of the equivalent plastic strain

The evolution of the equivalent plastic strain is defined as follow:

M:M SSM
- b.8
S S +2.a./1$:s (b.8)

2
AEP =Ay\/a2+§ﬁ2+/12

where, AP is the increment of the accumulated plastic strain.

c) Determining the residual system of equations

The update equation for the stress tensor can be determined as:
o = De: (se trial __ A{;‘p) — O.trial — AvD®:N (b 9)
n+1 \En+1 n+1 YO Npiq :

where, 6,,,; is the stress tensor at time t,,,;, 6//% is the trial stress tensor at time

t,+; and D€ is the elasticity matrix.
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Then, the residual system of equations can be determined by the update equation
for the stress tensor (Equation b.9), update equation for the equivalent plastic

strain (Equation b.8) and the complementary Equation (Equation b.1), as:

( Te = On+1 — %rl(%l + AVD Nn+1

- M:M S:M
Tep = &hyq — §£+1mal —Ay |+ ’82 + 4 S:S +2a Aﬁ (b-10)

— =D
Tay = An+1 — ay(£n+1)An+1Bn+1

d)  Write the nonlinear residual system of equation in the linearized form

Equation (b.10) can be written in the linearized form according Equation (b.11),

as:

B _k

ar(f ara’ ara-
00,41 0 dAy ) .

aTngp 0:;1 argp 60-Tl+1 ot L (o-n+1; g£+1; A)/)

00,41 0& dAy | 652“‘1 = T |Ter (o'n+1: §£+1, A]/) (b.11)

n+1 .

arAy arAy GTAV SA)/ rAV (o-n+1’ gfl).p]_: A}/)

00,1 0&-,, O0Ay]

where, 8()/06 41, d()/0&:,, and d()/dAy represent the derivative of each
residual equation in relation to each variable of the problem. After some algebraic

manipulations, Equation (b.11) can be re-written as:

e ONuss  OWNpy
I+ AyD®: Opi1 6§5+1 D" Nosa 60,41 ke ro(an+1"9—£+1'AY) *
_A NO) 1-A o O [5€n+1‘ = |rer(Onsa, Ehsrs Ay) (b.15)
| Y 00,,1 v 6e‘§+1 | 64y 7”Ay(o'n+1' §£+1'Ay)
L N ~AperBpH 0|

6Nn+1 61Vn+1

where, represent the derivative of the flow vector in relation to stress

don a£n+1
a4/ 0+ (x
tensor and accumulated plastic strain, respectively. The terms o( 2 and aép()
n+1 n+1

represent the derivative of the auxiliary square root in relation to stress tensor and

accumulated plastic strain.
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mzjaugﬁ T i (b16)

In order to determine the derivative of the flow vector in relation to stress tensor

and equivalent plastic strain, we have:

3 3 1
6Nn+1 _ 0 [man+1sn+l] N 9] [m ln+1Mn+1] 4 d [gﬁn+1l] (b17)
007,41 007,41 00,41 007,41
where:
e es @) -2@es 0w
do 2 q da) q*\do
3
MJF(%)@MJ(@_M)J(%)@M] (19)
do 21lg\do qg\da) q?*\do
0 [3 pI| 1 (0ﬁ> , (b.20)
dc  3\de
3 3 1
N,y 9 [Zq “n+15n+1] J [Zq ’1”+1M”+1] 9 [§ﬁn+1l] (b.21)
a n+1 a n+1 a n+1 a n+1
where,
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6[%&5] _i(a_Of)S (b.22)

deP  2q \QeP
3
M _3 <a_/1> M (b.23)
deP 2q \0egP
1
o361 1 _ (53) (b.24)
deP 3\9er

In order to determine the derivative of./(x)in relation to stress tensor and

equivalent plastic strain, we have:

O ()0 () o) 2

do 2./(%) do do S:S

where,

) - () oo ()l G o

) d ( )IS:M)—Z[A(aa)S:M+ (6/1) M+ al (E)S M+ S: 6M>
0\ s:5) = 90/ S-S 90)5:5 ' 5:5\oo 90

a6
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d \/E :
O L foe(20) + £5(2) s (1)

+2 (6A>S:M]
“\oev)s:s

Other required derivatives can be defined as following:

dg 3

do  2q
65_]1 1I®I
doe 3

oM _[(2S%\ 1(0trs? o oS
oo |\ as 3\ as "o
052 3 0S? _(65)
oo ) \ s ) \do

082 g
s |

dtrS? Ky
=287 —
do do
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(b.28)

(b.29)

(b.30)

(b.31)

(b.32)

(b.33)

(b.34)



oa 1 q*\] /9q
P ay (&P )q [C Bn + AD¢ <1 + 31 )l (66)

P d
-2E )[ ErA BaZ)

+(aAD 4P +ADa€> 1431 %
do ¢ (')o"’; do )

ol q* 2I,qdq 3l,q*or
+3ADE<—r—3+ 3 %— > %

30 =@ (55)3 =50

0= 30" (5) 32+ (55) =" ()

da —H q?
@_T C,,IBT]-FADéT 1+311§

op _HCyB
de? g
dA _ 3HAD
deP g2
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(b.35)

(b.36)

(b.37)

(b.38)

(b.39)

(b.40)



d[A(m)]

do

where, D is defined as:

D(6) = (C§* - CH(A - ™)

a[D()]

cosm/6 (C5* —Cj)

[11 3”5]—6'
713q 2q2 - N

cos(m/6)

2

Kl

q2

S

11]
3q

tan(0 —mw/6) 1

m+1

do

" 1—cosm/6 3sin?(36)

-1-y™

+ (1

-y™)

cosm/6

1 — cos(m/6) cos(6 — m/6) sin 30

tan?(0 — 1w /6)

(1 —2tan?(0 —m/6))

cos(6 —m/6)

tan(6 — /6) cos(360)

cos(6 —m/6) sin(36)
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a¢

da

)

1—cosm/6 cos?(6 —m/6)

(b.41)

(b.42)

(b.43)

(b.44)



APPENDIX C

Determine the flow vector and plastic flow rule for
GTN model with shear mechanism

a) Define the yield function for the specific model:

Ocq q,tro

®d(o,k, f) = (0—)2 + 2q,f cosh( o

0 0

)-1-a:? (1)

where, o, is the von Mises equivalent stress, oy is the isotropic hardening rule
which can be defined as g, = k — g, k represents the isotropic hardening state

variable, f represents the effective porosity and q;, g, and g3 are material

constants. Equation (c.1) can be re-written as:

1 23
®(0,kf) = 2(8) =3 {1+ 4sf* = 201 cosh (T ) (2)

where, ], represents the second invariant of the deviatoric stress tensor and p is

the pressure which can be defined as p = %tra.

The evolution of the porosity can be verified below, which we have the

mechanisms of nucleation, growth of volumetric void and shear:

f = fn + fg + Dshear (c.3)

where, f, represents the volumetric void nucleation mechanism, f; represents the

volumetric void growth mechanism and Dy, represents the shear mechanism.

The evolutions of the volume void nucleation, growth of void and shear

mechanisms can be obtained by Equations (c.4 - c.6), respectively.
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— 2
fn = In exp —l<g EN) ]?p (c.4)

where, fy represents the volume fraction of all second-phase particles with
potential for microvoid nucleation, ey and sy are the mean strain for void

nucleation and its standard deviation. The term &’ represents the equivalent

. . ~p . . . .
plastic strain and € is the evolution of the accumulated plastic strain.

fo = —=fe] (c.5)
where, s'g represents the incremental plastic volumetric strain. Then, the evolution

law for the shear mechanism can be defined according Xue (2008) or Nahshon et

al. (2008), as:

q4(1 - |67|)f"5 s‘pép, for Xue's mechanism
Dspear = (c.6)
kf(1— EZ)EP , for Nahshon's mechanism

where, q4, g5 and k are constants. The terms 6 and € represent the normalized

Lode angle and normalized third invariant, respectively.

b) The flow vector is defined as:

v o0 _0la®] 17 [{1+ 0572 ~ 20 cosh (47)} o’] (c7)

~ 96  Oo 3 Jdo

In order to determine the closed equation for the flow vector, we have to

determine the following derivative:

a0 _9[38:s]_as
dc = 9o do

-9 (c.8)

The derivative of the second term of Equation (c.7) can be determined as:
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o [{1+asr? — 2011 cosh (%2} o?] o fot [cosn (452)] (c9)

Jdo Jdo

Remark: The derivative of (0 cosh(x)/0dx) is equal to sinh(x).

Thus, after some algebraic manipulation, the above derivative can be written as:

d [{1 + q3f? — 2q4f cosh (qzzjf)}aozl
do

qz3p)1 (c.10)

= —q192f 09 sinh( 20,

However, the flow vector for GTN’s model can be obtained as:

N =S + = q.q,f 0, sinh (ngp) I (c11)
3 20,

c) The plastic flow rule:

The incremental plastic strain can be defined according Equation (c.12), as:

1 3
& =y.N =7. [s +3 012/ 0y sinh (qzzaf) 1] (c12)

where, €P represents the incremental plastic strain and y is the plastic multiplier.

Thus, the incremental plastic volumetric strain can be obtained by Equation below:

D . (923p
&) = Yq192f 0o sinh ( > ) (c.13)
0o

The evolution of the isotropic hardening variable is defined as:

0D

R=—y e (c.14)

where,Rrepresents the evolution of the isotropic hardening variable, k is the
isotropic hardening state variable which can be defined as k = H R and H is the
hardening modulus. After some algebraic manipulation, the above derivative of the
yield function in relation to the isotropic hardening state variable can be written

as:
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P

_ ., (923D | 2 2 q23p
e {qlqup sinh (2—00> + 3 [1 + q3f* — 2q,f cosh (2—00)] 00} (c.15)

Substituting the above result into Equation (c.14) we can obtain:

‘ {qlqup sinh (qzzj'f) + % [1 + q3f% — 2q,f cosh (qzzsf)] 00}

R=7 a-5n

(c.16)

The term (1 — f) into the denominator of the equation (c.18) is responsible for

introduce the softening effect into the GTN’s model.

The accumulated plastic strain can be determined by Equation (c.19):

g = /%(é”:él’) (c.17)

Substituting Equation (c.12) into Equation (c.17) and after some algebraic
manipulation, we can obtain:

. |2 1 ) q23p)]2
_ ) ' Z c.18
€ —y.J3{5.5+3[q1q2f0051nh(260 (c.18)

d) The stress tensor:

The updated stress tensor can be obtained as:
Oni1 = 073 —D: 4D (c.19)
Substituting Equation (c.12) into Equation (c.19), we have:

trial

1 . q23Pn+1
Ony1 =0py1 — DAy Sy, + §‘h¢hfn+100 sinh (TT) I] (c.20)

We can split the trial stress tensor into deviatoric and volumetric parts as:
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i i 1 . 423Pn+1
Opns1 = SHi3 + D — D: Ay |Spiq + §Q1qun+100 sinh (TM> I] (c.21)
0

Then, after some algebraic manipulations, the updated deviatoric and volumetric
parts of the stress tensor can be obtained as:

Str_lf'clll
T (1 4 264y) (c.22)
a1 . (923p
Pusal = |PRES! — 5 4YK1G2fns100. sinh (%)] I (c.23)
0

Using above equations, the evolution of the accumulated plastic strain and the

updated form for the yield function can be determined as:

gl‘lu 1 q23Pn+1
Mgy, = Ay [m + 3 4192 fn+100 sinh (2—00> Il (c.24)
. 2 Strial: Strial 1 . q23p L 2
BEnea = “Vj G sl (] (2
1 Strial:strial
CI) : k’ — n+1 n+1
@k f) =30+ 26472
1 423Pn+1 (c.26)
- _{1 + (I3fn+12 - 2(hfn+1 cosh (—n+>} 0'02
3 20,
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APPENDIX D

Linearization procedure for GTN’s model
with shear mechanism

a) Constitutive model
Define the yield function
The yield function for GTN’s model can be defined according the equation below:
1 Str_i(fl' tritil
n Y n
2 (1 + 2G4y)?

1 q23Pn+1 (d.1)
- —{1 + CI3fn+12 = 2q1fn+1 COSh( = >} 0o°
3 20

®(o,k, f) =

where, g, is the isotropic hardening rule which can be defined as o = k — gy , k

represents the isotropic hardening state variable, f represents the porosity and q, q-
and g5 are material constants.

The flow vector

oD saidt 1 q23Pn+1
N=z=—=|————7—+-— i h( )I d.2
30— |+ 2627 + 3 q192fn+100 sin 20, (d.2)

where, N represents the flow vector, S is the deviatoric stress tensor, I is the second
order identity tensor

The plastic flow rule

Plastic strain:

AsP = A trial | 1 _ h<q23pn+1>l s
= (14 2G4y) 3 4192 n+100 Sin 200 |

where, AeP represents the increment of the plastic strain and Ay is the plastic multiplier.
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Accumulated plastic strain:

2 ( Strial, gtrial 4 . (423Pns1\]°
o _ij {m +3 12 00 sinn (L2 (@4)

where, AP represents the increment of the accumulated plastic strain.

Evolution of the isotropic hardening variable

Ay q,3Pn+1
AR = i h( 2 )
(1 fn+ ) {qlqun+1pn+1 sin 20_0
2 q,3Pn+1 (d.5)
+ 3 [1 + q3fn+12 — 2q,fn+1 cosh <—2 Gn+ )] 00}
0

The term (1 — fn+1) into the denominator of Equation (d.5) is responsible for introduce
the softening effect into the GTN"s model.

Evolution of the porosity

The evolution of the damage variable which is called here for porosity or volume void
fraction, can be defined as:

2
In 1 <§5+1 — 5N>
Af = exp |- Z—=) |A&?
4 SNV2m P172 SN
d.6)
- (923p (
+ (1 = fu+1)AYq192fn+100. sinh (%) + AD,
0

where, AD, represents the increment of the shear contribution and can be determined as:

AD, _(qagofns®™ gl AEP, for Xue's mechanism d7)
kfn+190AEP, for Nahshon's mechanism '
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Update stress tensor

1
On+1 = afzrﬁl D: Ay (Sn+1 + 59192fn+100 sinh <q2 Pn+1> I] (d.8)

3

The updated equations for deviatoric and volumetric parts of the stress tensor can be
obtained as:

Str_lf'clll
__ Ont1 d.9
Sn+1 (1+ 2G4y) (d9)

and,

1 . q23Pn+1
P+l = Prtlrfill SAVKCI1CI2fn+100 sinh (—20n+ )]I (d.10)
0

where, @, is the stress tensor at time t,,,,, 657/% is the trial stress tensor at time t,,,4
and D is the elasticity matrix.

b)  Return mapping algorithm

The system of equations below needs to be solved for Ay, p,+1, frn+1 and R4, , by
Newton_Raphson method.

1 Strial: Strial 1

@ (o, k'f) = _—_—{1 + Q3f2 — 2q4f cosh (ngp)}o-oz
2(1+2GAy)? 3 20,
. q23Pn+1
Pn+1 = pgji-ulll Aququfn+1O'0 sinh (2—n+)
< % (d.11)
f 1/, —en)
N n+
fosr = fi + exp ——(—> Agniq + (1 - f)A€5n+1 + ADs
SNV2m 2 SN
Ryv1 = REYE + ARpyq
The equivalent plastic strain can be determined as:
—p trial
5£+1 = £+gla +A<‘3n+1 (d.12)
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Linearization procedure:

Define the residual system of equations:

1 Strial_strial q23p
T
"oy T3 + 2GAy)? 3{ T asf" = 2. cosh {5 7= )y 0o
‘h3pn+1)
2

p = Pn+1— PRt + AYK 4192 100 Sinh( pu
0

(d.13)

ferial 4 Iy (B = e’ A+ (1= A, +AD
re = ——exp|—=|—— & — £

f nt e V2m P172 SN i vntl *
_ RtTial

\ "R = Rn41 n+1 — DRpyq

Newton Raphson: using N-R method, the following linearized system of equations
needs to be solver for Ay, P41, frner @Nd Ryyq

[ arAy arAy arm, 01”Ay
0Ay  0ppy1 Ofnsr ORpyq X
ar, or, or, or, 54y 1¢*1 [74,/ 4y, D, f, R)]
0Ay  Opp+1 Ofps1r ORpya OPn+1 _ _I rp(dy,p. f, R) I (d.14)
aT'f arf arf arf ' 6fn+1 lrf(AV» D, f’ R)J
00y  Opns1 Ofper ORnyy| OB rx(4y,p,f.R)
aTR aTR arR arR
_(’)Ay apn+1 afn+1 aRn+1—

We can represent above system of equation as:

k
" f)r ] 6314 = —[rColk (d.15)

After some algebraic manipulation, the derivative of each residual equation in relation
to each variable of the problem can be obtained as:

or, 2G 31 . .
aA; - [(1 mn ZGAy)] ZEanil et (d.10)

arAV q23p 1
_ | h(—"*) d.17
0Dt 4192fn+100 Sin 20, ( )
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0T 4y,

afn+1

2 q,3p,
- _5002 [q3fn+1 — q1cosh (2270"'1)]

aryy
aRn+1

2 3
= —300H [1 + q3f;t1 — 2q1 fn+1 cOsh (qz p"“)]
3 20y
%)

— Q192 n+1Pns1H sinh( 20,

67‘

q,3p,
(’)Ay = q192fn+100K sinh (2—+1)

)

%)

or, 3
=1+ -4vKq19292fn+1 COSh( 5
Op

OPn+1 2

(')r
afn+1

= q,3p
= AyK h<_"+1>
YKq1q200 sin 200

ory,
ORp41

CI23Pn+1) 423Pn+1 (q23pn+1>]
- cosh

= HAYK h(
YKa1q2fn+1 [Sln 20, o =

arf
ddy

fN n+1 [
- ex
SN\/Z_T[ PI~ 2

AP 1 Efl-f—l — &y aA8n+1 JAD
— A& +
SN SN a4y 04y

.. (9,3p
(fn+1 fn+12)CI1Clzdosmh<%>
0
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(d.18)

(d.19)

(d.20)

(d.21)

(d.22)

(d.23)

(d.24)



34y q,3p
3 = _(fn+1 - fn+12) —2 419242 cosh <M>
pn+1

20-0
fN n+1 [
- ex
syV2m P~ 2

(d.25)
— A€ 1 <§ﬁ+1 >] dAED + D,
n+1 SN SN apn+1 apn+1

ar ;
—= 1= = 2fn41) 4Yq1q20, sinh (M)
afn+1

20,
- fN _ n+1 [
syvzm P [ ]

(d.26)
—AZh 1 <5ﬁ+1 >] dAEh
n+

S

+
afn—i-l afn+1

arf | q23p
IR = _(fn+1 - fn+12) Ayq.q:H [smh <—"+1>
n+1

20
q23Pn+1 (qz 3pn+1>]
— ———cosh|——————

209 20,

e 2
— fn exp _1<61701+1—_8N> ll
SNVZT[ 2 Sy

— AgP i Eﬁﬂ — &N aAEfLH N dAD,
n+1 S aRn+1 8Rn+1

(d.27)
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aﬂ: _;{CI GofrstD Sinh<q23pn+1>
aA)/ (1 _fn+1) 142/n+1Fn+1 20’0

qzzan)] oo} (d.28)

0o

2
+ 3 [1 + q3fnz+1 = 2q1fn+1 COSh(

OPn+1 T (1= frs1) N2
q23pn+1)] (d.29)
2

Op

ar, A 3
R )4 (‘IZ Pn+1>fn+1 Cosh<

QZ3pn+1>
20y

209

- CI1CI2fn+1 Sinh(

org Ay
Ofntr (1= for1)?

20, 3
+ TO [an+1 — 2 cosh (CI22pn+1)]

Q23Pn+1>]

{(1 — fa+1) [Q1Q2Pn+1 Sinh( 20,

0p
. 423Pn+1
+ 9192 fn+1Pn+1 Sinh (d.30)
0
20, 3
+ 222 (14 gafia — 201fues cosh (ZZ2=2)]
3 20
_Omr_ =1— A Mcosh <q23pn+1>
ORn+1 (1 = fa+1) 1149242 20,2 20,
2H 3
+ 14 05 — 201 fuaa cosh (22212
° (d.31)
an+1an+1 . (ngpn+1)}
— 19> sinh
0o 20
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dAE |
0ADs <(q4gofn+1 (he1 + A7) —1= aly =, Xue

BA)/ B aA‘gn+1
| kf,.190 oy Nahshon

aAs
qs (P P
aADS B J(Q4gofn+1 (gn+1 + Ag ) apn+1 Xue

dp 0AE
n+1 L kf, .19, 5 :1 ,  Nahshon
n

P
oA, | BadsGofuns ™V ELL AT + QuGofua ™ (en+1+Ae‘*’)Tn“, Xue

= n+1
Ofnsr | aA‘972?+1

kgoAE? + kfni190 s
( oAEY
D n+1
osD, 10,90f 01" (Ehyq + AE )—aRn+1' Xue
R dAE!
mH L — 1 Nahshon
aRn+1

aAE A)/4G Stnal Stnal

‘/__T 3 (1+ 2G4y)3

aAgh,, Ay1 (q ,3p, +1> (q23p )
sinh ( “=—""= | cosh ntl
o, .. [3q1q1qzqzqun+1 20, 20,

dAE,,,  Ay2 (q 3D, +1> . <q23pn+1>
-q,9,9,9 0% sinh | =2 | sinh | 2%
of ™ \/—9 11112 an+1 0 20, 20,

260

Nahshon

(d.32)

(d.33)

(d.34)

(d.35)

(d.35)

(d.36)

(d.37)



0Agy,, _Ay2 2 - (2,30,\[ . . (9,3P,,1
ORy41 _ﬁ§q1q1q2q2fn+lHaosmh ~ 20, sinh ~ 200

(3P cosh 433041 (d.38)
20'0 20'0
where,
2 Strial:strial 1 q23p 2
I _ ; d.39
Ve js {(1 T 26472 3 [qu"" Smh( 20, )] } (4.39)

Consistent tangent operator

The consistent tangent operator for GTN’s model can be obtained through the
differentiating the stress update equation (c.21) which gives:

2G e trial

26 1 L
— _ etrial 14 I d.40
dan+1 (1 + ZGA,}/) dsd n+1 [(1 + ZGAV)] £d n+1 d Y + dpn+1 ( )

The system of equations of the plastic corrector phase is differentiated at the converged
state resulting in the expression:

[ aTAy aTAy aTAy arAy _
arAV e trial
6Ay apn+1 afn+1 aRn+1 _a e trial Ean+1
ar, or,  or, ar, ddy ec{;n+1
r ,
0Ay  0pn+1 Ofns1 ORpsa APn+1 N B etiial dsﬁfﬁ,‘?l d.41
. = de (d.41)
aT‘f a'rf a'rf arf dfn+1 aU‘r7.+1
r .
0y OPns1 Ofprs ORnpr| WRnaal | T geetrial
arR arR aT‘R a"r‘R aedn+1
—aAy apn+1 afn+1 aRn+1— 0

The inversion of the above equations can be written as:

261



[ aTAy aTAy aTAy aTAy T ~ ~
arAV e trial
0Ay  0Pns1 Ofns1 ORpyq ~ g trial PEan+1
ddy ar, or, or, or, ‘3"“
T .
dpn+1 _ 0dy  0Pn+1 Ofns1 ORpyq o irial 55’1?1 (d.42)
dfn+1 an an arf arf a Ern+1
Rvil 108y Opuey Ufurs ORmrs| |- 0 geetria
org 0T drpg darg agiinrﬁ
-aAV apn+1 afn+1 aRn+1- ) 0
or,
__ arAV e trial |
gee trial Zdn+1
ddy Ci1 Ciz Ciz Cyy _gzﬂ .
dPni1 Cy1 Cyp Cy3 Cyy _agetrlald g trial (d.43)
dfns1 C31 Cs3 (33 C3y vn+l
ARy 41 Csy1 Cup Cy3 Cyy L ge trial
asgtri%l dn+1
n
L 0

Thus, through the above system, we can remove the expression for d4y and dp;, ;1.

. ory, ) .

_ £° trial e trial e trial

ddy = —=Cyy —7r Py tnal Edn+1 — Cr2 = trial gee trial dev n+t — Ci3 1m0 PP tnal de n+1 (d-44)
Ein+1 v n+1 €an+1
and,
OTA . 6 . .
_ Y etrial e trial e trial
dpn+1 =—(xn peetrial’ dn+1 ~ G2 oo dee trlal deyny1 — Cos Py trlal rd€qni1 (d.45)
dn+1 Eyn+1 Ein+1

Substituting the above equations into the expressions (d.40) and after some algebraic
manipulation, the consistent tangent operator for GTN’s model can be obtained as:
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doyiq

DY = ——
o . den”
I (11 _ —1®1)
(1+2649)\ 3
2G 2 . aTA
+ e trial C V 4 Cpg———
[(1 n ZGA)/)] €4n+1 ® [( 11 682 53—%1 13 gee trial
or
+ C12 e tfial Il
agv n+1

0T 4, ors ar,
—I® || (2 gee trial + (a3 gee trial + (2 gt trial

vn+1

dn+1 dn+1

where,

2
arAV _ < 2G ) etrial, Jce trial

— = & H
aeazlall 1 + ZGA)/ dn+1 dn+1

ory,

etrial
0€, n'v1

2
an _ 24y 2G £ trial, dee trial
asg’;{_ﬁl 3\/2 1 + ZA]/ dn+1- dn+1

de® trial _ (]] _ 11®1) ~de trial
dn+1 — 3 sYent1
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arf

dn+1

'l

)

(d.46)

(d.47)

(d.48)

(d.49)

(d.50)
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APPENDIX E

Linearization procedure for extended GTN’s model

The yield function for the extended GTN model is defined as:

L) 1 q23p
®(a,k, f,D) = a-D) 3 1+ q3f?—2q,f cosh 20, o, (el)
where the evolution equation for the volume void fraction is:
f=f+f0. (e.2)

The terms f™ and f9 represent respectively the evolution of the nucleation and growth
mechanisms and mathematically represented by:

fn = ”9-” fn [_l(é’p — £N>2] o

ex
swzr T 2Usy (e.3)
fo=Qa-0e .
Then, the evolution of the shear damage is represented by:
D =D"+ DS, (e.4)
where D™ and D® are mathematically represented by:
. _n Dy 1 /8P — gy 2] .
D" =(1-|6 ex ——( ) &P
O e e
(e.5)
n—le—] _ . .
DS = q,D% [q7(1 - ||9||)||n||—q6] EPEP = q,DI5 g EPEP
16
where gy = q7(1 - ||9||)“’1"-q6.
The flow vector can be obtained as:
_o0® s 1 - (3qz2p
Nzg—1_D+30‘yq1q2fsmh(26y)l. (e.6)
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The plastic flow rule can be computed as:

D =N = S +1 .h3%pl
& =yN =y |7 +39y04xf sinh| =~ )

I o 1 T N ETAL
&P = §£ (PP =y §m+§ 0yq1q2f sinh 20, .

Evolution equation for R is determined by:

POCL
AP
where gy, = gy + k = 0y + RH, and:
S . (3qp) | 2 3q2p
R = y{qlqup sinh <%) +§ay [1 +qs3f? —2q.f cosh( Z;y ,
. R
" 1—-f-D

Updating the strain tensor

e _ € trial
En+1 = Ent1 — AP

/ S 1 3q2Pn+1
&€ = g€ trial _ A n+1 += inh n I
n+1 n+1 Y 1— dn+1 3 O-y(h(hfn+1 sin ZO'y
P _ . 3q2Pn+1
A‘Sv - AyaleQan+1 sinh T .
y
Updating the stress tensor
Oni1 =D &7,
i S 1 3q,p
l +1 . 2Pn+1
0,41 = DE: s,el“ma - ZGAy# - §AyK0yq1q2fn+1 sinh (#
n+1 y

The deviatoric and hydrostatic contributions are determined as:
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(e.8)
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(e.12)



- S
Spep = Derge, oAy —EL
1- Dn+1

trial _ ctrial trialy e trial e trial
On+1 = Sn+1 + Pn+1 I= ZGsd n+1 + Kevn+1

trial
S n+1

Sn+1 =
TG =

i 1 . 3q20n+1
Prsr I = P54 — —AYKo, g1 2 fre sinh | —— )| I .
3 ZO'y

Updating other elasto-plastic variables

]Ztrial
]2n+1: o 2
2GAy
1+ (—5—
1+ (r=D5)]
_ 66,11
e = 1 - 2222

Ops1=1— —arccos Ent1

27 detS, 44

T2 (Gne)?

(e.14)

trial

An+1

q =
T )

2GAy \1®

detSn+1 = [1 + (1——Dn+1)] detSn+1mal

_ trial _ trial 0 _ ptrial
$ne1 = $ns1 = Ony1 = Ongq = Op1 = 0557 -
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Brief summary of the extended GTN model with isotropic hardening

i) Elasto-plastic split of the strain tensor
e=¢g°+¢°
ii) Elastic law
o=D°¢g®

iii) Yield function

] trial
®(o, f,d,R) = Zntl

1+ (12_6—37111)]2 (1= Dpyy)

1 3q2Pn+1
-3 [1 + Q3fn+12 — 2q1fn41 cosh (—n+ 03%

3 2cry

iv) Plastic flow and evolution equations for R, f and d

qul 1 . 3q20n+1
AP = AY ZGA)/n+ + gJyQ1Qan+1 sinh (Tn-'_ I
[1 + ( D )] (1 - Dn+1) y

A

14 :
AR = —7— sinh
(1—f-D) {CI1CI2fn+1Pn+1 <

2 3q2Pn+1
+ 3% [1 + qafns1’ — 241 fys1 cOsh <z—n+
Oy

3q20n+1
20y

Af = Af™ + Af9

18,1 — ey’
- ot 5 (P22 =) o
N

3Q2Pn+1>

20

Af9=(01- fn+1)Ay0yQ1Qan+1 Sinh(
y

AD = AD™ + ADS

1/8P — gy’

_§< S N)]Ag_p
N

q
ADS = q,D,,, % [q7(1 _ ||§n+1||)4||nn+fu—q6] AP

= (1 - [lem¥])

dy
ex
SyVam P

( 2)

2 Strlal Strlal 1 3
AgP = Ay |7 i ZH + 3|9y9192fn+1 sinh 22Pni1
3 [H(ﬂ)] A-D,)2 ° 20y

1- Dn+1 ntl
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Residual equations for the extended model:

] trial
2n+1

rAy =

[+ (755

Tp = Pn+1 — Pn + AyKUleQan+1 Sinh(

TR = Rn+1 _Rn -

3

Residual system of nonlinear equation in the linearized form:

)| -

Ay

(1 - fn+1 - Dn+1)

2
tooy |1+ q3fn+12 = 2q:1fn+1 COSh<

[0Ty,  OTpy, OTpy  OTpy  OTay]
Ay dp df OR D
or, 0r, 0dn, 0Jn, O
ady dp of OR 9D
orp  dry OJry Ory Orf
ary op of OR aD
drg  0rg O0rg Odrg Org
asy op 9f R 9D
orp 0drp, O0rp O0rp, Orp
loAy 9p of OR oD |
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3q2Pn+1
2

Oy

rfzfn+1_fn_Afn_Afg ’

Tq = Dypyq — Dy —AD™ — AD® .

3QZPn+1>

{Q1Qan+1Pn+1 sinh (

)

1
3 [1 + Q3fn+12 = 2q1fn+1 COSh(

)

3q2Pn+1

)] % (e.15)

(e.16)

(e.17)

(e.18)

(e.19)

(e.20)



where:

oy 8G3episheqii
0y \ 26Ay \T
TR
o . (342Pn+1
6py = (1q2fn+10y sinh (T:+

—6rA 2 3q2Pn+1
y=_—%ﬂ%Hﬂ_qﬂwhc_lL

of 3 2 ay

(e.21)

0.

—_— 2 3q2Pn+1
= __UyH [1 + q3fn+12 - ZQ1fn+1 COSh( > nt
y

3612pn+1>

—q192fn+1Pn+1H sinh <
Oy

1 4GAy

_°r _ ]Ztrial _

(1_a”02h+(T¥%%ﬁr (1= Dy [1 4+ (2258

—Dnyy

and,

3q2Pn+1
2

or, _
=+ = K0yq1q3fn+1 Sinh
Oy

dAy

or 3 3q2Pn41
6_; =1+ EAYKQ1(CI2)2fn+1 cosh ( ZO;H

ar, 3
L= AVKO-yqqu sinh <—CI2pn+1> (822)

of 20,

3q2pn+1) 3q2Pns1 (3q2pn+1)]
- cosh

20, 20. 20

or, .
= AyKq,q;fn+1H |sinh
y y y

OR

or, B

=0,
aD
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and,

dry  O0Af™  OAfY
oAy dAy dAy

ar; _ OAf™ OAfY

ap op op
Oy _ _OA" _04f° (e.23)
of of of
ory  OAf™  OAfI
AR OR oR
dry  OAf™  OAfI
aD  aD aD ’
where:
OAf™ o fu 18P0 — En) AEP (8P, .1 — £y\] AEP
aqmy ~ 105 ”SNme"p[ 2( Su ) [1 Sy ( Su )]a(-)' (e:24)
and,
dAfYI . 3q920n+1
ohy =(1 _fn+1)0yq1Qan+1 Smh< ZO';H-
dAf9 3Ay 3q,p
ap =(1 —fn+1)TCI1(CI2)2fn+1 C05h< ;UZH

3 3
( q;an) +(1- fn+1)AV0yCI1CI2 sinh( q;ZnH) (e.25)
y

dAf9 .
7 = —AVUyCI1CI2fn+1 sinh
y

E)Afg ) 3q2p 1 3q2p 1 3Q2P 1
3R =(1—fn+1)Aqu1q2fn+1[smh< 26;1+ a 20';1+ cosh 20‘:+

OAfI
oD

0 )
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and,

O e ey (0P s (2222)
dAy (1 — fas1 — Dn+1) 192/ n+1Pn+1 Zoy

2 3q2Pn+1
+ § [1 + q3fn+12 - 2q1fn+1 COSh< 20_n+ o'y

y

Orr _ _ Ay {3611(512)2f b .. cosh <3q2pn+1>
op (1= fa+1 = Dnr) | 20y, e 20

y
. (3%2Pn+1
— q192fn+1 Sinh <TZ+

drg Ay

IR _ _ f sinh 3q2Pn+1
af (1 - fn+1 - Dn+1)2 1192/n+1Pn+1 Zo'y

2 3q,p
+ 3% [1 + qsfnr1’ = 201 fns1 c05h< n+1>]}

20y

_ Ay {q oD Sinh<3q2pn+1)
(1= fasr = D) | i+t 20,

2 3 (e.26)
+ 3% [ZQ3fn+1 —2q; COSh( q;pnﬂ)]}

Oy

orr =1-— Ay _ 3q1(q2)?
aR (1 - fn+1 - DTH-l) Z(O'y)z

q2p
+= [1 + Q3fn+1 — 241 fn+1 cosh < ; n+1>]
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The Consistent tangent operator can be determined by the derivative of the above
equation in relation to the elastic trial strain:
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The above system written in the inverse model can be computed as:
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Regarding the introduction of the kinematic hardening in the extended model, the
yield function can be rewritten as:
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where J,(n) represents the second invariant of the relative stress tensor:n =S — B. In
this case, the system of the following nonlinear equations needs to be solve:
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Regarding the linearization procedure, the following linearized system of
equations needs to be solved by Newton Raphson method:
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