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ABSTRACT 

 

Listeria monocytogenes is an opportunistic Gram-positive pathogen and the 

cause of human listeriosis, a severe and often fatal foodborne disease that targets 

immunocompromised hosts. This pathogenicity results from the action of 

numerous virulence proteins, many of which are associated with the cell envelope. 

The cell wall of L. monocytogenes is densely decorated with wall teichoic acids 

(WTAs), a class of anionic glycopolymers known to play key roles in bacterial 

physiology, such as protection against antimicrobial peptides (AMPs) and control 

of autolysin activity. In other Gram-positive bacteria, WTA modification by amine-

containing groups such as D-alanine was largely correlated with increased 

resistance to AMPs and shown to influence autolytic levels. However, in 

L. monocytogenes, where WTA modification is achieved solely by glycosylation, 

WTA-dependent mechanisms of AMP resistance and autolytic regulation remain 

unknown. 

In this work, we show that the L. monocytogenes WTA L-rhamnosylation 

requires the rmlACBD locus, which encodes the biosynthetic pathway for L-

rhamnose, and the upstream-flanking gene rmlT, encoding a putative 

rhamnosyltransferase. We then demonstrate for the first time that this particular 

WTA tailoring mechanism promotes AMP resistance, sustains physiological levels 

of bacterial autolysis and supports virulence mechanisms. In particular, we show 

that L-rhamnosylated WTAs delay the crossing of the L. monocytogenes cell wall 

by AMPs and postpone their contact with the plasma membrane, through a 

decrease of the cell wall permeability to AMPs. Importantly, we reveal the 

contribution of this WTA decoration for L. monocytogenes survival and virulence in 

a mouse model of infection. In addition, we implicate L-rhamnosylated WTAs in the 

maintenance of optimal levels of autolytic activity and host cell invasion, through a 

previously unknown contribution to an efficient surface anchoring of representative 

members of the L. monocytogenes GW protein family. 

Altogether, these results demonstrate that WTA glycosylation mechanisms 

are also important for a variety of biological processes linked with bacterial 

physiology and pathogenesis. 
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RESUMO 

 

Listeria monocytogenes é uma bactéria Gram-positiva patogénica causadora 

da listeriose humana. Esta doença afecta sobretudo hospedeiros 

imunocomprometidos, onde pode evoluir até se tornar fatal. A patogenicidade de 

L. monocytogenes resulta da acção de inúmeros factores de virulência, muitos 

dos quais estão associados com o invólucro bacteriano. A parede celular desta 

bactéria é densamente decorada com ácidos teicoicos (ATs), uma família de 

glicopolímeros aniónicos conhecidos pelos seus variados papéis na biologia 

bacteriana, como por exemplo protecção contra péptidos antimicrobianos (PAMs) 

e controlo da actividade autolítica. Noutras bactérias Gram-positivas, a 

modificação dos ATs com grupos aminados (p.e. D-alanina) está intimamente 

relacionada com resistência à actividade de PAMs e influencia os níveis de 

autólise. No entanto, em L. monocytogenes – cujos ATs são apenas modificados 

com açúcares – os mecanismos de resistência a PAMs e de regulação da 

actividade autolítica dependentes de ATs permanecem desconhecidos.  

Neste trabalho, mostramos que a L-ramnosilação dos ATs de 

L. monocytogenes precisa dos genes rmlACBD, que codificam a via biosintética 

da L-ramnose, e do gene rmlT, que codifica para uma potencial 

ramnosiltransferase. Demonstramos pela primeira vez que este mecanismo 

particular de substituição de ATs promove a resistência a PAMs, sustenta níveis 

fisiológicos de autólise, e apoia mecanismos de virulência. Mostramos 

especificamente que os ATs ramnosilados atrasam a travessia da parede celular 

de L. monocytogenes pelos PAMs e adiam o contacto destes com a membrana, 

através de uma diminuição da permeabilidade da parede celular a estes péptidos. 

Revelamos também a importante contribuição desta decoração de ATs para a 

sobrevivência e virulência de L. monocytogenes in vivo, usando murganhos como 

modelo de infecção. Ainda, responsabilizamos os ATs ramnosilados pela 

manutenção de níveis óptimos de actividade autolítica e invasão celular, através 

da contribuição previamente desconhecida para a eficiente ancoragem à 

superfície de L. monocytogenes de membros representativos da família de 

proteínas com domínios GW. 
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No seu conjunto, estes resultados demonstram que os mecanismo de 

glicosilação de ATs são igualmente importantes para uma variedade de processos 

biológicos associados com a fisiologia e patogénese bacteriana. 
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A. LISTERIA MONOCYTOGENES 

 

A.1. History 

 

Our knowledge about Listeria monocytogenes (Lm) goes back as far as 

1926, when the identification of this bacterium was first reported by Murray and 

colleagues, in the aftermath of an epidemic outbreak among rabbits and guinea 

pigs in their laboratory in Cambridge, England. They named the new species 

Bacterium monocytogenes due to the increased number of monocytes observed in 

the blood of animals infected with sub-lethal doses of this microorganism (Murray 

et al. 1926). The following year, Pirie unknowingly reported the isolation of the 

same species in South Africa, which he named Listerella hepatolytica, in honor of 

Lord Joseph Lister, the father of antiseptic surgery (Pirie 1927). Acknowledging 

Murray’s discovery, Pirie changed the species name to Listerella monocytogenes, 

but confronted with the prior use of Listerella for a genus of slime molds, he 

proposed its renaming in 1940 to the current form (Pirie 1940).  

Although human cases had already been reported (Nyfeldt 1929, Reiss et al. 

1951), they were highly sporadic and Lm infection was essentially regarded as a 

zoonosis. It was only in 1981 that Lm was recognized as a human food-borne 

pathogen, after a severe listeriosis outbreak in Canada related with consumption 

of contaminated food resulted in an elevated percentage of case deaths (Schlech 

et al. 1983). Further food-related outbreaks during the following two decades 

consolidated the status of Lm as a microorganism of public health concern 

(Swaminathan and Gerner-Smidt 2007a).  

 

A.2. Taxonomy, phylogeny and classification 

 

Listeria is one of two genera – the other is Brochothrix – of the Listeriaceae 

family, which in turn belongs to the order Bacillales, class Bacilli, and phylum 

Firmicutes of the domain Bacteria. Other genera closely related to Listeria include 

Bacillus and Staphylococcus. Since its discovery, Lm was for a long time the only 

species within its genus. However, in the second half of the 20th century, with the 

aid of biochemical and genetic typing tools, Seeliger and Rocourt were able to 
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distinguish and identify five novel species: L. innocua (Seeliger 1981), 

L. welshimeri, L. seeligeri (Rocourt and Grimont 1983), L. ivanovii (formerly 

L. bulgarica) (Seeliger et al. 1984) and L. grayi (Larsen and Seeliger 1966, 

Rocourt et al. 1992). Recently, the Listeria genus has undergone a major 

expansion, from six to seventeen species, with the identification of L. marthii and 

L. rocourtiae (Graves et al. 2010, Leclercq et al. 2010); L. fleischmannii and 

L. weihenstephanensis (Bertsch et al. 2013, Halter et al. 2013); and L. floridensis, 

L. aquatica, L. cornellensis, L. riparia and L. grandensis (den Bakker et al. 2014). 

Among these, Lm (infects humans and animals) and L. ivanovii (infects mainly 

livestock) are the only confirmed pathogenic species; the remaining live as 

apathogenic saprophytes in nature (Rocourt and Grimont 1983, Graves et al. 

2010, Leclercq et al. 2010, Bertsch et al. 2013, Halter et al. 2013, den Bakker et 

al. 2014).  

The turn of the century introduced post-genomics to the Listeria research 

field, after the complete genome sequences of Lm (EGD-e) and L. innocua (CLIP 

11262) (Fig. 1) were published (Glaser et al. 2001). Soon after, whole-genome 

sequences of other Lm strains also became available (Nelson et al. 2004, Kuenne 

 
Fig. 1. Circular genome maps of Lm EGD-e and L. innocua CLIP 11262, showing the position and orientation of 
genes. From the outside: Circles 1 and 2, L. innocua and Lm genes on the plus and minus strands, respectively. Color 
code: green, L. innocua genes; red, Lm genes; black, genes specific for Lm or L. innocua, respectively; orange, rRNA 
operons; purple, prophages. Numbers on the second circle indicate the position of known virulence genes: 1, virulence 
locus (prfA-plcA-hly-mpl-actA-plcB); 2, clpC; 3, inlAB; 4, iap; 5, dal; 6, clpE; 7, lisRK; 8, dat; 9, inlC; 10, arpJ; 11, clpP; 12, 
ami; 13, bvrABC. Circle 3, G/C bias (G+C/G-C) of Lm. Circle 4, G+C content of Lm (<32.5% G+C in light yellow, 32.5 to 
43.5% in yellow, and >43.5% G+C in dark yellow). The scale in megabases (Mb) is indicated on the outside of the genome 
circles, with the origin of replication at position 0. (From Glaser et al. 2001) 
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et al. 2013) and, progressively, those of other Listeria species (Hain et al. 2006b, 

Steinweg et al. 2010, Buchrieser et al. 2011). Comparative genomics enabled – 

among other possibilities – the identification of differences important for the 

comprehension of the phylogenetic relationship of Listeria spp. To understand the 

evolution of Listeria pathogenicity, Schmid and colleagues made a phylogenetic 

analysis focused on the comparison of multiple virulence-associated loci in the 

different species. Their analyses indicated that L. grayi was likely the first to 

diverge within the genus and lose its pathogenic capacity, followed by the 

branching of Lm and L. innocua into one lineage, and of L. ivanovii, L. seeligeri 

and L. welshimeri into another (Schmid et al. 2005).  

Early on, Listeria classification relied on the serotyping of somatic (O) and 

flagellar (H) antigens. Based on this method, 16 Listeria serotypes were identified, 

13 of which are found in Lm (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e 

and 7) (Seeliger and Höhne 1979, Seeliger and Langer 1989, Gorski 2008). 

Serotyping, however, is not very specific due to the high antigenic overlap 

between serotypes. Thus, more specific genetic-based typing methodologies 

(genotyping) led to the organization of Lm serotypes into four lineages: lineage I 

(1/2b, 3b, 4b, 4d and 4e), lineage II (1/2a, 1/2c, 3a and 3c), lineage III (4a and 4c), 

and lineage IV (7) (Orsi et al. 2011).   

 

A.3. General features 

 

Lm is a small, rod-shaped (0.5×1–2 μm), non-encapsulated, non-sporulating, 

facultative anaerobic, Gram-positive bacterium (Rocourt and Buchrieser 2007). It 

expresses four-to-six peritrichous flagella at temperatures up to 25 °C, which 

confer motility to Lm while in the environment. This flagellar motility decreases with 

further increase in temperature until it is completely lost at 37 °C (temperature 

inside a host) due to transcriptional repression of the flagellar assembly system 

(Peel et al. 1988, Gründling et al. 2004).  

Lm is a physiologically robust bacterium, able to grow under a broad range of 

temperatures (<0 to 45 °C) and pH (4.3 to 9, optimal at 7), and high osmotic 

pressures (up to 10% NaCl) (Shahamat et al. 1980, Junttila et al. 1988, Parish and 

Higgins 1989, George and Lund 1992). These properties make Lm a virtually 
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ubiquitous microorganism, able to adapt to the demands of a wide variety of 

ecological environments. Indeed, Lm has been isolated from soil, water, sewage, 

plants and animal feces (Fenlon 1999), where it lives as a saprophyte (Weis and 

Seeliger 1975).  

Despite the elevated phenotypic similarity within the genus, Lm can be 

distinguished from other Listeria spp. through a set of biochemical tests that 

assess hemolytic (red blood cell-lysing) activity and acid production (fermentation) 

from carbohydrate sources (Rocourt et al. 1983). In the case of Lm, it is the only 

hemolytic Listeria that ferments L-rhamnose but not D-xylose. 

Since the publication of the first Listeria genomes in 2001 (Glaser et al. 

2001), multiple other species and strains have also had their genomes sequenced 

and analyzed. With few exceptions, the average Lm genome size varies between 

2.7 and 3.0 Mb – with an average G+C content of about 38%, typical of Firmicutes 

– and contains about 2900 protein-coding sequences (Table 1) (Hain et al. 2006a, 

Buchrieser 2007). These numbers are very similar to those of other Listeria spp., 

such as L. innocua or L. welshimeri (Buchrieser 2007). Indeed, all Listeria 

genomes show a highly conserved organization, which reflects the strong 

phylogenetic closeness between listeriae (Buchrieser et al. 2003). Nonetheless, 

they also display genomic differences that are likely to be associated with inter- or 

intra-specific variations of certain phenotypic parameters, such as pathogenicity. In 

fact, a critical genetic difference between Lm and its non-pathogenic relatives 

L. innocua and L. welshimeri concerns the most important Lm virulence genes, 

Table 1. General features of published Listeria genome sequences.
a,b

 

 L. monocytogenes 
EGD-e 

L. monocytogenes 
F2365 

L. innocua 
CLIP11262 

L. welshimeri 
CIP8149 

Chromosome size (bp) 2,944,528 2,905,310 3,011,209 2,814,130 

% G+C content 38 38 37.4 36.4 

ORFs 2,853 2,847 2,973 2,780 

% Coding ORFs 89.2 88.4 89.1 88.7 

Prophages 1 2 5 1 

Plasmids – – 1 (79 ORFs) – 

Strain-specific genes 61 51 78 208 

Transposons 1 (Tn916-like) – – – 

rRNA genes 6 6 6 6 

tRNA genes 67 67 66 66 

a) Adapted from Buchrieser 2007. 
b) bp, base pairs; G+C, guanine and cytosine; ORF, open reading frame.  
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which are all absent from the homologous regions in both avirulent species 

(Schmid et al. 2005, Buchrieser 2007).  

 

A.4. Listeriosis 

 

A.4.1. Epidemiology 

 

The transmission of Lm to humans is achieved mainly through the 

consumption of contaminated food, although there were reports of infection 

transmitted between humans or acquired from animals (Allerberger and Wagner 

2010). Due to its remarkable fitness, Lm can survive to most standard industrial 

food-preserving methods (e.g. refrigeration, acid- or salt-based treatments) to 

persist and grow in a variety of raw and processed foods, including meats (e.g. 

charcuterie and deli), seafood, produce (fruits and vegetables), unpasteurized milk 

and dairy products (e.g. soft cheeses) (Swaminathan and Gerner-Smidt 2007b). 

Despite the environmental widespreadness of Lm and the continuous exposure of 

humans to this pathogen, listeriosis has a very low incidence in humans, with 1–10 

cases per million people reported every year. In recent years, the total number of 

annual cases has been increasing, particularly in developed countries (Denny and 

McLauchlin 2008, Goulet et al. 2008). In contrast to its low occurrence, the 

average rate of clinical case deaths reaches 20–30%, making it one of the most 

deadly food-borne infections, only surpassed by salmonellosis (Gould et al. 2013). 

Over 95% of all reported human listeriosis cases have been caused by Lm strains 

belonging to serotypes 1/2a, 1/2b, 1/2c, and 4b. Serotype 4b accounts for the 

majority of epidemic outbreaks, while serogroup 1/2 has been mostly associated 

with sporadic cases (Jacquet et al. 2002, Goulet et al. 2006). 

 

A.4.2. Pathophysiology 

 

Following its ingestion, Lm must be able to survive through the aggressive 

environment of the gastric compartment before arriving at the intestinal lumen. 

Once there, bacteria can penetrate further into the host organism by crossing the 

intestinal epithelium (Fig. 2). Depending on the host species, this trans-intestinal 
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passage occurs mainly via enterocytes (humans, gerbils and rabbits) or M-cells in 

Peyer’s patches (murines) (Vazquez-Boland et al. 2001, Lecuit 2005, Lecuit 2007). 

After translocation, bacteria are carried in the lymph and the blood to the spleen 

and the liver, the major target organs for Lm colonization, where they are quickly 

taken up by resident macrophages, such as Kupffer cells. In the liver, the majority 

of the captured bacteria are destroyed inside these phagocytic cells, but a 

substantial number is able to survive and infect nearby hepatocytes, where the Lm 

population can recover and spread to adjacent cells and tissues. If the hepatic 

infection is not contained by the host immune system, uncontrolled bacterial 

multiplication will lead to the freeing of Lm into the bloodstream, resulting in 

bacteremia (Vazquez-Boland et al. 2001, Zenewicz and Shen 2007). Blood-borne 

Lm can then migrate to and infect secondary target organs, such as the brain and 

placenta (with consequent infection of the fetus), by crossing both the blood-brain 

and the placental barriers (Fig. 2) (Vazquez-Boland et al. 2001, Lecuit 2005, 

Lamont et al. 2011, Disson and Lecuit 2012). 

 

A.4.3. Clinical manifestations and treatment 

 

The prime mechanism of host defense against Lm infection is cell-mediated 

immunity (Mackaness 1960, Zenewicz and Shen 2007). Thus, the clinical severity 

 
 

Fig. 2. Schematic representation of the successive steps of human listeriosis. 
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of listeriosis is dependent on the functional status of the host immune system. In 

healthy immunocompetent hosts, listeriosis can be asymptomatic or, in the worst-

case scenario, manifest as a self-limiting and short-term febrile gastroenteritis. 

Immunodepressed individuals, such as the elderly, pregnant women, neonates, 

HIV carriers, and those undergoing immunosuppressive treatments, cannot mount 

a proper T cell-mediated immune response against bacterial pathogens, and are 

thus much more susceptible to Lm infection (Vazquez-Boland et al. 2001, 

Swaminathan and Gerner-Smidt 2007b, Hernandez-Milian and Payeras-Cifre 

2014). In these risk groups, listeriosis takes on a clinically more invasive and 

potentially lethal form, typically characterized by bacteremia, which can then 

evolve to systemic (septicemia) or more localized infections, either in the central 

nervous system (CNS) or in the fetoplacental system.  

CNS infections are the most predominant form of invasive listeriosis in non-

pregnant human adults (55–70% case reports), due to the tropism of Lm for 

nervous tissue (Vazquez-Boland et al. 2001, Hernandez-Milian and Payeras-Cifre 

2014), and manifest primarily as meningitis but also as meningoencephalitis 

(Disson and Lecuit 2012). Maternofetal and early-onset neonatal listeriosis are the 

most common pregnancy-associated variants of the disease. They are elicited in 

utero – mainly during the third trimester, when the maternal immune system is 

weakened – with the placental translocation of Lm from the maternal blood to the 

fetus. Whereas the mother is hardly affected, displaying flu-like symptoms in the 

worst case, infection of the fetus can become systemic and result in abortion or 

pre-term delivery of a stillborn or a live but severely affected infant. Less frequent, 

late-onset neonatal listeriosis develops in week-old neonates, probably after 

having contacted with contaminated maternal fluids during delivery. Commonly 

associated symptoms include fever and meningitis, but also gastroenteritis and 

pneumonia (Vazquez-Boland et al. 2001, Lamont et al. 2011). 

Antimicrobial therapy is the current standard treatment for listeriosis. It 

involves the intravenous administration of beta-lactamic antibiotics (ampicillin or 

penicillin) in combination with an aminoglycoside (e.g. gentamicin). Patients 

allergic to beta-lactams can be treated with alternative antimicrobial compounds, 

which include trimethoprim/sulfamethoxazole, erythromycin, vancomycin or 

fluoroquinolones. Pregnant women should not be given gentamicin, due to 



 
CHAPTER I – INTRODUCTION 

 
 

 28 

potential teratogenic effects on the fetus. Treatment duration is variable but should 

typically last more than two weeks (Allerberger and Wagner 2010). 

 

A.5. Cellular infection cycle 

 

The remarkable capacity of Lm to overcome tight physiological barriers such 

as the intestinal epithelium, the placenta, and the blood-brain barrier (Lecuit 2005) 

comes from its ability to survive inside professional phagocytes and, more 

importantly, to invade non-phagocytic cells (e.g. epithelial and endothelial cells, 

fibroblasts and hepatocytes) (Cossart and Toledo-Arana 2008). Once inside a 

target cell, Lm proliferates and propagates the infection by spreading to other cells 

(Fig. 3).  

When Lm first encounters a non-phagocytic host cell, it makes use of a set of 

surface proteins that enable its direct contact and stable adhesion to the cell 

membrane (adhesins). Almost concurrently, Lm induces its own internalization by 

 
 

Fig. 3. Schematic representation of the successive steps of the Lm cellular infection cycle. Lm is depicted in red and 
host actin in green. (Adapted from Cossart and Toledo-Arana 2008) 
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engaging eukaryotic membrane receptors with invasion-promoting proteins 

(invasins) that trigger intracellular signaling cascades leading to a localized 

reshaping of the host cell cytoskeleton around the bacterium-cell interaction site. 

In a zipper-like fashion, Lm is gradually surrounded by host cell membrane and 

engulfed into an internalization vacuole. Soon after, aided by a secreted pore-

forming toxin, Lm disrupts its containing vacuole and reaches the host cytoplasm, 

where a high nutritional availability favors bacterial replication. Once in this 

compartment, Lm cells begin to recruit host actin filaments that initially surround 

the whole bacterial surface (actin cloud) but later reassembles at one pole into a 

long comet-like tail (actin tail). Actin polymerization/depolymerization dynamics in 

this structure generate a propulsive force that confers random intracellular motility 

and allows Lm to eventually reach the cell membrane, forcing it into a protrusion 

that can be taken up by a neighboring uninfected cell. The resulting Lm-containing 

double-membrane secondary vacuole is rapidly lysed, enabling the bacterium to 

restart the infection cycle in a new cell without re-exposure to the extracellular 

environment (Fig. 3) (Vazquez-Boland et al. 2001, Cossart and Toledo-Arana 

2008). 

 

A.5.1. Major virulence factors 

 

To successfully undertake each step of the host cell infection cycle, Lm is 

equipped with a highly diverse and evolutionarily perfected supply of virulence 

proteins, all of which are placed under the tight control of a complex, fine-tuned 

regulatory network (Camejo et al. 2011). In this section are described the most 

representative virulence factors involved in the different stages of the intracellular 

infection cycle. 

 

Internalins A and B 

 

Two members of the internalin family, internalin A (InlA) and B (InlB), were 

first bacterial proteins identified as mediators of Lm entry into host cells are 

(Gaillard et al. 1991, Dramsi et al. 1995). Members of this family contain a leucine-

rich repeat (LRR) domain with variable length (Fig. 4) that is generally involved in 
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interaction with other proteins (Cabanes et al. 2002). Extensive functional 

characterization has strengthened their role as major listerial invasins.  

InlA (800 aa) contains a second repeat region (B-repeat domain) that is 

separated from the LRR domain by an inter-repeat (IR) spacer region (Gaillard et 

al. 1991). In its C-terminal end, a cell wall-sorting signal region, containing an 

LPXTG motif, guides the covalent attachment of InlA to the peptidoglycan 

meshwork (Dhar et al. 2000) (Fig. 4). Together, the LRR and IR regions were 

shown to be indispensable and sufficient to support the entry of Lm into human 

epithelial cells (Lecuit 2007), as they form the minimal structure necessary to bind 

to the eukaryotic receptor for InlA, E-cadherin (E-cad) (Mengaud et al. 1996), a 

transmembrane glycoprotein expressed in epithelial cells and implicated in cell-cell 

adhesion. The InlA/E-cad interaction mimics the homotypal interaction between E-

cad molecules from adjacent epithelial cells, which forms the basis of the tensile 

strength of adherens junctions that bind cells together. In this sense, the 

engagement of E-cad by InlA initiates a complex signaling pathway that activates 

a localized actin cytoskeleton rearrangement and ultimately leads to a clathrin-

mediated internalization of the Lm-InlA/E-cad complex (Pizarro-Cerdá et al. 2012). 

Remarkably, variation of a single amino acid in E-cad dramatically changes host 

permissiveness to InlA-mediated infection, with humans and guinea pigs (E-

cadPro16) showing susceptibility to orally inoculated Lm, whereas murinae (E-

cadGlu16) are resistant (Lecuit et al. 1999).  

InlB (630 aa) displays a cell wall-anchoring C-terminal domain different from 

that of InlA, composed of multiple repeats that contain a conserved GW dipeptide 

(GW repeats) (Braun et al. 1997) (Fig. 4). These mediate the labile association 

with the Lm cytoplasmic membrane via non-covalent interactions with lipoteichoic 

acids (LTAs) (Jonquières et al. 1999), which results in co-existing surface-attached 

and secreted forms of InlB. In agreement with what was observed for InlA, the host 

cell invasive properties conferred by InlB (Braun et al. 1998) are also localized to 

the LRR domain (Braun et al. 1999). Unlike InlA, InlB has more than one 

interacting partner at the surface of eukaryotic cells. The most important is c-Met, 

a receptor tyrosine kinase known to bind hepatocyte growth factor (HGF). The role 

of this receptor in Lm infection was validated by showing that cells that did not 

express c-Met were resistant to InlB-mediated Lm entry (Shen et al. 2000). 
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Although some signaling players differ from those involved in the InlA-induced 

pathway, the Lm internalization mechanism activated by InlB/c-Met interaction 

similarly results in a reorganization of the actin network that promotes clathrin-

mediated bacterial endocytosis (Pizarro-Cerdá et al. 2012). InlB was also shown to 

bind gC1qR, the receptor for the globular part of the C1q complement component 

(Braun et al. 2000), and glycosaminoglycans (GAGs) (Jonquières et al. 2001), 

both through its GW repeat domain (Jonquières et al. 2001, Marino et al. 2002). 

GAGs are able to sequester InlB molecules from the Lm surface and aggregate 

them around the host cell adhesion site, potentiating c-Met activation (Jonquières 

et al. 2001). 

The diversified nature of their receptors and the differential cell- and tissue-

specific expression result in a distinct cell tropism for Lm internalins: while InlA 

mostly promotes invasion of epithelial cells, such as those in the intestine and 

placenta (Gaillard et al. 1991, Lecuit et al. 2004), InlB mediates Lm entry into a 

wider variety of cell types, including hepatocytes (Dramsi et al. 1995), fibroblasts 

(Dramsi et al. 1997) and endothelial cells (Greiffenberg et al. 1998, Parida et al. 

1998). 

 

Listeriolysin O 

 

To escape from the internalization vacuole, Lm secretes monomers of the 

pore-forming toxin listeriolysin O (LLO), a member of the family of cholesterol-

dependent cytolysins (CDC) (Tweten et al. 2001), which oligomerize in the vacuole 

membrane as ring-like pore complexes (Shatursky et al. 1999, Tweten et al. 

2001). LLO was the first Listeria virulence protein to be identified and functionally 

characterized in the context of infection. Mutants in the LLO-encoding gene, hly 

(for hemolysin), were drastically attenuated in virulence (>5 logs) in the mouse 

model (Gaillard et al. 1986, Kathariou et al. 1987). In cultured cells, they were 

unable to replicate because they remained trapped inside the vacuole (Gaillard et 

al. 1987, Portnoy et al. 1988), confirming the role of LLO in vacuolar membrane 

lysis. This role is not only confined to primary vacuoles, but also to the double-

membrane secondary vacuole formed after Lm spreads from cell to cell (Gedde et 

al. 2000).  
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The cytolytic activity of LLO is optimal at a low pH (5.5) and lost almost 

completely at neutral pH (Geoffroy et al. 1987), explaining why the toxin is most 

active within the acidic vacuolar environment and loses its function upon Lm 

release into the cytoplasm (Beauregard et al. 1997). This pH-dependent regulation 

protects the host cell from further membrane damage, thus preserving an 

intracellular niche for Lm survival and proliferation (Glomski et al. 2003). An 

additional regulatory switch resides in the 5’ coding region of the hly mRNA, 

encoding the N-terminal region of LLO. The presence of a PEST-like sequence 

within the LLO N-terminus (Fig. 4), suggested that it targeted LLO for cytosolic 

degradation (Rechsteiner and Rogers 1996, Decatur and Portnoy 2000). However, 

further studies denied this hypothesis (Lety et al. 2001) and implicated this hly 

mRNA region in translational repression of LLO during exponential growth of Lm 

(Schnupf et al. 2006), a situation verified in the host cell cytoplasm. 

 
Fig. 4. Schematic representation of Lm virulence proteins InlA, InlB, LLO and ActA. Both InlA and InlB contain the 
signature internalin N-terminal LRR domain, which is followed by an IR region and a B-repeat (BR) domain. However, their 
C-terminal region is different: InlA has a sorting signal (SS) sequence with an LPTXG motif (enables covalent linkage to 
peptidoglycan), while InlB has GW dipeptide-containing module repeats (mediate non-covalent association with cell wall 
components). LLO contains an N-terminal PEST-like sequence, a central domain with two α-helices (TMH1 and TMH2) that 
span host cell membranes to form pores, and an acidic triad (Asp208, Glu247, Asp320) that mediates the pore-forming 
activity through pH-dependent conformational changes (Hamon et al. 2012); and a C-terminal cholesterol-binding motif 
(CBM). ActA is anchored to the membrane by a C-terminal transmembrane (TM) anchor and encodes its actin 
polymerization activity in two distinct domains: one recruits actin monomers and the actin nucleator Arp2/3 complex, while 
the other binds Ena/VASP family proteins that control actin filament assembly speed and direction. SP, signal peptide. 
(Adapted from Cabanes et al. 2002, Hamon et al. 2012, Köster et al. 2014 and Travier et al. 2013) 
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Other bacterial and host factors were shown to cooperate with the 

intravacuolar activity of LLO. Two bacterial proteins with phospholipase C (PLC) 

activity, PI-PLC and PC-PLC (encoded by the Lm virulence locus genes plcA and 

plcB), facilitate LLO-mediated escape from primary and secondary vacuoles, 

respectively (Smith et al. 1995), and in some cases, are able to mediate Lm 

escape in the absence of LLO (Marquis et al. 1995). Host proteins GILT and CFTR 

were also shown to support LLO function (Singh et al. 2008, Radtke et al. 2011). 

A substantial body of evidence gathered in recent years has revealed 

additional roles for LLO in Lm infection other than vacuole rupture. Most of these 

novel functions are exerted extracellularly and are associated with signaling 

events: activation of NF-κB (Kayal et al. 1999), MAPK (Tang et al. 1996, Weiglein 

et al. 1997), calcium flux (Dramsi and Cossart 2003) and phosphoinositide 

metabolism pathways (Sibelius et al. 1996); downregulation of SUMOylation (Ribet 

et al. 2010); apoptosis of dendritic and T-cells (Guzman et al. 1996, Carrero et al. 

2004); upregulation of cell adhesion molecules and cytokines (Yoshikawa et al. 

1993, Nishibori et al. 1996, Kayal et al. 1999); mitochondrial fragmentation (Stavru 

et al. 2011) and histone modifications (Hamon and Cossart 2011). 

 

ActA 

 

Actin-mediated intracellular motility is a hallmark of the Lm cellular infection. 

The polymerization of actin filaments to form a polarized, dynamic tail structure 

with propulsive force is mediated by a 639-aa surface protein named ActA (Fig. 4) 

(Domann et al. 1992, Kocks et al. 1992). Encoded in the main Lm virulence locus 

(Vazquez-Boland et al. 1992), ActA alone was shown to be sufficient for 

recruitment of actin filaments (Pistor et al. 1994) and confer motility to otherwise 

non-motile bacteria (Kocks et al. 1995) and Lm mutants were non-motile in the 

host cell cytoplasm and avirulent in the mouse model (Domann et al. 1992, Kocks 

et al. 1992).  

This protein is anchored to the bacterial membrane by a C-terminal 

transmembrane domain (Domann et al. 1992, Kocks et al. 1992), and contains two 

other domains responsible for actin filament-mediated motility. Near the N-

terminus, three regions homologous to WASP protein sequences are essential for 
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actin filament polymerization and elongation (Lasa et al. 1997), through their 

recruitment of actin monomers and of the host actin nucleator Arp2/3 complex 

(Welch et al. 1998, Boujemaa-Paterski et al. 2001, Zalevsky et al. 2001). The 

presence of a proline-rich repeat (PRR) domain in the middle of ActA is not 

required for motility but is important for regulation of the actin filament tail speed 

and directionality (Fig. 4) (Lasa et al. 1995, Auerbuch et al. 2003). This domain 

binds members of the eukaryotic Ena/VASP protein family (Chakraborty et al. 

1995), which not only recruit profilin, an actin monomer-binding protein (Theriot et 

al. 1994), but also modulate Arp2/3 complex activity by limiting filament branching 

and favoring the polymerization of parallel filaments (Samarin et al. 2003). A 

recent study demonstrated that the region between the Ena/VASP-binding domain 

and the transmembrane anchor is important for Lm aggregation and biofilm 

formation via ActA-ActA interactions, and that this activity if crucial for bacterial 

persistence in the intestinal tract (Travier et al. 2013). 

Besides the pivotal role in Lm intracellular motility, ActA was also shown to 

be involved in other cellular infection events, such as epithelial cell invasion 

(Alvarez-Dominguez et al. 1997, Suarez et al. 2001), vacuole escape (Poussin 

and Goldfine 2010) and autophagy evasion (Yoshikawa et al. 2009). 
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B. GRAM-POSITIVE CELL ENVELOPE 

 

The bacterial cell envelope is an elaborate, multilayered structure that 

provides structural support and protection from the external environment, while 

allowing exchange of nutrients and waste products. In Gram-negative organisms, 

this structure is composed of three concentric layers: a cytoplasmic (or inner) 

membrane, a peptidoglycan cell wall, and an outer membrane. In contrast, Gram-

positive species lack an outer membrane but, in compensation, their peptidoglycan 

cell wall layer is significantly thicker to confer adequate resistance to turgor 

pressure and protection from external aggressions (Fig. 5) (Silhavy et al. 2010).  

The work presented in this thesis is centered on Listeria monocytogenes, a 

Gram-positive pathogen. In accordance, this section describes the main 

components and features of this type of cell envelope.  

 

B.1. Peptidoglycan 

 

The presence of a cell wall layer made of peptidoglycan is a common 

characteristic to both Gram-negative and Gram-positive bacteria. However, unlike 

its Gram-negative homologue, the peptidoglycan cell wall is the major structural 

 
Fig. 5. Schematic representation of the basic cell envelope structure of Gram-negative and Gram-
positive bacteria. Both bacterial classes possess a cytoplasmic membrane (CM) surrounded by a rigid cell 

wall (CW) layer. However, while the Gram-negative cell wall is conceiled by a second membrane (outer 
membrane, OM), the Gram-positive cell wall is the outermost surface layer and is significantly thicker. 
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component of the Gram-positive cell envelope, displaying a thickness of 30–100 

nm with multiple connected layers (Silhavy et al. 2010). Additionally, it acts as a 

scaffold for the surface positioning of proteins and other glycopolymers with 

relevant physiological roles (Neuhaus and Baddiley 2003, Dramsi et al. 2008).  

Peptidoglycan is a highly polymerized macromolecule composed of linear, 

parallel glycan strands linked perpendicularly by short peptide bridges (Fig. 6A). 

The glycan portion is constituted by alternating units of N-acetylglucosamine 

(GlcNAc) and N-acetylmuramic acid (MurNAc) linked by β(1–4) glycosydic bonds. 

The average glycan strand length is 50-250 GlcNAc-MurNAc repeats (Ward 1973). 

The stem peptide element is linked to each MurNAc residue through its C3-linked 

lactoyl group and is typically constituted by the pentapeptide L-Ala-γ-D-Glu-N2X-D-

Ala-D-Ala. N2X represents a diamino acid: L-Lys, in most Gram-positive species, or 

meso-2,6-diaminopimelic acid (mDpm), in most Gram-negative species and Bacilli 

(including Listeria). The muropeptide GlcNAc-MurNAc-pentapeptide constitutes 

the basic peptidoglycan subunit precursor (Fig. 6B) (Vollmer 2008).  

The diamino acid residue is important for the cross-linkage between glycan 

strands, which occurs between its free (ε) amino group and the carboxyl group of 

the first D-Ala (position 4) of another stem peptide. In the case of Lm and other 

species with mDpm-type peptidoglycan, the interpeptide linkage is a direct bond 

between mDpm and D-Ala (Fiedler 1988), while a pentaglycine (Gly5) bridge 

performs this role in L-Lys-type peptidoglycan (Fig. 6C). However, several other 

amino acid residues, stem peptide positions and interpeptide bridges have been 

catalogued by Schleifer and Kandler, who created a classification system for all 

these peptidoglycan types (Schleifer and Kandler 1972). According to this system, 

the Lm peptidoglycan belongs to the A1γ type (Kamisango et al. 1982). 

As a result of the transpeptidation reaction, the terminal D-Ala is cleaved out 

in the mature peptidoglycan (Vollmer 2008). Additionally, the diamino acid is the 

acceptor anchor for covalently bound surface proteins (Dramsi et al. 2008). 

 

B.1.1. Peptidoglycan metabolism 

 

The continuous remodeling of the cell wall is paramount for bacterial growth 

and division, and requires a dynamic balance between peptidoglycan assembly 
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and turnover. Coordination between these processes is thus mandatory to prevent 

morphological malformations and concomitant functional defects, such as the 

mislocalization of surface molecules (Popowska 2004, Vollmer et al. 2008a). 

 

B.1.1.1. Peptidoglycan assembly 

 

Peptidoglycan is assembled outside of the bacterial cell through the 

polymerization of muropeptide subunits generated on the cytoplasmic side of the 

 
Fig. 6. Schematic representation of the peptidoglycan structure and the most common types of 
peptidoglycan strand cross-connections. (A) Peptidoglycan is a three-dimensional mesh-like structure 
composed of linear glycan strands connected between each other by peptide bridges. (B) Composition of a 
basic peptidoglycan monomer: a GlcNAc-MurNAc disaccharide linked by the latter to pentapeptide stem 
containing typically L-Ala, D-Glu, a diamino acid (mDpm or L-Lys), and two terminal D-Ala residues. In mature 
peptidoglycan, the last D-Ala is cleaved off during transpeptidation or by carboxypeptidases. (C) Common 

types of linkages between stem peptides from different glycan strands. In A1γ-type peptidoglycans, the ε-
amino group of mDpm (in blue) is directly linked to the carboxyl group of D-Ala in position 4. In S. aureus (A3α 

type), the ε-amino group of L-Lys (in green) is linked indirectly to D-Ala by a penta-glycine bridge (in red). 
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membrane (van Heijenoort 1998). Following translocation, these building blocks 

are transferred and integrated into existing peptidoglycan chains by the action of a 

multifunctional family of surface proteins called penicillin-binding proteins (PBPs) 

(Fig. 7).  

PBPs are membrane-anchored proteins that can be divided into high 

molecular weight (HMW) PBPs – the major players in peptidoglycan assembly – 

and low molecular weight (LMW) PBPs, both of which are characterized by the 

presence of an archetypal DD-peptidase domain (Macheboeuf et al. 2006). In 

HMW PBPs, the peptidase domain is located at the C-terminus and catalyzes 

transpeptidation reactions between adjacent glycan strands. Additionally, they may 

contain an N-terminal domain with transglycosylase activity, necessary for 

elongation of glycan strands (bifunctional PBPs). LWM PBPs perform roles linked 

to peptidoglycan maturation and recycling (Macheboeuf et al. 2006, Sauvage et al. 

2008). The PBP peptidase domain recognizes the D-Ala-D-Ala moiety of immature 

stem peptides and cleaves the DD-bond. Penicillin and other β-lactam antibiotics 

take advantage of their structural similarity with the D-Ala-D-Ala dipeptide to bind 

irreversibly to and inhibit most PBPs, thus promoting bacterial death by perturbing 

cell wall synthesis (Tipper and Strominger 1965, Ghuysen 1994).  

In silico studies have allowed the identification of ten PBP-like protein-

encoding genes in the Lm genome (Guinane et al. 2006, Korsak et al. 2010), and 

β-lactam-binding assays confirmed that nine expressed functional PBPs (Korsak 

et al. 2010). They comprise five HMW proteins – class A members PBPA1 and 

PBPA2 (former PBP1 and PBP4), and class B members PBPB1, PBPB2 (former 

PBP3 and PBP2) and PBPB3 – and four LMW PBPs, including carboxypeptidase 

PBPD1 (former PBP5) and two β-lactamases (Korsak et al. 2010). Studies on 

listerial PBPs have largely focused on the determination of their affinity to several 

β-lactam derivatives (Gutkind et al. 1990, Pierre et al. 1990, Vicente et al. 1990, 

Guinane et al. 2006, Zawadzka-Skomial et al. 2006). In some cases, mutational 

approaches allowed the elucidation of the role of some PBPs towards Lm 

pathogenesis. For instance, PBPB1, PBPD1, but mostly PBPA2 and PBPC1, were 

found to be important for the colonization of the mouse spleen (Guinane et al. 

2006). Depletion of these PBPs resulted in variable degrees of morphological 

defects (Guinane et al. 2006, Korsak et al. 2010), and the pleiotropic effects 
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elicited by such modifications are likely to be responsible for the attenuated 

virulence. 

 

B.1.1.2. Peptidoglycan turnover 

 

Peptidoglycan renovation relies on the activity of autolysins, another family of 

surface-associated enzymes that catalyze the hydrolysis of every existing covalent 

bond in the mature peptidoglycan matrix. The nature and location of the bond(s) 

cleaved by an autolysin is determined by its functional specificity within the 

broader family of peptidoglycan hydrolases (Vollmer et al. 2008b). N-

acetylglucosaminidases (NAGases) and N-acetylmuramidases (NAMases) cleave 

the glycan strand β(1,4) bond after GlcNAc and MurNAc, respectively. N-

acetylmuramyl-L-alanine amidases (or simply amidases) separate the stem 

peptide from the glycan chain by breaking the bond between MurNAc and L-Ala. 

Finally, endopeptidases and carboxypeptidases hydrolyze the amide bonds within 

and between stem peptides (Vollmer et al. 2008b) (Fig. 7). The existence of 

multiple autolysins sharing the same activity and substrate attests for the 

functional redundancy associated with peptidoglycan hydrolases, a situation that 

has complicated the characterization of their individual role. 

The genome of Lm strain EGD-e is predicted to encode six NAGases, four 

NAMases, four amidases, and a multiplicity of peptidoglycan peptidases, but only 

a few have been experimentally validated (Popowska 2004, Bierne and Cossart 

2007, Pinto et al. 2013). The only predicted NAGases with confirmed 

peptidoglycan hydrolase activity are MurA and Auto, although their substrate 

specificity remains to be verified (Carroll et al. 2003, Cabanes et al. 2004). MurA is 

necessary for proper cell separation during growth and its absence or dysfunction 

results in virulence defects, namely in adhesion to host cells (Lenz et al. 2003, 

Alonzo et al. 2011). Auto is important for entry into non-phagocytic cells and 

virulence in mice and guinea pigs (Cabanes et al. 2004). The contribution of both 

autolysins towards Lm virulence possibly takes place through different 

mechanisms. This is suggested by their distinct cell wall association domains 

(MurA contains LysM repeats, Auto has GW modules; discussed below), which 

hint at a differential cell wall localization, and by their relative importance for cell 
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wall remodeling, since murA mutant cells cannot separate properly and grow in 

filaments, while aut mutants maintain a normal morphology (Carroll et al. 2003, 

Cabanes et al. 2004). Two putative Lm amidases contain C-terminal GW module 

repeats, suggesting similar surface association requirements; among them is the 

autolysin and virulence-promoting adhesin Ami (Milohanic et al. 2001).  

Although none of the NAMases have been characterized in a virulence-

oriented perspective, two were recently shown to possess lysozyme-like activity in 

the presence of cell wall substrate and to be required for stimulating the replication 

of quiescent bacteria, possibly through their impact in cell wall reshaping and thus 

in cell growth and division (Pinto et al. 2013). Nonetheless, IspC, a NAMase-like 

protein with a significant contribution to Lm infection, was identified in a serotype 

4b strain (Wang and Lin 2007, 2008). Interestingly, IspC mutants were not affected 

in their growth in vitro and cell morphology, but showed cell type-dependent 

defects in nearly every step of the cellular infection cycle (Wang and Lin 2008). 

The presence of an NlpC/p60 domain, related to the CHAP (cysteine, 

histidine-dependent amidohydrolase/peptidase) superfamily is common to many 

 
Fig. 7. Lm peptidoglycan metabolism and the surface proteins involved in its assembly and turnover. 

The peptidoglycan sacculus is polymerized from cytoplasmic precursors with the help of penicillin-binding 
proteins (PBPs, yellow). High-molecular-weight PBPs, such as PBPA2, contain transglycosylase (TGD) and 
transpeptidase domains (TPD) that catalyze, respectively, glycan chain elongation and stem peptide bridging 
between adjacent chains. Other PBPs include the low-molecular-mass carboxypeptidases, which cleave the 
terminal D-alanyl-D-alanine stem peptide bond (e.g. PBPD1), and beta-lactamases, which degrade PBP-
inhibiting antibiotics to promote bacterial survival (e.g. PBPC1). On the other hand, the degradation of mature 
peptidoglycan, during bacterial elongation/division or autolysis, is mediated by autolysins (green), a family of 
surface hydrolases that can cleave the peptidoglycan at different sites: within the glycan chain (N-
acetylglucosaminidases or N-acetylmuramidases) or the stem peptide (endo- and carboxypeptidases), or 
between both (N-acetylmuramoyl-L-alanine amidases). Interestingly, autolysins commonly associate non-
covalently with the bacterial surface via cell wall-binding repeats, such as the GW modules in Ami, Auto and 
IspC, or the LysM repeats in MurA and p60. (Reproduced from Carvalho et al. 2014) 
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peptidoglycan hydrolases. Interestingly, most NlpC/p60 proteins are found in 

Bacillus and Listeria, but not in Staphylococcaceae, which express proteins with 

another CHAP-type domain (Bateman and Rawlings 2003, Layec et al. 2008). This 

is most likely a reflection of the affinity of the NlpC/p60 domain for the γ-D-Glu-

mDpm bond (Rigden et al. 2003), which is replaced by a γ-D-Glu-L-Lys linkage in 

staphylococci. Four Lm EGD-e proteins contain putative NlpC/p60 domains and 

were predicted to possess cell wall hydrolase activity (Bierne and Cossart 2007). 

Two of them, p45 (or Spl) and p60 (also CwhA or Iap), have been studied and 

their function validated. Spontaneous mutants secreting lower amounts of p60 

showed a filamentous morphology and reduced host cell invasion efficiency, 

suggesting that p60 is required for entry into non-phagocytic cells. Indeed, 

exogenously added p60 not only restored Lm invasiveness (Kuhn and Goebel 

1989), but also disrupted bacterial chains into individual cells, due to its cell wall-

degrading activity (Wuenscher et al. 1993). Lack of functional p60 results in 

septum abnormalities that disrupt actin-based intracellular motility, impairing 

optimal cell-to-cell spread and, overall, virulence (Hess et al. 1996, Pilgrim et al. 

2003, Faith et al. 2007). 

 

B.2. Surface proteins and anchoring mechanisms 

 

Proteins located at the bacterial cell surface carry out important and often 

vital functions, which – as described before – can be related with the interaction of 

the bacterium with its surrounding environment or with physiological events 

associated with cell surface maintenance or remodeling (e.g. growth/division). The 

correct localization of these proteins at the cell surface is therefore a requisite for 

proper activity.  

In Lm and other Gram-positive bacteria, the cell wall is a preponderant 

component of the cell envelope and provides the main structural framework for 

protein anchoring (Navarre and Schneewind 1999). Protein-cell wall association 

can be established in two ways (Fig. 8): (i) stable covalent bonding between the 

peptidoglycan matrix and particular protein sorting motif sequences (LPXTG and 

NXXTX proteins), or (ii) labile, non-covalent interaction between cell wall 

components and cell wall-recognizing protein domains (LysM and GW proteins). 
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The cytoplasmic membrane also serves as a docking site for surface proteins, 

either directly through membrane-spanning domains (membrane proteins) or 

indirectly via a lipid anchor molecule (i.e. lipoproteins) (Fig. 8) (Cabanes et al. 

2002, Desvaux et al. 2006). 

 

B.2.1. Cell wall-associated proteins 

 

B.2.1.1. LPXTG and NXXTX proteins 

 

The precursors of proteins covalently anchored to the Gram-positive cell wall 

feature a C-terminal sorting signal sequence of about 30–40 residues comprising 

(i) an LPXTG pentapeptide motif (where X is any amino acid), followed by (ii) a 

hydrophobic domain, and (iii) a short positively charged tail (Schneewind et al. 

1992). Whereas the hydrophobic and charged domains of the sorting signal can 

display variability in their sequence and/or length, the LPXTG motif is much 

conserved (Fischetti et al. 1990, Schneewind et al. 1992). Studies with C-terminal 

truncates of the staphylococcal protein A revealed that proper cell wall anchoring 

requires a complete sorting signal, and hinted that the hydrophobic and charged 

residues downstream of the LPXTG motif are responsible for retaining the 

polypeptide in the bacterial membrane until its recognition by a surface 

transpeptidase enzyme called sortase (Schneewind et al. 1992, Schneewind et al. 

1993). The LPXTG motif is accommodated within the sortase active site, where a 

catalytic cysteine initiates cleavage of the peptide bond between the threonine and 

the glycine residues. The cleaved protein becomes temporarily bound to the 

sortase (Ton-That et al. 1999), which prevents its diffusion to the extracellular 

medium. The protein is then transferred to its final acceptor, lipid II (a membrane 

lipid-bound peptidoglycan precursor), where a new bond is formed between the 

free amine group of the stem peptide diamino acid residue (mDpm in Lm) and the 

C-terminal threonine carboxyl group (Fig. 8) (Ton-That et al. 1997). 

Proteins with LPXTG motifs are found in a multiplicity of Gram-positive 

organisms (Navarre and Schneewind 1999, Mazmanian et al. 2001, Hendrickx et 

al. 2009, Pérez-Dorado et al. 2012). However, Lm stands out as the species with 

the largest number, encoding 41 proteins (over 1% of its genome) (Glaser et al. 
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2001, Cabanes et al. 2002), seven of which are currently described as virulence 

factors (Table 2). InlA, important for entry into epithelial cells and virulence in mice 

(Gaillard et al. 1991, Lingnau et al. 1995), was the first to be identified, long before 

the Lm genome was sequenced. The list comprises four other internalin family 

members (Bierne et al. 2007) – InlF (Kirchner and Higgins 2008), InlH (Pucciarelli 

et al. 2005, Personnic et al. 2010), InlJ (Sabet et al. 2005, Sabet et al. 2008), and 

InlK (Dortet et al. 2011) – with roles in host cell adhesion and immune evasion, 

and two non-internalins – Vip (Cabanes et al. 2005) and LapB (Reis et al. 2010) – 

important for entry into cells.  

A subset of covalently attached cell wall proteins feature a sorting signal 

different from that found in LPXTG proteins. This alternative signal is characterized 

by an NXXTX consensus sequence that targets surface protein precursors for 

processing by a second sortase, called sortase B to distinguish from the LPXTG-

specific sortase or sortase A (Fig. 8) (Comfort and Clubb 2004, Mariscotti et al. 

 
Fig. 8. Schematic representation of the main classes of surface proteins found in Lm. Proteins 

covalently associated to the peptidoglycan are processed by membrane transpeptidase enzymes called 
sortases, which recognize and cleave specific C-terminal sorting signal sequences (LPXTG or NXXTX) to 
append the mature protein to mDpm residues in the peptidoglycan. All other proteins associate with the 
bacterial cell surface through non-covalent interactions that take place between cell wall-binding repeat 
domains (e.g. GW and LysM repeats) and cell envelope components (e.g. LTAs), or through protein tethering 
to the cytoplasmic membrane by means of N-terminally linked phospholipid anchors (lipoproteins) or short N- 
or C-terminal transmembrane regions rich in hydrophobic residues. 
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2009). Sortase B enzymes have fewer substrates, which are usually encoded by 

genes arranged in an operon together with the sortase B gene, srtB (Marraffini et 

al. 2006). Interestingly, they are involved in heme-iron scavenging and uptake 

(Mazmanian et al. 2002, Maresso and Schneewind 2006, Xiao et al. 2011, Klebba 

et al. 2012), indicating that the sortase B-mediated anchoring mechanism may 

have evolved differently from sortase A to become more specialized in the 

anchoring of proteins required for iron homeostasis.  

Lm encodes only two proteins with NXXTX motifs (Table 2) (Bierne et al. 

2004), both of which require sortase B for cell wall anchoring (Pucciarelli et al. 

2005). One of them, SvpA (surface virulence protein A), is a surface-associated 

protein required for iron acquisition and persistence in mouse organs (Newton et 

al. 2005). The other, Lmo2186, possesses two putative sorting motifs, 

NKVTN and NPKSS (underlined residue is common to both), but only the latter is 

necessary for surface anchoring (Mariscotti et al. 2009). SvpA was first 

characterized as a virulence factor, as its absence resulted in deficient escape 

from macrophage phagosomes (Borezée et al. 2001). However, more recent data 

indicated that neither SvpA nor Lmo2186 are essential to promote infection 

(Newton et al. 2005), agreeing with results demonstrating that sortase B is 

dispensable for virulence (Bierne et al. 2004). Instead, they are implicated in heme 

scavenging under conditions of low iron availability, and are currently designated 

heme-binding proteins (Hbp) 2 and 1, respectively (Xiao et al. 2011). 

 

Table 2. Examples of LPXTG and NXXTX proteins in Lm. 

Protein Gene Size (aa) Function References 

LPXTG proteins 

InlA lmo0433 800 Host cell invasion  Gaillard et al. 1991;  
Lingnau et al. 1995 

InlF lmo0409 821 Host cell adhesion and invasion  Kirchner and Higgins 2008 

InlH lmo0263 548 Modulation of host inflammatory 
response (IL-6 production) 

Personnic et al. 2010 

InlJ lmo2821 851 Host cell adhesion (in vivo) Sabet et al. 2008 

InlK lmo1290 598 Autophagy evasion Dortet et al. 2011 

LapB lmo1666 1711 Host cell adhesion and invasion Reis et al. 2010 

Vip lmo0320 399 Host cell invasion Cabanes et al. 2005 

NXXTX proteins 

SvpA/Hbp2 lmo2185 569 Heme acquisition Xiao et al. 2011 

Hbp1 lmo2186 207 Heme acquisition Xiao et al. 2011 

 



 
CHAPTER I – INTRODUCTION 

 
 

 45 

B.2.1.2. LysM proteins 

 

Lysin motif (LysM) domains are encountered in proteins from a broad variety 

of organisms, such as plants, fungi, bacteria, and viruses (Buist et al. 2008). 

Initially found in bacterial and phage lysins, from which the motif took its name 

(Birkeland 1994), the LysM domain is characterized by a variable number of 

roughly 40–80-residue repeats, spaced by stretches rich in serine, threonine, and 

asparagine (Buist et al. 1995). Their presence in proteins with cell wall-degrading 

activity suggested that LysM repeats are important for retention of these enzymes 

in the peptidoglycan (Fig. 8) (Joris et al. 1992, Birkeland 1994). This hypothesis 

was validated through binding studies using the LysM domains of Lactococcus 

lactis and Enterococcus faecalis autolysins (Steen et al. 2003, Eckert et al. 2006). 

Further studies singled out GlcNAc as the peptidoglycan moiety bound by LysM 

(Buist et al. 2008). However, instead of an expected uniform surface distribution, 

many LysM-containing proteins appear localized to specific sites by the excluding 

action of cell wall components, such as lipoteichoic acids (Steen et al. 2003), or 

peptidoglycan modifications, such as O-acetylation (Veiga et al. 2007).  

LysM domains are found in six Lm proteins (Bierne and Cossart 2007), 

among which are the p60 and MurA autolysins (Table 3) (Lenz et al. 2003). The N-

terminal region of p60 contains two LysMs separated by a Src homology 3 (SH3)-

like domain (Bierne and Cossart 2007), which presumably mediate binding to 

specific peptidoglycan sites important for p60 activity. In contrast, MurA contains 

four LysM repeats near its C-terminus (Carroll et al. 2003), which may be 

important to position the MurA catalytic site in a manner distinct of p60 to optimize 

its activity. A third LysM protein (Lmo2522) was recently characterized in Lm as 

one of two novel listerial resuscitation-promoting factors, i.e. muralytic enzymes 

important for jump-starting the growth of dormant bacteria (Pinto et al. 2013). 

 

B.2.1.3. GW proteins 

 

Many surface proteins interact non-covalently with the cell wall through a 

domain containing a variable number of tandemly arranged repeat sequences, 

called GW modules (Fig. 8). First discovered in the Lm invasion protein InlB 
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(Braun et al. 1997), its name derives from the presence of a conserved glycine 

(G)-tryptophan (W) dipeptide. InlB contains three GW modules in its C-terminal 

cell wall association domain that are required and sufficient to confer cell wall-

binding properties to the protein (Braun et al. 1997). InlB variants lacking this 

domain are unable to associate to the surface of non-invasive Listeria and 

promote their entry into eukaryotic cells (Braun et al. 1998). Structural analysis of 

the GW module revealed an interesting resemblance with SH3 domains, known to 

be involved in protein-protein interaction in signal transduction pathways (Kaneko 

et al. 2008). However, steric hindrance issues discarded a functional SH3-like 

activity for GW modules (Marino et al. 2002).  

The binding strength of proteins containing GW modules is proportional to 

the number of modules. This is illustrated by comparing the surface association 

levels of InlB and Ami, another GW protein with autolytic activity and an important 

role in bacterial adhesion to host cells (Milohanic et al. 2000, Milohanic et al. 2001, 

Asano et al. 2012). Containing eight GW modules, Ami is found exclusively in 

association with the bacterial surface, whereas InlB (only three modules) is 

detected in both cell envelope and in secreted protein fractions (Braun et al. 

1997). Lm encodes seven other GW proteins (Table 3), all of which have a 

Table 3. LysM and GW proteins in Lm. 

Protein Gene Size (aa) Function References 

LysM proteins 

MurA/NamA lmo2691 590 Autolysin (NAGase) Carroll et al. 2003 
p60/Iap lmo0582 482 Autolysin (endopeptidase) Kuhn and Goebel 1989; 

Wuenscher et al. 1993 

Lmo2522 lmo2522 277 Autolysin (putative NAMase) Pinto et al. 2013 

Lmo0880 lmo0880 462 Unknown  

Lmo1303 lmo1303 109 Unknown  

Lmo1941 lmo1941 239 Unknown  

GW proteins 

InlB lmo0434 630 Host cell invasion Braun et al. 1997 

Ami lmo2558 917 Autolysin (MurNAc-L-Ala amidase) Milohanic et al. 2000; 
Milohanic et al. 2001 

Auto lmo1076 572 Autolysin (NAGase) Cabanes et al. 2004 

Lmo1215 lmo1215 289 Autolysin (NAGase)
a
 Bierne and Cossart 2007 

Lmo1216 lmo1216 328 Autolysin (NAGase)
a
 Bierne and Cossart 2007 

Lmo1521 lmo1521 427 Autolysin (MurNAc-L-Ala amidase)
a
 Bierne and Cossart 2007 

Lmo2203 lmo2203 375 Autolysin (NAGase)
a
 Bierne and Cossart 2007 

Lmo2591 lmo2591 508 Autolysin (NAGase)
a
 Bierne and Cossart 2007 

Lmo2713 lmo2713 312 Unknown Bierne and Cossart 2007 

a) Bioinformatic prediction from conserved domains 
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predicted amidase domain in common with Ami (Cabanes et al. 2002), hinting that 

they also may possess autolytic functions. Indeed, one of them, Auto, was 

described to also function as an autolysin (Cabanes et al. 2004). Staphylococcal 

autolysins are also associated to the bacterial surface by structural motifs 

resembling listerial GW modules (Oshida et al. 1995, Heilmann et al. 1997, Hell et 

al. 1998, Allignet et al. 2001), strongly suggesting that this cell wall association 

protein motif has evolved with the purpose of mediating the reversible surface 

binding of proteins with autolytic activity (Milohanic et al. 2001). 

Lipoteichoic acids (LTAs) were identified as the InlB surface anchor, binding 

to its cell wall association domain. The interaction with these cell envelope 

glycopolymers is highly specific, as LTAs from L. innocua or S. pneumoniae are 

not able to capture InlB (Jonquières et al. 1999). The cell wall association domain 

of InlB also mediates its interaction with GAGs present at the surface of host cells 

and with gC1qR, significantly potentiating InlB-mediated invasion (Braun et al. 

2000, Jonquières et al. 2001, Banerjee et al. 2004, Asano et al. 2012). 

 

B.2.2. Membrane-associated proteins 

 

B.2.2.1. Lipoproteins 

 

Bacterial lipoproteins contribute to important physiological roles, such as 

substrate binding and transport, antibiotic resistance, signaling, and protein folding 

(Sutcliffe and Russell 1995, Hutchings et al. 2009). They were also shown to take 

an active part in virulence-associated processes, such as adhesion, invasion, and 

immunomodulation (Kovacs-Simon et al. 2011, Nakayama et al. 2012).  

Lipoproteins are expressed as immature polypeptides, which are converted 

to prolipoproteins by the addition of a lipid moiety at a specific motif in the distal 

portion of the N-terminal signal peptide. This motif, called lipobox, is characterized 

by a four-residue sequence containing a conserved cysteine (Sutcliffe and 

Harrington 2002, Babu et al. 2006). The sulfhydryl group of the cysteine 

establishes a thioester bond with phospholipid-derived diacylglycerol, in a reaction 

catalyzed by the Lgt transferase (Kovacs-Simon et al. 2011). The N-terminal lipid 
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anchor inserts into the outer leaflet of the bacterial cytoplasmic membrane (Fig. 8), 

enabling the surface retention of the protein upon signal peptide cleavage.  

In Lm, the biological importance of lipoproteins is emphasized by their 

preponderance in the surface proteome: 68 of 133 surface proteins were predicted 

to be lipoproteins, based on the presence of an N-terminal lipobox (Glaser et al. 

2001), and 26 were later confirmed experimentally (Baumgärtner et al. 2007). 

Interestingly, nearly half of listerial lipoproteins are presumed to act as substrate-

binding components of ABC transporter systems (Bierne and Cossart 2007), 

performing the equivalent functions of periplasmic solute-binding proteins in Gram-

negative bacteria (Tam and Saier 1993). This is the case of lipoproteins OppA, 

which participates in oligopeptide uptake, and LpeA, which belongs to the LraI 

family of manganese-importing ABC transporter components (Novak et al. 1998), 

although supporting evidence for this function in L. monocytogenes have yet to be 

obtained. Another substrate-carrying lipoprotein, OpuC, operates in the transport 

of L-carnitine, important for Lm osmotolerance and persistence in mice organs 

(Sleator et al. 2001). Fifteen other Lm lipoproteins were predicted to perform 

enzymatic roles (Bierne and Cossart 2007). Among them, the best studied and 

with a significant contribution to infection is the surface chaperone PrsA2 

(Chatterjee et al. 2006, Alonzo et al. 2009, Zemansky et al. 2009, Forster et al. 

2011). 

 

B.2.2.2. Hydrophobic tail proteins 

 

Surface proteins can be associated with the bacterial cytoplasmic membrane 

through an N- or C-terminal tail region comprised of hydrophobic amino acid 

residues that spans and stably inserts the protein in the lipid bilayer, during 

translocation (Fig. 8). The orientation of the proteins in the membrane is pre-

determined by the presence and localization of positively charged residues relative 

to the membrane-spanning domain (stop-transfer signals) (Dalbey et al. 2011).  

From the ten predicted Lm surface proteins with a putative C-terminal 

hydrophobic tail (Bierne and Cossart 2007), only ActA has been biochemical and 

functionally characterized (Domann et al. 1992, Kocks et al. 1992). A large number 

of listerial enzymes linked with cell wall metabolism and surface protein processing 
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– e.g. sortases (Mazmanian et al. 2000), signal peptidases (Paetzel et al. 2000) 

and PBPs – are anchored to the bacterial membrane by an N-terminal 

hydrophobic tail (Bierne and Cossart 2007), which in many cases corresponds to a 

signal peptide sequence lacking a cleavage site recognized by a signal peptidase. 

 

B.2.3. Proteins with unknown association mechanism 

 

Several proteins secreted by Lm lack any recognizable surface-targeting 

sequences. Moreover, a part of these proteins is associated with the cell envelope 

despite having no predicted surface-binding domains (Schaumburg et al. 2004, 

Trost et al. 2005). Consistent and, in some cases, significant secretion of the same 

proteins in different studies seems to discard or at least minimize the contribution 

of bacterial cell lysis to their extracytoplasmic localization. In turn, it suggests that 

they use a non-classical type of secretion mechanism (Schaumburg et al. 2004). 

So far, FbpA is the only known example of an unconventionally secreted and 

surface-associated protein with a described virulence-promoting function. Like 

many streptococcal fibronectin-binding proteins, FbpA lacks all the classical cell 

surface sorting and anchoring sequences. However, the protein was still detected 

in the Lm cytoplasmic membrane after subcellular fractionation. FbpA was found 

to facilitate adhesion to hepatocytes in vitro and to support liver infection in mice 

(Dramsi et al. 2004). 

 

B.3. Teichoic acids 

 

In addition to surface proteins, the Gram-positive peptidoglycan is densely 

decorated with different families of secondary glycopolymers, which include 

teichoic acids, teichuronic acids, and S-layer protein-associated glycans 

(Weidenmaier and Peschel 2008). From these, only teichoic acids are synthesized 

in Listeria, where they make up to 60% of the dry cell wall mass (Fiedler et al. 

1984). 

First discovered in 1958 by Baddiley and colleagues (Armstrong et al. 1958), 

teichoic acids (TAs; from the Greek teichos, i.e. “wall”) are described as a broad 

family of surface glycopolymers constituted by phosphodiester-linked polyol 
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subunits that can also contain glycosyl or D-alanyl ester groups (Baddiley 1970, 

Ward 1981). The abundance of phosphate groups confers strong anionic 

properties to TAs, which contribute to the net negative charge of the bacterial 

surface. This electrostatic status is fundamental for cell envelope-related 

processes, such as cationic homeostasis (required for optimal activity of surface 

proteins) and trafficking of nutrients, proteins and antibiotics (Neuhaus and 

Baddiley 2003). Moreover, the presence of TAs at the Gram-positive cell surface is 

also important for the targeting and anchoring of surface proteins (e.g. autolysins), 

with impact in cell growth and division; for providing protection against 

antimicrobial compounds, and for host-pathogen interactions (Weidenmaier and 

Peschel 2008). 

Depending on their type of linkage to the cell surface, TAs are distributed into 

two groups: lipoteichoic acids (LTAs) and wall teichoic acids (WTAs). 

 

B.3.1. Lipoteichoic acids (LTAs) 

 

B.3.1.1. LTA structure and biogenesis 

 

LTAs comprise a structurally diverse group of TAs (Neuhaus and Baddiley 

2003) that are attached to the outer leaflet of the bacterial membrane through a 

glycolipid anchor, which consists of a sugar moiety (di- or oligosaccharide) linked 

to diacylglycerol (DAG) (Fischer et al. 1990). In representative Firmicutes species 

like B. subtilis, S. aureus and Lm, the LTA backbone comprises a linear chain of 

1,3-linked glycerol 1-phosphate (GroP) repeats that are variably substituted with D-

alanyl and/or glycosyl residues at the C2 hydroxyl group (Fig. 9A) (Fischer et al. 

1990). Multiple analytical studies on the LTA composition have indicated an 

average chain length of 17–27 GroP units (Hether and Jackson 1983, Uchikawa et 

al. 1986b, Fischer 1994). Whereas these bacteria share the same LTA backbone 

composition, their glycolipid anchors show variation in the sugar moiety: glucose-

glucose (Glc-Glc)-DAG (B. subtilis and S. aureus) or galactose-glucose (Gal-Glc)-

DAG (Lm, Fig. 9A) (Uchikawa et al. 1986b, Jorasch et al. 2000, Kiriukhin et al. 

2001). The anchor is synthesized in the cytoplasmic side of the bacterial 

membrane and translocated to the extracellular side to accept GroP subunits 
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derived enzymatically from outer leaflet membrane phospholipids for 

polymerization of the LTA backbone (Reichmann and Gründling 2011). In contrast 

to S. aureus and B. subtilis, which use respectively one and up to four enzymes to 

synthesize the LTA backbone (Reichmann and Gründling 2011), Lm requires two 

enzymes: one (LtaP) to prime the anchor with the first GroP molecule, and the 

other (LtaS) to extend the chain with further GroP subunits (Fig. 9B). Only LtaS is 

essential for LTA synthesis, and its depletion results in temperature-sensitive 

growth and defects in cell shape and septal division (Webb et al. 2009).  

 

B.3.1.2. LTA modifications and functions 

 

Modifications of the LTA backbone, such the addition of D-alanine or glycosyl 

groups, are carried out outside the cell by enzymatic complexes that translocate 

the cytoplasmic substrates across the membrane and append them to the LTA 

chain (Percy and Gründling 2014).  

LTA D-alanylation is catalyzed by the products of the dltABCD operon 

(Perego et al. 1995, Neuhaus and Baddiley 2003, Reichmann et al. 2013), and the 

resulting D-alanyl ester linkage is highly sensitive to changes in temperature, pH 

and salt concentration (Hurst et al. 1975, Fischer and Rosel 1980, Macarthur and 

Archibald 1984). Mutational studies in different bacteria have highlighted the 

importance of this LTA modification in physiological functions, such as regulation 

of autolysis (Steen et al. 2005, Fedtke et al. 2007) and cation homeostasis 

(Archibald et al. 1973). Importantly, it also plays an essential role in bacterial 

pathogenesis, as demonstrated by the reduced host cell adhesion and virulence 

levels of dltA mutants of Lm (Abachin et al. 2002). Interestingly, the increased 

adhesion of dltA mutants of Enterococcus faecalis to uroepithelial cells suggests 

that the contribution of this LTA modification towards infection is cell type-

dependent (Wobser et al. 2014). In addition, D-alanylation of LTAs was also shown 

to provide significant protection against cationic antimicrobial peptides (CAMPs) 

(Abachin et al. 2002). This protective mechanism is based on the reduction of the 

cell envelope net negative charge by the addition of positively charged D-alanyl 

groups, thus decreasing CAMP affinity for the bacterial surface (Peschel et al. 

1999).  
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The mechanism and role of LTA glycosylation are still poorly understood 

topics. What is known so far is that the occurrence, degree and type of glycosyl 

residues used in this modification can vary between species and even between 

strains (Iwasaki et al. 1986, Iwasaki et al. 1989). Interestingly, Listeria strains were 

found so far to be only glycosylated with Gal (Hether and Jackson 1983, Uchikawa 

et al. 1986b). Although the enzymatic players have not yet been identified, it is 

hypothesized that cytoplasmic nucleotide-activated sugars are captured by a 

glycosyltransferase, which transfers the sugar moiety to a membrane lipid anchor; 

this sugar-lipid complex is translocated across the membrane and recognized by a 

second glycosyltransferase, which picks up the sugar and links it to the LTA 

backbone (Percy and Gründling 2014). 

 
Fig. 9. Structure and biosynthesis pathway of Lm LTAs. (A) LTA polymers are composed of a 

poly(glycerol-phosphate) backbone chain (pink) that is attached to the cytoplasmic membrane via a glycolipid 
anchor consisting of a Gal-Glc disaccharide (blue) linked to a phospholipid-derived diacylglycerol molecule 
(yellow). The backbone subunits can be substituted with D-Ala or Gal. (B) LTA biosynthesis starts with the 

glycolipid anchor assembly on the inner leaflet of the cytoplasmic membrane by the concerted action of LafA 
and LafB. The anchor is then translocated to the extracellular side (presumably by the LafC transmembrane 
protein), where a phospholipid-derived GroP molecule is transferred to the disaccharide by LtaP. Additional 
GroP units are introduced by a second protein, LtaS, which is essential for LTA biogenesis. UDP, uridine 
diphosphate. (Adapted from Reichmann and Grundling 2011) 

 
 



 
CHAPTER I – INTRODUCTION 

 
 

 53 

Numerous evidences of morphological and septal formation phenotypes 

associated with LTA mutants have implied the participation of these surface 

glycopolymers in cell growth/division-related processes. A recent study in S. 

aureus confirmed this by demonstrating a direct interaction between the LTA 

biosynthesis and cell division protein machineries (Reichmann et al. 2014). LTAs 

have also potent immunostimulatory properties (Morath et al. 2001). They are 

known to interact with and activate Toll-like receptor (TLR) 2, for which only the 

glycolipid anchor and a few backbone subunits are required (Deininger et al. 

2003). This activation was shown to be stronger in the presence of D-alanylated 

subunits (Deininger et al. 2007). In addition, LTAs are specifically recognized by 

innate immunity lectin-like proteins such as L-ficolin, one of components of the 

lectin pathway of complement system activation (Lynch et al. 2004), and surfactant 

protein D, an innate immunity mediator in the lung (van de Wetering et al. 2001). 

 

B.3.2. Wall teichoic acids (WTAs) 

 

B.3.2.1. WTA structure and biogenesis 

 

WTAs are covalently anchored to the cell wall, where they make up as much 

as 60% of its carbohydrate composition (Baddiley 1972, Neuhaus and Baddiley 

2003). They are attached to the peptidoglycan by a linkage unit that contains a 

conserved GroP-N-acetylmannosamine (ManNAc)-β(1,4)-GlcNAc triad linked by a 

phosphodiester bond to the C6 hydroxyl group of MurNAc residues  (Araki and Ito 

1989). In Lm, the first WTA backbone subunit is connected to the conserved 

linkage unit via a Glc-Glc bridge, which is thought to further distance the main 

chain from the peptidoglycan (Fig. 10A) (Kaya et al. 1985).  

WTAs are biochemical and structurally heterogeneous polymeric complexes, 

a diversity that is mainly observed in the type of backbone monomers and glycosyl 

substituent groups (Naumova et al. 2001). The most common WTA backbone 

(type I) comprises a linear chain of phosphodiester-linked repeats of either glycerol 

3-phosphate (GroP) or ribitol 5-phosphate (RboP) (Brown et al. 2013), although 

other polyols can also be found (Naumova et al. 2001). Backbone length can 

surpass 40 units, which depending on the attachment point in the cell wall may 
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Fig. 10. Structure of Lm WTAs and representative biosynthesis pathway from S. aureus. (A) Lm WTA 

polymers are composed of a poly(ribitol-phosphate) backbone chain (pink) that is attached to the 
peptidoglycan matrix (MurNAc residues) via a unique linkage unit (blue). The backbone subunits are 
substituted with GlcNAc and L-rhamnosyl (L-Rha) groups. (B) The WTA biosynthetic pathway in Lm has not 
been specifically addressed and characterized in detail, but it is assumed closely similar to that of S. aureus, 
which also produces RboP-type WTAs. The WTA polymer is sequentially assembled by the Tar enzymes 
onto a bactoprenol-phosphate anchor on the inner leaflet of the cytoplasmic membrane. Backbone 
substitution with glycosyl groups also takes place in the cytoplasm before the lipid-anchored polymer is 
translocated across the membrane by the TarGH complex. Outside, a set of WTA ligases (LCPs in S. aureus) 
cleave the polymer from its lipid anchor and mediate its attachment to the peptidoglycan matrix. (Adapted 
from Swoboda et al. 2010) 

 
 
allow WTAs to extend beyond the cell envelope surface (Umeda et al. 1992). 

Studies have shown that while some species can only produce WTAs with a single 

type of polyol (e.g. RboP in S. aureus and Lm), others are able to use different 

types (e.g. B. subtilis: strain 168, GroP; strain W2, RboP) (Baddiley et al. 1961, 

Kamisango et al. 1983, Iwasaki et al. 1986).  

Although structurally similar, WTAs have a biosynthetic pathway completely 

distinct from that of LTAs (Ward 1981) and which has been best characterized in 
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B. subtilis and S. aureus. The WTA polymer is synthesized at the inner leaflet of 

the cytoplasmic membrane, on top of undecaprenyl-phosphate (C55-P, also called 

bactoprenol-phosphate), a membrane-associated lipid anchor that is also recruited 

by the peptidoglycan biosynthesis machinery (van Heijenoort 1998). The linkage 

unit is the first component to be assembled through a pathway highly conserved 

across Gram-positive bacteria (Fig. 10B). It begins with the transfer of GlcNAc-1-

phosphate from cytoplasmic UDP-GlcNAc to C55-P in a step catalyzed by the 

TagO/TarO enzyme (Soldo et al. 2002). Interestingly, two TagO orthologues with 

redundant activity were recently identified in the Lm genome (Eugster and 

Loessner 2012). Subsequent TagA/TarA-mediated binding of ManNAc to GlcNAc 

commits the lipid-anchored intermediate towards WTA bionsynthesis, and 

TagB/TarB concludes linkage unit synthesis by transfering a GroP molecule from 

CDP-glycerol to ManNAc (Ginsberg et al. 2006). Afterwards, the WTA biosynthetic 

pathways diverge depending on whether the polymer is built with RboP or GroP 

monomers. In each case, the required enzymes are encoded by genes usually 

organized in operons and prefixed with the tar (teichoic acid ribitol) or tag (teichoic 

acid glycerol) designations, respectively (Brown et al. 2013). It is unclear if WTAs 

cross the membrane during or after their polymerization or how their translocation 

through the Ta(g/r)GH complex is processed, but once the polymer is transferred 

to the other side of the membrane, a family of WTA ligases (LCP proteins in S. 

aureus) promotes their attachment to the peptidoglycan (Fig. 10B) (Chan et al. 

2013).  

 

B.3.2.2. WTA modifications and functions 

 

Similarly to LTAs, the backbone of WTAs can be tailored with D-alanyl esters 

and/or glycosyl groups. In the case of Rbo-type WTAs, which have three available 

hydroxyl groups, D-alanine binds to the C2 hydroxyl group, while O-glycosylation 

occurs at position C4 (Neuhaus and Baddiley 2003). Unlike D-alanine residues, 

which are bound to the polymer only after it is translocated to the extracellular 

space (Neuhaus and Baddiley 2003), sugar substitution is performed in the 

bacterial cytoplasm by a variable number and type of glycosyltransferases (Brown 

et al. 2013). As in LTAs, the WTA content in D-alanine is highly dependent of 
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environmental changes (Neuhaus and Baddiley 2003), in stark contrast with the 

stability of the sugar substituents (Collins et al. 2002). A recent study suggesting 

the requirement of LTAs for the D-alanylation of WTAs (Reichmann et al. 2013) 

appears to substantiate a previously proposed model whereby the D-alanyl groups 

of WTAs are donated by LTAs (Haas et al. 1984). However, the mechanism and 

putative enzymes involved in this transfer still need to be addressed.  

A wide variety of glycosyl residues can be found associated to WTA subunits 

as branching substituent groups or even integrated in the main chain (non-type I 

WTAs): Glc, Gal, L-rhamnose (L-Rha), and N-acetylated amino sugars (Naumova 

et al. 2001). Further WTA heterogeneity can arise from the stereochemical nature 

of the glycosidic bond (Nathenson et al. 1966), which can interfere with WTA 

structure and its potential functions and interactions at the cell envelope.  

The structural and biochemical similarities between WTAs and LTAs bring 

about a considerable functional overlap and redundancy that has complicated a 

clear understanding of the exact role of each glycopolymer in different aspects of 

bacterial physiology. As LTAs, WTAs are also intimately related with cell growth 

and division processes, as mutants lacking these polymers present morphological 

defects (Brown et al. 2013). Indeed, co-localization of WTA and peptidoglycan 

biogenetic machineries was observed (Formstone et al. 2008), and evidence 

showing mislocalization of important septal peptidoglycan cross-linking enzymes in 

the absence of WTAs (Atilano et al. 2010, Qamar and Golemi-Kotra 2012) attest 

this functional relationship. In addition, WTA depletion also interferes with cell 

division as it deregulates autolytic activity at the septum, indicating that WTAs are 

essential in regulation of autolysis, either by controlling autolysin localization or 

their activity (Brown et al. 2013). 

Other WTA functions shared with LTAs include the regulation of cationic 

homeostasis in the cell envelope, where WTAs extending beyond the cell wall 

surface can act as cation “scavengers”, capturing these ions from the extracellular 

environment (Kern et al. 2010); protection against antimicrobial molecules (e.g. 

fatty acids, antibiotics and cationic peptides) (Peschel et al. 1999, Peschel et al. 

2000, Collins et al. 2002, Kohler et al. 2009, Brown et al. 2012, Farha et al. 2013); 

and pathogenesis (Collins et al. 2002, Weidenmaier et al. 2004, Kristian et al. 

2005, Weidenmaier et al. 2005, Walter et al. 2007). In most, if not all, backbone 
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modification with D-alanine performs a central role.  

Interestingly, unlike S. aureus, Lm WTAs are not D-alanylated (Fiedler 1988), 

which suggests that functions associated with this modification are performed by 

LTAs and casts even more uncertainty on the actual WTA-specific functions. On 

the other hand, glycosylation was shown to confer immunogenic properties to Lm 

WTAs (Kamisango et al. 1983) and enable the binding of bacteriophages 

(Wendlinger et al. 1996), as previously observed (Juergens et al. 1963, Torii et al. 

1964, Chatterjee et al. 1969). Evidences linking WTA glycosylation with Lm 

pathogenesis were obtained from studies with transposon-generated mutants. 

EGD (serotype 1/2a) mutants were screened in a mouse model for virulence 

attenuation (Autret et al. 2001), and multiple attenuated clones were found to 

contain an insertion in gtcA, a gene coding for a glycosyltransferase responsible 

for the tailoring of serotype 4b and 1/2a WTAs with Gal and GlcNAc, respectively 

(Promadej et al. 1999, Eugster et al. 2011). In another study, the pathogenic 

potential of a serotype 4b gtcA mutant was strongly reduced in intragastrically 

infected mice. Moreover, the absence of GtcA decreased the ability of Lm to 

invade an enterocytic cell line, suggesting that GtcA-mediated WTA glycosylation 

is important for the intestinal phase of listeriosis (Faith et al. 2009). 

 

B.3.2.3. WTA diversity in Listeria monocytogenes 

 

In 1969, Ullmann and Cameron described the immunochemical properties of 

cell wall carbohydrates isolated from several Lm serotypes and their main 

antigenic constituents (Ullmann and Cameron 1969). As TAs began being 

regarded as O antigens, further research from groups in Germany and Japan, 

during the 1980s, led to the characterization of the WTA structure, composition 

and properties from every known Lm serotype (Kamisango et al. 1983, Fiedler et 

al. 1984, Fujii et al. 1985, Uchikawa et al. 1986a). Their extensive work revealed 

the large variety of glycosylation patterns across different serotypes and even 

within serotypes from the same serogroup (Fig. 11). It is this significant WTA 

tailoring diversity that constitutes in part the basis for serotyping classification 

within this species. 
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Fig. 11. WTA backbone subunit composition from different Lm serotypes. WTAs from serogroups 1/2 

(1/2a, 1/2b and 1/2c) and 3 (3a, 3b and 3c), and serotype 7 have a typical poly(RboP) backbone, which can 
be variably substituted with GlcNAc and/or L-Rha, or unsubstituted at all. The backbone subunits of serogroup 
4 (4a, 4b and 4c) WTAs are more complex, as a GlcNAc residue is integrated into the chain, forming a 
poly(RboP-GlcNAc)-type polymer, and substitution with Glc and/or Gal occurs on this sugar instead of RboP.  
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C. ANTIMICROBIAL PEPTIDES 

 

It was known since the late 19th century that many human secretions and 

fluids exhibited antimicrobial properties, which were later associated with particular 

peptides and small proteins present in their composition (Skarnes and Watson 

1957). In the first half of the 20th century, several peptide antibiotics were identified 

and began being isolated from bacteria and fungi for clinical purposes (Perlman 

and Bodanszk.M 1971). In the 1950s, these antimicrobial peptides (AMPs) were 

thought to interact electrostatically with anionic surface components of both Gram-

negative and Gram-positive bacteria, and shown to have the ability to restrict and 

neutralize microbial infections and to boost additional immune response 

mechanisms (Skarnes and Watson 1957). In the following decades, AMPs were 

also identified in plants, insects and vertebrate animals (Cederlund et al. 2011).  

AMPs are produced by a wide variety of organisms across all domains of life, 

from bacteria to humans (Zasloff 2002, Yang et al. 2014), and constitute what is 

probably the oldest branch of immunity effectors. Since the identification of 

lysozyme in 1922, the total number of natural antimicrobial peptides/proteins has 

expanded vastly to over 2,500, according to the March 2015 update of the 

Antimicrobial Peptide Database (http://aps.unmc.edu/AP) (Wang et al. 2009). This 

growth has also been driven by the enormous interest in the potential therapeutic 

applicability of novel AMPs, particularly in the treatment of bacterial pathogens 

with increasing resistance to traditional antibiotics (Hancock and Sahl 2006).  

This section presents the main classes of AMPs, describing their structural 

and biochemical properties, as well as the most common mechanisms of action. In 

addition, strategies developed by bacteria to resist against the activity of AMPs are 

also addressed. 

 

C.1. General features and properties 

 

Despite the source and sequence diversity of the many known natural AMPs 

(Wang et al. 2009), they contain conserved characteristics that are important for 

their antimicrobial activity: size, charge, amphipathicity and structural conformation 

(Brogden 2005, Cederlund et al. 2011).  



 
CHAPTER I – INTRODUCTION 

 
 

 60 

AMPs have an average length of 30 amino acid residues (Wang et al. 2009, 

Cederlund et al. 2011), which corresponds to an average molecular weight of 

<5 kDa. The smallest known AMPs, called gageotetrins, are di- and tetrapeptide 

lipoproteins produced by a marine B. subtilis strain (Tareq et al. 2014). With 99 

and 130 residues, respectively – long enough to be considered small proteins – 

human lysozyme and β2 microglobulin are among the longest polypeptides with 

antimicrobial activity (Wang et al. 2009).  

A prevalence of basic (arginine, histidine and lysine) over acidic (glutamate 

and aspartate) amino acid residues confers an overall positive charge to AMPs 

(+2 to +9; average +3) (Cederlund et al. 2011). This cationic character is important 

for the interaction with surface of bacteria, which has a typical net negative charge 

conferred by anionic components, such as the Gram-negative lipopolysaccharide 

(LPS) or the Gram-positive teichoic acids. Nevertheless, some AMPs can also be 

anionic (Brogden 2005) and, in this case, their interaction with bacterial surfaces 

appears to be mediated by cationic salt bridges (Harris et al. 2009).  

Another feature of AMPs is their hydrophobicity: in average, they contain 40–

50% of hydrophobic residues (Cederlund et al. 2011). These hydrophobic residues 

are usually distributed through the AMP sequence to promote amphipathicity, i.e. 

polar and apolar residues are spatially constricted to different sides of the AMP 

secondary structure. This characteristic is important for solubility in aqueous 

environments and for AMP activity, which requires integration into membrane lipid 

bilayers (Lohner et al. 2001, Brogden 2005, Ramadurai et al. 2010). 

AMPs exist in different structural conformations (Fig. 12): (i) linear α-helices, 

(ii) packed β-sheets, stabilized by internal disulfide bonds; or (iii) extended 

unorganized structures enriched in specific residues (e.g. proline, arginine or 

tryptophan) (Brogden 2005, Wiesner and Vilcinskas 2010). The first two structures 

are the most common in nature (Giuliani et al. 2007, Cederlund et al. 2011).  

Many alpha-helical AMPs are unstructured in aqueous environment and only 

acquire their final conformation upon interaction with target membranes. This 

characteristic appears important to prevent AMP cytotoxicity in eukaryotic cells 

(Nguyen et al. 2011). Bend-inducing residues and/or polar sidechains in the 

hydrophobic face of an alpha-helical AMP create an “imperfect amphipathicity” that 

favors an efficient membrane insertion and disruption (Mihajlovic and Lazaridis 
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2010, Nguyen et al. 2011). Although intramolecular disulfide bonds are a 

characteristic feature in β-sheet AMPs and help to stabilize this secondary 

structure and protect it from proteolytic degradation, they are not essential for 

antimicrobial activity (Kluver et al. 2005, Ramamoorthy et al. 2006). 

In unstructured extended AMPs, the preponderance of specific amino acids 

such as tryptophan and arginine is critical in many aspects. The positive charges 

of arginine attract the peptide towards the anionic bacterial surface, while 

tryptophan residues not only stabilize the peptide in solution via intramolecular 

hydrophobic interactions, but promote a strong association to the interfacial region 

of lipid bilayers (Yau et al. 1998, Chan et al. 2006). Furthermore, an energetically 

favorable stacked interaction between the sidechains of both amino acids allows 

arginine residues to be masked by tryptophan and penetrate the strong apolar 

membrane environment (Yau et al. 1998). Many extended AMPs exert their 

antimicrobial function not at the membrane level but targeting intracellular 

components (e.g. proteins and nucleic acids) (Nguyen et al. 2011). 

 

A B C 

   
LL-37 Human β-defensin-3 Indolicidin 

 
Fig. 12. Main structural conformations of AMPs. (A) Linear α-helices (e.g. LL-37), (B) β-sheets (e.g. 
human β-defensin-3), and (C) extended disordered peptides (e.g. indolicidin). Peptide backbone (ribbon) is 

shown in green, hydrophobic side chains in light blue, polar side chains in red, and disulfide bridges in yellow. 
Notice the bilateral segregation of hydrophobic and polar residues in LL-37 (important for membrane 
integration) and the multiple tryptophan sidechains in indolicidin. (PDB IDs: LL-37, 2K6O; human β-defensin-3, 
1KJ5; indolicidin, 1G89) 

 

 

C.2. Classes 

 

AMPs can be classified based in numerous criteria: biosynthesis pathway, 

biological source, activity, biochemical properties, secondary structure, internal 

bonding profile and cellular targets (Wang et al. 2009).  



 
CHAPTER I – INTRODUCTION 

 
 

 62 

The simplest classification is based on whether AMPs are generated by 

ribosomal translation of gene-encoded transcripts or by a ribosome-independent 

multienzymatic pathway (Wiesner and Vilcinskas 2010). Many bacterial and fungal 

peptide antibiotics (e.g. bacitracin, vancomycin and polymyxin B) are synthesized 

through the latter pathway and often possess unusually configurated and non-

proteinogenic amino acid residues that can be further modified (Hancock and 

Chapple 1999). Ribosomally synthesized AMPs are produced by both bacteria – 

where they take the name of bacteriocins – and eukaryotes. 

 

C.2.1. Bacteriocins 

 

Bacteriocins comprise not only bacterial peptides but also proteins with 

antimicrobial activity, although it is mostly used in reference to the former group 

(Cotter et al. 2005). These are highly heterogeneous molecules that are produced 

in response to environmental stresses, such as nutritional shortage and lack of 

space, to provide a competitive advantage over other microbes. Their variable 

spectra of activity enable producing bacteria to kill within (narrow spectrum) or 

outside (broad spectrum) of their species. Importantly, producers contain 

mechanisms that confer immunity to their own bacteriocins (Cotter et al. 2005). 

A large majority of the currently known bacteriocins are produced by Gram-

positive species, notably Lactobacillales (or lactic acid bacteria, LAB), which 

include various genera such as Lactococcus, Lactobacillus, Enterococcus and 

Streptococcus (Cotter et al. 2005, Hammami et al. 2010). It is not surprising that 

the growth of research in the area of bacteriocins has been fostered by the food 

preservation and clinical industries (Cotter et al. 2005, Cotter et al. 2013, Yang et 

al. 2014). Nonetheless, bacteriocins from Gram-negative bacteria (mainly E. coli) 

and even in Archaea have also been identified and characterized (Hammami et al. 

2010).  

 

C.2.1.1. Gram-negative bacteriocins 

 

Gram-negative bacteriocins are divided into two groups: colicins and 

microcins (Table 4) (Yang et al. 2014). The first group includes large proteins (25–
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80 kDa) generally encoded in a plasmid-borne gene cluster (Cascales et al. 2007). 

Besides the colicin, the cluster encodes a self-immunity protein, required to protect 

the producer cell, and a lysis protein, to enable colicin export (van der Wal et al. 

1995, Cascales et al. 2007). Colicins contain three functional domains: a central 

receptor-binding domain, which recognizes and binds to a target cell surface 

receptor (Ton or Tol system proteins (Cramer et al. 1995)); an N-terminal 

translocation domain, to transport the surface-bound colicin across the OM; and a 

C-terminal catalytic domain that can exhibit (i) peptidoglycan hydrolase, (ii) 

membrane pore-forming or (iii) nuclease activities (Cascales et al. 2007). 

Contrary to colicins, microcins are significantly smaller polypeptides 

(<10 kDa, hence the prefix “micro”) and may present post-translational 

modifications (PTMs), such as adenyl groups, thiazole/oxazole rings and lasso-

type cyclization. They are heat- and pH-stable, resistant to proteolytic digestion 

and exhibit a highly potent activity (nM range) against a small subset or targets 

(Duquesne and Destoumieux-Garzón 2007). Like colicins, they are encoded in 

large gene clusters present in plasmids (and also in the chromosome), and 

expressed as immature precursors (promicrocins) with cleavable N-terminal signal 

peptides. Together with the genes encoding the promicrocin and the self-immunity 

protein(s), further genes coding for an ABC transporter-based export system and 

PTM enzymes are also included (Duquesne and Destoumieux-Garzón 2007). 

Table 4. Examples of Gram-negative bacteriocins.
a
 

Bacteriocin Source MW
b
 Activity 

Colicins    

B Escherichia coli 54,742 Pore formation 

E2 Escherichia coli 61,561 DNase 

E3 Escherichia coli 57,960 16S rRNase 

E5 Escherichia coli 58,254 tRNase 

M Escherichia coli 29,453 Peptidoglycan hydrolase 

Microcins    

Class I (<5 kDa, PTMs) 

B17 Escherichia coli 3,094 DNA gyrase inhibition 

J25 Escherichia coli 2,107 RNA polymerase inhibition 

Class IIa (5–10 kDa, absence of PTMs) 

L Escherichia coli 8,884 Disruption of the inner membrane integrity 

Class IIb (5–10 kDa, linear, potential C-terminal PTMs) 

E492 Escherichia coli, Klebsiella 
pneumoniae 

7,886 Disruption of the inner membrane integrity 

a) Data compiled from: Yang et al. 2014, Duquesne et al. 2007, Morin et al. 2011; Bieler et al. 2006. 
b) Molecular weight (values in Daltons) 
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Microcins are classified into two classes: class I, including low-molecular weight 

peptides (<5 kDa) with extensive PTMs; and class II, comprising heavier peptides 

(5–10 kDa). The latter group is subdivided into classes IIa (no PTMs) and IIb 

(chromosome-encoded linear peptides with potential C-terminal PTMs). 

Functionally, microcins were found to target the cytoplasmic (or inner) membrane 

as well as the intracellular enzymatic complexes required for nucleic acid 

synthesis (Duquesne and Destoumieux-Garzón 2007). 

 

C.2.1.2. Gram-positive bacteriocins 

 

The majority of Gram-positive bacteriocins are biochemically similar to Gram-

negative microcins, in that they are also low-molecular weight (<10 kDa), heat-

stable peptides that may contain PTMs, although not as extreme as the ones 

present in microcins. They are also encoded in a cluster with a self-immunity gene 

and are exported via an ABC transporter system (Duquesne and Destoumieux-

Garzón 2007). 

These Gram-positive AMPs are distributed between two classes (Table 5). 

Historically, a third class encompassed large-sized antimicrobial proteins called 

bacteriolysins (e.g. lysostaphin and enterolysin A) (Schindler and Schuhardt 1964, 

Nilsen et al. 2003), which were similar in structure and activity to colicins. 

However, they are no longer considered bacteriocins and this class was 

constituted as a separate group (Cotter et al. 2005). 

 

Class I (lantibiotics) 

 

Class I bacteriocins consist of small peptides (<5 kDa) featuring PTMs such 

as dehydrated (dehydroalanine and dehydrobutyrine) and/or thiother-containing 

(lanthionine and β-methyllanthionine) amino acids (Islam et al. 2012). The unusual 

lanthionine amino acid – for which members of this class are also called 

lantibiotics (lanthionine-containing antibiotics) – results from a thioether bond 

between the sidechains of cysteine and dehydrated residues. This intramolecular 

link generates the ring or loop structures that are typical of lantibiotics (Fig. 13) 

(Cotter et al. 2005). Depending on the number and location of these lanthionine 
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bridges, lantibiotics can have linear (type A) or globular (tybe B) conformations 

(Jung 1991). While type-A peptides are cationic, type-B are usually neutral or 

anionic (Islam et al. 2012). A third type includes lantibiotics comprised of two 

peptides acting synergistically, an example of which is lacticin 3147 (Fig. 13) 

(Lawton et al. 2007). 

The antimicrobial activity of lantibiotics is exerted through (i) inhibition of cell 

wall biosynthesis and/or (ii) formation of membrane pores (Islam et al. 2012). 

Nisin A, the best known lantibiotic and first bacteriocin to be identified (Rogers and 

Whittier 1928), is a bifunctional type-A peptide that kills Gram-positive bacteria by 

inhibiting peptidoglycan synthesis, through its binding to lipid II, and making pores 

in the membrane (Fig. 14) (Brotz et al. 1998b, Wiedemann et al. 2001). This dual 

role is encoded in its bipartite structure, whereby the binding of the N-terminus end 

of nisin to lipid II pyrophosphate (Hsu et al. 2004) positions the flexible C-terminus 

end for membrane insertion (van Heusden et al. 2002). Mersacidin, a type-B 

lantibiotic is only able to interact with lipid II to disrupt cell wall synthesis (Brotz et 

al. 1998b). Two-peptide lantibiotics seem to have receptor-binding and pore-

forming activities allocated to different peptides (Martin et al. 2004).  

Another lantibiotic receptor is phosphatidylethanolamine (PE), a membrane 

phospholipid. By binding to PE, cinnamycin and duramycins inhibit phospholipase 

A2 activity (Fredenhagen et al. 1990). Interestingly, lantibiotics like the 

enterococcal cytolysin can also act as virulence factors against mammalian cells 

(Van Tyne et al. 2013). 

 

Class II (non-lantibiotics) 

 

The members of this class are also small (<10 kDa) and heat-stable 

peptides, but unlike lantibiotics they do not contain lanthionine residues or other 

complex PTMs (Cotter et al. 2005). They are highly potent AMPs (nM range) that 

function by disrupting the membrane (Nissen-Meyer et al. 2009).  

Four subclasses accommodate class II bacteriocins according to structure 

and sequence similarity (Cotter et al. 2005): (i) class IIa, pediocin-like or Listeria-

active peptides; (ii) class IIb, two-peptide peptides; (iii) class IIc, cyclic peptides; 

and (iv) class IId, linear non-pediocin-like single peptides.  
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Class IIa (pediocin-like). This designation originates from one of the first 

identified members of this subclass (pediocin PA-1), which currently contains over 

20 peptides and is probably the most well-characterized due to their high 

antimicrobial specificity towards Listeria (Eijsink et al. 1998). These peptides range 

between 38 (e.g. leucocin A, mesentericin Y105) and 47 (e.g. carnobacteriocin B2) 

residues and contain an N-terminal region with a highly conserved 

YGNG(V/L)XC(X)4CXV sequence (“pediocin box”) and a less conserved 

hydrophobic C-terminal region (Nissen-Meyer et al. 2009). Structural studies 

revealed that the cationic N-terminal region forms a disulfide bond-stabilized β-

sheet structure that sits at the membrane interface, while the C-terminal domain is 

folded into a hydrophobic hairpin structure (Fregeau Gallagher et al. 1997) that 

buries into the apolar core of the membrane bilayer. The structure and sequence 

variability of the C-terminal hairpin play an important role in determining target cell 

specificity (Johnsen et al. 2005), by recognizing the mannose-specific 

 

Fig. 13. Schematic representation of the structure of the lantibiotics nisin A, gallidermin and lacticin 
3147. These Gram-positive bacteriocins possess characteristic lanthionine residues (red) that are formed 

when a thioether linkage is created between the sulfhydril group of a cysteine and dehydrated residues (blue), 
such as  dehydroalanine (Dha) and dehydrobutyrine (Dhb). When Dha is involved, a lanthionine bridge (Ala-
S-Ala) is formed, whereas a β-methyl-lanthione bond (Abu-S-Ala) is created when Dhb is the acceptor 
residue. Other unusual amino acids (yellow), such as D-alanine (D-Ala) or 2-oxobutyrate (2-ob) might also be 
present. Abu, aminobutyrate. (Adapted from Cotter et al. 2005 and Kellner et al. 1988) 
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phosphotransferase system (Man-PTS) permease (Fig. 14) (Ramnath et al. 2000, 

Dalet et al. 2001, Hechard et al. 2001, Diep et al. 2007), similarly to microcin E492 

(Duquesne and Destoumieux-Garzón 2007). In this case, the corresponding self-

immunity factors counteract pediocin-like activity by interfering with their 

recognition of the mannose permease (Johnsen et al. 2005). 

 

Class IIb (two-peptide). This subclass contains bacteriocins that are only 

active when two related non-active peptides come together (Moll et al. 1996), 

similar to two-peptide lantibiotics (Lawton et al. 2007). Lactococcin G from 

Lactococcus lactis was the first of currently over 15 class IIb bacteriocins to be 

identified (Nissen-Meyer et al. 2009). Other examples include enterocin 1071, 

lactacin F, ABP-118 and various plantaricins (Nissen-Meyer et al. 2009). 

Unstructured while separate in solution (Hauge et al. 1998), the two peptides fold 

into alpha-helical conformations when they interact with each other and insert into 

membranes. Recently, their receptor was revealed to be UppP, an integral 

membrane protein that regenerates bactoprenol-phosphate for peptidoglycan and 

WTA biosynthesis (Fig. 14) (Kjos et al. 2014). This inter-peptide interaction is 

promoted and stabilized by GXXXG motifs present in both peptides (Rogne et al. 

2008). In the membrane, the two-peptide bacteriocin forms a selective ion-

permeable pore that dissipates the proton-motive force and lead to cell death 

(Nissen-Meyer et al. 2009). Mutagenesis studies demonstrated that the target 

specificity region of these bacteriocins was located to the β peptide N-terminus 

(Oppegard et al. 2007), and that the self-immunity protein recognizes the 

bacteriocin helix-helix structure (Nissen-Meyer et al. 2009). 

 

 Class IIc (cyclic). In the last step of biosynthesis, peptides from this 

subclass of bacteriocins undergo cyclization by covalent linkage of their N- and C-

termini, through a yet unclear enzymatic mechanism (Maqueda et al. 2008). Apart 

from subtilosin A (Babasaki et al. 1985, Kawulka et al. 2003), all cyclic bacteriocins 

are positively charged peptides (Nissen-Meyer et al. 2009). Their mode of action is 

similar to class IIb bacteriocins and cyclization appears to promote overall 

structure stabilization and increased resistance to proteolysis (Maqueda et al. 

2008). The first identified and best-studied cyclic bacteriocin is enterocin AS-48 
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(Galvez et al. 1986, Martinez-Bueno et al. 1994), an alpha-helical globular peptide 

with broad antimicrobial spectrum. Membrane insertion requires structural 

transition from a water-soluble to a membrane-bound conformation, which 

exposes hydrophobic helices that penetrate the membrane (Maqueda et al. 2008).  

 

Class IId (single, linear, non-pediocin-like). In this subclass are included 

single, linear, unmodified peptides with no sequence similarity with pediocin-like 

bacteriocins (Cotter et al. 2005). Its first member, lactococcin A, was isolated in 

1991 from L. lactis and shown to have a narrow antimicrobial spectrum (Holo et al. 

1991, van Belkum et al. 1991). Interestingly, its mechanism of action is similar to 

class IIa peptides: binding to the Man-PTS permease to induce membrane 

permeabilization (Fig. 14). Lactococcin A inhibition by self-immunity proteins works 

 

Fig. 14. Mechanisms of action of representative Gram-positive bacteriocins. Bacteriocins can promote 

bacterial death by disrupting the cell wall biosynthesis or by directly creating pores in the cytoplasmic 
membrane, both mechanisms leading to cell lysis. Lantibiotics (class I) bind to and hijack the peptidoglycan 
precursor lipid II, while class IIb peptides have been shown to bind to UppP, a bactoprenol-phosphate (C55-
P) recycling membrane protein. Some of these receptor-bound AMPs, like nisin A, can additionally interact 
with the lipid bilayer and induce pore formation. Other class II members (e.g. pediocins and lactococcin A) are 
also able to disrupt the membrane integrity, after binding with high specificity to Man-PTS membrane proteins. 
(Adapted from Cotter et al. 2013).  
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by preventing this interaction (Diep et al. 2007). Staphylococcal) class IId 

bacteriocins have been identified (e.g. aureocins A53 and A70).  

 

C.2.2. Defensins 

 

Defensins were first identified in rabbit peritoneal neutrophil granulocytes as 

small cationic peptides with broad-spectrum antimicrobial activity (Selsted et al. 

1984). Soon after, similar peptides were also isolated from human neutrophils 

Table 5. Examples of Gram-positive bacteriocins.
a
 

Bacteriocin Producing strains MW
b
 Activity References 

Class I (lantibiotics) 

Type A (linear) 

Nisin A Lactococcus lactis 3,352 Cell wall synthesis 
inhibition 

Membrane pore formation 

Brotz et al. 1998b; 
Wiedemann et al. 2001 

Epidermin Staphylococcus 
epidermidis Tü 3298, 
1580 

2,164 Cell wall synthesis 
inhibition 

 

Allgaier et al. 1986; 
Götz et al. 2014 

Gallidermin Staphylococcus 
gallinarum Tü 3298 

2,164 Cell wall synthesis 
inhibition 

 

Kellner et al. 1988; 
Götz et al. 2014 

Type B (globular) 

Mersacidin Bacillus sp. HIL-
Y85/54728 

1,824 Cell wall synthesis 
inhibition 

 

Chatterjee et al. 1992; 
Brotz et al. 1998a  

Two-peptide     

Lacticin 3147 Lactococcus lactis  
DPC3147 

3,449 (A1)
c
 

3,006 (A2)
c
 

Cell wall synthesis 
inhibition 

Membrane pore formation 

Ryan et al. 1996; 
McAuliffe et al. 1998 

Class II (non-lantibiotics) 

Class IIa (pediocin-like) 

Pediocin PA-1 Pediococcus 
acidilactici PAC-1.0 

4,629 Membrane disruption Henderson et al. 1992 

Class IIb (two-peptide) 

Lactococcin G Lactococcus lactis 
LMGT2081 

4,346 (α) 
4,110 (β) 

Membrane disruption Nissen-Meyer et al. 
1992; 
Moll et al. 1996 

Class IIc (cyclic) 

Enterocin AS-48 Enterococcus 
faecalis S-48 

7,149 Membrane disruption Gálvez et al. 1986; 
Martinez-Bueno et al. 

1994 

Class IId (single, linear, non-pediocin-like) 

Lactococcin A Lactococcus lactis 
ssp. cremoris 
LMG2130 

5,778 Membrane disruption Holo et al. 1991 

a) Data compiled from: Yang et al. 2014, Cotter et al. 2005, Nissen-Meyer et al. 2009, Wang et al. 2009. 
b) Molecular weight (values in Daltons). 
c) Values obtained from BACTIBASE (Hammami et al. 2010). 
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(Ganz et al. 1985) and detected also in epithelial cells (Ouellette et al. 1989, 

Diamond et al. 1991). Nowadays, defensins are known to be present not only in 

mammals but also in birds, reptiles, invertebrates, as well as in plants and fungi, 

presenting themselves as one the oldest and most conserved AMP families (Wong 

et al. 2007).  

Elucidation of the structure and activity of defensins was obtained with the 

extensive study and characterization of the peptides from mammalian origin. 

Regardless of their biological source, defensins have two defining features: (i) an 

anti-parallel β-sheet fold and (ii) six conserved cysteine residues that pair up 

covalently through three intramolecular disulfide bridges and help stabilizing the 

peptide structure (Ganz 2003).  

According to the relative position of the cysteines within the peptide 

sequence and the cysteine pairs linked by disulfide bonds, defensins can be 

distributed into alpha (α)- and beta (β)-defensins. While in α-defensins, two of the 

three disulfide bonds occur between C1–C6 and C3–C5, in β-defensins they occur 

between C1–C5 and C3–C6 (Fig. 14). However, this mismatch does not translate 

into significant conformational differences between both groups (Zimmermann et 

al. 1995). Moreover, the proximal chromosomal localization of genes for both 

defensin families indicates that they evolved from a common ancestral defensin 

(Liu et al. 2007) and diverged with rodents and primates, where α-defensins are 

exclusively synthesized (Patil et al. 2004). A third group of α-defensin-derived 

cyclic peptides were identified in rhesus macaque leukocytes. Their unusual 

structure and molecular origin puts these defensins into another sub-family: the 

theta (θ)-defensins (Fig. 15) (Tang et al. 1999). They have evolved in simians and 

are still found in Old World monkeys but mutations led to their inactivation in 

humans and other hominid primates (Cole et al. 2002, Nguyen et al. 2003). 

Contrasting with other defensins, θ-defensins are significantly better antiviral 

effectors (Munk et al. 2003). 

Both α- and β-defensins are generated by successive proteolytic cleavages 

of larger (up to 100 aa) inactive precursors called preprodefensins (Harwig et al. 

1992, Valore and Ganz 1992). These contain an N-terminal leader peptide (~19 

aa, pre-sequence) and the C-terminal mature defensin (15–45 aa) (Ganz 2003). 

The precursor of α- and θ-defensins, but not of β-defensins, contains a large 
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central pro-domain (~40 aa) with acidic nature. This pro-piece seems to balance 

the positive charge of the C-terminal defensin region within the overall propeptide, 

and inhibit undesirable cytotoxic effects of the mature peptide within the producer 

cell (Michaelson et al. 1992, Valore et al. 1996). As for θ-defensins, they arise 

from the head-to-tail cyclization of two nonapeptide fragments excised from larger 

α-defensin paralog precursors (Fig. 15) (Tang et al. 1999).  

Unsurprisingly, defensins are highly abundant in phagocytes and epithelia 

(Table 6), which constitute primary sites of host interaction with microorganisms. In 

particular, subcellular granules like those present in neutrophils and Paneth cells – 

 

Fig. 15. Genetic organization and protein processing of defensins. Defensin peptides are initially 

expressed as part of a larger precursor (preprodefensin), containing an N-terminal signal peptide (SP), a 
central pro-domain, and the mature bioactive peptide in the C-terminus. Following cleavage of the C-terminal 
peptide, three intramolecular disulfide bonds are established between the six conserved cysteines. In (A) α-
defensins, pairing occurs with C1-C6, C2-C4 and C3-C5, while in (B) β-defensins, it involves C1-C5, C2-C4 
and C3-C6. The biogenesis of (C) θ-defensins requires the ligation/cyclization of two mature nonapeptides, 

each with three cysteines. HNP3, human neutrophil peptide 3; HBD2, human beta-defensin 2; RTD1, rhesus 
theta-defensin 1; UTR, untranslated region. (Adapted from Ganz 2003, Selsted and Ouellette 2005).  
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epithelial cells located at the bottom of intestinal crypts, a highly sterile niche due 

to the abundance of AMPs secreted by these cells – contain the highest 

concentration of defensins, in the mM range (Ganz 1987, Ayabe et al. 2000).  

Defensin synthesis and secretion can be constitutive or triggered by local 

pro-inflammatory or bacterial stimuli (Table 6) (Ganz 2003). In granulocytes, 

synthesis, Golgi maturation and vesicular storage of α-defensins concur with 

granulopoiesis in the bone marrow (Yount et al. 1995). After phagocytosis, these 

granules fuse with phagosomes, releasing the mature defensin peptides onto the 

ingested microorganism(s). Intestinal α-defensins such as mouse cryptdins (i.e. 

crypt defensins) and the human defensin-5 (HD5) are also constitutively 

synthesized. However, they are processed into their bioactive forms in different 

ways: whereas cryptdins are activated by the matrix metalloproteinase 7 (MMP-7, 

or matrilysin) and stored as bioactive peptides in Paneth cell secretory granules 

(Wilson et al. 1999), the HD5 propeptide is cleaved by a trypsin isoform only 

Table 6. Examples of mammalian defensins.
a,b

 

Defensins Cell/tissue source Synthesis Release
c
 

Alpha (α)-defensins 

HNP1–4 
(human) 

Granulocytes, monocytes, 
lymphocytes 

Constitutive, inducible (pro-
inflammatory cytokines, NOD2 
agonists) 

Degranulation 
(phagocytosis) 

HD5–6 
(human) 

Paneth cells, urogenital 
tissue cells 

Constitutive, inducible (NOD2 
agonists) 

Degranulation (bacterial 
antigens, cholinergic 
agonists) 

Cryptdins 
(mouse) 

Paneth cells Constitutive, inducible (NOD2 
agonists) 

Degranulation (bacterial 
antigens, cholinergic 
agonists) 

Beta (β)-defensins 

HBD1 
(human) 

Epithelial cells (e.g. 
keratinocytes), monocytes 

Constitutive, inducible (LPS, IFN-γ) Secretion 

HBD2–3 
(human) 

Epithelial cells (e.g. 
keratinocytes), monocytes, 
DCs 

Inducible (pro-inflammatory 
cytokines, TLR and NOD agonists) 

Secretion 

HBD4 
(human) 

Epithelial cells (testis, 
epididymis) 

Inducible (bacteria, PMA) Secretion 

TAP 
(bovine) 

Trachea Inducible (bacteria, LPS) Secretion 

Theta (θ)-defensins 

RTD1 
(rhesus 
macaque) 

Neutrophils, Paneth cells Constitutive, inducible (virus) Degranulation 
(phagocytosis) 

Secretion 

a) Data compiled from: Hazlett and Wu 2011, Ganz 2003, Diamond et al. 2000, Kaiser and Diamond 2000, Tang et al. 1999 
and Lucero et al. 2013. 
b) DCs, dendriti cells; IFN-γ, interferon-gamma; NOD2, nucleotide-binding oligomerization domain (NOD)-containing 
protein 2; PMA, phorbol myristate acetate; TAP, tracheal antimicrobial peptide. 
c) Degranulation-inducing stimuli are listed between parentheses. 
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during or after secretion (Ghosh et al. 2002). In any case, Paneth cell 

degranulation into the crypts occurs quickly in response to the sensing of bacteria 

or bacterial antigens (Ayabe et al. 2000). Other epithelial defensins, such as the 

human β-defensins 2 (HBD2), HBD3 and HBD4 and the bovine tracheal β-

defensin, are transcriptionally induced by cytokines or microbial factors, which 

activate signaling pathways mediated by NF-κB or other transcription factors 

(Table 6) (Diamond et al. 2000, Hertz et al. 2003, Liu et al. 2003, Sorensen et al. 

2003, Proud et al. 2004).  

Besides their main and direct antimicrobial activity, defensins have also been 

found to play an important role in the inflammatory response by modulating the 

production of pro-inflammatory cytokines and chemokines (Nagaoka et al. 2008, 

Miles et al. 2009). In addition, defensins can also behave as chemoattractant 

factors for various cellular players of the innate and adaptive immune responses 

and stimulate angiogenesis (Yang et al. 1999, Yang et al. 2000, Chavakis et al. 

2004, Rohrl et al. 2010). Unlike their antimicrobial activity, the chemotactic 

properties of defensins are highly dependent on their structure (Wu et al. 2003). 

 

C.2.3. Cathelicidins 

 

The cathelicidins are another well-characterized family of AMPs, and 

together with defensins, the most important class of mammalian AMPs. However, 

unlike defensins, they are not as evolutionarily conserved and widespread in 

nature, with all its currently known members having been identified in vertebrates, 

including humans, murines and several domesticated even-toed ungulates 

(Table 7) All cathelicidin-expressing species have multiple genes for these AMPs, 

except humans, monkeys, murines, rabbits and guinea pigs, which have only one 

(Kościuczuk et al. 2012). Also contrasting with the defensin family is the high 

heterogeneity verified among mature cathelicidin peptides, which can range in 

length between 12 and 100 residues and present all kinds of structures (Zanetti et 

al. 1995). Indeed, cathelicidins can adopt the more common linear α-helical (e.g. 

human LL-37, rabbit CAP-18 and mouse CRAMP), a disulfide-bridged β-stranded 

(protegrins) or a linear unstructured Pro/Arg/Trp-rich conformation (e.g. porcine 

PR-39 and bovine bactenecins and indolicidin) (Gennaro and Zanetti 2000). 
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Despite their significant structural diversity, an element common to all 

cathelicidin peptides and that constitutes the hallmark of this family resides in the 

N-terminal domain of their unprocessed precursors (Zanetti et al. 1995). Whereas 

the C-terminal region of cathelicidin prepropeptides shows high sequence 

variability, consistent with the diversity observed in the mature peptides, the N-

terminal preproregion is very much conserved. Linking the signal peptide (~30 aa) 

at the N-terminus to the C-terminal bioactive peptide is a propiece (99–114 aa) 

with 70% homology to a cysteine proteinase inhibitor protein, called cathelin (for 

cathepsin L inhibitor) (Zanetti et al. 1995), found in pig leukocytes (Fig. 16) 

(Ritonja et al. 1989). It is the presence of this cathelin-like prodomain that lends its 

name to the cathelicidin family (Zanetti et al. 1995) and which enabled that a Bac5, 

a bactenecin previously isolated from bovine neutrophils (Gennaro et al. 1989) 

was identified as the first cathelicidin member (Zanetti et al. 1993). Cathelicidin 

precursors were first detected in neutrophil cells, thus cathelicidins are 

alternatively named myeloid antimicrobial peptides (MAP) and some mature 

peptides carry the acronym in the name (e.g. porcine PMAP-23 or sheep SMAP-

29) (Kościuczuk et al. 2012). 

Cathelicidin precursors are transcribed from four-exon genes, where the first 

three exons encode the N-terminal preproregion and the more variable exon 4 

encodes the mature AMP-containing domain (Fig. 16). Binding sites for 

hematopoietic and pro-inflammatory transcription factors have been identified in 

some promoters, indicating potentially inducible cathelicidin expression 

(Gudmundsson et al. 1995, Zhao et al. 1995, Larrick et al. 1996). Like defensins, 

neutrophil cathelicidins are expressed and processed in myeloid precursor cells in 

the bone marrow, accumulating as inactive preforms in cytoplasmic granules 

(Zanetti et al. 1990, Sorensen et al. 1997). The lack of antimicrobial activity of the 

propeptide appears to result from an inhibitory action of the cathelin domain, 

whose anionic nature cancels the cationicity of the C-terminal AMP domain 

(Scocchi et al. 1992). Upon proper stimulation, the propeptides are released by 

degranulation and processed into their final bioactive form following a neutrophil 

elastase-mediated proteolytic cleavage of a consensus sequence located at the 

end of the cathelin domain (Zanetti et al. 1991, Zanetti et al. 1995, Panyutich et al. 

1997). However, not every cathelicidin precursor is fully processed (Sorensen et 
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al. 1999). Conversely, the same propeptide may require different proteases to 

become active. This is the case of the LL-37 precursor, hCAP-18, which can be 

cleaved by proteinase-3 in neutrophils (Sorensen et al. 2001) or other proteases in 

other tissues to generate different cleavage products (Sorensen et al. 2003, 

Murakami et al. 2004). 

Initially believed to be exclusively produced in immature granulocytes, the 

human and murine cathelicidins were also found to be synthesized by other 

leukocytes (e.g. monocytes, NK cells) as well as different types of cells (e.g. 

keratinocytes and epithelial cells of the intestinal, respiratory and urogenital tracts), 

where their expression is constitutive and/or inducible by microbial, inflammatory 

or developmental factors (Zanetti 2005). 

Due to their cationic and amphipathic properties, cathelicidins exert their 

antimicrobial activity by targeting and disrupting anionic microbial membranes, 

through the formation of transmembrane pores (Ramanathan et al. 2002). Bovine 

bactenecins and porcine peptides, however, have been shown to target 

intracellular components without compromising the membrane (Lee et al. 2009). 

Cathelicidins are active against both Gram-negative and Gram-positive bacteria, 

although with structure-dependent potency differences. Moreover, some 

cathelicidins, like LL-37 and the porcine indolicidin and protegrin-1, are able to 

 

Fig. 16. Structural organization of cathelicidin genes and protein precursors. Cathelicidin peptides are 

expressed as part of a larger precursor encoded by four different exons, of which the last encodes specifically 
the mature peptide. The cathelicidin precursor contains an N-terminal signal peptide (SP), a central pro-
domain highly homologous to the protease inhibitor cathelin, and the mature bioactive peptide in the C-
terminus. The final proteolyitic cleavage, which releases the mature peptide, occurs during secretion upon 
certain stimuli and is mediated by neutrophil elastases or other proteases, such as proteinase-3. UTR, 
untranslated region. (Adapted from Ramanathan et al. 2002).  
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neutralize fungi and enveloped viruses (Ramanathan et al. 2002, Kai-Larsen and 

Agerberth 2008).  

Cathelicidin peptides can additionally perform other non-microbicidal 

functions that contribute to the mounting of a prompt and adequate immune 

response against microbial pathogens or other biological challenges. For instance, 

the rabbit and human CAP-18 propeptides and the mature LL-37 and porcine 

peptides were shown to bind and inactivate LPS, reducing its toxic effects during 

infection (Bevins 1994, Larrick et al. 1994, Larrick et al. 1995, Falla et al. 1996, 

Kirikae et al. 1998). PR-39 was implicated in tissue protection against excessive 

inflammation by inhibiting ROS generation via the phagocyte NAPDP oxidase (Shi 

et al. 1996). PR-39 and LL-37 were also detected in wound fluids, where they 

promote the activation of tissue repair and cell proliferation mechanisms, including 

angiogenesis (Gallo et al. 1994, Vandamme et al. 2012). In addition, both AMPs 

display chemoattractant properties, stimulating leukocyte recruitment to sites of 

Table 7. Examples of mammalian cathelicidins.
a
 

Cathelicidin Origin Cell/tissue source Functions 

Alpha (α)-helical 

hCAP-18/LL-37 Human Neutrophils, monocytes, lymphocytes, 
epithelial cells (keratinocytes, 
intestinal, respiratory and urogenital 
mucosae) 

Antimicrobial activity (pore formation), 
LPS inhibition, wound repair, 
angiogenesis, immune response 
modulation (leukocyte chemotaxis) 

CRAMP Mouse Neutrophils, mast cells, spleen, 
epithelial cells (keratinocytes, 
gastrointestinal, respiratory and 
urogenital mucosae) 

Antimicrobial activity (pore formation) 

CAP-18 Rabbit Neutrophils Antimicrobial activity, LPS inhibition 

BMAPs Cattle Neutrophils, lymphoid organs, tongue, 
mammary glands, reproductive tract 

Antimicrobial activity (pore formation), 
immune response modulation, tumor 
cell apoptosis 

Beta (β)-sheet 

Protegrins Pig Bone marrow, neutrophils, leukocytes Antimicrobial activity (pore formation), 
LPS inhibition 

Extended Pro/Arg/Trp-rich 

Bactenecins Cattle Neutrophils, lymphoid organs Antimicrobial activity (pore formation, 
inhibition of cell wall, protein and 
nucleic acid synthesis) 

Indolicidin Cattle Neutrophils Antimicrobial activity (inhibition of 
nucleic acid synthesis). LPS 
inhibition, immune response 
modulation 

PR-39 Pig Bone marrow, neutrophils, lymphoid 
organs, small intestine  

Antimicrobial activity (inhibition of 
nucleic acid synthesis), immune 
response stimulation (leukocyte 
chemotaxis) 

a) Data compiled from: Ramanathan et al. 2002, Zanetti 2004, Zanetti 2005 and Kosciuczuk et al. 2012. 
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inflammation (Huang et al. 1997, Yang et al. 2000). This places cathelicidins, 

alongside other AMPs, in the molecular bridge connecting the innate and adaptive 

arms of immunity.  

 

C.3. Mechanisms of action 

 

C.3.1. Cytoplasmic membrane disruption 

 

The main target of AMPs is the microbial membrane, whose disruption 

ultimately results in cell death. The physicochemical properties of AMPs selected 

them as ideal bacterial killing effectors, due to their inherent affinity and specificity 

for prokaryotic cell surface. Indeed, their cationic nature drives an electrostatic 

interaction with the anionic cell envelope of bacteria, while bypassing the neutrally 

charged eukaryotic membrane. This net negative charge is not only conferred by 

secondary surface glycopolymers (e.g. LPS or TAs) but also by acidic membrane 

phospholipids (Brogden 2005), such as phosphatidylglycerol (PG), 

phosphatidylserine and cardiolipin (Yeaman and Yount 2003). In contrast, 

eukaryotic membranes contain neutral phospholipids like PE, phosphatidylcholine 

and sphingomyelin, and are further supplemented and differentiated with the 

presence of neutral sterols (Yeaman and Yount 2003). Upon binding to bacterial 

surfaces, additional parameters such as hydrophobicity, amphipathicity and 

structural conformation play a key role in AMP interaction with the cytoplasmic 

membrane. Moreover, the peptide/lipid ratio guides the orientation of AMPs in the 

membrane: as the first increases, so does the perpendicularity of peptides relative 

to the bilayer and the propensity for membrane disruption (Lee et al. 2004, 

Brogden 2005). 

Depending on their intrinsic properties and on membrane composition and 

architecture, AMPs can mediate destabilization of the membrane integrity by 

different mechanisms (Nguyen et al. 2011). Three main or classic models are 

acknowledged: (i) the barrel-stave, (ii) the toroidal-pore, and (iii) the carpet model 

(Fig. 17) (Yeaman and Yount 2003). 

As its name indicates, the barrel-stave mechanism results in the formation of 

a barrel-like ring transmembrane pore, where each stave corresponds to an AMP 
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monomer from a larger oligomerized complex (Fig. 17) (Ehrenstein and Lecar 

1977). As an increasing number of peptide molecules begin to penetrate the 

membrane surface, thermodynamically favorable monomer aggregation promotes 

a transmembrane pore configuration, where internal hydrophobic residues face out 

towards the apolar membrane core and hydrophilic sidechains line the inner 

aqueous channel (Breukink and de Kruijff 1999). The fungal α-helical peptide 

antibiotic alamethicin is one of very few and best-studied AMPs following this type 

of mechanism (Fox and Richards 1982, Sansom et al. 1991, Beven et al. 1999). 

Comparatively, the toroidal-pore model is observed in a much larger number 

and diversity of AMPs such as mellitin, magainins, protegrins and LL-37 (Yang et 

al. 2001, Henzler Wildman et al. 2003). In this membrane-disruptive mechanism, a 

transmembrane pore is also formed but differs structurally from the barrel-stave 

pore in that phospholipids are intercalated with the peptide monomers (Fig. 17). As 

α-helical peptides bind to the membrane, they push the outer membrane leaflet 

inwards, forcing a positive curvature strain that promotes further peptide insertion 

(Hallock et al. 2003). Processive AMP oligomerization together with the fusion of 

both membrane leaflets into a toroid-like surface result in the assembly of a toroid-

like pore with a luminal lining composed of the hydrophilic surface of peptide 

monomers alternated with the polar head groups of phospholipids (Matsuzaki et al. 

1996, Hara et al. 2001, Yang et al. 2001). Toroidal pores have less monomers but 

appear to be wider than barrel-stave pores, which seems to result from the 

electrostatic stability provided by the alternation of anionic (phospholipid) and 

cationic (peptide) charges on the channel surface (Yang et al. 2001). Further 

studies on the interaction of mellitin with membranes pointed however that toroidal 

pores may not be as structurally organized or require that many monomers to be 

formed (Sengupta et al. 2008). 

The third model is also the only that does not rely in structured pore 

formation for membrane disruption. In the “carpet” mechanism, linear α-helical 

AMPs, such as the invertebrate cecropins (Oren and Shai 1998), or the more 

globular β-sheet defensins (Ganz 2003) adhere to the outer membrane leaflet in a 

dispersed fashion – covering it like a carpet – until they reach a threshold 

concentration which triggers its disintegration in a detergent-like manner, often 

resulting in formation of micelles (Fig. 17) (Ladokhin and White 2001, Shai and 



 
CHAPTER I – INTRODUCTION 

 
 

 79 

Oren 2001). AMPs like mellitin, which forms toroidal pores, can also dissolve the 

membrane through the carpet mechanism at highly critical concentrations (Oren 

and Shai 1998), suggesting that the carpet model is an extreme consequence of 

the toroidal pore mechanism (Brogden 2005). 

 

C.3.2. Inhibition of intracellular targets 

 

Although disruption of the cytoplasmic membrane integrity is the principal 

mechanism of AMP-induced cell death, many examples have been identified of 

AMPs that kill microbes without compromising the membrane, and of AMPs whose 

membrane-disruptive mechanisms are not sufficient to justify their antimicrobial 

activity. In these cases, such AMPs were revealed to target and inhibit intracellular 

components and enzymatic pathways important for cell viability (Ganz and Lehrer 

1995, Yeaman and Yount 2003, Brogden 2005). 

Peptidoglycan is a unique bacterial structure that confers physical support 

and protection. Therefore, AMPs targeting its biosynthetic machinery are regarded 

as highly effective killing agents. As mentioned before, lantibiotics were shown to 

inhibit cell wall synthesis as a consequence of using lipid II as membrane receptor, 

hijacking it from both peptidoglycan and WTA biosynthesis pathways (Islam et al. 

 

Fig. 17. Main models of AMP-mediated disruption of bacterial cytoplasmic membrane. In the barrel-

stave model, a barrel-like ring transmembrane pore is formed, where each stave corresponds to a monomer 
from a larger oligomerized complex. The hydrophobic side of the peptide (blue) is faced against the apolar 
membrane core while the hydrophilic side (red) is faced towards the inner aqueous channel. In the toroidal 
pore model, a similar complex is formed but monomers are intercalated by phospholipid head groups as  
result of the curvature and fusion of the two membrane leaflets. The carpet model consists in a dispersed 
micelle-like dissolution of the membrane as the amount of bound peptide reaches a critical threshold. Some 
AMPs may follow more than one of these models during their interaction with bacterial membranes. 
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2012). Recently, the defensin HNP-1 was also reported to act through this same 

mechanism (de Leeuw et al. 2010). Furthermore, lantibiotics like nisin and lacticin 

3147 use this receptor as a platform for assembling transmembrane pores, leading 

to the leakage of intracellular content and membrane destabilization (Islam et al. 

2012). Nisin and Pep5, another lantibiotic, were also shown to stimulate autolytic 

activity in Staphylococcus simulans (Bierbaum and Sahl 1987), which could result 

in uncontrolled cell wall lysis and death.  

On the other hand, the toad-derived linear α-helical buforin II was found to 

cross the cytoplasmic membrane without compromising its integrity and 

accumulate in the cytoplasm, where it targets nucleic acids (Park et al. 1998, Park 

et al. 2000) possibly by binding to histone H2A (Cho et al. 2009).  

Previous studies detected AMP molecules on the cytoplasmic side of the 

membrane after disassembly of transient toroidal pores, suggesting this as a 

mechanism to translocate AMPs across the membrane to further interact with 

intracellular targets (Uematsu and Matsuzaki 2000). This appears to be the case 

of buforin II, where a proline residue plays a critical role in membrane translocation 

through the formation of short-lived toroidal pores (Elmore 2012). Similarly, the 

cathelicidins indolicidin and PR-39 kill bacteria by accessing to their cytoplasm, 

without lysing the membrane, and interfering with both protein and DNA synthesis 

(Boman et al. 1993, Subbalakshmi and Sitaram 1998). Moreover, these two 

peptides were found to induce bacterial filamentation (Shi et al. 1996, 

Subbalakshmi and Sitaram 1998), which could be a consequence of DNA 

replication stalling.  

Pyrrhocoricin and apidaecin, two small proline-rich insect AMPs that target 

mostly Gram-negative bacteria, bind to the bacterial chaperone proteins DnaK and 

GroEL, inhibiting their protein folding assistance activity (Otvos et al. 2000, Kragol 

et al. 2001). It is suspected that apidaecin might be translocated into the 

cytoplasm by a process similar to pediocin-like bacteriocins, i.e. through binding to 

an IM permease/transport component (Castle et al. 1999).  

The Gram-negative class I microcins are another example of AMPs that 

cross the cytoplasmic membrane harmlessly to interfere with nucleic acid 

synthesis (Duquesne and Destoumieux-Garzón 2007). 
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C.4. Bacterial mechanisms of resistance 

 

Millions of years of co-existence enabled bacterial pathogens to evolve 

strategies to resist against host defense mechanisms and effectors like AMPs 

(Peschel and Sahl 2006). In general, these strategies prevent AMPs to accomplish 

either of the following steps: (i) reach or (ii) attach to the bacterial surface, (iii) 

irreversibly permeabilize or (iv) translocate the cytoplasmic membrane; or (v) 

inhibit vital intracellular processes (Yeaman and Yount 2003, Brogden 2005).  

As a first line of protection, bacteria may secrete proteins that inactivate 

AMPs by proteolysis. Linear α-helical peptides, such as LL-37, are particularly 

susceptible to the activity of proteases from both Gram-negative and Gram-

positive species because of their exposed backbone (Resnick et al. 1991, Guina et 

al. 2000, Schmidtchen et al. 2002, Belas et al. 2004, Nyberg et al. 2004, 

Sieprawska-Lupa et al. 2004, Kooi and Sokol 2009). In contrast, AMPs with a 

more packed conformation or containing structurally stabilizing features like 

intramolecular disulfide bridges (e.g. defensins and protegrins), thioether bonds 

(lantibiotics) or abundant proline residues are considerably less prone to 

proteolysis (Peschel and Sahl 2006). Moreover, secreted bacterial proteins may 

also neutralize AMPs by binding and entrapping them before they reach the 

bacterial surface, as exemplified by staphylokinase and streptococcal M1 and SIC 

proteins (Frick et al. 2003, Jin et al. 2004, Lauth et al. 2009). Alternatively, some 

bacteria are able to assemble a capsule around their surface, which physically 

blocks AMPs from interacting with the membrane. Indeed, unencapsulated strains 

have showed higher sensitivity to AMPs than their wild-type capsulated congeners 

(Campos et al. 2004, Llobet et al. 2008). 

Despite these tactics, the majority of the bacterial defense mechanisms 

against AMPs involve changes in the architecture or composition of the bacterial 

cell envelope to render it less vulnerable to AMP attachment or penetration. 

 

C.4.1. Modification of cell envelope components 

 

As previously mentioned, a unique bacterial characteristic explored by AMPs 

to exert their activity is the net negative electrostatic charge of the cell envelope, 
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which promotes AMP attraction and association due to their cationic nature. 

Therefore, a major defensive strategy employed by both Gram-negative and 

Gram-positive bacteria is to biochemically adjust the surface charge to reduce its 

electronegativity and concomitantly weaken AMP affinity towards it (Peschel 

2002). This is generally accomplished by the addition of molecules containing free 

protonated amino groups to the structure of phosphate-rich surface components, 

whereby the positive charge of the amino group would cancel the negative charge 

of a nearby phosphate group.  

In Gram-negative bacteria, this modification procedure is performed on the 

lipid A moiety of LPS, an OM-linked glycopolymer and one of the main AMP 

attractors to the bacterial surface. In this case, aminated compounds such as 

aminoarabinose (Stinavage et al. 1989, Guo et al. 1997) and ethanolamine (Zhou 

et al. 2001, Tran et al. 2006) are appended to the lipid A phosphate groups to 

mask their negative charge. The importance of these alterations towards bacterial 

AMP resistance is attested by the reduced in vivo virulence of mutant strains 

lacking either of these LPS modification mechanisms (Gunn et al. 2000, Cullen et 

al. 2011). Alternatively, lipid A acyl chains can be esterified with glycine (Hankins 

et al. 2012) or with additional fatty acids, which appears to promote AMP 

resistance by producing a membrane less fluid and permissive for AMP insertion 

and disruption (Guo et al. 1997, Brogden 2005). Again, failure to perform this 

process yields strains with increased AMP susceptibility (Guo et al. 1998, Robey 

et al. 2001). 

TAs are the major phosphate-rich cell surface components in Gram-positive 

bacteria, and thus the primary target of surface charge modulation mechanisms. 

D-alanine esters are highly common TA substituents and the introduction of these 

aminated groups contribute significantly to the masking of the Gram-positive 

surface electronegativity and for increased resistance to different AMPs (Fig. 18) 

(Peschel et al. 1999, Abachin et al. 2002, Collins et al. 2002, Kristian et al. 2005, 

Kovacs et al. 2006, Abi Khattar et al. 2009, McBride and Sonenshein 2011). 

Interestingly, a recent study in Streptococcus agalactiae proposed that D-

alanylation of TAs confers resistance to AMPs preferentially by hindering their 

penetration through the cell wall than by influencing their initial binding to the 

bacterial surface (Saar-Dover et al. 2012). 
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Alternatively, positively charged amino acid esters can also be linked to the 

head groups of outer leaflet membrane phospholipids. In Lm, this enzymatic 

reaction is catalyzed by a multiple peptide resistance factor (MprF) protein that 

transfers L-lysine from cytoplasmic tRNA precursors to the terminal glycerol of PG, 

forming lysyl-PG, which unlike PG has a net positive charge (+1) due to the two 

protonated amino groups of L-lysine (Fig. 18). Similarly to TA D-alanylation, 

absence of MprF-mediated lysyl-PG generation compromises bacterial survival 

when challenged with AMPs, as observed with S. aureus and Lm (Peschel et al. 

2001, Kristian et al. 2003, Thedieck et al. 2006, Andra et al. 2011). 

O-acetylation is a widespread post-assembly peptidoglycan modification 

mechanism (Vollmer 2008). It is catalyzed by an integral membrane O-

acetyltransferase that captures acetyl-containing substrates from the cytoplasm 

and transfers the acetyl group to the C6-linked hydroxyl group of MurNAc residues 

in the assembled peptidoglycan strands (Clarke et al. 2002). First discovered in S. 

aureus (Bera et al. 2005), orthologue genes coding for such an enzyme were 

recently identified also in Lm (Aubry et al. 2011) and H. pylori (Wang et al. 2012). 

This modification was demonstrated to favor bacterial resistance against the 

 

Fig. 18. Mechanisms of charge modulation of Lm cell envelope components. The anionic character of 
Lm cell envelope components such as TAs or some membrane phospholipids (negatively charged phosphate 
groups in red) can be masked with the addition of positively charged molecules (blue). These modifications 
typically involve esterification with certain amino acids, where protonated amino groups contain a positive 
charge. In Lm, LTAs undergo D-alanylation through the action of the Dlt pathway (Neuhaus and Baddiley 
2003), while the head group of phosphatidylglycerol is substituted with L-lysine by the action of MprF, leading 
to a charge reversal (-1 to +1).  
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muramidase activity of lysozyme (Dupont and Clarke 1991, Bera et al. 2006, Veiga 

et al. 2007, Aubry et al. 2011, Guariglia-Oropeza and Helmann 2011, Wang et al. 

2012). Interestingly, Lm mutant strains lacking this enzyme, thus devoid of O-

acetylated peptidoglycan, showed increased vulnerability to the lantibiotic 

gallidermin (Aubry et al. 2011). 
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The main goal of our research group is to expand the knowledge on the 

molecular mechanisms employed by Lm to interact with a host organism and 

promote pathogenesis. To achieve this, it is essential to have a global perspective 

of how this bacterial pathogen behaves in the context of infection, of how it reacts 

and adapts to the multiple biological cues – favorable and harmful – within a 

susceptible host. In this sense, a couple of studies performed array-based 

analyses of the transcriptional response of Lm during infection of cell lines in vitro, 

in order to identify genes that were important for invasion, survival and proliferation 

within host cells (Chatterjee et al. 2006, Joseph et al. 2006). However, unlike what 

had been done with other pathogenic bacteria (La et al. 2008), no information was 

available regarding the transcriptional profiling of Lm in a natural infection context, 

i.e. inside a living host organism.  

To fill this void, we performed the first in vivo transcriptome analysis of Lm, 

where whole-genome expression changes in bacteria infecting the mouse spleen 

were compared against those of bacteria growing in vitro (Camejo et al. 2009) 

(see publication in Chapter VI). The resulting data showed that Lm modifies the 

expression levels of about 20% of its genome throughout infection, mostly by gene 

upregulation. All the major virulence-associated genes and regulators were found 

to be highly transcribed, as expected, but several other genes with 

uncharacterized functions or with no previously known connection with Lm 

pathogenesis were also activated (Camejo et al. 2009). Among these 

uncharacterized genes, those lacking orthologues in non-virulent Listeria species 

(such as L. innocua), were of particular interest for their potential involvement in 

Lm infection.  

Included in this group were four contiguous genes – lmo1081 to lmo1084 – 

that displayed significant overexpression in vivo. Moreover, the encoded proteins 

were annotated as homologues of the products of the rmlABCD gene cluster, 

which catalyze the metabolic pathway responsible for the biosynthesis of L-

rhamnose (Giraud and Naismith 2000). Interestingly, this monosaccharide is 

produced in bacteria but not in animals (Tonetti et al. 1998). However, even more 

striking is its presence at the cell surface of several pathogenic bacteria, where it 

can be found associated with important virulence structures such as the LPS O-

antigen, rhamnolipids or the mycobacterial arabinogalactan (Ma et al. 2001, 
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Samuel and Reeves 2003, Zulianello et al. 2006). These observations led us to 

consider that the Lm equivalent of this rmlABCD cluster might also be involved in 

virulence-promoting processes.  

Therefore, the aims of this work were to determine the purpose of the 

rmlABCD cluster homologue in Lm biology and assess its potential 

contribution to Lm virulence. For this, relevant mutant strains were generated 

and analyzed in vitro with the intention of addressing the main biochemical role of 

the cluster-encoded proteins in Lm. The elucidation of this role led to the 

investigation of further related mechanisms with key importance in aspects like Lm 

resistance against microbicidal molecules and surface protein anchoring. To 

evaluate the involvement of the cluster in Lm pathogenesis, these mutant strains 

were also tested in vivo, using the mouse model of infection.  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III 

 

 

RESULTS 
 



 

 



 
 

 

The results produced by this work are presented in two parts: 

 

 PART I – L-Rhamnosylation of Listeria monocytogenes wall teichoic acids 

promotes resistance to antimicrobial peptides by delaying interaction 

with the membrane  

Here, we describe the role of the Lm rml gene cluster, showing its requirement 

for L-rhamnosylation of Lm WTAs, and present functional and mechanistic 

evidences linking this event with bacterial resistance to AMPs. Ultimately, we 

confirm the important contribution of this particular WTA glycosylation 

mechanism to Lm pathogenesis. 

These findings were published on PLoS Pathogens (22 May 2015), and the 

published version is appended in Chapter VI. 

 

 PART II – L-Rhamnosylation of Listeria monocytogenes wall teichoic 

acids is required for efficient surface anchoring of GW proteins  

In this part, we include unpublished data from ongoing work that highlight other 

important processes in Lm depending on the WTA L-rhamnosylation status, 

such as bacterial autolysis and invasion of host cells. We show that 

contribution to these events is supported by a newly identified role for L-

rhamnosylated WTAs in the anchoring of a particular family of Lm surface 

proteins sharing similar cell surface-binding domains. 
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I.1. Abstract 

 

Listeria monocytogenes is an opportunistic Gram-positive bacterial pathogen 

responsible for listeriosis, a human foodborne disease. Its cell wall is densely 

decorated with wall teichoic acids (WTAs), a class of anionic glycopolymers that 

play key roles in bacterial physiology, including protection against the activity of 

antimicrobial peptides (AMPs). In other Gram-positive pathogens, WTA 

modification by amine-containing groups such as d-alanine was largely correlated 

with resistance to AMPs. However, in L. monocytogenes where WTA modification 

is achieved solely via glycosylation, WTA-associated mechanisms of AMP 

resistance were unknown. Here, we show that the L-rhamnosylation of 

L. monocytogenes WTAs relies not only on the rmlACBD locus, which encodes the 

biosynthetic pathway for L-rhamnose, but also on rmlT encoding a putative 

rhamnosyltransferase. We demonstrate that this WTA tailoring mechanism 

promotes resistance to AMPs, unveiling a novel link between WTA glycosylation 

and bacterial resistance to host defense peptides. Using in vitro binding assays, 

fluorescence-based techniques and electron microscopy, we show that the 

presence of L-rhamnosylated WTAs at the surface of L. monocytogenes delays the 

crossing of the cell wall by AMPs and postpones their contact with the listerial 

membrane. We propose that WTA L-rhamnosylation promotes L. monocytogenes 

survival by decreasing the cell wall permeability to AMPs, thus hindering their 

access and detrimental interaction with the plasma membrane. Strikingly, we 

reveal a key contribution of WTA L-rhamnosylation for L. monocytogenes virulence 

in a mouse model of infection. 
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I.2. Author Summary 

 

Listeria monocytogenes is a foodborne bacterial pathogen that preferentially 

infects immunocompromised hosts, eliciting a severe and often lethal disease. In 

humans, clinical manifestations range from asymptomatic intestinal carriage and 

gastroenteritis to harsher systemic states of the disease such as sepsis, meningitis 

or encephalitis, and fetal infections. The surface of L. monocytogenes is decorated 

with wall teichoic acids (WTAs), a class of carbohydrate-based polymers that 

contributes to cell surface-related events with implications in physiological 

processes, such as bacterial division or resistance to antimicrobial peptides 

(AMPs). The addition of other molecules to the backbone of WTAs modulates their 

chemical properties and consequently their functionality. In this context, we 

studied the role of WTA tailoring mechanisms in L. monocytogenes, whose WTAs 

are strictly decorated with monosaccharides. For the first time, we link WTA 

glycosylation with AMP resistance by showing that the decoration of 

L. monocytogenes WTAs with L-rhamnose confers resistance to host defense 

peptides. We suggest that this resistance is based on changes in the permeability 

of the cell wall that delay its crossing by AMPs and therefore promote the 

protection of the bacterial membrane integrity. Importantly, we also demonstrate 

the significance of this WTA modification in L. monocytogenes virulence. 
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I.3. Introduction 

 

Listeria monocytogenes (Lm) is a ubiquitous Gram-positive bacterium and 

the causative agent of listeriosis, a human foodborne disease with high incidence 

and morbidity in immunocompromised hosts and other risk groups, such as 

pregnant women, neonates and the elderly. Clinical manifestations range from 

febrile gastroenteritis to septicemia, meningitis and encephalitis, as well as fetal 

infections that can result in abortion or postnatal health complications 

(Swaminathan and Gerner-Smidt 2007b). The most invasive and severe forms of 

the disease are a consequence of the ability of this pathogen to overcome 

important physiological barriers (intestinal epithelium, blood-brain barrier and 

placenta) by triggering its internalization and promoting its intracellular survival into 

phagocytic and non-phagocytic cells. Once inside a host cell, a tightly coordinated 

life cycle, whose progression is mediated by several specialized bacterial factors, 

enables Lm to proliferate and spread to neighboring cells and tissues (Cossart and 

Toledo-Arana 2008, Camejo et al. 2011). 

The Lm cell wall is composed of a thick peptidoglycan multilayer that serves 

as a scaffold for the anchoring of proteins, among which are several virulence 

factors (Carvalho et al. 2014) (see publication in Chapter VI), and of 

glycopolymers such as teichoic acids, which account for up to 70% of the protein-

free cell wall mass (Fiedler et al. 1984, Fiedler 1988). These anionic polymers are 

divided into membrane-anchored teichoic acids (lipoteichoic acids, LTAs) and 

peptidoglycan-attached teichoic acids (wall teichoic acids, WTAs). In Listeria, 

WTAs are mainly composed of repeated ribitol-phosphate subunits, whose 

hydroxyl groups can be substituted with a diversity of monosaccharides (Fiedler et 

al. 1984). While the polymer structure and the chemical identity of the substituent 

groups of LTAs are rather conserved across listeriae (Uchikawa et al. 1986b, 

Ruhland and Fiedler 1987), they display a high variability in WTAs, even within the 

same species (Weidenmaier and Peschel 2008). Specific WTA substitution 

patterns are characteristic of particular Lm serotypes: N-acetylglucosamine is 

common to serogroups 1/2 and 3, and to serotype 4b, but serogroup 1/2 also 

contains L-rhamnose, whereas serotype 4b displays D-glucose and D-galactose 

(Uchikawa et al. 1986a). The broad structural and chemical similarity of LTAs and 
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WTAs results in a considerable degree of functional redundancy, which has 

complicated the characterization of these macromolecules and the assignment of 

specific biological roles. However, studies on Gram-positive bacteria have 

revealed their contribution to important physiological functions (e.g. cell envelope 

cationic homeostasis (Marquis et al. 1976), regulation of autolysin activity (Peschel 

et al. 2000), assembly of cell elongation and division machineries (Schirner et al. 

2009), defense against antimicrobial peptides (Peschel et al. 1999)) and to 

virulence-promoting processes, such as adhesion and colonization of host tissues 

(Weidenmaier et al. 2004, Weidenmaier et al. 2005).  

Antimicrobial peptides (AMPs) are a large family of small peptides (<10 kDa) 

produced by all forms of living organisms (Cederlund et al. 2011), which constitute 

a major player of the innate immune response against microbial pathogens. 

Despite their structural diversity, the majority of AMPs share both cationic and 

amphipathic properties that favor respectively their interaction with the negatively 

charged prokaryotic surface and insertion into the plasma membrane (Peters et al. 

2010, Cederlund et al. 2011). Subsequent pore formation or other AMP-mediated 

membrane-disrupting mechanisms induce bacterial death through direct cell lysis 

or deleterious interaction with intracellular targets (Brogden 2005). Bacteria have 

evolved multiple strategies to avert killing by AMPs (Peschel and Sahl 2006, 

Koprivnjak and Peschel 2011). One strategy consists in the modification of their 

cell surface charge, a process achieved mainly by masking anionic glycopolymers 

with positively charged groups, thus decreasing their affinity to AMPs. In Gram-

positive pathogens, D-alanylation of teichoic acids is a well-characterized 

mechanism and was demonstrated to be important for bacterial resistance to host-

secreted AMPs (Koprivnjak et al. 2002, Neuhaus and Baddiley 2003). In contrast, 

the contribution of WTA glycosylation mechanisms in AMP resistance has not yet 

been investigated. 

We have previously reported genome-wide transcriptional changes occurring 

in Lm strain EGD-e during mouse infection (Camejo et al. 2009). Our analysis 

revealed an elevated in vivo expression of the lmo1081-1084 genes, here 

renamed as rmlACBD because of the high homology of the corresponding proteins 

with enzymes of the L-rhamnose biosynthesis pathway. In this work, we show that 

the decoration of Lm WTAs with L-rhamnose requires the expression of not only 
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the rmlACBD locus but also of rmlT, an upstream-flanking gene encoding a 

putative rhamnosyltransferase. We also demonstrate that Lm becomes more 

susceptible to AMPs in the absence of WTA L-rhamnosylation and predict that this 

effect is due to an increase of the Lm cell wall permeability to these bactericides, 

which results in a faster disruption of the plasma membrane integrity with lethal 

consequences for the bacterial cell. Importantly, we present evidence that this 

WTA tailoring process is required for full-scale Lm virulence in the mouse model of 

infection. 
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I.4. Results 
 

I.4.1. The rmlACBD locus is required for the presence of L-rhamnose in Lm 

WTAs  

 

To identify new Lm genes potentially critical for the infectious process, we 

previously performed the first in vivo transcriptional profiling of Lm EGD-e. Among 

the Lm genes displaying the largest increase in transcription throughout infection, 

we identified a set of previously uncharacterized genes that are included in a 

pentacistronic operon (lmo1080 to lmo1084) (Toledo-Arana et al. 2009). This 

operon is found in L. monocytogenes strains belonging to serogroups 1/2, 3 and 7, 

and is absent from serogroup 4 strains (Doumith et al. 2004) (Fig. 19). 

Interestingly, aside from Listeria seeligeri 1/2b strains, this locus is not found in 

any other Listeria spp., such as the nonpathogenic Listeria innocua or the 

ruminant pathogen Listeria ivanovii, which pinpoints it as a genetic feature of a 

particular subset of pathogenic Listeria strains and suggests that its expression 

may be important to Listeria pathogenesis in humans.  

The four proteins encoded by the lmo1081-lmo1084 genes share a high 

amino acid sequence homology with the products of the rmlABCD gene cluster. 

These genes are widely distributed among Gram-negative (e.g. Salmonella 

enterica (Li and Reeves 2000), Shigella flexneri (Macpherson et al. 1994), Vibrio 

cholerae (Li et al. 2003), Pseudomonas aeruginosa (Aguirre-Ramírez et al. 2012)) 

and Gram-positive species (e.g. Mycobacterium tuberculosis (Li et al. 2006), 

Streptococcus mutans (Tsukioka et al. 1997), Geobacillus tepidamans (Zayni et al. 

2007), Lactobacillus rhamnosus (Péant et al. 2005)) (Fig. 19), the majority of 

which being known pathogens or potentially pathogenic. Despite the inter-species 

variability observed in the genetic organization of the rml genes, the respective 

proteins exhibit a remarkable degree of conservation (Table S1). In light of this, we 

renamed the lmo1081-lmo1084 genes to rmlACBD, respectively (Fig. 19).  

The RmlABCD proteins catalyze the conversion of glucose-1-phosphate to a 

thymidine-diphosphate (dTDP)-linked form of L-rhamnose (Giraud and Naismith 

2000) (Fig. S1A), which is a component of the WTAs from most Listeria strains 

possessing the rml genes (Fiedler 1988). To address the role of rmlACBD in Lm 

WTA glycosylation with L-rhamnose, we constructed an Lm EGD-e derivative 
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mutant strain lacking the rmlACBD locus (ΔrmlACBD) (Fig. S2A) and investigated 

if the absence of these genes could affect the WTA L-rhamnosylation status. We 

 

 
 
Fig. 19. Genes encoding the L-rhamnose biosynthesis pathway are distributed in listeriae and other 
bacterial species. Comparison of the genomic organization of the L-rhamnose pathway genes in the genus 
Listeria and other bacteria. The corresponding species and strains are indicated on the left (Lmo, Listeria 
monocytogenes; Lin, Listeria innocua; Lse, Listeria seeligeri; Liv, Listeria ivanovii; Lwe, Listeria welshimeri; 
Smu, Streptococcus mutans; Mtu, Mycobacterium tuberculosis; Sen, Salmonella enterica serovar 
Typhimurium; Sfl, Shigella flexneri; Pae, Pseudomonas aeruginosa) and listerial serotypes are indicated on 
the right. Genes are represented by boxed arrows and their names are provided for strain EGD-e. Operons 
are underlined by dashed arrows and homologs of the rml genes are shown with identical colors. Numbered 
gaps indicate the genetic distance (Mb, mega base pairs) between rml genes located far apart in the 

chromosome. Bacterial genomic sequences were obtained from NCBI database and chromosomal alignments 
assembled using Microbial Genomic context Viewer and Adobe Illustrator. 
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prepared WTA hydrolysates from exponential phase cultures of wild type (EGD-e), 

ΔrmlACBD and a complemented ΔrmlACBD strain expressing rmlACBD from its 

native promoter within an integrative plasmid (ΔrmlACBD+rmlACBD). Samples 

were resolved by native PAGE and the gel stained with Alcian blue to visualize 

WTA polymer species. A mutant strain unable to synthesize WTAs 

(ΔtagO1ΔtagO2) (Eugster and Loessner 2012) was used to confirm that the 

detected signal corresponds to WTAs. Compared to the wild type sample, the 

ΔrmlACBD WTAs displayed a shift in migration, which was reverted to a wild type-

like profile in WTAs from the ΔrmlACBD+rmlACBD sample (Fig. 20A), indicating 

that the native WTA composition requires the presence of the rmlACBD genes. To 

confirm this, we investigated the WTA carbohydrate composition from these 

strains. WTA polymers were isolated from cell walls purified from bacteria in 

exponential growth phase, hydrolyzed and analyzed by high-performance anion 

exchange chromatography coupled with pulsed amperometric detection 

(HPAEC-PAD) to detect monosaccharide species. WTA extracts obtained from 

ΔrmlACBD bacteria completely lacked L-rhamnose, in contrast to those isolated 

from the parental wild type strain (Fig. 20B). The role of rmlACBD in Lm WTA 

L-rhamnosylation was definitely confirmed by the analysis of WTAs from 

ΔrmlACBD+rmlACBD bacteria, in which L-rhamnose was detected at levels similar 

to those observed in the wild type sample (Fig. 20B). Similar observations were 

made with purified cell wall samples that contain WTAs still attached to the 

peptidoglycan matrix (Fig. S3A). The absence of muramic acid, one of the 

peptidoglycan building blocks, from WTA extracts (Fig. 20B) indicates that 

L-rhamnose is specifically associated with WTAs and is not a putative 

peptidoglycan contaminant. This is corroborated by the absence of L-rhamnose in 

purified peptidoglycan samples (Fig. 20C).  

WTAs have been identified as important regulators of peptidoglycan cross-

linking and maturation (Atilano et al. 2010). To investigate if L-rhamnose 

decoration of WTAs has any involvement in the maturation of the Lm 

peptidoglycan, we performed HPLC analysis of the muropeptide composition of 

mutanolysin-digested peptidoglycan samples from wild type, ΔrmlACBD and 

ΔrmlACBD+rmlACBD bacteria. No differences in the nature and relative amount of 

muropeptide species were observed between strains (Fig. S3B), ruling out a role 
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for WTA L-rhamnosylation in the consolidation of the peptidoglycan architecture. 

Overall, these results confirm that a functional rmlACBD locus is required for the 

association of L-rhamnose with Lm WTAs, likely by providing the molecular 

machinery responsible for the synthesis of L-rhamnose. 

 

I.4.2. RmlT is required for the incorporation of L-rhamnose into Lm WTAs 

 

The rml operon in Lm includes a fifth gene, lmo1080, located upstream of 

rmlA (Fig. 19), which codes for a protein similar to the B. subtilis minor teichoic 

 

 
 
Fig. 20. A functional rml operon is required for glycosylation of Lm WTAs with L-rhamnose. (A) Alcian 

blue-stained 20% polyacrylamide gel containing WTA extracts from logarithmic-phase cultures of different Lm 
strains. (B–D) HPAEC-PAD analyses of the sugar composition of the (B) WTA, (C) peptidoglycan and (D) 
cytoplasmic fractions isolated from the indicated Lm strains. Samples were hydrolyzed in 3 M HCl (2 h, 95 ºC), 
diluted with water and lyophilized before injection into the HPLC equipment. Standards for ribitol (Rib), 
L-rhamnose (Rha), glucosamine (GlcN), and muramic acid (Mur) were eluted under identical conditions to 
allow peak identification. 
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acid biosynthesis protein GgaB, shown to possess sugar transferase activity 

(Freymond et al. 2006). Conserved domain analysis of the translated Lmo1080 

amino acid sequence revealed that its N-terminal region is highly similar (e-value 

10-22) to a GT-A family glycosyltransferase domain (Fig. S1B). In GT-A enzymes, 

this domain forms a pocket that accommodates the nucleotide donor substrate for 

the glycosyl transfer reaction, and contains a signature DxD motif necessary to 

coordinate a catalytic divalent cation (Breton et al. 2006). This motif is also found 

within the predicted glycosyltransferase domain sequence of Lmo1080 as a DHD 

tripeptide (Fig. S1B). For these reasons, we investigated whether Lmo1080, which 

we renamed here RmlT (for L-rhamnose transferase), was involved in the 

L-rhamnosylation of Lm WTAs. We constructed an Lm EGD-e mutant strain 

lacking rmlT (Fig. S2A) and analyzed the structure and sugar composition of its 

WTAs as described above. WTAs isolated from ΔrmlT bacteria displayed a faster 

migration in gel (Fig. 20A) and did not contain any trace of L-rhamnose (Fig. 20B), 

fully recapitulating the ΔrmlACBD phenotype. Reintroduction of a wild type copy of 

rmlT into the mutant strain (ΔrmlT+rmlT) resulted in a phenotype that resembles 

that of the wild type strain, with regards to WTA gel migration profile (Fig. 20A) and 

presence of L-rhamnose in the WTA fraction (Fig. 20B).  

To discard the possibility that the deletion of rmlT exerted a negative polar 

effect on the downstream expression of rmlACBD, potentially disrupting the 

synthesis of L-rhamnose used for WTA glycosylation, we compared the 

transcription of the rmlACBD genes in the wild type and ΔrmlT Lm strains by 

quantitative real-time PCR. Transcript levels were unchanged in the ΔrmlT 

background as compared to the wild type strain (Fig. S2B), indicating that the 

deletion of rmlT did not interfere with the transcription of rmlACBD. To definitely 

confirm that Lm ΔrmlT still holds the capacity to synthesize L-rhamnose, being only 

incapable to incorporate it in nascent WTA polymers, we evaluated the presence 

of L-rhamnose in the cytoplasmic compartment of this strain. The intracellular 

content of early exponential-phase bacteria from the wild type, ΔrmlACBD and 

ΔrmlT strains was extracted, hydrolyzed and analyzed by HPAEC-PAD to 

compare the sugar composition of cytoplasmic extracts. As shown in Fig. 20D, a 

peak corresponding to L-rhamnose was detected in the cytoplasmic samples from 

the wild type and ΔrmlT strains, but not from the ΔrmlACBD strain, clearly 



CHAPTER III – RESULTS 

 
 

 110 

demonstrating that, as opposed to ΔrmlACBD bacteria, ΔrmlT bacteria retain a 

functional L-rhamnose biosynthesis pathway. These results indicate that the 

depletion of L-rhamnose observed in ΔrmlT WTAs is a consequence of the 

absence of the WTA L-rhamnosyltransferase activity performed by RmlT. 

Therefore, we propose RmlT as the glycosyltransferase in charge of decorating 

Lm WTAs with L-rhamnose.  

 

I.4.3. WTA L-rhamnosylation promotes Lm resistance to AMPs 

 

WTAs were previously associated with bacterial resistance against salt 

stress (Chassaing and Auvray 2007) and host defense effectors, such as 

lysozyme (Bera et al. 2007, Atilano et al. 2010). We thus investigated the potential 

involvement of WTA L-rhamnosylation in these processes by assessing the growth 

of the ΔrmlACBD and ΔrmlT strains in the presence of high concentrations of 

either NaCl or lysozyme. As shown in Fig. 21A, no significant difference was 

observed between the growth of the wild type and the two mutant strains in BHI 

broth containing 5% NaCl. Similarly, no difference was detected between the 

growth behavior of these strains after the addition of different concentrations of 

lysozyme (50 μg/ml and 1 mg/ml) to bacterial cultures in the exponential phase 

(Fig. 21B). As expected, we observed an immediate and significant decrease in 

the survival of the lysozyme-hypersensitive ΔpgdA mutant (Boneca et al. 2007) 

(Fig. 21B). These data demonstrate that Lm does not require L-rhamnosylated 

WTAs to grow under conditions of high osmolarity nor to resist the cell wall-

degrading activity of lysozyme. 

WTAs were also found to be involved in bacterial resistance to host-secreted 

defense peptides (Peschel et al. 1999, Kovacs et al. 2006). To investigate the role 

of WTA L-rhamnosylation in Lm resistance to AMPs, we evaluated the in vitro 

survival of wild type, ΔrmlACBD and ΔrmlT Lm, as well as of the respective 

complemented strains, in the presence of biologically active synthetic forms of 

AMPs produced by distinct organisms: gallidermin, a bacteriocin from the Gram-

positive bacterium Staphylococcus gallinarum (Kellner et al. 1988); CRAMP, a 

mouse cathelicidin (Gallo et al. 1997), or its human homolog LL-37 (Vandamme et 

al. 2012). After two hours of co-incubation with different AMP concentrations, 
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surviving bacteria were enumerated by plating in solid media. The overall survival 

levels of Lm varied with each AMP, evidencing their distinct antimicrobial 

effectiveness (Fig. S4). However, when compared to the wild type strain, the 

ΔrmlACBD and ΔrmlT mutants displayed a consistent decrease in their survival 

levels in the presence of any of the three AMPs (Fig. 21C), in a dose-dependent 

manner (Fig. S4). Restoring WTA L-rhamnosylation through genetic 

complementation of the mutant strains resulted in an increase of the survival rate 

to wild type levels. This result demonstrated the important contribution of 

L-rhamnosylated WTAs towards Lm resistance against AMPs, pointing to a role for 

WTA glycosylation in bacterial immune evasion mechanisms.  

 

 

 

 
 
Fig. 21. WTA L-rhamnosylation promotes Lm resistance against AMPs. (A) Growth of Lm strains in BHI 

broth supplemented with 5% NaCl. A growth curve of wild type EGD-e in the absence of 5% NaCl was 
included as a control for optimal growth. (B) Growth of mid-exponential-phase Lm strains untreated (black 

symbols) or challenged with 50 μg/ml (gray symbols) or 1 mg/ml (white symbols) of lysozyme. Optical density 
of the shaking cultures was monitored spectrophotometrically at 600 nm. (C) Quantification of viable bacteria 

after treatment of mid-exponential-phase Lm strains (2 h, 37 ºC) with gallidermin (1 μg/ml), CRAMP or LL-37 
(5 μg/ml). Averaged replicate values from AMP-treated samples were normalized to untreated control samples 
and the transformed data expressed as the percentage of surviving bacteria relative to wild type Lm (set at 
100). Data represent mean±SD of three independent experiments. *, p≤0.05; ***, p≤0.001. 
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I.4.4. WTA L-rhamnosylation interferes with Lm cell wall crossing by AMPs 

 

The increased AMP susceptibility of Lm strains defective in WTA 

L-rhamnosylation suggests that this process is required to hinder the bactericidal 

activity of AMPs. Since AMPs generally induce bacterial death by disrupting the 

integrity of the plasma membrane, we hypothesized that the higher susceptibility of 

the ΔrmlACBD and ΔrmlT mutant strains resulted from an increased AMP-

mediated destabilization of the Lm membrane. In this context, two scenarios were 

envisioned: i) AMPs could be binding with higher affinity to the L-rhamnose-

deficient Lm cell wall, or ii) they could be crossing it at a faster pace, thus reaching 

the membrane more quickly than in wild type Lm. To explore these possibilities, 

we first investigated the binding affinity of the mouse cathelicidin CRAMP towards 

Lm cell walls depleted of L-rhamnose. For this, we incubated the different Lm 

strains with CRAMP for a short period and analyzed by flow cytometry the amount 

of Lm-bound peptide exposed at the cell surface and accessible for antibody 

recognition. We detected fluorescence associated with surface-exposed CRAMP 

in all strains (Fig. 22A). However, the mean fluorescence intensity (MFI) values 

were significantly reduced in both ΔrmlACBD and ΔrmlT mutants, in comparison to 

wild type Lm and the complemented strains (Figs. 22A and 22B). This suggests 

that CRAMP was less accessible to immunolabeling at the cell surface of Lm 

lacking L-rhamnosylated WTAs.  

The affinity of AMPs towards the bacterial surface is driven by electrostatic 

forces between positively charged peptides and the anionic cell envelope 

(Koprivnjak et al. 2002). To determine if variations of the Lm surface charge 

contributed to the reduced amount of CRAMP exposed at the surface of 

ΔrmlACBD and ΔrmlT bacteria, we compared the surface charge of Lm with or 

without L-rhamnosylated WTAs. For this, we analyzed the binding of cytochrome c, 

a small protein with positive charge at physiological conditions (isoelectric point 

~10), to the wild type and mutant Lm strains. As positive control, we used a mutant 

strain that cannot modify its LTAs with D-alanine (ΔdltA) and, as a result, displays 

a higher surface electronegativity and a concomitant higher affinity for positively 

charged compounds (Peschel et al. 1999, Abachin et al. 2002). As expected, the 

level of cytochrome c binding was higher with the ΔdltA strain than with the 
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respective wild type strain, as illustrated by a decreased percentage of unbound 

cytochrome c (Fig. 22C). However, no significant difference in cytochrome c 

binding levels was observed between ΔrmlACBD, ΔrmlT and wild type EGD-e 

strains (Fig. 22C), indicating that the absence of L-rhamnose in WTAs does not 

affect the Lm surface charge. This was further corroborated by zeta potential 

 

 
 
Fig. 22. WTA L-rhamnosylation interferes with the Lm cell wall crossing by AMPs. (A and B) Flow 
cytometry analysis of Lm surface-exposed CRAMP levels in mid-exponential-phase Lm strains, following 
incubation (5 min) in a 5-μg/ml solution of the peptide and immunolabeling with anti-CRAMP and Alexa Fluor 
488-conjugated antibodies. (A) Representative experiment showing overlaid histograms of CRAMP-treated 
(solid line) and untreated (dashed line) samples, with mean fluorescence intensity (MFI) values from treated 
samples indicated by vertical dashed lines. (B) Mean±SD of the MFI values of CRAMP-treated samples from 
three independent experiments. (C) Cell surface charge analysis of Lm strains deficient for WTA 

L-rhamnosylation as determined by cytochrome c binding assays. Mid-exponential-phase bacteria were 
incubated with equine cytochrome c (0.5 mg/ml), centrifuged and the supernatant was recovered for 
spectrophotometric quantification of the unbound protein fraction. Values from Lm-containing samples are 
expressed as the percentage of unbound cytochrome c relative to control samples lacking bacteria. Data 
represent the mean±SD of three independent experiments. (D and E) Flow cytometry analysis of total Lm-

associated CRAMP levels in mid-exponential-phase Lm strains, following incubation (5 min) with a 5-μg/ml 
solution of fluorescently labeled peptide (5-FAM-CRAMP). (D) Representative experiment showing overlaid 
histograms of FAM-CRAMP-treated (solid line) and untreated (dashed line) samples, with MFI values from 
treated samples indicated by vertical dashed lines. (E) Mean±SD of the MFI values of 5-FAM-CRAMP-treated 
samples from three independent experiments. (F) Fluorometric quantification of the unbound CRAMP fraction 
in the supernatant of suspensions of mid-exponential-phase Lm strains, following incubation (5 min) with a 5-
μg/ml solution of 5-FAM-CRAMP. Data are expressed as the percentage of unbound fluorescent peptide 
relative to control samples lacking bacteria, and represent the mean±SD of three independent experiments 
performed in triplicates. ns=not significant, p>0.05; **, p≤0.01; ***, p≤0.001. 
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measurements showing similar pH-dependent variations for both wild type and 

mutant strains (Fig. S5). Overall, these results allowed us to discard electrostatic 

changes as a reason behind the difference in CRAMP levels detected at the Lm 

cell surface.   

To further explore the decreased levels of surface-exposed CRAMP in Lm 

strains lacking L-rhamnosylated WTAs, we compared total levels of bacterium-

associated CRAMP in the different strains by flow cytometry, following a short 

incubation with a fluorescently labeled form of this AMP. The intensity of Lm-

associated CRAMP fluorescence was comparable for the wild type EGD-e, 

ΔrmlACBD and ΔrmlT strains (Figs. 22D and 22E), indicating that the overall 

peptide levels associated to Lm cells were similar between the different strains. 

Accordingly, the residual fluorescence in the supernatants obtained by 

centrifugation of the bacteria-peptide suspensions was also similar (Fig. 22F). As 

positive control we used the ΔdltA strain, which displayed a significantly stronger 

peptide binding than its parental wild type strain (Figs. 22D–F). These data 

strongly suggest that the increased CRAMP susceptibility of Lm strains lacking L-

rhamnosylated WTAs results from an improved penetration of CRAMP through 

their cell walls. 

Altogether, these results showed that L-rhamnosylated WTAs do not interfere 

with the Lm surface charge or with the binding efficiency of AMPs, but likely 

promote Lm survival by hindering the cell wall crossing by these bactericides. 

 

I.4.5. WTA L-rhamnosylation delays AMP interaction with the Lm plasma 

membrane 

 

In light of these results, we then examined whether WTA L-rhamnosylation 

interfered with the dynamics of AMP interaction with the Lm plasma membrane. 

We performed a time-course study to follow Lm membrane potential changes 

induced by CRAMP. In live bacteria, the membrane potential is an electric 

potential generated across the plasma membrane by the concentration gradients 

of sodium, potassium and chloride ions. Physical or chemical disruption of the 

plasma membrane integrity leads to the suppression of this potential 

(depolarization) (Shapiro 2000). Lm strains were incubated with DiOC2(3), a green 
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fluorescent voltage-sensitive dye that readily enters into bacterial cells. As the 

intracellular dye concentration increases with higher membrane potential, it favors 

the formation of dye aggregates that shift the fluorescence emission to red. After 

stabilization of the DiOC2(3) fluorescence, CRAMP was added to bacterial 

samples and the rate of Lm depolarization was immediately analyzed by 

measuring the red fluorescence emission decline in a flow cytometer. The 

decrease in the membrane potential was consistently greater in the ΔrmlACBD 

and ΔrmlT strains as compared to wild type Lm, particularly in the first 10-15 min 

(Fig. 23A), indicating that the Lm plasma membrane integrity is compromised 

faster by the action of CRAMP in the absence of L-rhamnosylated WTAs. To 

investigate if increased CRAMP-mediated disruption of the Lm membrane integrity 

was associated with increased permeabilization, we monitored in real time the 

entry of the fluorescent probe SYTOX Green into the different Lm strains, following 

the addition of CRAMP. This probe only enters into bacterial cells with a 

compromised membrane and displays a strong green fluorescence emission after 

binding to nucleic acids. As expected, when CRAMP was omitted from the 

bacterial suspensions, any increase in SYTOX Green-associated fluorescence 

was detected (Fig. 23B). However, in the presence of the peptide, the green 

fluorescence intensity of samples containing the ΔrmlACBD or ΔrmlT mutants 

increased earlier than in samples containing wild type Lm (Fig. 23B), eventually 

reaching similar steady-state levels at later time points (Fig. S7). These 

observations indicate that CRAMP-mediated increase of the Lm membrane 

permeability occurs faster in strains lacking L-rhamnosylated WTAs.  

To investigate the ultrastructural localization of the peptide, we performed 

immunoelectron microscopy on CRAMP-treated wild type and ΔrmlACBD Lm 

strains. Interestingly, CRAMP-specific labeling was not only detected in the Lm cell 

envelope, as expected, but also in the cytoplasm (Fig. 23C), suggesting that this 

AMP may additionally target components or processes inside Lm. Comparison of 

the subcellular distribution of CRAMP between these two bacterial compartments 

revealed a preferential cell envelope localization in wild type Lm, which contrasted 

with the slight but significantly higher cytoplasmic localization of the peptide in the 

ΔrmlACBD strain (Fig. 23D). These observations are in agreement with a model in 

which CRAMP crosses the Lm cell wall more efficiently in the absence of WTA L-
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rhamnosylation, therefore reaching the bacterial membrane and the cytoplasm 

comparatively faster.    

 

 
 
Fig. 23. WTA L-rhamnosylation delays AMP interaction with the Lm plasma membrane. (A) 
Depolarization rate of Lm strains in response to CRAMP. Mid-exponential-phase bacteria pre-stained (15 min) 

with 30 μM DiOC2(3) were challenged with 50 μg/ml CRAMP and changes in the membrane potential, 
expressed as the ratio of CRAMP-treated versus untreated samples, were monitored during 30 min. Data 
represent the mean±SD of three independent experiments. (B) SYTOX Green uptake kinetics of Lm strains in 

response to CRAMP-mediated membrane permeabilization. Exponential-phase bacteria were incubated 
(37 ºC) with PBS (white symbols) or 50 μg/ml CRAMP (black symbols), in the presence of 1 μM SYTOX 
Green, and the increase in green fluorescence emission was recorded over time. (C and D) Transmission 

electron microscopy analysis of the subcellular distribution of CRAMP in immunogold-labeled sections of mid-
exponential-phase wild type and ΔrmlACBD Lm strains treated with 50 μg/ml CRAMP (15 min, 37 ºC). (C) 
Representative images of contrasted sections of Lm cells showing CRAMP-specific gold labeling (10-nm black 
dots). Scale bar: 0.2 μm. (D) Quantification of the subcellular partition of CRAMP labeling in wild type and 
ΔrmlACBD Lm strains, for two independent assays. The percentages of cell envelope- and cytoplasm-
associated gold dots per bacterium were quantified (at least 90 cells per strain) and the results expressed for 
each strain as mean±SD. (E and F) Western blot analysis of levels of CRAMP bound to purified cell wall of 
different Lm strains. Purified cell wall (100 μg) was incubated with CRAMP (5 min), washed and digested 
overnight with mutanolysin. (E) Supernatants from mutanolysin-treated samples were resolved in 16% Tris-
tricine SDS-PAGE and immunoblotted for CRAMP. The Lm cell wall-anchored protein InlA was used as 
loading control. (F) Quantification of the relative CRAMP levels represented as the mean±SD of four 
independent blots. *, p≤0.05; **, p≤0.01. 
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Finally, to confirm that the presence of L-rhamnosylated WTAs hinders the 

capacity of AMPs to flow through the Lm cell wall, we assessed levels of CRAMP 

retained in purified cell wall samples from the wild type, ΔrmlACBD and ΔrmlT 

strains by Western blot. After incubation with CRAMP, peptides trapped within the 

peptidoglycan matrix were released by mutanolysin treatment of the cell wall and 

quantitatively resolved by SDS-PAGE. Immunoblotting revealed a small but 

consistent decrease in the amount of peptide associated with the cell wall from the 

two mutant strains in comparison with wild type Lm (Figs. 23E and 23F). This 

result indicates that the lack of L-rhamnose in WTAs results in a partial loss of the 

AMP retention capacity of the Lm cell wall, which induces an enhanced AMP 

targeting of the Lm plasma membrane and consequent bacterial killing. 

All combined, these data support a model where the L-rhamnosylation of 

WTAs alters the Lm cell wall permeability to favor the entrapment of AMPs. This 

obstructive effect hinders AMP progression through the cell wall and delays their 

lethal interaction with the plasma membrane. 

 

I.4.6. WTA L-rhamnosylation is crucial for AMP resistance in vivo and Lm 

virulence  

 

To evaluate the importance of WTA L-rhamnosylation in Lm pathogenicity, 

we assessed the in vivo virulence of Lm strains lacking L-rhamnosylated WTAs. 

BALB/c mice were inoculated orally with wild type, ΔrmlACBD or ΔrmlT strains, 

and the bacterial load in the spleen and liver of each animal was quantified three 

days later. The proliferative capacity of both ΔrmlACBD and ΔrmlT mutant strains 

was similarly reduced in both organs, although more significantly in the liver (Figs. 

24A and 24B). To determine if the decreased virulence of the mutant strains was 

due to a specific defect in the crossing of the intestinal epithelium, BALB/c mice 

were challenged intravenously, bypassing the intestinal barrier. Three days post-

infection, the differences between mutant and wild type strains, in both organs, 

were similar to those observed in orally infected animals (Figs. 24C and 24D), thus 

discarding any sieving effect of the intestinal epithelium on the decreased splenic 

and hepatic colonization by both ΔrmlACBD and ΔrmlT. Importantly, organs of 

mice infected intravenously with the complemented strains (ΔrmlACBD+rmlACBD 
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and ΔrmlT+rmlT) displayed bacterial loads comparable to wild type Lm-infected 

organs (Figs. 24C and 24D).  The attenuated in vivo phenotype of the ΔrmlACBD 

and ΔrmlT strains was not caused by an intrinsic growth defect, as demonstrated 

 

 
Fig. 24. WTA L-rhamnosylation is necessary for AMP resistance in vivo and Lm virulence. (A–D) 

Quantification of viable bacteria in the spleen and liver recovered from BALB/c mice (n=5), three days after (A 
and B) oral or (C and D) intravenous infection with sub-lethal doses of indicated Lm strains. Data are 
presented as scatter plots, with each animal indicated by a dot and the mean indicated by a horizontal line. (E 
and F) Quantification of the fecal shedding of wild type or ΔrmlACBD Lm strains after oral infection of (E) wild 

type (WT, cramp
+/+

) and (F) CRAMP knockout (KO, cramp
-/-

) 129/SvJ mice (n=5). Total feces produced by 
each animal at specific time points were collected and processed for bacterial enumeration in Listeria-
selective agar media. Data are expressed as mean±SD. (G and H) Quantification of viable bacteria in spleens 
and livers recovered from (G) wild type (WT, cramp

+/+
) and (H) CRAMP knockout (KO, cramp

-/-
) 129/Sv mice 

(n=5), three days after intravenous infection with sub-lethal doses of wild type or ΔrmlACBD Lm strains. Data 
are presented as scatter plots, with each animal represented by a dot and the mean indicated by a horizontal 
line. *, p≤0.05; **, p≤0.01; ***, p≤0.001. 
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by their wild type-like growth profiles in broth or inside eukaryotic cells (Fig. S8). 

These results confirmed the involvement of the rml operon in virulence, revealing a 

significant contribution of WTA L-rhamnosylation to Lm pathogenesis. Importantly, 

the in vivo attenuation of the ΔrmlT strain, which is unable to append L-rhamnose 

to its WTAs but is able to synthesize the L-rhamnose precursor, showed that 

although L-rhamnose biosynthesis is required to achieve optimal levels of 

virulence it is its covalent linkage to the WTA backbone that is crucial for the 

successful Lm host infection. 

To evaluate the protective role of WTA L-rhamnosylation against AMPs in 

vivo, we performed virulence studies in a CRAMP-deficient mouse model. To 

determine the influence of WTA L-rhamnosylation in Lm intestinal persistence, we 

performed oral infections of adult CRAMP knockout 129/SvJ mice (cramp-/-, KO) 

(Nizet et al. 2001) and of age- and background-matched wild type mice (cramp+/+, 

WT), with the wild type or ΔrmlACBD Lm strains and monitored the respective 

fecal carriage. In both WT and KO mice, we observed comparable dynamics of 

fecal shedding of the wild type and ΔrmlACBD strains (Figs. 6E and 6F). In 

agreement with the comparable virulence defects observed for WTA L-

rhamnosylation-deficient bacteria, following oral or intravenous inoculation of 

BALB/c mice (Figs. 24A–D), these results suggest a minor role for CRAMP in the 

control of Lm during the intestinal phase of the infection. 

We then inoculated WT and KO mice intravenously and quantified bacterial 

numbers in the spleen and liver, three days post-infection. In line with what was 

observed in BALB/c mice (Fig. 6C), the ΔrmlACBD strain showed significant 

virulence attenuation in both organs of WT mice (Fig. 24G). Interestingly, this 

virulence defect was nearly abolished in KO animals, with the ΔrmlACBD strain 

displaying an organ-colonizing capacity similar to wild type bacteria (Fig. 6H). In 

addition, bacterial loads were higher in the organs of KO mice than in those of WT 

animals (Figs. 24G and 24H). These data indicate that, in comparison to their WT 

congeners, KO mice are more susceptible to Lm infection, and confirm the in vivo 

listericidal activity of CRAMP.  

Altogether, these results highlight a key role for host-produced CRAMP in 

restraining Lm infection and demonstrate that WTA L-rhamnosylation also 

promotes resistance to AMPs in an in vivo context. 
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I.5. Discussion 
 

Teichoic acids are key players in the maintenance of the Gram-positive cell 

envelope integrity and functionality. They are typically decorated with D-alanine 

and/or a variety of glycosyl groups, which influence the overall properties of these 

polymers (Weidenmaier and Peschel 2008). Whereas D-alanylation of WTAs has 

been demonstrated to contribute towards bacterial defense against AMPs 

(Peschel et al. 1999, Koprivnjak et al. 2002), the involvement of glycosylation in 

this process has never been investigated. In this study, we show for the first time 

that the glycosylation of Lm WTAs with L-rhamnose is mediated by the WTA L-

rhamnosyltransferase RmlT and confers protection against AMPs in vitro and 

during mouse infection. Based on our data, we propose that this protection results 

from a delayed traversal of the Lm cell envelope by AMPs in the presence of L-

rhamnose-decorated WTAs. Most importantly, we reveal a key role for L-

rhamnosylated WTAs in the processes underlying Lm pathogenesis.  

Unlike S. aureus or B. subtilis (Neuhaus and Baddiley 2003), WTAs in 

Listeria are not decorated with D-alanine, undergoing only glycosylation with a 

small pool of monosaccharides (Uchikawa et al. 1986a, Fiedler 1988). Among 

these is L-rhamnose, which is the product of a remarkably conserved biosynthetic 

pathway that is encoded by the rmlABCD genes (Giraud and Naismith 2000). 

Interestingly, a significant number of bacteria harboring these genes are 

commonly pathogenic (Macpherson et al. 1994, Tsukioka et al. 1997, Li and 

Reeves 2000, Li et al. 2003, Li et al. 2006, Aguirre-Ramírez et al. 2012) and have 

L-rhamnose in close association with surface components (Chatterjee 1997, 

Frirdich and Whitfield 2005). In Listeria, the rmlACBD locus is only found in certain 

serotypes of Lm (1/2a, 1/2b, 1/2c, 3c and 7) and L. seeligeri (1/2b). These 

serotypes were all shown to have L-rhamnose in their WTAs, except for Lm 

serotypes 3c and 7 (Fiedler 1988), which appear to be unable to produce this 

sugar because of mutations within rmlA and rmlB, respectively (Fig. 19). Our 

results confirmed that the appendage of L-rhamnose to Lm WTAs requires the 

products of the rmlACBD locus. Ultimately, WTA glycosylation is catalyzed by 

glycosyltransferases, a class of enzymes that recognize nucleotide-sugar 

substrates and transfer the glycosyl moiety to a WTA subunit (Lairson et al. 2008). 

In silico analysis of lmo1080, the first gene of the operon including rmlACBD 
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(Fig. 19) showed that it encodes a protein with putative glycosyltransferase 

activity. The genomic location and predicted protein function were strong 

indicators that this gene might encode the transferase involved in the L-

rhamnosylation of Lm WTAs. Our data demonstrated that whereas lmo1080, that 

we renamed rmlT, is dispensable for rhamnose biosynthesis, it is required for the 

addition of L-rhamnose to WTAs in Lm strains with a functional L-rhamnose 

pathway, thus validating RmlT as the L-rhamnose-specific WTA 

glycosyltransferase in Lm. 

WTAs are associated with the natural resistance of S. aureus to 

peptidoglycan-degrading enzymes, such as lysozyme (Bera et al. 2007, Atilano et 

al. 2010). In contrast, absence of WTA decoration, but not of the polymers, was 

shown to induce an increase of the staphylococcal susceptibility to lysostaphin 

(Brown et al. 2012). Modifications of the Lm peptidoglycan, such as N-

deacetylation (Boneca et al. 2007), were found to contribute to protection against 

lysozyme, but the role of WTAs and in particular their decoration, was never 

addressed. Our results discard WTA L-rhamnosylation as a component of the Lm 

resistance mechanism to this host immune defense protein, as well as its 

involvement in the promotion of growth under osmotic conditions. Other innate 

immune effectors, such as antimicrobial peptides (AMPs), also target bacterial 

organisms (Guilhelmelli et al. 2013) that in turn have developed resistance 

strategies to avoid injury and killing induced by AMPs. Among these strategies is 

the reshaping and fine-tuning of cell envelope components to lower AMP affinity to 

the bacterial surface (Koprivnjak and Peschel 2011). Previous studies showed a 

clear link between the D-alanylation of WTAs and AMP resistance (Peschel et al. 

1999, Kovacs et al. 2006). In this context, we found here a similar role for WTA L-

rhamnosylation, showing that, in the absence of L-rhamnosylated WTAs, bacteria 

exhibit an increased susceptibility to AMPs produced by bacteria, mice and 

importantly by humans. Although from such distinct sources, AMPs used here 

share a cationic nature that supports their activity. However, while teichoic acid D-

alanylation is known to reduce the cell wall electronegativity (Peschel et al. 1999), 

glycosyl substituents of Lm WTAs are neutrally charged and WTA glycosylation 

should thus promote AMP resistance through a different mechanism.  
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It is well established that AMPs induce bacterial death mainly by tampering 

with the integrity of the plasma membrane. This can be achieved through multiple 

ways, all of which are driven by the intrinsic amphipathic properties of this class of 

peptides (Nguyen et al. 2011). Nonetheless, the initial interaction of AMPs with 

bacterial surfaces is mediated by electrostatic forces between their positive net 

charge and the anionic cell envelope (Koprivnjak et al. 2002). Our data show that, 

unlike D-alanylation (Vadyvaloo et al. 2004), WTA L-rhamnosylation does not 

interfere with the Lm cell surface charge, in agreement with L-rhamnose being an 

electrostatically neutral monosaccharide. Importantly, the reduced levels of 

surface-exposed CRAMP in Lm strains lacking L-rhamnosylated WTAs suggested 

instead that their increased susceptibility to this peptide was correlated with its 

improved penetration of the L-rhamnose-depleted Lm cell wall. We confirmed this 

premise with data showing that CRAMP-mediated cell depolarization and plasma 

membrane permeabilization events occur earlier in WTA L-rhamnosylation-

deficient Lm strains. In addition, we also observed a predominant cytoplasmic 

presence of CRAMP in these mutant strains, in contrast to the preferential cell 

envelope localization in wild type Lm, further suggesting a WTA L-rhamnosylation-

dependent kinetic discrepancy in the progression of CRAMP through the Lm cell 

envelope. Saar-Dover et al. demonstrated in the WTA-lacking Streptococcus 

agalactiae (GBS) that LTA D-alanylation promoted resistance to the human 

cathelicidin LL-37 by hindering cell wall crossing and plasma membrane 

disturbance (Saar-Dover et al. 2012). They proposed that the underlying 

mechanism does not rely on modulation of the surface charge but on LTA 

conformation-associated alterations of the cell wall packing density (Saar-Dover et 

al. 2012). Our data are in line with these observations and although we did not 

detect changes in the cell wall cross-linking status, we cannot ignore a possible 

impact of L-rhamnosylation on WTA polymer conformation accounting for changes 

in cell wall permeability. If one considers that the peptidoglycan, a multi-layered 

and compact structure, is densely populated with WTA polymers decorated with 

multiple units of the rather bulky L-rhamnose molecule, spatial constraints and 

increased cell wall density need to be accounted. In fact, we showed that purified 

Lm cell wall depleted of L-rhamnose does not retain CRAMP in its peptidoglycan 

matrix as effectively as cell wall containing L-rhamnosylated WTAs. In addition, we 
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have indications that soluble L-rhamnose interferes with CRAMP activity, 

improving the survival of WTA L-rhamnosylation mutants of Lm (data not shown). 

These observations suggest a potential interaction between L-rhamnose and 

AMPs, which could favor the “retardation effect” that ultimately promotes Lm 

survival. 

We previously reported a significantly increased transcription of rmlACBD 

during mouse spleen infection (Camejo et al. 2009), which suggested that WTA L-

rhamnosylation is highly activated by Lm to successfully infect this host organ. Our 

infection studies in mice confirmed the importance of this mechanism for Lm 

pathogenesis by revealing a significant virulence attenuation of WTA L-

rhamnosylation-deficient Lm strains. Surprisingly, the expression of rmlT appeared 

unchanged during mouse spleen infection as compared to growth in BHI (Camejo 

et al. 2009), suggesting that an increased L-rhamnose biosynthesis could be 

sufficient to induce an increased WTA L-rhamnosylation and AMP resistance. 

Faith et al. also observed a decreased bacterial burden of a serotype 4b Lm strain 

lacking the gtcA gene (Faith et al. 2009), a mutation that resulted in complete loss 

of galactose decoration of its WTAs (Promadej et al. 1999). Interestingly, gtcA is 

also present in Lm EGD-e, where it appears to be involved in WTA substitution 

with N-acetylglucosamine (Eugster et al. 2011), and was shown to contribute to 

the colonization of the mouse spleen, liver and brain (Autret et al. 2001). However 

the mechanism through which this occurs remains unclear. 

Virulence studies in mice lacking the CRAMP gene corroborated our in vitro 

susceptibility data and revealed the importance of WTA L-rhamnosylation-

promoted resistance to AMPs for Listeria virulence. In vivo data also provided a 

strong insight into the protective role of CRAMP against systemic infection by Lm, 

as had been previously observed with other bacterial pathogens (Nizet et al. 2001, 

Huang et al. 2007, Chromek et al. 2012). Our results on fecal shedding dynamics 

suggest that the contribution of CRAMP to the control of Lm during the intestinal 

phase of infection is minimal. A previous report showed a negligible enteric 

secretion of CRAMP in normal adult mice (Ménard et al. 2008), which may explain 

the similar shedding behavior of the wild type and ΔrmlACBD strains that were 

observed in both mouse strains. In this scenario, infection studies in newborn 

animals, whose enterocytes actively express CRAMP (Gallo et al. 1997, Ménard et 
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al. 2008), may provide conclusive information regarding the role of WTA L-

rhamnosylation in the Lm resistance to CRAMP during the intestinal phase of the 

infection. Notwithstanding, CRAMP is actively produced by phagocytes in adult 

mice (Rosenberger et al. 2004). As a major target for Lm colonization, the spleen 

is also an important reservoir of phagocytic cells. We can speculate that WTA L-

rhamnosylation is particularly important to increase the chances of Lm surviving 

CRAMP-mediated killing during spleen infection. Considering our data on the Lm 

susceptibility to LL-37, the human homolog of CRAMP, we can also envisage this 

scenario in the context of human infection. 

In conclusion, our work has unveiled for the first time a role for WTA 

glycosylation in bacterial resistance to AMPs. We propose that WTA L-

rhamnosylation reduces the cell wall permeability to AMPs, promoting a delay in 

the crossing of this barrier and in the disruption of the plasma membrane, thus 

favoring Lm survival and virulence in vivo. Our findings reveal a novel facet in the 

contribution of WTA modifications towards AMP resistance, reinforcing the crucial 

role of these Gram-positive surface glycopolymers in host defense evasion.
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I.6. Materials and Methods 

 

I.6.1. Bacterial strains and growth conditions 

 

Bacterial strains used in this study are listed in Table 1. Lm and E. coli 

strains were routinely cultured aerobically at 37 ºC in brain heart infusion (BHI, 

Difco) and Lysogeny Broth (LB) media, respectively, with shaking. For 

experiments involving the Lm ΔtagO1ΔtagO2 strain, bacteria were first cultured 

overnight at 30 ºC with shaking in the presence of 1 mM IPTG (isopropyl-β-D-

thiogalactopyranoside), washed and diluted (1:100) in fresh BHI and cultured 

overnight at 30 ºC with shaking (Eugster and Loessner 2012). When appropriate, 

the following antibiotics were included in culture media as selective agents: 

ampicilin (Amp), 100 μg/ml; chloramphenicol (Cm), 7 μg/ml (Lm) or 20 μg/ml (E. 

coli); erythromycin (Ery), 5 μg/ml. For genetic complementation purposes, colistin 

sulfate (Col) and nalidixic acid (Nax) were used at 10 and 50 μg/ml, respectively.  

 

I.6.2. Construction and complementation of mutant strains 

 

Lm mutant strains were constructed in the EGD-e background through a 

process of double homologous recombination mediated by the suicide plasmid 

pMAD (Arnaud et al. 2004). DNA fragments corresponding to the 5’- and 3’-

flanking regions of the rmlACBD locus (lmo1081–4) were amplified by PCR from 

Lm EGD-e chromosomal DNA with primers 1–2 and 3–4 (Table S2), and cloned 

between the SalI–MluI and MluI–BglII sites of pMAD, yielding pDC303. Similarly, 

DNA fragments corresponding to the 5’- and 3’-flanking regions of rmlT (lmo1080) 

were amplified with primers 15–16 and 17–18 (Table S2), and cloned between the 

SalI–EcoRI and EcoRI–BglII sites of pMAD, yielding pDC491. The plasmid 

constructs were introduced in Lm EGD-e by electroporation and transformants 

selected at 30 ºC in BHI–Ery. Positive clones were re-isolated in the same medium 

and grown overnight at 43 ºC. Integrant clones were inoculated in BHI broth and 

grown overnight at 30 ºC, after which the cultures were serially diluted, plated in 

BHI agar and incubated overnight at 37 ºC. Individual colonies were tested for 

growth in BHI–Ery at 30 ºC and antibiotic-sensitive clones were screened by PCR 
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for deletion of rmlACBD (primers 5–6, 7–8, 9–10 and 11–12) and rmlT (primers 

19–20) (Table S2). Genetic complementation of the deletion mutant strains was 

performed as described (Camejo et al. 2009). DNA fragments containing either the 

rmlACBD or rmlT loci were amplified from Lm EGD-e chromosomal DNA with 

primers 13–14 and 21–22 (Table S2), respectively, and cloned between the SalI–

PstI sites of the phage-derived integrative plasmid pPL2 (Lauer et al. 2002), 

generating pDC313 and pDC550. The plasmid constructs were introduced in the 

E. coli strain S17-1 and transferred, respectively, to the ΔrmlACBD and ΔrmlT 

strains by conjugation on BHI agar. Transconjugant clones were selected in BHI–

Cm/Col/Nax and chromosomal integration of the plasmids confirmed by PCR with 

primers 23 and 24 (Table S2). All plasmid constructs and gene deletions were 

confirmed by DNA sequencing. 

 

I.6.3. Gene expression analyses 

 

Total bacterial RNA was isolated from 10 ml of exponential cultures 

(OD600=0.6) by the phenol-chloroform extraction method, as previously described 

(Milohanic et al. 2003), and treated with DNase I (Turbo DNA-free, Ambion), as 

recommended by the manufacturer. Purified RNAs (1 μg) were reverse-

transcribed with random hexamers, using iScript cDNA Synthesis kit (Bio-Rad 

Laboratories). Quantitative real-time PCR (qPCR) was performed in 20-μl 

reactions containing 2 μl of cDNA, 10 μl of SYBR Green Supermix (Bio-Rad 

Laboratories) and 0.25 μM of forward and reverse primers (Table S2), using the 

following cycling protocol: 1 cycle at 95 ºC (3 min) and 40 cycles at 95 ºC (30 s), 

55 ºC (30 s) and 72 ºC (30 s). Each target gene was analyzed in triplicate and 

blank (water) and DNA contamination controls (unconverted DNase I-treated RNA) 

were included for each primer pair. Amplification data were analyzed by the 

comparative threshold (ΔΔCt) method, after normalization of the test and control 

sample expression values to a housekeeping gene (16S rRNA). For qualitative 

analysis, PCR was performed in 20-μl reactions containing 2 μl of cDNA, 10 μl of 

MangoMix 2× reaction mix (Bioline) and 0.5 μM of forward and reverse qPCR 

primers, using the following protocol: 1 cycle at 95 ºC (5 min), 25 cycles at 95 ºC 

(30 s), 55 ºC (30 s) and 72 ºC (20 s), and 1 cycle at 72 ºC (5 min). Amplification 
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products were resolved in 1% (w/v) agarose gel and analyzed in a GelDoc XR+ 

System (Bio-Rad Laboratories). 

 

I.6.4. WTA PAGE analysis 

 

Extraction and analysis of Lm WTAs by polyacrylamide gel electrophoresis 

was performed essentially as described (Carvalho et al. 2013), with the exception 

that WTAs extracts were obtained from exponential-phase cultures. Sedimented 

bacteria were washed (buffer 1: 50 mM MES buffer, pH 6.5) and boiled for 1 h 

(buffer 2: 4% SDS in buffer 1). After centrifugation, the pellet was serially washed 

with buffer 2, buffer 3 (2% NaCl in buffer 1) and buffer 1, before treatment with 20 

μg/ml proteinase K (20 mM Tris-HCl, pH 8; 0.5% SDS) at 50 ºC for 4 h. The 

digested samples were thoroughly washed with buffer 3 and distilled water and 

incubated overnight (16 h) with 0.1 M NaOH, under vigorous agitation. Cell wall 

debris were removed by centrifugation (10,000 rpm, 10 min) and the hydrolyzed 

WTAs present in the supernatant were directly analyzed by native PAGE in a Tris-

tricine buffer system. WTA extracts were resolved through a vertical (20 cm) 

polyacrylamide (20%) gel at 20 mA for 18 h (4 ºC). To visualize WTAs, the gel was 

stained in 0.1% Alcian blue (40% ethanol; 5% acetic acid) for 30 min and washed 

(40% ethanol; 10% acetic acid) until the background is fully cleared. Optionally, for 

increased contrasting, silver staining can be performed on top of the Alcian blue 

staining. 

 

I.6.5. Purification of cell wall components  

 

Cell walls of Lm strains were purified as described before (Filipe et al. 2005), 

with modifications. Overnight cultures were subcultured into 1–2 liters of BHI broth 

(initial OD600=0.005) and bacteria grown until exponential phase (OD600=1.0–1.5). 

Cultures were rapidly cooled in an ice/ethanol bath and bacteria harvested by 

centrifugation (7,500 rpm, 15 min, 4 °C). The pellet was resuspended in cold 

ultrapure water and boiled for 30 min with 4% SDS to kill bacteria and inactivate 

cell wall-modifying enzymes. The samples were cleared of SDS by successive 

cycles of centrifugation (12,000 rpm, 10 min) and washing with warm ultrapure 
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water until no detergent was detected (Hayashi 1975). SDS-free samples were 

resuspended in 2 ml of ultrapure water and cell walls disrupted with glass beads in 

a homogenizer (FastPrep, Thermo Savant). Fully broken cell walls were separated 

from glass beads by filtration (glass filters, pore size: 16-40 µm) and from 

unbroken cell walls and other debris by low-speed centrifugation (2,000 rpm, 

15 min). Nucleic acids were degraded after incubation (2 h) at 37 °C with DNase 

(10 µg/ml) and RNase (50 µg/ml) in a buffer containing 50 mM Tris-HCl, pH 7.0, 

and 20 mM MgSO4. Proteins were then digested overnight at 37 °C with trypsin 

(100 µg/ml) in the presence of 10 mM CaCl2. Nuclease and proteases were 

inactivated by boiling in 1% SDS, and samples were centrifuged (17,000 rpm, 

15 min) and washed twice with ultrapure water. Cell walls were resuspended and 

incubated (37 °C, 15 min) in 8 M LiCl and then in 100 mM EDTA, pH 7.0, after 

which they were washed twice with water. After resuspension in acetone and 

sonication (15 min), cell walls were washed and resuspended in ultrapure water 

before undergoing lyophilization.  

To obtain purified peptidoglycan, cell walls (20 mg) were incubated for 48 h 

with 4 ml of 46% hydrofluoric acid (HF), under agitation at 4 °C. Samples were 

washed with 100 mM Tris-HCl, pH 7.0, and centrifuged (17,000 rpm, 30 min, 4 °C) 

as many times as necessary to neutralize the pH. The pellet was finally washed 

twice with water prior to lyophilization. WTA extracts were obtained by incubating 

1 mg of cell wall with 300 µl of 46% HF (18 h, 4 °C). After centrifugation 

(13,200 rpm, 15 min, 4 °C), the supernatant was recovered and evaporated under 

a stream of compressed air. The dried WTA residue was resuspended in water 

and lyophilized.  

 

I.6.6. Extraction of bacterial cytoplasmic content 

 

The intracellular content of Lm strains was isolated according to a modified 

version of the protocol by Ornelas-Soares et al. (Ornelas-Soares et al. 1994). 

Bacterial cultures (200 ml) were grown until early exponential phase (OD600=0.3), 

and vancomycin was added at 7.5 µg/ml (5×MIC value (Blanot et al. 1999)) to 

induce the cytoplasmic accumulation of the peptidoglycan precursor UDP-

MurNAc-pentapeptide. Cultures were grown for another 45 min and chilled in an 
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ice-ethanol bath for 10 min. Bacteria were then harvested by centrifugation 

(12,000 rpm, 10 min, 4 ºC), washed with cold 0.9% NaCl, resuspended in 5 ml of 

cold 5% trichloroacetic acid (TCA) and incubated for 30 min on ice. Cells and other 

debris were separated by centrifugation (4,000 rpm, 15 min, 4 ºC) and the 

supernatant was extracted with 1-2 volumes of diethyl ether as many times as 

necessary to remove TCA (sample pH should rise to at least 6.0). The aqueous 

fraction containing the cytoplasmic material was lyophilized and the dried residue 

resuspended in ultrapure water.  

 

I.6.7. HPLC analyses 

 

To analyze their sugar composition, purified cell wall and peptidoglycan 

(200 µg each), as well as cytoplasmic (500 µg) and WTA extracts were hydrolyzed 

in 3 M HCl for 2 h at 95 °C. After vacuum evaporation, the samples were washed 

with water and lyophilized. The hydrolyzed material was then resuspended in 

150 µl of water and resolved by high-performance anion-exchange 

chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Ten 

microliters were injected into a CarboPac PA10 column (Dionex, Thermo Fisher 

Scientific) and eluted at 1 ml/min (30 °C) with 18 mM NaOH, followed by a 

gradient of NaCH3COO: 0–20 mM (t=25–30 min), 20–80 mM (t=30–35 min), 80–

0 mM (t=40–45 min). Standards for glucosamine, muramic acid, L-rhamnose and 

ribitol (Sigma-Aldrich) were eluted under the same conditions to enable 

identification of chromatogram peaks. Data were acquired and analyzed with the 

Chromeleon software (Dionex, Thermo Fisher Scientific).  

Muropeptide samples were prepared and analyzed as described (de Jonge 

et al. 1992), with minor changes. Purified peptidoglycan was digested with 200 

µg/ml mutanolysin (Sigma-Aldrich) in 12.5 mM sodium phosphate, pH 5.5, for 16 h 

at 37 °C. Enzymatic activity was halted by heating at 100 °C for 5 min, after which 

the digested sample was reduced for 2 h with 2.5 mg/ml of sodium borohydride 

(NaBH4) in 0.25 M borate buffer, pH 9.0. The reaction was stopped by lowering the 

sample pH to 2 with ortho-phosphoric acid. After centrifugation, the supernatant 

was analyzed by reverse phase HPLC. Fifty microliters were injected into a 

Hypersil ODS (C18) column (Thermo Fisher Scientific) and muropeptide species 
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eluted (0.5 ml/min, 52 °C) in 0.1 M sodium phosphate, pH 2.0, with a gradient of 

5–30% methanol and detected at 206 nm. 

 

I.6.8. Intracellular multiplication 

 

Mouse macrophage-like J774A.1 cells (ATCC, TIB-67) were propagated in 

Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum 

and infection assays were performed as described (Camejo et al. 2009). Briefly, 

cells (~2×105/well) were infected for 45 min with exponential-phase bacteria at a 

multiplicity of infection of ~10 and treated afterwards with 20 μg/ml gentamicin for 

75 min. At several time-points post-infection, cells were washed with PBS and 

lysed in cold 0.2% Triton X-100 for quantification of viable intracellular bacteria in 

BHI agar. One experiment was performed with triplicates for each strain and time-

point. 

 

I.6.9. Resistance to salt stress and lysozyme 

 

Lm cultures grown overnight were appropriately diluted in BHI broth and their 

growth under the presence of stressful stimuli was monitored by optical density 

measurement at 600 nm (OD600). For comparative analysis of Lm resistance to 

salt stress, bacterial cultures were diluted 100-fold in BHI alone (control) or BHI 

containing 5% NaCl. To assess the Lm resistance to lysozyme, exponential-phase 

cultures (OD600 ≈ 1.0) were challenged with different doses of chicken egg white 

lysozyme (Sigma). A mutant Lm strain hypersensitive to lysozyme (ΔpgdA) was 

used as a positive control for susceptibility.  

 

I.6.10. AMP susceptibility 

 

Bacteria in the exponential phase of growth (OD600=0.7–0.8) were diluted 

(104 CFU/ml) in sterile PB medium (10 mM phosphate buffer, pH 7.4; 1% BHI) and 

mixed in a 96-well microplate with increasing concentrations of gallidermin (Santa 

Cruz Biotechnology), CRAMP or LL-37 (AnaSpec). Bacterial suspensions without 

AMPs were used as reference controls for optimal growth/survival. After incubation 
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for 2 h at 37 ºC, the mixtures were serially diluted in sterile PBS and plated in BHI 

agar for quantification of viable bacteria. Each condition was analyzed in duplicate 

in three independent assays. 

 

I.6.11. Cytochrome c binding 

 

Cytochrome c binding assays were performed as described (Vadyvaloo et al. 

2004). Bacteria from mid-exponential-phase cultures (OD600=0.6–0.7) were 

washed in 20 mM MOPS buffer, pH 7.0, and resuspended in ½ volume of 0.5 

mg/ml equine cytochrome c (Sigma-Aldrich) in 20 mM MOPS buffer, pH 7.0. After 

10 min of incubation, bacteria were pelleted and the supernatant collected for 

quantification of the absorbance at 530 nm. The mean absorbance values from 

replicate samples containing bacteria were subtracted to the mean value of a 

reference sample lacking bacteria, and the results were presented for each strain 

as percentage of unbound cytochrome c. 

 

I.6.12. Zeta potential measurements 

 

Bacteria (1 ml) from mid-exponential-phase cultures were washed twice with 

deionized water and diluted (107 CFU/ml) in 15 mM NaCl solutions adjusted to 

different pH values (1 to 7) with nitric acid. Bacterial suspensions (750 μl) were 

injected into a disposable capillary cell cuvette (DTS1061, Malvern Instruments) 

and the zeta potential was measured at 37 ºC in a ZetaSizer Nano ZS (Malvern 

Instruments), under an automated field voltage. Samples were measured in 

triplicate in three independent assays. 

 

I.6.13. Flow cytometry analyses 

 

Bacteria from 500 μl of mid-exponential-phase cultures were washed twice 

with PBS and treated for 5 min with 5 μg/ml CRAMP or PBS (untreated control). 

After centrifugation, the supernatant was removed and PBS-washed bacteria were 

incubated for 1 h with rabbit anti-CRAMP (1:100, Innovagen), followed by 1 h with 

Alexa Fluor 488-conjugated anti-rabbit IgG (1:200, Molecular Probes). Finally, 
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bacteria were fixed with 3% paraformaldehyde for 15 min, washed and 

resuspended in PBS. Alternatively, bacteria were similarly treated with an N-

terminally 5-FAM-labeled synthetic form of CRAMP (95% purity, Innovagen), 

washed and resuspended in PBS. Samples were acquired in a FACSCalibur flow 

cytometer equipped with CellQuest software (BD Biosciences) and data were 

analyzed with FlowJo (TreeStar Inc.). Green fluorescence was collected from at 

least 50,000 FSC/SSC-gated bacterial events in the FL1 channel (530 nm/20 nm 

bandpass filter). Fluorescence intensities were plotted in single-parameter 

histograms and results were presented as the average mean fluorescence 

intensity (MFI) value from three independent analyses.  

For bacterial membrane potential studies, the lipophilic fluorescent probe 

DiOC2(3) (3,3-diethyloxacarbocyanine, Santa Cruz Biotechnology) was used as a 

membrane potential indicator (Novo et al. 1999, Shapiro 2000). Mid-logarithmic 

phase bacteria were diluted (106 CFU/ml) in PBS with 30 μM DiOC2(3) and 

incubated for 15 min in the dark. CRAMP was added to a final concentration of 50 

μg/ml and the sample was immediately injected in the flow cytometer. Control 

samples treated with PBS or with 1.5 mM sodium azide (uncoupling agent) were 

analyzed to determine the fluorescence values corresponding to basal (100%) and 

null (0%) membrane potential (Fig. S6). Green and red (FL3, 670 nm/long 

bandpass filter) fluorescence emissions were continuously collected from 

FSC/SSC-gated bacteria for 30 min. After acquisition, a ratio of red over green 

fluorescence (R/G) was calculated per event and plotted in the y-axis versus time. 

A series of consecutive one-minute-wide gates was applied to the plot and the 

mean R/G value per gate was determined. The mean R/G values from uncoupler-

treated samples were deducted from the corresponding values from the untreated 

and CRAMP-treated samples, and the resulting values for each condition were 

normalized as percentage of the initial value (t=1 min). Finally, the temporal 

variation of the Lm membrane potential was represented graphically as the ratio of 

the normalized values from CRAMP-treated over untreated samples. 

 

I.6.14. SYTOX Green uptake 

 

Bacterial uptake of the cell-impermeable SYTOX Green dye was used to 
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study membrane permeabilization induced by CRAMP (Saar-Dover et al. 2012). 

Exponential-phase bacteria were washed and resuspended (107 CFU/ml) in sterile 

PBS containing 1 μM SYTOX Green (Molecular Probes). After 20 min of 

incubation in the dark, bacterial suspensions were mixed in PCR microplate wells 

with 50 μg/ml CRAMP or PBS (negative control) for a total volume of 100 μl. The 

mixtures were immediately placed at 37 ºC in a real-time PCR detection system 

(iQ™5, Bio-Rad Laboratories) and fluorescence emission at 530 nm was recorded 

every minute following excitation at 488 nm. 

 

I.6.15. Binding of AMP to purified cell walls 

 

One-hundred micrograms of purified cell wall were resuspended in 50 μl of 

5 μg/ml CRAMP or PBS (negative control) and gently shaken for 5 min. Samples 

were centrifuged (16,000 × g, 1 min), washed in PBS and in TM buffer (10 mM 

Tris-HCl, 10 mM MgCl2, pH 7.4) before overnight incubation at 37 °C with 

mutanolysin (400 U/ml) in TM buffer (50 μl). Supernatants were resolved by 

tricine-SDS-PAGE in a 16% gel, transferred onto nitrocellulose membrane and 

blotted with rabbit anti-CRAMP (1:1000) or mouse anti-InlA (L7.7; 1:1000), 

followed by HRP-conjugated goat anti-rabbit or anti-mouse IgG (1:2000, 

P.A.R.I.S). Immunolabeled bands were visualized using SuperSignal West Dura 

Extended Duration Substrate (Pierce) and digitally acquired in a ChemiDoc XRS+ 

system (Bio-Rad Laboratories). 

  

I.6.16. Immunoelectron microscopy 

 

Exponential-phase bacteria treated with 50 μg/ml CRAMP for 15 min at 37 ºC 

were fixed for 1 h at room temperature (4% paraformaldehyde, 2.5% 

glutaraldehyde, 0.1 M sodium cacodylate, pH 7.2), stained with 1% osmium 

tetroxide for 2 h and resuspended in 30% BSA (high-purity grade). Bacterial 

pellets obtained after centrifugation in microhematocrit tubes were fixed overnight 

in 1% glutaraldehyde, dehydrated in increasing ethanol concentrations, and 

embedded in Epon 812. Ultrathin sections (40–50 nm) were placed on 400-mesh 

Formvar-coated copper grids and treated with 4% sodium metaperiodate and 1% 
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periodic acid (10 min each) for antigen retrieval. For immunogold labeling of 

CRAMP, sections were blocked for 10 min with 1% BSA and incubated overnight 

(4 ºC) with rabbit anti-CRAMP (1:100 in 1% BSA). After extensive washing, 

sections were labeled with 10-nm gold complex-conjugated anti-rabbit IgG (1:200 

in 1% BSA) for 2 h, washed and contrasted with 4% uranyl acetate and 1% lead 

citrate. Images were acquired in a Jeol JEM-1400 transmission electron 

microscope equipped with a Gatan Orius SC1000 CCD camera and analyzed 

using ImageJ software. 

 

I.6.17. Animal infections 

 

Virulence studies were done in mouse models of the following strains: wild 

type BALB/c and 129/SvJ (Charles River Laboratories); and CRAMP-deficient 

(cramp-/-) 129/SvJ, which was bred in our facilities from a breeding pair provided 

by Dr. Richard L. Gallo (University of California, USA) (Nizet et al. 2001). 

Infections were performed in six-to-eight week-old specific-pathogen-free females 

as described (Cabanes et al. 2008). Briefly, for oral infections, 12-h starved 

animals were inoculated by gavage with 109 CFU in PBS containing 150 mg/ml 

CaCO3, while intravenous infections were performed through the tail vein with 

104 CFU in PBS. In both cases, the infection was carried out for 72 h, at which 

point the animals were euthanatized by general anesthesia. The spleen and liver 

were aseptically collected, homogenized in sterile PBS, and serial dilutions of the 

organ homogenates plated in BHI agar. For analysis of Lm fecal carriage, total 

feces produced by each infected animal (n=5 per strain) up to a given time-point 

were collected, homogenized in PBS and serial dilutions plated in Listeria selective 

media (Oxoid) for bacterial enumeration. Mice were maintained at the IBMC 

animal facilities, in high efficiency particulate air (HEPA) filter-bearing cages under 

12 h light cycles, and were given sterile chow and autoclaved water ad libitum. 

 

I.6.18. Ethics Statement 

 

All the animal procedures were in agreement with the guidelines of the 

European Commission for the handling of laboratory animals (directive 
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2010/63/EU), with the Portuguese legislation for the use of animals for scientific 

purposes (Decreto-Lei 113/2013), and were approved by the IBMC Animal Ethics 

Committee, as well as by the Direcção Geral de Veterinária, the Portuguese 

authority for animal protection, under license PTDC/SAU-MIC/111581/2009. 

 

I.6.19. Statistical analyses 

 

Statistical analyses were performed with Prism 6 (GraphPad Software). 

Unpaired two-tailed Student’s t-test was used to compare the means of two 

groups; one-way ANOVA was used with Tukey’s post-hoc test for pairwise 

comparison of means from more than two groups, or with Dunnett’s post-hoc test 

for comparison of means relative to the mean of a control group. Mean differences 

were considered statistically non-significant (ns) when p value was above 0.05. 

For statistically significant differences: *, p≤0.05; **, p≤0.01; ***, p≤0.001. 
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I.8. Tables 
 
Table 1. Plasmids and bacterial strains 

Plasmid or strain Code Relevant characteristics Source 

Plasmids 

pMAD  Gram-negative/Gram-positive shuttle 
vector; thermosensitive replication; 
Amp

r
 Ery

r
  

Arnaud et al. 
2004 

pPL2  L. monocytogenes phage-derived site-
specific integration vector; Cm

r
 

Lauer et al. 
2002 

pMAD(ΔrmlACBD) pDC303 pMAD with 5’- and 3’-flanking regions 
of rmlACBD locus; Amp

r
 Ery

r
 

This study 

pPL2(rmlACBD)  pDC313 pPL2 with rmlACBD locus and 5’- and 
3’-flanking regions; Cm

r
 

This study 

pMAD(ΔrmlT)   pDC491 pMAD with 5’- and 3’-flanking regions 
of rmlT; Amp

r
 Ery

r
 

This study 

pPL2(rmlT) pDC550 pPL2 with rmlT sequence and 5’- and 
3’-flanking regions; Cm

r
 

This study 

E. coli strains 

DH5α  Cloning host strain; F
-
 Φ80lacZΔM15 

Δ(lacZYA-argF) U169 recA1 endA1 
hsdR17(rk

-
, mk

+
) phoA supE44 thi-1 

gyrA96 relA1 λ
-
 

Life 
Technologies 

S17-1  Conjugative donor strain; recA pro 
hsdR RP4-2-Tc::Mu-Km::Tn7 

Simon et al. 
1983 

L. monocytogenes strains 

EGD-e  wild type; serotype 1/2a Glaser et al. 
2001 

EGD-e ΔpgdA  EGD-e pgdA (lmo0415) deletion 
mutant 

Boneca et al. 
2007 

EGD-e ΔrmlACBD  DC307 EGD-e rmlACBD (lmo1081–4) 
deletion mutant 

This study 

EGD-e ΔrmlACBD::pPL2(rmlACBD)  DC367 EGD-e rmlACBD (lmo1081–4) 
deletion mutant complemented with 
pPL2(rmlACBD) (pDC313); Cm

r
 

This study 

EGD-e ΔrmlT  DC492 EGD-e rmlT (lmo1080) deletion 
mutant 

This study 

EGD-e ΔrmlT::pPL2(rmlT) DC553 EGD-e rmlT (lmo1080) deletion 
mutant complemented with 
pPL2(rmlT) (pDC550); Cm

r
 

This study 

EGD-e ΔtagO1ΔtagO2::pLIV2(tagO1)  EGD-e tagO1 (lmo0959) and tagO2 
(lmo2519) double deletion mutant 
complemented with pLIV2(tagO1), 
expressing tagO1 under the control 
of an IPTG-inducible promoter; Cm

r
 

Eugster and 
Loessner 2012 

EGD BUG600 wild type; serotype 1/2a Murray et al. 
1926 

EGD ΔdltA BUG2182 EGD dltA (LMON_0982) deletion 
mutant 

Mandin et al. 
2005 
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I.9. Supplementary information 
 

 

 
Fig. S1. Proteins involved in Lm WTA L-rhamnosylation. (A) Schematic diagram of the L-rhamnose 

biosynthesis pathway (adapted from (Giraud and Naismith 2000, Li et al. 2006)). Each of the RmlACBD 
proteins catalyzes one of the four reaction steps that convert glucose-1-phosphate into nucleotide-linked L-
rhamnose. dTTP, thymidine triphosphate; PPi, pyrophosphate; NADP, nicotinamide adenine dinucleotide 
phosphate. (B) Alignment of the amino acid sequences of B. subtilis 168 GgaB (GenBank: AAA73513.1) and 
Lm RmlT (GenBank: NP_464605.1). Boxed sequences correspond to the GT-A glycosyltransferase fold 

domain, as predicted by the NCBI Conserved Domain Search. The GT-A family signature DxD motif is 
highlighted in dark gray. The numbers indicate the position of the last amino acid in each line. Protein 
sequence alignments were obtained with ClustalW2 and edited with UCSF Chimera. 
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Fig. S2. Genetic characterization of Lm strains used in this study. (A) Genotypes and gene expression of 
the constructed Lm strains were confirmed by PCR and RT-PCR. (B) Comparison of the rmlACBD 
transcription levels in ΔrmlT versus wild type Lm strains by quantitative real-time PCR. Data represent the 
mean±SD of three independent analyses. *, p≤0.05.  

 

 

 
 
Fig. S3. HPLC analyses of the cell wall sugar and muropeptide composition from Lm strains. (A) 

HPAEC-PAD analysis of the sugar composition of cell wall purified from Lm strains. Samples were hydrolyzed 
in 3 M HCl (2 h, 95 ºC), diluted with water and lyophilized before injection into the HPLC equipment. 
Standards for ribitol (Rib), L-rhamnose (Rha), glucosamine (GlcN), and muramic acid (Mur) were eluted under 
identical conditions to allow peak identification. (B) Reverse-phase HPLC analysis of the muropeptide 

composition from different Lm strains, following overnight digestion of purified peptidoglycan samples with 
mutanolysin and reduction with NaBH4. Muropeptide species (monomeric, dimeric, trimeric, etc.) were eluted 
with a 5–30% methanol gradient and detected by UV absorption at 206 nm. 
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Fig. S4. Dose-dependent survival response of Lm strains to different AMPs. Quantification of viable 

bacteria after treatment of mid-exponential-phase Lm strains (2 h, 37 ºC) with increasing concentrations of 
gallidermin, CRAMP or LL-37. The average replicate values from AMP-treated samples were expressed as 
percentage of surviving bacteria relative to the values of the respective untreated control samples (set at 100). 
Data represent mean±SD of three independent experiments. Asterisks indicate statistical significance 
between wild type and mutant strains (*, p≤0.05; ***, p≤0.001), while hashes indicate statistical significance 
between mutant and respective complemented strains (#, p≤0.05; ###, p≤0.001). 

 
 

 

 
Fig. S5. Zeta potential profile of wild type and WTA L-rhamnosylation mutant Lm strains. 

 

 

 
Fig. S6. Determination of the Lm membrane potential magnitude by flow cytometry. The membrane 

potential of untreated and sodium azide (1.5 mM)-treated suspensions of DiOC2(3)-stained wild type EGD-e 
suspensions was analyzed (see Materials and Methods) to determine the red/green fluorescence ratio values 
corresponding, respectively, to a basal (100%) and null (0%) membrane potential. 



CHAPTER III – RESULTS 

 
 

 146 

 

 
 
Fig. S7. SYTOX Green uptake kinetics of Lm strains in response to CRAMP-mediated membrane 
permeabilization. Exponential-phase bacteria were incubated (37 ºC) with PBS (white symbols) or 50 μg/ml 

CRAMP (black symbols), in the presence of 1 μM SYTOX Green, and the increase in green fluorescence 
emission was recorded over 115 min. 

 

 

 

 
Fig. S8. Growth of Lm strains in broth and inside eukaryotic host cells. (A) Stationary-phase cultures 

were diluted 100-fold in BHI broth and incubated at 37 °C in aerobic and shaking conditions. Optical density 
values at 600 nm (OD600) from each culture were measured every hour. (B) Intracellular multiplication in 
J774A.1 murine macrophages. Cells (2×10

5
/well) were infected (45 min) with Lm, treated with 20 μg/ml 

gentamicin (75 min) and lysed at 2, 5, 7 and 20 h post-infection for quantification of intracellular viable bacteria 
in BHI agar. 
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Table S1. Homology between the RmlACBD proteins of Lm EGD-e and other strains and species
a
 

Species
b
 / Strain Serovar RmlA RmlB RmlC RmlD 

Lmo 10403S 1/2a 100 100 100 100 

Lmo SLCC2755 1/2b 100 99 99.5 99.3 

Lmo SLCC2372 1/2c 100 100 100 100 

Lmo SLCC2479 3c 100 100 100 100 

Lmo SLCC2482 7 100 98.7 99.5 99.3 

Lse SLCC3954 1/2b 97.2 95.1 98.4 92.0 

Smu UA159  74.6 45.7 28.6 51.6 

Mtu H37Rv  58.3 46.7 33.5 34.3 

Sen LT2  68.4 51.8 46.4 34.8 

Sfl 2457T  70.8 51.5 48.0 35.9 

Pae PAO1  69.1 52.4 47.2 32.2 
a 

Values in percentage of amino acid identity as determined by protein-protein BLAST analysis.
 

b 
Lmo, Listeria monocytogenes; Lse, Listeria seeligeri; Smu, Streptococcus mutans; Mtu, Mycobacterium 

tuberculosis; Sen, Salmonella enterica serovar Typhimurium; Sfl, Shigella flexneri; Pae, Pseudomonas 
aeruginosa 
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Table S2. Primers 

# Name Sequence (5’ to 3’)
a
 

Construction of plasmids and screening of clones 

1 rmlA-A TACGTCGACTGCTCAAATCGATGCTGG 

2 rmlA-B CGACGCGTCATTCTTTTCTCTCC 

3 rmlD-C ATACGCGTTTGGCAAGATGCTTTAGTTCG 

4 rmlD-D ATTAGATCTTAGTGGTCTCCACCAAGC 

5 rmlA-F GGCTACCACGTGAATGATCC 

6 rmlA-R AACTCACCACGTTCAGATGG 

7 rmlB-F GCAGCAGAATCTCATGTAGACC 

8 rmlB-R CCAGTTTCTCCAAGTGAACC 

9 rmlC-F ACATACGGTGAGTGGGAAGG 

10 rmlC-R AATCCGGATCATCGTAGGC 

11 rmlD-F TGGGAAGTAAACGTGGATGG 

12 rmlD-R CCAAACACCCATGAAGTACG 

13 rmlA-G ATACTATGCGGCCGCTTCATGTGTTTGGTGAAAGC 

14 rmlD-H GCGGTCGACACAATTATACGAATGCATCG 

15 rmlT-A ATAGTCGACCCTAAAGTTAATGGCAAAGCTCCTGC 

16 rmlT-B CGAATTCCATTATATCCTCCTAAAATAGATTAACAG 

17 rmlT-C CGAATTCTAAGAATGGAGAGAAAAGAATGAAAGG 

18 rmlT-D ACTAGATCTCAATTTCCATTAGTACGCCTCACTC 

19 rmlT-F TATTGCCACACGCTTTACCG 

20 rmlT-R CTTCCACGATTGAACGAACG 

21 rmlT-G TATCTGCAGGAGGGAAAACGTTAGGTAGC 

22 rmlT-H GCGGTCGACCTAGTTCCACTTCCTCCTGC 

23 PL95 ACATAATCAGTCCAAAGTAGATGC 

24 PL102 TATCAGACCTAACCCAAACCTTCC 

Quantitative real-time PCR 

25 qPCR-rmlA-F TTCTTGAAGCGTCTACCT 

26 qPCR-rmlA-R GCAGCCTCATCAATATACC 

27 qPCR-rmlB-F GTAGACCGTAGTATTATCAATCC 

28 qPCR-rmlB-R TCTCCAAGTGAACCATACA 

29 qPCR-rmlC-F TATTCAAGATAACCACTC 

30 qPCR-rmlC-R TCAACAACTACATCATAA 

31 qPCR-rmlD-F AGATTCTGTAGATATTGTGGAT 

32 qPCR-rmlD-R CATCTTCTGCTGCTTCTA 

32 qPCR-16S-F GCGTAGATATGTGGAGGAAC 

33 qPCR-16S-R CAGGCGGAGTGCTTAATG 
a
 Restriction sites underlined 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART II 

 

 

L-Rhamnosylation of Listeria monocytogenes wall teichoic acids 
is required for efficient surface anchoring of GW proteins 
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II.1. Introduction 

 

In Gram-positive bacteria, a large portion of surface proteins associate non-

covalently with cell envelope components through interactions that are commonly 

mediated by protein domains containing repeated sequences. Interestingly, many 

of these proteins appear to be associated with autolytic functions (Scott and 

Barnett 2006, Bierne and Cossart 2007), indicating that this type of labile, 

reversible cell surface association provides some sort of positional flexibility for 

bacterial cell wall-degrading enzymes that is key for their optimal activity. Repeat 

domains like the LysM domain anchor proteins directly to the peptidoglycan (Buist 

et al. 2008), while others have affinity for secondary cell wall polymers, such as 

TAs. For instance, the pneumococcal virulence-promoting PspA adhesin and LytA 

amidase have similar C-terminal choline-binding repeats, which are necessary and 

sufficient for their attachment to the S. pneumoniae choline-decorated LTAs 

(Holtje and Tomasz 1975, Yother and White 1994). Similarly, proteins carrying GW 

repeat domains were shown or at least strongly suggested to interact with LTAs, 

as observed in the cases of the S. aureus autolysin Atl (Yamada et al. 1996), and 

the Lm invasin InlB and autolysin Ami (Jonquières et al. 1999). 

WTAs also dictate the localization and control the activity of autolytic proteins 

at the bacterial surface (Brown et al. 2013). Characterization of S. aureus WTA 

mutants revealed anomalies in autolysis levels and in the ability to properly form 

septa and/or complete cell division (Vergara-Irigaray et al. 2008, Schlag et al. 

2010, Biswas et al. 2012, Qamar and Golemi-Kotra 2012). Moreover, the particular 

contribution of WTA substituents to S. aureus autolysis was contrasting: whereas 

D-alanylation is essential for proper autolytic activity (Peschel et al. 2000), the 

impairment of WTA glycosylation with GlcNAc did not perturb this process (Brown 

et al. 2012), indicating that sugar substituents are not involved in WTA-mediated 

regulation of autolysis. In Lm, LTA D-alanylation is required for cell adhesion and 

virulence in vivo (Abachin et al. 2002), however its role in autolysis was never 

addressed. Likewise, information regarding the contribution of Lm WTAs – and of 

their glycosidic substituents – to this process is currently nonexistent. Therefore, 

we decided to study the involvement of this particular WTA tailoring mechanism in 

the spatial and functional regulation of Lm autolysis.  
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We showed that an Lm mutant strain lacking L-rhamnosylated WTAs 

(ΔrmlACBD) displays a reduced autolysis rate in comparison with a wild type 

strain. This phenotype appears to be linked to a prominent decrease of the Lm cell 

surface-associated levels of the autolysin Ami. Moreover, we observed that this 

decrease is concurrent with secretion of Ami to culture supernatants, suggesting 

that WTA L-rhamnosylation is necessary for efficient association of Ami to the Lm 

cell surface. To determine if other Lm GW proteins were similarly affected, we 

screened for WTA L-rhamnosylation-dependent variations in the surface 

association of the remaining eight GW repeat-containing proteins encoded in the 

Lm genome (Cabanes et al. 2002). Besides Ami, only InlB showed an anchoring 

mechanism dependent on the Lm WTA L-rhamnosylation status, albeit to a lesser 

degree. This shift in the relative distribution of this major Lm invasin may be 

responsible for the impaired entry of the ΔrmlACBD strain in different epithelial cell 

lines. These data reveal novel roles for WTA L-rhamnosylation in Lm biology, such 

as supporting autolytic processes and promoting host cell invasion, via its 

contribution to the efficient anchoring of a particular group of surface proteins. 
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II.2. Results 

 

II.2.1. WTA L-rhamnosylation-deficient Lm is less autolytic due to deficient 

surface anchoring of the autolysin Ami 

 

To assess the contribution of WTA L-rhamnosylation to autolytic processes in 

Lm, we performed an in vitro autolysis assay through which we compared the lysis 

kinetics of wild type and WTA L-rhamnosylation-deficient (ΔrmlACBD) Lm strains 

shaken at 37 ºC in a neutral pH buffer. We observed that bacterial suspensions 

containing the ΔrmlACBD strain clarified at a slower pace than the ones containing 

the wild type strain (Fig. 25A), indicating that autolysis was decreased in Lm 

populations lacking L-rhamnosylated WTAs. This WTA L-rhamnosylation 

dependence for normal autolytic activity was corroborated by the lysis profile of the 

complemented ΔrmlACBD strain (ΔrmlACBD+rmlACBD) in the same conditions, 

which showed reversion (albeit partial) of the mutant phenotype towards a wild 

type-like autolytic phenotype (Fig. 25A). 

 The reduced autolytic levels observed in WTA L-rhamnosylation mutant 

bacteria could be the result of a decrease in the surface localization and/or activity 

of autolytic enzymes. To determine which of these hypotheses was true we 

analyzed the surface proteomes – in particular, non-covalently cell wall-attached 

proteins, which include most autolysins – of wild type and ΔrmlACBD bacteria, in 

search of significant protein content changes between both strains. After SDS-

mediated retrieval of surface proteins from mid-exponential-phase bacteria, 

extracts were resolved by SDS-PAGE and proteins visualized by Coomassie 

staining. We observed a striking reduction in the amount of an abundant 75–100 

kDa protein in the ΔrmlACBD sample relative to the same band present in the wild 

type extract (Fig. 25B). Moreover, this decrease is dependent on the presence of 

L-rhamnosylated WTAs, since the amount of this protein in ΔrmlACBD+rmlACBD 

bacteria increased to levels similar to those observed in wild type extracts 

(Fig. 25B). Through peptide mass fingerprinting, this protein was identified 

(confidence index of 100%) as the Lm virulence-associated autolytic amidase Ami 

(McLaughlan and Foster 1998, Milohanic et al. 2001). This decrease in the amount 

of surface-associated Ami in ΔrmlACBD bacteria agrees with the lower levels of 
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autolysis observed in this strain, indicating that WTA L-rhamnosylation is required 

to maintain a certain amount of Ami at the Lm cell surface and thus support a 

physiological level of autolytic activity. 

Taking into account that Ami is a member of the GW protein family in Lm 

(Cabanes et al. 2002) and that TAs are important surface anchors of proteins 

bearing this class of cell wall-binding repeat domains (Yamada et al. 1996, 

Jonquières et al. 1999), we investigated if the diminished levels of Ami at the cell 

surface of WTA L-rhamnosylation mutant bacteria were a consequence of a defect 

 
Fig. 25. WTA L-rhamnosylation-deficient Lm is less autolytic due to deficient surface anchoring of the 
autolysin Ami. (A) Lm strains grown to the exponential phase (OD600 1.0) were washed and resuspended in 

1 volume of 50 mM glycine buffer (pH 8.0). Bacterial suspensions were incubated at 37 ºC with shaking and 
autolysis was measured at different time points as the decrease in OD600 relative to the initial value, set as 
100%. (B) Non-covalently associated surface proteins were extracted from mid-exponential-phase Lm strains 

with 2% SDS (37 ºC, 30 min), concentrated, resolved by SDS-PAGE and stained with Coomassie Brilliant 
blue. Black arrow indicates a protein with strain-dependent quantity changes that was identified by peptide 
mass fingerprinting as Ami. Mw, molecular weight ladder (standard band weight indicated in kDa). (C) Non-

covalently associated surface proteins (obtained as in B) and secreted proteins (recovered from culture 
supernatant) from Lm strains were analyzed by Western blot to detect the levels of Ami. The listerial GAPDH 
(GAPDHLm) protein was used as loading control. Blots are representative of two independent experiments. (D) 

Ami is highly secreted to the surrounding environment in the absence of L-rhamnosylated WTAs. Data from a 
comparative secretomic analysis of wild type (EGD-e) and ΔrmlACBD strains shows an increase in the 
number of Ami-derived peptides detected in the ΔrmlACBD culture supernatant sample. 

 



CHAPTER III – RESULTS 

 
 

 155 

in the cell wall association of this protein. To do this, we performed a Western blot 

analysis of the (SDS-extractable) surface protein and the secreted protein 

fractions from both wild type and ΔrmlACBD strains, using an anti-Ami antiserum 

to detect this protein. Immunoblot results confirmed the SDS-PAGE results 

(Fig. 25B), showing the same drop of surface-associated Ami levels in mutant 

bacteria as compared to wild type bacteria (Fig. 25C). Conversely, a significantly 

higher amount of Ami was detected in the secreted protein fraction of the 

ΔrmlACBD strain (Fig. 25C). Mutant complementation restored the protein levels 

in each fraction to those observed in samples obtained from wild type bacteria 

(Fig. 25C). Further validation of these results was achieved with a comparative 

analysis of the secretomes of wild type and ΔrmlACBD strains, performed in 

collaboration with the group of Francisco García-del Portillo (CNB-CSIC, Madrid), 

which revealed a significant increase in the amount of Ami-derived peptides 

detected in ΔrmlACBD samples, relative to those in wild type samples (Fig. 25D).  

Altogether, these results definitively confirm that, in the absence of WTA L-

rhamnosylation, Ami protein molecules are not properly affixed to the Lm cell 

surface and, as a result, end up being secreted into the surrounding environment. 

This supports the hypothesis that the decoration of Lm WTAs with L-rhamnose 

controls the surface-associated levels of Ami, and concomitantly Ami-dependent 

autolytic events, by promoting their efficient attachment to the cell envelope. 

 

II.2.2. Study of the WTA L-rhamnosylation-dependent surface localization of 

Lm GW proteins 

 

To determine if WTA L-rhamnosylation is also important for the correct 

surface anchoring of other Lm GW proteins, we screened the surface-associated 

and secreted protein fractions from wild type and ΔrmlACBD strains expressing 

tagged variants of all nine GW proteins encoded in the Lm genome (Cabanes et 

al. 2002) in order to detect strain-dependent differences in the partition of each 

protein. To do this, we first generated a plasmid construct based on the listerial 

site-specific integrative pPL2 (Lauer et al. 2002), which enabled the expression of 

N-terminally FLAG-tagged sequences under the control of the native ami promoter 

(Fig. 26A). Nine plasmid constructs were derived from this one by cloning 
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individually the GW repeat domain-encoding sequence of each GW protein – Ami 

(Lmo2558), Auto (Lmo1076), InlB (Lmo0434), Lmo1215, Lmo1216, Lmo1521, 

Lmo2203, Lmo2591 and Lmo2713 – downstream the FLAG tag sequence. Finally, 

each plasmid was introduced and stably integrated into the chromosome of wild 

type and ΔrmlACBD bacteria, giving rise to 18 new strains.   

Following the fractionation of mid-exponential-phase cultures to obtain 

extracts of secreted and (non-covalently) surface-associated proteins, samples 

were analyzed by Western blot to detect FLAG-tagged proteins. Using an anti-

FLAG probe, we were able to visualize bands with the correct molecular weights 

from every strain (Fig. 26B), indicating that all plasmid constructs were functional 

and that bacteria were successfully expressing the tagged GW protein truncates. 

When comparing protein distribution between strains in each fraction, we observed 

different situations. Concerning the GW domain of Ami (AmiGW), the largest of all 

Lm GW proteins, with eight repeats, we confirmed the previous observations that 

showed a sharp reduction of surface-associated protein levels and a concomitant 

rise in Ami secretion in ΔrmlACBD bacteria (Fig. 26B). A similar outcome (i.e. 

lower surface association/increased secretion) was verified with InlBGW, although 

the difference was not as large as with AmiGW. As previously reported (Lingnau et 

al. 1995, Jonquières et al. 1999), FLAG-tagged InlBGW was also found in both 

fractions, showing the dual character of InlB. In contrast, the similarly sized AutoGW 

and Lmo2591GW showed no variation in their respective protein levels between 

strains. However, while the former protein was exclusively detected in the surface-

associated fraction, the latter was only present in the secreted protein extracts 

(Fig. 26B). The remaining (and smallest) GW protein truncates (Lmo1215GW, 

Lmo1216GW, Lmo1521GW, Lmo2203GW and Lmo2713GW), were all detected solely 

in the secreted fractions of both strains, like Lmo2591GW (Fig. 26B).  

These results indicate that other Lm GW proteins besides Ami rely on WTA 

L-rhamnosylation for proper attachment to the bacterial surface. Moreover, they 

suggest that whereas proteins with large-sized GW repeat domains display a WTA 

L-rhamnosylation-dependent mechanism of Lm cell surface association, this 

dependence seems to be lost in proteins with increasingly smaller GW domains, 

as such proteins are frequently found to be fully secreted. 
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A 

 
B 

 
Fig. 26. Study of the WTA L-rhamnosylation-dependent surface localization of Lm GW proteins. (A) 
Map of the plasmid template used to enable ami promoter (Pami, white boxed sequence)-dependent 

expression of N-terminally FLAG-tagged proteins targeted for secretion by the Ami signal peptide (gray boxed 
sequence). The vector backbone is derived from pPL2 plasmid (Lauer et al. 2002). Other sequence elements, 
such as the -35 and -10 promoter boxes, the transcription start site (+), the ribosome-binding site (RBS), and 
unique restriction enzyme sites are underlined. (B) Mid-exponential-phase cultures of wild type and 

ΔrmlACBD bacteria expressing FLAG-tagged proteins corresponding to the GW repeat domains of each of 
the nine Lm GW proteins were processed for the recovery of secreted proteins and non-covalently associated 
surface proteins. Proteins extracts were concentrated and analyzed by Western blot, using an anti-FLAG tag 
antibody to detect GW domain proteins and compare their levels between strains and fractions. The listerial 
GAPDH protein was used as loading control. IB, immunoblotting antibody. 

pDC426 
(6368 bp) 

PSA integrase 

Piap 

CmR (Gram+) 

CmR (Gram-) 

p15A ori 

RP4 oriT 

PSA  

attPP’ 

SalI        PstI 

FLAG Pami Ami (1−30 aa = signal peptide) 

TTG (Start codon) 
   | 

 Sal I                                                  -35                   -10        + 
GTCGACTTTACAGAAAAAAACATACGTAAATAGGTTCATTGTTACCAATATCCATTGACTACAACCAGACGTGTTGTCATAATTAGAAATAGAATACTT 

 

 

                              RBS 

TTATTTAATATAAAAAGTAGTGCAGTTAGGAGAGGATTTAAACT TTGAAAAAATTAGTAAAATCGGCGGTTGTTTTTGCAAGCCTTGTTTTTATTGGC 

                                             MetArgArgLeuValArgCysAlaValValPheAlaCysLeuValPheIleGly 

 

                                             FLAG             Pst I 

ACCTCCGCTACTATGATTACAGAAAAAGCAAGTGCTGATTACAAGGATGACGATGACAAGGCTGCAG  

ThrCysAlaThrMetIleThrGluArgAlaCysAlaAspTyr Ar gAspAspAspAspAr gAlaAla 

137 bp 90 bp 25 bp 
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II.2.3. WTA L-rhamnosylation is required for host cell invasion  

 

The previous results showed that only two members of the Lm family of GW 

proteins were differentially anchored to the bacterial surface in a WTA L-

rhamnosylation-dependent fashion: the autolysin Ami and the host cell invasion-

promoting protein InlB. We proposed a link between the reduced amount of 

surface-associated Ami and the lower levels of autolysis observed in ΔrmlACBD 

bacteria, so we sought to investigate the effect of the decreased bacteria-

associated InlB levels in the ability of Lm to interact with and enter into host cells.   

Having confirmed the increased secretion of the native, full-length InlB 

protein in ΔrmlACBD bacteria by Western blot, using an InlB-specific antibody 

(Fig. 27A), we began this study by testing the cell-adhesive potential of Lm lacking 

 
Fig. 27. WTA L-rhamnosylation is required for host cell invasion but not adhesion. (A) Non-covalently 
associated surface and secreted protein fractions from Lm strains were analyzed by Western blot to detect 
the InlB. The listerial GAPDH (GAPDHLm) protein was used as loading control. Blots are representative of two 
independent experiments. (B, C) Caco-2 and HeLa cell monolayers were used to evaluate the host cell 
adhesion and invasion capacity of wild type (EGD-e) and WTA L-rhamnosylation-deficient (ΔrmlACBD) Lm 
strains. For adhesion assays (B), cells were infected (MOI 50) for 30 min (37 ºC, 7% CO2), washed thoroughly 
and lysed in cold 0.2% Triton X-100 for CFU quantification of cell-associated bacteria. For invasion assays 
(C), cells were infected (MOI 50) for 1 h (37 ºC, 7% CO2), treated with 20 μg/ml gentamicin for 1.5 h (37 ºC, 
7% CO2), washed thoroughly and lysed in cold 0.2% Triton X-100 for CFU quantification of intracellular 
bacteria. Data are represent as mean±SD (n=3) and presented as percentage relative to the wild type value, 
set at 100. Statistical analyses were performed using an unpaired, two-tailed t-test (ns, not significant; ***, 
p<0,001). 
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L-rhamnose-decorated WTAs. For this, human epithelial cell lines (Caco-2 and 

HeLa) were briefly incubated with either wild type or ΔrmlACBD Lm strains and 

after several washes the number of cell-associated bacteria was quantified. 

Mutant bacteria evidenced a cell-binding ability comparable to that of their wild 

type congeners, indicating that the surface depletion of Ami and InlB does not 

interfere with the attachment efficiency of WTA L-rhamnosylation-deprived Lm 

(Fig. 27B). Next, we compared the invasiveness of these strains using the same 

eukaryotic cell lines. Unlike their wild type-like adhesive properties, ΔrmlACBD 

bacteria displayed a significant reduction of their intracellular levels in both Caco-2 

and HeLa cells (<40% of wild type) after 2.5 hours of infection (Fig. 27C), 

revealing a strong impairment of Lm-induced uptake by target cells in the absence 

of L-rhamnosylated WTAs. This attenuated phenotype correlates with the 

decrease in Lm surface levels of InlB observed in the ΔrmlACBD strain, as 

Lm ΔinlB mutants were previously shown to be weakly to non-invasive in these 

cell lines (Dramsi et al. 1995, Ireton et al. 1996).  

Importantly, these results unveil a novel link between WTA L-rhamnosylation 

and Lm virulence via its contribution towards the maintenance of optimal levels of 

the surface-associated invasin InlB. 
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II.3. Discussion 

 
The Gram-positive cell envelope is host to a vast array of proteins whose 

diversity of structural and functional roles is extremely important not only for cell 

surface maintenance and metabolism but also for overall bacterial physiology and 

viability (Navarre and Schneewind 1999). Several proteins interact with the 

bacterial surface in a non-covalent manner that is often based in the affinity 

between protein repeat-containing domains and specific cell envelope components 

(Desvaux et al. 2006). Interestingly, a considerable number of proteins using this 

mechanism of surface association is known or predicted to have autolytic (i.e. cell 

wall-degrading) functions (Desvaux et al. 2006, Scott and Barnett 2006, Bierne 

and Cossart 2007). TAs have been either identified or presumed to perform cell 

envelope protein-anchoring functions in different species (Holtje and Tomasz 

1975, Yother and White 1994, Yamada et al. 1996, Jonquières et al. 1999). In 

some cases, this role was found to be determined by TA substituents, such as 

choline in streptococci (Holtje and Tomasz 1975) and D-alanine in S. aureus 

(Peschel et al. 2000).  

In the case of Lm, there are no evidences regarding TA-mediated anchoring 

of autolysins, although it has been suggested (Asano et al. 2012) that the 

virulence-associated amidase Ami (Milohanic et al. 2001) may bind to LTAs via its 

GW repeat domain, in a process similar to that of InlB (Jonquières et al. 1999). 

The lack of information concerning the particular involvement of Lm WTAs and 

their substituents in the surface positioning and activity of autolysins prompted us 

to address this question. This work confirmed the existence of a link between Lm 

WTA L-rhamnosylation and autolytic activity. It specifically showed that this 

tailoring mechanism is required to support basal levels of autolysis through the 

efficient attachment of Ami to the Lm cell surface. In addition, it revealed that InlB, 

a major cell invasion-promoting factor that contains a GW repeat domain similar to 

Ami, is also less associated with the surface of Lm lacking L-rhamnosylated WTAs. 

Importantly, this finding is consistent with a significant impairment of host cell 

invasion levels observed in these mutant bacteria. 

To answer the question of whether L-rhamnosylation of Lm WTAs contributes 

to the mechanisms of bacterial self-degradation, a simple in vitro autolysis assay 
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revealed that the rate of self-induced lysis was diminished in bacteria devoid of 

this WTA glycosylation mechanism, and that its reintroduction was sufficient to 

restore normal levels of autolysis. A similar observation was made with S. aureus 

dltA mutants, unable to perform D-alanylation of TAs (Peschel et al. 2000). In this 

case, it was suggested that the strongly anionic D-alanine ester-free TAs bind 

avidly the positively charged autolysins (Fischer et al. 1981), inhibiting their action 

through entrapment. However, a parallel study using a dltC mutant in another 

S. aureus strain background and slightly different experimental conditions provided 

an opposite phenotype, i.e. enhanced cell lysis (Nakao et al. 2000). This was also 

reported in D-alanylation mutant strains of L. lactis and L. plantarum (Steen et al. 

2005, Palumbo et al. 2006). In both situations, unrestrained activity of a major 

autolysin is pointed as the reason for the mutant phenotypes. In the L. lactis 

mutant, this was attributed in part to a reduced HtrA-mediated degradation of the 

AcmA autolysin (Steen et al. 2005), while the LTA polymers of the L. plantarum 

dltA mutant were longer and heavily glucosylated (Palumbo et al. 2006). The 

conflicting behaviors observed in different bacterial species deficient in the same 

mechanism highlight the complexity of the mechanisms linking TAs and autolysin 

activity. 

Reduced surface levels of autolytic proteins can explain the decline in the 

levels of autolysis observed in WTA L-rhamnosylation-deprived Lm. Our data from 

an SDS-PAGE analysis of non-covalently associated surface protein extracts from 

WTA L-rhamnosylation mutant Lm revealed a striking drop in the amount of a high-

molecular weight protein (~100 kDa) in comparison with its levels in wild type 

bacterial extracts. We identified this protein as Ami, a 99-kDa autolytic N-

acetylmuramoyl-L-alanine amidase (McLaughlan and Foster 1998), whose 

immature precursor weighs 102 kDa before signal peptide cleavage. Ami is the 

biggest of nine Lm surface proteins containing a domain with GW module repeats 

(Cabanes et al. 2002). Its considerable length (917-aa precursor) is conferred by 

an extensive C-terminal domain with eight (or four pairs of) GW module repeats 

(McLaughlan and Foster 1998, Milohanic et al. 2001, Cabanes et al. 2002). InlB, 

another Lm GW protein, is reversibly attached to the cell envelope via interaction 

with LTAs (Jonquières et al. 1999). As mentioned before, it is suggested that Ami 

also associates with the Lm cell surface by binding to LTAs (Braun et al. 1997, 
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Jonquières et al. 1999, Asano et al. 2012), although this still requires direct 

experimental confirmation.  

Considering the reduction of the surface levels of Ami in Lm cells lacking L-

rhamnosylated WTAs and previous studies supporting the participation of TAs in 

the non-covalent anchoring of surface proteins bearing repeat domains, we 

investigated the potential involvement of WTAs – and in particular the contribution 

of their decoration with L-rhamnose – in the interaction of Ami with the Lm surface. 

Our data from immunoblot analysis of the Lm surface protein and secreted protein 

fractions, complemented with a high-throughput secretomic study of the wild type 

and mutant strains, demonstrated that the absence of WTA L-rhamnosylation 

results in significant oversecretion of Ami, which explains the fate of the missing 

surface-associated protein. Although it would be interesting to verify if there are 

changes in the total levels of Ami expression in both strains, it seems clear that 

there is a shift in the spatial distribution of Ami, from a predominant Lm surface 

localization to a chiefly secreted form. This finding uncovers a rather preeminent 

role for WTA L-rhamnosylation in the mechanisms of surface protein anchoring, 

since to our knowledge there was no prior evidence of WTA glycosidic 

substituents having such a significant influence, either direct or indirect, on surface 

protein binding levels. In this context, it would be important to confirm the role of 

LTAs as prime surface anchors for Ami and investigate if L-rhamnosylated WTAs 

can act as some sort of secondary structures that help stabilize the Ami-LTA 

interaction. For the latter hypothesis, surface-associated Ami protein levels could 

be quantified in an Lm WTA mutant strain, although the severe growth and 

morphological defects characteristic of this strain should be taken into account 

(Eugster and Loessner 2012). Interestingly, one report characterizing Ami 

orthologues produced by Lm strains of serotypes 1/2a and 4b showed that (i) each 

protein only bound efficiently to the surface of bacteria from its own serotype, and 

that (ii) the GW domain sequences are homologous within serotypes with similar 

WTA structures (Milohanic et al. 2004). This highlights a clear role for WTAs and 

its sugar substituents in the anchoring of Ami and potentially of other GW proteins. 

Besides Ami and InlB, Lm encodes seven other GW proteins (Cabanes et al. 

2002). Among these, only one, Auto (Lmo1076), has been characterized as an 

autolysin (Cabanes et al. 2004) that, unlike Ami, possesses NAGase activity 
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(Bublitz et al. 2009). We attempted to evaluate a potential WTA L-rhamnosylation 

dependence in the cell surface anchoring mechanism of Lm GW proteins other 

than Ami. In our approach, each protein was represented solely by its GW repeat 

domain for two reasons: (i) to assess its specific contribution in full-length protein 

binding, and (ii) to prevent toxicity/lethality during the cloning stages, as the 

catalytic domains of all but two GW proteins (InlB and Lmo2713) are predicted to 

have bacteriolytic activities (Bierne and Cossart 2007). Indeed, previous studies 

were troubled by unsuccessful attempts to clone either the full-length or the N-

terminal fragments of Ami (Braun et al. 1997, McLaughlan and Foster 1998). 

Recently, Asano and colleagues were successful in cloning and expressing 

recombinant Ami forms containing the amidase domain (Asano et al. 2012), 

showing that it is possible to express heterologously the full-length form of this 

autolysin.  

Our results show that the effect observed with native Ami was reproduced 

with only its GW domain (AmiGW), indicating that this repeat-rich region is entirely 

responsible for Lm surface anchoring of full-length Ami and strengthening the 

supportive role of L-rhamnosylated WTAs in this process. In addition, they 

revealed that, besides AmiGW, only InlBGW displayed increased secretion in the 

absence of WTA L-rhamnosylation. This effect was also observed with the native 

full-length InlB protein. However, the extent of this oversecretion is not as big as 

the one observed with AmiGW, which is not surprising considering that InlB is 

already found in both bacterium-associated and secreted forms in wild type 

conditions (Braun et al. 1997, Jonquières et al. 1999). While none of the remaining 

seven GW domains showed strain-dependent variations of their protein levels, 

they were exclusively detected either in the Lm surface (AutoGW) or in the secreted 

protein fraction (all others). It is interesting to observe GW domains of different 

proteins (Auto and Lmo2591), but with similar molecular weights and equal 

number of repeats, displaying totally opposite localizations. This strongly suggests 

that other sequence elements besides the number of GW module repeats (Braun 

et al. 1997) may also determine the spatial localization of these proteins.  

Immunoblot detection of the FLAG-tagged GW domains became increasingly 

difficult with decreasing molecular weight, indicating that smaller proteins are not 

as well expressed as the larger ones or that they are not as easily recovered from 
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culture supernatants during precipitation. Since all GW domains were expressed 

under the control of the same promoter (ami), the second hypothesis seems more 

plausible. Although this analysis requires further confirmation, its results provide 

significant insights into the anchoring mechanisms of each Lm GW protein. 

As a major determinant of Lm internalization into different types of host cells 

(Dramsi et al. 1995, Lingnau et al. 1995, Ireton et al. 1996, Parida et al. 1998), we 

further investigated the potential effects of enhanced InlB secretion regarding this 

process. Our data demonstrated that a WTA L-rhamnosylation Lm mutant strain is 

not affected in its ability to adhere to epithelial cell monolayers but is significantly 

attenuated in its self-induced cellular uptake levels. Functional characterization of 

Ami demonstrated its contribution towards Lm adhesion to target cells (Milohanic 

et al. 2001). However, this role appears to be secondary as it only becomes 

relevant in a ΔinlAB background, and varies in a cell type-dependent manner 

(Milohanic et al. 2001). In this context, we could expect decreased host cell 

adhesion levels in Lm WTA L-rhamnosylation mutants, since Ami levels are 

critically reduced at their surface and InlB is also partially depleted. However, it is 

likely that the remaining amount of anchored InlB, together with InlA, are sufficient 

to maintain optimal levels of eukaryotic cell association. Although InlB occurs 

normally in both surface-attached and secreted forms, the bacterium-bound form 

is more preponderant at triggering host cell internalization of Lm (Braun et al. 

1998), which could explain the attenuated phenotype of the WTA L-rhamnosylation 

mutant strain. Moreover, InlB is known to interact with other eukaryotic cell surface 

components to further promote bacterial invasion (Braun et al. 2000, Jonquières et 

al. 2001). In the case of GAGs, this interaction takes place through the GW 

domain (Jonquières et al. 2001). We can speculate that excessive amounts of 

soluble InlB close to the site of Lm association with the host cell surface may 

saturate these InlB-binding eukaryotic partners to a point where it hinders Lm 

internalization.  

Caco-2 and HeLa cell lines have been extensively used for the study of Lm 

internalization mechanisms primarily dependent on the engagement of either InlA 

(Caco-2) or InlB (HeLa). Although Caco-2 cells also express the InlB receptor c-

Met (Pizarro-Cerdá et al. 2012), our results showed a cell type-independent 

invasion defect, suggesting that the bacterial aspect of the InlA-mediated 
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internalization pathway may also be affected in the absence of WTA L-

rhamnosylation.  

In conclusion, this work has demonstrated the contribution of WTA L-

rhamnosylation to important physiological and virulence processes (invasion of 

host cells) in Lm, through a newly identified role in the anchoring and stabilization 

of non-covalently bound surface proteins sharing a common cell surface-binding 

repeat domain.  
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II.4. Materials and methods 

 

II.4.1. Bacterial strains and growth conditions 

 

Bacterial strains used in this study are listed in Table 1. Lm and E. coli 

strains were routinely cultured aerobically at 37 ºC in brain heart infusion (BHI, 

Difco) and lysogeny broth (LB) media, respectively, with shaking. When 

appropriate, the following antibiotics were added as selective agents: ampicilin 

(Amp), 100 μg/ml; chloramphenicol (Cm), 7 μg/ml (Lm) or 20 μg/ml (E. coli); 

erythromycin (Ery), 5 μg/ml. For the selection of pPL2 integrants following 

conjugation with S17-1, colistin sulfate (Col) and nalidixic acid (Nax) were used at 

10 and 50 μg/ml, respectively.  

 

II.4.2. Construction of strains expressing FLAG-tagged cell wall-binding 

domains of GW proteins 

 

A master plasmid vector derived from pPL2 (Lauer et al. 2002) was 

constructed to allow the expression and secretion of N-terminally FLAG-tagged 

proteins in Lm strains from chromosome-integrated single-copy genes. A 270-bp 

DNA fragment comprising the ami promoter (Pami) and Ami signal peptide 

(residues 1–30) sequences followed by a FLAG tag sequence was produced by 

PCR using Lm EGD-e genomic DNA as template and primers 1–2 (Table 2). After 

purification, the PCR fragment was digested and cloned between the SalI and PstI 

sites of pPL2, yielding pDC426 (Fig. 2A). This plasmid was then used to generate 

derivative constructs, each containing the GW repeat domain of one of the nine 

GW proteins encoded in the Lm genome (Cabanes et al. 2002). PCR fragments 

comprising the GW repeat domain of InlB (InlBGW, 721 bp), Auto (AutoGW, 1012 

bp), Lmo1215 (Lmo1215GW, 256 bp), Lmo1216 (Lmo1216GW, 445 bp), Lmo1521 

(Lmo1521GW, 607 bp), Lmo2203 (Lmo2203GW, 523 bp), Ami (AmiGW, 1993 bp), 

Lmo2591 (Lmo2591GW, 979 bp) and Lmo2713 (Lmo2713GW, 253 bp) were 

produced from Lm EGD-e genomic DNA using, respectively, the primer pairs 3–4, 

5–6, 7–8, 9–10, 11–12, 13–14, 15–16, 17–18 and 19–20 (Table 2). After 

purification, fragments were digested with the appropriate restriction enzymes 
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(Roche Applied Sciences) and cloned between the PstI and NotI sites of pDC426, 

to yield pDC481, pDC459, pDC460, pDC461, pDC480, pDC462, pDC440, 

pDC463 and pDC464. Each of the nine plasmid constructs were introduced into 

E. coli S17-1 and transferred to both wild-type EGD-e and ΔrmlACBD strains by 

conjugation on BHI agar. Transconjugant clones were selected in BHI–

Cm/Col/Nax and chromosomal integration of the plasmids confirmed by PCR with 

primers 21 and 22 (Table 2). Plasmid constructs were confirmed by both PCR and 

DNA sequencing. 

 

II.4.3. Autolysis assay 

 

The autolytic activity of Lm strains was monitored in vitro. Bacterial cultures 

grown to the exponential phase (OD600=1.0) were centrifuged and the pelleted 

cells were washed with ice-cold bi-distilled water and resuspended in 50 mM 

glycine buffer (pH 8.0) to a final OD600 value of 1.0. Bacterial suspensions were 

incubated at 37 ºC with shaking and the autolytic activity was measured 

throughout time as the percentage of OD600 decrease relative to the initial value. 

For each time point, values were presented as mean ± standard deviation of three 

independent experiments. 

 

II.4.4. Analysis of Lm surface and secreted protein extracts 

 

Extraction of non-covalently surface-associated and secreted Lm proteins 

was performed as described (Braun et al. 1997, Cabanes et al. 2004), with minor 

changes. Twenty-milliliter samples of Lm cultures grown to the exponential phase 

(OD600=0.8) were centrifuged (4,500 rpm, 15 min, 4 ºC) and the bacterial pellet 

and culture supernatant recovered for further processing. Bacteria were washed 

with ice-cold PBS, resuspended in 1.5 ml of a 2% SDS solution in PBS and 

incubated for 30 min at 37 ºC, to allow the extraction of non-covalently associated 

surface proteins. After centrifugation (15,000 rpm, 1 min), the recovered 

supernatant was filtered (0.22 µm) inactivated concentrated/dialysed against PBS 

in Vivaspin 4 (10-kDa cutoff) concentrators (Sartorius Stedim). Culture 

supernatants were filtered (0.22 µm) and treated with a protease inhibitor cocktail 
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mix (cOmplete, Roche Applied Sciences) before precipitation of proteins with the 

sequential addition of 0.2 mg/ml of sodium deoxycholate (30 min, 4 ºC) and 6% 

(v/v) TCA (overnight, 4 ºC). Proteins were collected by centrifugation (12,000 rpm, 

15 min, 4 ºC) and washed twice with cold acetone. The pellet was air-dried and 

resuspended in 20 mM Tris-HCl buffer (pH 7.4) to a final volume of 200 μl. 

Proteins extracts were quantified (A280) in a NanoDrop 1000 spectrophotometer 

(Thermo Scientific). 

Protein extracts were analyzed by SDS-PAGE in an 10% (v/v) 

polyacrylamide gel and stained with Coomassie Brilliant Blue or transferred 

(Trans-Blot Turbo Transfer System, Bio-Rad Laboratories) onto a nitrocellulose 

membrane and probed with mouse monoclonal anti-FLAG (clone M2, Sigma-

Aldrich), diluted 1:1000 (for surface protein extracts) or 1:250 (for secreted protein 

extracts); mouse monoclonal anti-InlB (H15.1, Braun et al. 1999), diluted 1:1000; 

rabbit polyclonal anti-Ami antiserum (R5, kind gift from Pascale Cossart), diluted 

1:2000; rabbit polyclonal anti-Lm GAPDH (GAPDHLm, Abgent), diluted 1:2000 (for 

surface protein extracts) or 1:1000 (for secreted protein extracts); and then with 

anti-mouse or anti-rabbit HRP-conjugated secondary antibodies (P.A.R.I.S 

Biotech), diluted 1:2000. Immunolabeled proteins were detected by 

chemiluminescence using Western Blotting Substrate kit (Pierce).  

 

II.4.5. Cell line infection assays 

 

Human colorectal adenocarcinoma Caco-2 (ATCC HTB-37™) and cervix 

adenocarcinoma HeLa (ATCC CCL-2™) cell lines were propagated at 37 ºC (7% 

CO2) in Eagle’s Minimum Essential Medium (EMEM) supplemented with 20% fetal 

bovine serum (FBS), 1% sodium pyruvate and 1% non-essential amino acids, and 

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% FBS 

(Lonza). To assess bacterial adhesion to host cells, confluent cell monolayers 

(~2×105/well) were inoculated for 30 min at 37 ºC (7% CO2) with exponential-

phase bacteria (OD600 0.6) at a multiplicity of infection (MOI) of 75 bacteria/cell in 

cell culture medium. After removing the inoculum, cells were washed three times 

with warm medium to remove weakly associated bacteria and lysed with 1 ml of 

cold 0.2% Triton X-100. Ten-fold serial dilutions were plated in BHI agar and 
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incubated overnight at 37 ºC to allow quantification of cell-adhering bacteria. To 

assess bacterial invasion of host cells, confluent monolayers were inoculated for 1 

hour at 37 ºC (7% CO2) with exponential-phase bacteria (OD600 0.6) at a MOI 75. 

After removing the inoculum, cells were incubated for 1.5 hours at 37 ºC (7% CO2) 

with 20 μg/ml gentamicin, to kill extracellular bacteria. Cells were then treated as 

before for quantification of intracellular viable bacteria. Each condition was 

assayed in triplicate in at least three independent assays.  
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II.5. Tables 

 

Table 1. Plasmids and bacterial strains 

Plasmid or strain Code Relevant characteristics Source 

Plasmids 

pPL2  L. monocytogenes phage-derived site-

specific integration vector; Cm
r
 

Lauer et al. 

2002 

pPL2(Pami-AmiSP-FLAG)  pDC426 pPL2 carrying a DNA fragment 
containing the ami promoter and Ami 
signal peptide (SP, residues 1–30)-
encoding sequences, followed by a 
FLAG tag (DYKDDDDK)-encoding 
sequence; Cm

r
 

This study 

pDC426(InlBGW) pDC481 pDC426 carrying a DNA fragment 
encoding the InlB GW repeat domain 
(residues 399–630); Cm

r
 

This study 

pDC426(AutoGW) pDC459 pDC426 carrying a DNA fragment 
encoding the Auto GW repeat 
domain (residues 244–572); Cm

r
 

This study 

pDC426(Lmo1215GW) pDC460 pDC426 carrying a DNA fragment 
encoding the Lmo1215 GW repeat 
domain (residues 213–283); Cm

r
 

This study 

pDC426(Lmo1216GW) pDC461 pDC426 carrying a DNA fragment 
encoding the Lmo1216 GW repeat 
domain (residues 189–265); Cm

r
 

This study 

pDC426(Lmo1521GW) pDC480 pDC426 carrying a DNA fragment 
encoding the Lmo1521 GW repeat 
domain (residues 37–231); Cm

r
 

This study 

pDC426(Lmo2203GW) pDC462 pDC426 carrying a DNA fragment 
encoding the Lmo2203 GW repeat 
domain (residues 210–375); Cm

r
 

This study 

pDC426(AmiGW) pDC440 pDC426 carrying a DNA fragment 
encoding the Ami GW repeat domain 
(residues 262–917); Cm

r
 

This study 

pDC426(Lmo2591GW) pDC463 pDC426 carrying a DNA fragment 
encoding the Ami GW repeat domain 
(residues 191–508); Cm

r
 

This study 

pDC426(Lmo2713GW) pDC464 pDC426 carrying a DNA fragment 
encoding the Ami GW repeat domain 
(residues 33–109); Cm

r
 

This study 

E. coli strains 

DH5α  Cloning host strain; F
-
 Φ80lacZΔM15 

Δ(lacZYA-argF) U169 recA1 endA1 
hsdR17(rk

-
, mk

+
) phoA supE44 thi-1 

gyrA96 relA1 λ
-
 

Life 
Technologies 

S17-1  Conjugative donor strain; recA pro 
hsdR RP4-2-Tc::Mu-Km::Tn7 

Simon et al. 
1983 

L. monocytogenes strains 

EGD-e  wild type; serotype 1/2a Glaser et al. 
2001 

EGD-e ΔrmlACBD  DC307 EGD-e rmlACBD (lmo1081–4) 
deletion mutant 

Carvalho et al. 
2015  

EGD-e ΔrmlACBD::pPL2(rmlACBD)  DC367 EGD-e rmlACBD (lmo1081–4) 
deletion mutant complemented with 
pPL2(rmlACBD) (pDC313); Cm

r
 

Carvalho et al. 
2015  

EGD-e::pDC426(InlBGW) DC484 EGD-e carrying pDC426(InlBGW) 
(pDC481); Cm

r
 

This study 
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(Continued from previous page) 

Plasmid or strain Code Relevant characteristics Source 

L. monocytogenes strains 

EGD-e ΔrmlACBD::pDC426(InlBGW)  EGD-e rmlACBD (lmo1081–4) 
deletion mutant carrying 
pDC426(InlBGW) (pDC481); Cm

r
 

This study 

EGD-e::pDC426(AutoGW) DC475 EGD-e carrying pDC426(AutoGW) 
(pDC459); Cm

r
 

This study 

EGD-e ΔrmlACBD::pDC426(AutoGW) DC467 EGD-e rmlACBD (lmo1081–4) 
deletion mutant carrying 
pDC426(AutoGW) (pDC459); Cm

r
 

This study 

EGD-e::pDC426(Lmo1215GW) DC476 EGD-e carrying pDC426(Lmo1215GW) 
(pDC460); Cm

r
 

This study 

EGD-e 
ΔrmlACBD::pDC426(Lmo1215GW) 

DC468 EGD-e rmlACBD (lmo1081–4) 
deletion mutant carrying 
pDC426(Lmo1215GW) (pDC460); 
Cm

r
 

This study 

EGD-e::pDC426(Lmo1216GW) DC477 EGD-e carrying pDC426(Lmo1216GW) 
(pDC461); Cm

r
 

This study 

EGD-e 
ΔrmlACBD::pDC426(Lmo1216GW) 

DC469 EGD-e rmlACBD (lmo1081–4) 

deletion mutant carrying 
pDC426(Lmo1216GW) (pDC461); 
Cm

r
 

This study 

EGD-e::pDC426(Lmo1521GW) DC482 EGD-e carrying pDC426(Lmo1521GW) 
(pDC480); Cm

r
 

This study 

EGD-e 
ΔrmlACBD::pDC426(Lmo1521GW) 

DC483 EGD-e rmlACBD (lmo1081–4) 
deletion mutant carrying 
pDC426(Lmo1521GW) (pDC480); 
Cm

r
 

This study 

EGD-e::pDC426(Lmo2203GW) DC478 EGD-e carrying pDC426(Lmo2203GW) 
(pDC462); Cm

r
 

This study 

EGD-e 
ΔrmlACBD::pDC426(Lmo2203GW) 

DC470 EGD-e rmlACBD (lmo1081–4) 

deletion mutant carrying 
pDC426(Lmo2203GW) (pDC462); 
Cm

r
 

This study 

EGD-e::pDC426(AmiGW) DC445 EGD-e carrying pDC426(AmiGW) 
(pDC440); Cm

r
 

This study 

EGD-e ΔrmlACBD::pDC426(AmiGW) DC446 EGD-e rmlACBD (lmo1081–4) 
deletion mutant carrying 
pDC426(AmiGW) (pDC440); Cm

r
 

This study 

EGD-e::pDC426(Lmo2591GW) DC479 EGD-e carrying pDC426(Lmo2591GW) 
(pDC463); Cm

r
 

This study 

EGD-e 
ΔrmlACBD::pDC426(Lmo2591GW) 

DC471 EGD-e rmlACBD (lmo1081–4) 
deletion mutant carrying 
pDC426(Lmo2591GW) (pDC463); 
Cm

r
 

This study 

EGD-e::pDC426(Lmo2713GW) DC485 EGD-e carrying pDC426(Lmo2713GW) 
(pDC464); Cm

r
 

This study 

EGD-e 
ΔrmlACBD::pDC426(Lmo2713GW) 

DC472 EGD-e rmlACBD (lmo1081–4) 
deletion mutant carrying 
pDC426(Lmo2713GW) (pDC464); 
Cm

r
 

This study 
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Table 2. Primers 

# Name Sequence (5’ to 3’)
a
 

1 Pami-SalI-F AGCGTCGACTTTACAGAAAAAAACATACG 

2 AmiSP-FLAG-PstI-R ATTCTGCAGCCTTGTCATCGTCATCCTTGTAATCAGCACTTGCTTTTTCT 

GTAATCATAGTAGCGGAGG 

3 InlBGW-PstI-F ATCCTGCAGGCTTAACCCGCTATGTCAAATATATTCG 

4 InlBGW-NotI-R AGAGCGGCCGCTTATTTCTGTGCCCTTAAATTAGCTGC 

5 AutoGW-NsiI-F ATCATGCATGCACTCTGTACGATACGATTAAACAAC 

6 AutoGW-NotI-R AGAGCGGCCGCTTAATATTTAAATGCTTTTTTGTCCATCC 

7 Lmo1215GW-NsiI-F ATCATGCATGCTATGATACAAAATCAACTGGC 

8 Lmo1215GW-NotI-R AGAGCGGCCGCCTACTTTTTATCGATTAATTCTTGTTTCAC 

9 Lmo1216GW-PstI-F ATCCTGCAGGCTCAGATAAAGCAATTAAGGCTACTGG 

10 Lmo1216GW-NotI-R AGAGCGGCCGCTTACCAGATGATGGATTGAACGTTC 

11 Lmo1521GW-PstI-F ATCCTGCAGGCGAAGTCTTAAATGTCCGTAGCGGTCC 

12 Lmo1521GW-NotI-R AGAGCGGCCGCTTAATCGACTACCCAGTTAGCTACATAACC 

13 Lmo2203GW-PstI-F ATCCTGCAGGCTCAACAGAAAACCAATTAGCATACG 

14 Lmo2203GW-NotI-R AGAGCGGCCGCTTATTTTACTTCTAACGCTTTATTAGG 

15 AmiGW-PstI-F ATCCTGCAGGTTTGATTAACGAAAAATATAAAGCAATGC 

16 AmiGW-NotI-R TTTGCGGCCGCTTATTGCTTTTTAGCACTTAGG 

17 Lmo2591GW-PstI-F ATCCTGCAGGCTCTAATCAATCCTTAGCAGCAATTGG 

18 Lmo2591GW-NotI-R AGAGCGGCCGCTTAACTATTGATGTCGATAGCTTTAATCC 

19 Lmo2713GW-NsiI-F ATCATGCATGCTATGACAAAGCAGTTAATCTAAAAGG 

20 Lmo2713GW-NotI-R AGAGCGGCCGCTTATGTAAAGGCACGTGAGTCAATCC 

21 PL95 ACATAATCAGTCCAAAGTAGATGC 

22 PL102 TATCAGACCTAACCCAAACCTTCC 
a
 Restriction sites underlined. FLAG tag nucleotide sequence in bolded and italicized letters. 
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The results presented in this thesis contributed to an improved understanding 

of the importance of WTAs and WTA glycosylation mechanisms in processes 

relevant for bacterial physiology, virulence and immune evasion. In particular, we 

have characterized the role of WTA decoration with L-rhamnose in different 

aspects of Lm biology (Fig. 28). We showed that WTA L-rhamnosylation in this 

organism is encoded in a single chromosomal operon containing genes for the 

enzymatic biosynthesis and appendage of L-rhamnose to nascent WTA polymers. 

We revealed that this modification is required to promote resistance and favor 

bacterial survival when challenged by cationic AMPs. Supported by biochemical 

and microscopic data, we proposed a mechanism that links AMP resistance to a 

WTA L-rhamnosylation-promoted reduction of the Lm cell wall permeability to this 

type of molecules. In addition, we demonstrated that WTA L-rhamnosylation 

ensures physiological levels of autolytic activity and supports host cell invasion. 

Importantly, we revealed that these contributions appear to be accomplished 

indirectly through the role of L-rhamnosylated WTAs in the efficient surface 

anchoring of GW proteins that do have an active part in these processes. Finally, 

we firmly established the dependence of Lm pathogenesis on this particular WTA 

tailoring mechanism. 

Lm strains are distributed across several serotypes, each represented by 

unique cell surface antigens (Seeliger and Höhne 1979, Seeliger and Langer 

1989, Gorski 2008). Among these, WTAs are prominent serotype markers due to 

the highly diverse nature and organization of their backbone structure and 

substituent groups (Kamisango et al. 1983, Fiedler et al. 1984, Fujii et al. 1985, 

Uchikawa et al. 1986a). Serogroup 1/2 strains are the only ones to display L-

rhamnose as a side-chain group. Although strains from serogroups 3 and 7 also 

possess the biosynthetic rmlABCD genes, internal point mutations have rendered 

the pathway non-functional (Eugster et al. 2015). In addition to the serogroup-

specific substituent L-rhamnose, serogroup 1/2 WTAs are decorated with GlcNAc 

(Kamisango et al. 1983), which is present in other serotypes (Fiedler et al. 1988). 

In this work, however, we have only addressed specifically the role of WTA L-

rhamnosylation in different biological processes of Lm. Many, if not all, of these 

processes are extensive to other Lm serotypes, which contain differentially 

structured and/or substituted WTA backbones. Therefore, a transversal study 
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aimed at evaluating and comparing the biological contributions of glycosyl 

substituents in the many Lm serotypes should provide a more comprehensive 

perspective on the overall role of WTA substitution in Lm biology.  

 
Fig. 28. Schematic representation of the proposed impact of WTA L-rhamnosylation in different 
aspects of Lm biology. This work has shown that this WTA modification promotes Lm resistance to AMPs 

by turning the cell wall less permeable to their penetration, thus delaying their contact with the plasma 
membrane. In addition, L-rhamnosylated WTAs contribute to the surface anchoring of some GW proteins, 
such as Ami and InlB, which are required to ensure optimal levels of autolysis and invasion of host cells. For 
simplicity, WTAs are represented only with L-rhamnose as substituent group, while only the LTA backbone is 
shown. Gray arrowheads represent the intensity of Ami/InlB secretion in each condition. 
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While characterizing the Lm rmlACBD locus, we came across rmlT 

(lmo1080), a gene located in the same operon and that encodes a protein with 

predicted glycosyltransferase activity. Biochemical analyses of the WTAs from an 

Lm mutant strain where this gene was inactivated confirmed the requirement of 

RmlT for the transfer of L-rhamnose from its cytoplasmic pool to the WTA 

backbone. Bioinformatic prediction of its subcellular location indicates RmlT as a 

cytoplasmic protein, which is in agreement with studies indicating that WTA 

glycosylation, unlike D-alanylation, occurs in this compartment prior to WTA export 

(Brown et al. 2013). Nevertheless, functional characterization of RmlT is 

necessary to definitively validate its WTA L-rhamnosyltransferase activity and 

localization. Such studies would include, for instance, in vitro activity and 

specificity assays, using purified recombinant RmlT variants in the presence of L-

rhamnose or other glycosyl donor substrates and WTAs or similar acceptor 

molecules.  

Bacterial autolysis was another physiological process for which we 

determined a dependence on Lm WTA L-rhamnosylation. We showed that in its 

absence, Lm displayed a lower rate of self-degradation. Further investigation 

revealed that the proportion of the autolytic enzyme Ami associated with the Lm 

surface was sharply diminished because the protein was not being properly 

anchored to the bacterial cell envelope. We postulated that these two findings are 

correlated, but this requires confirmation. For instance, we should not discard 

variations in the levels of other autolytic proteins that were not perceivable from 

the SDS-PAGE gel containing surface protein extracts. Also, zymographic analysis 

of these extracts should be able to expose WTA L-rhamnosylation-dependent 

changes in the activity of autolysins whose total protein levels remained 

unaffected. The autolytic profile of an Lm Δami strain should provide indications 

regarding the weight of the contribution of surface-associated Ami towards the 

overall autolytic process, enabling us to draw a more accurate conclusion about a 

link between reduced surface-associated Ami levels and reduced bacterial lysis. 

Alternatively, considering that our results showed that the GW domain of Auto 

(AutoGW) is stably anchored to the Lm surface regardless of the WTA L-

rhamnosylation status, we could analyze the autolytic profile of a WTA L-

rhamnosylation-deficient strain mutated in the ami locus so as to express a 
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chimera protein containing the N-terminal catalytic domain of Ami and AutoGW in 

the C-terminus. We would expect this strain to be able to properly attach Ami to its 

cell surface and thus behave like a wild type Lm. 

Our study of the GW domain- and WTA L-rhamnosylation-dependent surface 

anchoring of Lm GW proteins was the first to provide some information about 

many of these proteins. Indeed, apart from InlB, Ami and Auto (Lingnau et al. 

1995, Braun et al. 1997, Cabanes et al. 2004), nothing was known about the 

localization of the remaining GW proteins. Interestingly, while AmiGW appears to be 

completely displaced from the bacterial surface in the absence of L-rhamnosylated 

WTAs, the native full-length protein still preserves some surface-associated levels, 

as analyzed by SDS-PAGE. This suggests that the N-terminal catalytic domain of 

Ami may partly contribute to surface attachment. Braun and colleagues showed 

that the strength of the interaction between GW proteins and the Lm surface was 

correlated with the number of GW repeats (Braun et al. 1997). Our results in wild 

type bacteria agree with this observation: the longest GW domains – AmiGW (8 

repeats) and AutoGW (~4 repeats) – are exclusively surface-associated, while 

smaller ones – InlB (~3 repeats) > Lmo1521GW/Lmo2203GW/Lmo2713GW (2 

repeats) > Lmo1215GW/Lmo1216GW (1 repeat) – are increasingly delocalized to the 

secreted fraction. However, this trend changes in the absence of WTA L-

rhamnosylation, with AmiGW being completely secreted whereas AutoGW remains at 

the surface. A striking case is observed with Lmo2591GW, which is fully secreted 

irrespective of the WTA L-rhamnosylation status. However, Lmo2591GW is also 

similar in molecular size and number of GW repeats to AutoGW, which is 

exclusively found at the surface in both strains. These antagonistic behaviors 

suggest that surface anchoring properties may also be modulated by the amino 

acid sequence of GW modules, particularly by the non-conserved regions specific 

to each GW protein (Braun et al. 1997, Cabanes et al. 2002, Marino et al. 2002). 

Structural studies involving these apparently similar GW domains ought to provide 

elucidating data regarding the veracity of this hypothesis. 

As Ami, the surface levels of InlB were shown to decrease in bacteria lacking 

L-rhamnosylated WTAs, due to inefficient protein anchoring. This perturbation in 

the surface localization of a key Lm invasin prompted us to assess the cell 

invasive properties of these mutant bacteria. Our results showed a significant drop 
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in intracellular Lm numbers, confirming a defect in the invasion of epithelial cells. It 

would be interesting to verify if this attenuated phenotype is also observed in other 

cell types, such as parenchymal (e.g. hepatocytes) or endothelial cells. To try to 

confirm whether the decreased levels of the surface-associated InlB form are 

responsible for the attenuated invasion phenotype, a similar chimera protein 

strategy could be also employed. In this case, a WTA L-rhamnosylation mutant 

strain would express the N-terminal functional domain of InlB, containing the c-

Met-binding LRR region (Shen et al. 2000), fused to the AutoGW. This fusion would 

hypothetically keep InlB activity segregated to the Lm surface. However, in normal 

conditions, InlB is partly secreted (Braun et al. 1997) and this soluble form was 

reported to contribute to the optimization of InlB-mediated Lm internalization by 

host cells (Jonquières et al. 2001). Still, a chimeric protein containing the LRR and 

inter-repeat regions of InlB fused to the C-terminal region of the staphylococcal 

protein A (SPA) – which mediates a stable covalent association with the cell wall – 

was able to greatly potentiate (100-fold) the invasion of Vero cells by non-invasive 

L. innocua (Braun et al. 1999). 

In part I of the results, the requirement of WTA L-rhamnosylation for optimal 

Lm virulence levels was demonstrated in a mouse infection model. Although these 

infection assays suggest that a major part of the in vivo attenuation of Lm WTA L-

rhamnosylation mutants is due to the impaired capacity to resist to host-produced 

AMPs, it cannot be ruled out that a part of this attenuated phenotype is a reflection 

of the undermined ability of these bacteria to invade cells, as shown in part II of 

the results. A way to address this possibility would be to perform infection assays 

on wild-type mice with a WTA L-rhamnosylation mutant strain expressing InlB 

solely as a chimera with AutoGW or the C-terminal region SPA (to dissociate its 

anchoring mechanism from the WTA L-rhamnosylation status) and observe 

whether virulence levels are increased relative to an isogenic strain expressing 

native InlB or even comparable to those of a wild type Lm. 

In conclusion, our findings have expanded the current knowledge on WTAs, 

but most importantly, have raised the status and influence of WTA glycosylation 

mechanisms in overall bacterial biology to a previously unrecognized level. 

Particularly significant – and the base of all these newly identified contributions – is 

the newfound role of WTA L-rhamnosyl substituents in assisting the non-covalent 
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binding of bacterial surface proteins with common anchoring motif domains. 

Further work will be necessary to determine if this supporting mechanism is 

exclusively dependent on WTA L-rhamnosylation or if it is broadly guided by WTA 

glycosyl substituents in general. Most importantly, additional investigation should 

focus on understanding the molecular details governing these WTA glycosylation-

dependent protein interactions with the bacterial cell envelope. 
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