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1.1 Introduction

Skin cancer constitutes nowadays the most common malignancies in the Caucasian population, with inci-

dences that are reaching epidemic proportions [1]. According to the American Cancer Society, one in every

three cancers diagnosed is a skin cancer.

Although Malignant Melanoma (MM) accounts for only a small percentage of skin cancer, it is far more
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dangerous than other skin cancers and causes most skin cancer deaths. If detected during the early stages of

its development, the success rates of recovery are very high, so early diagnosis of MM is extremely impor-

tant. According to the World Health Organization [1], the global annual occurrences of non-melanoma and

melanoma skin cancers are estimated to be between 2 and 3 million and 132,000, respectively.

Malignant melanoma is the fastest growing form of cancer and, if not detected early, is the deadliest form,

accounting for nearly 37,000 annual deaths. Despite the huge number of visual inspections (60 to 70 mil-

lion) performed annually, melanoma-based mortality rates are as high as 23%, mainly due to missed or late

diagnosed melanomas. This could be attributed to the limitations of the traditional visual inspection, which

gives subjective results and are prone to uncertain diagnosis. In addition to missing out the melanomas, it

may also gives rise to false positives resulting in unnecessary biopsies.

It is estimated that only 3% out of the 6 to 7 million excisions performed annually turn out to be malignant

melanoma. Also, the treatment for melanoma alone costs e 1.18 billion a year. This explains the criticality

of the need for early detection of melanoma.

As an example, the skin cancer corresponds approximately to 25% of all malignant tumors detected each

year in Portugal, affecting 1 in every 5 persons throughout life. MM represents 10% of all skin cancer but

it is responsible for around 80% of all skin cancer-related deaths registered in Portugal [2]. Each year there

are about 700 new cases of MM in Portugal. A recent study presented by the Portuguese Health Central

Administration [3] shows an inadequate distribution of dermatologists along the country. The clearly inad-

equate distribution of the human resources of the Dermatology services comes from two main factors: (1)

clear uneven regional distribution of dermatologists, with overallocation of specialists near the big urban

centers; (2) the number of dermatologists currently working on the healthcare system represents only 60%

of the required resources estimated.

With increasing aging population globally, there is a growing incidence of skin cancer. But the percentage of

population participating in skin cancer screening versus the incidence is alarmingly low. Late detection leads

to rise in skin cancer mortalities, especially melanomas. As such, there is a need for complementing existing

technologies in order to check out the malignancy level of a mole. In addition, given the current need to

decrease the costs of the healthcare providers and the usage of new lightweight monitoring systems that

can be carried around easily and used regularly by the patients it is considered crucial to find new ways of

making better decisions on treatment without having to meet the patients face-to-face. The search for new

“Personal Health Systems” is, in fact, one of the major priorities of the European Union current eHealth

program [4]. In this context, Teledermatology has the potential to improve efficiency and quality aspects of

care at lower costs and has proven to have similar accuracy and reliability as face-to-face dermatology [5,6].

Moreover, Mobile Teledermatology (MT) appears as a promising tool for personal dermatology data ac-
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quisition [7, 8], with the potential of not only becoming an easy applicable tool that empowers patients to

adopt an active role in managing their own health status and facilitates the early diagnosis of skin cancers,

but also offering the opportunity to make available consultations with experts in critical areas. Besides, an

automated MT triage framework would not only have the purpose of delivering dermatologic expertise to

those critical zones, but would also be important to prevent the overloading of the already scarce resources.

A recent study [9] focused on the importance of MT in the developing world, which confirmed the added

value of using a system that amplifies the access to dermatologic expertise in underserved regions.

A detailed review about the computerized analysis of pigmented skin lesions and skin cancer images can be

seen in [10, 11], where the authors present an extensive review of this research topic to microscopic (der-

moscopic) and macroscopic (clinical) images. More recently, in [12] a state of the art in the utilization of

computer vision techniques in the diagnosis of skin cancer is given covering also microscopic and macro-

scopic images.

In the next section, a summary about the available dermatological databases and atlas is presented. After-

wards, over the third section, ones discuss the stages related with medical imaging applied in melanoma

diagnosis: starting with image acquisition types used on, passing through the preprocessing inherent chal-

lenges, such as uneven illumination, color correction, contrast enhancement, hair removal or image restora-

tion, giving a brief review about these challenges and also presenting self developed methodologies used

to overcome problems like reflection or blur detection. In the fourth section, it is proposed a physical and

information architectures suitable for a patient-oriented system of skin lesion analysis using smart devices.

In the fifth section, a review about the existing smart device-adaptable dermoscopes, together with a discus-

sion about their differences is given, in terms of color reproduction, image area and distortion, illumination,

sharpness and differential structures visibility. This chapter ends with the conclusions about the topics dis-

cussed.

1.2 Dermatological Databases

To be able to develop a reliable and robust system for melanoma detection it is crucial to have a complete

set of images as diverse as possible and correctly annotated.

The available dermatological databases and atlas are indicated in Table 1.1, where details like the total

number of images or melanoma images, the score information of asymmetry, border, color and differential

structure (ABCD) [13], and the type of images are specified. Although there already exist enough dermo-

scopic databases images with medical annotation, there is only one medical annotated database with images

acquired via mobile device.

The construction of a complete dataset with different image types (acquiered using dermoscopic, macro-
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scopic or mobile imaging devices like mobile phones), conveniently annotated by experts for research and

benchmarking purposes, would be of extreme importance in order to allow comparative studies in the near

future. It would not only facilitate the development of computer-aided diagnosis systems but also be useful

for the patient knowledge about this subject. This also confirmed by [12] who states that the absence of

benchmark datasets for standardized algorithm evaluation is a barrier to a more dynamic development in

this area. In fact, according to a recent study [14] about the impact of visual images on patient skin self-

examination (SSE) knowledge, attitudes and accuracy, images positively affect knowledge and self-efficacy

related to SSE.

Table 1.1: Dermatological Datasets (Type: D - Dermoscopic; M - Macroscopic; C - Clinical; MP - Mobile

Phone; NA - Not available).

Databases Total Images Melanoma Images ABCD score Type

IPO Mobile [15] 90 NA Yes MP

IPO [15] 217 12 Yes D / M

Interactive Dermoscopy Atlas [16] 729 219 Yes D / M

PH2 [17] 200 40 Yes D

Menzies Atlas [18] 320 NA NA D

Dermnet Skin Disease Atlas [19] 23000 190 No M

Danderm [20] 3000 49 No M / C

MED M Heenen [21] 1207 51 No M / C

Dermatology Atlas [22] 8084 80 No M / C

Dermatlas net [23] 1000 32 No M / C

Dermoscopy Atlas [24] NA 153 No D / M / C

DermIS [25] NA 300 No D / M / C

DermQuest [26] NA 312 No D / M / C

1.3 Dermatology Digital Imaging

Along the years different imaging techniques were used for melanoma diagnosis, which is detailed next.

In the following subsection, a review of existing techniques is presented and, in the last subsection, self

developed methodologies to overcome some of the problems of dealing with these kind of images are also

described.

1.3.1 Image Acquisition

In the 1960s and 1970s the diagnosis of melanoma was simply based on symptoms, such as bleeding, itching

and ulceration, and at the time of diagnosis the prognosis was poor. Later, the introduction of the asymmetry,
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border, color and diameter, so called ’ABCD’ rule by Friedman et. al [27] allowed the early detection of

a high number of melanomas, and it has been adopted worldwide since then. This rule is based on simple

clinical morphological features of melanoma and the inclusion of a fifth criterion E, for evolution concern-

ing morphological changes of the lesion over time, brought improvement to the existent rule. As the clinical

diagnosis based on the ABCD rule fail to recognize small melanomas and some benign melanocytic nevi

may mimic melanoma from a clinical point of view, new imaging techniques were developed to overcome

these problems. More specifically, in [13] Stolz et al. addresses the ABCD Dermoscopy rule that quantifies

if the selected melanocytic lesion is benign, suspicious or malignant according to the score information of

asymmetry, border, color and differential structures.

A number of studies had shown that medium resolution microscopic views using skin surface microscopy

(dermoscopy) provided a new level of clinical morphology linking clinical morphology and histopathology.

Dermoscopy (epiluminescence microscopy, dermatoscopy, skin-surface, incident light microscopy) has been

estabilished in the last three decades as the preferred imaging method for improving early detection of MM

and for reducing unnecessary excision of benign naevi. It is a non-invasive, in vivo examination with a

microscope that uses incident light and oil immersion to make subsurface structures of the skin accessible

to visual examination. This method allows the observer to look not only onto but also into the superficial

skin layers, permitting a more detailed inspection of pigmented skin lesions. More recently, new hand-held

devices using polarized light have been introduced, which renders the epidermis translucent, turning unnec-

essary the use of oil for visualizing the subsurface structures [28]. Moreover, it is important to refer that

some of these hand-held dermoscopes are already capable of adapting to smartphones, as is explored in

section 5. According to [29], dermoscopy improves the diagnostic accuracy for melanoma in comparison

with inspection by the unaided eye, however only for experienced examiners. In addition, the study [30]

indicates that analysis either by a trained dermatologist or an artificial neural network-trained can improve

the diagnostic accuracy of melanoma compared with that of an inexperienced clinician and that compu-

tational diagnosis might represent a useful tool for the screening of melanoma, particularly at centers not

experienced in dermoscopy.

Medium resolution clinical images of lesions (macros) are usually acquired using oblique modeling lighting

and at close distances to best represent the view that a physician would see under a detailed skin inspec-

tion regime in an ideal clinic setting. These macroscopic views could be the best indicators of suspicious

lesions [31]. Other possibility, less expensive and easier to spread, is to obtain images from mobile devices

such as smartphones. This alternative allows both clinicians in general and patients to obtain several images

of suspicious moles to be further analyzed by experienced examiners. The same procedure can be adapted

using smartphone-adaptable dermoscopes, obtaining the same image quality than regular dermoscopes with

the adding value of image storage and the associated benefits, like being possible to discuss the high-quality
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image with specialists worldwide at short-term or analyzing the mole evolution at a long-term.

Finally, clinical images consist of general imaging of the body with the intent to show the skin condition, the

number of lesions, the amount of sun damage, and other clinical identifiers that are also important for the

relative assessment of the overall risk of the patient. In [31] a comparative study between a personal device

such as a smartphone and clinical photography in monitoring skin lesions is made. Although the quality of

images produced using clinical photography is superior, personal devices technology still provides useful

clinical information plus offering a relatively inexpensive alternative.

When professional applications for skin imaging rely on high quality image acquisition devices, the result-

ing image quality is supposed to be optimal for skin cancer detection purposes. And, when compared to

dermoscopy or smartphone-adaptable dermoscopes, these images may contain several additional artifacts

which could have impact in terms of image quality. Due to that, new challenges appear regarding prepro-

cessing of macroscopic images acquired with cameras of mobile devices.

1.3.2 Image Preprocessing Challenges

Color spaces

The Commission Internationale de L’Éclairage (CIE) has defined a system that classifies color according to

the human visual system. The color spaces CIE RGB (Red-Green-Blue) and CIE XYZ (Y matches closely

to luminance, while X and Z gives color information) were the first mathematically defined color spaces,

where the first (CIE RGB) is a set of CIE color-matching curves based on many experiments with average

observers and based on pure light sources at specific RGB wavelengths where the resulting spectral curves

are called the CIE standard primaries, and the later (CIE XYZ) is based on and derived from the first, where

XYZ are extrapolations of RGB created to avoid negative numbers and are called tristimulus values [32].

In an attempt to linearize the perceptibility of color differences, the CIE proposed two other color spaces,

CIE L*a*b* and CIE L*u*v*, where: L* represents the lightness of the color; a* and b* represents the color

differences in terms of redness-greenness and yellowness-blueness, respectively; u* and v* also represents

differences in the chromaticity coordinates, but are not associated to color names as a* and b*. These color

spaces are device independent, since they are based on the CIE system, however they suffer from being quite

unintuitive [32, 33]. Since CIE L*u*v* and CIE L*a*b* are absolute color spaces, it defines color exactly

and thus includes more color than other color spaces (even more than the human eye can see).

The most known color space is the RGB which are three primary additive colors and are represented by a

three-dimensional, Cartesian coordinate system [32–34]. This system is commonly used in computational

applications since no transform is required to display information on common computer screens. RGB is a

device dependent color space because the values depend on the specific sensitivity function of the imaging
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acquisition device. The main disadvantage of this color space in applications with natural images is a

high correlation between its components. The chromaticity variables (rgb) are the normalized RGB color

variables in order to reduce the dependence on changing in space lighting intensities [32, 34].

The hue, saturation and lightness color space (HSL) or similar ones like HSI (intensity), HSV (value) or

HCI (chroma) are based on linear transformations from RGB and, also, device dependent [32–35]. The

advantage of these systems lies in the intuitive manner of specifying color making them a good choice in

user interfaces and, more importantly, the small correlation between the three components [36].

The Luminance – Chrominance color spaces like YCbCr (Y is the luma component; Cb and Cr is the

blue-difference and red-difference chroma components, respectively) separate RGB into luminance and

chrominance information and are used in compression applications and digital video encoding [32, 34].

The advantage of converting an original RGB image into luminance-chrominance color space is that the

components are pairwise uncorrelated. Furthermore, the chrominance channels contain much redundant

information and can easily be subsampled without sacrificing any visual quality for the reconstructed image.

In order to overcome sensitivity against various imaging conditions, Gever and Smeulders proposed c1c2c3,

l1l2l3 and m1m2m3 color spaces [37]. c1c2c3 was proposed to achieve independency of color illumination

and discount the object’s geometry, l1l2l3 was proposed to determine the direction of the triangular color

plane in RGB space and m1m2m3 achieved a constant color model considering a change in spectral power

distribution of the illumination [33, 34, 38]. Nevertheless, it should be noted that the former color spaces

were built assuming dichromatic reflectance and white illumination.

Because of separation of luminance and chrominance components, the YCbCr color space is one of the

most popular choices for skin detection. In [39], the authors use YCbCr to model skin and further segment

human face in color from images, other examples that use this color space are [40–43]. Recently, in [44] a

comparison of skin color segmentation results using the YCbCr and CIE L*a*b* color spaces, experimental

results show that CIE L*a*b* performs better because it gives more information than the other color space

model.

Different color spaces are better for different applications, since some colors are perceptually linear or just

more intuitive to use. Also some color spaces are tied to a specific imaging equipment while other are

equally valid on whatever the device used. Taking into account studies referred, the resume Table 1.2 was

built considering different color spaces and their sensitivity to color illumminant, illumination intensity,

highligth and shadows. In the table “+” means invariance and “-” no variance to the criteria.

Illumination

The correction of uneven illumination is considered crucial to prevent segmentation errors in several skin

lesion analysis methodologies. The authors in [45] realized that the uneven illumination corresponded to
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Table 1.2: Sensitivity of different color spaces (adapted from [37]).

Color Space Color of illumninant Illumination intensity Highlight Shadow

RGB - - - -

rgb - + - +

H - + + +

S - + - +

YCbCr + (only Y) - - -

c1c2c3 - + - +

l1l2l3 + + + +

m1m2m3 + + - +

a low frequency spatial component of the image, while the information about the skin texture and the pig-

mented lesion were enclosed in the high spatial frequency component of the image. Thus, they proposed

a correction of the illumination by simply removing the low frequent spatial component of the image. Al-

though this method can be efficient for some images, it requires specific parameters that are not unique for

different images and the authors do not detail how to obtain them automatically.

New techniques to improve the processing of skin images acquired with standard imaging cameras were also

proposed in [46], such as a data-driven shading attenuation stage to improve the robustness of the skin lesion

segmentation. It starts by converting the input image from the original RGB color space to the HSV color

space and retain V channel value; then a pixel set of the four corners of the image is extracted in order to

estimate a quadratic function and this information is used to relight the image itself. This method is adequate

to model and attenuate the global illumination variation; however, tends to have limited effect on local cast

shadows and also tends to fail on surface shapes that are not locally smooth, since the quadratic function

is not able to capture the local illumination variation. The approach of [47] follows the previous method

and uses the entropy minimization technique, succeeding in removing or strongly attenuating shading and

intensity falloffs.

Homomorphic filtering (HF) [48] is a generalized technique for non linear image enhancement and nor-

malizes the brightness of a dermoscopic image. A later improvement of the former technique to human

perception is presented in [49], where HF is performed in both spatial and frequency domains, by process-

ing the J plane of the JCh color space followed by a contrast adjustment in this color space.

Wang et al. [39], by opposite, use a three step brightness adjustment procedure to minimize the vignetting

effect (darkened image corners due to position dependent loss of brightness in the output of an optical sys-

tem) in dermoscopic images. After defining a set of concentric circular regions, the brightness of the next

circular region, starting at the image center, is adjusted so that the average intensity is equal as the center.
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Recently, a multistage illumination modeling algorithm [50] was proposed to correct illumination variation

in dermatological skin lesion images. It first determines a nonparametric model of illumination using Monte

Carlo sampling and a parametric model assuming a quadratic surface model is used to determine the final

illumination estimate based on a subset of pixels from the first step. Finally, by using the final illuminate

estimate, the reflectance component of the image is calculated and a new image is built which is corrected

for illumination.

Color correction

Different illumination or different imaging devices will lead to distinct image colors of the same lesion and

so can also compromise further steps.

In [51], an algorithm for automatic color correction of digital skin images in teledermatology was proposed.

For that, the widely known principle that skin color is one of the “basic colors” of human color perception

was considered. A different method to assess skin tones and retrieve color information from uncalibrated

images consists on imaging a skin region with a calibration target and extracting its color values to compute

a color correction transform [52].

Another approach capable of addressing this problem is based on automatic color equalization technique

[53] which consists of two main stages: chromatic/spatial adjustment and dynamic tone reproduction scal-

ing. Iyatomi et al. [54] also described a color correction method for dermoscopy images based on HSV color

model where a multiple linear regression model is built for each channel using low-level features extracted

from a training image set. Then, through the use of these regression models, the method automatically ad-

justs the hue and saturation of a previously unseen image. In [55], the authors describe a two-stage color

normalization scheme where color variations are removed and the contrast of the images are enhanced by

combining Grayworld and MaxRGB normalization techniques.

The authors [56] suggest selecting judicious colors from image database to design a customized pattern

before applying usual color correction. Also, a comparative study is driven concluding that the approach

ensures a stronger constancy of the color of interest and provides a more robust automatic classification of

skin tissues.

Contrast enhancement

Histogram equalization is commonly used contrast adjustment by allowing for areas with lower contrast to

gain a higher contrast by spreading out the most frequent intensity values. Generalizations of this method

use multiple histograms to emphasize local contrast, rather than overall contrast. Examples of such methods

include Adaptive Histogram Equalization (AHE) [57] and Contrast Limited Adaptive Histogram Equal-

ization (CLAHE) [58]. Another method to perform histogram analysis in order to enhance contrast was
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proposed in [59] where a scale-space filter is applied.

A smart contrast enhancement technique that uses also histogram equalization is shown in [60]. The his-

togram equalization is capable of classifying global and local histogram equalizations.

A technique, known as Independent Histogram Pursuit [61], consists in finding a combination of spectral

bands that enhances the contrast between healthy skin and lesions. Another method used in dermoscopic

images consists in determining the optimal weights and converting them by maximizing Otsu’s histogram

bimodality measure [62,63]. Alternatively, in [64], it was presented an adaptive histogram equalization step

that uses processing blocks instead of using the entire image, which implies that each block’s contrast is

enhanced independent of the dominant image information.

In [55], the authors also consider the problems of poor contrast which make accurate border detection diffi-

cult [65] and address this problem by applying automatic color equalization technique. Recently, a software

tool for contrast enhancement and segmentation of melanoma was described in [66] by using intensity

remapping and Gaussian filter techniques.

In order to enhance the edges in the original images and facilitate the segmentation process, it is common to

apply the Karhunen-Loève Transform (KLT) in pigmented skin lesions [61, 67–69].

Hair removal

Hair pixels, usually present in skin images, occlude some of the information of the lesion such as its bound-

ary and texture. Therefore, in melanoma recognition these hair artifacts should be removed, preferentially

preserving all the lesion features while keeping its computational cost low. Common disadvantages as-

sociated with hair removal algorithms are over-segmentation, undesirable blurring, alteration of the tumor

texture and color bleeding.

In 1997, Lee et al. [70] proposed the DullRazor hair-removal algorithm for dermoscopic images. It consists

of three basic steps: identifying the dark hair locations using morphological operations; replacing the hair

pixels by the nearby non-hair pixels through bilinear interpolation; and smoothing the final result using an

adaptive median filter. This algorithm, however, tends to erase important details of the original images by

making the pigmented network unclear and it cannot remove light-colored or thin hairs.

The median filter is one of the most commonly used smoothing filter in the literature and showed capable of

eliminating most of the artifacts in dermoscopy images [71,72]. To attenuate the influence of hair, Celebi et

al. [72] proposed to smooth the input image by applying a median filter with a mask of an appropriate size.

Similarly, the work of Saugeon et al. [73] and Fleming et al. [74] detect and remove hair using morpholog-

ical operations and thresholding in CIE L*u*v* color space. In these techniques, a hair mask is generated

by a fixed thresholding procedure on these thin structures based on their luminosity and, at the end, each

masked pixel is replaced by an average of its neighboring non-masked pixels.
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She et al. [75] proposed an alternative method to estimate the underlying color of hair pixels based on a

band-limited signal interpolation technique. This method takes the Fourier transform of the image, sets

the response outside of a defined region to zero, takes the inverse Fourier transform and updates the pixels

within the mask region accordingly and repeats the previous process until convergence.

Inpainting is a technique originally used to restore films and photographs, however it has also been used to

un-occlude hair from dermoscopic images of skin lesions. First, the entire image is analyzed to give guid-

ance of how the specific areas should be filled. The inpainting process then involves: continuing structural

elements into the gaps; filling the gaps with the color of the boundaries; adding texture [76]. In [77], the

authors compare inpainting to the conventional software DullRazor [70] and with She et al. [75] results. In-

painting performed on average 32.7% better than the linear interpolation of DullRazor and it was also more

stable under heavy occlusion. The results implied that DullRazor and inpainting perform more consistent

estimations.

Xie et al. [78] proposed an automated hair removal algorithm based on Partial Differential Equation (PDE).

The algorithm includes three steps: first, the melanoma images with hairs are enhanced by morphologic

closing-based top-hat operator and then segmented through statistic threshold; second, the hairs are ex-

tracted based on the elongate of connected region; third, the hair occluded information is repaired by the

PDE-based image inpainting. The advantage of using this approach is that it utilizes neighborhood based

information in a natural manner while maintaining a sharp boundary, however the main drawback is that the

diffusion process introduces some blur.

Most existing methods for dermoscopic hair segmentation overlook the case of hair lighter than the back-

ground and the skin. So, [79] uses a universal kernel which is capable of segmenting both dark and light

hair of constant width, without prior knowledge of the hair color. Its limitation however lies in the cases of

fine hairs and hairs with many intersections.

In [80], the authors use an automatic hair removal algorithm which consists of hair detection and image

inpainting. The hair removal algorithm [70] used was previously here described. As for inpainting, state of

the art algorithms were explored [81] and the authors presented a novel algorithm for removing large objects

from digital images. The approach employs an exemplar-based texture synthesis technique modulated by a

unified scheme for determining the fill order of the target region where pixels maintain a confidence value,

which together with image isophotes, influence their fill priority.

A comparative study of the state-of-the-art of hair-repaired methods for dermoscopic images was performed

in [49] as well as a new method was proposed. The new method starts to do hair detection with the use of a

derivative of Gaussian, applies morphological techniques for the refinement and the hair repair is achieved

using fast marching image inpainting. A similar methodology was, at the same time, presented, designated

VirtualShave [82], where individual hairs are identified by a top-hat filter followed by morphological post-
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processing and then replaced through PDE-based inpainting.

An improved DullRazor algorithm, known as E-shaver [83], was presented years later. It starts to detect

the predominant orientation of hairs in the original image by using Radon transform, followed by filtering

the image with Prewitt filters using the orientation of existing hairs. Afterwards, non-hair structures and

noise are removed from the image by thresholding-average-thresholding, followed by smoothing. More re-

cently, [64] describes two hair removal algorithms: one using a closing morphological operation and another,

more robust, that consists in a combination of bicubic interpolation and Top Hat Transform.

Image restoration

Image restoration techniques are oriented towards the reconstruction the original image from a degraded

observation. This degradation can be due to many forms such as motion blur, noise or even out of focus

camera.

Classical image restoration techniques are inverse filtering and Wiener filter. Inverse filtering was devel-

oped by Nathan in 1966 [84] to restore images and is also known as deconvolution; it has the advantage

of requiring only the point spread function as a priori knowledge, but the drawback that the noise is ampli-

fied. Improved restoration quality turned possible with Wiener filter techniques, which incorporate a priori

statistical knowledge of the noise field. The constrained least-squares filter [85] is another approach for

overcoming some of the difficulties of the inverse filter and of the Wiener filter, while still retaining the

simplicity of a spatially invariant linear filter. Studies such the ones presented in [69, 86, 87] use the Wiener

filter as a preprocessing step in skin cancer image based analysis.

When no a priori knowledge about the image degradation is available, the required information should be

extracted from the original image either explicitly or implicitly, this technique is named blind image restora-

tion [88–90]. Therefore, it is necessary to simultaneously estimate both the original image and point-spread

function using partial information about the image processing and possibly even about the original image.

In [91], it is proposed the blind algorithm, where a number of vector quantization codebooks are designed

using bandpass filtered prototype images and by calculating the distortion between the given image and each

codebook, then the one with the minimum average distortion is selected. In [92], a Bayesian model with

priors for both the image and the point spread function is addressed based on a variation approach.

In [93], a total variation methodology is presented where the image blur and the hyperparameters are esti-

mated simultaneously by using a hierarchical Bayesian model. Recently, a novel blind image deconvolution

algorithm [94] was developed within a Bayesian framework utilizing a non-convex quasi norm based sparse

prior on the image and a total variation prior on the unknown blur.
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1.3.3 Imaging Preprocessing Algorithms

Algorithms capable of performing image quality assessment for dermatological images acquired via mobile

devices, in particular via mobile phones, are of extreme importance to ensure the further image analysis

proper success for skin cancer prevention. Therefore, we should not diminish the significance of the devel-

opment of preprocessing algorithms specifically for that purpose.

Reflection detection

In [95], a new methodology to detect reflections on dermatological images acquired by mobile phones is

presented. In this work, the authors start to apply a filter to the original RGB image to attenuate the mean

luminance and enhance the contours and use the difference between the L channel and a variation from the H

channel, from the L*a*b* and HSV color spaces, respectively, to enhance the reflection regions. This choice

of the color spaces came from the fact that L channel is considered dependent on highlights, while the H

channel is invariant to highlights [37]. Afterwards, the difference image is smoothed through Gaussian filter

to remove small variations and the segmentation of the reflection regions is obtained based on the difference

image histogram.

The methodology was applied to 75 images previously classified according to their level of reflections and

the results confirmed the good quality of the suggested algorithm (some examples are shown in Figure 1.1).

Blur detection

Another study [96] was developed regarding image quality assessment focuses on blur distortion level.

Briefly, the authors collected a set of features related with blur detection and analyzed each feature discrim-

inatory ability concerning two dermatological image datasets. The authors test the capability to detect blur

artificially induced in dermoscopic images from the public database PH2 [17] and also the blur resulting

from the normal image acquisition process using a mobile phone from Institute of Portuguese Oncology

(IPO) Mobile database [15] (see Figure 1.2). Here it is explored the usage of no reference objective methods

for blur detection purposes (i.e., methods capable of reporting the image quality without human involve-

ment, and where the absolute value is based on the characteristics of the image itself). Therefore, a set of

features previously referred on the literature for blur detection, as well as some others yet not tested to this

purpose were implemented, and attributes like sum, mean and standard deviation were calculated for each

feature. Those features were grouped according to their working principle: Gradient based, Laplacian based,

Statistical based, DCT/DFT based and other principles, gathering a total of 78 features (see Table 1.3). The

Mann-Whitney U statistic divided by the product of the two distributions (focus and blurred) was obtained



14 Dermoscopy Image Analysis

Reflections None Few Some Many

Original

images

Difference

masks

Reflection

detection

Figure 1.1: Results obtained in each step of the reflection detection algorithm described in [95] for images

classified as having no, few, some and many reflections: original images, difference masks and final results

(reflections in black and signal contours in white).

for each feature, in order to compare their individual discriminatory ability. The results demonstrated that

the collected features were capable of successfully discriminating between focused or blurred images. Addi-

tionally, it was possible to conclude that the subset of features with best discriminatory ability considerably

depended on the nature of the blur distortion in the used images. When using the PH2 dataset, with der-

moscopic images, best discriminatory results came from the DCT/DFT family, followed by the Laplacian

family. While, for the IPO Mobile dataset, with mobile images, the best results came from the Laplacian

family as well as the Gradient family. So far, this is a ongoing work where the authors are also evaluating

the impact of feature selection methods as well as the application of different classification methodologies

to achieve a final robust methodology for the automatic detection of blurred images.
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PH2 dataset IPO Mobile

Figure 1.2: Examples of two images from the PH2 dataset in the left and focused and blurred images from

the IPO Mobile dataset in the right (original images in the first row and detailed image regions (identified

by the blue squares in the original images) in the second row).

1.4 Mobile Teledermatology: Towards a Patient-Oriented Design Approach

The practicality of Mobile Teledermatology (MT) system equipped with mobile phone cameras was already

reported and confirmed in some studies [97–100]. Another recent study [9] focused on the importance of

MT in the developing world, confirming the aided value of using a system that amplifies the access to der-

matologic expertise in underserved regions.

The study of [101] proved that the usage of a Store-and-Forward Teledermatology (SFTD) system was

beneficial in aiding a triage system for potentially malignant skin lesions, helping to improve patients priori-

tization, service efficiency and clinical outcomes. [102,103] foresee that Mobile Dermatology might become

a triage system for skin cancer, with patients themselves capturing images and sending them to a referring

center to be evaluated. In [104], two studies of SFTD system were analyzed regarding the relation cost-

effectiveness when compared to conventional consult processes. In the first case, considering the costs born

only from department, the results showed that SFTD yielded greater costs, but also greater effectiveness;

however, if the economic perspective of the society was taken into account, the SFTD was considered as the

one potentially cost saving. In the second case, the societal economic perspective was taken, and also SFTD

incurred less cost and yielded greater effectiveness. Long-term studies of TD working as a routine tool for

the daily practice of skin cancer clinics at public hospitals are still lacking; however, this approach has been

recently associated with better service efficiency, as cheaper than conventional care and with high patient

satisfaction [105, 106].

The traditional clinical diagnosis of MM ranges between 65-80% [107], but the usage of dermoscopy was
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Table 1.3: Summary of the features extracted for blur detection in [96].

Group Name Attributes

Gradient Energy Image Gradient Sum, mean, std, max

based Squared Gradient Sum, mean, std, max

Tenengrad Sum, mean, std, max, var

Laplacian Energy of Laplacian Sum, mean, std, max

based Sum Modified Laplacian Sum, mean, std, max

Diagonal Laplacian Sum, mean, std, max

Variance of Laplacian Mean, std, max, var

Laplacian and Gaussian Sum, mean, std, max

Statistical Gray Level Variance Sum, mean, std, min, max, var

based Norm. Gray L. Variance Normalized variance

Histogram Entropy Sum (R, G, B, gray)

Histogram Range Range (R, G, B, gray)

DCT/ DCT Sum, mean, std, min, max

DFT DFT Sum, mean, std, min, max

Other Brenner’s Measure Sum, mean, std

principles Image Curvature Sum, mean, std, min, max

Spatial Freq. Measure Sum, mean, std, max

Vollath’s autocorrelation Sum, mean, std, max

Perceptual blur Count and mean (horizontal and vertical)

described as a technique capable of improving the diagnostic accuracy [29]. In [8], it is presented the first

study performing MT using cellular phones with in-built cameras. In this work, the authors used a close

up clinical image and a dermoscopic image by applying the mobile phone on a pocket dermoscopy device

to investigate the feasibility of teleconsultation using a mobile phone. The images were acquired with a

Sony Ericcson K 750i with a built-in 2 megapixel camera with autofocus, macro mode and zoom and the

dermoscopy device was a DermLite II Pro HR with a 25mm 10x lens. The images were reviewed by two

teleconsultants and compared to face-to-face diagnosed obtaining a correct score of 89% and 91.5% for

clinical and dermoscopic images, respectively. However, face-to-face consultation is considered superior to

SFTD as a clinical assessment method due to its benefits in terms of lesion palpation, additional enquiry and

examination [105, 106].
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Summarizing, there are strong evidences that skin cancer triage services should be integrated with a com-

munity of dermatological expertises, simultaneously ensuring that Teleconsultants (TC) must always feel

able to invite patients to attend for face-to-face assessment whenever it could be necessary [108].

So far, the great majority of the proposed methodologies on the literature are based on dermoscopic image

analysis, usually aiming for dermatology specialist’s usage as decision support systems. From a patient

perspective, instead, one can identify different needs and implementation strategies. Patients with clinical

or family history of skin cancer should consult regularly their dermatologists for physical skin examina-

tions, for instance once a year. Between these appointments the patients are usually advised by their doctors

to check for relevant changes in their skin moles, and to anticipate the consultation in case of detecting

something suspicious. Unfortunately, the patients typically do not have enough dermatological expertise to

perform this kind of risk assessment. Due to that, patient-oriented approaches are new paradigms for skin

lesion analysis, trying not only to motivate and educate the patients, but also to empower them in terms of

dermatological expertise, which can lead to a significant impact in the early diagnosis of skin moles malig-

nancies.

In this section, it is proposed a physical and information architecture suitable for a patient-oriented system

of skin lesion analysis based on smart mobile devices with image cameras [109].

1.4.1 A Patient-oriented system

Physical architecture

A physical architecture (Figure 1.3) for a patient-oriented system of skin lesion analysis formed by three

main blocks:

1) Front-end Device (The user’s smart device): used to acquire or load an image of a skin lesion and send it

to the server for analysis. The application that allows the communication between the smartphone and the

server communicates is via the HTTP communication protocol.

2) Server: The server side consists on a RESTFul webservice implemented in Java using the Jersey library

[110] and deployed on an Apache Tomcat 7.0 web server. The Image Processing Module (IPM) can be

implemented in C++ using the OpenCv library [111], which will be executed as an external program when

an image is received in the server. The IPM will receive as input the original skin lesion image and return a

quantitative analysis of the image in addition to a visual output of the segmentation and features extraction

steps.

3) Back-end Device: The device that will receive the outputs generated by the IPM analysis. From the

user’s perspective, the results can be directly returned to one own smart device. Moreover, the IPM analysis

information can also be provided to dermatology specialists through a web interface.
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Figure 1.3: Physical diagram architecture.

Information architecture

In the proposed patient-oriented solution, the information flows along three main groups: users, skin lesions

and check-ups (see Figure 1.4). The application may have several users; and one user may have several skin

lesions; one skin lesion has one or more check-ups. Each user has the following information: 1) name; 2)

gender; and 3) age. Each skin lesion has the following information: 1) location on the body; and 2) list of

check-ups. Each check-up has the following information: 1) skin lesion image; 2) check-up date; 3) four

ABCD features scores (generated by the IPM); and 4) skin lesion size (in mm).

Figure 1.4: Diagram of the information architecture proposed.

1.5 Smart Device-Adaptable Dermoscopes

This section gives a review about the existing smart device-adaptable dermoscopes, together with a study

regarding their differences in terms of color reproduction, image area and distortion, illumination, sharpness

and differential structures visibility. Here, we used 2 different smartphones: the Samsung Galaxy S4 and

the iPhone 5, which are currently top range devices of the operating systems Android and iOS, respectively.
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Table 1.4 presents the camera specifications of each smartphone used.

By the time of our study, there were two different brands of dermoscopes with adaptability to smartphones

on the market: the pocket Dermlite line [112] of 3Gen from USA and the Handyscope dermoscope, of

FotoFinder’s from Germany [113]. The pocket Dermlite line allows standalone usability, meaning that it

can work without a camera and the adaptation of the DL1, DL2 and DL3 dermoscopes; also to test this line,

we selected two dermoscopes from different ranges: the Dermlite DL1 (bottom range) and the Dermlite

DL3 (top range). Regarding the Fotofinder line, we selected the Handyscope for iPhone 5. The prices of the

considered adaptable dermoscopes ranges between 400e and 800e at the time of this study, and we used a

magnification of 10x in all dermoscopes. Table 1.5 shows the specifications of the three considered smart

devices-adaptable dermoscopes.

Table 1.4: Camera specifications of the two considered smartphones.

Samsung Galaxy S4 iPhone 5

Camera 13 megapixels 8 megapixels

Flash LED LED

Aperture size F2.2 F2.4

Focal length 31mm -

Sensor size 1/3.06” 1/3.2”

Table 1.5: Specifications of the three considered smart devices-adaptable dermoscopes.

Dermlite DL1 Dermlite DL3 Handyscope

Number of - 4 - 21 (Cross-polarization) - 6 (Cross-polarization)

LEDS - 7 (Non-polarization) - 6 (Non-polarization)

Illumination - Cross polarized light - Cross-polarized light - Cross-polarized light

Modes (sliding clip) - Non-polarized light - Non-polarized light

- Non-polarized light

(sliding spacer unit)

Magnification 10x 10x Up to 20x

Supported - iPhone 4/4S/5/5S/5C - iPhone 4/4S/5/5S/5C - iPhone 4/4S/5/5S

Smart devices - iPad 3/4/Air/mini - iPad 3/4/Air/mini - iPod Touch

- Samsung Galaxy S3/S4 - Samsung Galaxy S3/S4

Battery life 1 hour 5 hours 6-8 hours

Standalone usability Yes Yes No

We tested 5 different combinations of the considered smartphones and dermoscopes: 1) Samsung Galaxy S4
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with Dermlite DL1; 2) Samsung Galaxy S4 with Dermlite DL3; 3) iPhone 5 with Dermlite DL1;4) iPhone

5 with Dermlite DL3; and 5) iPhone 5 with Handyscope. Regarding dermoscopes comparison, the case

reports and reviews available on the literature were pretty scarce for handheld dermoscopes [114, 115], and

nonexistent if we only consider smartphone-adaptable dermoscopes. Therefore, we analyzed the 5 differ-

ent combinations of smartphones and mobile-adaptable dermoscopes in terms of color reproduction, image

area, image distortion, illumination, sharpness and differential structures visibility.

1.5.1 Color Reproduction

To test the color reproducibility of the combinations of the considered smartphones and dermoscopes, we

have chosen 12 different reference colors from the ColorChecker chart [116]: 6 grayscale colors, 3 primary

colors and 3 secondary colors. The reference colors were printed in standard office paper, and all the images

were acquired using cross-polarized light with 10x magnification. For comparison purposes, only a square

of 1000 x 1000 pixels at the center of the acquired images was considered, since in dermoscopic images the

best illumination conditions are usually achieved at the center of the image. The obtained results using all

the combinations are depicted in Table 1.6.

From the analysis of Table 1.6, one can observe that the color reproducibility of the Handyscope with

the iPhone 5 seems to be the most accurate, principally for the primary and secondary color patches. The

Dermlite DL3 had a similar performance in terms of the primary and secondary colors, however, the images

acquired with the Dermlite DL3 for the grayscale colors have a significant bluish tint. This clear tendency

towards the blue color was present on both smartphones, which might indicate that it could be related with

intrinsic characteristics of the Dermlite DL3. Comparatively, the images acquired with the Dermlite DL1

look considerably washed out and with subdued colors. These types of artifacts are commonly present in

overexposed images, so in the case of the Dermlite DL1 probably more light than the required was acquired

by the camera.

1.5.2 Image Area and Distortion

To compare the visible area and image distortion of the acquired images, we used millimeter paper and

images were acquired using cross-polarized illumination. The width and length of the visible area was cal-

culated by counting the lines of the millimeter paper grid (see Table 1.7). Moreover, to analyze the image

distortion of the captured images, a 10 x 10 mm2 square was centered in the image and the images were

qualitatively compared (see Table 1.8).

In terms of visible area, the Dermlite DL3 dermoscope presents the biggest area, followed by the Handyscope,

and finally the Dermlite DL1. Comparing the dermoscopes of the Dermlite line on both smartphones, it is
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Table 1.6: Color Reproduction.

Reference Samsung Galaxy S4 i Phone 5

Color DL1 DL3 DL1 DL3 Handyscope

worth noting that the iPhone 5 guarantees a wider visible area.

Regarding the image distortion, one can verify that all tested combinations produced Pincushion distortion
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Table 1.7: Visible area comparison.

Samsung Galaxy S4 i Phone 5

DL1 DL3 DL1 DL3 Handyscope

17 x 13 mm2 24 x 15 mm2 18 x 18 mm2 24 x 18 mm2 21 x 18 mm2

Table 1.8: Image distortion comparison.

Samsung Galaxy S4 i Phone 5

DL1 DL3 DL1 DL3 Handyscope

on the acquired images, i.e. lines that did not pass through the center of the image were curved inwards,

towards the center of the image. The minimal Pincushion distortion was obtained using iPhone 5 with

Handyscope, followed by Dermlite DL1 with both smartphones. On the other hand, the images with most

Pincushion distortion were acquired with Dermlite DL3 for both smartphones.

1.5.3 Illumination

In order to compare possible differences in light spreading and brightness, images of the same skin mole

were acquired using the 5 different considered combinations of smartphones and dermoscopes, Table 1.9.

The Dermlite DL1 appears to have the worst performance in terms of light spreading, with a brighter vertical

area in the center of the image (more visible when using iPhone 5). Moreover, comparatively with the other

dermoscopes, the Dermlite DL1 led to the biggest shadow area near the black border of the dermoscopic

image.

Regarding the light spreading, the best performance was achieved by Dermlite DL3 and Handyscope using

iPhone 5. Comparing the Dermlite line for both smartphones, the images acquired with iPhone 5 appeared

to be brighter and with less shadow areas near the border of the dermoscopic images. However, color re-

producibility seemed to be better for Samsung Galaxy S4, whilst being excessively whitish for Handyscope

and Dermlite DL1 when using iPhone 5.
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Table 1.9: Light spreading comparison.

Samsung Galaxy S4 i Phone 5

DL1 DL3 DL1 DL3 Handyscope

1.5.4 Sharpness and Differential Structures

To compare the sharpness and visibility of the differential structures, images of 4 different skin lesions were

acquired using the 5 considered combinations of smartphones and dermoscopes. For each lesion, 3 differ-

ent types of images were acquired: a dermoscopic image with cross-polarized light, for each smartphone-

dermoscope combination (see Table 1.10); a non-dermoscopic image using only the built-in smartphone

camera, with and without flash (see Table 1.11).

Considering the dermoscopic images with cross-polarized light, the sharpest images seem to be obtained

with Dermlite DL3 and iPhone 5, being simultaneously the images where the differential structures were

most clearly visible. This combination also seemed to be the one that guarantees best color reproducibility

and contrast. Handyscope and Dermlite DL3 with Samsung Galaxy S4 closely followed the image quality

delivered by Dermlite DL3 in terms of sharpness and visibility of differential structures. The worst results

were with Dermlite DL1, with images that comparatively looked considerably washed out and with a lower

contrast. Moreover, the border of the skin lesions on Dermlite DL1 were less marked and the differential

structures more difficult to see.

Finally, to analyze the impact of the flash light in the mobile image acquisition process of skin lesions, im-

ages of the same skin moles were also acquired using both smartphones. As we can see on Table 1.11, the

images acquired using the flash light are sharper and the inner structures of the skin lesions are more visible.

The acquisition process without flash light was significantly more difficult, being inclusively not possible

to obtain focused images even after several attempts, as it was the case for Lesions #3 and #4 using the
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Samsung Galaxy S4. However, when using the flash light, it should be taken into consideration that the

likely appearance of highlight artifacts caused by the reflections of the skin, might considerably reduce the

skin lesions visibility.

Table 1.10: Dermoscopic skin lesion images acquired using cross-polarized light.

Samsung Galaxy S4 i Phone 5

DL1 DL3 DL1 DL3 Handyscope

Lesion #1

Lesion #2

Lesion #3

Lesion #4

1.6 Final Remarks

Mobile Teledermatology has indeed several potential applicabilities for both doctors and patients, being an

important tool for skin cancer prevention. Statistics say that skin cancer is the most common malignancy in

Caucasian population and the indicators show that each year this number is alarmingly growing. Therefore

the development of prevention measures is essential and MT can significantly add value in this case.

Here, it was presented a survey about the new trends of MT, covering topics such as: the available dermato-

logical databases that can be used for developing robust detection methods; the topics related with medical

imaging, including image acquisition types, to preprocessing challenges of the acquired images and some

solutions to overcome them; proposing a new MT patient-oriented design approach; and finalizing with a

discussion about the existing smart devices-adaptable dermoscopes.

Yet, being this a recent area of investigation, several directions may be fruitful to explore in order to advance

in MT field:
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Table 1.11: Skin lesion images acquired using the smartphones’ built-in cameras.

Samsung Galaxy S4 i Phone 5

With Flash No Flash With Flash No Flash

Lesion #1

Lesion #2

Lesion #3 N.A.

Lesion #4 N.A.

• Preprocessing tasks : it is important to develop robust methodologies focused on the normalization of

images acquired using different mobile devices under uncontrolled conditions, both in terms of il-

lumination and color calibration. Moreover, the reliable image quality assessment should also be

considered one of the key aspects for the successful deployment of these type of systems.

• System design : the patient-oriented approach opens up new possibilities for an active role of the patient

in managing one skin health status, as well as simultaneously improving the patient-doctor relation-

ship. Thus, the design of these type of systems should be rethought and improved in order to meet

both personal/experts requirements.

• Smart devices-adaptable dermoscopes : The recent appearance of these devices on the market can bring

significant advantages to dermatology specialists in terms of data acquisition, transmission and stor-

age. Taking also into account the current global penetration of smart devices, if the price range

of smart device-adaptable dermoscopes considerably lowers down in the following years, it is ex-

pectable that these devices start spreading among the general population. Thus, it is important to start

investigating the advantages and limitations of these devices in terms of image quality, so that the

image processing and analysis techniques proposed to date for standard dermoscopic images can be

improved accordingly.
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