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a b s t r a c t

Bacterial colonization and subsequent biofilm formation is still one of the major problems associated
with medical devices. Antimicrobial peptides (AMP) immobilization onto biomaterials surface is a
promising strategy to avoid bacterial colonization. However, a correct peptide orientation and exposure
from the surface is essential to maintain AMP antimicrobial activity.

This work aims to evaluate the effect of the immobilization on antibacterial activity of Dhvar5
(LLLFLLKKRKKRKY), an AMP with a head-to-tail amphipathicity. Dhvar5 was linked to thin chitosan
coatings in i) a controlled orientation and exposure, testing covalent immobilization of its N- or C-ter-
minus and using spacers with different lengths and flexibilities or in ii) a random orientation by physical
adsorption. Chitosan coating was chosen due to its antimicrobial properties and readiness to be
functionalized.

Surface characterization demonstrated the chemoselective immobilization of the peptide with
different spacers in a similar concentration (~2 ng/cm2).

Efficacy assays demonstrated that covalent immobilization of Dhvar5 exposing its cationic end, im-
proves the chitosan coating antimicrobial effect by decreasing Methicillin-resistant Staphylococcus aureus
(MRSA) colonization. This effect was enhanced when longer spacers were used independently of their
flexibility. In opposite, immobilized Dhvar5 exposing its hydrophobic end has no effect on bacterial
adhesion to chitosan, and when adsorbed in a random orientation even induces bacterial adhesion to
chitosan coating.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Prevention of bacterial adhesion and biofilm formation on the
surface of biomaterials remains a serious clinical issue yet unsolved.
A number of different coating strategies, either for exposure or
release of bactericidal substances (e.g., silver, quaternary ammonium
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compounds, and classic antibiotics) have been tested along the past
years [1e4]. However, the application of such coatings has been
limited by associated side-effects, as cytotoxicity, hypersensitivity or
the progressive alarming emergence of multi-resistant pathogens.

Antimicrobial peptides (AMP) are a class of promising antibiotic
compounds with the major advantages being broad spectrum of
activity, high efficiency at low concentrations, fast killing, good
cytotoxic profile, and importantly, they rarely promote the rise of
bacterial resistance [5,6]. For the majority of these peptides, the
mode of action suggested is peptide insertion into bacterial mem-
branes with subsequent cell death induction by, in some cases, cell
lysis. Dhvar5 is a synthetic peptide, derived from the histatins
family, which are produced by the salivary glands. Dhvar5 is a
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variant of Dh-5 (histatin 5 active domain, amino acids 11e24) with
an N- to C-terminal amphipathicity. It was firstly described as
strongly active against Candida albicans, but has also a potent and
broad antibacterial activity, even against methicillin-resistant
Staphylococcus aureus (MRSA) [7e9]. The exact mechanism of ac-
tion of soluble Dhvar5 is still not fully elucidated. Some cues
emerged from the work by Amerongen and co-workers [10,11],
where it was demonstrated that Dhvar5 binds to the membrane of
yeast cells and induces leakage of intracellular content, but without
permanent pore formation. The broad spectrum of Dhvar5,
together with its safe cytotoxic profile, prompted its application on
osteomyelitis prevention models. However, although the peptide
revealed in vivo activity, it did not achieve the same treatment
levels than gentamicin [12]. This situation may be associated with
the pharmacokinetics challenges posed by AMP, as these are prone
to undergo proteolytic degradation, self-aggregation and aggrega-
tion with plasma proteins. As previously summarized by us [13],
covalent immobilization of AMP may offer the answer to such
difficulties. Moreover, this strategy prevents the formation of a
peptide concentration gradient from the implant surface, avoiding
the side-effects associated with releasing therapies. Still, peptide
immobilization is not a straightforward issue, as a number of
different parameters should be taken into account, such as proper
orientation (N- vs. C-terminal immobilization) and selection of an
adequate spacer/linker (length and flexibility) for an optimal
exposure.

2. Materials and methods

2.1. Dhvar5 synthesis and characterization

Pepide Dhvar5 (LLLFLLKKRKKRKY C-terminal amide) and its derivatives
(Table 1) were produced by Fmoc/tBu solid-phase peptide synthesis methodologies
assisted with microwave (MW) energy (Liberty 1 Microwave Peptide Synthesizer,
CEM Corporation) [14,15]. Dhvar5-derived peptides were produced in order to
introduce a terminal cysteine for subsequent immobilization. Different spacers were
placed between the additional Cys and the bioactive sequence: 4-aminobutanoic
(ABA) and 6-aminohexanoic (AHA) acids were used as flexible spacers of different
length, whereas the dipeptide GlyGly (GG) was used as a spacer with comparable
length to that of AHA, but lower flexibility, as peptide bonds do not allow the same
conformational freedom as that of alkyl chains.

The crude peptides were purified by reverse-phase liquid chromatography and
confirmed by High Performance Liquid Chromatography (HPLC) (Hitachi-Merck
LaChrom Elite), Liquid Chromatography-Electrospray Ionization/Ion Trap Mass
Spectrometry (LC-ESI/IT MS) (LCQ-DecaXP LC-MS system, ThermoFinnigan). Purified
peptides used presented a purity level higher than 90%.

2.2. Dhvar5 surface immobilization

2.2.1. Substrates preparation
Titanium substrates (Ti) were used to represent prosthesis surface and gold

substrates (Au) were used due to their higher suitability for some of the surface
characterization techniques used, such as ellipsometry and Infrared Reflection-
Absorption Spectroscopy Analysis (FT-IRRAS). Ti and Au (1 � 1 cm2) were pro-
duced, cleaned and characterized according to references [16] and [17], respectively.
Briefly, TiO2 films (50 nm) were deposited on silicon wafers (polished/etched,
crystal orientation <100>, from AUREL Gmbh) by ion beam sputtering from a Ti cp
target, in the presence of a mixed AreO2 beam coming from the assist gun (15.02%
O2 in Ar). For the Au substrates, chromium (5 nm) and gold (25 nm) layers were
deposited by ion beam sputtering from chromium and gold targets (99.9% purity)
on silicon wafers (AUREL, Gmbh). Chromiumwas used to improve gold adhesion to
silicon. Both substrates were cleaned with “piranha” solution (7 parts of H2SO4 and
Table 1
Dhvar5 derived-peptides for immobilization.

Peptide Sequence

Dhvar5 LLLFLLKKRKKRKY
Dhvar5-Ct_AHA_C Dhvar5-(6-amino-hexanoyl)-Cys
C_AHA_Nt-Dhvar5 Cys-(6-amino-hexanoyl)-Dhvar5
C_ABA_Nt-Dhvar5 Cys-(4-aminobutanoyl)-Dhvar5
C_GG_Nt-Dhvar5 Cys-GlyGly-Dhvar5
3 parts of 30% H2O2) for 90 s (Ti) and 5 min (Au) (caution: this solution reacts
violently with many organic materials and should be handled with extreme care) and
successively rinsed with ethanol, MilliQ water, ethanol and dried with a gentle
stream of argon.

2.2.2. Preparation of chitosan ultrathin films
Chitosan ultrathin films were produced as previously described [18]. Briefly,

commercial squid pen chitosan (France Chitine) was purified by the re-precipitation
method [19] resulting on a molecular weight of 283,000-472,000 with a deacety-
lation degree (DD%) of ~85%. Chitosan ultrathin films (Ch) were prepared by spin
coating (9000 rpm during 1 min; Laurell Technologies Corporation, North Wales) a
chitosan solution (0.4% in acetic acid w/v) [20] on the center of the Au substrates.
The ultrathin films producedwere then neutralizedwith 0.1 M NaOH and rinsed with
MilliQ water. Each sample was dried with a gentle stream of argon and stored in
plastic Petri dishes saturated with argon.

2.2.3. Introduction of SH groups onto chitosan films
Functionalization of chitosan thin films with N-acetyl cysteine (NAC), for

introduction of SH groups, was previously optimized by Costa et al. [18], through
employment of carbodiimide chemistry. Briefly, chitosan thin films were treated
with a solution of 0.2 m1-Ethyl-3-[3-dimethylaminopropyl] carbodiimidehydro-
chloride) (EDC; SigmaeAldrich), 0.05 m N-hydroxysulfosuccimide (NHS; Sigmae
Aldrich) and 25 mm NAC (Merck), in 0.1 m (N-morpholino)ethanesulfonic acid
(MES; SigmaeAldrich) buffer at pH¼ 6.5, for 1 h, at 37 �C and 100 rpm. Themodified
films were then rinsed withMilliQ water and immersed 1min on an ultrasound bath
(Bandelin Sonorex Digitec Bath 35 kHz) and rinsed again with MilliQ water.

2.2.4. Peptide immobilization
Dhvar5 immobilization on chitosan thin films was obtained through disulfide

bridge formation between the side chain thiol of the terminal cysteine of the peptide
and sulfhydryl groups (SH) on pre-functionalized chitosan (Fig. 1).

Functionalized chitosan substrates were incubated with 1.5 mg/ml peptide so-
lutions in 10 mM TrisHCl pH ¼ 8.0, under oxidative conditions (20% dimethyl sulf-
oxide (DMSO)) for 18 h at 37 �C and 120 rpm. A control Dhvar5-adsorbed sample
was prepared by incubation with a non-functionalized chitosan film in the same
reaction conditions.

2.3. Surface characterization

2.3.1. FT-IRRAS
Measurements were performed on a Perkin Elmer FTIR spectrophotometer,

model 2000, coupled with a VeeMax II Accessory (PIKE) and a liquid-nitrogen-
cooled MCT detector. In order to ensure that there was no water vapor adsorption,
dry nitrogen was purged into the instrument for 5 min before and during mea-
surement of each sample. For each substrate, a similar gold surface was used as a
background. Incident light was p-polarized and spectra were collected using the 80�

grazing angle reflection mode. For each sample, 100 scans were collected with 4 cm-

1 resolution.

2.3.2. Ellipsometry
Ellipsometry measurements were performed using an imaging ellipsometer,

model EP3, from Nanofilm Surface Analysis. This ellipsometer was operated in a
polarizer-compensator-sample-analyzer (PCSA) mode (null ellipsometry). The light
source was a solid-state laser with a wavelength of 532 nm. The gold substrate
refractive index (n ¼ 0.5837) and extinction coefficient (k ¼ 2.5113) were deter-
mined by using a delta and psi spectrum with an angle variation between 65� and
71�. These measurements were made in four zones to correct for any instrument
misalignment. The thickness of the chitosan films was determined considering
n ¼ 1.54 and k ¼ 0, for the chitosan film [21]. Results are presented as the average of
three measurements on each of two samples.

2.3.3. Water contact angle measurements
Water contact angle measurements were performed using the sessile drop

method with a contact angle measuring system from Data Physics, model OCA 15,
equipped with a video CCD-camera and SCA 20 software, as described at [17]. After
deposition of 4 ml drops of MilliQ water, images were taken every 2 s over 300 s.
Droplet profiles were fitted using YoungeLaplace formula, to calculate the contact
angle. The water contact angle of each substrate was calculated by extrapolating the
time dependent curve to zero. Results are the average of three measurements on
three independent samples.

2.3.4. Peptide surface density determination
The quantification of the immobilized peptides was performed through

colorimetric reaction using 9,10-phenanthrenequinone (PHQ, Fluka), that reacts
with arginine forming a stable compound which gives out fluorescence upon
excitation [22]. The protocol used was adapted from Ref. [23]. Substrates were
sonicated 1 h in 0.1 M HCl (1 ml) in an ultrasound bath to dissolve the modified
chitosan films. Then, 1 ml of each sample solution was added to 3 ml of 3.5 mM PHQ
in absolute ethanol, followed by the addition of 0.5 ml of 2 M NaOH. The mixture
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Fig. 1. A) Chitosan modificationwith N-acetyl cysteine (NAC); B1) Dhvar5 peptide spacer introduction; B2) Immobilization of Dhvar5-derived peptides by disulfide bridge formation
(a control surface, Ch Dhvar5 ads, was used where peptide was only adsorbed, not covalently bound).
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was then incubated at 30 �C for 3 h. Finally, 2.25 ml of 2.4 M HCl was added to stop
the reaction. The fluorescence emission was measured using a fluorescence
microplate reader (Biotek Synergy Mx Luminometer) using an excitation wave-
length of 256 nm, and detecting the emission at 380 nm. The amount of Dhvar5
was calculated based on a calibration curve prepared with standard solutions of
free L-arginine (Fluka) and free Dhvar5. Standard solutions of free Dhvar5 were
adjusted by quantification at 280 nm in a Thermo Scientific NanoDrop® 1000
spectrophotometer.
2.4. Bacterial assays

2.4.1. Bacterial strains, media and growth conditions
An MRSA strain of S. aureus was obtained from the American Type Culture

Collection (ATCC 33591). Bacteria were firstly grown on Tryptic Soya Agar (TSA)
(Merck) and then overnight on Tryptic Soya Broth (TSB) (Merck) at 37 �C, 150 rpm.
Bacterial suspensions were adjusted by measuring Optical Density (600 nm). Bac-
terial numbers were confirmed by a retrospective viable count.
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2.4.2. MIC
Minimal Inhibitory Concentration (MIC) was established with a modified broth

microdilution method in Mueller Hinton Broth (MHB) [24].

2.4.3. Surface antimicrobial activity characterization

2.4.3.1. Sample preparation. All substrates were washed successively in 70% ethanol
and sterile water, and then dried in sterile environment. Samples were then tape
glued onto flat-bottomed 24-well cell suspension culture plates (Sarstedt, Ldt,
Newton, USA).

2.4.3.2. Surface viability assay. Bacterial solution (107 CFU/ml) was added to each
well and incubated at 37 �C and 150 rpm for 2 h in MHB. Surrounding wells were
filled with sterilized deionized water, in order to avoid medium evaporation. Sub-
strates were rinsed with 0.9% NaCl sterile solution, and then stained with a com-
bination dye of the LIVE/DEAD® Bacterial Viability Kit (Baclight™) for 15 min in the
dark. Briefly, the kit contains two fluorescent dyes, Syto9 which stains all bacteria in
green, and propidium iodide (PI) which can only crossover damaged cells mem-
branes and gives red stained cells. Thus, because PI quenches the fluorescent
emission of Syto9, it is assumed that green cells are alive whereas red cells are dead.
Images were obtained with an inverted fluorescence microscope (Axiovert 200M,
Zeiss, Germany). For quantifying the viability of adherent bacteria, eight fields on
each of triplicate replicates were obtained with a 1000x magnification, corre-
sponding to a net area of about 0.1181 mm2/sample. The bacteria count was per-
formed using the manual counting software included in ImageJ software.

2.4.3.3. Long-term surface adhesion assay. Bacterial solution (107 CFU/ml) in MHB
was added to each well containing the substrates. Cells were allowed to adhere for
2 h at 37 �C and 120 rpm. Non-adherent bacteria were removed by washing three
times with PBS at 120 rpm for 5 min. Thereafter, samples were placed on a new 24-
well plate and incubated with fresh MHB for 24 h at 37 �C and 120 rpm. Again, all
unused wells were filled with sterilized deionized water, in order to avoid medium
evaporation. At this point samples were rinsed with PBS, and fixed with 4% (w/v)
paraformaldehyde solution (Merck) for 20 min. Samples were rinsed againwith PBS
and stained with VECTASHIELD® Mounting Medium with DAPI (40 ,6-diamidino-2-
phenylindole; Vector). DAPI bound to bacterial DNA is excited at about 360 nm
and emits at about 460 nm, resulting on blue fluorescence. Images were obtained
with an inverted fluorescence microscope (Axiovert 200M, Zeiss, Germany). The
quantification of adhered bacteria was performed as previously explained.

2.4.3.3.1. Growth inhibition assay. After the 24 h incubation period, superna-
tants were successively diluted and plated in triplicate on TSA. Before counting the
colonies, plates were incubated at 37 �C for 18 h.

2.5. Statistical analysis

Statistical analysis was performed using One way ANOVA with Bonferroni
multiple comparison post-hoc test. When Gaussian distribution was not confirmed,
non-parametric test KruskaleWallis was applied using the Graphpad Prism pro-
gram. Data is expressed as the mean ± standard deviation (SD) and p values of <0.05
were considered significant.

3. Results

3.1. Surface characterization

Control and Dhvar5-modified surfaces were analyzed by
ellipsometry, water contact angle measurement, FT-IRRAS and
fluorimetric assays.

3.1.1. Ellipsometry
The spin-coating process resulted on chitosan ultrathin films of

9.3 ± 1.0 nm, which remained stable even after the reaction pro-
tocols, as there were no thickness changes between freshly made
films and buffer-incubated films (Ch_b) (data not shown). Fig. 2A
presents chitosan films thickness before and after surface
modification.

The thickness of the chitosan films (Ch_b) was augmented after
functionalization with NAC (Ch_NAC). The significant increase of
the Ch_NAC film thickness after incubation with Dhvar5, supports
the success of peptide attachment. Also, a similar increase was
observed on Ch film after its incubation with Dhvar5 solution
(Ch_Dhvar5_ads), suggesting peptide adsorption to the film. No
significant difference was observed between the distinct orienta-
tions and spacers applied.
3.1.2. Water optical contact angle (OCA) analysis
Water optical contact angles of the control and modified Ch

films are presented on Fig. 2B. The incorporation of NAC on Ch films
increased significantly the hydrophilicity of the film decreasing the
water contact angle from 65� to 31�. After Dhvar5 binding by its C-
terminus (exposition of the more hydrophobic portion of the
peptide) the water contact angle increases (qw ¼ 67�). On the other
hand, all Nt-Dhvar5 immobilized samples showed a more hydro-
philic behavior (qw ¼ 54e56�) than Ch_b, consistent with the
immobilization of the peptide exposing its positively charged
amino acids. No significant difference was observed between the
samples with peptide immobilized by its N-terminus.
Ch_Dhvar5_ads presented a water contact angle lower than Ch_b.
Its value (qw ¼ 60�) is between the surfaces with peptide immo-
bilized by its N-terminus and its C-terminus, suggesting some
adsorbed peptide in a random orientation.

3.1.3. FT-IRRAS
FT-IRRAS results of the chitosan thin films, before and after

immersion on buffer solution, showed that the films remained
stable even after chemical procedures (Data not shown). FT-IRRAS
analysis of Dhvar5 immobilized onto chitosan showed very
similar spectra, therefore Fig. 3A depicts spectra of control Ch
(Ch_b), and a representative spectrum of Dhvar5 immobilized onto
Ch films.

Ch_b spectrum allowed the identification of characteristic ab-
sorption bands of chitosan, as previously described [19,20,25e27].
After Ch functionalization with NAC, an increase of amide I ab-
sorption band (1654 cm-1) was observed. This is consistent with the
carbodiimide-mediated coupling reaction applied, leading to for-
mation of an amide bond between free amine groups in Ch and the
carboxylic groups of NAC. Subsequent covalent immobilization of
Dhvar5-derived peptides also implies an increase of amide I band,
characteristic of peptides/proteins. To assess Dhvar5 immobiliza-
tion, a peak height ratio (amide I peak height (1654 cm�1)/CeOeC
glucopyranose peak height (1083 cm�1)) was calculated (Fig. 3B).
As expected, the aforementioned ratio increased in the following
order: Ch_b < Ch_NAC < Ch films with covalently bound Dhvar5. All
samples with covalently immobilized peptide presented a nearly
identical ratio that was around 1.5 fold higher than Ch_NAC and
about 3 fold higher than Ch_Dhvar5_ads. Altogether, FT-IRRAS re-
sults clearly support the success of the covalent immobilization
chemistry applied.

3.1.4. Peptide quantification
The average surface peptide density is presented on Table 2. The

average surface density was similar between all Ch films with
covalently bound Dhvar5 (~2.0 ng/mm2). The film with adsorbed
Dhvar5 (Ch_Dhvar5_ads), although with a higher density (4.0 ng/
mm2), was not significantly different from the covalently immo-
bilized samples, with the exception of Ch_AHA_Nt-Dhvar5.

3.2. Antimicrobial activity characterization

Dhvar5 antimicrobial activity was firstly assessed in solution, by
an adaptation of the microtiter broth dilution method proposed
elsewhere [24,28]. S. aureus strain used presented a MIC of 0.5 mg/
ml.

3.2.1. Viability assays
Viability of bacteria attached to the surfaces was evaluated using

LIVE/DEAD® Bacterial Viability Kit (Baclight™). Fig. 4A presents the
average number of bacteria per mm2 of each surface sample, after
2 h incubation at 37 �C.



Fig. 2. A) Ellipsometry analysis of the chitosan and chitosan-functionalized films; B) Water optical contact angles of chitosan and chitosan-functionalized films. * Statistically
different from all other samples (p < 0.05) (non-parametric KruskaleWallis test).

Fig. 3. A) FT-IRRAS spectra of Ch and a representative spectrum of Dhvar5 covalently immobilized onto Ch film (Ch_AHA_Ct-Dhvar5); B) Peak height ratio (amide I peak
(1654 cm�1)/CeOeC peak (1083 cm�1)) of modified Ch films.
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Regarding total adhered bacteria, control samples (Ti and Au)
exhibited high values, whereas Ch coating (Ch_b) promoted a
reduction of around 40% (47% comparing to Ti and 39% comparing
to Au). This result was expected, since we previously demonstrated
the antimicrobial properties of this chitosan ultrathin films [18].
Remarkably, films with adsorbed peptide (Ch_Dhvar5_ads) did not
significantly differ from Ti neither from Au in total adhered bac-
teria, demonstrating that the adsorbed Dhvar5 induced bacterial
adhesion to chitosan film. In opposite, samples with peptide
covalently immobilized through its N-terminus exhibited a marked
Table 2
Dhvar5 surface density evaluation, based on fluorescent intensities.

Ch modified films Dhvar5 surface density (ng/mm2)

Ch_AHA_Ct-Dhvar5 2.4 ± 0.7
Ch_AHA_Nt-Dhvar5 1.5 ± 0.0a

Ch_ABA_Nt-Dhvar5 2.1 ± 0.4
Ch_GG_Nt-Dhvar5 1.8 ± 0.2
Ch Dhvar5 ads 4.0 ± 0.9a

a Statistically different from each other (p < 0.05) (non-parametric Krus-
kaleWallis test).
decrease as compared to Ti, reaching an ~80% reduction when a
longer spacer was used (Ch_AHA_Nt-Dhvar5 and Ch_GG_Nt-
Dhvar5) (p < 0.05). These two Dhvar-bearing surfaces did not
significantly differ from each other and revealed an anti-adherence
behavior ~62% plus effective than that of Ch_b. In turn, C-terminus
immobilization of Dhvar5 did not significantly differ from control
Ch_b film regarding anti-adherence properties. Hence, these results
clearly show that, amongst all surfaces analyzed, those coated with
Ch covalently bound to Dhvar5 through a longer spacer and
exposing themore hydrophilic and cationic end of the peptidewere
the best suited to avoid bacterial colonization.

It was also observed that most of the adhered bacteria were not
dead, in all surfaces. Still, N-terminally immobilized Dhvar5
exhibited a total number of live adhered bacteria two-fold lower
than Ch_b samples and five-fold lower than Ti substrates.

3.2.2. Long-term anti-adherence assays
The objective of this assay was to verify if the live adhered

bacteria would proliferate if time and proper nutritional conditions
were given. For that, surfaces with the 2 h incubation resulting
adherent bacteria were immersed on fresh medium for 24 h. The
results are presented in Fig. 4B.



Fig. 4. A) Viability of adhered S. aureus incubated at 37 �C for 2 h a) statistically different from all Ch samples with the exception of Ch Dhvar5 ads (p < 0.05); b) statistically different
from Ch_AHA_Nt-Dhvar5, Ch_GG_Nt-Dhvar5 and Ch_Dhvar5_ads (p < 0.05); c) statistically different from Ch_AHA_Nt-Dhvar5, Ch_GG_Nt-Dhvar5 and Ch Dhvar5 ads (p < 0.05); d)
not statistically different; B) Total S. aureus adherence to surfaces after 24 h incubation period of pre-adhered inoculum. a) statistically different from Ch_b, Ch_AHA_Nt-Dhvar5,
Ch_GG_Nt-Dhvar5 (p < 0.05); b) statistically different from Ch_AHA_Ct-Dhvar5, Ch_GG_Nt-Dhvar5 and Ch Dhvar5 ads (p < 0.05); c) statistically different from Nt-immobilized
Dhvar5 (p < 0.05); d) not statistically different; C) Number of CFU/ml found on the supernatants after a 24 h period of incubation. a) statistically different from all surfaces
with the exception of Ch_GG_Nt-Dhvar5 and Ch_NAC (p < 0.05); b) not statistically different from each other; c) statistically different from all surfaces with the exception of Au and
Ch_b (One-Way ANOVA analysis).
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Ti and Au exhibited a similar and high number of adhered
bacteria that allowed an increase of the number of adherent bac-
teria on their surfaces regarding to the initial adherent bacteria
(~2000 bacteria/mm2). Similar results were obtained for
Ch_Dhvar5_ads. Ch films with immobilized Dhvar5 by its N-ter-
minus presented the lowest bacterial adhesion levels (~70% and
~40% reduction as compared toTi and Ch_b, respectively). However,
these surfaces were not able to completely avoid bacterial prolif-
eration, since there is an increase of the adherent bacteria during
incubation (24 h). Ch coating and Ch_Dhvar5_ads were the surfaces
that allowed the lowest proliferation. However, the number of
adherent bacteria on these surfaces was very high.

Growth inhibition assays of the supernatants of the long-term
incubation experiments are depicted on Fig. 4C.
Ti substrates presented the highest value of CFU/ml, which
adding to the high amount of adhered bacteria at the substrate (see
Fig. 4B), confirms its lack of antimicrobial activity. No significant
difference was found between Au, Ch_b and surfaces with immo-
bilized Dhvar5. Ch_Dhvar5_ads was the substrate that contributed
to the lowest number of CFU/ml in the supernatant, which may be
related to elution of the peptide into the MHB.

4. Discussion

Dhvar5 presented a promising MIC of 0.5 mg/ml against a
methicillin-resistant S. aureus (MRSA) that is lower than the re-
ported elsewhere [8,9,12,29,30]. However, direct comparison of
such values is very difficult, as a result of the lack of universal
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standardized methods to assess AMP activity, besides the use of
different S. aureus strains. We chose to use the standard conditions
already proposed by Wiegand et al., [24].

In this study, Dhvar5 was covalently immobilized onto chitosan
thin films in order to evaluate if this strategy is able to prevent
bacterial adhesion in a sustainable way. Different immobilization
parameters were tested, to assess the immobilization profile that
would most contribute to such goal. Different surface character-
ization techniques e ellipsometry, FT-IRRAS, OCA and fluorimetric
peptide quantification e confirmed the production of stable chi-
tosan thin films, with a chemoselective covalent immobilization of
the peptide in different orientations. The stability of chitosan films
was confirmed using ellipsometry and FT-IRRAS. Ellipsometry
measurements demonstrated a clear thickness increase of Dhvar5-
modified chitosan films comparing to controls (Ch_b and Ch_NAC).
However, such analysis alone did not prove the covalent immobi-
lization of the peptide, nor its proper orientation. Demonstration of
the covalent immobilization of the peptide was suggested by FT-
IRRAS analysis, namely through comparison of the amide I peak
height (1654 cm�1)/CeOeC glucopiranose peak height (1083 cm�1)
ratio, that was clearly increased when Dhvar5 was covalently
bound to chitosan, as compared to NAC-functionalized chitosan and
Ch_Dhvar5_ads. The peak height ratio was also increased on
Ch_Dhvar5_ads comparing to unmodified chitosan. In this case the
amide I peak is related to the peptide bonds of the adsorbed peptide
and not to the covalent immobilization amide bond, noticeable by a
lower peak ratio increase. Regarding the specificity of the immo-
bilization orientation, useful information was brought by OCA
measurements. NAC-functionalized chitosan films became signifi-
cantly more hydrophobic (2.1 fold) upon immobilization of Dhvar5
through its C-terminus (Dhvar5 hydrophobic portion exposed) and
only 1.7 fold more hydrophobic when immobilization was made
through the N-terminus of the peptide (cationic residues exposed).
OCA also enabled the confirmation of Dhvar5 adsorption, by the
small but significant contact angle shift in Ch_Dhvar5_ads
comparing to Ch_b. This shift may be the result of multiple orien-
tations of the adsorbed peptide, rather than one preferential
orientation established by the covalently immobilization process,
as also proposed by Chen et al., [31].

Antimicrobial activity of control and peptide-bearing surfaces
was assessed through two levels of stringency: adhesion and
viability after 2 h of incubation, and after long-term incubation
(24 h). All Dhvar5 modified surfaces presented a significant bac-
terial adhesion reduction when compared to Ti and chitosan with
the exception of Dhvar5 adsorbed sample. Interestingly, the
adsorbed strategy exhibited an amount of adhered bacteria quite
similar to controls (Ti and Au). Also, Williams et al. [32], reported a
study where contact lenses with adsorbed lactoferrin exhibited a
high adherence of Pseudomonas aeruginosa.

Covalently immobilized Dhvar5 resulted in different profiles
depending on the exposed peptide terminus. C-terminally immo-
bilized Dhvar5 maintained the level of bacterial adhesion of Ch_b
after 2 h incubation, but had a higher number of adhered bacteria
on 24 h incubation. This suggests that in a long-term incubation,
exposure of the hydrophobic portion of the peptide masks Ch_b
intrinsic activity, resulting in unwanted adhesion. In opposite, N-
terminally immobilized Dhvar5 have the lowest bacterial adhesion
in both incubation periods. However, the viability of adhered bac-
teria was high independent of the terminus used for immobiliza-
tion, suggesting that we have a stronger anti-adherence rather than
antimicrobial effect. Confronting the levels of surface-adhered
bacteria with those of free bacteria at the supernatants, we came
to the conclusion that, in the absence of surface coating (i.e., on the
Ti control), a high number of bacteria is found both at the surface
and in solution. In turn, all the chitosan-coated surfaces, with or
without further modification, presented similar amounts of free
bacteria at the supernatants, which do not correlate with the
respective lower amount of surface-adhered bacteria. Nevertheless,
the high amount of bacteria at the supernatant may be the result of
the proliferation of planktonic bacteria that were never in contact
with the surfaces.

The lowest CFU count found in supernatants regards the surface
with adsorbed Dhvar5, presumably as the result of peptide elution
to the bulk phase. However, this result loses relevance given the
~70% increase of adhered bacteria in this sample, as compared with
best performing Dhvar5-grafted surfaces.

Recently, Chen et al. [33], reported that melimine, a 28mer
peptide with an N-terminus hydrophobic domain and cationic C-
terminus, presented higher antimicrobial activity with a clear anti-
adherence effect when immobilized through its N-terminus,
exposing the cationic domain away from the substrate. This comes
in accordance with our results. In contrast to these results, Hilpert
et al. [34], found that immobilized AMP exposing their hydrophobic
termini exhibited higher bactericidal activity. They stated that the
hydrophobic domain should be free to be able to interact with the
lipophilic portion of the bacterial membrane. However, they used a
peptide library that did not include peptides with a clear ‘head-to-
tail’ amphipathicity, but rather a conformation-dependent amphi-
pathicity. Indeed, they hypothesized that a concentration of
cationic residues on the exposed terminus could similarly lead to
high antimicrobial activity.

Within the N-terminal immobilizations, differential anti-
adherence effects were obtained depending on the length of the
spacer applied. It was clear that longer spacer (AHA or GG) had
better results than shorter (ABA) spacers. The two longer spacers
had very similar results, suggesting that, with this particular pep-
tide, spacer length is more important than spacer flexibility.
Bagheri et al. [35], demonstrated the importance of a longer spacer
on AMP antimicrobial activity. Nevertheless, reports diverge in
their general conclusion about the specific characteristics of the
applied spacer, suggesting that it may be peptide-dependent. More
recently, Bagheri et al. [36], tried to assess whether the mechanism
of action of soluble AMP could be relevant for the correct config-
uration of immobilization. To that end, those authors chose
different AMP with distinct putative mechanisms of action, and
tested them after different tethering approaches. Overall, they
concluded that peptides with intracellular targets lose activity
upon covalent immobilizationwhereas the behavior of membrane-
permeabilizing peptides depend on their amphipathicity distribu-
tion. Thus, the activity of covalently immobilized peptides whose
amphipathicity is conformation-dependent (as the KLAL model
peptide) is not significantly affected by the orientation of immo-
bilization. On the other hand, peptides with sequence-based
amphipathicity (as melittin) should be covalently immobilized
through the position farthest away from the hydrophobic domain.
In other words, these authors concluded that membrane-active
AMP should have their hydrophobic domain exposed in order to
insert into the bacterial lipid bilayer. As reported by Ruissen et al.,
[10], Dhvar5 can cause cytoplasmic membrane depolarization
suggestive of membranolytic activity, but not through permanent
pore formation. This mechanism of action, in addition to the
sequence-based amphipathicity of Dhvar5, would suggest that its
optimal immobilization position should be through the C-terminus,
as this would result on greater exposition of the hydrophobic
domain. However, this does not correlate with our results, nor with
the aforementioned report by Chen et al., in Ref. [33]. Our results
demonstrated that immobilized Dhvar5 lost part of their antimi-
crobial effect against S. aureus independently of their immobiliza-
tion orientation. Nevertheless, immobilization by the N-terminus,
exposing the cationic part, demonstrates a high anti-adhesive



F.M.T.A. Costa et al. / Biomaterials 52 (2015) 531e538538
effect. These apparently contradictory findings highlight the little
that is known about the mechanisms of action of AMP, mostly
immobilized ones, suggesting once again that soluble and immo-
bilized AMP may not share the same mechanism of action, as
recently proposed by Kizhakkedathu et al., [37]. Therefore, each
individual AMP must be carefully studied regarding main param-
eters of immobilization towards creation of effective antifouling
coatings, as herein reported for Dhvar5.

5. Conclusions

Dhvar5 covalently immobilized onto a chitosan thin coating by
the N-terminus (exposing the cationic end), improves the antimi-
crobial effect of the coating by decreasing S. aureus colonization.
This effect was enhanced when longer spacers were used inde-
pendently of its flexibility. In opposition, Dhvar5 covalent immo-
bilization by the C-terminus did not change bacterial adhesion to
chitosan and Dhvar5 physically adsorbed even induced bacterial
adhesion to chitosan coatings.

This work demonstrated that, after surface immobilization, the
exposition of the cationic end of this amphipathic peptide (Dhvar5)
is fundamental to create antimicrobial surfaces by avoiding bacte-
rial colonization.
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