
k-RNN: k-Relational Nearest Neighbour Algorithm

Nuno A. Fonseca
Instituto de Biologia Molecular

e Celular (IBMC)
R. Campo Alegre, 823

4150-180 Porto, Portugal

nf@ibmc.up.pt

Vítor Santos Costa,
Ricardo Rocha

DCC-FCUP, University of
Porto

R. Campo Alegre, 1021/1055
4169-007 Porto, Portugal

{vsc,ricroc}@dcc.fc.up.pt

Rui Camacho
Faculty of Engineering &

LIAAD, University of Porto
R. Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

rcamacho@fe.up.pt

ABSTRACT
The amount of data collected and stored in databases is
growing considerably in almost all areas of human activity.
In complex applications the data involves several relations
and proposionalization is not a suitable approach. Multi-
Relational Data Mining algorithms can analyze data from
multiple relations, with no need to transform the data into a
single table, but are computationally more expensive. In this
paper a novel relational classification algorithm based on the
k-nearest neighbour algorithm is presented and evaluated.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Learning

Keywords
Classification, k-NN Algorithm, Mode Directed Inverse En-
tailment

1. INTRODUCTION
The amount of data collected and stored in databases is

growing at a very fast pace in almost all areas of human
activity. A paramount example is the explosion of biotech
data, where the volume of data has been doubling every
three to six months as a result of automation in biochem-
istry. Traditional Data Mining approaches search for pat-
terns in a single table (or relation), where each row (or tu-
ple) on the table characterises one object of interest. In
more complex applications data may span over several rela-
tions, or tables. Multi-Relational Data Mining systems can
analyse data from multiple relations, with no need to trans-
form the data into a single table first. Several data mining
approaches have been proposed, such as tree-mining, graph-
mining, or cross-relational mining [10]. One powerful and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

well-developed abstraction for multi-relational data mining
techniques is Inductive Logic Programming (ILP).

To learn patterns in multi-relational data, most ILP ap-
proaches rely on Logic Programming languages based on
Horn clauses, an important and very useful subset of first-
order logic (FOL). Horn clauses can be seen as positive rules.
Tables can thus be abstracted as relations, and rules as a
form of intensional databases. The expressiveness of FOL
gives flexibility and understandability to the induced mod-
els. However, ILP is computationally expensive and most
ILP systems execute in main memory, thus making scalabil-
ity a major concern. On complex applications, ILP systems
can take several hours, if not days, to return a model. The
problem is compounded because, as ILP systems generate
queries dynamically, it is difficult to segment the database,
making space scalability a further concern.

In this work, we propose a two-step multi-relational clas-
sification algorithm that integrates a k-Nearest Neighbour
algorithm (k-NN) with ILP. Our algorithm, k-RNN, follows
the approach proposed in [8] and reduces database scans by
performing all accesses in a first step where all queries (or
literals) directly related to each example (object) are gen-
erated and stored in a compact tree data-structure (e.g.,
a prefix-tree or trie). Database access is only performed
when building the trees. We show that such trees are in-
deed a compact and informative description of the examples
by defining a distance measure between these trees, using a
k-NN like algorithm to build a classifier, and evaluating its
performance. Experimental results on a number of struc-
tural activity relationship (SAR) datasets show that k-RNN
has both excellent time performance and accuracy.

The remainder of the paper is organised as follows. In Sec-
tion 2 we present the key concepts that found our work. Sec-
tion 3 presents the k-RNN algorithm in detail. The empiri-
cal evaluation of our proposal is done in Section 4. Section 5
compares our work with related work. Last we conclude and
discuss future work.

2. BACKGROUND
The underlying idea of the k-NN algorithm is to classify

a new object based on attributes and training samples. The
classifiers do not use any model to fit and are only based on
memory. Training in k-NN consists of storing all instances
into a training memory. Actual computation occurs only
when a new instance needs to be classified. At this point, the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143386527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

k-NN algorithm scans the instances in the training memory
and determines the k instances closest to the instance being
classified. Classification is performed using majority vote,
where each vote corresponds to the class of each of the k
closest objects. Ties can be broken at random.

Traditionally, in a propositional setting each instance is
characterised by a fixed set of features. Most often, all fea-
tures are used to determine the similarity between two in-
stances. A standard analogy is to see features as dimensions
on an Euclidean space and to estimate similarity between
cases (points) using the Euclidean distance between the two
cases. One drawback of such a measure is that nearest neigh-
bour classification is often particularly vulnerable to irrele-
vant features: such features may erroneously increase the
distance between two similar objects [14]. Also critical for
k-NN to work in practise with large data sets is to have good
indexing on the training set instances.

Inductive Logic Programming is a major field in Machine
Learning with important applications in Data Mining. The
fundamental goal of a predictive ILP system is to construct
models (usually called hypotheses) given background knowl-
edge B and observations (usually called examples in the ILP
literature) E.

Mode-Directed Inverse Entailment (MDIE) [16] is a pop-
ular approach in ILP. The key idea in MDIE is to find all
literals that could be used in rules that explain the exam-
ple. This is achieved by selecting a seed example and then
constructing the saturated clause from the set of all literals
that could be used to prove (directly or indirectly) the ex-
ample. Most ILP systems use the saturated clause in order
to bound (anchor) the search space lattice. Therefore, most
applications try to have relatively small saturated clauses, as
otherwise the search space is as big as if one just enumerates
clauses.

The saturated clause can be seen as a directed graph,
where literal li points to lj if the clause li ← lj could be used
in a proof of the example. The saturated clause has impor-
tant theoretical properties. Namely, the clause ⊥(esat, B,L)
is the most specific clause within language L that entails
esat, given B (see [16] for details).

3. THE K-RNN ALGORITHM
In order to apply k-NN in a multi-relational setting, it

is fundamental to be able to estimate the distance from an
example to others. In MDIE-based learning, all relevant
data about an example is in its saturated clause. Therefore,
in order to apply k-NN in this setting, we need to be able to
measure distance between saturated clauses.

In general, saturated clauses form large directed graphs
with up to thousands of nodes. Meaningful distance compu-
tation between such graphs is difficult. We therefore follow
a different approach. We start from the observation that
saturated clauses are used to generate clauses. This leads
to an intuition for the distance between a new example en

and an existing example eo: en is more and more different
from eo the more and more different clauses we can generate
from the saturated clauses for en and eo. If T (e) is the set
of clauses for the example e, a distance measure can be:

D(en, eo) = 1− ‖ T (en) ∩ T (eo) ‖
‖ T (en) ‖

that is, the distance between a new and an old example is
a number between 0 and 1. Distance would be 0 if the two
examples’ bottom-clauses generate the same set of clauses,
and would be 1 if they would never generate the same clause.

We can now put our multi-relational classification algo-
rithm that integrates k-NN with predictive ILP together.
The algorithm proceeds in two steps:

1. Compile each instance in the training data (positive
and negative examples) into a tree [8, 3].

2. For each instance in the test data

(a) Compile a tree for the instance;

(b) Calculate the distance between the new tree and
all the trees generated from the training data;

(c) Determine the k nearest neighbours based on the
distance measure;

(d) Gather the category of the nearest neighbours;

(e) Use simple majority of the category of the nearest
neighbours as the prediction value of the query
instance.

The algorithm is a direct implementation of k-NN. Most
effort will take place in the first, pre-compilation, step (see [8]
for more details). For each new example we will then gener-
ate a tree, and proceed by computing our distance measure.

Note that unlike the MDIE algorithm referred in the pre-
vious section, the k-RNN algorithm generates (compiles) a
tree for each positive and negative example. The generation
of the trees for each example is performed only once, even
in multiple runs such the ones performed while performing
cross-validation. This is achieved because the tree represen-
tation of each example is kept on disk to be reused whenever
needed.

In the implementation of k-RNN, we need a data structure
to represent the trees. To do so efficiently, we use tries. To
take advantage of the prefix representation of tries, we use
an order relation to normalize the literals in a clause before
placing it in a trie. Assuming that literal lookup takes con-
stant time when browsing a trie, then trie intersection takes
time linear on the size of the smallest trie. In this case, run-
ning time is given by the time C required to construct a new
trie, representing the unlabeled example, plus the time M
required to intersect the new trie with the tries representing
the training examples. The time C depends on the maxi-
mum clause length, and time M depends on the number of
examples and maximum clause length.

4. EXPERIMENTS AND RESULTS
In this section we report the results of an extensive per-

formance study that we conducted to evaluate k-RNN. We
performed the study on a number of 2D structure activity
datasets. We chose these datasets because they are a practi-
cal, relevant application and because they have been exten-
sively studied, allowing for comparison with previous work.
Our study addresses several questions. Is k-RNN competi-
tive with state-of-the-art ILP learners? Is k-RNN time and
space effective? Is k-RNN sensitive to parameter variation?

4.1 Experimental Settings
Data for the experiments are from well-known biochemi-

cal problems in the ILP literature. The first dataset, Car-
cinogenesis, consists of a set of chemical carcinogens [21].
The second dataset, Mutagenesis, is a dataset of mutagenic
nitroaromatics [22]. The dataset includes 2-D structural in-
formation on compounds, that is, atom and bond informa-
tion, plus a number of attributes of molecules. The third
dataset, NCTRER, is a more recent dataset extracted from
EPA’s DSSTox NCTRER database [13]. The Carcinogen-
esis and Mutagenesis datasets were downloaded from the
Machine Learning repositories at the Universities of Oxford1

and York2. The NCTRER dataset was kindly obtained from
the Leuven Machine Learning research group [13].

Table 4.1 characterises the datasets in terms of number of
positive and negative examples as well as background knowl-
edge size (number of relations used) and total number of tu-
ples (in thousands). We refer the reader to the references
cited for details of the datasets and the background knowl-
edge available for each problem.

Table 1: Datasets characterisation where |E+| is the
number of positive examples, |E−| is the number of
negative examples, | B | is the number of relations,
and | Tuples | is the approximate total number of
tuples in the background knowledge (in thousands).

dataset | E+ | | E− | | B | | Tuples |
Carcinogenesis 202 174 44 24 k

Mutagenesis 136 69 21 15 k

NCTRER 131 101 5 15 k

Apart from the obvious differences in the actual chemicals
involved, the problems have a number of distinguishing fea-
tures from a learning point of view. The Mutagenesis prob-
lem is known to have good short clauses (with four literals
or less) that entail the observed data. The Carcinogenesis
problem is known not to have any good short clauses that
entail the data (this is purely based on chemical structure:
see [5]). Much less is known about the NCTRER dataset.

The three problems pose very different challenges. The
Mutagenesis has been thoroughly studied but results vary
widely. Standard ILP systems achieve accuracies up to 80%;
accuracies over 90% and up to 95% have been achieved ei-
ther using the DISTILL classifier and using a combination
of proposionalisation and SVM based classifiers [15]. Graph
based learners such as SUBDUE-CL have also been applied
to this task, with results around 80%. To the best of our
knowledge, Carcinogenesis is much harder: ILP systems tend
to fare around 65%, and only recently a result of 75% was
claimed [23]. Recent results for NCTRER indicate that one
can achieve up to 80% accuracy using a dynamic combina-
tion of ILP and propositional classifiers [12, 13].

For each dataset, we ran the proposed k-RNN algorithm
and varied the maximum depth of the clauses that may be
placed in the tree (trie) from 2 (one literal in the body) up
to 5. We also varied parameter k from 1 up to 20. For all pa-
rameter combination we performed a 10-fold cross validation
to obtain the averaged accuracy and training time.

The experiments were made on an AMD Athlon(tm) MP

1http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
2http://www.cs.york.ac.uk/mlg/index.html

2000+ dual-processor PC with 2 GB of memory, running the
Linux Fedora (kernel 2.6.12) operating system.

4.2 Results
We first address the question regarding whether the algo-

rithm is time and space effective. The first step in the ex-
ecution of the algorithm is to compute each example’s trie.
This step takes time exponential on the size of the saturated
clause, so it should be critical as performance is concerned.

Table 2 presents the pre-processing time, in seconds, taken
for each dataset and the average number of clauses com-
piled and placed in the trie assuming clause length l = 4.
Notice that this step can be seen as a compilation step [8].
It needs to be performed only once as long as saturation-
related settings are not changed or the clause length used is
not increased.

Table 2: Pre-processing time, average number of
clauses compiled per example (in thousands) and
number of entries in the trie example for a clause
length (l) of 4.

dataset Time (sec) Clauses Trie entries

Carcinogenesis 2,840 51 k 2,234

Mutagenesis 6,054 61 k 1,632

NCTRER 368 7 k 520

Table 2 shows that trie generation takes 2,840 seconds in
Carcinogenesis and about two times as much in Mutagene-
sis. Higher times in Mutagenesis are explained by the use
of more computationally complex background knowledge, so
the extra time is spent on saturated clause generation, not on
trie generation. Both systems generate about the same order
of candidate clauses, most of them will be discarded. Gen-
erating, normalising and discarding the clauses is extremely
fast.

Finally, Table 3 presents the average accuracy and average
classification time for our approach on the three datasets.
We used k = 4 as this seems a popular compromise in k-NN,
and we used l = 4 based on our previous work on using tries
to improve the performance of standard ILP approaches [8].

Table 3: Average classification time (per example)
and accuracy for k=4 and l=4.

dataset Time (sec) Accuracy (%)

Carcinogenesis 3.2 76.84

Mutagenesis 1.6 89.31

NCTRER 0.7 66.95

As far as classification time is concerned k-RNN has a
good performance. However, we are aware that there are
a lot of space for improvement. At this time, to classify an
example the trie of the example is compared with the tries of
the training examples, which is not very efficient and does
not scale for large number of examples. A way to solve
this problem would be to index tries so that the number of
comparisons is reduced. This is a open problem.

The results for Carcinogenesis are excellent, to our knowl-
edge they seem to be an improvement over previously re-
ported results in the literature. Results on Mutagenesis are
also quite good and comparable to the best results achieved
in this dataset: the extensive discussion reported in Lodi
and Muggleton [15], indicates k-RNN to be in the top tier in
terms of performance, and significantly above state-of-the-

art systems such as kFOIL and nFOIL that only achieve
around 80%. Last, we can compare our results on NCTRER
to the results presented in Landwehr et al [13]. k-RNN out-
performs ALEPH [20], which achieved about 50% on this
dataset. Performance is comparable to the accuracy ob-
tained by combining of features obtained C-ARMR [18], a re-
lational query miner, with a SVM classifier: k-RNN achieves
69% versus 65% for the ARMR based algorithm. Last, both
kFOIL and nFOIL perform at about 78% accuracy, thus
outperforming k-RNN in this dataset.

4.3 Parameter Analysis
A first step in order to understand these results is to anal-

yse how k-RNN performance depends on the two parame-
ters: clause length l and neighbour size k. Tables 4, 5 and
6 present the average accuracy for each dataset for different
k and l.

Table 4: Carcinogenesis: Average accuracy (for dif-
ferent k values and clause length l).

l k=1 k=2 k=3 k=4 k=5 k=10 k=15 k=20

2 53.17 57.63 57.00 58.48 57.00 59.39 62.54 64.66

3 56.74 56.15 62.00 62.37 58.44 62.34 62.32 62.28

4 72.48 72.18 75.92 76.84 74.19 77.76 80.13 79.66

5 58.25 57.65 60.81 61.44 60.24 62.90 62.91 62.06

Table 5: Mutagenesis: Average accuracy (for differ-
ent k values and clause length l).

l k=1 k=2 k=3 k=4 k=5 k=10 k=15 k=20

2 80.36 79.31 76.67 74.62 74.56 76.67 77.09 75.45

3 85.11 88.25 85.14 85.64 81.97 79.37 80.03 73.48

4 87.78 87.78 89.31 89.31 87.25 87.36 85.72 80.98

5 87.75 86.64 85.64 86.11 81.95 82.00 78.42 76.37

Table 6: NCTRER: Average accuracy (for different
k values and clause length l).

l k=1 k=2 k=3 k=4 k=5 k=10 k=15 k=20

2 42.69 41.02 42.29 42.29 43.53 68.69 62.61 52.19

3 50.45 53.53 54.00 52.26 55.23 54.39 50.45 51.72

4 67.82 68.69 69.56 66.95 67.82 64.35 62.61 62.61

5 66.87 67.30 68.10 66.83 65.13 65.53 60.34 61.65

The results show that Carcinogenesis is very sensitive to
the length of the clauses considered: performance starts from
a relatively low result with single literal rules (l = 2), does
not seem to improve much with two literals, and then im-
proves very significantly when considering rules with three
literals in the body (l = 4). A similar situation is observed
in NCTRER: performance improves with higher values of l.
In contrast, the Mutagenesis dataset does not benefit at all
from considering complex clauses: the performance is simi-
lar for clauses with two, three, or four literals. This seems
to suggest that the Mutagenesis dataset is essentially being
used as a propositional dataset: the knowledge construction
work for the dataset seems to have been very successful in
finding useful attributes, and there is little to gain from the
structure.

Regarding how k-RNN performance depends on the num-
ber of neighbours considered, Carcinogenesis seems to be

by far the most sensitive algorithm to variations in k. Per-
formance tends to increase as we increase k from 3 to 20
and it seems to be stabilise for very high k. The other two
datasets perform best for relatively small values of k, and
performance quickly decreases as k grows.

4.4 Discussion
We study the performance of k-RNN in three different

datasets. Our results show k-RNN to be indeed quite com-
petitive with state-of-the art ILP systems, and even able to
outperform them on difficult datasets.

Our results also show k-RNN to be effective in terms of
time complexity. The main issue in this algorithm is tree
construction. Our results show that, for reasonable l (clause
length), tree construction is quite fast. Although time grows
linearly with the number of examples, trees are constructed
independently, suggesting that the algorithm is easily par-
allelisable. Given the high redundancy in Inductive Logic
Program, actual tree sizes are not that large, making tree
intersection a fast operation.

Our results also show k-RNN not to be particularly sen-
sitive to k parameter variation. Last, k-RNN provides in-
teresting insight on the multi-relational datasets we analyse.
First, it makes it very clear whether learning from a dataset
actually benefits from complex relations or not. This is not
often as obvious with other approaches. Second, distance
provides a different insight into datasets, which can be used
to study properties of interest. Both Carcinogenesis and
NCTRER show a number of smaller clusters, so it may be
of interest to learn rules that distinguish such clusters.

5. RELATED WORK
The saturated clause can be seen as an extensive descrip-

tion of an example. Given that we have such a description,
it makes sense to compare different saturated clauses and
calculate distances. The problem of finding good distance
measures is an old problem in multi-relational data-mining.
The DISTILL work from Sebag [19] proposed Distance in-
duction precisely towards k-NN. This technique maps clauses
into a Euclidean space. A set of initial d (a system param-
eter) hypotheses are used to induce the mapping between
the hypothesis language and the Euclidean space. The tech-
nique was implemented in the STILL system and achieved
an accuracy of 96.7% in the Mutagenesis data set. Alterna-
tively, RIBL [7] defines distance by considering sets of facts
related to the saturated clause, and then computing dis-
tance between them. A generalisation of RIBL could com-
pute distances between recursive terms, including lists [11].
Distances are also fundamental when designing kernels for
structured data. Gaertner et al. discuss a number of such
kernels [9]: to a first approximation, these can be seen as
kernels on trees that operate by descending the tree recur-
sively.

To an extent, our approach can also be seen as similar
to proposionalisation, as used in Linus [6], amongst others.
In such systems, one generates clauses and for each clause
finds which examples are covered (so one works from clauses
to examples, instead of examples to clauses). Recent work
in systems such as SAYU [2], nFOIL [12], and kFOIL [13]
address some of the problems in propositionalition by doing
greedy search in the space of clauses. SAYU and nFOIL use

a Bayesian classifier, but kFOIL uses a kernel computed by
calculating which examples match, which we believe is close
to our idea of using the intersection to compute distances.

Tries are an important data structure in data mining,
where they are often used to efficiently implement algorithms
such as apriori [24]. Nijssen and Joost first applied the idea
in a multi-relational setting [17] by applying tries to repre-
sent the itemsets manipulated by the WARMR algorithm [4].

6. FINAL REMARKS
We proposed a new method for multi-relational data-mining

based on first calculating trees for individual instances, and
then computing distances between such trees. Our approach
uses tree intersection to estimate distances. Results show
very good performance on a number of datasets, clearly com-
parable with state-of-the-art data-mining systems.

An important advantage of our work is that it relies on the
same bias language as common ILP systems such as Aleph
and Progol. Moreover, our approach can be easily parallelis-
able, as most execution time is spent in an initial compilation
stage, which runs independently for every example.

Our results suggest a number of directions for further
work. k-NN tends not to perform well on imbalanced datasets,
suggesting that other classification algorithms should be con-
sidered. NCTRER suggests that one may need to consider
much longer clauses in some datasets. Last, for large datasets
one should also implement indexing over the examples’ trees
(a tree of trees). This said, we believe based on the results
observed that k-RNN provides an exciting and robust novel
approach to data-mining, that can provide good classifica-
tion quality and some interesting insights on multi-relational
datasets.

7. ACKNOWLEDGMENTS
This work has been partially supported by projects My-

ddas (POSC/EIA/59154/2004), JEDI (PTDC/EIA/66924/
2006), STAMPA (PTDC/EIA/67738/2006) and ILP-Web-
Service (PTDC/EIA/70841/2006) and by Fundação para a
Ciência e Tecnologia. Nuno A. Fonseca is funded by FCT
grant SFRH/BPD/26737/2006.

8. REFERENCES
[1] H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens,

J. Ramon, and H. Vandecasteele. Improving the
efficiency of Inductive Logic Programming through the
use of query packs. JMLR, 16:135–166, 2002.

[2] J. Davis, E. S. Burnside, I. de Castro Dutra, D. Page,
and V. S. Costa. An integrated approach to learning
bayesian networks of rules. ECML, volume 3720 of
LNCS, 84–95. Springer-Verlag, 2005.

[3] R. Camacho, Nuno A. Fonseca, V. Santos Costa, and
R. Rocha. ILP :- Just Trie It. Proceedings of the 2007
International Conference on ILP, volume 4455 of
LNAI, 184–198. Springer-Verlag, 2007.

[4] L. Dehaspe and H. Toivonen. Relational Data Mining,
chapter Discovery of relational association rules,
189–208. Springer-Verlag, 2000.

[5] L. Dehaspe, H. Toivonen, and R. King. Finding
frequent substructures in chemical compounds.
International Conference on Knowledge Discovery and
Data Mining, 30–36. AAAI Press, 1998.

[6] S. Džeroski and N. Lavrač. Learning relations from
noisy examples: An empirical comparison of LINUS
and FOIL. International Workshop on Machine
Learning, 399–402. Morgan Kaufmann, 1991.

[7] W. Emde and D. Wettschereck. Relational instance
based learning. ICML, 122–130. Morgan Kaufmann,
1996.

[8] N. A. Fonseca, R. Rocha, R. Camacho, and V. Santos
Costa. ILP: Compute Once, Reuse Often. Workshop
on Multi-Relational Data Mining, 34–45, 2007.

[9] T. Gärtner, J. W. Lloyd, and P. A. Flach. Kernels and
distances for structured data. Machine Learning,
57(3):205–232, 2004.

[10] J. Han and M. Kimber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2007.

[11] M. Kirsten, S. Wrobel, and T. Horvath. Distance
based approaches to relational learning and clustering.
213–230, 2000.

[12] N. Landwehr, K. Kersting, and L. D. Raedt. nfoil:
Integrating näıve bayes and foil. National Conference
on Artificial Intelligence, 795–800, 2005.

[13] N. Landwehr, A. Passerini, L. D. Raedt, and
P. Frasconi. kfoil: Learning simple relational kernels.
National Conference on Artificial Intelligence, 2006.

[14] P. Langley and W. Iba. Average-case analysis of a
nearest neighbor algorithm. IJCAI, 889–894, 1993.

[15] H. Lodhi and S. H. Muggleton. Is Mutagenesis Still
Challenging. ILP - Late-Breaking Papers, 35. MIT
Press, 2005.

[16] S. Muggleton. Inverse entailment and Progol. New
Generation Computing, Special issue on Inductive
Logic Programming, 13(3-4):245–286, 1995.

[17] S. Nijssen and J. N. Kok. Faster association rules for
multiple relations. IJCAI, 891–896, 2001.

[18] L. D. Raedt and J. Ramon. Condensed representations
for inductive logic programming. Principles of
Knowledge Representation and Reasoning, 438–446.
AAAI Press, 2004.

[19] M. Sebag. Distance induction in first order logic.
International Workshop on ILP, 264–272, 1997.

[20] A. Srinivasan. The Aleph Manual, 2003.

[21] A. Srinivasan, R. D. King, S. Muggleton, and M. J. E.
Sternberg. Carcinogenesis predictions using ILP.
International Workshop on ILP, volume 1297,
273–287. Springer-Verlag, 1997.

[22] A. Srinivasan, S. Muggleton, R. King, and
M. Sternberg. Mutagenesis: ILP experiments in a
non-determinate biological domain. International
Workshop on ILP, volume 237 of GMD-Studien,
217–232, 1994.

[23] T. Karunaratne and H. Bostroem. Using Background
Knowledge for Graph Based Learning: a Case Study
in Chemoinformatics. ILP, 116–118, 2006.

[24] Y. K. Woon, W. K. Ng, and E. P. Lim.
Support-ordered trie for fast frequent itemset
discovery. IEEE Transactions on Knowledge and Data
Engineering, 16(7):875–879, 2004.

[25] F. Zelezný and N. Lavrac. Propositionalization-based
relational subgroup discovery with RSD. Machine
Learning, 62(1-2):33–63, 2006.

