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Resumo

Modelos experimentais do enfarte do miocárdio baseados em roedores têm sido amplamente
utilizados em pesquisas biomédicas para o estudo de alterações moleculares, celulares e his-
tológicas após o enfarte.

Além disso, esses modelos têm sido recentemente aplicados para aceder ao potencial ter-
apêutico de células candidatas a uma função de reparação funcional de lesão do músculo cardíaco.
Estes estudos são fundamentados na indução de um enfarte, da aplicação de uma terapeutica em
certos casos e subsequente análise do nível de enfarte final em ambos os casos. O nível de en-
farte, definido como a percentagem do ventrículo esquerdo afectado pela oclusão da artéria
coronária, é geralmente calculado em secções transversais marcados com tricrómico de Mas-
son. O músculo do miocárdio lesado é substituído por fibras de colagénio, que podem ser
visualizadas com cor azul logo após sete dias da ocorrência do enfarte. O valor final do nível
de enfarte é uma média dos valores obtidos para todas as secções transversais do ventrículo
esquerdo. Este parâmetro deve ser estimado através da identificação dos tecidos lesados e nor-
mais em cada secção. No entanto, uma vez que é um procedimento manual, é uma tarefa
demorada, árdua e susceptível de ter um resultado diferente entre observadores. Deste modo,
nós apresentamos abordagens automáticas, supervisionadas ou não, para realizar a segmentação
e identificação dos tecidos que são então utilizados para obter uma medição do nível de enfarte.
A validação experimental é feita comparando as abordagens propostas com a anotação manual
e um erro total não superior a 8% é relatado em todos os casos.

Com base na técnica de segmentação supervisionada testada foi desenvolvido um programa
para a avaliação do nível de enfarte chamado MIQuant. O MIQuant é uma ferramenta super-
visionada de fácil utilização que permite a medição do nível de enfarte numa única secção do
coração ou em várias secções, com base na técnica de segmentação region-growing. O valor
médio final do nível de enfarte e os respectivos valores intermédios são obtidos pelo programa
e podem ser guardados em formato de arquivo excel.

Palavras-chave: Avaliação do nível de enfarte, segmentação de imagem.
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Abstract

Experimental rodent models of myocardial infarction (MI) have been extensively used in
biomedical research to study molecular, cellular and histological alterations following induced
heart ischemia.

These models have continuously been employed to test the potential of newly developed
therapeutic approaches for the functional restoration of heart function. Such studies are based
on myocardial infarction induction by permanent ligation of a main branch of the left coronary
artery followed by some sort of therapeutic intervention. The power of the latter to significantly
improve the heart condition is then inferred by analyzing the size of the infarcted tissue as com-
pared to the infarcted non-intervened animals. The infarct size, defined as the percentage of the
left ventricle (LV) affected by coronary artery occlusion, is typically calculated on transverse
sections stained with Masson´s Trichrome. The lost myocardium is replaced by collagen fibers
that can be visualized in blue following histological staining of the infarcted tissue, as early
as 7 days post-MI. The final value of infarct size is an average of the obtained values for all
representative transverse sections of the LV. This parameter is estimated by manually delineat-
ing the infarcted and normal tissue regions in the LV of the dissected heart. However, this is
a time-consuming, arduous and prone to bias process. Herein, we introduce automatic super-
vised and unsupervised approaches to perform image segmentation which is then used to obtain
the infarct size measurement. Experimental validation is performed comparing the proposed
approaches with manual annotation and a total error not exceeding 8% is reported in all cases.

Based on the supervised segmentation technique tested we developed a tool for evaluation
of experimental MI which was named MIQuant. The MIQuant is a user-friendly supervised
tool that enables the infarct size measurement in a single cross-section or in multiple sections,
based on region growing segmentation technique. The final average value of infarct size and the
respective intermediate values are obtained and can be saved in an excel file-format for further
data processing.

Keywords: Infarct size evaluation, image segmentation.
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1 . Introduction

Acute myocardial infarction is one of the major causes of premature morbidity and mortality
worldwide. It results from the occlusion of coronary arteries and the establishment of tissue
ischemia which can lead to heart failure. To study the lesions caused by this health problem
and test the efficiency of potential therapeutic interventions, biomedical researchers conduct
in vivo experimentation in which acute and/or chronic-like MI is induced. This is performed
by the permanent ligation of a main branch of the left coronary artery in the mouse that leads
to severe ischemia and thus to myocardial infarction. Through these assays it is possible to
reproduce several of the pathological events that develop within the frame of a heart infarction
condition in Man. In these assays myocardial infarction size, which is defined as the percentage
of the left ventricle affected by the coronary occlusion, is one parameter measured obtained by
the analysis of the dissected heart stained with Masson’s Trichrome, a histological stain that
enables the identification of collagen deposition, a hallmark of established infarction [8, 29].

Myocardial infarction (MI) size in animal model assays is estimated by identifying the in-
farcted and the normal heart tissue regions in the left ventricle of the animal´s heart. In this
evaluation task researchers must delineate the contour of the infarcted area and of the left ven-
tricle. The right ventricle region is ignored in this evaluation analysis since it is not affected by
myocardial infarction induced in these animal assays [29]. Currently the infarct size analysis
is a fully manual task performed by biologists, making it a time-consuming and arduous task,
which is prone to subjective bias. The latter is a driving force for the development of automatic
approaches for the analysis of myocardial infarction size in animal assays. To automatically per-
form such analysis it is necessary to select both healthy and infarcted tissue regions. The task
of automatic tissue classification in medical and biology digital image processing is tackled by
using automatic digital image segmentation approaches.

There are multiple techniques in image segmentation that have been applied to the analysis
of cardiac tissue. For example, Chenyang Xu et al. described the segmentation of the LV of a
human heart using deformable models [36, 37]. An initial contour is defined that evolves until
a final segmentation is achieved. Mustafa Alattar et al. proposed the use of region growing
method applied in the segmentation of the LV in cardiac MRI scans [1]. In this case a cri-
terion for merging regions or pixels is selected and initial positions are established. Ghassan
Hamarneh et al. presented MR cardiac images segmented with watershed transform, dealing
with oversegmentation by applying k-means clustering to assign regions according to a measure
of similarity [15].

Other techniques have also been applied for the segmentation of medical images of other
body regions or tissues. Neeraj Sharma et al. described the segmentation of CT abdomen
images using a multiple threshold segmentation technique to separate different regions in the
images [28]. Watershed transform is also used in segmentation of high-magnification images
of vesicles in a liver cell [3]. This is a region based segmentation that considers the images as a
topographic surface and by considering an immersion simulation from each regional minimum
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defines different regions. Another technique used in medical images segmentation is the mean-
shift algorithm. It defines regions by grouping the points which converge to the same color
mode in an image. Abdomen CT images have been segmented using this technique where
different regions are defined [32]. The use of anatomical models has also been employed by
Matthew Brown et al. for the segmentation of chest CT images [5]. Anatomical models provide
constrains that guide the segmentation process. This modeling can also be extended to the task
of segmenting the cross sections of the heart.

With respect to user intervention image segmentation techniques can be separated into su-
pervised and unsupervised. In the first case the user needs to define initial parameters for each
image, like an initial contour or seed point for the start of the segmentation. Unsupervised
segmentation on other hand requires validation of initial parameters, after which the algorithm
segments all input images.

For the automatic evaluation of the infarct size in animal model assays we tested both un-
supervised and supervised techniques. Within the supervised approaches we tested the use of
parametric active contours and region growing segmentation. Parametric active contours were
tested to find the contour which is closer to the boundary of the object of interest. In this tech-
nique the user must define the initial contour and based on energy functions the contour evolves
to the boundary of the target object, which can be the normal tissue, the infarcted tissue or the
LV lumen of the cross-sections of the heart. Parametric active contours were also tested based
on the gradient vector flow [37]. This novel approach has an external energy map that best
attract the contour to the desired boundary, overcoming convergence and initialization issues.
Finally, within the supervised techniques, the use of region growing was also tested. This tech-
nique examines neighboring pixels of initial points and determines whether the pixel neighbors
should be added to the region according to some criterion.

Within the unsupervised techniques, we tested otsu automatic thresholding, watershed, k-
means and mean-shift for the segmentation of the tissues of the heart. Otsu thresholding tech-
nique selects an adequate threshold for the gray level in order to separate objects from their
background. This threshold is used to convert an intensity image into a binary one. Watershed
technique was also tested to the segmentation task. Watershed technique is based on immersion
simulation. The input image is considered as a topographic surface which is flooded by water
starting from regional minima. The final segmented regions arising from the various regional
minima are called catchment basins. All pixels associated with the same catchment basin are
assigned to the same label. Given the watershed segmentation we decided if each segmented
region corresponds to normal or infarcted tissue based on color properties. K-means was also
tested to perform the segmentation of the heart tissue. This technique assigns cluster labels to
data points with similar properties (color) from the entire image. After obtaining the segmenta-
tion result we identify each segmented cluster from its average color. Mean-shift is a clustering
technique which evaluates both pixel spatial coordinate and pixel color space. It was also used
for segment the cross-sections of the heart tissue. This technique needs the definition of the
radius of the kernel used. As in the k-means clustering technique we selected three clusters
and if more than three clusters are obtained we increase the radius of the kernel and repeat the
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segmentation process.

The heart cross-section images show both right and left ventricle. However, for the eval-
uation of infarct size only the LV is considered. Before any segmentation process the right
ventricle (RV) is manually delineated and not considered in the infarct size evaluation.

We also tested an anatomical model adaptation approach using expectation maximization.
We defined an anatomical model similar to the structure of the heart that has the possibility to
adapt to the tissue in analysis. The anatomical model consists in one major ellipse with two
small ellipses inside and the size and position relations between them. Using the expectation
maximization algorithm we iteratively improved the parameters that describe the ellipses until
they best fit to the heart tissue. Given the result of the adaptation of the anatomical model we
identified the normal and infarcted tissue by analyzing the tissue color. By performing infarct
size estimation through anatomical model adaptation we do not need to manually delineate the
RV since it is possible to automatically identify each tissue region and evaluate the infarct size
only in the LV.

Given the segmentation results we can then estimate the infarct size. This estimation can
be measured by different methods: area and midline length measurements. The area method is
based on the ratio between the infarcted tissue area and the LV tissue area. The midline length
measurement is based on the ratio between the distance from the midline that passes through the
infarcted tissue and the midline which crosses through all the tissue of the LV. The segmentation
of the tissue and identification of these specific regions in the images allows the evaluation of
the infarction size by both methods.

The results of infarct size obtained with the segmentation of the heart tissue performed
by the different approaches were in close agreement with manual results. Comparing the ap-
proaches tested with manual results the differences in infarct size were not higher than 8%.
Within the unsupervised segmentation approaches, the watershed technique produced better re-
sults, with the differences not higher than 3%. The differences from the supervised approach
used were at most 5%. Using an anatomical model for tissue segmentation produced results
with differences below 8%. Although the performance of unsupervised approaches was better
than supervised methods, biomedical researchers prefer the possibility to control the segmen-
tation results in relation to fully automatic approaches. This led to the creation of a software
application based on supervised techniques.

Based on the tested approaches we developed software for infarct size evaluation named
MIQuant. It allows the segmentation of the tissue and provides results of the infarct size evalu-
ation. The software is controlled by users and is based on region growing segmentation. Within
supervised techniques, region growing proved to be the fastest and easy to interact with, pro-
viding the best results in comparison with manual results. The developed software is currently
under evaluation at the Institute of Biomedical Engineering by the Stem Cell Biology Team
(NEWTherapies Group) where the myocardial injury animal models are developed.
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1.1 Contributions

Several supervised and unsupervised techniques are applied and tested to perform the segmen-
tation of the heart images and get the infarct size, in particular:

• Supervised segmentation methods, which includes active contours, gradient vector flow
and region growing.

• Unsupervised segmentation methods, as threshold segmentation, watershed segmenta-
tion, k-means and mean shift segmentations.

• Unsupervised tissue segmentation through model adaptation.

• Automatic methods for evaluate the infarct extension based on those performed manually.

Comparisons between methods are presented and discussed and a semi-automatic tool based
on the supervised technique with better performance is also presented to perform the analysis
of infarct size with the supervision of a biomedical researcher.

1.2 Resulting publications and communication

The work presented in this manuscript has also been published in peer-reviewed conference
proceedings and been submitted for publication in related journals:

Automatic and semi-automatic analysis of the extension of myocardial infarction in an exper-
imental murine model. Tiago Esteves, Mariana Valente, Diana S Nascimento, Perpétua Pinto-
do-Ó, Pedro Quelhas. Proceedings of IbPRIA, LNCS 6669, pages 151-158, 2011. Included
in appendix A [13].

Semi-automatic extraction of the level of infarction in mouse hearts. T. Esteves, P. Pinto-do
Ó, and P. Quelhas. RecPad, pages 1-2, 2010. Included in appendix C [11].

Automated myocardial infarction analysis in an experimental model using image segmenta-
tion and model adaptation. Tiago Esteves, Diana S. Nascimento, Mariana Valente, Perpétua
Pinto-do-Ó and Pedro Quelhas. Pattern Recognition, special issue, 2011 (Under Revision).
Abstract included in appendix E [12].

MIQuant - semi-automated quantification of myocardial infarction size in preclinical models of
ischemia. Diana S. Nascimento*, Mariana Valente*, Tiago Esteves, Maria Fátima Pina, Joana
Guedes, Pedro Quelhas and Perpétua Pinto-do-Ó. Submitted. *equal contribution PLoS ONE,
2011 (Under Revision) [20].
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Some of the published work was accepted for oral presentation:

5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011) held at the
Las Palmas de Gran Canaria. Automatic and semi-automatic analysis of the extension of my-
ocardial infarction in an experimental murine model. Tiago Esteves, Mariana Valente, Diana S
Nascimento, Perpétua Pinto-do-Ó, Pedro Quelhas. Included in appendix B.

XII Congresso Técnico de Anatomia Patológica, Centro Multimeios de Espinho, Espinho, Por-
tugal. MIQuant - towards standardization of cardiac regenerative therapies experimental as-
sessment. Nascimento DS, Valente M, Esteves T, Pina MF, Guedes JG, Freire A, Quelhas P and
Pinto-do-Ó P. Included in appendix I.

Some of the published work was accepted for poster presentation:

RecPad 2010, Vila Real, Portugal. Semi-automatic extraction of the level of infarction in mouse
hearts. T. Esteves, P. Pinto-do Ó, and P. Quelhas. Included in appendix D.

Second I3S Scientific Retreat IBMC | INEB | IPATIMUP together in Science , Axis Vermar,
Póvoa do Varzim, Portugal. Analysis of the extension of myocardial infarction in an experimen-
tal murine model. Tiago Esteves, Mariana Valente, Diana S. Nascimento, Perpétua Pinto-do-Ó
and Pedro Quelhas. Included in appendix F.

Second I3S Scientific Retreat IBMC | INEB | IPATIMUP together in Science , Axis Vermar,
Póvoa do Varzim, Portugal. MIQuant - towards standardization of cardiac regenerative thera-
pies experimental assessment. Nascimento D.S., Valente M., Esteves T., Freire A., Quelhas P.
and Pinto-do-Ó P.. Included in appendix G.

6th International Meeting of the Portuguese Society for stem Cells and Cell Therapies (SPCE-
TC), Biocant, Cantanhede, Portugal. MIQuant - towards standardization of cardiac regener-
ative therapies experimental assessment. Nascimento D.S., Valente M., Esteves T., Freire A.,
Quelhas P. and Pinto-do-Ó P.. Included in appendix G.

1st Advanced Summer School Interrogations at the Biointerface - Cancer/Regeneration Inter-
face INEB | IPATIMUP | IBEC, Porto, Portugal. MIQuant - towards standardization of car-
diac regenerative therapies experimental assessment. Nascimento D.S., Valente M., Esteves T.,
Guedes J.G., Freire A., Pina M.F., Quelhas P. and Pinto-do-Ó P.. Included in appendix H.

Spring Biointerfaces Lab Meeting, Porto, Portugal. MIQuant - towards standardization of car-
diac regenerative therapies experimental assessment. Nascimento D.S., Valente M., Esteves T.,
Guedes J.G., Freire A., Pina M.F., Quelhas P. and Pinto-do-Ó P.. Included in appendix H.
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1.3 Outline of the dissertation

The next chapter introduces the anatomic analysis of the mouse heart used in this study and the
process of induction of MI as well as the determination of the infarct size.

Chapter 3 deals with automatic analysis of infarct size and the pre-processing techniques
applied to the images. Several segmentation techniques are explained, applied to the images
and results are presented.

In Chapter 4 a supervised tool for obtain the infarct size is presented and an anatomical
model is introduced and described in detail. The methodology applied to automatically measure
the infarct size is also explained.

Finally, Chapter 5 is reserved for some conclusions of this dissertation.



2 . Myocardial Infarction Assays

Acute myocardial infarction is a major public health problem, resulting mainly from the occlu-
sion of coronary arteries, due to the build-up of arteriosclerotic plaques, and the establishment
of tissue ischemia eventually leading to end-stage heart failure. In order to reproduce several of
the human-associated pathological events and study the lesions caused, permanent ligation of
a main branch of the left coronary artery is performed in animal models, including the rat and
the mouse. This surgical procedure allows the implementation of pre-clinical models of disease
which are a pre-requisite for testing cell/drug-therapies before proceeding into clinical trials [8].
The tissue extension of the induced MI, which is defined as the percentage of the LV affected
by coronary occlusion, is a critical parameter to evaluate the effect of any applied therapy at the
experimental setting. The analysis of the tissue is based on microscopy images, in which both
normal and infarcted tissue need to be identified.

For a better understanding of the MI induction assay analysis it is critical to briefly revise
the relevant anatomy of the heart as well as the infarction inducing procedure. Additionally, it
is very important to understand the current means of infarct size evaluation.

2.1 Why the Mouse?

Preclinical models of myocardial ischemia have been reported in several large animal species,
including dogs and goats. The model that most closely resembles the response seen in humans
is the pig ameroid model. This has been used in a variety of therapeutic studies. However, the
logistics and practical demands of porcine surgical facilities severely limit the extent of such
studies, precluding the use of this model for larger scale screening studies of novel therapeutic
approaches [8].

Therefore, a rodent model of acute MI was developed in mice [17, 8, 22]. The step of the
wild mouse to the worldwide most-used laboratory animal was principally caused by the use-
fulness of this species for different interests [17, 8, 19, 22, 10]. Historically, mice have been
used in biomedical research since the 16th century, when Robert Hooke investigated the bio-
logical consequences of increasing air pressure. In the 19th century several fanciers in Europe,
the United States and Asia were breeding and exchanging in particular pet mice and rats (rarely
other rodents like hamsters, guinea pigs, etc.) showing a variety of coat color or behavioral
mutations [10].

A booming use of mice has been reported since the 20th century in many areas of biomed-
ical research. Thus, mice have been playing an instrumental role in several scientific fields,
such as genetics, physiology, immunology, metabolism, pathology, oncology or cardiovascular
diseases [10].

The use of the laboratory mouse as a model for cardiovascular research poses several rele-
vant challenges. Its small size demands precise surgical skills, as well as specialized equipment

7
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Figure 2.1 Anatomy of the postnatal human heart. A: a postnatal human heart in 4-chamber view: B -
histological section of a 5-week old neonatal heart, sectioned in the same orientation, is shown; LV - Left
ventricle; RV - Right ventricle; LA - Left atrium; RA - Right atrium; AVS - Atrioventricular septum;
IVS - Interventricular septum; IAS - Interatrial septum; LBB - Left bundle branch; RBB - Right bundle
branch; Ao - aorta [33].

for functional cardiovascular assessment; these are clear disadvantages when compared to larger
experimental animals. However, the generation of transgenic and knockout mice, and the com-
pleted sequence of the mouse genome, has created opportunities for the systematic study of
specific gene functions in the fields of cardiovascular pathophysiology and genetics, often justi-
fying the substantial investment of resources in establishing mouse cardiovascular models [30].

2.1.1 Overview of the Mouse heart anatomy

Before discussing some of the specific anatomical features it is important to consider the di-
mensions and properties of the full-grown heart. The mouse heart weighs only about 0.2 g,
and has a heartbeat of around 500-600 times per minute. Regarding the overall shape, another
external feature, we must first consider that this shape is determined by the anatomical context
of the adult heart within the thoracic cavity. In the Human, for example, the heart rests on the
diaphragm. This is reflected in its more pyramidal shape and a flat dorsal (or inferior) surface.
In comparison, the mouse heart, which in the four-legged mouse does not rest on the diaphragm
and has more room to move freely within the pericardial cavity, has a more ellipsoidal shape.
Another external feature is that in the mouse heart the atrial chambers and their appendages
are relatively small [33]. The basic anatomical features of the postnatal heart in the mouse and
human are similar (Figures 2.1 and 2.2) [33].
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Figure 2.2 Scanning electron micrographs (SEM) of the postnatal mouse heart: A and B - SEM images
of the posterior (A) and anterior (B) half of an adult mouse heart; C - an enlargement of the boxed area
in A, showing the relatively small leaflets of the murine mitral valve; D - an enlargement of the boxed
area in B and demonstrates some of the false tendons in the apical portion of the right ventricle; LV -
Left ventricle; RV - Right ventricle; LA - Left atrium; RA - Right atrium; Ao - aorta [33].

In both human and mice the heart has four chambers; two atria, separated by an interatrial
septum (IAS), and two ventricles, separated by an interventricular septum (IVS). In addition,
located between the IAS and IVS there is a small "septal segment" which, as a result of the
offset of the atrioventricular (AV) valves, is known as the atrioventricular septum (AVS), as it
is situated between the subaortic outlet segment of the LV from the right atrium. In the mouse
this structure is relatively thick and mostly muscular, partly as a result of delayed delamination
of the septal leaflet of the tricuspid valve, and partly as a result of myocardialization of the
mesenchymal tissues. In the junction situated between the atria and ventricles, the AV junction
(AVJ), we find two AV valves. The arrangement of the AV valves in mouse and human is
comparable. In the left AVJ we find a mitral valve, which has two distinct leaflets (a bicuspid
valve), whereas in the right AVJ a tricuspid valve is located, which has three distinct leaflets.
In the mouse these valves are far less prominent (Figure 2.2 A and C) in comparison with the
human heart valves (Figure 2.1 A).

The inner lining of the ventricles is characterized by the presence of numerous myocardial
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Figure 2.3 Photomicrographs of Silastic cast of septal coronary artery exposed along the right interven-
tricular septum in an intact mouse heart [17].

protrusions better known as trabeculae (trabeculae carneae). In addition to the trabeculation,
within the apical cavity of the ventricles in the mouse and human heart, it can be also dis-
criminated thin structures that resemble the tendinous chords attached to the papillary muscle.
However, despite of this resemblance, the thin structures are not really tendons, but are actually
extensions of the subendocardial ventricular network of the cardiac conduction system, and are
therefore nowadays generally referred to as "false tendons" (Figure 2.2 D) [33]. A slight mor-
phological difference in the overall ventricular anatomy between mouse and human is found in
the relative size and shape of the muscular ventricular septum and the position of the aortic out-
let in relation to the IVS (Figures 2.1 and 2.2). In the human heart the muscular IVS is a large
structure, its thickness approaching or exceeding that of the left ventricular free wall (Figure 2.1
A and B). In the mouse, the IVS is not quite as large and compact (Figure 2.2 A and B), and at
the base it gradually tapers toward the AV septum [33].

2.1.2 Mouse Coronary anatomy

Mouse coronary anatomy is distinct from that of other well-studied animal models and from
that of the Human. Silastic coronary casts obtained from mice (C57BL/6) demonstrated a single
major septal coronary artery (Figure 2.3) [17].

The mouse septal coronary artery courses along the right interventricular septum and pro-
vides perfusion to this region of the myocardium (Figure 2.3), which is, in humans, largely
supplied by septal perforator arteries arising from the left anterior descending and/or poste-
rior descending coronary arteries. The right coronary artery proper in mice is non-dominant,
perfusing the right ventricle. The mouse left coronary artery is also different, as it does not di-
vide proximally into a left anterior descending and circumflex artery, rather it courses obliquely
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across the left ventricular free wall and branches in a variable fashion. Thus, mice do not pos-
sess an anatomic left anterior descending coronary artery tracking down the interventricular
septum. Therefore, myocardium infarctions produced by ligation of the left coronary artery in
mice are predicted to produce regionally distinct infarctions, which involve the left ventricular
free wall and apex while sparing the septum, in comparison with ligation of the left anterior
descending coronary artery in other species [17].

All these features related with the anatomical knowledge of the mouse heart can help us to
understand the shape and appearance of the heart. These acknowledgements also allow us to
perceive that myocardial infarction from ligation of left coronary will mostly affect the LV. This
will be the region under evaluation to estimate possible myocardial infarction. With these we
can describe anatomical models useful for the identification of the regions of interest necessary
for compute the infarct size evaluation.

2.2 Myocardial infarction

To observe and study the response of the myocardial infarction in mice, under different condi-
tions, it is necessary to induce this heart condition in experimental animals. This experimental
model for MI induction in mice by permanent ligation of the coronary artery has been exten-
sively studied and validated by many researchers in the area [8, 19, 22]. At the INEB, the
Stem Cell Biology Team established a mouse MI model and performed the standard validation
protocol for its particular conditions (Nascimento DS et al., to be published elsewhere).

2.2.1 Induction of myocardial infarction

In brief, anaesthetized animals were intubated endotracheally in a supine position, and subjected
to automatic ventilation. The animals were moved onto their right side, and a left thoracotomy in
the third intercostal space provided access to the beating heart. After removing the pericardium,
7-0 suture was placed in the anterior myocardium to occlude the left anterior descending artery
(Nascimento, DS et al; manuscript). Occlusion was confirmed by observation of left ventricular
pallor immediately post ligation. The chest was closed, the lungs re-inflated and the animal
moved to a prone position until spontaneous breathing occurred. All procedures in animal
experiments were approved by Direcção Geral de Veterinária, conducted in strict obedience to
the rules that internally apply in the Animal Facility of the Associate-Laboratory IBMC-INEB,
and in accordance to the protocols of international ethics and animal welfare.

This surgical procedure allows the interruption of blood flow of the LV free wall, resulting in
extensive cell death and subsequent ventricular reshuffle. The extensive deposition of collagen
in the ischemia zone comes as part of the tissue response and underlying the calculation of the
ventricular zone affected. Twenty one days after surgery, animal were sacrificed and the heart
removed and processed for paraffin embedding and histological evaluation [8, 19, 22].

The images from figure 2.4 are longitudinal sections stained with Hematoxylin/Eosin, and
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Figure 2.4 Longitudinal sections views of infarcted hearts at different time-points post-MI illustrating
the increase of the myocardium compromised area.

Figure 2.5 Scheme of the sections obtained from heart (left) and the corresponding 12 cross sections of
the heart (right). The affected tissue is bounded in yellow, showing the narrowing of the ventricular wall
and deposition of collagen (blue).

illustrate the progression of the thinning and deterioration of the LV where the infarction took
place.

Based on the images of the heart it is possible to estimate the infarct size.

2.2.2 Estimation of Infarct Size

The infarct size is defined as the percentage of the LV compromised after coronary occlusion
and is calculated as the mean value of infarction level over 12 cross sections of the LV. These
sections are stained with Masson’s Trichrome, a histological staining which enables the dis-
crimination of the collagen deposition with Aniline Blue (Figure 2.5).

The infarct size is mainly calculated using one of the following two different evaluation
methods:
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Figure 2.6 Cross section of the heart. The LV is bounded by the black line. Green line is identifying
the lumen of the ventricle and the yellow one shows the tissue with infarct, reflecting the narrowing of
the ventricular wall and deposition of collagen (blue). a - Infarct size obtained by area measurement. b -
Infarct size obtained by midline length measurement which crosses the infarcted tissue (red line) and the
normal tissue (blue line) [22].

Area measurement - Infarct scar area and the total area of left ventricular myocardium are
traced manually in digital images. Infarct size is calculated by dividing the sum of infarct areas
from all sections by the sum of left ventricular areas from all sections (Figure 2.6 a) (including
those without infarct scar) [29].

Midline length measurement - The LV myocardial midline (Figure 2.6 b - junction of the
blue and red lines) is drawn at the center line equidistant from the epicardial and endocardial
regions (Figure 2.6 b - black and green lines respectively). Midline infarct length is taken as
the length of the LV myocardial midline where more than 50% of the whole thickness of the
myocardial wall is compromised (Figure 2.6 b - red line). Infarct size is obtained by dividing
the length of the LV myocardial midline by the midline infarct length. Infarct size derived from
midline length measurement is the average of all individual sections evaluation [29].

Infarct size values measured by area and length based approaches at 28 days post-myocardial
infarction is highly correlated with cardiac systolic dysfunction [29]. The infarct size values ob-
tained with area measurement are significantly compressed compared with those obtained by
the midline length method. The length-based approach measures the extent to which the infarct
scar radially covers the wall of the LV, without being influenced by thinning of the wall that
affects the area which is the parameter measured by area-based approaches and correspond to
compressed values [29].

The fundamental task required for automation of infarct estimation is tissue region delin-
eation. In order to replace manual tissue region delineation we will apply image segmentation
techniques. We will further improve the usability and automation of our approach through the
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use of anatomical modeling.
The next section describes different image segmentation techniques, with and without hu-

man intervention, which can be used to perform automatic segmentation of the heart images in
such a way as to identify the normal and infarcted tissues.



3 . Automatic infarct size analysis

To automatically obtain the infarct size it is necessary to separate the areas of the different
tissues in each cross section of the heart. The task of tissue separation in biomedical images is
tradicionaly performed using image segmentation techniques. In this work we follow the same
approach.

Image segmentation is a task of fundamental importance in digital image analysis [18, 2].
It is the process of partitioning a digital image into disjoint regions with similar properties
such as gray level, color, texture, brightness or contrast, each of which typically corresponds
to an object of interest. It provides additional information about the contents of an image by
identifying edges and regions, while simplifying the image from thousands of pixels to less than
a few hundred segments [28, 35].

In the particular task of obtaining the infarct size, where it is necessary to identify sub-
regions in each section to achieve the final result, image segmentation is essential.

With regards to user intervention image segmentation techniques can be classified as su-
pervised and unsupervised. Supervised segmentation requires operator interaction throughout
the segmentation process whereas unsupervised methods don’t need any human intervention to
obtain the final result after initial setup [28].

Since a large amount of literature refers to image segmentation the discussion presented in
this chapter is restricted to the most frequently used algorithms [2]. Due to both the difficulty of
the imaging segmentation task and to the specifics of each particular segmentation task, image
pre-processing is required. In the next subsections we first address the image pre-processing
steps applicable to our task and then present the segmentation methods explored in this work.

3.1 Image pre-processing

In order to improve image quality prior to segmentation we applied color and illumination
regularization to correct for image quality variability. We also apply Gaussian smoothing for
noise reduction and to remove texture detail which is not relevant for the tissue segmentation
task [13]. Finally, in order to provide meaningful image information to segment each specific
tissue we performed relevant channel combinations from the original image information.

3.1.1 Color and illumination regularization

Some images of the heart cross sections present a considerable variance in color and illumi-
nation. This affects the segmentation process since the variance in pixel intensity reduces the
applied methodologies robustness.

We perform image regularization to reduce image variability by normalizing image contrast
and color balance, allowing for subsequently more accurate image analysis [35]. Assuming that
the brighter regions of the image, around the corners, represent the background, we estimate

15
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Figure 3.1 Color and illumination regularization of the heart images. The brighter regions marked in A
are used to estimate the illumination. The result of color and illumination regularization is visible in B.

the illumination of the background (Figure 3.1 A). This includes both estimating overall vari-
ations in the illumination and deviations from uniform background illumination. Additionally
we correct the color balance so that the brighter regions are now white and any unbalancing be-
tween channels is removed. As a final contrast enhancement step we apply adaptive histogram
equalization to all images [26, 24] (Figure 3.1 B).

3.1.2 Image filtering

There is a wide variety of methods that can be applied to reduce noise in digital images. We con-
sidered three main methods for the task at hand: Gaussian smoothing [14], non-local means fil-
tering [35, 14] and denoising by sparse 3D transform-domain collaborative filtering [7]. While
the use of advanced methodologies like non-local means can lead to considerable qualitative
improvements of images quality, these improvement did not correspond to greater accuracy in
the delineation of the image’s regions of interest. As a result we chose Gaussian filtering for
noise reduction due to its simplicity and greater speed. Given an input image I0, the filtered im-
age I is obtained by computing the convolution of the image with the Gaussian filter G, denoted
as:

I = G� I0, (3.1)

where � denotes the spatial convolution between I0 and G. The Gaussian filter is defined in
terms of its standard deviation σ0 as:

Gσ0 =
1

σ0
√

2π
exp
[
−
(

x2

2σ2
0
+

y2

2σ2
0

)]
(3.2)

We apply Gaussian filtering to all images prior to segmentation.
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Figure 3.2 Channel combination used to better enhance the different types of tissue. (a) Cross section
of the heart (original image). (b) Subtraction of the Blue channel from the Red channel enhancing the
normal tissue. (c) Subtraction of the Red channel from the blue channel, enhancing the infarcted tissue.

3.1.3 Color channel combination

While the input images for the automatic infarct size system have full RGB color informa-
tion most segmentation methods are more easily applicable to intensity images. However, a
straightforward grey level conversion of the images would remove all color information and
destroy important information. To keep meaningful information we convert the input images
from RGB color to single channel greyscale images where the intensity is related to relevant
information for the task of normal and infarcted heart tissue separation. As would be expected
from visual inspection, we found that high values of image intensities in the Red channel were
correlated with the normal-tissue, while Blue channel had high image intensity values in in-
farcted tissue regions. Based on these relationships the subtraction of the Blue channel from the
Red channel is used in cases where we aim at obtaining the regions of the normal heart tissue
(Figure 3.2 b). Conversely, we subtracted the Red channel from the Blue channel when aiming
at enhancing information related to the infarcted-tissue (Figure 3.2 c).

For each specific segmentation method we either use a specific color channel combination
or RGB color information. The specific combination is indicated in each method in the next
subsections.

3.2 Supervised segmentation methods

Supervised segmentation methods require user input for each specific image, usually an initial
region or points to start the segmentation. In other words, it requires human intervention during
its operation for each example given.

Among supervised segmentation methods we tested different techniques: active contours [37,
36, 31], Gradient Vector Flow [37, 36] and region growing [35, 14]. In active contours it is nec-
essary to define the initial contour, the same is true for the Gradient Vector Flow method. These
are parameterized curves that evolve within the image to find object boundaries. The region
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growing method also needs initializations of the initial positions which will form the final re-
gions of interest. Region growing approaches exploit the fact that pixels with similar pixel
information should be grouped together.

3.2.1 Parametric Active Contours

Active contours are image processing techniques used to find a contour that best approximates
the perimeter of an object given an initial contour based on energy functions. Active contours
(or snakes) are defined within an image domain and can move under the influence of internal
forces from the contour’s shape and external forces computed from the image data. Parametric
active contours are widely used in segmentation [31].

Active contours synthesize parametric curves within an image domain and allow them to
move toward desired features, usually edges. Typically, the curves are drawn toward the edges
by potential forces, which are defined to be the negative gradient of a potential function. Addi-
tional forces, such as pressure forces, together with the potential forces comprise the external
forces. There are also internal forces designed to hold the curve together (elasticity forces) and
to keep it from bending too much (bending forces) [37, 31].

Active contours are represented perimetrically as:

c(s) = (x(s),y(s)), (3.3)

where x(s) and y(s) are the coordinates of points s along the contour. The energy functional
used is a sum of several terms, each corresponding to specific force acting on the contour and
the goal is to minimize this functional with respect to the contour parameters:

E =
w

αEcont(s)+βEcurv(s)+ γEimage(s)ds, (3.4)

where the parameters α , β and γ control the relative influence of the corresponding energy
terms, Econt is the continuity term and forces the contour to be continuous, Ecurv is the smooth-
ness term and forces the contour to be smooth and Eimage is the edge attraction term [31].

The Econt term attempts to keep the points at equal distances spreading them equally along
the contour and is based on the first derivative:

Econt(s) = (d−‖c(s)− c(s−1)‖)2, (3.5)

where d is the average distance between the points of the contour. This function is minimal for
points at equal distances. This value increases when the displacement of a contour point leads
to a position at a distance which differs from the average distance between points, increasing
the total energy and not favoring such point displacement.

The Ecurv parameter enforces smoothness on the contour shape by penalizing high contour
curvatures and is based on the second derivative (curvature):

Ecurv(s) = ‖c(s−1)−2c(s)+ c(s+1)‖, (3.6)
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Figure 3.3 Segmentation of the lumen in a cross section of the heart using active contours: (a) A mouse
heart image with the initial boundary delineated, (b) the same image with improved boundary delineation
after 50 iterations and (c) final segmentation after 150 iterations.

Its value increases for irregular contours penalizing them by increasing the total energy.
The purpose of Eimage term is to attract the contour toward the target contour and this is

achieved by the following function:

Eimage(s) =−‖∆I(x(s),y(s))‖, (3.7)

where ∆I is the gradient of the image computed at each contour point. Eimage has a high
negative value when the contour points approach edge locations, favoring the evolution of the
contour towards those locations.

One demonstration of active contours applied to a cross section of the heart is visible in
Figure 3.3 for which the delineation of the ventricle is achieved after 150 iterations. The Eimage
term is obtained by the gradient of the green color image channel, where tissue boundaries are
more evident. The user needs to specify the initial points to begin the segmentation process for
each tissue or region (Figure 3.3 a).

3.2.2 Gradient Vector Flow

There are two key difficulties with parametric active contour algorithms. First, the initial con-
tour must, in general, be close to the true boundary or else it will likely not converge to the
desired result. Second, active contours have difficulties progressing into boundary concavities.
Gradient Vector Flow is an external energy map for active contours models that addresses both
problems [36].

Gradient vector flow fields, are dense vector fields derived from images by minimizing a
certain energy functional in a variational framework. The minimization is achieved by solving
a pair of decoupled linear partial differential equations that diffuses the gradient vectors of a
gray-level or binary edge map computed from the image (Figure 3.4) [37].
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Figure 3.4 Cross section of the heart (A) with a region selected to visualize the differences between
traditional gradient image (B) and gradient generated by GVF (C). D and E are enlargements of the
regions selected in B and C, respectively.

Particular advantages of the GVF contours over traditional contours are its robustness with
respect to initialization and its ability to move into boundary concavities. Unlike pressure
forces, the active contours based on GVF does not need prior knowledge about whether to
shrink or expand toward the boundary. These also have a larger capture range, which means
that, barring interference from other objects, it can be initialized far away from the desired
object boundary. Distance potential forces shown in (Figure 3.4 C) have vectors with large
magnitudes far away from the object, explaining why the capture range is large for this external
force model [37].

An example of the GVF active contour applied to a cross section of the heart is shown in
Figure 3.5 where we can see that it converges to the final object boundary in less iterations than
in traditional active contours. As in the active contours technique it is necessary to specify the
initial points of the contour to begin the segmentation process.

3.2.3 Region Growing

Region growing exploits spatial context by grouping pixels or sub-regions into larger regions.
Homogeneity is the main criterion for merging regions based on a selected similarity criteria
which depends on the problem under consideration and also on the type of image data avail-
able [14].

Region growing starts by dividing the input image into regions. These initial regions can be
small neighborhoods or individual pixels known as seeds which are manually defined. For each
region a set of image property values are computed that define the membership properties for
that region. Each region’s property values reflect the membership to that same region. These
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Figure 3.5 Segmentation of the lumen in a cross section of the heart using GVF active contours: (a)
A mouse heart image with the initial boundary delineated, (b) the same image with improved boundary
after 20 iterations and (c) final segmentation after 60 iterations.

property parameters may vary and some usual choices are: average gray level, texture, color,
etc. The second step of the method is the merging of regions which do not show separating
boundaries between them. To do this all boundaries between adjacent regions are examined.
The boundary strength between regions is estimated by the difference of property values be-
tween those adjacent regions. A given boundary is strong if the parameters differ significantly
on either side of that boundary, and it is weak if they do not. Strong boundaries are allowed
to remain unaltered; weak boundaries are removed and the adjacent regions merged. This pro-
cess is iterated by alternately recomputing the region membership parameters for the enlarged
regions and once again dissolving weak boundaries, until it reaches a point where no weak
boundaries remain [35].

Region-growing methods often produce good segmentation results that correspond well to
the visually apparent edges of objects in the image [35, 14]. Observing this procedure in our
task of segmenting a cross section of the heart (Figure 3.6) we see that regions in the interior
of an object are growing until their boundaries reach the edge of the object. For the task of
segmenting the normal and the infarcted heart tissue it is necessary to define the initial points
for the process of region growing in each of the tissue-conditions. To apply region growing
we select the average region’s pixel intensity as the homogeneity criteria. In this example, the
objective is the segmentation of the normal tissue and for that purpose we use the color image
combination referred in section 3.1.3. We subtract the Blue channel from the Red channel in
order to select the intensity information related to the normal tissue. The same process can be
applied to the infarcted tissue by selecting different initial points and using a different color
channel combination.

An extra issue occurs when, due to image variability, the region does not grow until its
desired extension. In this case the user can give additional initial points for the algorithm or the
homogeneity evaluation criteria can be altered.
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Figure 3.6 Region-growing segmentation of the healthy tissue of a mouse heart image section: (a)
original image, (b) channel combination between the Red and Blue channel used as the information for
normal tissue membership. (c), (d) and (e) shows three stages of the region growing evolution and (f)
shows the final healthy tissue segmented region.

While the use of supervised methods gives the user confidence on the results for each image,
since the segmentation is guided by the user, the need for interaction still requires considerable
time and effort. In the next section we will explore unsupervised methods to the problem of
heart tissue image segmentation, which require only the setting of initial parameters for the
segmentation of all images.

3.3 Unsupervised segmentation methods

Unsupervised segmentations methods do not require user interaction for the segmentation of
each image, but require validation of initial parameters. Among unsupervised segmentation
techniques those more adequate for the task of heart tissue segmentation are: automatic thresh-
olding [18, 34], watershed segmentation [28], k-means [16] and mean-shift segmentations [2,
23]. Automatic thresholding technique uses a histogram to represent the pixel’s intensity. Based
on the histogram it defines a partition grouping pixels into two classes. Watershed is a region
based segmentation that analyze the image as a topographic surface and detects regions based
on an immersion simulation. K-means and mean-shift are cluster based segmentation methods.
K-means groups pixels with similar properties not taking into account their positions in the
image. Mean-shift also groups pixels but considering both pixel spatial and color spaces.

In the next subsections we discuss these approaches for the problem of heart tissue segmen-
tation.
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Figure 3.7 Otsu heart tissue segmentation result: A - original image (cross section of mouse heart), B
and C - color image combinations used for the segmentation of the normal and infarcted tissue respec-
tively, D and F - segmentation result of the normal and infarcted tissues respectively.

3.3.1 Automatic Thresholding Segmentation

In automatic thresholding a single value called threshold is used to create a binary partition of
the image intensities. All intensities greater than the threshold are grouped together into one
class and those below the threshold are grouped together into another class [18]. The use of a
single threshold Th thus results in a binary segmented image:

IT h(i, j) =
{

1 i f I(i, j)> T h
0 i f I(i, j)≤ T h (3.8)

where IT h(i, j) is the binary segmented image at a threshold T h and (i, j) are the coordinates
of each pixel of the image. The specific threshold value is chosen based on the image’s pixel
properties and some assumed model. While the simplicity of thresholding approaches is an
advantage, this type of approaches can only be applied when several assumption are possible.
First, the pixel’s region membership must be encoded into its intensity value. Secondly, the
image must have uniform illumination. These assumption are neither trivial nor frequently pos-
sible. This makes automatic thresholding highly dependent on efficient image pre-processing.

Manual adjustment of thresholds is common in order to obtain a result considered correct
by visual inspection, however with this approach different segmentation results are likely to
be obtained by different users for the same image [26]. A number of algorithms have been
developed for automatically obtain a threshold value [18, 23, 27]. A usual approach is the Otsu
method [21]. In this case the method assumes that the image under analysis has a bimodal
distribution of the pixel’s greylevel values, one corresponding to the foreground and another
to the background. The value of the threshold is, in this case, calculated by maximizing the



24

separability of the resultant classes so that their intra-class variance is minimal.
A segmentation by threshold of the normal and infarcted tissue is observed in figure 3.7. We

apply Otsu automatic thresholding to color image combinations which enhance infarcted and
normal tissue information as described in section 3.1.3. We used the result of the subtraction
of the Blue channel from the Red channel (Figure 3.7 B). Then the segmentation is achieved
by applying an threshold value obtained by Otsu’s method, where pixels with intensity values
above the threshold are selected to form the binary image (Figure 3.7 D). For the segmentation
of the infarcted tissue we subtract the Red channel from the Blue channel (Figure 3.7 C) and
use that result for the thresholding segmentation (Figure 3.7 D). In appendix J, several other
examples of segmentation by threshold are presented.

The main drawback of this technique is that the results are too tightly coupled with the
thresholds used. Any change in the threshold values can originate a different segmented region.
Another drawback which is a direct consequence of the previous one is that the technique is
very sensitive to noise and to irregular illumination since this method does not take into account
the spatial characteristics of an image [18, 23, 27].

3.3.2 Watershed Segmentation

Watershed segmentation or watershed transform is a region based method since it takes into
account spatial information in the segmentation process [28, 15].

The most intuitive description of the watershed transform is based on a flooding simulation.
Consider the input grayscale image as a topographic surface. The goal is to produce the water-
shed lines on this surface. To do so, holes are punched at each regional minimum in the image.
The topography is slowly flooded by allowing water to rise from each regional minimum at a
uniform rate across the image. When the rising water coming from two distinct minima is about
to merge, a dam is built to prevent the merging. The flooding will eventually reach a stage when
only the tops of the dams are visible above the water surface, and these correspond to the wa-
tershed lines. The final segmented regions arising from the various regional minima are called
catchment basins [35, 26, 16].

For image segmentation, watershed segmentation is usually, but not always, applied to a
gradient image. Since real digitized images present many regional minima in their gradients,
this typically results in an excessive number of catchment basins. This problem is known as
watershed oversegmentation [26, 16].

The watershed transform can also be used with initial markers. This is a technique usually
used to reduce oversegmentation, if one can place markers within the objects to be segmented.
In this case the topographic surface is only flooded from the selected maker locations, limiting
the number of final regions in the segmentation [35, 26]. However, to apply marker based
watershed segmentation to an image we need either user given locations for the markers or an
initial segmentation of high confidence regions to be considered as markers.

In figure 3.8 is visible a segmentation of a cross section of the heart by watershed which
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Figure 3.8 Segmentation of a cross section of the heart using watershed transform: A) input image
obtained by color channel combination; B) watershed segmentation result; C) watershed segmentation
result limited by the mask of the heart tissue which allows to focus the analysis only on the heart tissue;
D) identification of each segmented region as normal (red) or infarcted tissue (blue).

resulted in oversegmentation. For this technique we applied the traditional watershed segmen-
tation without markers. We used the subtraction result of the Blue channel from the Red channel
(see Section 3.1.3) as the input image (Figure 3.8 A) for the segmentation process. Performing
watershed segmentation originates an oversegmentation of the tissue since it has many regional
minima (Figure 3.8 B). To deal with the oversegmented result we limit our analysis to the heart
tissue and use color clues to separate all regions into infarcted and healthy tissue regions. In
appendix K, several other examples of watershed segmentation are presented.

To focus on the heart tissue we use Otsu automated segmentation, based on the direct
greyscale conversion of the input image (Figure 3.8 C). This eliminates watershed regions that
are not within the tissue regions. Finally, by comparing the RGB color values in each region we
decide if each segmented region corresponds to normal or infarcted tissue (Figure 3.8 D). This
is done through the comparison of the R and B average image color values for each region, if
R grater than B the region corresponds to healthy tissue and it corresponds to infarcted tissue
otherwise.

3.3.3 K-means Segmentation

K-means segmentation is a clustering approach to segmentation [15, 18]. Image segmentation
using clustering is based on the grouping of pixels with similar properties. Similar properties
may be any property the data pixel possesses, like intensity, gradient or color (for a color dataset)
among others.

K-means assigns N data points to k disjoint subsets, S j, j = 1,2,. . .,k, each containing N j
data points, by minimizing the sum-of-squares criterion given by

J =
k

∑
j=1

∑
n∈S j

√
|xn−µ j|2, (3.9)

where xn is the value of nth data point and µ j is the mean value of the data points within the
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Figure 3.9 Segmentation of a cross section of the heart using k-means clustering algorithm: A - original
image, B - k-means segmentation result and C - identification of each tissue type (red - normal tissue and
blue - infarcted tissue).

cluster S j.
K-means applied to image segmentation assigns each pixel from an image to specific clus-

ters according to their color or intensity properties and a measure of similarity [15]. By max-
imizing similarity of each subset locally, the algorithm will globally yield an optimal dissimi-
larity of all subsets. The dissimilarity for a pixel is its distance from the mean of each of the
clusters in the feature space. The mean for each cluster is computed iteratively. The pixel is
added to the cluster whose mean is the nearest to the pixel (maximum similarity between the
pixel property and the cluster’s mean) [18].

In the case of heart tissue segmentation we first select the region of heart tissue through Otsu
thresholding. Considering only those pixels from the heart tissue region we choose k = 2 and
use the RGB color information to obtain the two tissue pixel clusters corresponding to healthy
and infarcted tissue (see Figure 3.9 B). These are then identified based on each cluster’s average
color. If the average color of that region in the R channel is greater than the average color of the
same region in the B channel, the region corresponds to healthy tissue otherwise it corresponds
to infarcted tissue. In appendix L, several other examples of k-means clustering segmentation
are presented.

While k-means segmentations has the considerable advantage of allowing for the setting
of the number of different tissues of interest, it has the disadvantage that by taking no spacial
information into account it can produce multiple irregular regions. To tackle this problem we
use morphological operations to join small regions and smooth the contours, and select only the
largest region of each tissue type (Figure 3.9 C).

3.3.4 Mean-shift Segmentation

Mean-shift image segmentation is also a clustering approach, but in this case the clustering is
performed jointly in the pixel spatial and color spaces [32, 25, 6]. This technique searches for
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the local maximal density using a estimation kernel. After maxima density locations are found
data points are grouped based on which maximal density point they converged to [16].

Mean-shift does not require prior knowledge of the number of clusters, and does not con-
strain the shape of the clusters. It only requires the definition of the radius of the kernel used for
the density estimation. Given n data points of x on d-dimensional space, the multivariate kernel
density estimate obtained with kernel K(x) and windows radius h is [16, 32, 25, 6]:

f (x) =
1

nhd

n

∑
i=1

K
(

x− xi

h

)
, (3.10)

For radially symmetric kernel, it suffices to define the profile of the kernel K(x) satisfying:

K(x) = ck,dK(‖x‖2), (3.11)

where ck,d is a normalization constant which assures K(x) integrates to 1. The modes of the
density function are located at the zeros of the gradient density estimator [32, 6]:

O f (x) =
2ck

nhd

n

∑
i=1

(x− xi)K
(∣∣∣∣∣∣∣∣x− xi

h

∣∣∣∣∣∣∣∣) , (3.12)

The mean-shift clustering works in three steps:

1. From initial data points, run mean shift to find the estimated maxima of the density func-
tion.

2. Prune the obtained density points by retaining only the local maxima.

3. Set of all initial data points that converge to the same density maxima (mode) to corre-
spond to the same cluster.

The quality of a kernel density estimator is measured by the mean of the square error be-
tween the density and its estimate, integrated over the domain of definition [25, 6].

A digital image can be represented as a two-dimensional array of p-dimensional vectors
(pixels), where p = 1 in the gray level case and p = 3 for color images. The space of the pixel
coordinates is the spatial domain, while the pixel gray level or color information is the range
domain [25, 16].

In order for mean-shift segmentation to take into account both spatial and range informa-
tion, location and range feature vectors are concatenated in a joint spatial-range domain. The
different nature of each domain requires some compensation by proper normalization. Thus,
the multi-variate kernel is defined as the product of two radially symmetric kernels and the
Euclidean metric allows a single bandwidth for each domain, that is:

Khs,hr(x) =
c

h2
s h2

r
K(‖xs

hs
‖2)K(‖xr

hr
‖2), (3.13)
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Figure 3.10 Segmentation of a cross section of the heart using mean shift clustering technique. A -
original image of a mouse heart cross section. B - respective mean-shift clustering. C - identification of
each tissue type (red region identifies normal tissue and blue region identifies infarcted tissue)

were xs is the spatial part, xr is the range part of a feature vector, K(x) the common profile used
in both domains, hs and hr the employed kernel bandwidths, and c the corresponding normaliza-
tion constant. Each data point becomes associated to a point of convergence which represents
the local mode of the density in the d-dimensional space. The process, having the parameters hs
and hr, takes into account spatial and range information jointly. For the segmentation task, the
convergence points sufficiently close in the joint domain are fused to obtain the homogenous
regions in the image [25, 6].

We can observe the application of this technique to our task of segmenting heart tissue re-
gions in figure 3.10. As in the k-means technique we decided to obtain at most three clusters.
If we obtain more than three clusters we iteratively increase the radius of the kernel used and
repeat the process. In this case we based our segmentation on the Red and Blue channels since
they lead to better results than the use of all channels or anyone of the color image combination
referred on section 3.1.3. As in the case of K-means based segmentation we identify which
final regions belong to infarcted or normal tissue through the analysis of the red and blue chan-
nel. If the average intensity of the region under analysis in the red channel is greater than the
sane region in the blue channel the region is considered healthy region otherwise is an infarcted
region. The final result showed regions less dispersed when compared with the k-means re-
sult. It is a consequence of the spatial information that is taken into account. For example,
by examining the segmented regions obtained with k-means and mean-shift techniques, in fig-
ures 3.9 and 3.10, we identify small regions inside the region related to normal tissue in case of
using the k-means technique. In case of mean-shift the segmentation result explores spatial in-
formation and the final regions are more homogeneous. In appendix M, several other examples
of segmentation by mean-shift technique are presented.

While all presented unsupervised segmentation methods do not require user interaction,
some pos-processing is required to obtain the final identification of the normal and infarcted
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tissues in most cases, such as:

1. identify each tissue type by comparing color intensities;

2. reduce oversegmentation;

3. adjuste the segmentation result using morphological operations;

4. redefine parameters of the segmentation techniques (if necessary) and repeat the segmen-
tation.

Furthermore, since the user has no interaction with the segmentation process, results can be
unusable and reduce user confidence in the automatic analysis approach.

Another issue is that for evaluation of infarct size researchers only consider the left ventricle
region. The images of the cross sections of the heart show both right and left ventricle. The
right ventricle is a part of healthy tissue that is not distinguishable from the left ventricle and can
only be detected based on anatomical information. In our experimental setup the right ventricle
is ignored by manually delineating the left ventricle. However, this is itself a time consuming
task that should be automated.

Considering these problems we propose in the next section an unsupervised tissue segmen-
tation approach through anatomical model adaptation.

3.4 Unsupervised tissue segmentation through model adaptation

While supervised and unsupervised methods for heart tissue segmentation provide high perfor-
mance solutions for infarct size estimation, they ignore the structure of the heart. This structure
may be assumed to be stable to a certain extent and we propose to explore this assumption
towards an increase in the robustness of the automated analysis. Furthermore, by recognizing
the heart structure we can recognize the left ventricle region and avoid the user manual task of
ventricle region delineation.

In order to perform heart tissue segmentation by using an anatomical model we must define
a model and a way to adapt such a model to existing image data. As we observe in images from
the heart sections, the heart tissue has an oval shape with two holes inside its overall region
(lumens). Based on this standard structure the design of the anatomical model chosen for this
task was based on an overall ellipsoid heart shape with two smaller ellipsoids inside the heart.
The model governs the size and position of each ellipsoid as well as the spatial relationships
between them (Figure 3.11). The spatial relationships are simple: all lumen ellipsoids must be
inside the overall heart ellipsoid, and left and right lumen ellipsoids must be on separate side of
the minor axis of the overall ellipsoid.

Considering as hidden variable the real location and scale of the heart tissue regions Z and
the input image data as X we can assume a model for our anatomical model parameterized by
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Figure 3.11 Anatomical model assumed for the heart tissue: red ellipse represents the full tissue; blue
ellipse represents the left ventricle lumen; green ellipse represents the right ventricle lumen.

θ for which the likelihood functional is:

L(θ ;X ,Z) = P(X ,Z|θ). (3.14)

Given that we have three different regions to adapt the model parameters θ can be divided
into those responsible for the modeling of each part:

θ = {θht ,θrl,θll}, (3.15)

where θht are the parameters for the heart tissue ellipsoid and θrl and θll are the parameters for
the right and left lumen ellipsoids respectively.

As the parameters govern the position and shape properties of ellipsoids we have that:

θht = {cht ,eht ,σht ,oht}, (3.16)

where cht , eht , σht and oht are the centroid position, eccentricity, scale and orientation of the
ellipsoid of the total heart tissue respectively. Similar parametrization is performed for the
lumen ellipsoids’ parameters (θrlθll).

In a similar way the heart regions hidden variable can be specified for each different parts
of the model:

P(X ,Z|θ) = P(X ,Zht ,Zll,Zrl|θ) (3.17)

where Zht , Zll and Zrl correspond to the real heart tissue, left lumen and right lumen regions,
respectively.

By using Bayes rule and exploring inherent conditional independence between the different
regions and parameters we can factorized equation (3.17) as:

P(X ,Zht ,Zll,Zrl|θ) = P(X ,Zrl|θ)P(X ,Zll|θ)P(X ,Zht |θ) (3.18)
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Figure 3.12 Five iterations of the adaptation of the anatomical model: A) current stage of the anatomical
model’s adaptation to the heart; B) mask obtained from the model parameters used to obtain compute
P(X ,Zht |θ); C) the model’s shape after the adaptation of θht ; D) mask obtained from the new model
parameters used to obtain compute P(X ,Zll|θ); E) the model’s shape after the adaptation of θll; F) mask
obtained from the new model parameters used to obtain compute P(X ,Zrl|θ); G) the model’s shape after
the adaptation of θrl . All the masks have the region of interest represented as white and the background
represented as black. The gray color represents a region not used in the specific adaptation step.



32

Figure 3.13 Model adaptation results in irregular heart cross sections: heart with torn left ventricle wall
(left); heart with blood in the left ventricle (middle and right).

where we assume that each tissue regions’ probability distribution is independent of all other
given the parameters of the model. This provides an adequate framework where we can sequen-
tially estimate the heart, left ventricle and right ventricle tissue regions and the corresponding
parameters through the Expectation Maximization (EM) algorithm [9, 4].

The model adaptation process using EM is initiated with the placement of the anatomical
model in the middle of the image with a scale adequate to the image dimensions. Given the
initial model parameters the adaptation of the anatomical model is performed iteratively, starting
with the overall heart tissue ellipsoid them the left and right ventricles’ lumens.

In Figure 3.12 we can observe the sequential steps of the anatomical model’s adaptation.
At each step, from the current parameters (figure 3.12 A) C) E)), a mask of the current model
position is built (figure 3.12 B) D) F)). From the image information inside the regions of the
current mask in white and also the background regions in black we analyze image green channel
and obtain an estimate of the true region under adaptation (figure 3.12 C) E) F)). This estimated
region, together with the current parameter estimated values, then allows the maximization of
the related parameters (solid lines in figure 3.12 C) E) G)). It is at this point that the restriction
on each ellipsoid size and position are enforced by limiting the estimated parameters to only
possible values (position and size limitations). The process is continued until no alteration of
parameter is performed or a limit number of iterations has been reached. An additional test
must be performed to verify that a right ventricle lumen is present as this is not always the case
in this type of images.

The robustness of this method allows for usable results even when the heart cross section
show a highly deformed anatomical structure, when there is blood in the ventricle and even
when the heart tissue is torn, situations that would make all previously presented methods fail,
see figure 3.13.

To measure the infarct size we use the final adapted anatomical model spatial configuration.
First we estimate the region of the left ventricle, where the infarct size evaluation is performed.
This is performed by obtaining the distance from the center of the left ventricle lumen to the
center of the right ventricle lumen estimated by the anatomical model). The circular limit
defined by that distance and the center of the left ventricle is where we assume the left ventricle
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Figure 3.14 Left ventricle tissue region estimation: (a) distance from the center of the right ventricle
lumen (1) to the center of the left ventricle lumen (2); (b) anatomical regions of the left ventricle (region
perimeter in green and lumen in red).

Figure 3.15 Infarct and healthy tissue region estimation process: (2) and (4) are limiting radial separa-
tors in the model. The red region identifies normal tissue and blue region identifies infarcted tissue; (a)
first iteration; (b) fifth iteration; (c) final position of each section, identifying the infarcted and healthy
tissue regions.

tissue ends. Figure 3.14 shows the radial distance between lumen centers and the final left
ventricle tissue region estimated.

Finally, to measure the infarct size it is necessary to define the regions of normal and infarct
tissue within the left ventricle. This is performed by dividing the left ventricle into two regions
using two radial separations. We then iteratively improve the initial position for each section
by analyzing the average intensity of the green image channel within each region (Figure 3.15).
We move the separators so that the difference between the average green image channel level
intensity value within each of the two regions is increased. The change of the separators position
is performed iteratively in 5 degree steps. The process stops when no further improvements are
possible.

Figure 3.16 shows the final result of this process and the two determined regions of the left
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Figure 3.16 Final healthy and infarcted heart regions estimated within the left ventricle.

ventricle. In appendix N, several other examples of anatomical model adaptation are presented.
From the information of the regions of infarcted and healthy heart tissue we are able to estimate
the infarct size.

3.5 Experimental results

To evaluate the performance of the proposed methods we performed the infarct size evaluation
on sections of two complete hearts. All the images were provided by INEB - Instituto Nacional
de Engenharia Biomédica by the NEWTherapies Group.

Myocardial infarction is evaluated in the left ventricle region of each heart cross-section [8,
29]. The infarcted tissue to be considered can been seen in figure 3.17 (A) as a shaded region.
However, it is not easy to determine the left ventricle region as it is variable in morphology and
even most biologists vary in their assessment of where the right ventricle (RV) ends and the
left ventricle (LV) begins. As such, we obtain automatic infarct size estimation results on the
LV by delineating the RV through manual using image editing tools and not considering this
during the evaluation. In the case of the tissue segmentation through model adaptation that task
is performed automatically.

3.5.1 Infarct size evaluation

Heart infarct size is the percentage of the left ventricle affected by myocardium infarction. To
measure and estimate the infarct extension it is necessary to identify the normal and infarcted
tissue.

To better define the calculation of the infarct size we must define the heart anatomy regions
involved. In Figure 3.17 (A) we can observe the heart bounded by the exterior black continuous
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Figure 3.17 Image of a heart cross section. A - The heart is bounded by the outside black continuous
line which includes the LV and RV separated by line a. The interior black continuous line is identifying
the lumen of the left ventricle and the region marked by lines shows the tissue with infarct. The dotted
line is the midline between the inside and outside black continuous lines. B - Scheme of a cross section
of the heart.

line. It is formed by right (RV) and left ventricles (LV). The RV consists of normal heart tissue
and the right ventricle lumen. The LV includes the infarcted tissue, which is represented by the
shaded region, the lumen, clear region which is bounded by the interior black continuous line
and also normal tissue. The infarct size is calculated by two different methods:

• Area measurement - The infarct size is calculated by dividing the LV infarct area by the
total area of the LV tissue [8, 29]. This is trivial based on the obtained regions from the
automatic segmentation results.

• Midline length measurement - The infarct size is calculated by dividing the LV infarct
region midline by the length of LV midline [29]. Figure 3.17 (B) shows a scheme that
represents a cross-section of a heart. To perform the midline measurement we first au-
tomatically find the midline by tracing lines from the center of the lumen to the exterior
of the heart tissue. The midline is given by midpoint between tissue borders. The points
of the middle line where there is more infarcted tissue than normal tissue (in the radial
direction) are considered as infarcted points. Infarct size is obtained bydividing the length
of the LV infarct midline by the total length of the LV midline.

The infarct size measurement for the complete heart is defined as the mean value of infarct
size for all the heart cross sections.
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Table 3.1 Results of infarct size measurement in mice assays. The results are the average value of infarct
size obtained for all transverse sections of each heart.

Heart #1
Measurement Midline length (%) Area (%) Time (min)

Manual 43% 22% 31
Region growing 40% 22% 2,26

Thresholding 39% 20% 1,51
Watershed 40% 20% 6,15
K-means 40% 23% 1,95

Mean-shift 36% 17% 6,96
Model based 44% 27% 20,68

Heart #2
Measurement Midline length (%) Area (%) Time (min)

Manual 52% 36% 25
Region growing 47% 35% 2,24

Thresholding 47% 30% 1,52
Watershed 49% 35% 5,99
K-means 50% 36% 2,25

Mean-shift 49% 36% 6,95
Model based 44% 31% 18,34

3.5.2 Validation and discussion

The infarct size was calculated manually and automatically in images from two hearts. The
calculation was performed on the cross-section tissue without considering the right heart ven-
tricle. To automatically segment the tissue without taking into account the right ventricle we
first manually identify this region and it is not considered during the evaluation. For automatic
tissue segmentation through model adaptation this task is not necessary since it correctly iden-
tifies the right and the left ventricle. Table 3.1 shows the results for the infarct size evaluation
using our approaches and manual annotation. The results are the average value of the infarct
size over all cross-sections of each independent heart. The time spent in the evaluation using
the different approaches is also presented.

The difference between the proposed approaches and manual annotation are never greater
than 8%. Within the unsupervised segmentation approaches, the k-means technique produced
better results and the differences were never above 3% when compared with manual results.
The differences from the supervised technique used were at most 5% but considering the heart
#1 this technique produced better results in both midline length and area measurements. Tissue
segmentation through anatomical model adaptation by EM produced results with differences
never more than 8%. This may be both due to an oversimplified model and also due to errors
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in determining the left ventricle region (for which all other methods have manual selection).
However, this approach is completely automatic and that represents a considerable advantage in
term of analysis work by the researcher. Regarding the times each technique takes to evaluate
the infarct size, all the tested approaches are faster than manual annotation.

The results for each section of the Heart #1 using the different segmentation techniques are
presented from table 3.2 to table 3.3. The results for each section of the Heart #2 are presented
from table 3.4 to table 3.5.
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4 . MIQuant

Based on the validated approach we developed a software for infarct size evaluation named
MIQuant. The software was developed for use in the laboratory to aid in the analysis of biolog-
ical experimental results. Due to the preference by biologists of some interaction in the analysis
process we chose a supervised approach, based on region growing segmentation. The speed and
easy interaction of this method associated with the agreement between the results obtained by
this method and the manual results were the basis for this choice. The graphical user interface
of the developed software application is showed in figure 4.1.

The developed software, based on requirements specified by biologists, allows the user to:

• Perform analysis of one or more heart cross sections;

• Edit images allowing operations such as tissue deliniation;

• Segment different heart tissue regions with the ability to change the obtained segmenta-
tions;

• Compute the infarct size value;

• Manually edit the left ventricle midline from the infarct estimation by midline length
measurement;

• Save results as excel worksheet and images with segmented regions.

The MIQuant was developed to allow the quantification of infarct size, expressed as per-
centage, by two previously validated methods: area and midline length measurements. The
user must follow several steps prior to myocardium infarction size calculation. To guide the
user, a footnote bar is display with basic instruction on the next steps and available options
(figure 4.1 A).

In Figure 4.1 B is visible the menu bar of the software. The "File" menu includes commands
to load the image or multiple images. The user may either analyze a single image or multiple
images. If multiple images are loaded MIQuant computes the average myocardium infarction
size of all sections and the intermediate results obtained for each section. After loading the
image, the software automatically adjusts image quality (as explained in section 3.1.1), this
pre-processing step can be removed on the “Image quality" section. The “Edit" menu displays
commands for original image edition. The commands available are:

• Remove tissue: ignores undesired tissue regions by hand delineation of those tissues on
the original image separating the tissue to be ignored. The user must click to define a line
path and double-click/ENTER at last to complete the line drawing (figure 4.2).
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Figure 4.1 MIQuant user interface with labeled interface details: A is the footnote bar where hints are
displayed on how to work with MIQuant; B is the menu bar where are located the "File", "Edit" and
"Image Quality" menus. This allows to load images, edit the input image and chose to improve image
quality or not; C are the interface controls that correspond to the parameters of the segmentation process.
Here it is possible to control the segmentation by adjust the threshold values used in the process; D is
the button that initialize the calculation of infarct size; E is where the results are displayed and F are the
buttons that allow to save the results in excel format or in image format.

• Connect tissue regions: creates a connection between tissue regions that were previously
disjoint. The user need to click on the image sequentially on the two regions to be con-
nected. A path with mean intensity from the begin and end points selected is created
connecting the regions (figure 4.3).

• Clean left ventricle lumen: erases selected regions that can interfere with tissue segmen-
tation, it can be used to remove blood from the left ventricle lumen. The user must define
the region to be removed by clicking to define the path and double-click/ENTER at last
to complete the drawing (figure 4.4). The defined region is replaced with background
intensity values.

• Undo: erases all the performed image editions.
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Figure 4.2 Demonstration of the command “Remove tissue" available in “Edit" menu of the MIQuant
software by creating a separation line.

Figure 4.3 Demonstration of the command “Connect tissue regions" available in “Edit" menu of the
MIQuant software by introduce a line with the mean intensity of the begin and end points defined.

In Figure 4.1 the interface controls indicated by "C" correspond to the region growing pa-
rameters. The user must select one of the “Normal tissue" or the “LV Lumen" buttons to identify
the region to be selected. For each type of tissue it is possible to adjust the threshold if required
and repeat segmentation. The segmentation can be repeated until the user is satisfied with the
segmentation results.

After performing the tissue segmentation it is possible to obtain the infarct size results by
clicking on the respective buttons (figure 4.1 D). The myocardial infarction size, calculated by
both midline length and area measurements are shown in the MIQuant interface (figure 4.1 E).
Results are also printed on the image under analysis.

Figure (figure 4.5) shows an example of how the software works. When the final results are
displayed there is also the option to edit the midline result. The user may adjust the midline
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Figure 4.4 Demonstration of the command“Clean left ventricle lumen" available in “Edit" menu of
the MIQuant software by selecting a region and change the intensity information in that region by the
intensity of the background.

when wrongly predicted using the “Edit midline" tool and repeat the myocardial infarction size
calculation. The midline can be edited by clicking first in the midline dot to be corrected and
then on the desired final position for the respective dot (figure 4.6).

After obtaining the final results and visually inspecting that they are in accordance with the
users criteria, it is possible to save the visual result and save the data result to an excel file
(figure 4.1 F). The visual result also contains in part of the image the values of the infarct levels
obtained for that image.

The developed tool is currently being used in several laboratories for the infarct size esti-
mation. For evaluate the performance of the software a study was conducted [20]. It reports
that MIQuant is a reliable alternative to the manual estimation of infarct size and the time spent
to obtain the infarct size is a fraction of the time spent in the manual evaluation. The paper
concludes that MIQuant is a valid and easy-to-use software application and the software con-
tributes for the standardization of infarct size quantification across studies and, therefore, to the
systematization of the evaluation of cardiac regenerative potential of newly developed therapies.
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Figure 4.5 Infarct size evaluation using the tool. The segmentation are displayed for the user decide if
it is necessary to repeat the segmentation process or if it is well segmented. The final results are also
displayed and the option to edit the midline result becomes available.

Figure 4.6 Adjust of the midline result. The user must select one dot and then select the new position to
change his position.





5 . Conclusions

In this work we propose an automated heart infarct size estimation tool, for animal assays.
During this work several image segmentation approaches where tested, comparing each with
manual annotation. The segmentation of the heart tissue was performed by supervised and
unsupervised techniques and also through anatomical model adaptation by expectation maxi-
mization. Given the segmentation results, the infarct size was automatically estimated. The
results of infarct size obtained using different segmentation techniques were in close agreement
with the manual annotation with differences never higher than 8%. By using the developed
methodology it was possible to obtain an analysis of the infarct size within a fraction of the
manual method measure time.

Within the automatic segmentation approaches, the watershed technique produced better
results, with the differences never above 3%. The differences from the supervised approach used
were at most 5%. Tissue segmentation through anatomical model adaptation produced results
with differences never more than 8%. The use of anatomical modeling did not provide the
best performing results but it does provide a fully automatic approach for the analysis of heart
tissue, requiring no human intervention during analysis. Furthermore, it enables the possibility
to handle images where there are tissue discontinuities and badly defined lumens and enables
the detection of the right and left ventricle regions.

Although the performance was lower in the supervised approach, not considering the seg-
mentation by anatomical model adaptation, the biologists prefer the possibility to control the
segmentation results in relation to fully unsupervised approaches where they do not control the
segmentation process.

Based on this preference we developed a tool for infarct size evaluation named MIQuant.
This tool is operated by biomedical investigators and is based on region growing segmentation
technique. The developed tool is currently under evaluation at the INEB-Institute of Biomedical
Engineering, by the Stem Cell Biology Team led by Dr. Pinto-do-Ó whose research focus is the
biology of cardiac regeneration.
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Abstract. Rodent models of myocardial infarction (MI) have been ex-
tensively used in biomedical research towards the implementation of
novel regenerative therapies. Permanent ligation of the left anterior de-
scending (LAD) coronary artery is a commonly used method for inducing
MI both in rat and mouse. Post-mortem evaluation of the heart, partic-
ularly the MI extension assessment performed on histological sections, is
a critical parameter for this experimental setting. MI extension, which
is defined as the percentage of the left ventricle affected by the coro-
nary occlusion, has to be estimated by identifying the infarcted- and the
normal-tissue in each section. However, because it is a manual proce-
dure it is time-consuming, arduous and prone to bias. Herein, we intro-
duce semi-automatic and automatic approaches to perform segmentation
which is then used to obtain the infarct extension measurement. Experi-
mental validation is performed comparing the proposed approaches with
manual annotation and a total error not exceeding 8% is reported in all
cases.

Keywords: Infarct extension evaluation, image segmentation, region
growing, otsu, k-means, meanshift, watershed

1 Introduction

Acute myocardial infarction is a major public health problem, resulting mainly
from the occlusion of coronary arteries, due to the build-up of arteriosclerotic
plaques, and the establishment of tissue ischemia eventually leading to end-stage
heart failure. Permanent ligation of the left anterior descending (LAD) coronary
artery in animal models, including the rat and the mouse, is a commonly used
method for reproducing several of the human-associated pathological events.
This surgical procedure also allows the implementation of pre-clinical models
of disease which are a pre-requisite for testing cell/drug-therapies before pro-
ceeding into clinical trials [1]. The tissue extension of the induced myocardial
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Fig. 1. Experimental myocardial-infarction mouse model. A - Macroscopic view of 21
days post-infarction heart; black arrow indicates the anatomical location of the LAD
coronary artery ligation. B and C - Histological cross-sections of apical and mid region
of LV stained with Masson Trichrome. Apex and free LV wall are fully compromised
by ischemia, wich is illustrated by the collagen deposition (blue region) replacing the
viable myocardium tissue (red region).

infarction, which is defined as the percentage of the left ventricle affected by
coronary occlusion, is a critical parameter to evaluate the effect of any applied
therapy at the experimental setting. This is calculated as the average value of
infarct extension over all cross-sections of the dissected heart stained with Mas-
son’s Trichrome, a histological stain that enables the identification of collagen
deposition, a hallmark of established infarction [1, 2]. To determine the infarct
extension it is necessary to indentify the infarcted-tissue (blue area) and the
normal-tissue (red area) in each section (Figure 1). Currently these tasks are
performed manually by the biologists, which is a time-consuming and arduous
endeavor. The latter is a driving force to the development of approaches to aid
the analysis of the experimental MI extension. Our approaches entail the seg-
mentation of the cross sections of the heart, which can be performed by means
of automated image processing techniques.

The multiple techniques that may be applied to the segmentation of animal
tissue can be discriminated in two major classes: automatic and semi-automatic
techniques. In the former case the user needs to define initial parameters for
each image in order to start the segmentation. Thus, automatic segmentation
requires only the validation of the initial parameters and then the algorithms
segment all the images in study without further user intervention.

Region growing is a semi-automatic technique that can be used to segment
the cross sections of the heart. Alattar et al. describe the use of this technique in
segmentation of the left ventricle in cardiac MRI (magnetic resonance imaging)
scans [3]. This technique exploits spatial context by grouping pixels or sub-
regions into larger regions. Homogeneity is the main criterion for merging the
regions. However, the selection of similarity criteria used depends on the problem
under consideration and also on the type of image data available [4, 5].

Regarding automatic segmentation there are techniques such as threshold-
ing, region based segmentation and cluster based segmentation that can also be
used in tissue segmentation [4, 6]. Sharma et al. introduce the segmentation of
CT (computurized tomography) abdomen images using a threshold segmenta-
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tion technique to separate different regions in the images [6]. In a thresholding
technique a single value (threshold) is used to create a binary partition of the
image intensities. All intensities greater than the threshold are grouped together
into one class and those below the threshold are grouped into a separate class [4,
7]. Watershed is also a method applied in medical images segmentation. It is
a region based segmentation which involves the concept of topography and hy-
drography. Hamarneh et al. present MR (magnetic resonance) cardiac images
segmented with watershed transform [8]. Watershed can be described as a flood-
ing simulation. Watersheds, or crest lines, are built when the water rise from
different minima. All pixels associated with the same catchment basin are as-
signed to the same label [8, 9]. For image segmentation, the watershed is usually,
but not always, applied to a gradient image. Since real digitized images present
many regional minima in their gradients, this typically results in an excessive
number of catchment basins (oversegmentation) [5, 9]. Ahmed et al. describe the
segmentation of MR brain images using k-means clustering algorithm [10]. K-
means segments the entire image into several clusters according to some measure
of dissimilarity [8, 10]. Mean-shift technique has also been used in segmentation
of MR brain images [11]. The mean-shift algorithm is a clustering technique
which does not require prior knowledge of the number of clusters, and does not
constrain the shape of the clusters, requiring only the definition of the radius of
the kernel used [9].

We use these techniques to (1) segment all histology processed cross-sections
of the excised mouse-hearts, (2) calculate the infarct extension and finalize by
(3) comparing the results with manual annotation.

This paper is organized as follows: Section 2 introduces the methodology and
describes automatic and semi-automatic techniques used in segmentation of the
heart, Section 3 defines how to measure the infarct extension Section 4 presents
the results obtained and finally the conclusion is presented in Section 5.

2 Methodology

To obtain the infarct extension it is necessary to segment the different tissues
in each cross section of the heart. This can be performed with semi-automatic
and full automatic techniques. Within the existing semi-automatic methods for
image segmentation we had chosen to use region growing due its speed and ease
of interaction. Otsu thresholding technique, watershed segmentation, k-means
and mean-shift clustering are the fully automatic techniques that we selected to
segment the cross sections of the heart.

In order to improve the segmentation process we applied noise reduction,
using a Gaussian filter [5]. This noise reduction is applied in all the images
before any segmentation process.

2.1 Semi-automatic tissue segmentation

Region growing exploits spatial context by grouping pixels or sub-regions into
larger regions according to some criterion. The average gray level information is
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Fig. 2. Segmentation of normal tissue using the Red channel (1) and infarcted tissue
using the Blue channel (3) in a cross section of the heart by region growing technique.
The results of the segmentation process are binary images (2 and 4). The red points
indicate the initial positions of the region growing process.

the criterion chosen for merging the neighboring regions in our work. Regions
are merged if they satisfy the chosen criterion and no merging occurs when the
criterion is not met [5, 4]. The user needs to specify the initial points to begin the
segmentation process. For the task of segmenting the normal and the infarcted
heart tissue it is necessary to define the initial points for the process of region
growing in each of the tissue-conditions. To segment the normal-tissue we used
the gray level information present in the Red channel. For the segmentation of
the infarcted-tissue we used the gray level information from the Blue channel.
The result is a set of binary images, one for each tissue condition (Figure 2).
Results are improved using morphological operations, for example to fill small
holes inside the segmentation results.

Given the segmentation areas we can then calculate the infarct extension.

2.2 Automatic tissue segmentation

To automatically segment the different tissue-conditions in each of the heart
cross-sections we use otsu thresholding, watershed segmentation, k-means and
mean-shift clustering. All these image segmentation techniques allow the par-
tition of the image in regions which we can associate to the distinct tissue-
conditions by analyzing their color.

Otsu thresholding technique selects an adequate threshold of gray level for
extracting objects from their background. This threshold is used to convert an
intensity image to a binary one. All intensities greater than the threshold are
grouped together into one class and those below the threshold are grouped into
a separate class [12].

Using this technique, with different channels of the RGB image, we can obtain
segmentations of the normal and infarcted-tissue. High values of image intensities
in the Red channel relate to normal-tissue. The Blue channel has high image
intensity values in infarcted areas. Based on these relationships between the
Red and Blue color channels and the tissue properties we decided to subtract
the Blue channel to the Red channel for the segmentation of the normal-tissue.
We subtract the Red channel to the Blue channel for the segmentation of the
infarcted-tissue (Figure 3 (a)).
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Fig. 3. Segmentations of a heart cross section and identification of the normal and
infarted tissue: (a) Combination of the channels (1 and 2) and respective otsu thresh-
olding results (3 and 4), (b) Watershed segmentation result, (c) K-means and (d)
Mean-shift clustering results (top) and respectively identification of the regions (down).

Watershed technique is based on immersion simulation. The input image
is considered as a topographic surface which is flooded by water starting from
regional minima. Watershed lines are formed on the meeting points of water
coming from distinct minima. All pixels associated with the same catchment
basin are assigned to the same label [13, 14].

For the application of this technique we use the same image channel combina-
tion as for otsu thresholding. Performing watershed segmentation originates an
oversegmentation of the tissue since it has many regional minima. However, by
comparing the color intensities in each region we are able to decide if each region
is from normal-tissue or from infarcted-tissue. Using also the otsu thresholding
technique that allows to easily obtain the full tissue segmentation we focus our
analysis only on the tissue region. The resulting tissue areas are coherent with
normal/infarct tissue-areas (Figure 3 (b)).

K-means clustering technique assigns cluster labels to data points from the
entire image [8]. For this technique we use the information of the three chan-
nels, selecting three clusters which will correspond to the background, normal-
and infarcted-tissue. After obtaining the segmentation result we identify each
segmented cluster from its average color intensity. To improve the segmentation
we fill the holes using morphological operations (Figure 3 (c)).

Mean-shift clustering technique does not require prior knowledge of the
number of clusters and only needs the definition of the radius of the kernel used.
As in the previous technique we decided to obtain at most three clusters. If we
get more than three clusters we iteratively increase the radius of the kernel used
(Figure 3 (d)).

For this technique we decided to use only the information present in the Red
and Blue channel because it showed better results than the use of all channels.

Following the segmentation results of full automatic and semi-automatic tech-
niques we can measure the infarct extension.
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Fig. 4. Image of a heart cross section. A - The heart is bounded by the outside black
continuous line which includes the left ventricle (LV) and right ventricle (RV) separated
by line a. The interior black continuous line is identifying the lumen of the left ventricle
and the region marked by lines shows the tissue with infarct. The dotted line is the
midline between the inside and outside black continuous lines. B - Scheme of a cross
section of the heart.

3 Infarct extension evaluation

To better understand the calculation of the infarct extension we must analyze
the different regions in the heart. In Figure 4 (A) we can observe the heart
bounded by the exterior black continuous line. It is formed by right and left
ventricles. The first consists only in normal-tissue. The left ventricle includes
the infarcted-tissue, which is represented by the shaded region, lumen, which is
bounded by the interior black continuous line and also normal-tissue. The infarct
extension is usually calculated by two different methods:

Area measurement - Infarct extension is calculated by dividing the infarct
area by the area of the heart tissue [1, 2] (Figure 4 (A)). This is trivial based on
the segmentation results obtained.

Midline length measurement - Infarct extension is calculated by dividing
the midline infarct length by the length of midline [2] (Figure 4 (A)). Figure 4
(B) shows a scheme that represents a cross-section of the heart. To perform the
midline measurement we first automatically find the midline by tracing lines
from the centre of the lumen to the outside of the tissue. The midline is given
by the middle distance between tissue borders. The points of the middle line
where there is infarcted-tissue in bigger percentage than the normal-tissue (in the
radial direction) are considered infarcted points. Secondly we divide the length
of infarct midline by the length of the midline. To obtain the lumen of the heart
we get a segmentation of all the heart tissue by otsu thresholding technique,
which is trivial and we identify the biggest hole inside that segmentation.

The infarct extension is defined as the mean value of infarct extension in all
the cross-sections of the heart.

Infarct extension is evaluated in the heart cross-sections considering or not
the right ventricle [1, 2] (Figure 4 (A)). However, it is not easy to find a robust
way to remove the RV as it is variable in morphology and most biologists vary in
their assessment of where the RV ends and the LV begins. As such, we perform
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Table 1. Results of infarct extension measurement in mice’s hearts. The results are
the average value of infarct extension obtained in transverse sections of each mouse
heart. In the manual analysis the results only consider the left ventricle.

Infarct extension
Midline length measurement

Heart Manual Region growing Otsu Watershed K-means Mean-shift
#1 with RV - 39% 38% 39% 37% 34%
#1 without RV 43% 38% 40% 41% 38% 36%
#2 with RV - 47% 47% 48% 46% 47%
#2 without RV 52% 48% 48% 49% 47% 49%

Area measurement
Heart Manual Region growing Otsu Watershed K-means Mean-shift
#1 with RV - 29% 18% 17% 17% 14%
#1 without RV 22% 25% 21% 21% 20% 17%
#2 with RV - 34% 29% 31% 28% 33%
#2 without RV 36% 38% 32% 36% 32% 36%

both the analysis on the full heart, including the RV, and also obtain results on
the LV only by removing the RV through image editing tools (manually).

4 Results

The infarct extension was calculated manually and automatically in two inde-
pendent hearts. The calculation was performed both on the whole cross-section
tissue and also without considering the right heart ventricle for comparison. To
automatically segment the tissue without taking into account the right ventricle
we manually remove this region before the segmentation process. Table 1 shows
the results for the infarct extension evaluation using our approaches and the
manual annotation. The results are the average value of the infarct extension
over all cross-sections of each independent heart.

Differences between the proposed approaches and manual annotation are
never greater than 8% in the case of the evaluation considering the right ventricle.
Removing the right ventricle the differences are never greater than 7%. The
differences among the proposed approaches considering the right ventricle tissue
are at most 15% and without this are never greater than 8%.

5 Conclusion

The proposed approach enabled the full and semi-automatic calculation of infarct
extension. The results obtained using our approaches were in close agreement
with the manual annotation with differences never higher than 8%. The segmen-
tation allowed an analysis of the infarct extension in a fraction of the manual
method measure time.

Within the automatic segmentation approaches, the watershed technique pro-
duced better results, with the differences never above 5% (reduced to 3% by
removing the right ventricle). The differences from the semi-automatic approach
used were at most 7% considering the right ventricle (5% without this one). Al-
though the differences were slightly higher in the semi-automatic approach, the
biologists prefer the possibility to control the segmentation results in relation to
fully automatic approaches.
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Future research will focus on integrating automatic image segmentation meth-
ods with anatomical models. This will enable the automatic segmentation and
measurement of only the left ventricle of the heart, leading to better results.
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• Cardiovascular diseases remain the major cause of premature morbidity and mortality 
worldwide. It accounted for over 4.3 million deaths in Europe in 2009.

Motivation
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Cardiovascular
diseases
Other disease 54%

46%

Female

• An important cardiovascular disease is myocardial
infarction.

• To study this important health problem, experimental
rodent models of myocardial infarction are extensively
used. Permanent ligation of the left anterior descending
coronary artery is a commonly used method for inducing
myocardial infarction both in rat and mouse.

• These experiments aims the implementation of novel
regenerative therapies to apply to this problem.

Methodology

• Particularly, the infarct extension is an important parameter analyzed.

• The infarct extension is defined as the percentage of the left ventricle affected by coronary
artery occlusion, typically calculated on 12 transverse histological sections stained with
Masson´s Trichrome.

• The determination of the infarct extension is time-consuming, arduous and prone to bias
because requires manual definition of infarcted tissue and the non affected tissue in each
section.

• Infarcted tissue
• Left ventricle lumen

• Normal tissue
• Left ventricle

•Right ventricle



Methodology

• Schematics of the approach

• The analysis is done on the tissue of the heart cross sections and this requires its 
segmentation.

• Therefore we tested several techniques for image segmentation and the 
segmentation results are then used for evaluating the infarct extension.

Infarct 
extension 
evaluation

Segmentation 
of the heart 

cross section

Histological 
cross section 
of the heart

Methodology

• Segmentation methods

• Pre-processing
• Gaussian filtering for noise reduction.

• Noise reduction is applied to all images prior to segmentation.

• Color and illumination regularization is also applied.

Image 
segmentation 

techniques

Region 
growing 

segmentation

Otsu 
thresholding 
segmentation

Watershed 
segmentation

K-means 
segmentation

Mean-shift 
segmentation

Supervised Unsupervised



• Region growing
• Region growing examines neighboring pixels of initial “seed points” and 

determines whether the pixel neighbors should be added to the region 
according to some criterion. 

• We chose the average gray level information as the criterion for merging the 
neighboring regions.

Supervised tissue segmentation

• Otsu thresholding
• This technique selects an adequate threshold of gray level for extracting objects from 

their background.

• This threshold is used to convert an intensity image to a binary one.

• For the segmentation of the normal and infarcted tissue we use image channel 
combinations to convert color images into intensity images with relevant information: 

• (A) Normal tissue = Red channel – Blue channel

• (B) Infarcted tissue = Blue channel – Red channel

Unsupervised tissue segmentation

A

B



• Watershed technique
• Watershed technique is based on immersion simulation.

• The input image is considered as a topographic surface which is flooded by water 
starting from regional minima. 

• The final segmented regions arising from the various regional minima are called 
catchment basins. All pixels associated with the same catchment basin are assigned to 
the same label.

• For the application of this technique we used the image channel combination A as for 
Otsu thresholding. We subtract the Blue channel to the Red channel.

• Watershed is evaluated only in tissue areas, which were selected using Otsu 
thresholding.

• Given the watershed segmentation we decide if each segmented region corresponds to 
normal or infarcted tissue based on color intensities. 

Unsupervised tissue segmentation

• K-means clustering technique
• This technique assigns cluster labels to pixels with similar color properties.

• We used the information of the three channels and we selected three clusters 
which correspond to the background, normal and infarcted tissue. 

• After obtaining the segmentation result we identify each segmented cluster 
based on the color properties of the corresponding cluster center. 

• To improve the final segmentation morphological operations are used.

Unsupervised tissue segmentation



• Mean-shift clustering technique
• Mean-shift is a clustering technique which does not require prior knowledge 

of the number of clusters.

• This technique needs the definition of the radius of the kernel used.

• We select a kernel with an initial radius in order to obtain three clusters. If 
more than three clusters are obtained we adjust the radius of the kernel and 
repeat the segmentation process. 

• In this case we base our segmentation only on the Red and Blue channels 
since they led to better results.

Unsupervised tissue segmentation

r = 0.05 r = 0.06 r = 0.07

6 clusters 5 clusters 3 clusters

• Area measurement:
• Infarct extension is calculated by dividing the 

infarct area by the area of the heart tissue. 

• Midline length measurement:
• Infarct extension is calculated by dividing the 

midline infarct length by the length of midline. 

Infarct extension evaluation

Area 
Measurement

Midline Length
Measurement

Left 
ventricle 
midline

Myocardial 
infarction 
midline

TM stain
(21days post-MI)

• Infarcted tissue 

• Normal tissue

• Left ventricle lumen

• Right ventricle

• Left ventricle



• The infarct extension was calculated manually and automatically in two independent hearts. 

• The calculation was performed both on the whole cross-section tissue and also without 
considering the right heart ventricle for comparison. 

• To automatically segment the tissue without taking into account the right ventricle we 
manually remove this region prior to segmentation.

Results

Differences between the proposed approaches and manual annotation are never greater than 9%
in the case of the evaluation considering the right ventricle. Removing the right ventricle the
differences are never greater than 7%.

• The proposed segmentation techniques enabled the supervised and unsupervised calculation 
of infarct extension. 

• The results of the methods to automatically measure the infarct extension evaluation were
coherent with manual annotations.

• The results obtained using our approaches were in close agreement with the manual 
annotation with differences never higher than 9%. The segmentation allowed an analysis of 
the infarct extension in a fraction of the manual method measure time.

• Although the differences were slightly higher in the semi-automatic approach, the biologists 
prefer the possibility to control the segmentation results in relation to fully unsupervised 
approaches.

Conclusion

Nível de enfarte: 57.0699%Nível de enfarte: 57.0699%Nível de enfarte: 57.0699%Nível de enfarte: 57.0699%Nível de enfarte: 57.0699%
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Abstract

Despite considerable advances in diagnosis and man-
agement over the last three decades, acute myocardial in-
farction continues to be a major public health problem. Al-
most all myocardial infarctions result from occlusion of pre-
existing arteriosclerotic plagues of coronary arteries. This
can be mimicked by assay by ligation of the left coronary
artery in a variety of animal models, including rats and
mice. This allows the collection of information that leads
to a better understanding of this problem.

An important aspect that is required for evaluation is the
calculation of infarct extension. However, it is done man-
ually. The present work is aimed to create a tool for semi-
automatic calculation of infarct extension in such experi-
ments.

1. Introduction

Acute myocardial infarction is a major public health
problem and almost all result from occlusion of pre-existing
arteriosclerotic plagues of coronary arteries. This aspect has
been mimicked by ligation of the left coronary artery in a
variety of animal models, including rats and mice. This
allows the execution of clinical trials where one can ob-
tain important information in order to better understand this
problem [4].

The infarct extension is the most important information
obtained from the clinical trials. It is defined as the per-
centage of the left ventricle affected by coronary occlusion.
We calculate this rate as the mean value of infarction ex-
tension in 12 cross sections that represents the left ventricle
stained with Massons Trichrome, an histological staining
that enables the discrimination of collagen deposition that
occurs in the infarcted tissue with Aniline Blue [1, 2, 3, 4].
To determine the infarct extension it is necessary to inden-
tify and measure the blue area (infarcted tissue) and the
red area (normal tissue) in each section. Currently these
tasks are made manually by the biologists which is a time-
consuming and exhausting task. These factors motivate the

Figure 1. Segmentation of different regions in
a cross section of the heart (left) and mor-
phological operation to fill the holes inside
for obtain the final result (right).

development of a tool for semi-automatic calculation of in-
farct extension which involves the segmentation of the cross
sections of the heart.

2. Methodology

To obtain the infarct extension it is necessary to seg-
ment the different tissues in each cross section of the heart.
Within the existing methods for image segmentation we
chose to use the region growing method due to the speed
and easy interaction. After the identification of infarcted
and normal tissue we can measure the infarct extension.

2.1. Tissue segmentation by region growing

Region growing exploits spatial context by grouping pix-
els or sub-regions into larger regions according to some cri-
terion. The average gray level is the criterion chosen for
merging the neighbouring regions. Regions merge if they
satisfy the chosen criterion and stop growing when the cri-
terion is not met [5, 6]. The user needs to specify which are
the initial points to begin the process of grouping pixels, for
all regions. To improve the segmentation we fill the holes
using morphological operations. The result is a set of binary
images, one for each tissue type (Figure 1).

Given the segmentation areas we can then calculate the
infarct extension.



Figure 2. Cross section of the heart. The
left ventricle is bounded by the outside black
continuous line. The interior black contin-
uous line is identifying the lumen of the
left ventricle and the region marked by lines
shows the tissue with infarct. The dotted line
is the midline between the inside and outside
black continuous lines.

2.2. Infarct extension evaluation

In Figure 2 we can observe the left ventricle bounded by
the exterior black continuous line and outside of this line
there is the right ventricle which is not relevant for the clin-
ical trials. The left ventricle is the region where we evaluate
the infarct extension and it is formed by infarcted tissue,
marked by the shaded region, lumen, bounded by the in-
terior black continuous line and normal tissue. The infart
extension is usually calculated by two different methods:
Area measurement - Infarct extension is calculated by
dividing the infarct area by area of the left ventricle tis-
sue [1, 2, 3, 4](Figure 2).
Midline length measurement - Infarct extension derived
from midline length measurement is calculated by dividing
the sum of midline infarct lengths by the length of midline
circumference [2](Figure 2).

The infarct extension was calculated manually and by
computer using the referred methods and the results were
compared (Table 1).

3. Results

We developed a tool based on requirements specified by
biologists that allows the user to: segment and view the
various regions of the heart with possibility to change the
segmentations produced to find the one considered correct,
display the segmentations in the original image to best visu-
ally the results, get the infarct extension by area and midline
length methods and obtain the results.

In the results of experiments performed in two hearts
shown in Table 1 we can observe the differences between
the manual method to obtain the infarct extension and the

Table 1. Results of infarct extension mea-
surement in mouse hearts (heart #37 and
heart #40) expressed as a percentage. The
results are the mean value of infarct exten-
sion obtained in transverse sections of each
mouse heart.

Infarct extension
Midline length measurement Area measurement

Heart Manual Program Manual Program
#37 48% 43% 29% 28%
#40 52% 47% 36% 34%

program. The results are the average value of the infarct
extension in each slice of the heart and the differences are
never greater than 5%. For each slice the differences in in-
farct extension are never greater than 15%. The time it takes
to get the infarct extension for each slice is approximately
1 minute. This is at least 10 times faster than the manual
method.

4. Conclusion

The proposed method enabled the semi-automatic calcu-
lation of infarct extension faster than the manual method.
We tested our approach in two hearts and the results were
in close agreement with the manual method.

The developed tool is currently under evaluation at the
Institute of Biomedical Engineering in the Division of Bio-
materials where the infarctions are performed on animals
and may still be subject to some modifications.

Future research will focus on applying automatic image
segmentation methods together with anatomical models in
order to automate the program.
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Abstract

Experimental rodent models of myocardial infarction have been extensively
used in biomedical research to study molecular, cellular and histological al-
terations following myocardial infarction.

These models have been recently applied to assess the therapeutic po-
tential for functional restoration of damaged myocardium. Such studies are
based on myocardial infarction induction by permanent ligation of the left
anterior descending coronary artery, some therapeutic treatment and subse-
quent analysis infarct size to estimate heart damage. Infarct size is defined
as the percentage of the left ventricle affected by coronary artery occlusion.

The infarct size is estimated by manually delineating the infarcted and
normal tissue areas in the left ventricle of the dissected heart. However, this
is a time-consuming, arduous and prone to bias process. Herein, we explore
the use of automatic image segmentation approaches to perform infarct size
estimation. To further improve automation we developed an anatomic model,
adapted through expectation maximization, which allows for fully automatic
analysis of the data.

Experimental validation is performed comparing the proposed automatic
approaches with manual annotation.

Keywords: Infarct size evaluation, tissue segmentation, anatomical model
adaptation
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MATERIALS & METHODS

Experimental myocardial infarction (MI) model - 8-12 weeks old C57BL/6 mice were anesthetized, mechanically
ventilated, and subjected to MI via permanent ligation of the left anterior descending (LAD) coronary artery. Sham-
operated mice underwent the same surgical procedure without ligation of the coronary artery. All animals were kept
and handled in compliance with the IBMC-INEB Animal House guidelines and the European Convention.

Histological analysis - For histological analysis, 3μm thick transverse sections were cut from the apex to the base
of paraffin-embedded hearts with an interval of 300μm among each section (Takagawa et al., 2007). Sections were
stained with Hematoxylin-Eosin (HE) and TM for morphologic and quantitative analysis of the infarct region.

Calculation of the Myocardial Infarction - The percentage of the affected LV wall was calculated by two different
and previously validated methods: the area measurement (calculated by dividing the infarct area by the total LV
area) (Michael et al., 1995) and the midline length measurement (calculated by dividing the midline of the infarcted
ventricle wall by the midline of total LV wall). Midline infarct length was defined as the length of the midline on
regions with >50% of the myocardial wall thickness with collagen deposition (Takagawa et al., 2007). The MI size
determination was performed either manually, by drawing points to outline different anatomical/pathological regions
of LV using the Image J 1.42 software or by using a novel semi-automated program - MIQuant, designed in
MATLAB® (Mathworks®, Inc.)

MIQuant Software – The semi-automated software was designed by applying the region growing method, which
exploits the spatial context by grouping pixels or sub-regions into larger regions according to a determined criterion.
Regions are merged if they satisfy the chosen criterion and no merging occurs when the criterion is not met
(Gonzalez et al., 2004; Wu et al., 1996). The lumen region is identified as a biggest hole inside the heart
segmentation. The user needs to specify the initial points to begin the segmentation process in each of the tissue-
conditions and the segmentation areas obtained by the software are used to calculate the infarct extension by area
measurement. To perform the midline measurement the MIQuant software automatically traces lines from the lumen
centre to the outside of the tissue, and finds the middle distance between tissue boundaries.

Statistical analysis – All statistics were performed using SPSW statistic software 18 and P <0.05 was considered
statistically significant. Values presented in text and figures are mean ± standard error of the mean (SEM).
Statistical significance among “Experts” and “Volunteers” users for midline length and area measurements were
determined by the Independent-Samples Mann-Whitney U test.
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INTRODUCTION
Acute myocardial infarction is a major public health problem, resulting
mainly from the occlusion of coronary arteries, due to the build-up of
arteriosclerotic plaques, and the establishment of tissue ischemia
eventually leading to end-stage heart failure. Experimental rodent
models of myocardial infarction (MI) are extensively used to study
molecular, cellular and histological alterations following MI. Moreover,
these models have been recently applied to access the regenerative
potential of newly developed therapies. The infarct size, defined as the
percentage of the left ventricle affected by coronary artery occlusion,
is calculated as the average value of infarct extension over all cross-
sections of the infarcted heart. After MI, the collagen-based scar can
be visualized in blue following Masson’s Trichrome (TM) that enables
the identification of collagen deposition, as soon as 7 days post-
injury. The determination of the infarct extension is time-consuming,
arduous and prone to bias because it requires manual definition of the
infarcted-tissue and the non-affected region in each section. Aiming at
the standardization and simplification of this task, a user-friendly
semi-automatic tool was developed. The acronym MIQuant that stands
for MI quantification was attributed to the program.

PTDC/SAU‐OSM‐68473/2006

Overall, the MIQuant, when accessible as a freeware, will be a valuable tool for the 
simplification and standardization of MI size calculation among laboratories and will 

therefore contribute to normalize the evaluation of cardiac regenerative potential of newly 
developed therapies.

CONCLUSIONS
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Fig 1. Histopathological evolution of mouse induced myocardial-infarction. At first and second row (magnification 16x), cross sections stained with TM
demonstrated the LV remodeling after permanent ligation of LAD coronary artery with progressive thinning of LV wall, chamber dilation and collagen
deposition. In higher magnification, the HE staining showed histological alterations at the cellular level in response to MI. Scale bar 50μm.
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Fig 2. Transverse sections representative of the LV sampling of the paraffin-

embedded hearts. Sections were obtained from the apex to the base (300μm of

interval between each section) and stained with TM. Magnification 16x.

Fig 3. Manual measurement of the MI extension with Image J® 1.42 software. A – TM-stained cross sections from

an infarcted heart 21 days post-surgery. B – Area approach – total LV tissue (red line), lumen region (gray line)

and MI tissue (blue line) were manually defined. C – Midline length approach – red line marks the LV myocardium

middle line and the blue line was drawn on the extent of the infarct that includes 50% of the whole thickness the

myocardium.

BA C

Manual measurement
B

C

D

E

Fig 4. A – MIQuant layout. B – Virtual view of the cross-section segmentation obtained by the region growing method

using the MIQuant software. Normal tissue was segmented in light blue, delimitation of the lumen hole was done in pink

and the infarcted tissue was identified in dark blue . C – The midline was drawn at the middle of the LV wall and the

infarcted tissue was considered when the collagen deposition affected more than 50% of ventricular wall (C). D and E

images demonstrated the MI tissue identified on the photography by area and midline length measurements.

A

MIQuant measurement

MIQuant validation

Fig 7. The time consumed during the calculation of the MI size

either manually or using the MIQuant approaches. Although the

MIQuant requires the definition of initial parameters by the user

prior to segmentation, it was significantly quicker (MIQuant

expert and MIQuant volunteers) than the manual method

measurements. **p<0,01 (mean±S.E.M.)

**

**
**

** **

Time consumed during 
analysis

Fig 5. Comparative analysis of the MI size

obtained by manual quantification and using

the MIQuant software.. The percentage of the

affected LV wall was calculated by two

different methods: the midline length

measurement (A) and the area measurement

(B). No statistically significant differences

were observed on the results retrieved by the

midline length measurements. Concerning to

the area measurements, and with the

exception of the heart E, no statistically

significant differences were observed

between the manual and software results.

*p<0,05 (mean±S.E.M.)

Manual vs. MIQuant
A B

*

Fig 6. Comparative analysis of the MI size

obtained by experts or volunteers using

the MIQuant. No statistically significant

differences were observed neither by the

midline length (A) or by the (B) area

measurements. *p<0,05 (mean±S.E.M.)

Expert users vs. Volunteer users
BA



H . Poster presentation in the 1st Advanced Summer School

Poster entitled "MIQuant - towards standardization of cardiac regenerative therapies experi-
mental assessment" presented in the 1st Advanced Summer School, Interrogations at the Bioin-
terface, Cancer/Regeneration Interface and also in the Spring Biointerfaces Lab Meeting both
held in Porto, Portugal, 2011.
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MATERIALS & METHODS

Experimental myocardial infarction (MI) model - 8-12 weeks old C57BL/6 mice were anesthetized, mechanically

ventilated, and subjected to MI via permanent ligation of the LAD coronary artery. Sham-operated mice underwent

the same surgical procedure without ligation of the coronary artery. All animals were kept and handled in

compliance with the IBMC-INEB Animal House guidelines and the European Convention.

Histological analysis - For histological analysis, 3μm thick transverse sections were cut from the apex to the base

of paraffin-embedded hearts with an interval of 300μm among each section [5]. Sections were stained with

Hematoxylin-Eosin (HE) and Masson’s Trichrome (TM) for morphologic and quantitative analysis of the infarct

region, respectively.

Calculation of the Myocardial Infarction - The percentage of the affected LV wall was calculated by two different

and previously validated methods: the area measurement (calculated by dividing the infarct area by the total LV

area) [7] and the midline length measurement (calculated by dividing the midline of the infarcted ventricle wall by the

midline of total LV wall). Midline infarct length was defined as the length of the midline on regions with >50% of the

myocardial wall thickness with collagen deposition [5]. The MI size determination was performed either manually, by

drawing points to outline different anatomical/pathological regions of LV using the Image J 1.42 software or by using

a novel semi-automated program - MIQuant, designed in MATLAB® (Mathworks®, Inc.)

MIQuant Software – The semi-automated software was designed by applying the region growing method, which

exploits the spatial context by grouping pixels or sub-regions into larger regions according to a determined criterion.

Regions are merged if they satisfy the chosen criterion and no merging occurs when the criterion is not met [9,10].

The lumen region is identified as a biggest hole inside the heart segmentation. The user is asked to provide input

seed points for the LV lumen and viable myocardium prior to automated segmentation. Following segmentation, the

image displayed in the screen will be the support for the infarct size computation by area measurement. To perform

the midline measurement the MIQuant software automatically traces lines from the lumen centre to the outside of

the tissue, and finds the middle distance between tissue boundaries.

Statistical analysis – To validate MIQuant, 4 expert researchers analyzed 5 hearts by midline and area methods,

manually and with MIQuant. All experts repeated measures at 3 distanced moments and a one-way repeated

measures analysis of variance (ANOVA) was conducted to evaluate repeatability. Seven non-trained volunteers

measured the same samples using MIQuant. The association between manual and MIQuant results was

investigated by the Person product-moment-correlation coefficient (r) and to address agreement amongst methods,

the Bland-Altman agreement statistical method was used. A two-way between-groups ANOVA and post-hoc Turkey

HSD test was applied to attend the impact of observers and heart samples in the results. Expert and volunteer

results were compared by an independent-samples t-test and the time spent during the MI size quantification

manually and with MIQuant software was compared by an Independent-Samples Mann-Whitney U test.
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INTRODUCTION
In recent years, the evaluation of cardiac regenerative potential of newly

developed therapies, as is the case of gene-delivery and transplantation of

stem/progenitor-cells, has been primarily explored in rat and mouse models

of surgically-induced myocardial infarction (MI) [1,2,3]. The left anterior

descending (LAD) coronary artery ligation is the prominent model in these

studies, and the infarct size has been considered a key parameter for

assessing the success of the novel therapy. In studies involving an

experimental MI setting, the calculation of the infarct size is typically

evaluated by histological measurements of either: (a) the endocardial and

epicardial length [5,6], (b) the midline length [5], (c) the endocardial length

[4] or (d) the area [7] of infarcted versus non-infarcted left-ventricle (LV)

regions. Despite the widespread use of the aforementioned approaches, the

infarction size can vary depending on the used method [5,8] and thus no

direct comparison can be withdrawn across laboratories. Moreover, several

aspects of MI size quantification that can also account for infarct size

variation are inconsistent across studies and not always clearly defined, e.g.

the number of sections used for the calculation, the histological staining and

criteria used to identify the infarcted region. Accordingly, the purpose of the

present work is to standardize and simplify the infarct size calculation in

experimental models of MI by making accessible, as freeware, an easy-to-

use semi-automatic software application, which we developed and validated

at the “bench”.

The MIQuant is a valid, easy-to-use software application that assists on infarct size calculation. The 

widespread use of MIQuant will contribute to the reduction of time spent on the analysis and for the 

standardization of infarct size quantification across studies and, therefore, to the systematization of the 

evaluation of cardiac regenerative potential of newly developed therapies.

CONCLUSIONS

MIQuant validation
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Validation of MIQuant by non 

trained volunteer-users

Fig 3. MIQuant efficacy is

not affected by user

proficiency. MIQuant infarct

size values obtained by

competent (experts) and

non-trained (volunteer)

users were compared and

the mean values are

displayed as graph bars.

Independent-samples t-test

showed no significant

differences between infarct

scores calculated by the

experts vs. volunteers.

Furthermore, a two–way

ANOVA demonstrated no

significant influence of the

user on the obtained infarct

size value.

Time-efficiency of MIQuant

infarct size quantification

Fig 5. The time consumption of

the infarct size determination per

heart (mean value of 12

representative sections of the LV)

was compared between the

manual and MIQuant

approaches. Although the

MIQuant requires the definition of

initial parameters by the user

prior to segmentation, the semi-

automated software resulted on a

significant overall 4,5- and 3-fold

decrease in the time spent on the

analysis when performed by

experts and volunteer users,

respectively. The Δ indicates the

mean value of each group.

**p<0,001 (mean±S.E.M.).

**

**

**

indicates the mean value of each group. * p < 0,05.

MIQuant repeatability (intra-observer) and reproducibility 

(inter-observer)
Fig 2. A. Consistency of manual

and MIQuant infarct size results

obtained using the area and

midline length measurements.

Hearts were harvested at 21 days

post-surgery and infarct size

determinations are the mean

value of 12 cross-sections

representative of the LV. Mann-

Whitney statistical analysis

demonstrated significant

differences between the area and

midline length methods, as

already described by Takagawa

[10]. B. Reproducibility of

MIQuant measurements. Although

ANOVA demonstrated no

significant influence of the

observer on the LV infarct size

scores obtained, neither manually

nor using MIQuant, the latter

displays a tendency for lower

discrepancy between operators.

*

*

A. B.

MIQuant vs. Manual

Fig 4. A. Bland-Altman analysis was conducted with manual

and MIQuant results obtained per LV section. The visual

inspection of Bland-Altman plot denoted that differences

between MIQuant and manual measurements are scattered

around the bias with no obvious pattern for the midline

length results whereas, the area differences appear to

increase for higher infarction values. The estimated bias is

0.36% with concordance limits of -10.72% and 11.45% for

the midline length method, whereas for the area approach

the bias is 2.68% with limits of agreement of -7.58% and

12.94%. Hence, for both methodological approaches, the

predicted confidence interval is within acceptance limits and

so MIQuant is considered equivalent to the established

manual quantification method. B. Measurements of the

infarct size per heart, i.e. mean value of 12 sections

representative of the LV, obtained by the manual and

MIQuant calculation were also compared. For the midline

length, the predicted bias is 0.25% and the limits of

agreement are -3.60% and 4.09%, resulting on 7.74%

amplitude of concordance. The analysis of the area

measurements retrieves a mean difference of 2.47% (95%

confidence interval (CI) from 1.21% to 3.72%), suggesting

that MIQuant tends to give a higher reading from 1.21% to

3.72%. The area method concordance interval ranges from -

2.79% to 7.72%. Thus, for MIQuant per heart infarct size

results the confidence interval of the predicted bias and

concordance limits are within acceptance limits (bias ±2%,

concordance limits ±7%) for both midline length- and area-

measurements, which show that the performance of

MIQuant is equivalent to the manual infarct size calculation.

A.

B.

LV  

wall

MI

Area Midline Length

LV midline

MI midline

B.

TM stain (21days post-MI)

1               3             5               7              9              11                    

2               4            6             8              10            12                    

A. C.

Fig 1. Manual and MIQuant semi-automated calculation of MI

size in chronic infarcts. A. LV representative MT stained sections,

numbered from the apex to the LV base, were obtained from an

infarcted hearts harvested at 21 days post-surgery. B. Histological

infarct size calculation by the area method requires manual tracing

of the LV myocardium (light gray) and of the scarred LV tissue

(black). The infarct size, expressed as a percentage, is the division

of the infarct area by the LV area multiplied by 100. For the midline

length approach (right) the midline, herein defined as the mid-region

between the epicardial and endocardial surfaces, of the total LV

(dashed line) and of scarred region (full line) are manually traced.

The infarct size, expressed as a percentage, is the division of the

infarct midline length by the LV midline length multiplied by 100. The

total LV infarct extent is the average of infarct size obtained for the

LV representative cross-sections A.. (C) Screen shot of MIQuant

layout following infarct size calculation. Multiple images can be

uploaded in TIFF or JPEG file-formats and the software calculates

the intermediate values of infarct size for each image (bottom right).

A total MI size is also generated assuming that the uploaded images

were representative sections of the LV. For selection of the scarred

myocardium (top right) the software requires the user to double-click

in a normal tissue region and in the LV lumen, if applicable, over the

uploaded image (top left).



I . Oral presentation in the XII Congresso Técnico de Anato-
mia Patológica

Oral presentation performed in the XII Congresso Técnico de Anatomia Patológica, Centro
Multimeios de Espinho, Espinho, Portugal entitled "MIQuant - towards standardization of car-
diac regenerative therapies experimental assessment".
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J . Infarct size evaluation through automatic thresholding
segmentation

Several examples of successful infarct size evaluation through the segmentation of tissue per-
formed by automatic thresholding approach. It is visible the segmentation of the normal and
infarcted tissue regions and the final result obtained.
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Table J.1 Infarct size evaluation in images of the heart cross section: First column - input images,
second column - segmentation result of normal tissue, third column - segmentation result of infarcted
tissue, fourth column - infarct size evaluation.



K . Infarct size evaluation through watershed segmenta-
tion

Several examples of successful infarct size evaluation through the segmentation of tissue per-
formed by watershed approach. It is visible the watershed segmentation result and the final
result obtained with the identification of the infarcted and normal tissue regions.
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Table K.1 Infarct size evaluation in images of the heart cross section: First column - input images,
second column - watershed segmentation result, third column - identification of the infarcted and normal
tissue regions and infarct size evaluation.



L . Infarct size evaluation through k-means segmentation

Several examples of successful infarct size evaluation through the segmentation of tissue per-
formed by k-means clustering approach. It is visible the k-means clustering result and the final
result obtained with the identification of the infarcted and normal tissue regions.
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Table L.1 Infarct size evaluation in images of the heart cross section: First column - input images,
second column - k-means clustering result, third column - identification of the infarcted and normal
tissue regions and infarct size evaluation.



M . Infarct size evaluation through mean-shift segmenta-
tion

Several examples of successful infarct size evaluation through the segmentation of tissue per-
formed by mean-shift clustering approach. It is visible the mean-shift clustering result and the
final result obtained with the identification of the infarcted and normal tissue regions.
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Table M.1 Infarct size evaluation in images of the heart cross section: First column - input images,
second column - mean-shift clustering result, third column - identification of the infarcted and normal
tissue regions and infarct size evaluation.



N . Infarct size evaluation through anatomical model adap-
tation

Several examples of successful infarct size evaluation through the segmentation of tissue per-
formed by anatomical model adaptation. It is visible the final adaptation of the anatomical
model with the identification of the right and left ventricle lumens of the heart cross section,
the estimation of the left ventricle region where the infarct size evaluation is performed and the
final result obtained with the identification of the infarcted and normal tissue regions.
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Table N.1 Infarct size evaluation in images of the heart cross section: First column - input images,
second column - final adaptation of the anatomical model, third column - estimation of the left ventricle
region, fourth column - infarct size evaluation.
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