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Resumo

É aceite globalmente que a regulação e monitorização da pressão arterial contribui ativamente
para a melhoria da qualidade de vida da população através da prevenção de episódios e doenças
cardiovasculares.

Recentemente, apesar terem sido feitos avanços na área da monitorização ambulatória não-
invasiva da pressão arterial (MAPA), dispositivos de MAPA ou baseados na tecnologia Finapres
trazem custos financeiros e de usabilidade significativos que os impedem de ser usados pela maio-
ria da população numa base diária.

Nos últimos anos, técnicas baseadas no pulse transit time (PTT) foram consideradas como
um instrumento promissor para monitorizar de forma não-invasiva e contínua a pressão arterial, a
um nível personalizado. Neste trabalho aborda-se a questão de como modelos baseados em PTT
se comportam como estimadores de pressão arterial sistólica (SBP) através de várias abordagens.
Off-line least squares fitting e recursive least squares são aplicados para determinar a correlação
entre os parâmetros do modelo e a sua evolução no tempo. Obtêm-se baixos coeficientes de
correlação e não se observa nenhuma evolução sistemática dos parâmetros no tempo. On-line
exponentially-weighted regression é aplicada, com uma calibração inicial, e uma recalibração do
sistema a cada T minutos. Observa-se que desvio padrão do erro e o erro quadrático mínimo
aumentam consideravelmente com T , sugerindo que os parâmetros determinados inicialmente se
tornam cada mais obsoletos depois de 30 a 60 minutos de atividade.

No entanto, permanece a questão se um modelo baseado em PTT é um indicador de variabil-
idade de SBP suficientemente bom para detetar eventos de pressão arterial sistólica. Através da
imposição de requisitos médicos, nomeadamente um threshold de 20 mmHg para mudanças de
SBP significativas, eventos de SBP são definidos e obtidos através de um conjunto de técnicas
desenvolvidas. Após a geração o groundtruth (GT), são analisados os thresholds que maximizam
os tradeoffs entre o número de deteções positivas verdadeiras e falsas através da geração de curvas
de performance ROC para três diferentes métodos de estimar a pressão arterial sistólica. Pontos
específicos na curva ROC do método exponentially-weigted regression com um período de recal-
ibração de 20 minutos, sugeriram que o método pode ser incorporado com tecnologia atual de
monitorização de pressão arterial, usando um threshold de 12.5 com per f ormance razoável (82%
sensibilidade e 79% especificidade).
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Abstract

It is widely spread and accepted that regulation and monitoring of arterial blood pressure con-
tributes actively to the prevention of cardiovascular events and diseases.

Although developments have been made in non-invasive ambulatory blood pressure measure-
ment, ambulatory blood pressure monitors or devices based on Finapres technology carry signif-
icant costs or performance drawbacks that do not make them eligible for a widespread use of the
technology.

Recently, pulse transit time (PTT) based techniques have been suggested as a promising tool
to deliver non-invasive and continuous monitoring of BP on a personalized wearable level. In
this work the question of how PTT-based models performs as an estimator of SBP is addressed
using several approaches. Off-line least squares fitting and recursive least squares are applied to
determine parameter correlation and evolution in time. Low correlation coefficients are found and
no systematic components are observed. On-line exponentially-weighted regression is applied by
performing an initial calibration and then re-calibrating the system every T minutes. Standard
deviation of the error and minimum squared error were observed to increase considerably with
T , suggesting that initially determined parameters become increasingly obsolete after 30 to 60
minutes of activity.

However, the question whether a PTT-based model is an indicator of SBP variability strong
enough to detect events of SBP remained. By imposing medical requirements, namely a threshold
for significant SBP changes of 20 mmHg, SBP events are characterized and a set of techniques
for SBP event detection are developed. Upon generating the ground truth, the thresholds that
maximize the tradeoffs between the number of true and false positive detections are analysed
by generating ROC performance curves for three different methods of estimating SBP. Specific
points in the ROC curve of a exponentially-weighted regression with period of re-calibration of
20 minutes suggested that the method could be incorporated with current technology for ambula-
tory BP measurement using a threshold of tr = 12.5 and providing reasonable performance (82%
sensibility and 79% specificity).
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Chapter 1

Introduction

1.1 Work context

This report presents in detail the work developed by student Pedro Manuel Pinto da Silva as the

final project of the Master’s course in Electrical Engineering and Computers of the Faculty of

Engineering of the University of Porto (FEUP), Portugal. It is connected to the project RTABP

- Real Time Arterial Blood Pressure, which started off in the Engineering Institute of Electron-

ics and Telematics of Aveiro (IEETA). After two accepted publications, in the 2011 6th Iberian

Conference [1], and the 2011 Annual International Conference of the IEEE [2], the project is cur-

rently not funded by the Portuguese foundation for Science and Technology (FCT), but it has been

advancing thanks to progresses made by interested members of the team and recruited students.

More recently, a connection with Hospital Center of Gaia and Espinho (HGaia) has been estab-

lished, with the purpose of setting up a physiological signal acquisition and monitoring network,

which enabled the gathering of relevant data used in the study of cardiovascular related models,

namely ones that can estimate BP non-invasively. Under proper supervision, the acquisition of

such data combined with clinical information provided by the medical staff, lead by Dr. Vasco

Gama, may help in detecting patterns and associations that might have previously passed unno-

ticed and may prove to be determinant in the development of more accurate BP estimation models.

Yet, the process of developing a database of proportions large enough to make such breakthroughs

possible takes time, and few cases have been included in this dissertation.

The work here exposed tries to give a contribution to the work already developed by Susana

Brás, Óscar Pereira and Paulo Azevedo from IEETA, internship student Luka Mijatovic, and Prof.

Dr. João Paulo Cunha.

1.2 Background and motivation

By 2012, cardiovascular diseases represented nearly 50% of the world’s cause of death by non-

communicable disease [3]. It is well documented the importance of the role played by blood

pressure (BP) when it comes to assess the state of the cardiovascular system [4]. In fact, BP is

1



2 Introduction

considered to be a very important indicator of a person’s well being, as it provides valuable infor-

mation on the functional status of the heart and arteries. Therefore, it is widely spread and accepted

that regulation and monitoring of arterial blood pressure contributes actively to the prevention of

cardiovascular events and diseases.

However, traditional methods and instruments for measuring and monitoring blood pressure, in

clinics or at home, are limited to snapshots of systolic and diastolic blood pressure at intervals [5].

Although these methods provide a way to track one’s blood pressure, there is far more information

of medical interest available in the arterial blood pressure wave, particularly in the systolic blood

pressure (SBP) curve. Actually, BP is also known to be a very unstable parameter and its variability

alone is considered by some to be a separate risk factor itself [4, 6]. Hence, traditional methods

often fail in accounting for cardiovascular events and diseases connected with high variability of

BP. Additionally, it has been suggested that visit-to-visit (between medical visits) variability in

SBP over periods of time longer than 24 hours may have greater prognostic value than average BP

values or short-term variability [6, 7, 8]. For instance, visit-to-visit SBP variability has shown to

be a strong predictor of stroke in patients with treated hypertension and patients that previously

suffered a transient ischaemic attack (TIA), independently of their mean value of SBP [8].

On the other hand, recent developments have been made in non-invasive ambulatory BP mea-

surement. These are commercially available in the form of personal devices and allow a more

complete BP tracking and mapping. Examples of such devices are the Portapres measurement de-

vice which enables the recording of a 24 hour blood pressure profile on a beat-to-beat basis, using

a finger placed sensor and producing a continuous BP waveform [9]. Ambulatory blood pressure

monitoring (ABPM) devices measure BP at regular intervals and usually also used over periods of

24 hours. ABPM devices are believed to be able to reduce the white coat effect: people whose BP

readings at clinical visits are often higher than home readings, due to anxiety and stress caused by

clinical settings [4].

Yet, these devices have significant drawbacks that do not allow them to perform well enough

for a widespread use of the technology. Finapres technology has shown performance problems

linked with underestimation and noise produced by motion artefacts, and its finger cuff is known

to cause transient pain and numbing sensations if used for consecutive hours on the same finger

[4, 9]. On the other hand, ABPM devices lack the continuous ambulatory characteristic, strongly

limiting their performance and measurement capacities. In addition, the arm cuffs utilized limit

their portability and damage their usability. In overall, these devices provide a non-invasive way of

understanding how a person’s BP changes throughout the day, but their use remains uncomfortable

and unreliable for long periods of time and is usually not carried out through consecutive days.

Furthermore, the equipment is considered expensive to be acquired in full or rented on a daily

basis by most people.

Consequently, the development of an alternative non-invasive and ambulatory system for con-

tinuously monitoring BP, which at the same time is comfortable and reliable, would provide deeper

insight and understanding of the underlying mechanisms behind blood pressure variability. More

importantly, the everyday use of an easy-to-manage and cheaper device would constitute a pow-
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erful tool in predicting the trigger of serious cardiovascular events and in helping doctors make

anti-hypertensive therapy decisions [10].

On a different level, wearable technology has seen significant advances over the last years,

mainly in accurately recording and processing electrocardiographic (ECG) signals. Through anal-

ysis of the acquired ECG data, good indicators of stress and fatigue of the monitored individual can

be obtained [1]. Integrating this system with the acquisition of plethysmographic (PPG) signals, it

would be possible to indirectly estimate BP, using the pulse transit time (PTT). Wearable devices

have shown to be a reliable and comfortable way of monitoring patients over extensive periods

of time. These systems combine monitoring, display, treatment and alarm functions through the

application of wireless technology [11]. This was possible as a result of technical improvements

in wireless technologies, which in turn allowed the monitoring of multiple parameters of individ-

uals in parallel. Mobile devices, on the other hand, have presented themselves as a cheaper, but

powerful and accessible tool to be used as a monitoring system [12].

Therefore, wearable technology has proved itself to be a very promising mean to deliver con-

tinuous non-invasive blood pressure measurement in a comfortable and faithful way. Implement-

ing this functionality in addiction to the ones already in use would result in a true wearable continu-

ous monitoring system that can watch over several important vital signs non-invasively, ultimately

being a significant medium to prevent cardiovascular associated diseases and, thus improve life

expectancy worldwide.

1.3 Goals and objectives

This work aims at giving a contribution to continuous non-invasive blood pressure estimation us-

ing a pulse transit time based approach. Its main goal is to study and provide deeper insight into

the models and equations currently used in the literature for this purpose. The models will be

explored by varying its parameters and through application of regressive and recursive mathe-

matical techniques. For this, data recordings of patients with relevant cardiovascular characteris-

tics or pathologies will be obtained and used from trustworthy signal databases, particularly the

Physionet MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care) research database

[13, 14]. Also, a study on the impact of the calibration process on performance and usability will

be performed, in order to search for a point of equilibrium between functional and non-functional

requirements of the system.

From the findings and conclusions drawn from previous analysis, an application able to point

at certain BP relevant events is to be designed in conformity with the characteristics of a PTT based

BP estimation approach. In conference with Dr. Vasco Gama and Dr. Daniel Caeiro at HGaia,

a definition of BP event is to be obtained and used as basic criteria for evaluation and detection

algorithms under development. Additionally, a technique of detection of structural changes on

time series data is to be used, based on literature. Finally, performance graphs will be obtained

and evaluated, using receiver-operation-characteristic (ROC) graphs and curves, by varying the



4 Introduction

threshold of the main detection parameter. Several graphs or curves may be obtained in respect to

the different combination of inputs when estimating BP using PTT.

Ultimately, the contribution of this work will be assessed in overall and towards similar works.

Future milestones, outcome paths and possibilities, directly or indirectly resulting from accom-

plishments made, will be described in detail, accordingly.

1.4 Work tools

The MATLAB R© environment is the main tool for design and development used in this work.

Additionally, it uses a toolbox for processing the physiological data yielded in the records and

obtain the PTT, HR and invasive SBP signals studied in this work.

Figure 1.1: Optimization versus real world constraints.

Figure 1.1 represents the paradigm approached in this work. A model for non-invasive BP

estimation is studied and are applied optimization methods and processes with scope not limited

by boundaries of the real world. Thus, the area of application of this model lies in the space where

the results obtained from optimization meet real world requirements and constraints.

Data collection setup

The connections previously established between the RTABP team and the medical team at HGaia,

led by Dr. Vasco Gama, resulted in the permission to access a monitoring network set up within

an infirmary based on the cardiovascular wing of the hospital. This enabled the access to data of

intra-arterial BP, PPG, and ECG being monitored in patients at the infirmary.

The work flow, main interactions and parties involved in this process are represented in Fig.

1.2. Monitoring of patients is performed on a daily basis, but whenever a patient of cardiovascular

interest is identified, i.e. a person with cardiovascular pathologies or events that make him or

her eligible for ambulatory BP monitoring, the person in charge of supervising the monitoring

at HGaia, contacts the person on the RTABP team in charge of collecting the data in order to
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Monitors

Cardiovascular relevant patients

Monitor

Data Acquisition

Data Extraction

Data Quality Review

Useful data for research

Doctors
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Patients Clinical Information
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is Bad

Central PC at HGaia

Personal computer 
with Matlab

Figure 1.2: Data acquisition setup at HGaia.

trigger the data acquisition process. That includes using special software on a specific computer

located at HGaia to acquire the data being monitored in real-time. Once the acquisition is finished,

usually lasting between one and two hours, the data is anonymized and extracted to a special

format and transferred to a personal computer, where the data analysed using Matlab. At the same

time, the medic responsible for supervising the monitoring of the patients, provides the patient’s

anonymized clinical information. If the signals have quality good enough for research, a complete

trustworthy study case has been produced.

Databases and datasets

So far, HGaia’s data collection setup has produced just three complete study cases. Therefore,

Physionet MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care) research database

[14, 13], was used to obtain physiological signals from several Intensive Care Unit (ICU) patients.
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MIMIC database is considered a trustworthy source of data and it is widely used in researches and

scientific studies. Its major drawback is that access to patient personal and clinical information

is, in most cases, restricted. However, the database provides tens of thousands of records of

continuous high-resolution physiological waveforms.

A search for records containing simultaneously intra-arterial BP, ECG and PPG signals, re-

turned hundreds of matches for patients whom age and gender was known. Therefore, two datasets

were developed taking into account the characteristics of prototypical users of the system. 28

records of people in their sixties and high average values of blood pressure (at least 135 mmHg)

were collected. On the other hand, 25 records of people with less than 40 years old, but showing

considerable variations in SBP were also acquired. The records have all a duration of 60 minutes

and are close distributed between male and female patients, picked from several times of the day.

13 records, previously studied by Luka Mijatovic, and the 3 study cases from HGaia are added to

the 53 specifically gathered records, making up a total of 69 records from 4 different datasets.

1.5 Dissertation structure

This work is organized in four more chapters as follows:

• Chapter two provides a sufficient background, and a review of the state of the art, on

BP measurement methods, namely the PTT approach, and wearable systems as well. Its

objective is to familiarize the reader with the terminology and progresses made so far in

these areas, and identify the current trends in development and research.

• Chapter three describes and analyses in depth the methods put into use in the study of the

models and the results obtained from the experimental setup and optimization techniques

applied. Additionally, a system definition is given and modelling is performed to explain

real and experimental system requirements, constraints and boundaries utilized; databases

used and datasets developed are reported as well.

• Chapter four introduces a different approach, a novel application which detects BP events.

Motivation, definitions and requirements will first be presented, methodology, detection,

evaluation techniques and algorithms will be described after. Finally, results will be pro-

vided based on performance graphs and tables.

• Chapter five closes this work by putting each section into the wider picture, by identifying

which objectives were and were not fulfilled and, ultimately, by providing a set of points

representing the outcomes that resulted from the developed work. In addition, future work

will be provided through a list of discussion topics representing future strategies on non-

invasive blood pressure estimation using a PTT based approach, which may result either

from the conclusions drawn or work not performed due to time management options or

unavailable resources.



Chapter 2

State of the art

2.1 Methods for measuring blood pressure

2.1.1 Blood pressure characteristics, variability and measurement

Blood Pressure, sometimes referred to as arterial blood pressure, is the force of circulating blood

pushing against the walls of blood vessels, named arteries. Each time the heart beats, blood is

pumped out into the arteries and distributed all over our body. It constitutes one of the principal

vital signs. Systolic blood pressure occurs when the heart is pumping and diastolic blood pressure

occurs when the heart is resting [15]. By convention, blood pressure is measured in millimetres

of mercury (mm Hg) [16], and is considered normal if it is usually less than or equal to 120/80

mm Hg (120 systolic and 80 diastolic) [17].

Figure 2.1: Generic blood pressure waveform in the arteries (adapted from [18]).

Blood pressure varies throughout the different sites of the human body and suffers spontaneous

fluctuations during the day as it is modulated by respiration. There is a considerable range of ways

to describe BP variability, from beat-to-beat changes to long-term changes between clinical visits

7
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[4]. Furthermore, it has been showed that biological materials, such as human organs, are more

susceptible to damage by changes of pressure rather than steady-state levels and, in consequence

BP variability may be considered an independent risk factor for cardiovascular morbidity [19].

Although other studies also point out that BP variability should be considered an important pre-

dictor of heart disease development [20, 21], it remains unclear to what extent the pathological

effects reported are a manifestation of a damaged organ weakening the baroreflex regulation of BP

(which leads to the increase of BP variability) or the direct result of the variability itself [4].

In order to properly analyse this phenomenon, continuous blood pressure recordings with high

availability levels are needed [22]. Therefore, a non-invasive continuous blood pressure mon-

itoring system does not only help clinicians to classify patients as normo- or hypertensive but

also helps determining the uncertainty and effects introduced by the instability of blood pressure

variability.

There are two major approaches when it comes to measuring BP:

1. direct invasive methods;

2. indirect non-invasive methods.

Invasive Methods are generally used in hospitals and intensive care units via the insertion of

a catheter into a suitable artery thus providing a "beat-to-beat" record of the patient’s BP. This

method provides more accurate readings, proving to be very useful in patients that are likely to

display sudden BP changes (e.g. vascular surgery), patients that require a close BP control (e.g.

head injured patients), or in patients receiving drugs to maintain BP [23]. On the downside,

being a method that requires the invasion of the body (skin, tissue and vessel wall) with a hollow

needle, its application is limited due to the risks and ethical aspects of the associated invasiveness.

Therefore, such measurements usually only take place on seriously ill patients.

Non-Invasive Methods do not require skin penetration but instead the use of a cuff based tech-

nique. Although there has been recent developments concerning cuffless measurement systems

in a body sensor network (BSN) context, these are not yet available for commercial purposes.

Furthermore, indirect measurements provide either a momentary value of blood pressure or a con-

tinuous waveform similar to invasive measurements, depending on the technique. Intermittent

non-invasive methods, namely auscultation and oscillometry, represent the most common use of

blood measurement technology in clinical and ambulatory measurement, respectively. However,

all of these techniques have known limitations and do not yet present the same accuracy levels as

invasive methods.

2.1.2 Non-invasive blood pressure measurement

According to Ward and Langton [16], intermittent, non-invasive systems are based on three key

components:

1. an inflatable cuff;
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2. a method which determines the point of systolic and diastolic pressures;

3. a method for measuring pressure.

Mode of Operation: A cuff is placed around a limb, usually the upper arm. It should be approx-

imately 20% wider than the diameter of the part of the limb being used. Smaller cuffs lead

to an overestimation of blood pressure and bigger cuffs will lead to an underestimation of

blood pressure. The cuff will then be inflated to a pressure above that of the arterial systolic

pressure. When this pressure point is reached, the walls of the artery are preventing blood

flow. The cuff is then deflated below systolic pressure resuming blood flow. This flow can

then be calculated using different resources [16].

Auscultation

This technique was first described by Nicolai Korotkoff in 1905, using the cuff presented by Riva-

Rocci in 1896. An inflatable cuff is used to compress the brachial artery and a mercury sphyg-

momanometer for measuring cuff pressure. Additionally, using a stethoscope it is possible to

determine a set of sounds over the brachial artery distal to an upper arm cuff [9]. Four sounds

or phases, and later five, were described and its nature attributable to the systolic and diastolic

pressures Fig 2.2.

Figure 2.2: Graphical representation of cuff deflation and sound intensity on auscultation (adapted
from [16]).

In the past, it was debated if the fourth or the fifth Korotkoff sound represents true diastolic

pressure. However, there is a current consensus to choose the fourth or the fifth sound which is

based on the pulsation audibility when cuff deflation is complete [16]. Although this method con-

stitutes a simple procedure, it requires a trained operator and different interpretations of diastolic

pressure may arise and lead to significant variability. The auscultatory method has been the most
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frequently applied method for measuring blood pressure but is gradually being replaced by other

techniques that are more suited to automated measurement.

Oscillometry

Oscillometry is based on the detection of the oscillations in the cuff pressure during cuff deflation.

The technique was discovered by Marey in 1876. The oscillations begin above systolic pressure

and continue below diastolic Fig 2.3, so their values can only be estimated using an indirect em-

pirical approach. These effects take place due to the impact of the blood pressure on the cuff

and can be seen even for cuff pressure above the systolic blood pressure value, where the arteries

under the cuff are closed [18]. It was shown experimentally that the point of maximal oscillation

corresponds to the mean intra-arterial pressure [4].

Figure 2.3: Oscillometry: The upper curve shows the oscillometric pulses of the cuff pressure. It is depicted
the decrease of cuff pressure above systolic blood pressure to below diastolic blood pressure. The lower
curve is the upper curve after subtracting the its trend and amplifying the oscillations (adapted from [18]).

As different approximations can be utilized to obtain the systolic and diastolic pressure values,

different manufacturers tend to use different criteria. The technique’s main advantage is that the

cuff doesn’t contain sensors which results in its placement not being critical. This leads to patients

being able to apply cuffs themselves, making home measurements possible [9]. On the other hand,

the amplitude of the oscillations is dependent on other factors, such as the stiffness of arteries,

which may lead to underestimation in older people [4]. In addition, the pulsations are easily

disturbed by motion artefacts.

Volume-clamp method

This method was introduced by Peñáz in 1973 and is based on the principle of dynamic vascular

unloading of the finger arterial walls using an inflatable finger cuff with a built-in photoplethys-

mographic (PPG) sensor [24].
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Plethysmographic devices can’t measure blood pressure, but they can measure blood volume

changes. Yet, these volume changes can’t be transformed into pressure, due to the non-linearity of

the elastic components of the arterial wall, as well as the non-elastic parts of the smooth muscles

[25]. So, to linearize this phenomenon a counter pressure as high as the pressure inside the artery

needs to be applied Fig 2.4. Blood volume can be kept constant if the same pressure is applied

from the outside. Therefore, the continuously changing pressure that is needed to keep the arterial

volume constant corresponds to the intra-arterial pressure and thus it is an instantaneous, continu-

ous measure for arterial blood pressure [25]. This is the principle behind the vascular unloading

technique Fig 2.5.

(a) Finger Physiology (b) Plethysmographic method

Figure 2.4: Plethysmographic method: Infrared light, emitted from a LED, is sent through the finger. The
light is partly absorbed by arterial blood, which changes according to the pulse. A light detector receives the
non-absorbed light on the other side of the finger and therefore produces a continuous pulse signal. Figures
adapted from http://www.cnsystems.at/en/vascular-unloading-technique.

Figure 2.5: Vascular unloading technique: The volume signal is fed into the control system that produces
a counter pressure in a cuff placed over LED and light detector. The control condition of the system
keeps the volume signal constant at any time by controlling the alterable pressure in the cuff (adapted from
http://www.cnsystems.at/en/vascular-unloading-technique).
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Finapres (Finapres Medical Systems, Amsterdam, The Netherlands) technology was intro-

duced in the early 1980s providing the measurement of the arterial blood pressure waveform at the

finger on a continuous beat-to-beat basis, using the vascular unloading technique described above

Fig 2.5. It uses a extremely rapid servo system with the cuff actuator in order to adjust the pressure

in the finger fast enough to keep the photoplethysmograph constant.

Finapres cuff pressure has been compared to intra-arterial pressure in a large number of studies

in both awake and anaesthetized subjects. Blood pressure variations were introduced by different

means [9]. The obtained wave form using this procedure has been found to resemble to the intra-

arterial pressure wave in most subjects and is considered to give an accurate estimation of the

changes of systolic and diastolic pressure [4]. Still, results have concluded that the finger arterial

mean pressure measured with Finapres is 5 to 10 mmHg lower than intra-arterial pressure in the

brachial artery [9]. The Finapres system is no longer commercially available, but alternative blood

pressure devices have been introduced: the Portapres and Finometer systems (Finapres Medical

Systems BV, Holland) and the Task Force Monitor system (CNSystems Medizintechnik, GmbH)

[24].

With the development of the Portapres measurement device it was possible, for the first time,

to record long-term 24 h blood pressure profiles and obtain daily variations in blood pressure.

In consequence, related cardiovascular parameters of healthy subjects and patients during their

normal daily activities could be obtained and analysed [9]. It was considered a breakthrough in

ambulatory non-invasive blood pressure measurement.

2.2 The pulse transit time approach to blood pressure measurement

Even though the above described non-invasive methods for measuring BP present good results,

their ambulatory characteristics show a number of limitations that makes it unsuitable for individ-

uals to wear in a true comfortable and reliable way. Furthermore, the vertical offset between the

measurement location and the level of the heart is often a source of serious measurement error

[26].

Potentially the most useful and convenient indirect parameter for achieving a continuous non-

invasive measurement of BP in an ambulatory way that is comfortable and reliable is the pulse

wave velocity (PWV) or the inverse, pulse transit time (PTT). PTT is the time it takes a pulse

wave to travel between two arterial sites, usually from the aortic valve to the finger [5, 15]. The

principal factors that determine the speed of propagation of the pulse wave are the stiffness and

tension in the arterial walls. In turn, speed propagation of the pulse wave depends to a large extent

on blood pressure. An increase in BP means an increase in arterial wall tension and stiffness, thus

decreasing PTT, and in reverse a drop in BP decreases arterial wall tension and stiffness, therefore

extending PTT [15]. It can then be concluded that PTT is inversely proportional to BP and the

falls in blood pressure corresponds to rises in PTT [15].



2.2 The pulse transit time approach to blood pressure measurement 13

The theoretical framework behind these statements is known as the Moens-Korteweg equation.

It gives us the pulse-wave velocity as a function of vessel and fluid characteristics, thus outlining

the relationship between PTT and blood pressure [5, 27]:

c =
L

PT T
=

√
E.h
ρ2R

(2.1)

where c is the wave velocity, L is the length of the vessel, PT T the pulse transit time, ρ is the fluid

density, R is the inner radius of the vessel, E is the modulus of wall elasticity (Young’s modulus),

and h is the vessel thickness. Considering an elastic vessel, there exists an empirical exponential

relation between E and the fluid pressure P, in particular:

E = E0eα(P−P0) (2.2)

where E0 and P0 are nominal values of Young’s modulus and pressure, respectively, and α is a

constant.

There are different ways to measure PTT, such as arterial tonometry, the ultrasound Doppler

method or using two aligned PPG sensors located at known distance [5, 28]. However, there is

a simpler and more convenient way to measure PPT. It can be computed as the temporal differ-

ence between the R wave in an electrocardiogram and the beginning of the following pulse wave

measured by photoplethysmography Fig 2.6.

(a) ECG and PPG wave signals (b) Graphical display of PPT calculation

Figure 2.6: Using pulse wave analysis, the R peak can be identified as well as the PPG pulse peak. Beat-
to-beat pulse transit time for both the foot of the pulse (PTTf) and the peak of the pulse (PTTp) can then be
computed and the foot-to-peak amplitude (AMP) registered (adapted from [24]).

To find a relation between blood pressure and PPT, equations (2.1) and (2.2) can be used. From

those a logarithmic relation between the two parameters is obtained:

P = k1ln(k2.PT T ) (2.3)

where k1 and k2 are arbitrary constants and P the fluid pressure, in this case BP. BP can be then

estimated using a linearised version of the logarithmic model. Different linearised versions of the
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logarithmic model have been used in various cuffless systems that attempt to estimate BP non-

invasively, some of which include additional data features, such as heart rate (HR). These models

and systems will be explored in the next section.

Concerning the measurement quality of PPT based methods, Marcinkevics [5] indicates sev-

eral studies that have confirmed the application of PPT for blood pressure measurement and some

which implied that PTT was not sufficiently highly correlated to BP in order to indirectly measure

it. In addition, he led a study in which he concluded the existence of a close correlation between

pulse wave velocity (PWV) and blood pressure. Furthermore, Wong and Zhang [29] conducted

and experiment in which the results "implicated that a PTT-based technique could be implemented

in a personalized wearable device for non-invasive and continuous monitoring of SBP".

Taking these statements into consideration, it seems beneficial to integrate blood pressure mea-

surement using PTT based models in wearable devices that already perform ECG measurements

in a reliable way. This would have a complementary effect, either if the underlying cause is to

expand the quantity and quality of services performed, or the fact that ECG measurement may

enhance and improve BP estimation results.

2.2.1 PTT based models

Recently, several methods and devices for cuffless BP estimation using PPG signals, have been

proposed in the literature. Experiments have been conducted on groups of subjects, where in-

dependent instruments are used to acquire ECG and PPG, thus estimating BP. Simultaneously, a

reference method for BP measurement is applied and compared with the estimated values. The

most frequently used models based on simplified and linearised versions of the Moens-Korteweg

equation (2.1) are:

• Cattivelli and Garudadri [27] use models of the form:

BP = a ·PT T +b (2.4)

which the authors considered to be more robust to noisy measurements.

• Wong and Poon [30] observed that for some cases, BP was highly correlated with instan-

taneous heart-rate. Furthermore, they considered the arteries to be purely resistive, thus

meaning that BP would increase linearly with heart-rate (HR):

BP = a ·PT T +b ·HR+ c (2.5)

• McCombie et al [28] suggested the following model:

BP =
a

PT T 2 +b (2.6)
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• Lastly, Fung et al [31] considered:

BP = a · ln(b ·PT T ) (2.7)

These models have been tested in laboratory conditions and have shown good results between

the calculated SBP and DBP values and the ones measured using the reference technique.

On a different perspective, Ferreira Marques et al [2] proposed an online calculation of BP

based on the method first described by Pandian et al [32]:

Psys =
[
ks× (Cdx)

2
i
]
+ ksys_cal (2.8)

Pdis =
[
kd× (Cdx)

2
i
]
+[kIHR× IHRi]+ kdis_cal (2.9)

where (Cdx)i is the inverse of the delay between the R peak of the ECG wave and the 50%

slope on the ascending PPG part of the PGG wave of each pulse Fig 2.7.

Figure 2.7: Example of PPG and ECG signals with 1/Cdx interval depicted (adapted from [2]).

IHRi is the instantaneous heart rate for the ith pulse, ks and kd are fixed constants; ksys_cal and

kdia_cal are the systolic and diastolic calibration constants, kIHR is the constant related to the IHR

[2].

2.3 Wearable and ambulatory systems

Wearable devices can combine monitoring, display, treatment and alarming functions. The term

"wearable" refers to the feature that the device can be dressed up or used as a form of garment

[11]. As stated by Bonato [33], wearable devices provide the opportunity for:

• Monitoring patients for long periods of time;
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• Access the daily body condition of the subject at home or outdoor;

• Gather physiological data by using an ambulatory system.

Examples of systems that already perform this type of approach are Sensatex’s "Smart Shirt",

Vivometrics "Lifeshirt", Zephyr’s "BioHarness" and BioDevice’s "VitalJacket". These systems

measure ECG, heart rate and respiration in a comfortable and reliable way. However, blood pres-

sure measurement does not yet make part of these systems.

2.3.1 Ambulatory blood pressure monitoring (ABPM)

Ambulatory blood pressure monitoring (ABPM) is performed with cuff-based oscillometric de-

vices over a period of about 24 hours. Blood pressure measurements are taken at regular intervals

of 20 to 30 minutes during the day, and periods of 1 hour during the night. The device is worn on

the belt connected to a standard cuff placed on the arm, and allows the patient to undergo normal

daily activities, including sleep, as represented by Fig. 2.8. Its accuracy has been validated in a

wide range of patients, provided the correct cuff size. ABPM provides a more reliable measure of

a patient’s BP than isolated clinic measures, as the patient is less likely to be subject to “white-

coat” effect, i.e. BP readings often higher at clinical visits, due to anxiety and stress caused by

the clinical settings. Results provide 24 hour, day time and night time BP averages and variability

readings.

ABPM devices are considered to be a powerful tool in accurately diagnosing hypertension and

providing optimal screening and care. Yet, arterial blood pressure monitoring may be inaccurate in

patients with irregular heart rate and arrhythmias and is not designed to detect postural hypotension

[10].

Figure 2.8: Arterial blood pressure monitor example (adapted from Farum R© S.A. SH-P ABPM device
model).
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2.3.2 RTAB prototype

The RTAB prototype is an extension of the Vital Jacket R© (VJ) ambulatory wearable ECG sys-

tem. The VJ wearable vital-signs monitor was created by group of researchers at the University of

Aveiro in conjunction with a spin-off company named BioDevices S. A. (http://www.biodevices.pt)

[2]. It acquires physiological data using textile and microelectronics in a non-intrusive way, taking

the form of a simple T-Shirt Fig 2.9.

Figure 2.9: Subject wearing an extension of the Vital Jacket R©, constituted by ECG electrodes, a PPG
sensor located at the right ear and a data logging unit which acquires the physiological signals and stores
them(adapted from [12]).

Vital Jacket currently has the EU CE 1011 Medical Device certification clearance, is compliant

with the EU directive 42/93/CE and is produced under a ISO9001 and ISO13485 certified man-

ufacturing process [2]. Furthermore, it is already under commercialization and used to perform

clinical diagnosis in cardiology and in monitoring high performance sport activities.

Making use of such system’s potential, blood pressure estimation is possible by integrating a

PPG sensor with the already existing components. This allows the arterial pulse-wave transit time

to be measured between the ECG R-wave and the PPG pulse wave. BP can then be estimated using

one of the models discussed in 2.2.1. Although PPG measurement sites are available all over the

body, the finger, ear or toe have usually been the chosen sites to locate the PPG sensor [24]. This

is mainly due to the fact that pulses are easily detected in such sites, but also to the fact that more

studies on PPG measurement repeatability and reproducibility have been made from these body

sites. Moreover, there are clear differences in pulse characteristics when it comes to the left and

right sides of the body, as well as the proximity of the measurement site to the heart [24]. On the

other side, PPG sensors located at the referred sites are found to be uncomfortable and unreliable

to be used on a daily basis, preventing its user from fulfilling manual tasks in a natural way.

The wrist or forearm have been suggested as a more viable place for locating the PPG sensor

in terms of usability. Additionally, it has been suggested the implementation of the sensor in the
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form of a watch, communicating with the data acquisition box wirelessly, through radio frequency.

This would prove to be a huge step in terms of the system’s usability. However, the complete

implications of placing the PPG sensor in the wrist or forearm need to be explored as new data is

gathered and lab work is conducted, in order to properly understand the effects of choosing this

body site to hold the PPG sensor.



Chapter 3

Models for estimating BP using PTT

3.1 Linearised models

As discussed in section 2.2, it is possible to obtain from the Moens-Korteweg equation (2.1), and

its logarithm model (2.3), a linearised expression for estimating BP:

BP = a ·PT T +b (3.1)

where a and b represent unknown parameters. Even though this expression has been presented in

different ways by several authors, this work focuses on linear models of the form (3.1), as they

have been observed to be more robust to noisy measurements [27].

On the other hand, heart rate (HR) has been observed to be strongly related to BP and, as

a result it should be taken into account in its calculation [30]. Thus, giving origin to a more

complete model, that may be more suitable:

SBP = a1 ·PT T +b1 ·HR+ c1 (3.2)

DBP = a2 ·PT T +b2 ·HR+ c2 (3.3)

where {a1,a2,b1,b2,c1,c2} are the unknown parameters, which can be interpreted as follows; a

and b translate the weight factors of signals PTT and HR in the estimation of BP, respectively, and

c represents the average value of BP. This will be referred hereafter as Model 1.

This work focuses in the study of SBP because it conveys more medical information than

DBP [4].

As PTT can be acquired using three different detection approaches, as seen in Figures 2.6b

and 2.7, it is important to explore the effect of the detection on estimation errors.

19
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So, the SBP models under study are the following:

SBP1 = a1 ·PT Tpeak +b1, PT Tpeak only (3.4)

SBP2 = a2 ·PT T50width +b2, PT T50width only (3.5)

SBP3 = a3 ·PT Tf oot +b3, PT Tf oot only (3.6)

SBP4 = a4 ·HR+b4, HR only (3.7)

SBP5 = a5 ·PT Tpeak +b5 ·HR+ c1, Model 1, PT Tpeak (3.8)

SBP6 = a6 ·PT T50width +b6 ·HR+ c2, Model 1, PT T50width (3.9)

SBP7 = a7 ·PT Tf oot +b7 ·HR+ c3. Model 1, PT Tf oot (3.10)

AAMI’s (Association for the Advancement of Medical Instrumentation) clinical references for

blood pressure measurement require that all measurements made using a given technique have

error means between [−5,5] mmHg and standard deviations below 8 mmHg, for both SBP and

DBP [27, 34]. These will be the values used for reference when analysing the results of each

model for a given estimation method.

3.2 Methods for estimating blood pressure using PTT

3.2.1 Least Squares Fitting

Optimization of the models will be performed by applying different methods and algorithms. An

obvious first approach would be to determine the calibration constants that minimize the mean

squared error (MSE), for each given record. Consider the following definition:

MSE =
1
n

n

∑
i=1

(Ŷi−Yi)
2 (3.11)

where Ŷ is the estimated SBP vector of n samples and Y is the vector of true values, i.e.

invasive SBP. Thus, the MSE measures the average of the squares of the prediction errors, that

is the differences between the values predicted by the estimator and the true values of the entity

being estimated.

By computing Ŷ according to equation (3.2) this will result in:

Ŷ1:N = X1:Nθ (3.12)

where, θ is the 3×1 matrix of unknown constants given by:

θ =


a

b

c

 (3.13)
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and, X1:N is the N×3 matrix constituted by N observations of PTT and HR from time instants

t = t1, t2, . . . , tn:

X1:N =


PT T (t1) HR(t1) 1

PT T (t2) HR(t2) 1
...

...
...

PT T (tN) HR(tN) 1

 (3.14)

Therefore, if Y1:N is given by:

Y1:N =


SBP(t1)

SBP(t2)
...

SBP(tN)

 (3.15)

the value of θ that minimizes ‖X1:Nθ −Y1:N‖2 is [35]:

θ̂ideal =
[
XT

1:NX1:N
]−1XT

1:NY1:N (3.16)

Provided a θ̂ideal , it will give the "best" constant values of (a,b,c), in the MSE sense, for a given

record.

3.2.2 Recursive Least Squares

It is now presented a method that estimates SBP by varying the calibration constants, using a

recursive least squares (RLS) algorithm presented by D.S.G Pollock [36]. This approach may be

useful to understand how these parameters vary over the time or length of a record. Consider at

each instant t the following definition:

yt = xtθt + εt (3.17)

where yt corresponds to the value of SBPt , xt and θt are, respectively:

xt =
[
PT T (t) HR(t) 1

]
θt =

[
at bt ct

]
and εt is the error term.

To initiate the recursion, an initial estimate θ0 of θ is needed in conjunction with a correspond-

ing dispersion matrix. X1:t p and Y1:t p matrices are obtained using t p initial observations of SBP,

PTT and HR. θ0 is then obtained using equation (3.16). This phase is known as training period. A

dispersion matrix P0 can then be computed using the following expression:

P0 = σ
2(XT

1:t p ·X1:t p
)

(3.18)
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and σ2 is the sum of the estimated residual variance resulting from calculating b0:

σ
2 = ‖X1:Nθ0−Y1:N‖2 (3.19)

Pollock has presented a summary of the components of the recursive least squares algorithm

computed at each iteration. These equations are presented below:

ht = yt − x′t θ̂t−1, Prediction Error (3.20)

ft = x′tPt−1xt +σ
2, Error Dispersion (3.21)

κt = Pt−1xt f−1
t , Filter Gain (3.22)

θ̂t = θ̂t−1 +κtht , Parameter Estimate (3.23)

Pt = (I−κtxt)Pt−1. Estimate Dispersion (3.24)

3.2.3 Exponentially-Weighted regression

The Exponentially-Weighted regression (EWR) algorithm is an extension of the RLS algorithm.

As the number of observations grows, a greater weight may be given to more recent data, rather

than to data that has reached a certain age. Also, discarding observations that have passed its date

of expiry is a relevant procedure when the processes that generate the data are subject to sudden

structural changes. As a result, the algorithm ensures that any false or inaccurate information

within the data that predates a structural change will not be memorized permanently. So, an

exponential weighting arrangement applied to the data may serve this purpose [36].

Let λ ∈ ]0,1] be the rate at which the data is discounted, then the EWR algorithm will be

constituted by equations (3.20), (3.22) and (3.23), plus equations (3.21) and (3.24), containing λ ,

the forgetting factor, which will be re-written below:

ft = x′tPt−1xt +λσ
2, Error Dispersion (3.25)

Pt = λ
−1(I−κtxt)Pt−1. Estimate Dispersion (3.26)

3.2.4 Increasing the time period between iterations

Each time that an iteration of the RLS or EWR algorithm is performed, an observation of SBP is

“consumed”, in other words, a true value of SBP is needed every time an update of θ should be

performed to better predict the changes that may occur in SBP for a variety of factors.

However, in a real environment true values of SBP are not available by invasive monitoring but

only through non-invasive measurements performed by, namely, home BP cuff monitors. Thus,

true SBP values are not available on a heartbeat basis but at a minimum rate of about 1 minute,

which is approximately the duration of a home BP monitor measurement.

The procedure described below is based on previous methods and takes these real environment

constraints into account.

Consider t p initial observations of SBP, obtained using a home BP monitor, PTT and HR.

Then, in the conditions expressed in 3.2.1, through equations (3.11) to (3.16), a θ0 will be obtained
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based on the initial observations. It has been observed by Cattivelli and Garudadri [27] that t p is

usually between 10 and 40 measurements of SBP. Obtained a θ0, the EWR algorithm is applied

by iterating every T minutes, at a cost of a new SBP measure taken using the home BP monitor.

During the time between iterations, SBP is estimated according to the chosen model, (3.4) through

(3.10), based on the observations of PTT and/or HR during that period, and using θ = θnT , where

θnT is the value of θ at the nth iteration of EWR with period T . T will be named hereafter as

calibration period.

3.3 Results

In this section, the methods described previously are applied to 69 records of 4 different datasets.

First, θideal for each record is determined through LSF, and SBP consequently estimated, using

the models provided in 3.1. Then, the parameters of the models that produce lowest estimation

errors (error mean, error standard deviation and minimum squared error), are analysed in search

for some relation with the mean value of SBP. The objective is to study these signals off-line,

i.e. having access to all of the true values of SBP, in order to try to obtain concrete information,

specifically parameter information, on their behaviour.

Secondly, RLS and EWR are applied in the same conditions as the LSF method: off-line and

for the same models. The objective here is to study how θ evolves throughout the records dura-

tion, and if it can be found a relation between better, or worse, performance cases and parameter

variation. Also, explore if any characteristics in those cases can be linked to the ones obtained by

LSF.

Lastly, the results of applying EWR with different iteration periods T are discussed. This

is the procedure that replicates better how the on-line ambulatory non-invasive BP measurement

device would operate. The process will be reviewed and its performance analysed by looking

at estimation errors for the various values of T and by looking at θ and parameter variability.

Possible enhancements and future directions may be suggested based on evidence.

3.3.1 LSF method results

Table 3.1 summarizes the estimation errors obtained from applying LSF off-line, for the 7 models

defined in 3.1. The results confirm that models which use PTT and HR together in SBP estimation,

carry in fact more information than models based on PTT or HR alone. This is in accordance with

Wong and Poon (2009) [30].

Furthermore, for Model 1 – PT Tpeak, 17 of the 69 records did not meet AAMI’s requirement

for less than 5 mmHg of error mean, and 11 for less than 8 mmHg of error standard deviation.

This may suggest that for some specific patients or particular situations, this model does not lead

to acceptable BP measurements. However, as no more data is available concerning patient’s med-

ical details and external factors at the time of invasive BP recordings, no strong assumptions can

be secured, and therefore no concrete conclusions can be made towards bad performance cases.

Yet, for most of the cases, there seems to be enough information available in the signals, if the
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Least Squares Fitting (LSF)

Model Mean (mmHg) St.D. (mmHg) MSE (mmHg2)

PTTpeak only 4.29 5.49 40.82
PTT50width only −∗ – –
PTTfoot only 4.42 5.59 41.82
HR only 4.69 5.95 51.70
Model1,PTTpeak 3.82 4.92 33.43
Model1,PTT50width – – –
Model1,PTTfoot 3.90 4.99 33.56

Table 3.1: Error mean, error standard deviation(St.D.) and minimum squared error (MSE) for the different
models, averaged over all records, using the Least Squares Fitting method described in 3.2.1. * – It was not
possible to compute PT T50width using the detection toolbox available.

parameters are correctly accounted for, to carry a clinically acceptable SBP measurement. These

parameters will now be studied in more depth.

Figure 3.1 depicts the 52 (a,b) pairs, obtained from Model 1 – PT Tpeak and Model 1 – PT Tf oot ,

for records that met AAMI’s requirements. There seems to be no strong relationship between

the values a and b. The mean and standard deviation for the values of a and b are respectively

amean = −171.7, astd = 370.3, bmean = −15.4 and bstd = 113.6. Except for a few cases, in peak

detection, a seems to be dominant on the negative abscissa and between values [−1000,500].

On the other side, b takes equal weight on positive and negative ordinate and between values

[−250,250].

Figure 3.1: Distribution of a,b pairs obtained from calculating θideal by LSF.

There is no relationship between the cases where the values of a or b are outside this scope, and

bad performance cases, i.e. cases where estimation errors do not meet the clinical requirements.

The same goes for pairs with positive values of a. This is confirmed by calculating the correlation

coefficients between the values of a and b for all the records, just for the ones that met AAMI’s

requirements and just for the ones that did not: ρall =−0.150, ρaccepted =−0.190 and ρre jected =

−0.145, respectively.
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However, it has been observed in some cases that a minimum MSE approach does not provide

the best resemblance of SBP curve shape, which may be more important if the goal is to moni-

tor variability instead of mean BP level. A future direction, would be to design and implement

a technique that would measure this effect more systematically and accurately, and would help

understand better the relation between the shapes of the invasive and estimated SBP curves, as

demonstrated by Fig. 3.2.

Figure 3.2: Red and green curves represent estimated SBP by LSF and by fixing a and b at specific values,
respectively. c is equal in both cases. MSE(LSF) = 87.5 and MSE(FIXED) = 104.5, illustrating that lower
MSE does not imply better curve resemblance.

3.3.2 RLS and EWR methods results

Table 3.2 and 3.3 characterizes the estimation errors when applying RLS and EWR off-line, for

the 7 models provided in 3.1. Even though RLS performs slightly worse than LSF, EWR’s esti-

mation errors indicate that it is possible to track the signal if there is enough physical information

available.

Although EWR gives the lowest estimation errors, iterations on recursive algorithms are per-

formed on a heartbeat basis, which is possible only when there is access to the invasive SBP signal,

for they require real observations of SBP to iterate. Therefore, these methods can not be applied

in a real non-invasive ambulatory BP measurement system, but they provide some information on

how the unknown parameters evolve during the course of the record.

To illustrate the time evolution of the parameters, the 10 records of maximum duration, each

with length 2 hours and 13 minutes, were studied by analysing how parameters a and b evolve in

time using RLS in comparison to aideal and bideal , obtained from θideal by LSF.
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Recursive Least Squares (RLS)

Model Mean (mmHg) St.D. (mmHg) MSE (mmHg2)

PTTpeak only 4.70 5.18 50.02
PTT50width only −∗ – –
PTTfoot only 4.66 5.16 49.08
HR only 4.92 5.49 58.88
Model1,PTTpeak 4.28 4.88 42.75
Model1,PTT50width – – –
Model1,PTTfoot 4.21 4.88 41.13

Table 3.2: Error mean, error standard deviation(St.D.) and minimum squared error (MSE) for the different
models, averaged over all records, using the Recursive Least Squares method described in 3.2.2. It was
used t p = 150, for the measures of SBP in the first 150 heartbeats.
* – It was not possible to compute PT T50width using the detection toolbox available.

Exponentially-Weighted Regression (EWR)

Model Mean (mmHg) St.D. (mmHg) MSE (mmHg2)

PTTpeak only 0.70 1.00 1.20
PTT50width only −∗ – –
PTTfoot only 0.71 1.04 1.33
HR only 0.74 1.10 1.44
Model1,PTTpeak 0.53 0.80 0.77
Model1,PTT50width – – –
Model1,PTTfoot 0.54 0.81 0.80

Table 3.3: Error mean, error standard deviation(St.D.) and minimum squared error (MSE) for the different
models, averaged over all records, using the Exponentially-Weighted regression method described in 3.2.3.
* – It was not possible to compute PT T50width using the detection toolbox available.

(a) Parameter a evolution and ideal value for
record R1

(b) Parameter b evolution and ideal value for
record R1

Figure 3.3: Parameters a and b evolution by RLS, in light green, versus its ideal match by LSF, in red, for
a 2 hours and 13 min duration record. Example of a case where RLS evolution value tends to the value of
the ideal parameter, calculated by LSF.

Graphical analysis indicate that in about half of the 10 cases that a and b RLS parameters tend,

in the end of the record, to their respective LSF value. In the other half, this is not observed, as

exemplified in figures 3.3 and 3.4. Furthermore, neither seems to be a link between larger MSE

cases and the tendency just described nor the evolution of the parameters show any systematic

components.

The interpretation that can be made here is that the model is too simple to take into account
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(a) Parameter a evolution and ideal value for
record R2.

(b) Parameter b evolution and ideal value for
record R2.

Figure 3.4: Parameters a and b evolution by RLS, in light green, versus its ideal match by LSF, in red, for
a 2 hours and 13 min duration record. Example of a case where RLS evolution value does not tend to the
value of the ideal parameter, calculated by LSF.

all the factors that can influence and cause variations in BP. Therefore, parameters a and b hold

too little physical information, to be able to predict accurately changes in BP that are translated in

large variations of their values.

3.3.3 EWR with increasing calibration periods results

Reviewing the method first presented in 3.2.4, an initial calibration operation is performed using

40 measures of SBP, PTT and HR, taken every 15 seconds, from the first 5 minutes of the invasive

SBP, PTT and HR signals, yielding θ0 = [a0 b0 c0]
T . SBP is then estimated from Model 1 –

PTTpeak and θ0, from minute 5 until instant 5+T is reached. At this point in time, EWR algorithm

is applied, performing an iteration which uses an observation of invasive SBP, thus re-calibrating

the system by re-calculating θ . The new value of θ is then applied to Model 1 to calculate SBP

during the period of time ]5 + T, 5 + 2T ]. These operations are performed until the duration

of the record is reached or 5+ 2T exceeds it. Therefore, the number of iterations performed,

n, depends directly on T , and nT < duration of the signal− time of initial calibration (5 minutes).

The forgetting factor used in this procedure was λ = 0.95.

As 59 of the 69 records have a duration of approximately one hour, the algorithm will be

applied using the following values of T = {1,5,15,30,∞} minutes, where T = ∞ represents the

case where only initial calibration is performed, without conducting further re-calibrations.

EWR with period T – Estimation errors

Calibration period Mean (mmHg) St.D. (mmHg) MSE (mmHg2)

T = 1 min -0.17 4.63 36.94
T = 5 min -0.51 6.76 105.65
T = 15 min -0.48 7.96 163.81
T = 30 min -0.77 8.68 228.23
T = ∞ -1.48 9.96 373.64

Table 3.4: Estimation errors for Model 1 – PTTpeak, averaged over all records, applying the EWR algorithm
with different periods of calibration T , as described in 3.2.4. T = ∞ denotes that no re-calibration is
performed after the initial calibration.
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Applying this method to Model 1, PTTpeak, table 3.4 represents the estimation errors for the

several values of T . It is possible to observe that the standard deviation of the error and MSE

increase considerably with T . This fact strongly suggests that θ0 becomes increasingly obsolete

within an hour or half an hour.

EWR with period T - Parameters

Calibration period Mean(a) Std(a) Mean(b) Std(b)
T = 1 min -206.87 252.49 -26.66 88.70
T = 5 min -229.95 260.41 -46.79 95.06
T = 15 min -178.25 263.23 -47.00 90.91
T = 30 min -144.33 300.74 -28.00 83.69
T = ∞ -283.46 0.00 -46.99 0.00

Table 3.5: Mean and standard deviation of the unknown parameters calculated initially and re-calculated
at every point of calibration, i.e. nT , where n is the nth iteration of the algorithm and T is the calibration
period. T = ∞ denotes that no re-calibration is performed after the initial calibration.

On the other hand, this may be due to a lack of robustness of the algorithm hinted by the results

depicted in Table 3.5. More specifically, table 3.5 shows a large variability of parameters a and

b, between calibrations, which can be a result of very noisy measurements of SBP, PTT and HR.

In turn, this means that parameters a and b should be kept within certain limits, by developing a

mechanism for enhancing robustness, as done by Cattivelli and Garudadri (2009) [27].



Chapter 4

BP event detector (BED)

4.1 Motivation for BED

The results of the previous chapter, 3.3, indicate that Model 1 – PTTpeak, (3.8), is probably not

suitable for continuous ambulatory BP estimation without periodic re-calibrations of 30 to 60

minutes. Although, due to time constraints, no particular method was developed to measure this

more objectively, partial to full similarity was graphically observed in many cases. Thus, the

question whether the model can predict BP variability, particularly important structural changes,

that is variations of considerable magnitude, needs to be addressed. In other words, if an external

or internal factor, or combination of those, causes a patient’s BP to rise or fall to a value, or at a

rate that may be considered dangerous, can this model account for it?

In order to address this question, it was considered of relevance to design a system that is able

to detect blood pressure events based on large BP variations. Clinical references at HGaia were

consulted to determine what constitutes a blood pressure event, and the criteria to classify an event

as important and of significance. Two requirements were seen fit as to represent a BP event:

1. Requirement one – There is a clear tendency of the mean value of SBP to increase or de-

crease within the last 30 or less minutes. Two distinct examples are: one, a slower, progres-

sive shift of SBP mean from a higher value to a lower one, or vice-versa, in approximately

30 minutes. Two, a sudden fall or raise of SBP levels, that is, in less or between 5 to 10

minutes, not accompanied by a recovery of the signal to match its prior state or mean level.

2. Requirement two – The variation described in item one, is of amplitude 20 mmHg or

higher.

Two applications of a BP event detector were identified as useful and promising by medical

connections at HGaia. Firstly, an application which is able to detect BP events correctly and reli-

ably from a SBP invasive curve could serve as a helping tool for nurses or doctors in an intensive

care unit (ICU), or nursing room, where the patient’s BP is being monitored invasively. This would

allow the medical staff to engage in parallel activities, knowing beforehand that if some event that

29
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requires medical attention and relates to a BP event would be triggered in a patient, the monitor

would release an alarm. This would allow them to use their time more efficiently.

Secondly, a device that non-invasively estimates SBP, detects events from its curve and can be

used in an ambulatory manner, independently or in complement with other BP measurement cuff-

devices for home use, would prove of great usefulness, as nothing of the sort is available in the

market. Although invasive and estimated BP curves might be similar in shape, there will be dif-

ferences that may prove significant in some cases, resulting in false or missed positive detections.

This is the device of interest in this work and which will be object of study.

Therefore, in order to evaluate the performance of the desired device in respect to sensibility

and specificity, ROC curves need to be developed. For that matter, a ground truth (GT) needs to

be established. A dataset of invasive SBP curves with BP events marked in agreement by three

different doctors, should be used as reference to create the GT. As such dataset was not available

in time to be included in this work, the BP events were selected by applying the event detection

algorithm on invasive SBP signals 1.4.

The steps that comprise the BP event detection approach are analysed in more detail below.

4.2 Event detection approach

4.2.1 ROC analysis and classifiers

As described by Tom Fawcett in An introduction to ROC analysis [37], ROC graphic analysis is a

technique of visualization, organization and selection of classifiers based on their performance. It

has been widely used in signal detection theory and diagnostic systems, as it allows the represen-

tation of tradeoff between hit and false alarm rates of classification models.

The performance of classification problems is usually measured using a two-class classifier

approach. Consider a classification problem where each instance I is mapped to one element of

the set {pos,neg} of positive and negative class labels.

Given an instance, the classifier outputs an instance as {p,n}, which results in one of four

possible situations. If the instance is positive and is classified as positive, it is considered a true

positive; otherwise, if it is classified as negative, it counts as a false negative. On the other hand,

if the instance is negative and is classified as negative, it is considered a true negative; otherwise

if it is classified as positive, it counts as a false positive. Given a test data set (set of instances), the

outputs of the classifier can be organized and summarized in a two-by-two confusion matrix, as

shown in Fig. 4.1. The values along the main diagonal represent the correct decisions made, and

the minor diagonal represent the errors made. In the field of statistical hypothesis testing, these

are referred to Type I and Type II errors. Type I errors correspond to false positive errors, that is,

instances being classified as positive when they are negative. Type II errors correspond to false

negative errors, that is, instances being classified as negatives when they are positive [38].
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Figure 4.1: Confusion matrix used in two-class classification problems.

Common performance metrics usually calculated from the confusion matrix are presented

below [37]:

True positive rate≈ True Positives
Total Positives

=
T P
P

(4.1)

False positive rate≈ False Positives
Total Negatives

=
FP
N

(4.2)

Sensitivity = recall = tp rate (4.3)

Specificity =
True Negatives

False Positives+True Negatives
=

T N
FP+T N

= 1− f prate (4.4)

Accuracy =
TP+TN

P+N
(4.5)

Precision =
TP

TP+FP
(4.6)

ROC space is defined by true positive and false positive rates (TPR and FPR) as X and Y axis

respectively. A ROC graph depicts the relative tradeoff between benefits (true positives) and costs

(false positives). As TPR equals to sensitivity and FPR equals to 1− specificity, the ROC graph is

also called the sensitivity vs 1−specificity plot. Fig. 4.2 represents a ROC graph with five discrete

classifiers labeled A through E. A discrete classifier outputs only a class label, thus producing a

(fp rate, tp rate) pair which corresponds to a single point in ROC space [37].

Analysing ROC space and the meaning of a given point’s location in it, there are several

points of interest to note. The lower left point (0,0) represents the case of never issuing a positive
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Figure 4.2: ROC space and example of five discrete classifiers.

classification; no false positive errors are committed but no true positives are gained either. On

the contrary, always issuing positive classifications is represented by the upper right point (1,1).

Perfect classification, that is, always issuing true positives and never false positives, is represented

by point (0,1). Classifier C’s performance is nearly perfect as seen in Fig. 4.2.

Informally, it is considered that one point’s performance is better if localized to the northwest

of another. Points localized closer to the X axis, on the left side of a ROC graph, are considered

"conservative", as they make positive classifications with solid evidence, thus making few false

positive erros, but often having low true positives rates in return. On the other hand, classifiers

closer to the upper right side of a ROC graph, are considered "liberal", as they make positive

classifications with poor evidence, thus classifying nearly all positives correctly, but having an

undesired high false positive rate in return [37]. Hence, classifier B is considered to be more

conservative than A, and A is considered to be more liberal than B.

Points in the diagonal y = x represent random classifiers. Point D (0.6,0.6) is a random classi-

fier. It guesses the positive class about 60% of the time, thus is expected to get 60% of positives

correct but its false positive rate will increase to 60% as well.

Classifiers located under the main diagonal perform worse than random classifiers. This lower

right triangle is usually empty in ROC graphs, because any classifier placed there can be negated

to produce a point on the upper left triangle.

4.2.2 Steps in a BED sequence

Table 4.1 reproduces the main steps taken in a BP event detection sequence.
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Step 1 computes the PTT and HR signals from the ECG and PPG physiological data files. The

invasive SBP signal is also extracted to be used in the formation of the ground truth. Function

GetSinais() represents this operation, receiving a string as an input, the name of a specific dataset

or a empty string specifying every dataset available; it also receives the type of PTT detection:

peak, 50% slope or foot. It returns a struct array, for all records, with the fields PTT, SBP, HR and

time, representing the signals mentioned above, plus the duration of the record.

Step 2 comprises the formation of the Ground Truth. This is done by segmenting the SBP

invasive signal and subsequently by applying a specific algorithm for SBP event detection. Func-

tion signalSegmentation() receives a given signal as input and segments it into n pieces, where

n = 2p and p is chosen between 1 and pmax, which is the second input parameter; the result is

an array of size n with the segmented signal. Function eventDetection() takes the resulting vector

and searches for events based on the value of the segments, returning a binary vector of the same

size as the input vector, representing the occurrence of an event or not in each segment. These

operations will be described in detail in the following two subsections.

Step Description Tier 1 functions used Tier 2 functions used

1 Extract physiological signals (SBP,
PTT, HR, DBP) from data files.

GetSinais()

PrepareDataset()
GetABP()
GetPTT()
GetIHR()

2 Establish Ground Truth. groundTruth()
signalSegmentation()
eventDetection()
countEvents()

3
Determine estimated SBP in respect to
step 1.

lsFitting()
or
realEWR()

4 Detection of events from estimated
SBP.

estimatedDetection()
signalSegmentation()
eventDetection()
countEvents()

5
Compare GT from step 2 and events
detected from step 4.
Calculate performance metrics.

compareEvents() processEvents()

6
Generate a ROC curve by applying
steps 4 and 5 repeatedly for decreas-
ing threshold values.

generateRoc()

Table 4.1: Main steps in a BP event detection sequence.

Step 3 proceeds to estimate SBP of all input records, based on acquired signals at step 1.

Model 1 – PTTpeak is either applied by method LSF or EWT with calibration period T (3.2.1 and

3.2.4) on estimation of SBP. Functions lsFitting() and realEWR() represent the two processes,

respectively.
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Step 4 searches for events in the estimated SBP signals computed in step 3. Analogously to

step 2, this is done by applying functions signalSegmentation() and eventDetection(). The main

difference lies on the input signal, which is the estimated SBP signal instead of the invasive one.

Step 5 takes the outputs of step 2 and 4 and processes them for subsequent comparison. In

other words, processing enables the elimination of possible phase discrepancies and multiple flag-

gings of the same event. This is accomplished by calling function processEvents(). Comparison

of processed GT and estimated events is done by function compareEvents(). It counts the number

of positive and negative detections, as well as true and false positives, and true and false negatives

of the estimated events in respect to the GT. Finally, it computes the sensitivity and specificity,

among other performance metrics, and the respective point in ROC space.

Step 6 finalizes the BED sequence by generating a ROC curve for the GT generated from

the input data files, using a given way of acquiring PTT, and a model and method for estimat-

ing BP. This operation is performed by function generateROC(), which performs steps 4 and 5

repeatedly for threshold values varying from ∞ to 0, thus generating ROC points increasing by

f alse positive rate.

4.2.3 Signal segmentation

On Stoffer’s Fourier-Walsh analysis of time series and statistical theory, David R. Brillinger’s

commented on a simple technique to examine time series data for level changes [39].

Consider a continuous signal sampled at a frequency of Fs, thus its discrete representation

being constituted by size samples. Now consider that the signal is broken into n ideally equal

parts, which will be called segments, where n = 2p and p = 1,2,3,4, pmax; and pmax is usually

equal to 4 or 5. The signal, after segmentation, will be composed by n segments, numbered from

1 to n. Each segment will be evaluated as the mean value of the samples that are comprised in that

segment, that is, for a given ith segment, its value will be computed by
1
m

mi+1

∑
j=mi

x j, where m = b size
n c,

mi = [m× (i−1)]+1 and mi+1 = m× i. An exception occurs in the last segment if the remainder

of
size
n

is different than zero. The last segment, lets say in, is then computed by
1
m

size

∑
j=mn

x j, where

m = b size
n c+R, in which R is the residue of

size
n

, and mn = b size
n c× (in−1).

In Fig. 4.3 is depicted the graphic output of an example of the process described above for a

segmentation of an invasive SBP signal, using pmax = 4.

The purpose of applying this technique is to be able to represent the signal in a way that makes

it easier to detect structural changes, but still remain faithful to its morphology. From the various

representations of the original signal, obtained from varying p = 1 until p = pmax, one value of p

represents best the signal and its structure. It is now presented an automatic method for finding

the best representation, based on the Akaike Information Criterion (AIC).

The Akaike Information Criterion was first presented in 1974 by Hirotugu Akaike, as a novel

look at statistical model identification [40]. It is still widely used today, as it provides a way for
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(a) Segmentation with n = 2, p = 1 (b) Segmentation with n = 4, p = 2

(c) Segmentation with n = 8, p = 3 (d) Segmentation with n = 16, p = 4

Figure 4.3: Example of different segmentation processes (in black) obtained from an invasive SBP signal(in
blue), by varying p from 1 to pmax = 4.

model selection by measuring the relative quality of a statistical model, for a given set of data. It

proposes a relative estimate of the information lost when a given model is used to represent the

process that generates data.

In a regression context, the one adopted in this work, Shumway and Stoffer [41] suggest the

following definition:

AIC = ln σ̂
2
k +

n+2k
n

, (4.7)

where k is the number of parameters in the model, and σ̂2
k is given by equation (4.8).

σ̂
2
k =

RSSk

n
, (4.8)

where RSSk designates the residual sum of squares under the model with k regression coefficients.

For k = 0, it corresponds to the sum of squared deviations from the mean:

RSS0 =
n

∑
t=1

(xt − x̄)2 (4.9)



36 BP event detector (BED)

For this particular statistical model AIC equation (4.7) can be re-written as equation (4.10).

AIC = ln
( n

∑
i=1

k

∑
j=1

(x j+(i−1)k− x̄i)
2
)
+

size+2n
size

, (4.10)

where n is the number parameters in the model used, that is, the number of segments in which the

signal is divided in; k denotes the length of the segment of which x̄i is the mean value of the ith

segment; and size is the total of samples the signal contains, in other words, the sum of all values

of k.

Given a set of candidate models, i.e. different segmentations of the signal, the preferred model

is the one that produces the minimum AIC value. Therefore, signal segmentation, allied to AIC’s

classification and selection procedure, is expected to be a good tool for representing a signal simply

but also accurately, facilitating the detection of important structural changes.

4.2.4 Event detection algorithm

To correctly classify a segment as a BP event in accordance to the requirements described in

4.1, an algorithm was developed in the form of a non-parametric test, in other words, a test that

requires “few if any assumptions about the shapes of the underlying population distributions”, as

defined by M. J. Campbell [42]. Consequently, the algorithm is developed considering examples

of computable metrics from a segmented signal, as depicted in Fig. 4.4.

For a given segment, a set of values can be calculated based on previous segments. These

values can then be analysed, in order to explore if a tendency for a drop or rise in BP has been

observed in the last 30 min, and if it has been a meaningful one. Fig 4.4 represents the values

computed to flag a segment as a BP event. Additionally, the concept of seen segments is also

represented. These are the segments the currently segment being analysed “remembers”, that

is, those segments that evaluate the last 30 minutes of the signal, in respect to, and including,

the current segment. Considering only recordings of a duration of 1 hour, seen segments are

represented by a maximum of n
2 segments, for a segment numbered over or equal to n

2 .

The algorithm used for event detection and flagging, for establishing the GT and searching

for events in the estimated BP signals (tier 2 function eventDetection used in tier 1 functions

groundTruth() and estimatedDetection() of steps 2 and 4 of Table 4.1, respectively) are presented

in the form of a flowchart. It receives a segmented signal as input, that is, a vector of numeric

values representing each segment of the signal. It then proceeds to process each segment, returning

a vector the same size as the input vector, containing 1 or 0 if a segment has been evaluated as an

event or not, respectively.

The flowchart is represented in Fig. 4.5. Fig. 4.6 depicts a secondary layer of detail: functions

GetSeenSegments and AnalyseSeenSegments used in the event detection algorithm, but that are

separately defined in order not to visually overload the main flowchart.
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Figure 4.4: Segment evaluation example and values calculated from it.

Variable i represents the position of each of the segments in the input vector; n stands for

the number of segments, that is, the vector size; current represents the value of the segment cur-

rently being evaluated; nAbove, nUnder, meanAbove and meanUnder represent computed values

in function AnalyseSeenSegments (see Fig 4.6); threshold defines the value that needs to be

equalled or exceeded to fulfil the second requirement of a BP event (see 4.1); and Events defines

the output vector which returns a 1 or a 0 for each segment, if it corresponds to a BP event or not,

respectively.

Function GetSeenSegments copies from the input vector the seen segments. For the sake of

simplification we consider only recordings that last 1 hour. Half an hour is consequently defined

by n
2 . So, for each incrementing value of i, while i <= n

2 , the vector seen will grow until it is

complete with n
2 elements. As i takes values greater than n

2 , seen will contain the last n
2 elements

in respect to, and including, the current segment.

Subsequently, function AnalyseSeenSegments computes several values related to the segments

in seen that will be used to characterize previous segments in respect to the current one. These

provide information on whether or not there is a tendency for the rise or fall in BP, and values to

calculate if this tendency is large enough to be of relevance, as described in 4.1.

Then, a decision is made based on the those values, for each of the segments:
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Figure 4.5: Event detection algorithm flowchart.

1. Is there a tendency for a drop in SBP? It is considered so if the current segment has the

lowest value in seen and if the number of elements evaluated above the mean value of seen

is equal or greater than the number of elements evaluated under.

(a) If so, go to item 3.

(b) Else, go to item 2.
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Figure 4.6: Event detection algorithm flowchart.

2. Is there a tendency for a raise in SBP? It is considered so if the current segment has the

highest value in seen and if the number of elements evaluated under the mean value of seen

is equal or greater than the number of elements evaluated over.

(a) If so, go to item 3.

(b) Else, a tendency for a drop or raise in SBP has not been observed.

3. Is the absolute value of the difference between the current segment and the average value

of the elements evaluated above or under the mean line, either if decision 1 or 2 is positive,

respectively, greater than the threshold defined?

(a) Yes, this segment is flagged as an event.

(b) No, the drop or raise was not considerable enough.

This process is applied to all input SBP signals, and the resulting arrays outputted in the form

of a struct array instead of a matrix, as these can have different sizes (2, 4, 8, 16, 32, . . . ) based

on the length of the segmented signal, which is determined by the segmentation type (of value p

ranging from 1 to pmax) which has the lowest AIC .

4.2.5 Processing and comparing events to ground truth

As definition on the duration of a BP event was not provided, alternative ways of processing GT

and estimated BP events, were developed so they can be properly compared. The reason for this is

that the same event can be detected on consecutive segments, or it can be detected sooner, later or
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Underestimation
GT 0 0 0 1 1 1 0 0 0 1 0 0 0
Events 0 0 0 0 0 1 0 0 0 1 0 0 0
Result tn tn tn fn fn tp tn tn tn tp fn tn tn

Overestimation
GT 0 0 0 1 1 1 0 0 0 1 1 0 0
Events 0 0 0 1 1 1 1 0 0 1 1 1 0
Result tn tn tn tp tp tp fp tn tn tp tp fp tn

Delayed Estimation
GT 0 0 0 1 1 1 0 0 0 1 1 0 0
Events 0 0 0 0 0 1 1 0 0 0 0 1 0
Result tn tn tn fn fn tp fp tn tn fn fn fp tn

Advanced Estimation
GT 0 0 0 1 1 1 0 0 0 1 1 0 0
Events 0 0 1 1 0 0 0 0 1 0 0 0 0
Result tn tn fp tp fn fn tn tn fp fn fn tn tn

Table 4.2: Examples where direct comparison of GT and estimated BP event vectors can lead to wrong
false positive or negative classifications. tp, tn, fp and fn stand for true positive, true negative, false positive
and false negative classifiers, respectively. Errors in classification are shown in yellow.

on a less number of segments. Therefore, if the segments were compared directly, several errors

could occur that would not translate the real contrast or equality between the two event arrays.

Examples of such situations are represented on Table 4.2.

Looking at the GT array, it can be seen that it holds two cases where two or more segments

are flagged as an event. However, even though there is more than one segment flagged as an event,

they are representing the same event. This may take place when an event is of large proportions

(in respect to the GT threshold), thus being detected by various segments in a row. In fact, in the

four occurrences depicted, the Events arrays is able to detect the two events held by the GT array,

even though it doesn’t flag the same sequential segments. Therefore, it needs to be developed a

method that re-arranges the arrays in a form that, when comparison takes place, the chances of

happening ambiguities like the ones described, are either eliminated or highly reduced.

For this purpose, a simple but effective operation was developed. In table 4.3 are presented

the arrays before and after processing the GT and Events vectors, relatively to the cases provided

in 4.2.

GT Before Processing 0 0 0 1 1 1 0 0 0 1 1 0 0
After Processing 0 1 0 1 0

Events

Before Processing Case 1 0 0 0 0 0 1 0 0 0 1 0 0 0
Before Processing Case 2 0 0 0 1 1 1 1 0 0 1 1 1 0
Before Processing Case 3 0 0 0 0 0 1 1 0 0 0 0 1 0
Before Processing Case 4 0 0 1 1 0 0 0 0 1 0 0 0 0
After Processing 0 1 0 1 0

Table 4.3: Processing arrays GT and Events introduced in Table 4.2.

It consists in simply reducing equivalent consecutive flaggings to one, independently of their
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length. A sequence of m zeros or ones is transformed in a single zero or one, independently of m

being equal to one or the entire length of the array. This is represented in Table 4.4.

Input Output

Process Array
Zeros 0 0 0 0 0 0 0 0 0 0 0 0
Ones 1 1 1 1 1 1 1 1 1 1 1 1

Alternating 0 1 0 1 0 1 0 1 0 1 0 Equal to input

Table 4.4: Procedure executed by function processEvents on binary arrays. Three examples are shown: one
array constituted only by zeros, another just by ones and the latter alternates between zeros and ones.

However, each GT , Events pair needs its vectors to have the same length, so a proper com-

parison takes place. For instance, if a GT vector holds two events and the correspondent Events

array only detects one, these will not have the same length. The GT array will have four or five

elements (possible combinations 0-1-0-1 or 0-1-0-1-0) and the Events one will have two or three

elements (possible combinations 0-1 or 0-1-0). The same can happen if the Events array flags

more events than the GT vector holds. Therefore, in either case, the vector of smaller length needs

to be extended in order to equal the length of its correspondent. This is done by copying the value

of the last element to the extended positions, as exemplified in Table 4.5.

GT Raw 0 0 0 1 1 1 0 0 0 1 1 0 0
Events Raw 0 0 0 1 1 1 1 0 0 0 0 0 0
GT Processed 0 1 0 1 0
Events Processed without extension 0 1 0
Events Processed with extension 0 1 0 0 0

Table 4.5: Example of array extension resulting from different sizes in vectors GT and Events.

Given the nature of the data it is not expected that more than two events are detected in the

same record. In addition, the first segments will always be evaluated as zero (non-event), as there

are not enough seen elements to prove a tendency of rise or fall in SBP. So, following detection and

processing of events, the resulting array will have usually no more than five elements (0-1-0-1-0),

and always at least one element (0), which correspond to scenarios where two events are detected

and none are, respectively.

To avoid possible noisy detections an additional requirement was included: events must be

spaced at least 20 minutes in time. This feature was also included in processing.

After processing, comparison and classification can take place. Given a Events processed

vector, it is multiplied by a factor of 10. Consequently, each element on Events is of value 0 or 10.

Given the equivalent GT vector, Events is summed to GT producing an array containing elements

of value 0, 1, 10 and 11. It is then possible to classify the events detected from SBP estimated

signals relatively to the respective ground truth. This procedure is represented on Table 4.6.

As the first element in an events vector is always a zero (no prior segments are available to

exist a tendency – Requirement 1), for event vectors of length greater than one, the first element
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Element Value Classifier Positive/Negative Count
0 True Negative +1 Negative
1 False Negative +1 Positive
10 False Positive +1 Negative
11 True Positive +1 Positive

Table 4.6: Classification of elements in an array resulting from the sum of GT and 10×Events.

was chosen not to add to the negative count. The objective here is to not influence the negatives

count by adding cases that could never be classified as positive.

Once this process has been applied to the entire set of data and all GT , Events pairs are gener-

ated, true positive and false positive rates can be calculated, among other important performance

metrics. This, in turn, will produce a point in ROC space. By applying this procedure, using the

same GT vectors and recalculating the Events arrays for thresholds varying from ∞ to 0 ideally,

many points on ROC space will be obtained. A curve in ROC space can then be generated by

applying a fitting curve on these points.

However, the threshold that produces a GT that allows for higher rates of sensibility and speci-

ficity needs to be studied by inspecting the data and which events have been flagged either in the

GT vector and in its correspond Events array. This subject and other results will be investigated

in the next section.

4.3 Results

In this section the results of applying the methods previously described to 69 records of 4 different

datasets are presented and discussed.

First, two SBP event detection, one precise and one inaccurate, are to illustrate fluctuation on

the quality of the model as an indicator of variability in SBP.

Secondly, ROC performance curves are given for SBP event detection using three distinct

methods for estimating SBP. This is done by varying the threshold parameter in the event detection

algorithm from, ideally, ∞ to 0. Estimated events vectors for the three different approaches are

compared to the ground truth reference vector, creating a point in ROC space for each value of

threshold used. Subsequently, the more important points in each of the ROC curves are identified

and analysed in terms of sensitivity, specificity, accuracy and precision.

Ultimately, based on figures and tables presented, considerations are made on efficiency, rele-

vance and usability of the BED technique.

SBP is estimated using Model 1 – PTTpeak, and signal segmentation uses pmax = 4, unless

stated otherwise.

4.3.1 Results of signal estimation and event detection

From ground truth formation, resulted 24 positive and 74 negative detections. SBP is estimated

using the LSF method and events are searched after segmentation of the estimated signal. This
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action is performed to all records, using a threshold equal to the one used to generate the ground

truth, that is trgt = 20. The resulting segmented invasive and estimated SBP signals, and corre-

sponding non-processed event vectors are then graphically represented. By visual inspection of

these graphs for each record, one observes that there are cases where the estimated segmented sig-

nal resembles the invasive segmented signal, cases where there is partial resemblance, and cases

where there is no resemblance at all.

Figures 4.7 and 4.8 are two illustrative examples of precise and inaccurate resemblance and

their event vectors, respectively.

Figure 4.7: Example where good resemblance of invasive and estimated SBP signals leads to an accurate
event detection.

Close similarity was found in 10 records, which led to 5 out of 7 existing events detected.

Partial similarity was found in 39 records, which led to 3 out of 7 existing events detected. Non

existing or few resemblance was found in 20 records, which led to 0 out of 10 existing events

detected. A low number of true detections indicates that lower thresholds might give higher true

positive rates. But at what cost in return, i.e. false positive rate?

Therefore, it is relevant to ask the question: which are the thresholds that maximize the trade-

offs between the number of true and false positive detections? This question will be addressed

below.

4.3.2 ROC performance curves results

Figure 4.9 depicts the ROC performance curves for three different SBP estimating methods: Least

Squares Fitting (LSF), initial calibration only, i.e. using the parameters determined by LSF from

the first 5 minutes of each record, and EWR with period of T = 20 min between re-calibrations.
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Figure 4.8: Example where bad resemblance of invasive and estimated SBP signals leads to missed event
detection.

Threshold was varied between 80 and 0 by a rate of -0.5. Area Under the Curve (AUC) is max-

imized by the LSF method denoting a better overall performance. Still, the 7 points of more

significance in each of the curves are represented in Tables 4.7, 4.8, 4.9, in conjunction with the

threshold value applied, for each of the methods.

SBP Event Detection by Least Squares

Threshold (mmHg) Sensitivity Specificity Accuracy Precision
Tr = 20.0 0.318 1.00 0.844 1.00
Tr = 18.0 0.409 0.974 0.847 0.818
Tr = 17.0 0.455 0.949 0.840 0.714
Tr = 12.5 0.636 0.881 0.830 0.583
Tr = 10.5 0.777 0.833 0.821 0.531
Tr = 8.5 0.864 0.776 0.792 0.463
Tr = 0.5 0.955 0.518 0.552 0.146

Table 4.7: Important performance points in BED Least Squares ROC curve.

Points of better sensitivity/specificity performance for LSF, Initial Calibration only, EWR(T=20)

occur around values of TrLSF = 10.5 or 8.5, Trcalib = 11 or 7.5 and Trewr = 12.5, respectively.

These values are around half the value used for obtaining the GT, TrGT = 20, confirming the issues

raised in the previous subsection.

Although the LSF method for estimating SBP can not be applied in on-line BP measurement

systems, the other two methods could be implemented in a BED monitor that could be incorporated

with already existing technology, such as ABPM devices that measure blood pressure at regular
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Figure 4.9: ROC performance curves for SBP event detection using three methods of estimating SBP: LSF,
initial calibration only, i.e EWR (T = ∞), and EWR (T = 20) . Used pmax = 4 for signal segmentation,
and Model1−PT Tpeak as the SBP estimation model.

SBP Event Detection by Initial Calibration only

Threshold (mmHg) Sensitivity Specificity Accuracy Precision
Tr = 46.0 0.273 0.974 0.816 0.750
Tr = 35.5 0.455 0.949 0.840 0.714
Tr = 19.5 0.545 0.915 0.837 0.632
Tr = 14.5 0.727 0.874 0.844 0.593
Tr = 11.0 0.773 0.846 0.832 0.548
Tr = 7.5 0.818 0.726 0.741 0.367
Tr = 3.0 0.955 0.587 0.630 0.233

Table 4.8: Important performance points in BED Initial Calibration only ROC curve.

SBP Event Detection by EWR (T = 20 min)

Threshold (mmHg) Sensitivity Specificity Accuracy Precision
Tr = 50.5 0.272 0.973 0.814 0.750
Tr = 43.5 0.409 0.921 0.806 0.600
Tr = 36.0 0.545 0.923 0.840 0.667
Tr = 18.5 0.682 0.851 0.817 0.536
Tr = 12.5 0.818 0.787 0.793 0.474
Tr = 5.5 0.864 0.619 0.652 0.264
Tr = 2.0 0.955 0.526 0.569 0.184

Table 4.9: Important performance points in BED EWR (T = 20 min) ROC curve.
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intervals, e.g. 20 minutes, providing extra, more complete functionalities. Yet, it is important to

confirm and reproduce these results on a more vast set of data, with a larger number of positive

and negative instances.



Chapter 5

Conclusions and future work

5.1 Fulfilment of objectives

In this work the following questions were answered or partially-answered:

How does a PTT-based model perform as an estimator of SBP?

Several methods were used to approach this question. By applying least squares fitting off-

line, low correlation coefficients between the parameters a and b of Model 1 – PTTpeak were found.

Furthermore, several examples indicated that lower minimum squared error does not imply better

curve fitting. By applying recursive least squares off-line, parameters a and b evolution in time

was obtained, but no systematic components were observed. This fact indicates that the model

holds too little physical information to take into account all the factors that can influence and

cause variations is BP. Ultimately, by applying exponentially-weighted regression on-line with re-

calibration period T , standard deviation of the error and minimum squared error were observed

to increase considerably with T , suggesting that θ0 (calculated in the initial calibration) becomes

increasingly obsolete within a certain period of time. This period has been observed to be about

30 minutes to 1 hour.

Is a PTT-based model an indicator of variability strong enough to detect most events

of SBP?

This question was addressed by developing a set of techniques for SBP event detection, where

events are characterized by medical requirements suggested by Dr. Vasco Gama and Daniel

Caeiro, namely a threshold for significant SBP changes of 20 mmHg. This threshold was applied

both in generating the ground truth and detecting events from estimated SBP signals. Low sensi-

bility results indicated that lower thresholds might give better performance rates. This introduced

a subsequent question:

Which are the thresholds that maximize the tradeoffs between the number of true and

false positive detections?

47
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To study this, ROC performance curves were generated for three different methods of estimating

SBP. Important performance points were depicted and analysed. Specific points in EWR(T = 20)

ROC curve suggested that the method could be incorporated with current technology for ambula-

tory BP measurement using a threshold of tr = 12.5 and providing reasonable performance (82%

sensibility and 79% specificity). Yet, the results need to be reproduced using a larger set of data.

All in all, initial expectations were met and a contribution has been made, even though results

took a different form from that initially defined.

5.2 Future work

Several issues were raised during the development of this work.

A study on circadian variation of the parameters of Model 1 – PTTpeak needs to be initiated to

observe if there is any effect of the time of the day on parameter value and variation. A method

should be developed to determine more objectively and accurately the resemblance between es-

timated and invasive SBP signals. Robust techniques, such as restraining parameter value, must

be developed in order to diminish the impact of noisy measurements on re-calibrations. This may

lead to a larger time period between the need for re-calibrations, as the one observed by Cattivelli

and Garudadri (2009) [27], of about 1 hour and 20 minutes.

Alternative versions of the event detection algorithm applied need be developed to explore

other approaches to signal segment classification. The duration of a BP event should be defined

more precisely near medical references, and the method for comparing event vectors will be en-

hanced based on that characteristic. A larger set of data must be collected to reproduce the results

depicted by the ROC performance curves.
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