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Resumo

Os sistemas de visão catadióptrica são úteis em muitas aplicações, mas geralmente isso requere
uma boa calibração realizada anteriormente.

Nesta tese propõe-se um método de calibração não paramétrico para qualquer tipo de sistema
catadióptrico usado no futebol robótico, independentemente do tipo de espelho e sem considerar
a restrição que impõe a existência de um único ponto de vista (bastante limitativa relativamente à
precisão da montagem do sistema). O método criado usa o ambiente estruturado destes robôs para
o processo de calibração, sem precisar de um padrão externo de calibração. Desta maneira, usa
a informação, embora incompleta, que as linhas do campo fornecem, usando várias imagens para
realizar a calibração, imagens essas adquiridas sobre certas condições específicas.

Portanto, o primeiro passo passa por extrair informação das linhas, o que é conseguido de-
tectando as linhas indivisíveis que constituem as linhas do campo de futebol. Em seguida, identifica-
se as linhas através de comparação da estrutura local de conexão das linhas com a estrutura de
linhas de um campo, previamente conhecido. Assim, usando uma optimização linear e a conhec-
imento obtido com as linhas, estima-se os parâmetros da função polinomial que melhor se adapta
ao mapeamento real entre pontos da imagem e coordenadas do mundo ao nível do chão.

Finalmente, também se criou uma simulação do sistema de visão, usando a propagação in-
versa dos raios de luz que atingem a camara, usando-se um espelho hiperbólico como modelo do
reflector de luz. Esta simulação é então usada para testar o processo de identificação de linhas,
e também a calibração em geral. Além disso, isto também é utilizado para testar as diferentes
possibilidades para a função a usar como mapeamento de pontos na calibração.
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Abstract

Catadioptric vision system are useful for many applications, but it usually implies the system needs
to be accurately calibrated.

In this thesis we propose a non parametric method to calibrate all kinds of catadioptric systems
used in soccer robots, independently of the mirror shape, and without using the constraint of the
existence of a single view-point. The application uses the structured environment of these robots
for the calibration process, without needing any external calibration pattern to do the procedure.
Therefore, it uses the incomplete information of soccer field lines and the combination of multiple
images acquired under certain constraint to perform the calibration

So, the first step is the extraction of lines information of the image, which is accomplished
by detecting the indivisible lines that form the whole soccer field lines. Posteriorly, we identify
each lines through the matching of the local structure of lines with the well known characteristics
of lines structure in a soccer field. Then, using a linear optimization and the knowledge extracted
from the lines, we estimate the parameters of a polynomial function in order to fit the mapping
from pixel to ground coordinates.

We also created a catadioptric vision system simulation, using the backpropagation ray tracing
method. We used the hyperbolic mirror model, which we use as basis for testing the line identifi-
cation process, and the calibration process itself. Furthermore, we also use it for testing different
possibilities of polynomial functions for the calibration.
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Chapter 1

Introduction

In this introductory chapter we present and explain the various types of catadioptric vision systems,

also introducing the most recent solutions for their calibration. Furthermore, we show the main

reasons for the development of this thesis and the approach used to calibrate the catadioptric vision

system used in the robot soccer team at FEUP. Finally, we provide an outline of the various parts

that constitute this work.

1.1 Catadioptric Vision Systems

A catadioptric vision system consists of a combination of mirrors with conventional cameras to

enhance the sensor field of view. The most common mirror types are the parabolic, hyperbolic,

elliptical, conic, fisheye, and planar, although any other kind of mirror can be used. The cam-

era usually points towards the mirror, reflecting the environment in the opposite direction of the

camera.

As stated in [1], the catadioptric vision system can be classified in two categories: single

view-point (or central) imaging system, or non-SVP (non-central) imaging systems. In the first

case, lines of incoming rays intersect at a single point, and are reflected to the image plane (Figure

1.1). The only mirror shapes with this property are hyperboloidal, ellipsoidal and planar mirrors

(coupled with perspective cameras) and paraboloid mirrors (coupled with an orthographic camera)

[7]. With SVP imaging systems it is possible to obtain a mapping of every scene point on the

image plane. On the other hand, non-SVP sensors can overcome the alignment constraint, without

limitations regarding mirror shape and position. One can even use multi-part mirrors and single-

camera stereo-vision. However, images taken from these systems cannot be rectified, and there is

no exact closed-form function that can transform an omnidirectional image into a perspective one.

Although omnidirectional vision gives a better perception of all major objects in the robots

surrounding area, there is a higher resolution degradation with growing distances away from the

robot [8, 5]. One disadvantage of omnidirectional cameras is then badly distributed spatial res-

olution: the camera and robot themselves usually occupy a big part of the image, leaving only a

1
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(a) Central Sensor (b) Non-Central Sensor

Figure 1.1: Comparison between catadioptric vision system. In (a) the system has a SVP, but in
(b) there is no unique intersection for the rays. Image from [1].

small space in the peripheral part for important surrounding environment [1], which is shown in

Figure 1.2.

Figure 1.2: This image shows the robot and the central part of the soccer field occupy a large part
of the image captured

In [9] they show the potential of omnidirectional catadioptric vision systems for mobile robots

moving within structured environments, which directly applies to soccer robots, the main focus of

this work. It is shown the advantages of this vision systems for self-localization.

As asserted in [5], although alignment between camera and mirror is desired given its useful

optical properties, such as SVP, equi-resolution, and equi-areal, it is difficult to obtain because

alignment correlates with camera intrinsic parameters, or even because of a simple mechanical

setup. Nevertheless, most camera calibration methods assume SVP.

Catadioptric camera systems can be used in many applications, including but not limited to

security systems, surveillance, robot navigation, 3D reconstruction, teleconferencing, advertising
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[10, 1, 2]. However, for practical applications, this vision system requires a non-linear trans-

formation to map the image points onto real world coordinates. Therefore, accurate calibration is

necessary for extracting metric information from the images. The calibration may be used in many

kind of systems, and tries to create direct or indirect mappings from image pixels to real world

coordinates.

1.2 Literature Review

In this section, we discuss the most recent developments of catadioptric systems calibration. There

are various approaches that differ mainly by the type of mirror, the projection model used (skew-

ness, alignment errors), the information that is already known beforehand (the mirror and/or the

camera intrinsic parameters) and the method used (auto-calibration, grids,...). These are generally

parametric approaches, but there are also some non-parametric methods that do not try to esti-

mate camera and mirror parameters, but only a mapping function between image points and world

points. [11]

The main research focus of literature on this subject is based on parametric calibration, which

tries to extract parameters of models that describe the system, such as camera and mirror models,

and matrices describing the relative positions between the various coordinate references - camera,

mirror, and world coordinate system. Using this methodology, we can simplify the problem by

assuming it is a SVP system, which states camera and mirror must be aligned, therefore eliminat-

ing the camera to mirror coordinates transformation, and limiting the degrees of freedom of the

camera to world transformation, as the camera must be perpendicular to the ground. However,

SVP methods assume a precise assembly of the setup.

On the other hand, non-parametric calibration methods do not assume any specific model of

camera, mirror, and misalignments. With these methods we only estimate the parameters of a

certain function that best describes the pixels to world points mapping, minimizing the fitting

error.

Parametric methods are the most commonly found, as they find parameters that, when well

estimated, allow a good calibration of all image regions, because distortions are implicit to the

model. Knowing the intrinsic parameters - mirror pose with reference to the camera, mirror shape,

and camera model parameters - and the extrinsic parameters of the catadioptric system - the camera

pose in the world reference frame - it is possible to map every pixel to a projection ray in the world.

On the other hand, non-parametric estimations usually perform worse, not being able to make

good estimates of all image regions. One example is polynomial approximations, which are often

valid only locally and badly approximate the projection around the edges of the mirror [11]. Nev-

ertheless, parametric techniques are strongly dependent on the omnidirectional sensor model they

use, while non-parametric approaches usually work with any kind of mirror and sensor.

Although most methods use a calibration pattern, as a grid or checkerboard, there are also

self-calibration methods that require no calibration pattern, nor any a priori knowledge about the

scene, only assuming the capability to automatically find point correspondences in a set of images
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of the same scene. These methods may suffer in case of tracking difficulties and of a small number

of features points. [3]

The calibration of SVP systems is a well known and studied problem. On the other hand,

calibration of non-SVP sensors is more difficult to find in the scientific literature, and often solves

only part of the problem, with some common assumptions, as an a priori camera calibration, or

known mirror shape. [1]

Regarding the SVP constrained approaches, in [2], a unifying theory for central projection

systems calibration is presented. It provides a model that maps points in 3D world in the image

plane, and it can describe various kinds of SVP vision systems, such as the combination of an

orthographic camera with a parabolic mirror, or a perspective camera with hyperbolic, elliptical or

planar mirrors. This model is fully described in [12], where the equivalence between catadioptric

and spherical projections is shown. Only systems with the SVP constraint can be used, and so the

camera and mirror axis must be aligned in the case of orthographic cameras, or the center of the

camera must be coincident with the outer focus of the mirror in the other cases.

Considering this, they derive several invariant properties of catadioptric line images. Lines are

projected to conic curves, and then they use three or more line images, which are determined using

conic fitting techniques, to calibrate the system, recovering the calibration parameters of the model

they presented. These are camera intrinsic parameters: relative pose between camera and mirror,

and the type of system. After experimental tests, they conclude curve estimation tends to fail due

to only small arc being visible in the image, which may affect the overall calibration process as it

is the starting point of the procedure.

Figure 1.3: Example of conic fitting methods to detect rectilinear lines. From [2]

Another approach is proposed in [5], where a calibration process for misaligned catadioptric

systems, in other words, non-SVP systems, is discussed, which also has the advantage of not us-

ing nonlinear optimization. It proposes a calibration method for systems composed of a surface
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of revolution mirror and a perspective camera, giving complete freedom to their relative position.

The calibration process itself is based on the mirror boundary, and copes with misalignment con-

sidering separate models for the camera and the mirror. The correspondence between points in the

different coordinate systems is calculated using mirror posture parameters, and reflection is calcu-

lated using ray tracing. It uses a common pinhole model for the camera to transform points in the

image coordinate system into the camera coordinate system. To estimate the mirror posture, they

use a method based on conic fitting along the ellipse in the image made from the mirror boundary.

For that, they assume the camera is already calibrated and the radius of the mirror boundary is

known. Using this method they obtain four solutions, and then they choose one with a method that

uses rays from pixels far from the camera, which are used because with those ones differences of

viewpoints can be ignored.

In [1], another method to calibrate non-SVP sensors is proposed. They also use the mirror

border and a set of points to determine the mirror pose with respect to the camera, as well as the

camera pose with respect to a world reference. In this case they assume the camera is already

calibrated and that the mirror shape is known. For estimating the mirror localization they use the

circle-ellipse correspondence due to the projection of a circle with known radius - mirror border

- on the image plane. This method calculates the mirror position with ambiguity, which is solved

only when estimating the extrinsic parameters (camera position in the world coordinate frame).

They then calculate these last parameters using a set of points with known coordinates in both

image and world coordinate frame and use ray tracing to calculate the reflected interpretation lines

of those points. After that, one knows the position of these lines in both the world reference and

camera reference, so one can compute the transformation between the two coordinate systems.

Due to the orthonormality constraint of the rotational matrix, this becomes a non-linear system of

equations. The intrinsic and extrinsic parameters estimation is done separately, and so the errors

of the first one are propagated to the second estimation.

Figure 1.4: Example of calibration pattern used in [1]
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In [8], a distance map around the robot’s center is calculated using a back-propagation ray-

tracing approach, with compensation for possible misalignments. In this case the mirror shape

is already known. It is also stated that a defocus blur problem does not exist due to low spatial

resolution at higher distances, so the main problem is the low-resolution itself. For the camera,

they use the pinhole model, disregarding distortion of the lens. In the beginning some assumptions

are used, such as the CCD axis being aligned with the axis of world coordinate system. Using the

backpropagation ray tracing methodology, they can calculate the ray corresponding to each pixel,

its intersection with the mirror is calculated, then obtaining the reflection ray, and finally the

intersection with the ground as well. Furthermore, they generalize this approach, by withdrawing

some of the assumptions initially used; now the CCD does not need to be aligned with the robot’s

coordinate axis, and the axis of revolution is not considered perpendicular to the ground anymore.

To accomplish this, they assume a translation offset of the CCD center point, and three rotation

angles applied to the three axis of the sensor, giving it complete freedom of position. The same

approach is used to simulate the mirror misalignment, with the difference being that only two

rotations are applied to the axis of the mirror. This is due to the fact that a rotation along its axis

of revolution has no overall effect in the resulting image acquired by the system.

To get some of the parameters needed to construct a distance map, they measured it from

the setup itself - the soccer robot - while others were extracted through algorithmic analysis of

the image. The main image features used were the mirror outer rim diameter and eccentricity,

the center of the mirror image, center of robot image, and both radii, as well as the distance and

eccentricity of the game field lines. They also state the extracted parameters can be non-optimal

due to the degradation of resolution with distance and its effect on feature extraction fidelity. To

overcome this problem, they provide image feedback tools with which is possible to manually and

interactively adjust the misalignment parameters.

Considering self-calibration methods, there is [10], in which they use omnidirectional images

as input to a stereo algorithm in order to reconstruct the surrounding environment. They can obtain

all the intrinsic pinhole camera model parameters, and the mirror parameters. However, the mirror

must be paraboloid.

They first present a method that uses the mirror boundary to calibrate the system, hence only

needing one image to execute this method. The method assumes the boundary is a circle, which

means it is specially suitable for SVP vision systems. After fitting the circle to the boundary, the

image principal point is determined as being its center. Then, using the boundary radius and the

system known field of view, they calculate the remaining mirror parameter.

After that, they propose a second method using point feature tracks across an omnidirectional

image sequence, and using consistency of pairwise correspondence, which satisfies the epipolar

constraint. First, it generates point tracks, using relatively short sequences, otherwise tracking

would be more difficult due to the highly distortion in catadioptric systems. Moreover, they use the

least-median error metric to estimate the proposed unknown parameters, minimizing an objective

function which can be calculated using the algebraic error metric or the image error metric, the

latter having better results. The error relates to the epipolar constraint, and the estimation uses
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the non-linear process with initial values being the ones obtained with the circle based technique -

mirror parameter and principal point - and setting the initial values of aspect ratio and skew as one

and zero, respectively.

Paper [11] presents an approach to calibrate omnidirectional vision systems using planar grids,

generalizing the typical method using grids to calibrate perspective cameras. With this technique,

four points need to be selected for each calibration grid by the user. The method makes use of

the unified projection model [13, 12]. In this method, the camera and mirror are not considered

separately, but as a global device. Moreover, an extra distortion function is added to model the

misalignment between mirror and camera and the imperfection of the lens shape, which translates

in radial and tangential distortions. They use a non-linear minimization to decrease the distance

between the projection of the grid and the extracted values in the image. Therefore, it needs to have

a good set of initial values of the parameters. For this, they start by ignoring the extra distortions

and assuming aspect pixel ratio equal to 1 and skewness equal to zero. To initialize the principal

point they use either the image center or the center of the mirror border, which is considered to

be a circle. They then estimate the focal length using at least three image points belonging to a

non-radial line image. Furthermore, the extrinsic parameters are estimated using four points of a

grid of known size.

In [14] a parametric approach is also used, modeling the various elements of the vision system

and their relative positions. However, this method is restricted to conic mirrors.

It is also possible to use a model with complete freedom regarding the relative position between

camera and mirror, which is determined through nonlinear optimization. [15]

Moreover, [16] uses a large dot calibration pattern that recovers mirror parameters, and prin-

cipal point.

Another method was proposed in [17], which uses a homography-based calibration. How-

ever, it assumes a parabolic mirror and an already calibrated camera, considering the intrinsic

parameters of the camera are known a priori. Therefore, it just estimates mirror parameters and

its position.

In [3], they propose a method to calibrate SVP systems, using a planar pattern located in

different positions. This is a non-parametric method, which assumes the image projection function

can be described by a Taylor series expansion. The coefficients are calculated using a two-step

least squares linear minimization. This method assumes the circular external boundary of the

mirror is visible in the image.

Both [3, 18] use a non-parametric calibration, which creates an association of a projection

ray in 3D world to every pixel in an image. This is a highly generic calibration method, and so a

specific model of the sensor is not required. [18] uses multiple images of overlapping calibration

grids to obtain an initial calibration.

Another approach is proposed in [19], which considers the mapping of 2D image pixels to

3D light rays, creating a generic imaging model that can be used to calibrate many types of vision

system using only one algorithm.
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Figure 1.5: Example of checkerboard pattern used by [3]

Finally, we must consider the optimization technique used to estimate the parameters that de-

scribe the system (either parameters of the system model, or parameters of the mapping function).

We can separate it in two groups again: nonlinear and linear optimization. Although nonlinear

methods are more flexible, they have the disadvantage that the resulting accuracy is strongly de-

pendent on the initial values, as the solution obtained might be a local minimum.

The fact that the mapping from pixel to ground coordinates may have some image line in which

ground points are at infinity shows the polynomial approximation will never perfectly match the

true mapping. Therefore, we can only hope to estimate the central region of the image, the most

extreme points being the view of soccer field corners with the robot in the opposite corners. Any

distances longer than that are not necessary, because localization algorithms only will use points

as far as those are, and so calibrating the rest of the mirror is not necessary, or even possible. If,

instead of mapping the image pixels to ground coordinates, we mapped them to the ray vectors at

each point, the problem would not have such a strong non-linearity, making it possible to better

calibrate the peripheral regions of the image.

1.3 Motivation and Methodology

As explained previously, omnidirectional vision system are used in soccer robots due to its possible

360 degrees field of view. Although the resulting images are strongly distorted, its wide field of

view is an important feature for self-localization in robots, because it can get an overall perception

of its surrounding environment. When matching the image obtained through the vision system

with a previously known map of the surrounding scenario, the probability of correctly estimating

its position can be increased with the knowledge of what is around the robot. Besides, it gives
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another important advantage: being able to see what is behind itself, which may prove to be

important for the soccer applications. Nevertheless, in order for self-localization to work properly,

these systems need to be properly calibrated, especially considering the nonlinearities introduced

by catadioptric vision systems.

Figure 1.6: The catadioptric vision system setup used in the soccer robots. From [4]

Therefore, with this work we intend to study some calibration processes, in order to improve

the localization of soccer robots. Thus, an accurate calibration is essential for self localization to

work properly. In this project we do not concern ourselves with color balance, assuming that the

colors are previously calibrated.

Usually, a checkerboard pattern is used to calibrate the system, as it is easy to obtain many

points in the world referential whose position is known. However, in this specific case we try to

calibrate the system only using the lines of the soccer field where the robot is located, because it

introduces some advantages useful in this scenario. For example, these robots are subject to colli-

sion with other robots that could cause slight changes in the mechanical structure, thus negatively

affecting the quality of the previous calibration given the new mechanical state of the robot. Given

these conditions, the use of field lines allows the creation of a calibration process that does not

need any exterior setup.

The ultimate application of this master thesis is the soccer robot used at FEUP, and so we

aim to create a calibration process for the camera-mirror vision system of these robots. The setup

currently uses an hyperbolic mirror, but this work is extendable to all kinds of mirrors.

We use a mapping function to calibrate the system, instead of a process to determine all the

intrinsic and extrinsic parameters of both camera and mirror, because the first gives the possibility
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of changing the type of camera and mirrors while still being able to use this calibration process.

Moreover, for the soccer application, we need calibration to obtain a mapping between pixels

and world points (ground), used in the localization process. So the non-parametric approach is

much more suitable, because it finds the parameters of a function that best fits that mapping. In

this particular case, the intrinsic parameters of camera, mirror, and their relative positions are

irrelevant. However, using this approach, we also need to find the type of function that best fits the

mapping, and the calibration process itself, namely its constraints. Furthermore, the parametric

method have been the major focus of research, and many viable solutions are already available.

Lastly, we need to choose the optimization method that retrieves the desired parameters from

the calibration data, as it can have a great influence in the overall result of calibration. The opti-

mization can be linear or non-linear. This choice is highly dependent on the calibration procedure

and data extraction.

In conclusion, robotic soccer is the main application of this algorithm, and so we propose a

calibration process that uses the domain area of these robots to calibrate the vision system. There-

fore, instead of using a non-soccer calibration pattern, such as a checkerboard, we use the soccer

field, more precisely, the soccer field lines, to calibrate the system. For this purpose, we chose

the non-parametric approach for our calibration process. Therefore, to accomplish that, we need

to first get calibration images from robot’s vision system. Then we extract field lines (using color

segmentation) and identify its structure, to retrieve information from the lines position. Finally,

we apply an optimization method that fits a function to the pixels to world coordinates mapping.

In all the work we use Matlab as a programming language. This choice was motivated by

the language flexibility and all the toolboxes already available. In particular, it already has im-

plemented functions to deal with image processing, and various linear and nonlinear optimization

methods, what makes it especially suitable for this thesis.

1.4 Structure of Thesis

The next chapter describes a simulation of general catadioptric vision systems, explaining how we

modeled each part of the system.

In chapter 3, we study various kinds of functions that can be used in non-parametric calibra-

tion, testing the fitting properties of each one on the simulation.

The forth chapter covers the main methods developed to extract information from the field

lines. We also describe the line extraction methods, that separate the field lines in indivisible

lines, and the identification model that matches each extracted line with the correspondent line of

a model.

In the following chapter we describe the calibration process used, especifically the optimiza-

tion method used, considering the information retrieved from field lines. We show the results

obtained with the proposed calibration method.

Finally, chapter 6 is dedicated to the main conclusions of the obtained results, as well as the

future work.



Chapter 2

Vision System Simulation

We started by building a simulation, because with that it is easier to study the system and pre-

validate the solution obtained. Although in the real process the correspondence between a pixel

in the image and a point in the world is not known, with the simulation we can use it to validate

calibration, even without using that information in the calibration process itself. So, we start by

giving the parameters of the vision system, such as intrinsic parameters of camera, transformation

matrices from camera to mirror referential and also between camera and world referential.

Then, we simulate the image obtained with the robot in different positions in the soccer field.

Although we know the mapping from image points to world points, we won’t use it in the cali-

bration process. Given the image obtained, we proceed to line extraction, and then line detection.

After that, we use the calibration process to obtain the intended mapping and then we compare it

with the known original mapping to calculate the error of the calibration process.

The simulation implements all the misalignment possibilities, using a generic hyperboloid

function to describe the mirror shape, and a pinhole model for the camera that models focal dis-

tance, aspect ratio, pixel skewness and image principal point. We can adapt the generic model to

a specific setup by changing the values of the described parameters.

We did not implement the radial and tangential lens distortions, as it would imply solving an

iterative process for each image pixel, making the simulation extremely slow. However, this is not

considered to introduce a relevant difference in the results shown in the following sections, regard-

ing the calibration procedure. We assume this because the mirror already introduces a high degree

of distortion/non-linearity. Given that, the camera lens distortion is negligible, unlike common

vision system in which the lens is the main cause of image distortion.

We use the assumption that the mirror surface is a surface of revolution, which means its

position and orientation only has five degrees of freedom in relation to the camera referential.

2.1 The Camera Model

To describe the camera we use the common pinhole model, which describes the mathematical

relationship between the coordinates of a 3D point and its projection onto the image plane of an

11
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Figure 2.1: Graphical representation of the ideal pinhole camera model

ideal pinhole camera. This is a simple model that does not include the lenses, therefore not con-

sidering their effects, such as geometric distortions or blurring. However, to increase the validity

of this model, we can still add to the simulation the Brown distortion equations, therefore taking

into account the geometric distortions. Applying also some suitable coordinate transformations

on the image coordinates, and neglecting some of the less relevant effects, the pinhole camera

model often can be used as a reasonable description of how a camera depicts a 3D scene, being

commonly used for example in computer vision and computer graphics. [20]

The ideal pinhole camera model describes the perspective projection of a 3D point in the

camera coordinate system (xc,yc,zc) into an image plane point (u,v). The optical center and

principal point are defined as shown in Figure 2.1. [21, 22]

Defining f - focal length - as the distance between optical center and image plane, we have

λ

u

v

1

=

 f 0 0

0 f 0

0 0 1


xc

yc

zc

 (2.1)

This model uses the origin of pixel coordinates as principal point, but considering most sys-

tems use the upper left corner of an image as origin of image reference, a principal-point offset

must be added to the model, which gives

λ

u

v

1

=

 f 0 u0

0 f v0

0 0 1


xc

yc

zc

 (2.2)

Besides, this model still assumes pixels are square and not skewed, which may not be always

valid. These changes can also be incorporated in the model and we obtain the matrix that describes
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the intrinsic camera parameters model used in this work.

λ

u

v

1

=

 fu α u0

0 fv v0

0 0 1


xc

yc

zc

 (2.3)

However, assuming the vision system employs a recent digital camera, we could consider

pixels are square ( fu = fv) and non-skewed (α = 0).

Moreover, with this simulation we do not want to calculate the projection of a 3D point, but the

reverse process, calculating the equation of rays that project in each pixel of the image. Therefore,

inverting the camera model and defining λx as xc/zc and λy as yc/zc we obtain

[
λx

λy

]
=

[
1
fu
− α

fu fv
−u0

fu
+ αv0

fu fv

0 1
fv

− v0
fv

]u

v

1

 (2.4)

We can also model the distortions using the Brown’s distortion model [23].

The undistorted rays are expressed as

λu =

[
λx

λy

]
(2.5)

and the distortion center is

λc =

[
λcx

λcy

]
(2.6)

Considering r2 = (λx−λcx)
2 +(λy−λcy)

2, each ray after distortion is given by

λd =λu +(λu−λc)
Nr

∑
i=1

(Ri · r2i)

+

[
T1(r2 +2(λx−λcx)

2) 2T2(λx−λcx)(λy−λcy)

T2(r2 +2(λy−λcy)
2) 2T1(λx−λcx)(λy−λcy)

]
(1+

Nt

∑
i=3

(Ti · r2(i−2))) (2.7)

where Ti is the ith tangential distortion coefficient, Ri the ith radial distortion coefficient, and

Nt and Nr the orders of the radial and tangential distortions, respectively. The distortion effect on

the rays is a change of direction. After that we use the camera intrinsic parameters to calculate the

pixel to rays (after distortion) correspondence:

λd =

[
1
fu
− α

fu fv
−u0

fu
+ αv0

fu fv

0 1
fv

− v0
fv

]u

v

1

 (2.8)

As we are not calibrating the various parts separately, lens distortion is not expected to create
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differences in the process, as for the mapping optimization it is the same to fit only the catadioptric

distortion, or both catadioptric and lens distortion. Besides, catadioptric distortion has a much

greater effect, because with this system the mapping from pixels to ground coordinates usually

has a line in the image that corresponds to points at infinity. From those points to the periphery the

camera captures the environment above ground. With lens distortion, this does not happen, and

the distortion is much softer, sometimes even being invisible to unaided eye.

2.2 Mirror Model

Figure 2.2: Representation of the mirror model, such as mirror pose and its coordinate system

To model the mirror shape we use the equation of a two sheet hyperboloid function, the mirror

being one of them. We also consider the radius of the mirror when modeling the vision system.

However, this describes an infinite mirror, and in reality the mirror is limited. In those cases where

a pixel corresponds to a ray that does not intercept the mirror, and considering the robot setups this

work aims at, it will intercept a black slab above the mirror, and so it will be a black point in the

image. We use the hyperboloid mirror because it is the kind of mirror used in the soccer robots.

Nevertheless, this does not imply the calibration process described in the following sections only

works with that type of mirrors, being just the one used in the simulation for tests. Considering the

calibration is non-parametric, it has no major relevance in the overall calibration method, although

the results may be different.

(zm +a)2

a2 − x2
m + y2

m

b2 = 1 (2.9)

with a being positive, so the hyperboloid has two sheets.

There can also be some misalignment between the camera and the mirror, which is modeled

in the next section.

One example of mirror misalignments can be found in Figure 2.3a.



2.3 Coordinate systems transformation 15

2.3 Coordinate systems transformation

We use this to model both the misalignments and extrinsic parameters. The last ones refer to the

change of position of the robot in the soccer field, which in the simulation is the world reference.

(a) Misalignment between camera and mirror (b) Misalignment of camera in relation to world refer-
ence

Figure 2.3: Possible misalignments between the various components of the vision system

As we see in Figure 2.3, there can be misalignments between the various parts that are part

of the vision system. In Figure 2.3a we have a non-ideal sensor, with translational and rotational

misalignments. In order to have an ideal sensor, the x and y coordinates (in the camera reference)

of Phm must be zero. The z coordinate is non-zero, and represents the distance between the camera

and the mirror. In the ideal case, the z axis of both mirror and camera coordinate systems must be

aligned. Rotations along z axis (mirror reference) have no effect, because the mirror is a curve of

revolution. Moreover, in order to have an ideal sensor, the z axis of camera and world references

must be aligned too. However, in this case rotation of camera reference along z axis is relevant,

because it changes robot orientation (extrinsic parameter). However, the camera orientation is not

the robot orientation, because camera and robot axis might not be aligned. The z world projection

of the central point of camera coordinate system is an intrinsic parameter, however, its value may

change without affecting the type of sensor (ideal or non-ideal). The x and y projections of the

same point are extrinsic parameters, representing the position of the robot in the soccer field.
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Although it is important to distinguish the world reference (soccer field) from the robot ref-

erence (coordinate system centered in the robot), in this chapter we do not consider it because it

does not affect the simulation procedure. However, for the calibration procedure, it as important

aspect and we deal with it in Chapter 5. Their z axis are always aligned, being the rotation along

this axis between them the real representation of the robot orientation. There’s no z translation

between them, and x and y translation represents the position of the robot in the field.

If the vision elements are aligned, their reference’s axis are aligned too, except for translation.

Thus the rotational transformation between them is the identity transformation.

To model the camera-to-mirror coordinate transformation, we use homogeneous transforma-

tions, which are composed of a rotation matrix and a translation vector. To build the rotation

matrix for this case, we assume a composition of extrinsic rotations (rotations about the fixed ref-

erence frame axes, which are the camera axes). Using yaw, pitch, and roll angles, applied to x, y

and z axis, respectively, we obtain the following rotation matrix, relating the mirror referential to

the camera coordinate system. Roll angle is not used because z axis is considered to be the axis of

revolution, hence rotations along this axis have no effect.

Rc
m = Ry,θmRx,ψm =

 cosθm sinθm · sinψm sinθm · cosψm

0 cosψm −sinψm

−sinθm cosθm · sinψm cosθm · cosψm

 (2.10)

with θm being the pitch angle, and ψm the yaw angle

If we multiply this matrix by a vector in the mirror reference, we obtain the vector orientation

given in camera coordinates. For the inverse transformation Rm
c , we just have to transpose the

matrix, because it is orthogonal.

The distance between referentials given in the camera coordinate system is

Tm =

tmx

tmy

tmz

 (2.11)

We obtain the following homogeneous matrix describing the mirror-to-camera transformation

Hc
m =

[
Rc

m Tm

01,3 1

]
=


cosθm sinθm · sinψm sinθm · cosψm tmx

0 cosψm −sinψm tmy

−sinθm cosθm · sinψm cosθm · cosψm tmz

0 0 0 1

 (2.12)

The inverse homogeneous transformation will be

Hm
c =

[
Rm

c −Rm
c Tm

01,3 1

]
=

[
Rc

m
T −Rc

m
TTm

01,3 1

]
(2.13)

To model the system extrinsic parameters, we use the same approach, modeling the camera-to-

world transformation with a homogeneous matrix. However, in this case we use the roll angle, as
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it has effect in the relative position between ground and camera when acquiring images for various

roll angles. In this case the fixed reference is the world. Considering θc the pitch angle, and ψc

the yaw angle, we have

Rw
c = Rz,φcRy,θcRx,ψc

=

cosφc · cosθc −sinφc · cosψc + cosφc · sinθc · sinψc sinφc · sinψc + cosφc · sinθc · cosψc

sinφc · cosθc cosφc · cosψm + sinφc · sinθc · sinψc −cosφc · sinψc + sinφc · sinθc · cosψc

−sinθm cosθm · sinψm cosθm · cosψm


(2.14)

If we multiply this matrix by a vector in the camera reference, we obtain the vector orientation

given in world coordinates.

The translational difference between referentials is given in the world coordinate system as

Tc =

tcx

tcy

tcz

 (2.15)

We obtain the following homogeneous matrix describing the camera-to-world transformation

Hw
c =

[
Rw

c −Rw
c Tc

01,3 1

]
(2.16)

2.4 Back-Propagation Ray Tracing

Figure 2.4: Example of back-propagation ray tracing. As shown, from a pixel position and the
vision system model, the ray is calculated, and the ground point that originated the ray is estimated.
Image obtained from [4].
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To calculate the pixel-ground position correspondence, we apply back-propagation ray trac-

ing using the models described previously (following the approach used in [8]) Starting with

Equation 2.4 to determine the incident ray on each pixel in the camera reference, described by

λcm = s(λx,λy,1), we then apply a homogeneous transformation to get the ray equation in the

mirror reference

λm = Hm
c × (sλx,sλy,s,1) = Rm

c × s(λx,λy,1)−Rm
c ×Tm = s~λ ′m−λ

′′
m (2.17)

~λ ′m =

λ ′mx

λ ′my

λ ′mz

 (2.18)

λ
′′
m =

λ ′′mx

λ ′′my

λ ′′mz

 (2.19)

Substituting the ray equation in the hyperbole (xm,ym,zm) coordinates, we have

(sλ ′mz−λmz +a)2

a2 −
(sλ ′mx−λmx)

2 +(sλ ′my−λmy)
2

b2 = 1 (2.20)

(
λ ′mz

2

a2 −
λ ′my

2 +λ ′mx
2

b2

)
s2 +

(2λ ′mz(a−λ ′′mz)

a2 −
2λ ′myλ ′′my +2λ ′mxλ ′′mx

b2

)
s

+
((a−λ ′′mz)

2

a2 −
λ ′′2mx +λ ′′2my

b2 −1
)
= 0 (2.21)

sa =
λ ′mz

2

a2 −
λ ′my

2 +λ ′mx
2

b2 (2.22)

sb =
2λ ′mz(a−λ ′′mz)

a2 −
2λ ′myλ ′′my +2λ ′mxλ ′′mx

b2 (2.23)

sc =
(a−λ ′′mz)

2

a2 −
λ ′′2mx +λ ′′2my

b2 −1 (2.24)

sm =
−sb±

√
s2

b−4sasc

2sa
(2.25)

In case sa = 0 or (s2
b−4sasc)< 0, the ray does not intersect the mirror.

Next, we calculate the z axis mirror intersection coordinate of the two solutions, as only the

positive ones are valid (solutions with negative z coordinate intersect the hyperboloid sheet that do

not exist). If there are two possibly valid solutions, the one with lower z is chosen. Considering any

possible relative position between camera and mirror, it might happen that the correct solution (first

interception of ray with mirror) is the one with greater z mirror coordinate. However, considering
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the common position of camera pointing upwards to the mirror, the solution presented will always

be right.

Moreover, we can also choose the right solution calculating the vector from the optical cam-

era center and intersection with the mirror using other approach. The shorter one, and in the

same direction as λm will be the first hyperboloid intersection corresponding to the real mirror-ray

intersection. Nevertheless, this approach takes more calculations - the first presented just uses

comparisons and will have, in common catadioptric systems, the same result. The solution is sm.

The intersection with the hyperboloid in the mirror and camera references are, respectively

Pm = sm
~λ ′m−λ

′′
m (2.26)

Pc = sm(λx,λy,1) (2.27)

and the mirror incident light ray, from camera, is

~rim =~λ ′m (2.28)

To calculate the incident ray direction, we use the law of reflection, which states the angle of

incidence equals the angle of reflection, and incident, normal and reflected directions are coplanar,

the angle of incidence/reflection being the angle of incoming/outgoing light with respect to the

normal of the surface.

Figure 2.5: Reflection of a ray in the mirror. Using the surface normal vector and the incident ray
direction, the reflection ray direction is estimated. Image from [5]

In order to calculate vector normal to the mirror surface, which is defined implicitly as the set

of points (xm,ym,zm), we define a 4-D function F(xm,ym,zm) such that F(xm,ym,zm) = K corre-

sponds to the mirror equation. Considering this, the normal at a point (xm,ym,zm) on the surface is

given by the gradient ∇F(xm,ym,zm), since the gradient at any point is perpendicular to the level

set, and F(xm,ym,zm) = K (the mirror equation) is a level set of F . Therefore, with F being

F(xm,ym,zm) =−
(zm +a)2

a2 +
x2

m + y2
m

b2 +1 (2.29)
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the surface normal is

~N(xm,ym,zm) = ∇F(xm,ym,zm) =


2xm
b2

2ym
b2

−2(zm+a)
a2

 (2.30)

pointing away from the mirror. We then normalize this vector to make it unitary. ~Nn = ~N/
∥∥∥~N∥∥∥

Using the intersection point, we calculate the surface normal at that point ~Np, and we calculate

the incident ray as

~rrm =~rim−2
〈
~Np,~rim

〉
~Np (2.31)

Then, we need the reflected ray orientation in the camera coordinates, so

~rrc = Rc
m~rrm (2.32)

And the mirror intersection point in the camera reference is

Pc = Hc
m×Pm (2.33)

We also checked if x2
m + y2

m ≤ hr2
m, with hr being the mirror radius, to check the ray really

intersects the mirror or not.

Then we just need to get the mirror intersection point and reflected ray direction into world

coordinates.

~rrw = Rw
c~rrc (2.34)

Pw = Hw
c ×Pc (2.35)

Finally, to calculate the ground intersection, we just need do confirm the z coordinate of~rrw is

positive, and then the ground intersection is given by

Pw = (Pwx,Pwy,Pwz) (2.36)

~rrw = (rwx,rwy,rwz) (2.37)

k =−Pwz/rwz (2.38)

x f w = Pwx + k · rwx (2.39)

y f w = Pwy + k · rwy (2.40)
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2.5 Results

Applying the method described previously for each pixel of the image we obtain the correspondent

ground point. Using that approach, we can simulate the images acquired by the vision system. In

the next pictures we show some results of the vision system simulation.

(a) Ideal Sensor (b) Non-Ideal Sensor

Figure 2.6: Comparison between different catadioptric vision system simulation. In (a) the system
has a SVP, because there are no misalignments, and the ideal pinhole camera model is used (only
with principal point offset). In (b) misalignments, pixel skewness and aspect ratio is simulated.

In Figure 2.6 we show the difference in the results when using simulation of vision systems

with different parameters. While in the first case we use a central vision system, thus having only

radial distortion, in the second one there are strong misalignments, and so the vertical field of view

is not the same in all directions. In this images, red regions correspond to points above ground,

and blue ones are non-valid regions due to not intersection of the mirror by the rays corresponding

to that pixels. This effect is due to the limited radius of the mirror.

Figure 2.7: Simulation of ideal catadioptric vision system with robot in a different field position.
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Chapter 3

Mapping Functions

After building the simulation, we tested some types of functions to know how well they would fit

the kind of distortion of a catadioptric vision system. The polynomial functions are the obvious

idea, as they are specially suited for linear optimization. Therefore, we firstly tried to estimate two

polynomial functions for x and y world coordinate, as a function of pixel coordinates u and v.

However, considering the type of system we are dealing with, we decided to tests this also with

another polynomial function, now using polar coordinates. However, this makes it a non-linear

optimization, because we need to calculate the center pixel that is the origin of the polar reference

coordinate system. To overcome this problem we propose a multi-step optimization.

Considering the geometry of the catadioptric system, the last type of functions was expected to

give the best results, even for non-SVP systems. However, it only showed to be better when fitting

SVP vision systems, in which all the parts are aligned. But for the other cases, namely the ones we

are assuming we want to calibrate, the usage of Cartesian coordinated seems to have better results.

It is important to realize this tests were done using all image pixels, and not only the field

lines. This was done because at this phase we only want to analyze which functions better fit

the calibration of catadioptric systems, by comparison of the errors obtained for each one with

different orders (polynomial degrees). However, we are not using all points of image, as there

are regions that we do not want to calibrate, for example, regions corresponding to infinity in

the ground reference. Besides, those points would make the fitting much more difficult, and to

improve in those regions, in the main part of the image it would became worse.

Besides, when all points are used in the calibration process, we only need to get information

from one test image. However, if only lines are used, this can not be done because the mapping

will fit reality better in the field lines. As field regions without lines are only extrapolated, the

function is not expected to be so close to the true mapping as it is in the lines region.

3.1 Polynomial Approximation using Cartesian Coordinates

For each calibration point l, we have

23
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x̂l(ul,vl) =
O

∑
i=0

i

∑
j=0

βi ju
i− j
l v j

l =
m

∑
k=1

βkφk(ul,vl) =
m

∑
k=1

Slkβk = Slβ (3.1)

ŷl(ul,vl) =
O

∑
i=0

i

∑
j=0

αi ju
i− j
l v j

l =
m

∑
k=1

αkφk(ul,vl) =
m

∑
k=1

Slkαk = Slα (3.2)

where for each βi j corresponds a parameter βk, O is the order of the polynomial function, and

m the total number of parameters. Sl is a line vector, with Slk being its elements, and β is a vector

with all the parameters βk.

We should also emphasize that, instead of using u and v, if we use u−u0 and v−v0, the results,

theoretical should be the same, except for the values of constants ki j, but the mapping should result

the same. However, for numerical reasons, when only using u and v the least square method would

return a warning saying the matrix used for the calculations was “singular to working precision”,

and the resulting mapping would not properly fit the distortion. For u0 and v0, we just choose the

center of the image.

As we have the real values for each calibration point, x(u,v) and y(u,v), we can estimate β and

α parameters. From now on we only demonstrate how to calculate β , but the same applies to α .

In order to find the coefficients β that fit the known data best, we use the quadratic minimization

approach [24]

β̂ = argmin
β

Jx(β ) (3.3)

where the objective function Jx is given by

Jx(βx) =
Np

∑
l=1
|xl− x̂l|2 =

Np

∑
l=1

∣∣∣∣∣xl−
m

∑
k=1

Slkβk

∣∣∣∣∣
2

= ‖x−Sxβ‖2 (3.4)

where x is a vector (size l) with the x coordinate of each calibration point, Sx is a matrix with

l lines, each being Sl , and Np is the number of calibration points.

Given this formulation of the problem, and considering ŷ and x̂ functions are linear combi-

nations of partial functions, we can use a linear method to estimate the parameters - linear least

squares optimization. The solution in this case is them given by

β̂ = (Sx
T Sx)

−1Sx
T x (3.5)

For that purpose we used Matlab method lscov, which instead of equation 3.5 uses the QR

factorization (slower than the normal equations method but more numerically stable), resulting in

Rβ̂ = QT x (3.6)

Being R an upper triangular matrix and Q an orthogonal matrix such as Sx = QR. The solution

can be easily found with backward substitution because R is upper triangular.
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In 3.1 we show the fitting results of the calibration, for polynomial degree ranging from five

to twenty. We use two case studies, the ideal sensor - no misalignments and ideal pinhole camera

model - and non-ideal sensor - with strong misalignments. We show the average and maximum

error for each case, for both the ideal and non-ideal sensor simulated in 2.6. As expected, when

increasing the order of the function the error decreases. It is also easy to note that errors are lower

in the SVP case, which can be explained by the lower degree of distortion in the second case

systems.

Table 3.1: Fitting error of polynomial function estimation (cartesian coordinates)

Non-ideal Sensor Ideal Sensor
Order

Maximum error (cm) Average error (cm) Maximum error (cm) Average error (cm)
5 222.25 14.82 21.83 2.34
6 150.25 9.00 22.21 2.34
7 100.76 5.54 3.93 0.26
8 67.02 3.44 4.01 0.26
9 44.18 2.14 1.44 0.13
10 29.19 1.33 1.47 0.13
11 19.37 0.83 0.10 0.01
12 12.93 0.52 0.10 0.01
13 8.64 0.33 0.11 0.01
14 5.76 0.21 0.11 0.01
15 3.83 0.13 0.01 0.00
16 2.54 0.08 0.01 0.00
17 1.68 0.05 0.01 0.00
18 1.11 0.03 0.01 0.00
19 0.73 0.02 0.00 0.00
20 0.48 0.01 0.00 0.00

As we can see from the error image in Figure 3.1b, the error is greater at the calibration

frontier, and quite lower in the rest of the image, which explains the big difference present in

Table 3.1 between maximum and average error. We use Figure 3.1b and Figure 3.1a to analyze the

error, because they give a different perspective of the error. In the first we calculate the estimated

world position corresponding to each calibration pixel. If it belongs to a line, we print a black

pixel. If not, it corresponds to a field point that is not line. For that case, it will be a pink point. We

make it different from green, to differentiate points that belong to the calibration, and those that

do not. Finally, the world re-projection might not be accurate, and so if it corresponds to a line, we

print it yellow instead of pink, in order to make the true lines position visible. In the second image,

we use our knowledge of the current world correspondence between pixel and ground coordinate,

and use it to calculate the calibration error of each pixel. Then, we normalize it dividing it by

its maximum value. Therefore, black points correspond to no error, and white (value of one)

corresponds to maximum error. While the first one gives a better feedback of the fitting quality

(which is not visible in the second as it is always normalized), the second one gives a better idea

of the error spatial distribution. For example, in the first one a black point in a the lines position,
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or a pink point, might give the idea that region is well calibrated, but that might not be true, as we

only know the mapping still corresponds to a line/field point, but do not know if it is the correct

position. This problem arises because we are representing a four dimensional function in a plane.

The color code is presented in Table 3.2. In order to know the quality of the calibration procedure,

it is important to have information relative to the field size. In this case we simulated a field with

10m×6m, with line width of 6cm. Considering this and choosing an appropriate order for the

estimating function, the calibration procedure can have relatively low error.

Table 3.2: Color code of image reprojection (calibration using both field lines and non field lines
points)

Color Meaning
Blue (periphery) Rays from camera do not intersect the mirror due to its limited radius
Red (periphery) Rays from camera intersect the mirror, but direction of reflected ray

points upward, not intersecting the floor
Black Pixels reprojected into the soccer field lines
Green Field pixels (not field lines) that do not reproject into field lines (pixel

not used for calibration)
Pink Field pixels (not field lines) that do not reproject into field lines (pixel

used in calibration)
White Field lines in the test image whose reprojection is not a line (pixel not

used for calibration)
Yellow Field lines in test image whose reprojection is not a line (pixel used in

calibration)

We start by testing it in a non-ideal sensor, as shown in Figure 3.1.

(a) Reverse mapping (b) Normalized error

Figure 3.1: Calibration results for the non-ideal sensor using a cartesian coordinates 5th degree
polynomial function. In (a) we represent the reverse mapping of points, and in (b) we represent
the normalized calibration error.

Besides, we can also confirm that while five degree polynomials are a poor fit to the real map-

ping, with a ten degree function the calibration results are already completely acceptable results,

being the error in the center less than one centimeter, and the maximum error around thirty cen-

timeters. However, as we can see in Figure 3.2, that only happens in the calibration frontier, with

local maximum errors in the rest of the image being quite low. Finally, it is important to notice
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that, when increasing the order, and considering the true mapping has no oscillations but a curva-

ture always with the same orientation, the oscillations of the polynomial get a higher frequency,

which results in error oscillations. In this case the results are better, because we are using well

distributed calibration points. However, with fewer points in the calibration, a image region might

have big oscillation, thus great error, so calibrated areas can be closely mapped.

(a) Reverse mapping (b) Normalized error

Figure 3.2: Calibration results for the non-ideal sensor using a cartesian coordinates 10th degree
polynomial function. In (a) we represent the reverse mapping of points, and in (b) we represent
the normalized calibration error.

Another interesting test is the calibration of ideal sensors. Although we do not have those in

real setups, the resulting can still be closer to this example than the obtained from the non-ideal

sensor simulation. As shown in Table 3.1, Figure 3.3 confirms the better quality calibration results.

Although a 5-degree polynomial was not a good choice in the last case, in this the results are quite

acceptable, even similar to the ones obtained for the last case with a ten degree function.

(a) Reverse mapping (b) Normalized error

Figure 3.3: Calibration results for the ideal sensor using a cartesian coordinates 5th degree poly-
nomial function. In (a) we represent the reverse mapping of points, and in (b) we represent the
normalized calibration error.

3.2 Polynomial Approximation using Polar Coordinates

Again, the same as Equations 3.7 and 3.8 is applied with polar coordinates.
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(a) Reverse mapping (b) Normalized error

Figure 3.4: Calibration results for the ideal sensor using a cartesian coordinates 10th degree poly-
nomial function. In (a) we represent the reverse mapping of points, and in (b) we represent the
normalized calibration error.
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with

ρ̂wl =
√

(x− x0)2 +(y− y0)2 (3.9)
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√

(u−u0)2 +(v− v0)2 (3.11)

θ̂al = arctan
v− v0

u−u0
(3.12)

(3.13)

Although in the cartesian coordinates case we would have u0 and v0 just for numerical rea-

sons, in this case it is part of the parameters we have to estimate. Therefore, this is not a linear

optimization problem anymore. As we don’t have an initial guess for the calibration parameters,

a non-linear optimization would not be accurate, thus we use a multi-step optimization. In the

first optimization (linear), we consider the center of the image referential the center of the image

and the center of the world reference the point (0,0). Then, we perform a least square method

to calculate two polynomial functions ρw and θw as a function of ρa and θa. We then have an

initial solution, so we can use a non-linear optimization to tune all the parameters - the references’

centers and the polynomial parameters. However, with high order polynomial functions the last

process can take a long time, and so we instead use a three step optimization, as shown in 3.3.
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The first step is the same, but in the second we use the former results as initial solution to get an

estimate of the following parameters: u0, v0, y0 and x0. Only after that we use a third optimization

to tune all the parameters. For the non-linear optimization the Trust Region Reflective algorithm

was used.

Table 3.3: Multi-step optimization

Step Optimization Description
1 u0 = sizeu/2, v0 = sizev/2, y0 = 0 and x0 = 0. β and α parameters obtained using

linear optimization (least squares, using QR factorization)
2 Using α and β obtained previously, u0, v0, y0 and x0 are estimated using nonlinear

optimization (Trust Region Reflective algorithm)
3 All parameters are tuned using nonlinear optimization (Trust Region Reflective algo-

rithm)

In order to improve the overall result, we can repeat steps 1 and 2 (Table 3.3 until there are

no further improvement), and only then use step 3. The last step is important because a minimum

when estimating parameters separately may not be the global optimum when estimating all the

parameters at the same time.

However, now there are four more parameters describing the center of each polar coordinate

system in the world and image plane references. Their orientation is not changed, as that can be

modeled using the equation above.

For this case, we need a multi-step calibration. In Figure 3.5 we show the results for different

approaches of five degree polynomial calibration. We start with only the linear optimization, then

combining it with a non-linear method to estimate all parameters, and finally we test a multiple step

approach. In the latter, it follows the linear optimization to find the polynomial parameters with

a non-linear method to estimate the references centers, doing it until the error can’t be decreased.

Finally, as this method estimates the best parameters separately (which may lead to non minimal

solutions), we use a global non linear estimation. As we can conclude from Figure 3.5, the results

are not promising, and the increased cost of nonlinearity is not worth the difference in the results.

In Figure 3.6 we did the same test, but with higher degree polynomials. As expected, there

is little difference between only linear and multi-step optimizations, and so we decided to use

only linear calibration in the following tests. Nevertheless, we noticed that even with the system

tested, which copes strong misalignments, with an order increase of the function, the results can

be relatively good.

As we did previously, we again present in Table 3.4 the results of polar coordinates polynomial

function, with varying degrees and using two different types of catadioptric vision systems. While

for SVP systems the results are quite good, with average error lower than one centimeter even for

five degree functions, the same does not happen with the other system. In that one the error is

never has satisfying has obtained with cartesian coordinates. Besides, we noticed that after order

ten, the error is quite unstable, seeming to increase and decrease almost randomly.
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(a) Linear Optimization (step 1) (b) 2 step Optimization - steps 1 and 3 (c) Multi-step Opt. (steps 1 to 3)

Figure 3.5: Calibration results using various approaches: (a) uses a linear optimization, (b) a
combination of one linear and one nonlinear optimizations, and (c) uses a multi-step combination
of both linear and nonlinear parameter estimations, with repetition of steps 1 and 2 until no further
improvement. It uses a five degree polynomial function. The optimization steps are presented in
3.3.

(a) Linear Optimization (step 1) (b) Multi-step Opt. (repetition of steps 1 and 2)

Figure 3.6: Calibration results using various approaches: (a) uses a linear optimization, (b) a
multi-step combination of linear and nonlinear optimizations. Step 3 is not used because, with a
11th degree polynomial function, it takes a long time.The optimization steps are presented in 3.3.

We explain the difference in the results for the two sensors as follows. In the ideal case, our

first estimate of the coordinate system centers - the center of the image - is correct. Besides,

θw = θi, as the image only has radial distortion. Therefore, we only need a function to estimate ρw

as function of ρi, and our linear optimization is enough to find a polynomial that fits that. However,

in the other case, that does not hold, hence the need of multi-step optimization. Nevertheless, due

to common local minimum problem of non linear optimization, that does not have any result, and

so the results are poorer.

As with cartesian coordinates, there is usually greater errors in the frontier of the calibration

region. However, in this case, besides further regions (big ρ), there is also another frontier - the

-180/180 degrees angle. As it is another frontier, the error in that region is greater than in the rest

of the image.

However, for the SVP system case, the angle frontier does not apply any more. This can be

explained due to the perfect alignments, that, as said before, make θw = θi and ρw function of ρi,

and so the results for θ equal to 180 or -180 degrees are the same. It is important to notice the
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Table 3.4: Fitting error of polynomial function estimation (polar coordinates)

Non-ideal Sensor Ideal Sensor
Order

Maximum error (cm) Average error (cm) Maximum error (cm) Average error (cm)
5 536.12 38.99 5.78 0.45
6 487.57 31.21 2.57 0.16
7 387.90 26.09 1.03 0.05
8 371.13 23.20 0.34 0.02
9 322.75 20.23 0.14 0.01
10 332.68 16.73 0.07 0.00
11 227.23 13.66 0.03 0.00
12 241.32 11,71 0.03 0.00
13 292.81 11.50 0.03 0.00
14 1648.80 25.11 0.00 0.00
15 907.42 12.64 0.04 0.00
16 491.06 10.26 0.01 0.00
17 257.81 8.60 0.01 0.00
18 463.37 10.80 0.40 0.01
19 699.54 13.55 0.00 0.00
20 1965.35 50.40 0.00 0.00

(a) Reverse mapping (b) Normalized error

Figure 3.7: Calibration results for non-ideal sensor using a polar coordinate 5th degree polynomial
function. In (a) we represent the reverse mapping of points, and in (b) we represent the normalized
calibration error.

difference in the calibration quality between ideal (Figure 3.7) and non-ideal sensors (Figure 3.9).

While using the same order for polynomial function, in the first one the result is not acceptable,

but in the latter the result is almost perfect. This is due to the correct initial values used for the

function parameters in the ideal case (which are incorrect in the other case). Moreover, another

reason to explain this is that for ideal sensors this kind of functions is a good fit for the mapping,

but not for non-ideal sensors.
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(a) Reverse mapping (b) Normalized error

Figure 3.8: Calibration results for non-ideal sensor using a polar coordinate 10th degree poly-
nomial function. In (a) we represent the reverse mapping of points, and in (b) we represent the
normalized calibration error.

(a) Reverse mapping (b) Normalized error

Figure 3.9: Calibration results for an ideal sensor image using a polar coordinate 5th degree poly-
nomial function. In (a) we represent the reverse mapping of points, and in (b) we represent the
normalized calibration error.

(a) Reverse mapping (b) Normalized error

Figure 3.10: Calibration results for an ideal sensor image using a polar coordinate 10th degree
polynomial function. In (a) we represent the reverse mapping of points, and in (b) we represent
the normalized calibration error.
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3.3 Usage of only lines

Although we decided to analyze the functions using all points, we know that in reality we can

not do it, as it will affect the final result. Therefore, in this section we compare the results of

calibration when using only lines or using all points. However, this is still not the real case, as we

use all points belonging to lines, and their x and y world coordinates. So, all the results in here

must be accentuated in order to apply them in the real case. For this tests we use the cartesian

coordinates, as it has the overall best results considering the two types of systems.

The reverse mapping color code for this specific case is presented in Table 3.5.

Table 3.5: Color code of image reprojection (calibration using only field lines)

Color Meaning
Blue (periphery) Rays from camera do not intersect the mirror due to its limited radius
Red (periphery) Rays from camera intersect the mirror, but direction of reflected ray

points upward, not intersecting the floor
Black Pixels reprojected into the soccer field lines
Green Field pixels (not field lines) that do not reproject into field lines (pixel

not used for calibration nor validation)
Pink Field pixels (not field lines) that do not reproject into field lines (pixel

not used in calibration, but used in validation with test image)
Cyan Field pixels (not field lines) that do not reproject into field lines (pixel

used in calibration and validation)
White Field lines in the test image whose reprojection is not a line (pixel not

used for calibration, neither for testing)
Yellow Field lines in test image whose reprojection is not a line (pixel not used

in calibration, but used in validation)
Grey Field lines in test image whose reprojection is not a line (pixel used in

calibration and validation)

(a) Reverse Mapping (calibration using all field points) (b) Reverse Mapping (calibration using only field lines)

Figure 3.11: Comparison between calibration using only line points and using all points (inside a
predetermined region), using a 5 degree polynomial function. The result is presented in the form
of a reverse mapping of the calibration image. The color code for (a) is in table 3.2, and for (b) is
in table 3.5. The test is done in the image used for calibration.
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As we see in Figure 3.11, when using a five degree polynomial function to fit only the lines,

the calibration seems to get way better. However, this happens because that figure is specially

suited to analyze the reprojected lines position. Considering only lines were used for calibration,

that was expected to happen. That is the reason why in this cases we should use different images

for the calibration and validation process, as only the last ones can tell us the extrapolation quality

in the regions not calibrated. However, even in 3.11 we can see that non calibrated regions have

reprojected lines (in black) that should not be there.

(a) Reverse Mapping (calibration using all field points) (b) Reverse Mapping (calibration using only field lines
of other image)

Figure 3.12: Comparison between calibration using only line points and using all points (inside a
predetermined region), using a 5 degree polynomial function. The result is presented in the form
of a reverse mapping of the calibration image. The color code for (a) is in table 3.2, and for (b) is
in table 3.5. The test is done using an image different from the calibration image.

In Figure 3.12 we confirm that by testing the system with a different image. As expected, there

are lines that are well fitted (in regions calibrated), but there are also some lines that move away

from its correct position, because it was not calibrated properly. In this case, we still see regions

with lines that should not have anything in there.

(a) Using all field points (b) Using only field lines

Figure 3.13: Comparison between calibration using only line points and using all points (inside
a predetermined region), using a 5 degree polynomial function. The result is presented using the
calibration error of each one.

Again, to analyze the error we can also use Figure 3.13. In Figure 3.13b, the error is not



3.3 Usage of only lines 35

normalized to be between 0 (no error) and 1 (maximum error), but normalized so the same gray

intensity in both images corresponds to the same error, making it possibly to compare the results.

An interesting feature is that error seems to get lower even in regions not used for calibration, as

long as they are in the central part of the image and relatively near some line used for calibration.

However, in regions where this condition is not satisfied, the error is much higher, which makes

the maximum and average error worse (maximum error is 939.68 centimeter and average error is

31.247 centimeter).

(a) Reverse Mapping (calibration using all field points) (b) Reverse Mapping (calibration using only field lines)

Figure 3.14: Comparison between calibration using only line points and using all points (inside a
predetermined region), using a 10 degree polynomial function. The result is presented in the form
of a reverse mapping of the calibration image. The color code for (a) is in table 3.2, and for (b) is
in table 3.5. The test is done in the image used for calibration.

Using the 10 order polynomial function, we get similar results, but know maximum error is

11878 centimeter and average error is 73.24 centimeter. Therefore, instead of getting better when

increasing the order, the reverse happens. This is a effect we discussed earlier, the usage of high

order function in regions with low calibration points. In regions used for calibration the function

fits better (Figure 3.14), but in other regions the extrapolation gets out of control (easily seen in

Figure 3.16).
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(a) Reverse Mapping (calibration using all field points) (b) Reverse Mapping (calibration using only field lines
of other image)

Figure 3.15: Comparison between calibration using only line points and using all points (inside a
predetermined region), using a 10 degree polynomial function. The result is presented in the form
of a reverse mapping of the calibration image. The color code for (a) is in table 3.2, and for (b) is
in table 3.5. The test is done using an image different from the calibration image.

(a) Using all field points (b) Using only field lines

Figure 3.16: Comparison between calibration using only line points and using all points (inside a
predetermined region), using a 10 degree polynomial function. The result is presented using the
calibration error of each one.



Chapter 4

Field Lines Identification

(a) Soccer field (b) Soccer field lines identified

Figure 4.1: Example of a soccer field and the result of lines detection and classification.

To use the field lines in the calibration process, we need to extract some information from them.

We define lines as the indivisible segments of field lines constituting the soccer field, and corners

the points connecting two or more of those segments. Therefore, we need to extract the lines

and match the extracted information with a soccer field model, in order to obtain a correspondence

between the line extracted and a specific line of the model. For that purpose, we start by separating

the white field lines from the rest of the image, obtaining an image with only the unidentified white

lines. With the line extraction process, we intend to separate the white lines that form a whole

(soccer field) into indivisible lines that connect each other at corners, as shown in Figure 4.1.

We define the type of a corner as a corner that connects a certain number of lines. Therefore,

we can have several corner types: one-line corner connects one lines, 2-line corner connects two,

and so on.

Moreover, we do not need to have line width of more than one pixel, as it does not add any

valuable information to the process of identifying the lines in the system. For that reason, we

apply a skeletonization algorithm to obtain one pixel width lines. Although we can use the wider

lines’ edges for the calibration, we can only do that with a few part of the lines - the ones in the

region with good spacial resolution. Anyway, for the lines detection that is irrelevant.

37
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Figure 4.2: The soccer field lines.

4.1 Lines Detection

Using a common perspective vision system, the field lines in the image would still be linear, and

so a simple Hough transform would be enough to detect the lines. However, using a catadioptric

system, there is high distortion, making the field lines curve, and making it impossible to use this

kind of algorithms.

A good approach to detect lines would then be to detect the corners first, and then the lines

would just be the group of pixels connecting the various corners. A corner in this kind of images

can be defined as the end or beginning of a line, the intersection of 2 or more curved lines, and

an abrupt change of direction of a curved line - in this last case, there is an intersection of 2 lines,

but the resulting image seems to be one unique line, because each pixel only has 2 neighbors, the

previous and following pixel of the image line.

Firstly, we tried to use a corner detection algorithm based on the Harris method, but it does

not have the expected result. As we can see in 4.3, many corners are wrongly detected, and with

the downside of some other corners not being detected. For example, the intersection of the goal

line with the side line is not detected, because the change of direction is not that abrupt. This can

be explained by the distortion caused by the system, increasing the curvature of the lines in this

region. Another problem occurs in the center circle, caused by the natural curvature of this line,

which is curve even in the world reference. To overcome this problem, a conic fitting method

[2] could be used. However, this would not be an appropriate solution because it assumes SVP

systems, which may not be the case. Besides, some of the lines, specially in the peripheral regions

of the image, may be to short to make an appropriate fitting. Moreover, this would not properly
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detect the center circle, and so a separate method would be needed for that purpose.

Figure 4.3: Corner detection using the Harris method.

4.1.1 Main Method

We then propose a method for detection of lines, that uses as base assumption the fact that, even

in omnidirectional vision systems, the rectilinear lines are locally linear in the image.

With this approach, the base technique consists of selecting a line pixel and mark it has a corner

(beginning of line), then searching for the nearest pixel corresponding to a white line. Only the

adjacent pixels that belong to a white field line are considered neighbors. Furthermore, we save

in memory the latest direction obtained - position of last pixel minus position of previous one,

normalized in order to have absolute value of one. Using the last k saved directions we calculate

the average to estimate the local direction of the line. This can then be used to forecast the position

of the following pixel of the line. Not finding a pixel in the expected position, other neighbors of

the last pixel are searched and then the nearest one to the estimated direction and corresponding

to a white line is selected.

In case of finding an intersection of undetected lines, the method continues following the

direction closest to the previous one. Finally, when finding one pixel with no more neighbors, it

is marked as end of line. All the detected pixels of that line are saved in a new matrix - with the

same size of the original image - with a line ID x. When the end of line is reached, and a new line

begins, the new found pixels are registered with the line ID x+1. The line ID number starts at 1.

All lines are also marked in an adjacency matrix lines, with the nodes being the beginning and

end of lines. For example, if line m connects corner i to corner j, then lines(i, j) = m. However,

this representation proved not to be enough, because in some cases there are more than one line

connecting the same pair of corners. For example, there are two corners in the center circle, and

connecting them there are three lines: each half-circle, and the halfway line. To take this into

account, we just need to add a third dimension to the adjacency matrix, from now on called layer.

Thus, to save the information we would instead use lines(i, j, l) = m, with l being the first empty

layer. In any case, the multi-layer solution is also important for a robustness point of view, because

even in situations in which there should not be more than one line between two corners, that may
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1 f u n c t i o n L i n e _ d e t e c t i o n−MainMethod
2 %b u i l d s 5 m a t r i c e s :
3 %−checked : a t r i b u t e s f o r each image p i x e l a l i n e ID
4 %−c o r n e r s : a t r i b u t e s f o r each image p i x e l a c o r n e r ID
5 %− l i n e s : a d j a c e n c y ma t r i x , w i t h nodes = c o r n e r s I D and v a l u e s = l i n e I D
6 %− l i n e s _ l e n : m a t r i x wi th s i z e o f each l i n e
7 %−c o r n e r s _ o r d e r : i n f o r m a t i o n o f d i r e c t i o n o f i n t e r s e c t i n g l i n e s
8 f o r E a c h _ i m a g e _ p i x e l ( i )
9 i f ( P i x e l ( i ) _ i s _ u n d e t e c t e d _ f i e l d _ l i n e )

10 w h i l e ( 1 )
11 W= D i r e c t i o n _ c a l c u l a t e d _ u s i n g _ l i n e _ l a s t _ d i r e c t i o n s _ b e t w e e n _ p i x e l s ;
12 f o r W : f u r t h e r _ d i r e c t i o n s _ f r o m _ W
13 i f ( N e i g h b o r _ p i x e l ( j ) _ i s _ f i r s t _ b e l o n g i n g _ t o _ u n d e t e c t e d _ f i e l d _ l i n e )
14 S a v e s _ d i r e c t i o n ;
15 end
16 end
17 i f N o _ l i n e _ p i x e l _ f o u n d %( no p i x e l j )
18 i f A c t u a l _ l i n e _ i s _ e m p t y ( o n ly i s o l a t e d p i x e l ( i ) d e t e c t e d )
19 b r e a k ;
20 %no l i n e d e t e c t e d − p i x e l ( i ) does n o t b e l o ng t o any l i n e
21 e l s e
22 I n v i s i b l e _ l i n e _ d e t e c t i o n ; %u s i n g d i r e c t i o n W
23 end
24 e l s e
25 P i x e l ( i ) _ i s _ m a r k e d _ a s _ l i n e _ p o i n t ;
26 P i x e l ( j ) _ i s _ m a r k e d _ a s _ N e x t P i x e l ;
27 % c o n t i n u e s t o n e x t w h i l e ( 1 ) c y c l e from N e x t P i x e l
28 Update_of_ ( l i n e s _ l e n ) _ m a t r i x ;
29 end
30

31 end
32 end
33 end

Figure 4.4: Meta-code for the main method of lines detection

(a) First Step (b) Second Step (c) Third Step

Figure 4.5: Example of line tracking used in line detection.
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(a) Before corner (b) After corner

Figure 4.6: Behavior of main line detection method - line tracking - when passing by a corner
(lines intersection). It is shown the line tracking tries to maintain the actual line direction.

happen due to a temporary incorrect detection of lines, that may disappear when deleting lines

(which will be explained below). Finally, when using the adjacency matrix one should take into

account that the order of the corners is irrelevant, and so one can either save the information in both

places, lines(i, j, l)=m and lines( j, i, l)=m, or using only one of the triangular parts of the matrix,

which can be achieved with lines
(
min(i, j),max(i, j), l

)
= m or lines

(
max(i, j),min(i, j), l

)
= m.

When following a line, it can intersect an already detected line. In this case, the intersection

point is saved as a new corner, and the intersected line is separated into two lines. On the other

hand, if the intersection occurs in a corner, this one will then be considered the end corner of that

line.

(a) First step (b) Second step (c) Third step (d) Fourth step

Figure 4.7: Result of lines intersection when following a line

Another approach was tried, in which the corners were detected when following a line. When

using this method, whenever a point had more than two neighbors it would be considered a cor-

ner. Moreover, even when the pixel had only 2 neighbors, depending on its positions it could be

considered a corner. This approach generally had good results, but in image regions with lower

spacial resolution it would cause some errors, because sometimes it would incorrectly assume the

existence of corners.

Besides saving the corners ID information in a matrix, we also save the information of each

corner in a different format, a vector with size equal to the number of corners. In each position

there is a structure with information about the corner, as its pixel location, and the direction from
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Figure 4.8: Example of situation in which a corner would be wrongly detected.

which the lines connected to the corner depart from it. This information is useful because it

provides faster access to the position of the corner, the direction from which the lines depart it, and

the number of lines intersecting themselves at that point, information that proves to be interesting

for another posterior operations.

Another feature of the developed algorithm is being able of detecting dashed lines. This is

quite important considering in many occasions the lines in the peripheral region of the image, due

to the low spatial resolution, have a one-pixel width, or even less. This means sometimes the line

will be interrupt, and so its essential to develop a method that can cope with this problem. Again,

it uses the last k directions between pixels, and with that estimating the local direction of the line.

Then, we just search in that direction for any pixel corresponding to a line. We start at the nearest

neighbor of the last pixel of the line, and then move pixel by pixel until reaching a point of a

line. For each step, not only the one pixel in the estimated direction is checked, but also the two

closest neighbors in that direction. Although this method had results good enough, it would be an

interesting idea to used the curvature of the line to estimate further curvature of the local direction

along the invisible part of the line. Each time a pixel has no neighbors, this process is used until a

pixel is found or a maximum number of invisible pixels is reached (n× k pixels). In this last case,

the invisible line is ignored and the last visible pixel is considered the end of line. If it encounters

a still non checked pixel, it proceeds in the process of following the line as described previously.

In case it is a pixel of another line or a corner, it must proceed as described previously in a similar

situation. The invisible points can be seen in Figure 4.14 as grey pixels, and the visible points are

represented with color. Moreover, the corners are represented with red pixels.

The invisible points do not strictly correspond to a field line point, otherwise it would be a

white point in the image acquired by the sensor. However, using this concept it is useful to keep

track of lines in regions where the spacial resolution is low. It is important to say that both n and k
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1 f u n c t i o n I n v i s i b l e _ l i n e _ d e t e c t i o n
2 %There i s no l i n e p i x e l i n t h e c l o s e s t n e i g h b o r h o o d so we
3 %s e a r c h f u r t h e r i n t h e a c t u a l d i r e c t i o n (W) from p i x e l ( i ) i n o r d e r
4 %t o c o n t i n u e t o d e t e c t l i n e , even i f dashed
5 w h i l e ( D i s t a n c e _ w i t h o u t _ l i n e _ p o i n t s < T h r e s h o l d )
6 %In each s t e p , we s e a r c h t h e p i x e l c l o s e s t t o t h e a c t u a l l i n e
7 %d i r e c t i o n ( P i x e l 1 ) , and t h e two c l o s e s t n e i g h b o r s ( P i x e l s 2 and 3 ) .
8 f o r e a c h _ P i x e l (1 t o 3 )
9 i f p i x e l _ i s _ u n d e t e c t e d _ f i e l d _ l i n e

10 Case_1 ; b r e a k ;
11 e l s e i f p i x e l _ i s _ c o r n e r
12 Case_2 ; b r e a k ;
13 e l s e i f p i x e l _ i s _ o t h e r _ l i n e
14 Case_3 ; b r e a k ;
15 end
16 end
17 % s t i l l no l i n e d e t e c t e d
18 N e x t _ p i x e l = P i x e l _ 1 ;
19 end
20 i f Case_0 %no more p o i n t s d e t e c t e d i n t h a t d i r e c t i o n
21 P i x e l ( i ) _ m a r k e d _ e n d _ c o r n e r _ o f _ a c t u a l _ l i n e ;
22 U p d a t e _ o f _ m a t r i c e s ; %l i n e s , c o r n e r s , l i n e s _ l e n and c o r n e r s _ o r d e r
23 b r e a k ;
24 e l s e i f Case_1
25 P i x e l ( i ) _ i s _ m a r k e d _ a s _ l i n e _ p o i n t ;
26 N e w _ d e t e c t e d _ p i x e l _ i s _ m a r k e d _ a s _ N e x t P i x e l ;
27 %New d e t e c t e d p i x e l i s l a s t P i x e l 1 / 2 / 3 b e l o n g i n g t o f i e l d l i n e
28 I n v i s i b l e _ p i x e l s _ o f _ d a s h e d _ l i n e _ m a r k e d _ a s _ l i n e ;
29 %marked d i f f e r e n t l y from v i s i b l e l i n e p o i n t s
30 U p d a t e _ o f _ m a t r i c e s ;
31 % No b r e a k − c o n t i n u e s t o n e x t w h i l e ( 1 ) c y c l e from N e x t P i x e l
32 e l s e i f Case_2
33 P i x e l ( i ) _ i s _ m a r k e d _ a s _ l i n e _ p o i n t ;
34 C o r n e r _ d e t e c t e d _ i s _ e n d _ c o r n e r _ o f _ l i n e ;
35 %Corner d e t e c t e d i s l a s t P i x e l 1 / 2 / 3 b e l o n g i n g t o f i e l d l i n e
36 I n v i s i b l e _ p i x e l s _ o f _ d a s h e d _ l i n e _ m a r k e d _ a s _ l i n e ;
37 U p d a t e _ o f _ m a t r i c e s ;
38 b r e a k ;
39 e l s e i f Case_3
40 P i x e l ( i ) _ i s _ m a r k e d _ a s _ l i n e _ p o i n t ;
41 D e t e c t e d _ l i n e _ p i x e l _ i s _ m a r k e d _ c o r n e r ;%i n t e r s e c t i o n o f 2 l i n e s ;
42 %D e t e c t e d l i n e p i x e l i s l a s t P i x e l 1 / 2 / 3 b e l o n g i n g t o f i e l d l i n e
43 I n v i s i b l e _ p i x e l s _ o f _ d a s h e d _ l i n e _ m a r k e d _ a s _ l i n e ;
44 New_corner ;%method s e p a r a t e s i n t e r s e c t e d l i n e i n two ;
45 U p d a t e _ o f _ m a t r i c e s ;
46 b r e a k ;
47 end

Figure 4.9: Meta-code for the detection of dashed lines



44 Field Lines Identification

were chosen manually, as the framework must be taken into account. For example, the resolution

of the camera, as the overall distortion, may have some impact on how locally the direction should

be determine.

Figure 4.10: The result of applying the main method of line detection to a soccer field image

4.1.2 Post-processing Methods

Using this information, and after running the base method to find individual lines, it is possible to,

for example, easily merge lines. If there is a corner connecting only two lines, it can mean it is

only one line. Therefore, when those situations occur and lines depart the corner with directions

with an angle between them of at least 90 degrees, then the two lines will be merged into only

one. We chose a threshold of 90 degrees, possibly eliminating correct corners, because we want

to eliminate all possible wrong corners, as in the end a more specific function to estimate corners

position will be used. All the corners are saved in a matrix with the same size of the original

image, being registered with a corner ID that starts at one, and increases when a new corner is

found. Besides storing the information presented previously, we also save the length of lines,

more specifically, the total length and the number of “invisible” points that make up part of the

line.

The merge situation occurs some times because it is common for a detected line to start in the

middle of the real line - only with luck it will start in the beginning of the line, usually starting at

a random point of the line.

Furthermore, when a line is detected, it starts in a point and follows the line in one direction.

However, the opposed direction must be checked too. Therefore, after checking all pixels cor-

responding to a field line, we check which lines start at a corner without any other connection

besides the line in question. This may mean that opposite direction needs to be checked. Thus

we start following the line from the corner and calculate the first k detected directions, then using

the average as the value of the line local direction at the corner. After that, we use the method to
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(a) Before Merging (b) After Merging

Figure 4.11: Merging multiple lines into one

1 f u n c t i o n E x t e n d _ l i n e s
2 f o r e a c h _ c o r n e r
3 i f c o r n e r _ i s _ e x t r e m i t y _ o f _ o n l y _ 1 _ l i n e %c o r n e r does n o t c o n n e c t l i n e s
4 W= l o c a l _ l i n e _ d i r e c t i o n ;%a t e x t r e m i t y − t h e a c t u a l c o r n e r
5 I n v i s i b l e _ l i n e _ d e t e c t i o n ; %u s i n g d i r e c t i o n W − e x t e n d l i n e .
6 end
7 end

Figure 4.12: Meta-code for the extension of already detected lines

complete dashed lines to search for new points from the corner in the opposite direction previously

estimated.

1 f u n c t i o n D e l e t e _ l i n e s
2 f o r e a c h _ l i n e
3 i f ( P e r c e n t a g e _ o f _ I n v i s i b l e _ p o i n t _ o f _ l i n e > T h r e s h o l d )
4 D e l e t e _ l i n e _ f r o m _ m a t r i c e s ;
5 %checked , l i n e s , c o r n e r s , c o r n e r s _ o r d e r , l i n e s _ l e n
6 end
7 i f ( L i n e _ s i z e ==1 and O n e _ l i n e _ e x t r e m i t y _ d o e s _ n o t _ c o n n e c t _ o t h e r _ l i n e s )
8 D e l e t e _ l i n e _ f r o m _ m a t r i c e s ;
9 end

10 i f (Two c o r n e r s c o n n e c t e d by two l i n e s , and c o r n e r s a r e a d j a c e n t )
11 D e l e t e _ l a r g e r _ l i n e _ f r o m _ m a t r i c e s ;
12 end
13 end

Figure 4.13: Meta-code for the elimination of lines mainly composed of invisible points

After applying these methods, it is also important to check if there is lines completely, or

almost completely made up of invisible points. This is not a desirable situation, because it would

mean non existing lines are being wrongly detected, although it may be truly a line which posing
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in a low definition area. To detect this kind of situations we use the ratio (lengthinv/lengtht),

which represents the percentage of line that is invisible (lengthinv is the number of invisible pixels

of the line, and lengtht is the total number of pixels of that line).

(a) Before Lines Elimination (b) After Lines Elimination

Figure 4.14: Elimination of lines with almost all points invisible

The threshold used was chosen manually after several different trials. However, either an

heuristic calculation or a more comprehensive examination of its effect should be done in future

work. Furthermore, its value is not expected to be optimal to all systems, and so it must be properly

chosen for each application.

1 f u n c t i o n New_l ines
2 f o r e a c h _ p i x e l _ n o t _ b e l o n g i n g _ t o _ a n y _ l i n e %i s o l a t e d p i x e l s
3 f o r r =1 : MaxRadius %s e a r c h t h e n e i g h b o r h o o d of t h e p i x e l
4 f o r ang = 0 : ( 8∗ r−1) %s e a r c h t h e n e i g h b o r h o o d of t h e p i x e l
5

6 I s o l a t e d _ p i x e d _ c o o r d i n a t e s =[ c i c j ] ;
7 Dir = round ( [ cos ( ang / ( 8 ∗ r )∗2∗ p i ) s i n ( ang / ( 8 ∗ r )∗2∗ p i ) ] ∗ r ) ;
8 i f P i x e l [ c i + Di r ( 1 ) , c j + Di r ( 2 ) ] _ i s _ c o r n e r _ o r _ l i n e
9 S t o p _ s e a r c h _ n e i g h b o r h o o d ;

10 e l s e i f P i x e l _ i s _ a n o t h e r _ i s o l a t e d _ p i x e l
11 I n v i s i b l e _ l i n e _ d e t e c t i o n ; %u s i n g d i r e c t i o n Di r
12 S t o p _ s e a r c h _ n e i g h b o r h o o d ;
13 end
14 end
15 end
16 end

Figure 4.15: Meta-code for the creation of lines using checked but unclassified pixels

Another final processing method used in this approach analyzes all checked points that could

not be assigned to any line. For each of them it searches the nearest point in the same conditions,

at the same time checking if there is any line point or corner in between. If there is a clear region

connecting them, a new line is registered in the respective matrices.
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(a) Before creating new lines (b) After creating new lines

Figure 4.16: Creation of lines from unclassified pixels

Another approach would be to try to connect that kind of point to any closer point with a

free path, but that was not used because it would cause the creation of lines that do not really

exist, which could happen due to the strong distortion the image undergoes. For example, in the

peripheral region of the image, a point not recognized in the goal line between the goal posts

would be easily connected to a goal area line, instead of being connected to another similar point

in the goal line. Due to the reduced spacial resolution in that area, the goal line and goal area

lines would be quite close, possibly closer than points in the same goal line, this because we are

considering that is a dashed line. However, only connecting points in the same condition, we are

connect two near points with a free path in between, which are certain to belong to field lines that

were not detected in that region. Consequently, there is a high probability that those points are

part of the same undetected line.

The last post-processing functions cannot be executed in a random order, which would cause

this method to not work properly. Therefore, we start with the new lines creation method (connect-

ing unidentified line point), a process that creates always a completely invisible line. After, we use

the expansion method (expands the line in the opposite directions it departs its extremities). This

has to be the second method, in order to expand the newly created lines. In this phase it is still

possible to lines with only invisible points, and so we cannot delete lines at this point. Thus we

follow by merging the lines interconnect each other without intersection of other lines, and only

after that we remove the invisible lines. This cycle of operations is run until there is no changes

in the lines detected. Furthermore, the order of the operations applied must be this one, as it is

essential for the method not to enter an infinite cycle.

After deleting corners or lines, those are never used again, staying as temporary elements that

were deleted. This is used for the simplicity of the process, as this way we only have to increment

the IDs when we want to create a new line or corner, and not search for available ones.

Finally, we apply a method to detect corners in the middle of detected lines, because of abrupt

changes of the local line direction. This is the more sensitive part, due to the existence of non-

linear parts - center circle - in the soccer field, which may have a change of direction along the

line similar to the one present in corners in highly distorted regions. One example that shows this
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1 f u n c t i o n L i n e _ d e t e c t i o n−P o s t P r o c e s s i n g
2 D e l e t e _ l i n e s ;
3 E x t e n d _ l i n e s ;
4 i f P o s s i b l e _ t o _ m e r g e _ l i n e s
5 M e r g e _ l i n e s ;
6 end
7 f o r 1 : 2
8 New_l ines ;
9 E x t e n d _ l i n e s ;

10 i f P o s s i b l e _ t o _ m e r g e _ l i n e s
11 M e r g e _ l i n e s ;
12 end
13 D e l e t e _ l i n e s ;
14 i f P o s s i b l e _ t o _ m e r g e _ l i n e s
15 M e r g e _ l i n e s ;
16 end
17 w h i l e ( Changes_are_made )
18 Add_corne r s ( P a t a m e t e r s 1 ) ;%u s e s few l i n e p i x e l s i n t h e d e t e c t i o n
19 %high t h r e s h o l d −> c l e a r c o r n e r s d e t e c t e d
20 end
21 w h i l e ( Changes_are_made )
22 Add_corne r s ( P a t a m e t e r s 2 ) ;%u s e s more l i n e p i x e l s i n t h e d e t e c t i o n
23 %lower t h r e s h o l d −> l e s s c l e a r c o r n e r s d e t e c t i o n
24 end
25 M e r g e _ l i n e s _ s p e c ;
26 %merge c e n t e r c i r c l e l i n e s i f s e p a r a t e d i n two
27 end

Figure 4.17: Meta-code for the post-processing methods used in line detection
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1 f u n c t i o n Add_corne r s
2 % − Loca l h o r i z o n ( SS ) − t h e l i n e l e n g t h used t o
3 %c a l c u l a t e l o c a l d i r e c t i o n
4 % − Corner d e t e c t i o n t h r e s o l d (TH) − t h e minimum peak a m p l i t u d e
5 %t o c o n s i d e r e x i s t a n c e o f c o r n e r
6 % − C u r c a t u r e t h r e s h o l d (TH2) − t h e c u r v a t u r e v a l u e t o d i s t i n g u i s h
7 %r e c t i l i n e a r and c u r v i l i n e a r l i n e s
8 f o r e a c h _ l i n e
9 Dir = L i n e _ D i r e c t i o n _ b e t w e e n _ p i x e l s ;

10 %s e a r c h e s a l l t h e l i n e p i x e l s from one e x t r e m i t y t o t h e o t h e r , s a v i n g a
11 %v e c t o r wi th a l l t h e changes i n d i r e c t i o n from p i x e l t o p i x e l .
12 f o r e a c h _ v i a b l e _ D i r _ p o s i t i o n
13 Dir1 = D i r e c t i o n _ o f _ p r e v i o u s _ S S _ p o i n t s _ o f _ l i n e ;%u n i t a r y 2d v e c t o r
14 Dir2 = D i r e c t i o n _ o f _ f o l l w o i n g _ S S _ p o i n t s _ o f _ l i n e ;%u n i t a r y 2d v e c t o r
15 ChDir= a r c c o s ( I n t e r n a l _ p r o d u c t ( Dir1 , Di r2 ) ) ;
16 %ChDir i s a v e c t o r t h a t r e p r e s e n t s , f o r each l i n e p o i n t , t h e change o f
17 %d i r e c t i o n as an a n g l e ( c u r v a t u r e )
18 end
19 [ va l , p ]=max ( ChDir ) ;
20 %t h e p o s i t i o n ( p ) o f t h e maximum c u r v a t u r e i s a good e s t i m a t e
21 %of a p o s s i b l e c o r n e r p o s i t i o n v a l i s t h e maximum c u r v a t u r e
22 mc= Mean_curva tu re ; %a f t e r e x t r a c t i n g a l l c u r v a t u r e s i n t h e
23 %maximum peak r e g i o n ( p−SS / 2 : p+SS / 2 )
24 v a l = va l−mc ;%t o i d e n t i f y a c o r n e r t h e i n t e r e s t i n g v a l u e i s t h e peak
25 %a m p l i t u d e i n r e l a t i o n t o t h e mean v a l u e
26 i f ( va l >TH && mc<TH2)
27 %high p r o b a b i l i t y o f c o r n e r e x i s t a n c e i n a r e c t i l i n e a r l i n e
28 C o r n e r _ p o s i t i o n = round ( s s / 2 ) + ( p−1);
29 E s t i m a t e d _ c o r n e r _ p o s i t i o n _ i s _ m a r k e d _ c o r n e r ;
30 New_corner ;%method s e p a r a t e s l i n e i n two ;
31 U p d a t e _ o f _ m a t r i c e s ;
32 end
33 end

Figure 4.18: Meta-code for the detection of corners in already detected lines
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effect is the angle in the image between two rectilinear lines, depending on the image region. In

regions where at least one of the pixel coordinates (u,v) is close to the distortion center (which

may be different from the image center), the angle between image those lines is approximately

90 degrees. On the other hand, in regions far from the center, the angle is gradually bigger than

90 degrees. In typical catadioptric images with a wide vertical field of view, the angle can reach

angles as big as 135 degrees.

In the region where the side line intercepts the goal line, there is a corner and the local direc-

tions in each direction is different, but in the remaining part of the line the local tangent to the

line is relatively constant and approximately zero, specially considering a local domain of only

some pixels of the line. However, after the last explained phases, this two lines will in principle be

merged. Therefore, the change of direction of tangent to the line will be approximately zero, aside

from a peak in the corner position. On the other hand, in the center circle the direction of the line

tangent will constantly change along the line, thus resulting in an approximately flat but different

from zero change in direction, without any relevant peaks in the direction change. Consequently,

this seems to be a good approach to detect corners in the middle of lines. Considering that, for

each line we move from pixel to pixel estimating the average direction of the line fragment with

k′ ahead, and the same for the fragment with k′ behind. This means we start searching the line k′

pixels ahead of one of its extremities, and finish when missing only k′ to the other end of the line.

For each pixel position of the line we calculate the intern product of the two estimated tangent

directions (ahead and behind), which result is cos(θ), with θ being the angle between the two

directions.

(a) Before corner detection (b) After corner detection

Figure 4.19: Detection of corner in middle of line, for cases in which the corner position is clear

Then we could analyze the result of the internal product along the line, which would be ap-

proximately one in rectilinear areas, and lower than one around corner positions, which would be

a considerable different value minimum. In the curvilinear lines case, the product would be always

different from one, but without any relevant minimum. However, the internal product is not the

chosen feature to estimate corners, as it is highly non-linear in relation to the angle, which gives

a better and relevant understanding of the direction changing of the line. Thus we use the inverse

trigonometric function of cosine to calculate the angle. Having applied this transformation, we
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just search for the maximum angle, which will be the corner position. Furthermore, it is easy to

understand that this maximum will not be an abrupt peak, and the angle will start increasing as

soon as the corner enters the a direction estimation line fragment. Hence, after finding the peak

we will eliminate the k′ surrounding points in each side and then calculate the mean angle of the

remaining points. The peak value minus the average angle calculated before will then be compared

with a threshold value in order to decide if the point is a corner or not.

This approach is only theoretically valid, and in the real case there are distortions of the lines,

caused by the catadioptric distortions themselves, but also due to skeletonization, and low spatial

resolution in certain image areas. Therefore in the practical cases the corners and the curves are

not so easily distinguishable, needing a well chosen threshold to separate both cases. A further

improvement that can be done in the future is use the region of the image to change the threshold

of corner detection

(a) Before corner detection (b) After corner detection

Figure 4.20: Detection of corner in middle of line, for cases in which the corner position is unclear

When estimating the local direction of a line at one of its extremities, we use several pixels

of that region and calculate the average of all pixel directions relative to the previous line pixel.

Another approach to calculate that local direction would be to use only the first and last pixels

of the line fragment. But, although we assume the line is linear in that region even considering

the catadioptric distortion, there may be some curvature. In that case using the average of pixel

directions is a better estimate of the line local direction in the point, although not being the optimal

value due to the existence of curvature. It is important to note that sometimes the existence or not

of a corner may not be observable using this kind of feature, which may provide only information

of the probability of occurrence of each state (corner or no-corner). Therefore, in some range of

values of the feature used there may be an overlap of probability densities of the two states, making

them not mutually exclusive, an therefore not perfectly distinguishable. The feature threshold

used is then chosen in a way that, instead of reducing the error obtained, only tries to optimize

it by making it minimal. That would not perfectly distinguish the two possible states, but would

be a solution that reduces the error of misclassification of each state. This problem brings the

subject of statistical patter recognition, which could be used in order to improve the overall results.

Using more features to clearly identify the states, and training classifiers to optimally decide of
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the existence of corners, is probably an approach worth investigating in the future. This method

is used multiple times, until there is no difference between the input and the output. We do this

because after separating a line in two, it may be possible to find corners in each of the new lines

created.

1 f u n c t i o n M e r g e _ l i n e s _ s p e c
2 f o r e a c h _ c o r n e r ( i )
3 i f P o s s i b l e _ t o _ m e r g e _ l i n e s
4 %c o r n e r c o n n e c t s l i n e s 1 and 2
5 d i r 1 = D i r e c t i o n _ a t _ o n e _ e x t r e m i t y _ o f _ l i n e _ 1 ;%n o t c o r n e r i
6 d i r 2 = D i r e c t i o n _ a t _ o n e _ e x t r e m i t y _ o f _ l i n e _ 2 ;%n o t c o r n e r i
7 d i r 3 = D i r e c t i o n _ o f _ l i n e _ 1 _ a t _ c o r n e r ( i ) ;
8 d i r 4 = D i r e c t i o n _ o f _ l i n e _ 2 _ a t _ c o r n e r ( i ) ;
9 i f ( d i r 1 ’∗ d i r 2 > T h r e s h o l d _ 1 and ( d i r 1 ’∗ d i r 3 > T h r e s h o l d _ 2

10 or d i r 2 ’∗ d i r 4 > T h r e s h o l d _ 2 ) )
11 M e r g e _ l i n e s ;%l i n e s 1 and 2
12 end
13 end
14 end

Figure 4.21: Meta-code for merging curvilinear (center circle) lines, wrongly separated in two

Lastly, we implemented a procedure that merges lines in certain specific conditions. The pur-

pose of this method is to avoid center half-circle lines from being separated in two new lines,

which may be caused by the last described functions. More specifically, this method tries to find

lines that are curvilinear in both the distorted image and the real world (center circle) and were

previously separated in two due. To some extent, this method and the last one, corner detection,

have similar objectives, as both try to correctly estimate corners positions. While the first one cre-

ates corners, this one tries to find wrongly created corners and eliminate them. Although seeming

to have opposite effects that cancel each other, that does not happen because the techniques used

in each one are different, and this last one serves as a refinement of the other. In a certain way, it

works as a second feature used to detect corners, as described previously in reference to pattern

classification.

In this special case merge situation, the merging constraints formerly explained still apply,

but a new condition is added, based in the following reasoning. If we analyze the local tangent

directions of a line at its extremities, we conclude that in a half-circle those directions are parallel,

and in a rectilinear line they are opposed. Nevertheless, in the case of a catadioptric system image

there is some distortions that cause each of this statements not to be always true, hence the 90

degrees threshold is used to separate both cases. To apply this idea we check the 4 local directions

of the possible lines to merge. The relation between the direction of the lines extremities further

from each other, albeit bringing useful information, is not enough to distinguish a wrong corner

in the middle of a semicircle line from correctly placed corners. This can be proven considering

this result applied to a corner separating perpendicular lines, which may be even more than 90
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degrees in a distorted image. For that reason, to detect corners in semicircles we also use the two

extremities direction difference of each line. In a perpendicular lines, it will be approximately 180

degrees in each line, but in the semi-circle one of the fragments will still have a high curvature,

and so the angle difference will be much less than a straight angle. With this approach only

highly distorted rectilinear lines will be misclassified, and the corner will be wrongly deleted. It is

important to clarify that this technique will only work in cases the line is separated in two. If there

is more than one wrongly placed corner in the semicircles, it might fail. Yet that is not probable to

happen, as after placing a first corner in the semicircle, a second one is not expected. This comes

from experience dealing with this kind of images, that shows the semicircle region with the most

abrupt change of direction - what happens specially due to image distortion - disappears creating

the first wrong corner, therefore highly reducing the possibilities of a second one.

This approach is rather inefficient, deleting and creating the same corners multiple times, and

running relatively big blokes of code just to check there is no change in the result after applying

some post-processing functions. After some tests using Matlab, we confirm that fact analyzing

the run time, which will often surpass 5 seconds. Obviously, this time depends from image to

image, thereby depending on the specific catadioptric systems used. Thus, it would be a good idea

to improve this aspect in the future, making the code more efficient without using it blindly, but

rather using an approach that analyzes the last results in order to know which operations still need

to be done. One simple approach for that purpose would be to rerun the operations only in the

lines that were affected by the previous methods.

Figure 4.22: The result of applying the complete line detection procedure to a soccer field image

4.2 Lines Identification

After extracting all the indivisible lines from the original image, we have some matrices that give

us some information about the structure of the lines network of the soccer field image, the most
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important one being the lines adjacency matrix. After this step, we need to match it with a soccer

field. A possible solution would be to use adjacency matrix matching, as described in [25, 26].

However, this methods, albeit being a more general and probably a more interesting approach to

the problem, would only use part of the information we have, with a higher probability of failing

the operation. Besides, we must take into account that in this problem we do not seek a good

match, but a perfect one. If we misclassify a line in each image, it will have a enormous effect in

the calibration process. If that happens, the mapping function will be optimized so as all points of

that line will be belong to another one, creating a completely wrong map in that region . Because of

that, it is preferable not to match all lines, but do it correctly for the matched ones. Consequently,

we use our knowledge of the structure of the soccer field in order to match the lines.

Firstly, we detect the center circle, assuming it is observable from every possible robot position

in the field. Although this assumption’s truth depends on the vision system itself, it is expected

the robot is able to see at least half of the field. The central region of the field is important to be

extracted, as this lines provide calibration information for the center and middle radial region of

the image, considering a varied set of robot positions. Besides, the successful extraction of this

lines information makes easier the process of recognizing the other lines, in other words, goal

line, goal area lines, and penalty area lines. This is true because we already known certain points

correspond to that lines, only needing to recognize which one is each line/corner, otherwise we

would still need to identified the corners and lines from a full set of options, with all field lines

still undetermined. To achieve that goal, the functions in the previous section must be tuned so as

the center circle is always detected, even at the cost of not recognizing some corners.

To determine the semicircles, every line is analyzed regarding its extremities tangent directions

(Figure 4.24). We then assume that semicircle lines, besides being visible in the image, are the

ones with the greater similarity between extremity directions, meaning its internal product is the

bigger and closer to one - the direction vectors are normalized to absolute value of one. These two

lines are supposed to intercept each other at their ends. However, due to skeletonization effects, it

may not happen as shown in Figure 4.25.

For that reason, we have to find which extremity of each line is closer to another. If the

semicircles intercept each other, the lines connecting the extremities of two semicircle lines, they

are marked as corners. But if there is no line connecting them, then it is not the center circle. This

may happen if the center circle line is divided in more than two lines. Therefore, in this special

case we apply a merging procedure to correct that situation. Then, if the center circle is correctly

extracted, the algorithm proceeds to the extraction of other lines, otherwise aborts the extraction

procedure. Afterwards, the mean pixel position of those points will be used as the calibration point

correspondent to that corner. Then, the halfway line is marked too, and its interceptions with the

side lines are only marked if the extremities of the halfway line are corners connecting 3 lines,

otherwise those corners cannot be the intersection between those lines.

At this point, all identified lines will be deleted from the adjacency matrix, so the other lines

can be easily extracted.

One relevant aspect to consider is the orientation of the field. In localization for example it
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1 f u n c t i o n L i n e _ I d e n t i f i c a t i o n
2 f o r e a c h _ l i n e ( i )
3 d i r 1 = D i r e c t i o n _ a t _ o n e _ e x t r e m i t y _ o f _ l i n e _ i ;
4 d i r 2 = D i r e c t i o n _ a t _ a n o t h e r _ e x t r e m i t y _ o f _ l i n e _ i ;
5 d i r ( 1 , i )= d i r 1 ’∗ d i r 2 ;
6 end
7 % max ( d i r ) − l i n e wi t h g r e a t e r c u r v a t u r e − c e n t e r c i r c l e l i n e
8 E x t r a c t i o n _ o f _ c e n t e r _ c i r c l e _ l i n e s ; % u s i n g v e c t o r d i r
9 D e f i n i t i o n _ o f _ f i e l d _ o r i e n t a t i o n _ u s i n g _ o n e _ o f _ c e n t e r _ c i r c l e _ l i n e s ;%l i n e 1

10 I d e n t i f i c a t i o n _ o f _ l i n e ( 1 ) _ c o r n e r s ;
11 %a c c o r d i n g l y wi th wor ld x and y a x i s c o n v e n t i o n
12

13 %c o r n e r s o f c e n t e r c i r c l e l i n e s may n o t i n t e r s e c t each o t h e r , due t o
14 %s k e l e t o n i z a t i o n . In t h a t s i t u a t i o n , t h e y a r e c o n n e c t e d by s m a l l l i n e s .
15 I d e n t i f i c a t i o n _ o f _ c l o s e s t _ c o r n e r s _ o f _ 2 _ c e n t e r _ c i r c l e _ l i n e s ;
16 I d e n t i f i c a t i o n _ o f _ h a l f w a y _ l i n e ;
17 %a f t e r i d e n t i f i c a t i o n o f c e n t e r c i r c l e , and c o n s i d e r i n g l i n e
18 %d e t e c t i o n i n t h i s r e g i o n of t h e f i e l d i s c o r r e c t l y done , t h e ha l fway
19 %l i n e i d e n t i f i c a t i o n i s an eas y and d i r e c t p r o c e s s
20

21 Cor= D e t e c t i o n _ o f _ a l l _ 3− l i n e _ c o r n e r s ;
22 %d e t e c t i o n o f c o r n e r s t h a t c o n n e c t 3 l i n e s , e x c e p t t h e ones
23 %i n t e r s e c t i n g halway and s i d e l i n e s
24 f o r a =1:2 %f o r each s i d e o f t h e f i e l d
25 Cor1= Grouping / O r d e r i n g _ o f _ f o u r _ 3− l i n e _ c o r n e r s ;%v e c t o r wi th c o r n e r s
26 %of g o a l l i n e s . o r d e r i n g must be a c c o r d i n g l y wi th wor ld x and y a x i s
27 D e t e c t i o n _ o f _ c o r n e r s ( Cor1 ) _ s i d e _ i n _ t h e _ f i e l d ;
28 I d e n t i f i c a t i o n _ o f _ g o a l _ a n d _ p e n a l t y _ a r e a _ l i n e s ;
29 %A f t e r t h i s , g o a l and p e n a l t y a r e a l i n e s a r e i d e n t i f i e d .
30 %On t h a t s i d e , t h e on ly l i n e s m i s s i n g i d e n t i f i c a t i o n a r e t h e ones
31 %i n t e r s e c t i n g t h e f i e l d c o r n e r s − i n t e r s e c t i o n o f g o a l and s i d e l i n e .
32 i f p e n a l t y _ a n d _ g o a l _ a r e a s _ d e t e c t e d
33 I d e n t i f i c a t i o n _ o f _ r e p e c t i v e _ f i e l d _ c o r n e r s _ a n d _ g o a l _ l i n e ;
34 %An easy and d i r e c t p r o c e s s a f t e r t h e l a s t one .
35 end
36 end
37

38 i f f i e l d _ c o r n e r _ d e t e c t e d
39 I d e n t i f i c a t i o n _ o f _ r e s p e c t v e _ s i d e _ l i n e s ;
40 e l s e i f h a l w a y l i n e _ d e t e c t e d
41 I d e n t i f i c a t i o n _ o f _ s i d e _ l i n e s ;
42 end

Figure 4.23: Meta-code for identification of the detected field lines
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Figure 4.24: This shows how we can detect the center circle lines, using the inner product of lines’
extremeties local direction. For curvilinear lines the inner product is maximum (V1 and V2), for
rectilinear lines it is minimum (V3 and V4).

(a) Before Identification (b) After Identification

Figure 4.25: Due to problems in the lines thinning process, estremities of center circle lines may
not intersect each other. The nearest corners are found, and the line connecting them is considered
a corner (red pixels) after lines identification.
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is important to know which side the robot is looking at, and for that usually soccer robots use

a compass. However, in the calibration process that does not matter, which is proved with the

following: considering the kickoff mark as the (0,0) position, in regard to the x and y coordinates,

an image obtained from a given (x1,y1) position with robot orientation θ1 is equivalent to the

image obtained from (−x1,−y1) and orientation −θ1.

We will show this has no effect in the calibration procedure, meaning we can attribute a semi-

circle line to any one of the sides. Another question to take into account is which corner is at each

extremity of the identified semi-circle line. For that purpose we must consider that with the current

setup used, the camera points upwards, thus the image obtained will have one of the world axis

inverted. Therefore, considering a world coordinate system in which the z axis points upward, in

the resulting image we have this axis pointing downwards, as if the camera was taking a shot from

under the field. Therefore, having the center circle lines detected, we estimate the x axis position,

and then we choose the corners so as the z axis points downward (Figure 4.26).

Figure 4.26: This shows how to identify each extremity of Line 1 (line is identified, corners are
not). Using the line’s extremeties local direction (V1 and V2), we calculate the average and use
it as an estimation of the x axis orientation. The we use the cross product of estimated x and V3
(estimated y axis) to determine z axis direction. If the result is not the expected, we know V3 is
inverted, then clarifying which corner (1 or 2) corresponds to each extremity of Line 1.

Another problem of skeletonization causes a simple corner connecting 2 lines to be mistaken

as a 3 lines connection. However, this problem is solved by detecting and eliminating the small

and incorrectly created lines from the adjacency matrix. To detect them, we just search for small

lines that do not connect anything in one extremity, and have a 3 line connection in the other.

Then, the only expected remaining corners connecting 3 lines are the interceptions between

penalty and goal area lines and goal line. Considering both sides of the field, this adds up to 8

possibilities, although we do not need all of them to proceed with this method. In each side, this

type of corners are connected to each other, but only with one connection between them. Using
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1 f u n c t i o n I d e n t i f i c a t i o n _ o f _ g o a l _ a n d _ p e n a l t y _ a r e a _ l i n e s
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6 f o r o t h e r _ c o r n e r s ( c ) _ c o n n e c t e d _ t o _ c o r n e r ( b ) _ t h r o u g h _ l i n e
7 i f ( c o r n e r ( c ) _ i s _ n o t _ p r e s e n t _ i n _ C o r 1 and c o r n e r ( c ) _no t = _ c o r n e r ( a ) )
8 f o r o t h e r _ c o r n e r s ( d ) _ c o n n e c t e d _ t o _ c o r n e r ( c ) _ t h r o u g h _ l i n e
9 i f ( c o r n e r ( d ) _ p r e s e n t _ i n _ C o r 1 and c o r n e r ( d ) _no t = _ c o r n e r ( b ) )

10 i f ( c o r n e r ( d ) _ p o s i t i o n _ i n _ C o r 1 ==( c o r n e r ( a ) _ p o s i t i o n _ i n _ C o r 1 + 1 ) )
11 I d e n t i f i c a t i o n _ o f _ g o a l _ a r e a _ l i n e s _ a n d _ c o r n e r s ;
12 e l s e i f ( c o r n e r ( d ) _ p o s i t i o n _ i n _ C o r 1 ==( c o r n e r ( a ) _ p o s i t i o n _ i n _ C o r 1 + 3 ) )
13 I d e n t i f i c a t i o n _ o f _ p e n a l t y _ a r e a _ l i n e s _ a n d _ c o r n e r s ;
14 end

Figure 4.27: Meta-code identification of penalty and goal area lines and corners

the example of Figure 4.28, we can have a vector with all 3-line corners

Cor =
[
12 6 9 55 44 23

]
(4.1)

In this case too we select the corners from one side, ordering them alongside the inverted y

axis.

Cor1 =
[
23 44 12 6

]
(4.2)

After that we need to determine which side this corners belong to, using the direction of the

already detected lines (as explained in Figure 4.28, if inner product is positive it is at the same side

as the semicircle used to calculate it, otherwise it is in the opposite side).

So, considering the vector with the 3-line corners, we start checking which of them are con-

nected, and putting them into a vector within they are in the order they are connected in reality.

After running that process one time, all the visible 3 lines corners of one side will be extracted

and put into order. After that, we check each corner to see if it connects other one that is not part

of the vector, itself connecting a second corner not belonging to the corners vector, which finally

connects a new corner from vector that vector, forming the characteristic structure of penalty and

goal area lines. To distinguish these two, we just have to check the index difference in the vector

between the first and last corners used. If the difference is one, then the goal area was detected,

contrariwise, if the difference is three, it corresponds to the penalty area. A better understanding

is accomplished when observing figure 4.29. In each of the mentioned structures the second and

third corners detected (b and c) may be 3 line connecting corners, a problem due to the skele-

tonization process explained previously. In that case, the wrongly detected lines are marked as

part of the corner to which they are connected.

If the penalty area is detected, then the method proceeds to the field corners detection. There



4.2 Lines Identification 59

Figure 4.28: Using the already identified corners C1 and C2, and the ordered 3-line corners, we
can calculate V1 and V2. Using their average, we use the inner product of that average with the
estimated x axis direction (4.26). Analyzing the signal of the result obtained, we can distinguish
the side we are dealing with.
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(a) Identification of penalty area (b) Identification of goal area

Figure 4.29: For identification of penalty and goal areas, we detect corners a, b, c and d. Then we
differentiate them using corners a and d, and checking if they are C1 and C4 ((a)), or C2 and C3
((b))

may be several possible cases in this situation. If the line ends in an one-line corner, then it matches

that line with the goal line. If it is another type of corner, there is two types of situations: being the

sideline and halfway line interception corner, but also being a wrongly detected corner or another

corner because field corner was not detected.

If the side lines were not detected with the last described method, and any corner interception

with the halfway line exists, then the side lines are matched using the halfway line extremities.

In Figure 4.30 we can observe the final result after applying the complete identification method

(using image simulated for the non-ideal sensor). In this image we can see all lines were correctly

classified.

In figures 4.31 we can see the result for the ideal sensor case, and we show that even with

different robot positions the lines identification performs well.

Finally, it is possible to conclude from Figure 4.32 that field lines are not always perfectly

identified. However, if identified, they tend to be well classified.
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(a) After lines identification (b) Soccer field lines model

Figure 4.30: Result of lines identification using non-ideal sensor in (a). If compared with (b), we
see the colors are the same, meaning all lines are well classified.

(a) Robot aligned with x axis (world reference) (b) Robot aligned with y axis (world reference)

Figure 4.31: Result of lines identification. If compared with 4.1b, we see the colors are the same,
meaning all lines are well classified.
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(a) Image with some lines not identified (b) Image with some lines not identified

Figure 4.32: Result of lines identification. If compared with 4.1b, we see the colors are the same
when lines were identified (not white), but sometimes not all lines are identified.



Chapter 5

Parameters Estimation

After identification of field lines we have the information of all extracted lines and corners. We

then use an optimization process which estimates the parameters of a function from the data ob-

tained previously.

This method could use linear or nonlinear optimization, although linear methods are desired

due to lack of initial parameter values and local minimum problems when using non-linear ap-

proaches. While for parametric calibration this is not as important, because with some basic

knowledge of the setup we can have good estimates of the parameters, with non-parametric meth-

ods we use a function to map pixels to ground points, and so we cannot have a good estimate of

its parameters only based on the robot and vision system characteristics. Therefore, considering

we use non-parametric calibration, the linear optimization is even more desirable than most cases.

Consequently, a least-square approach to estimate the parameters of a polynomial function, as

shown in Chapter 3, is the desired optimization method.

5.1 Optimization process

While corners give us complete information - both ground coordinates x and y, lines only provide

part of that information. For example, each image pixel of a identified rectilinear line brings

information of one of the ground coordinates, x or y, but not both. On the other hand, curvilinear

lines as center circle correspond to (x,y) points such as (x− x0)
2 + (y− y0)

2 = r2. However,

using this coordinates to describe the information retrieved is not useful, as it brings non-linearity.

Therefore, for these lines it would be preferable to use polar coordinates, as it could describe the

information in a similar way as it was done with rectilinear lines, making ρ a known variable and

θ unknown.

However, we can not use both coordinate systems in one linear optimization, and so we have

to choose one of them and discard the lines using the other. Obviously, we keep the rectilinear

lines, as there are much more of this kind in a soccer field. The information lost because of

not using the center-circle can be compensated with the usage of multiple images with different

robot positions in the field. Anyway, the multi-image approach would always be necessary due

63
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to the intrinsic characteristics of non-parametric calibration. While using parametric techniques,

only some few points of image might be used, as they provide enough information to estimate

the model parameters. Nevertheless, with non-parametric calibration we estimate a function that

maps pixels to ground points, meaning only the pixel regions used in the optimization process will

be a good estimate of the mapping, and the other regions will only be extrapolated by the mapping

function.

Besides, there is also a problem related to the order of the system. Due to strong image

distortion, the order of the polynomial approximation has to be relatively high to make a good

estimate of most regions of the image. However, with a higher order, there are two consequences.

Firstly, there is an increase in the function oscillations, which means the estimation is correct in

the calibration points, but there might be great deviations from the mapping in the other regions.

Therefore, calibration points must be well distributed in the whole image. This also relates to the

second aspect, that is the need of more calibration points to be used in order to estimate a higher

order polynomial. This aspects, in turn, also relates to the need of using various different images

in the optimization process, to overcome that problems.

Considering the previous explanations, we estimate two mapping functions: one for the pixel

(u,v) mapping to the ground x coordinate, and a second mapping (u,v) to the ground y coordi-

nate. While the first uses corners and lines with exact world x information, the second uses lines

retrieving y coordinate information, plus corners.

Moreover, with this approach we use the ground coordinates, not estimating the robot-centered

mapping that is useful for localization and many other applications, with (0,0) being mapped to

the field kickoff mark. To create the desired mapping with the robot center corresponding to the

(0,0) point of the mapping and the robot front aligned with the x-axis, we only need to apply a

z-axis rotation (world reference) and a translation to the previously obtained mapping - the world

reference to robot coordinate system homogeneous transformation. For this we need to estimate

the direction and position of the robot in the field, which is described in Section 5.3.

Then, after line extraction we have some points for modeling the two pixel to ground coordi-

nates correspondence. We want to estimate x as function of u and v, and y as function of u and v.

For each calibration point l (calibration points for x and y may be different), we have

x̂l(ul,vl) =
O

∑
i=0

i

∑
j=0

βi ju
i− j
l v j

l =
m

∑
k=1

βkφk(ul,vl) =
m

∑
k=1

Slkβk = Slβ (5.1)

ŷl(ul,vl) =
O

∑
i=0

i

∑
j=0

αi ju
i− j
l v j

l =
m

∑
k=1

αkφk(ul,vl) =
m

∑
k=1

Slkαk = Slα (5.2)

where for each βi j corresponds a parameter βk, O is the order of the polynomial function, and

m the total number of parameters. Sl is a line vector, with Slk being its elements, and β is a vector

with all the parameters βk.

As we have the real values for each calibration point, x(u,v) and y(u,v), we can estimate β and

α parameters. From now on we only demonstrate how to calculate β , but the same applies to α .
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In order to find the coefficients β that fit the known data best, we use the quadratic minimization

approach [24]

β̂ = argmin
β

Jx(β ) (5.3)

where the objective function Jx is given by

Jx(βx) =
Np

∑
l=1
|xl− x̂l|2 =

Np

∑
l=1

∣∣∣∣∣xl−
m

∑
k=1

Slkβk

∣∣∣∣∣
2

= ‖x−Sxβ‖2 (5.4)

where x is a vector (size l) with the x coordinate of each calibration point, Sx is a matrix with

l lines, each being Sl , and Np is the number of calibration points.

Given this formulation of the problem, and considering ŷ and x̂ functions are linear combi-

nations of partial functions, we can use a linear method to estimate the parameters - linear least

squares optimization. The solution in this case is them given by

β̂ = (Sx
T Sx)

−1Sx
T x (5.5)

For that purpose we used Matlab method lscov, which instead of equation 5.5 uses the QR

factorization (slower than the normal equations method but more numerically stable), resulting in

Rβ̂ = QT x (5.6)

Being R an upper triangular matrix and Q an orthogonal matrix such as Sx = QR. The solution

can be easily found with backward substitution because R is upper triangular.

This minimization problem has a unique solution, provided Sx columns are linearly indepen-

dent, which is true with the chosen functions if the calibration points are well distributed in the

image plane.

One useful approach would be to estimate the reliability of the information extracted from

lines, and use it in a weighted linear least squares optimization, minimizing the weight of less

reliable observations.

However, we still have to consider that in each calibration image the point correspondence

is done using the world coordinates, and so we have different mappings for each image due to

different position of robot in the field (for example, using different images, different pixels will

correspond to the ground position (0,0), which must not happen). To overcome this problem

and be able to use all images in one optimization process, we must use the extrinsic coordinates to

convert the points of every image to the same coordinate system, such as all obtained points belong

to one unique mapping function. Therefore, choosing the first image as reference, we must use the

relative translational and rotational difference between this image and the others to transform the

ground points correspondence of the second image to the first image reference.

For example, if a second image is obtained with a change in orientation of θ degrees, and the

robot position distance to the one of the first image is (tx, ty), then to every calibration point of
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the second image (x′,y′), we will apply rotational and translational transformation to those points,

symmetrical to the transformations relating the two robot coordinate systems.

The problem of this approach is the following: points that previously had one known and

other unknown variables (x or y) could be used to improve one of the mappings and not the other,

but now, after the coordinates transformation, the same point corresponds to the following line

(xcos(teta)+λ sin(teta)+ tx,−xcos(teta)+λ sin(teta)+ ty), which does not bring any additional

information that can be used in the linear optimization method proposed.

Nevertheless, if we assume the robot only changes orientation with multiples of 90 degrees,

then the known and unknown variables interchange and we can use it in the calibration. Although

we have this constraint, it does not mean the robot has to be aligned with x or y axis of the world

reference, only that robot position has to have a 90, 180, or 270 degrees rotation relative to the

position of the image chosen as reference.

Considering this assumption, other problems arise. For example, we need to capture the cal-

ibration images with the robot in a specific position. And even considering that is possible, ex-

plained in section 5.3, we have to be able to detect what is the direction on each calibration image.

For that, we just need to analyze the lines information provided by the methods described in last

chapter. Considering each line detected we use its corners to create a vector. The field lines always

have the direction of world reference x or y axis, but that is not possible to be accurately calculated

in the image (lines are curvilinear). However, it is possible to calculate an approximate field orien-

tation in the image. Although it is not precise, it does not matter, because we only have 4 possible

classifications, and the orientation classification will always be correct if the image distortion is

similar to the one found in common catadioptric vision systems.

To know the orientation of the field, we compare the field estimated orientation with the one

that is the reference, using the inner product with both the orientation for the reference x-axis and

also with y-axis

Using the absolute value, we chose the one with the greater value, meaning it is the closest

direction. Besides, this can only distinguish between perpendicular direction, but we can also use

the signal of the inner product to distinguish between opposite directions.

Therefore, with this we show that the orientation detection is not important in the line extrac-

tion methods, as long as the robot positions are correspondent to the chosen orientation.

Besides, with this methodology it is possible to have information of various images for one

pixel. Instead of using it multiple times, which would give more importance to that pixel than

the others, we calculate the average for all that on each pixel, so it only counts once on the op-

timization, in order to have a distributed error in whole image, and not concentrated in certain

regions.

5.2 Results

In Table 5.1 we have the results of this calibration methodology, with the polynomial degree

ranging from five to fifteen. We also tested the procedure with two sets of images, one only with



5.2 Results 67

two, and another with almost forty images. In this kind of images there is a strong distortion,

and the true mapping is not polynomial. Therefore, as we are estimating the mapping using a

polynomial function, we need a high order polynomial in order to have a function that fits well

the true non polynomial mapping. So, the more calibration points used the better, because with

more points we can estimate better a higher order polynomial function (especially if the points

used belong to regions that require a higher order function).

Moreover, using Table 5.1 we can see there is no need to increase the order of the system

indefinitely, because from some point the order is excessive considering the number of calibration

points used (overfitting), as discussed previously. In Table 5.1 we highlighted the optimal order

for each calibration set. As we can see, the optimal order increases with the number of images

used, what is expected because using more points (distributed in the whole image) we can apply a

more complex function to fit the mapping.

Table 5.1: Calibration error of all points using polynomial function (cartesian coordinates) with
various polynomial degrees and two sets of calibration images

Two images 39 images
Order

Maximum error (m) Average error (m) Maximum error (cm) Average error (cm)
5 1.714 0.1687 100.1 9.15
6 1.757 0.1690 142.6 10.18
7 1.043 0.0696 51.03 3.09
8 1.792 0.0777 78.81 3.45
9 4.853 0.3074 64.71 2.22
10 14.19 0.5068 65.55 2.69
11 428.2 21.08 172.3 3.85
12 433.0 20.98 123.8 3.46
13 3298 139.6 300.3 4.39
14 4019 141.4 755.3 7.83
15 14196 567.6 1312.5 10.43

Comparing Table 5.1 and Table 5.2 we show the increase of error while increasing the order

is due to overfitting. In Table 5.2 we only show the error of points used for calibration, and

as expected it decreases while increasing the polynomial degree, besides being lower than when

error is tested with all image points (Table 5.1). So, in Table 5.1 the error starts increasing because

we test not only the calibration points error, but also the error in other regions of image, and from

a certain order the function starts fitting too well the points used for calibration, although loosing

the power of extrapolation for other regions.

Moreover, it is interesting to notice that in Table 5.1 error is lower when using a 2-image

calibration set than when using more images. This is easily explained, because in that table we

only show the error in the calibration points. Therefore, when using the same function complexity,

it is obvious the function will fit better less points, especially when all of them are in the central

part of the image - which has less distortion. So, when using 39 images and the same order, there

is more points in the periphery of the image. It is more difficult to fit the true mapping on those
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points, thus having greater errors. However, when using more calibration points the extrapolation

is better, and so we show that true error (Table 5.1) is smaller when using more images.

So, we conclude we should use more calibration images in order to get better results when

increasing the number of parameters (increasing the order of the estimation function). Neverthe-

less, we were expecting a big difference in the results of the two image sets, as one has a lot more

images than the other. However, the optimal order is only slightly higher, and the maximum error

in the second is not even half of the first (considering the optimal polynomial order). Using the

second set, with a reasonable number of images, and choosing a 9th degree polynomial function,

the average error is just above two centimeters. As in Chapter 3, the maximum error is 70 cen-

timeters, but it is the error at the frontier, and even points further from the robot - but not in the

frontier of calibration - have an error that is only fifteen percent of the maximum. Therefore, the

field is well estimated in most regions of the image, and so we consider the calibration successful.

Table 5.2: Error of calibration points using polynomial function (cartesian coordinates) with vari-
ous polynomial degrees and two sets of calibration images

Two images 39 images
Order

Maximum error (cm) Average error (cm) Maximum error (cm) Average error (cm)
5 8.59 0.91 19.28 4.27
6 9.03 0.90 19.12 3.81
7 7.76 0.89 18.77 1.61
8 7.61 0.89 18.83 1.53
9 7.30 0.88 18.80 1.40
10 7.15 0.87 18.81 1.39
11 6.27 0.73 18.80 1.37
12 6.14 0.73 18.76 1.37
13 3.20 0.56 18.76 1.36
14 3.13 0.56 18.74 1.36
15 3.00 0.53 18.76 1.35

As in chapter 3, to analyze the distribution of the calibration error in the image we use two

types of images: one showing the the error in each pixel as a percentage of the maximum error,

using greys scale; the other uses the reprojection of pixels into world coordinates overlapped with

the real image, showing an immediate feedback of the calibration quality. In the latter, we use a

color code described on table 5.3.

Again, in order to know the quality of the calibration procedure, it is important to have in-

formation relative to the field size. In this case we simulated a field with 10m×6m, with line

width of 6cm. Considering this and choosing an appropriate order for the estimating function, the

calibration procedure can have relatively low error.

Moreover, we use again the concept of calibration images and test images. The latter ones are

not used in calibration, only in the validation process that calculates the estimation error. The first

ones are used to calibrate the system, and may be used or not to test the calibration, and so they

can be part of the test images set.
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Table 5.3: Color code of image reprojection

Color Meaning
Black (periphery) Rays from camera do not intersect the mirror model (not even with infi-

nite radius), or in test images it corresponds to regions in which calibra-
tion is not tested

Blue (periphery) Rays from camera do not intersect the mirror due to its limited radius
Red (periphery) Rays from camera intersect the mirror, but direction of reflected ray

points upward, not intersecting the floor
Black Pixels reprojected into the soccer field lines
Green Field pixels (not field lines) in the test image that do not reproject into

field lines (pixel not used for calibration)
Pink Field pixels (not field lines) in the test image that do not reproject into

field lines (pixel used to calibrate y world coordinate)
Blue Field pixels (not field lines) in the test image that do not reproject into

field lines (pixel used to calibrate x world coordinate)
Red Field pixels (not field lines) in the test image that do not reproject into

field lines (pixel used to calibrate both x and y world coordinates)
White Field lines in the test image whose reprojection is not a line (pixel not

used for calibration)
Yellow Field lines in test image whose reprojection is not a line (pixel used to

calibrate y world coordinate)
Grey Field lines in the test image whose reprojection is not a line (pixel used

to calibrate x world coordinate)
Cyan Field lines in the test image whose reprojection is not a line (pixel used

to calibrate both x and y world coordinates)

It is interesting to note that when the order is two, the calibration result is quite poor (figure

5.1), even using the same unique image for testing and calibration. This means a second order

polynomial function does not properly fit the catadioptric vision systems distortion.

However, when using order five the results get a lot better, even still using only one image

for calibration. As we see in figure 5.2, when testing with the same image used in calibration,

the result is good. However, using a test image with points in regions not calibrated, the fitting in

those regions is quite bad again.

Nevertheless, if we start using the 2 images set in the fitting procedure, we see the error now

is quite low in all the central region of the image, only increasing in areas further from the robot

(figure 5.3).

We present in figure 5.4 the reprojection of field lines when calibration is done with the 2

images calibration set and fifth order function, confirming that in the central region the error is

low (figure 5.4a), although it is visible the increase of error in non calibrated regions. Moreover,

in figure 5.4b we see the furthest regions are not well calibrated.

Nevertheless, we conclude that using only two images and a 5th degree polynomial function

the fitting in the central region is quite accurate, with good extrapolating properties (regions not

calibrated are still a good approximation of the real mapping). Only the furthest regions are not
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Figure 5.1: Calibration using only one image, a second degree polynomial for fitting, and the same
image for testing

(a) Reprojection of test-image, which is the one used in
calibration

(b) Reprojection, with different images being used for
calibration and validation

Figure 5.2: Calibration using one image, a fitting polynomial function of degree 5, and testing
the calibration error using: the calibration image for the testing (a), and a different image for the
validation (b).
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Figure 5.3: Calibration error when using two calibration images (robot in the central field position,
with orientation equal do 0 and 90 degrees.), and a fifth degree polynomial

(a) Reprojection of test-image different from calibra-
tion images, but with robot position in the field similar
to the one in calibration images

(b) Reprojection of test-image with robot position far
from the position of the robot in the calibration images

Figure 5.4: Calibration using the two images set, a polynomial of degree 5, and testing it with two
images different from the ones used for calibration.

well calibrated. However, we did not use calibration images for that region, and we show that

using more images, specifically some that calibrate the further regions of the image, we can have

even better results. For example, in figure 5.5a we have the robot near one of the field corners, but

the opposite side of the field is still well calibrated, and we can see the error is almost null in every



72 Parameters Estimation

region of the image (figure 5.5b), except some regions with less points used in the calibration

procedure.

(a) Test-image reprojection (image is not any of
the 39 images used in calibration)

(b) Calibration Error

Figure 5.5: Calibration using 39 images, a polynomial of degree 9, and a test image not used in
calibration.

With figure 5.4 we see we can calibrate well the central region with only two images and a

5th degree function. However, increasing the number of images (with the robot in different field

positions and orientation) increases the calibration quality, and we have low errors in the important

parts of the image. However, in order to achieve even better results, we suggest as future work the

use of a spline with two functions, one to calibrate the central region and other for the furthest ares

of the image. Therefore, with few images and still a low order we might be able to have a good

calibration, because in this case we do not force one single function to be a good fit to every image

pixels.

In Table 5.4 we present the average running times for the calibration process, using the 39

images set. As we can see the the whole method takes some time, being the lines detection

procedure the one with the greatest contribution. However, Matlab is not the best framework for

time efficiency, thus being important to export this methodology to another language if we want

to reduce the running times.

In Table 5.4 we use a 9th degree function to calculate the parameters estimation times, because

it gives the best calibration results (optimal order). The coordinates transformation method refers

to the transformation that allows the use of multiple lines in the calibration. Besides the parameters

estimation, in table 5.4 we present the time spent processing each calibration image. In Table 5.5

we present the parameters estimation times for the two image sets and varying polynomial degrees.
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Table 5.4: Running times for the various constituent parts of the calibration process

Method Average time (s) Standard deviation (s)
Color Segmentation 0.820 0.089
Skeletonization 0.026 0.024
Lines Detection 12.53 1.26
Lines Identification 0.126 0.060
Coordinates transformation 0.427 0.027
Parameters estimation 0.592 -

Table 5.5: Running times for the optimization process considering 2 and 39 image sets, and vary-
ing polynomial degrees

Order Running time with 2-image set (s) Running time with 39-image set (s)
5 0.055 0.504
6 0.032 0.169
7 0.039 0.272
8 0.055 0.421
9 0.080 0.592

10 0.107 0.839
11 0.137 1.16
12 0.177 1.54
13 0.228 2.03
14 0.305 2.61
15 0.360 3.11

5.3 Calibration constraints considerations

To transform the mapping from world coordinate system onto the robot reference, we need to

calculate robot position and orientation. However, instead of estimating the initial position, an

easier approach would be to constraint it to a known position, possibly a corner, with the user

positioning the robot. To estimate the robot orientation, there is only an approach possible, due to

the possible misalignment between camera and robot orientation, that involves moving the robot.

Therefore, we would move the robot in a straight line and analyze the (x,y) variations for various

image pixels. Consequently, this can only be done after calibration, and that’s the reason we

consider the first calibration image the reference, and not the robot itself, which would eliminate

the need of this last calibration step. Besides, the pixels on the peripheral regions of the image

would not be used, as the calibration error is bigger in these areas. Finally, we are not sure the

robot moves in a real straight line, hence we would only use the initial average derivative (average

of derivative of vector (x,y) for every pixel used) to estimate the robot orientation.

Moreover, there is also the constraint of knowing the relative positions of calibration images,

which can be solved using the method above, which is to locate the robot in known positions.

Another method could be to estimate its position. It is also important to notice that even in robot

regions of the image, in which the lines are not visible, it is possible to detect lines, due to the

dashed lines detection property. Therefore, we can also detect the corners in that region, hence
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being able to calculate the nearest corner - which is useful to estimate the robot position problem

- and use it to extract lines information. This is specially important to make better estimates of the

robot position in order to reduce its uncertainty.

However, to apply this method we would need to have already calibrated the system. To

overcome this problem, a multi-step optimization could be used. Firstly, assuming we have the

robot positions roughly estimated, we could still use the least squares approach to calculate the

function parameters. After having that, we could use it as initial values for the parameters in a

second non-linear step that estimates both the function parameters and the robot positions

This calibration procedure also creates the problem of acquiring images with the robot ori-

entation restricted to multiples of 90 degrees, otherwise the calibration would have catastrophic

results. To ensure that constraint is verified, we propose the following approach. The user must

put the robot on a 3-line corner with any orientation, and then one should run a program to identify

the lines departing from the robot. After that, the robot must be moved along the intercepting line,

so as the the only remaining possible line direction departing from the robot still not identified

is visible. After that moment, we have a way of determining if the robot is in one of the only

four possible orientations. Then, the user can remotely control the robot, moving it to corners,

in which it is possible to verify the orientation just by using comparing the predetermined line

positions with the actual lines departing from the corner. This verification could be done automat-

ically, and the user would only have to move it around. Using this approach, any kind of feedback

would be useful for the user to know when he had placed the robot in a corner with the right orien-

tation. Besides, in the initial position the user chose there would be no need to precisely put it in

the corner, as long as in the end he can define the four line possible positions. For the calibration

process, the position could then be estimated as described previously. The position deviation from

the corner would then be the same in every corner. With this approach only corners can be used

as locations for the robot, although it still give the possibility of using 14×4 different calibration

images. This procedure is exemplified in Figure 5.6.
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Figure 5.6: Example of virtual aid in the image, that could allow the implementation of the cali-
bration process, considering the restrictions of this method
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Chapter 6

Conclusions and Future Work

6.1 Analysis and Review

The objective of this thesis was to create a calibration procedure for the soccer robots. We simu-

lated the vision system and calibration procedure, and used the simulation to validate the calibra-

tion method. However, we did not implement this method using the real soccer robots, thus not

being able to validate the procedure with data extracted from real images.

In this work we started by creating a simulation of the catadioptric vision system, in order to

tests the calibration method proposed. We use the pinhole model for the camera, and simulate the

mirror using an hyperbolic function with two sheets. We also simulated the misalignments of the

system by defining a coordinate system for each part that constitutes the global system. There-

fore, we have the image plane, and the camera, mirror and world coordinate system. The camera

model creates the correspondence between image plane points, and points in the camera reference.

Moreover, we created two homogeneous transformations (and the respective inverses) to define the

relative position between referentials: camera to mirror and camera to world transformation.

Then, we calculate the world points corresponding to each pixel using backpropagation ray

tracing. With this technique, we start at each image pixel and, using the camera model, we obtain

the ray of light that comes from the world to that pixel. With that ray equation we find its intersec-

tion with the mirror, then calculating the normal vector of the surface at that point. Finally, using

the normal vector and the incident ray, we calculate the direction of the reflected ray. Then, we just

transform it in world coordinates, and calculate the intersection of the ray with the ground. Con-

sidering the ground point it intersects, it can be a white line or just the green soccer field. We also

consider the possibilities of the ray not intersecting the mirror (for example, because the mirror is

finite) and the cases in which the ray points upward in the world reference, thus not intersecting

the ground.

After that, we studied which functions would fit better the mapping from pixels to ground

coordinates. We used polynomial functions with both cartesian and polar coordinates, testing it

with two simulations of vision sensors, one ideal and the other non-ideal. We concluded that

for SVP systems the polar coordinates have a better result, however, in the non-ideal case with

77
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misaligments, the first one had better results, due to usage of only linear optimization for the

parameters estimation. On the contrary, the use of polar coordinates means the optimization has

to be nonlinear.

We also proposed a method to detect the individual lines that constitute the soccer field white

lines. For that we assume that rectilinear lines, although generally being curvilinear in catadioptric

systems, are locally rectilinear. In order to detect lines, we search all pixels and use a tracking

technique to follow and detect the entire line. We even assume lines can be dashed, using its local

direction to continue searching the line even when we stop detecting it.

We apply some post-processing methods to accomplish the optimal line detection, such as

merging, extension and elimination of lines, and also corner detection. For the latter, we use the

change of local line direction as an indicator of corner probability.

Following that, we presented a technique to classify the lines detected, in order to be able to

extract information from them. For that, we used the well known structure of lines connection in

a soccer field, and compared it with the unidentified lines in order to classify each detected line.

This approach has the benefit of not having to attribute a classification to every line, only the ones

it is certain can be correctly classified. Therefore, we can have images in which only part of the

lines are classified, thus reducing the calibration error due to misclassified lines.

Finally, we used a linear optimization combined with the information extracted from the lines

to estimate the function parameters that calibrate the system. We also presented the results ob-

tained using that procedure for various polynomial degrees, calibration images and test images.

Moreover, we show it is possible to obtain a good calibration with this process, when using mul-

tiple images for the calibration (with varying robot positions) and an appropriate order for the

estimation function. Although the proposed calibration procedure has some constraints on the im-

ages acquiring process, we suggested some solutions that make this method valid and applicable to

real situations. Considering the order of the polynomial function used, it may have to be relatively

high in order to have good calibration results. As a consequence, it can be difficult to calculate

in real-time the function value for a given pixel. A possible solution is to use a lookup table to

save those values. This reduces the time consumed to get the correspondence between pixel and

world point, although it necessarily increases the amount of memory needed to store the lookup

table. Neverthless, considering the usual capacities of computers, and that the image has 500×500

pixels, this is not expected to be a problem.

6.2 Future Work

In this section we indicate some of the features we did not implement, but consider important for

the success and accuracy of the calibration method, thus being part of the future work plans.

The implementation of the proposed techniques in real robots using non simulated images

is the first step, as it is essential to evaluate the calibration accuracy we can obtain with this

method. This assessment is true considering some of the differences we have between simulation

and reality. Firstly, the simulation does not consider surrounding objects in the field, possibly
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covering some field lines. Moreover, the goal was not considered, and being white it can be

wrongly classified as field lines. Finally, with some simple tests we concluded lines far from the

robot are even more difficult do detect than in the simulation, possibly due to blur.

Regarding the extraction of field lines from the image, a technique is presented in [6], based on

color segmentation. This method was already implemented and used by the soccer robots before

this work. However, it can only detect lines near the robot. For example, with the robot in the

center of the field, this method will only detect the center circle, the halfway line, and part of the

side lines, as seen in Figure 6.1a. Nevertheless, this is not enough for the calibration procedure,

because it implies only the central region will be calibrated, which shows no improvement in

the calibration quality over the calibration procedure the robots are already using. Therefore, we

desire to develop a method that can better cope with the detection of lines further from the robot.

(a) Line extraction using color segmentation (b) Image showing difficulty in extraction of lines far
from the robot

Figure 6.1: Example of lines extraction using color segmentation in (a), as presented in [6]. In
(b)it is possible to observe the difficult line extraction problem in this images, because further lines
almost do not have white pixels.

In the simulation we can add extra feature, as an estimate of the blur, lens distortion, and more

types of mirror models. In order to properly simulate the difficulty of line detection in the periphery

of the image, we used low definition simulations and implemented detection of incomplete lines.

However, with real images other problems arise. For example, we see lines are even more than one

pixel wide, but its color is quite dissimulated, probably due to blur. This happens because cameras

cannot focus all distances at the same time, and while focusing the central region, the peripheral

areas will defocus, and therefore become blurred.

Currently, the line detection and identification operations are executed separately, but in the

future it may be worth trying to use both of them together. Although we can only classify lines

that were already detected, we could, instead of detecting all of them and only in the end identi-

fying them, identify some lines, and with those classified try to detect more lines correctly. This
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approach would only be useful to try to detect lines with invisible parts, which may be caused by

objects covering the lines (ball, other robots, ...), it can be due to low resolution of regions further

from the robot, or even because of blur that interferes with lines segmentation.

Anyway, even without using this approach, the methods must be improved in order to have

better line identification, and decreasing the number of lines misclassified. Moreover, we must

also increase the robustness of this methods regarding the wrongly detected lines.

Regarding the optimization process, we want to experiment with other functions, such as

splines. This kind of mappings may facilitate the good calibration of both central and periph-

eral image regions.

We also want to study other kinds of non-parametric calibration methods. For example, in-

stead of trying to create a pixel to ground point mapping, it would be interesting to try to estimate

a function that relates the pixel position with the rays in the world coordinate system. This would

be similar to the backpropagation ray tracing methodology, but instead of using the camera, mirror

and misalignments models to calculate it, we would just estimate a function to fit that transforma-

tion.

Finally, we would like to export the code developed to Lazarus, because this programming

language is used for almost all applications of the soccer robot team at FEUP.
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