
CRANFIELD UNIVERSITY

Felipe de Souza Schmitt

Data Sharing on P2P Mobile

Networks

SCHOOL OF ENGINEERING
Computational & Software Techniques in Engineering

MSc

Academic Year: 2012 - 2013

Supervisor: Dr. Mark Stillwell

August 2013

CRANFIELD UNIVERSITY

SCHOOL OF ENGINEERING
Computational & Software Techniques in Engineering

MSc
Academic Year: 2012 - 2013

Felipe de Souza Schmitt

Data Sharing on P2P Mobile Networks

Supervisor: Dr. Mark Stillwell

August 2013

This thesis is submitted in partial fulfilment of the requirements for

the degree of Master of Science

© Cranfield University, 2013. All rights reserved. No part of this
publication may be reproduced without the written permission of

the copyright owner.

“Stay committed to your decisions, but stay flexible in your approach.”

— Anthony Robbins

Abstract

This research project aims to bring of the concepts of social networking and peer-

to-peer networking to the mobile devices. This is successfully achieved through the

implementation of an Android service to share information across a network with

other peers. By taking advantage of the service discovery capabilities of the mobile

devices it allows to keep track of other peers on the network. The implementation

enabled a method to keep track of all the application-related data existing on the

network in other devices and request the information whenever necessary without

any user perception of the actual data sharing process. As the results show, this

method is fairly quick and have a low impact on the device’s energy consumption.

The result of this research project can be carried on to implement other features

regarding social data sharing or to be used as a comparison with other future

implementations using different technologies.

v

Acknowledgements

First of all I would like to thank my parents and brother for giving me support

throughout my life, for making me sure that they will always be there for me

wherever I am and that our bond is unbreakable. I would not be where I am

today without their support.

To all my friends who supported me in times of need and I will always receive

them with my arms wide open.

I would also like to thank my supervisor for allowing me to proceed with my own

research topic, for giving me great input on all ideas and for brainstorming with

me about which approaches to follow whenever a substantial problem appeared.

vii

Contents

Abstract v

Acknowledgements vii

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 2

1.3 Report Structure . 3

2 Literature Review 5

2.1 Contextualization and Background 5

2.2 Previous Work . 6

2.3 Research Novelty . 8

2.4 Technologies . 8

2.4.1 Peer-to-Peer Networks . 8

2.4.1.1 Search . 9

2.4.1.2 Security . 9

2.4.2 Mobile Devices . 10

2.4.2.1 Android Platform 10

2.4.2.2 Android SDK . 11

2.4.2.3 Ad-Hoc Network 11

2.4.2.4 Bluetooth . 12

2.4.2.5 Wi-Fi Direct . 12

2.4.3 Web Services . 13

2.4.3.1 RESTful Web Service 13

2.4.3.2 Ruby on Rails . 14

2.4.3.3 Ruby . 14

2.4.3.4 Rails . 15

2.4.3.5 JSON . 15

ix

Contents x

3 Methods 17

3.1 Development Techniques . 18

3.2 Architectural Design . 19

3.2.1 Server - Web Service . 19

3.2.2 Client - Mobile Device Application 23

3.3 Web Service . 25

3.3.1 Framework . 25

3.3.2 Cloud Service . 26

3.3.3 Implementation . 27

3.3.3.1 Database schemas 27

3.3.3.2 Database access . 29

3.3.3.3 Information feed 30

3.3.3.4 Response type . 32

3.3.3.5 REST API . 33

3.4 Mobile Device Application . 37

3.4.1 Framework . 37

3.4.2 Implementation . 38

3.4.2.1 Database schemas 38

3.4.2.2 Database access . 40

3.4.2.3 Information gathering 43

3.4.2.4 Service discovery 46

3.4.2.5 Service Analysis 50

3.4.2.6 Data requests . 51

3.4.2.7 Data sharing . 53

3.5 Graphical User Interface . 56

4 Evaluation 61

4.1 Transfer Analysis . 61

4.1.1 Procedure . 62

4.2 Battery Consumption Analysis . 67

5 Discussion 69

6 Conclusion 71

7 Future Work 73

A WS News Management 75

Bibliography 79

List of Figures

2.1 Representation of a peer-to-peer network. 9

3.1 Feed collection to the web service. 20

3.2 Client-side architecture. 23

3.3 The two different types of information gathering. 43

3.4 Mobile devices sharing within a LAN Network. 46

3.5 Example of a data request being sent. 52

3.6 Data transfer to the request sender. 54

3.7 Mobile device application logo. 56

3.8 Initial home screen. 57

3.9 Settings menu. 58

3.10 Home screen with categories. 59

3.11 List of news of a category. 60

3.12 Synchronisation button. 60

4.1 Transfer success rate chart. 65

4.2 Average transfer cycle time. 65

4.3 Approximate transfer cycle time. 66

4.4 Transfer cycle speed. 67

4.5 Battery consumption at each experiment. 68

xi

List of Tables

3.1 Database schema . 21

xiii

Abbreviations

API Application Programming Interface

CRUD Create Read Update Delete

DB DataBase

GUI Graphical User Interface

HP High Power

HTML Hyperlink Text Markup Language

HTTP Hypertext Transfer (or Transport) Protocol

IDE Integrated Development Environment

IP Internet Protocol

JSON JavaScript Object Notation

LP Low Power

MVC Model-View-Controller

OS Operating System

P2P Peer-to-Peer

PL Programming Language

REST REpresentational State Transfer

UI User Interface

URI Uniform Resource Identifier

UX User eXperience

XML eXtensible Markup Language

WS Web Service

xv

Chapter 1

Introduction

The main goal of this research project is to develop and analyse a framework

that combines the following two technological trends and enables the creation

of a peer-to-peer (P2P) network without a central infrastructure to allow data

sharing among a certain number of mobile devices located within a near location.

It will be taken into account problems regarding decentralised searches, resource

discovery and indexing, data analysis and other drawbacks that are inherent to a

peer-to-peer network in a mobile environment.

The technological evolution has made possible for information to be accessible for

millions of people around the world and as it keeps evolving, the human need to

acquire new information at any time, increases. The idea of social media have

been introduced to society and its acceptance have been increasing rapidly[1].

This reflects the human natural instinct to live in a society and share information

among each other. As demonstrated by The Social Media Report [1] people have

become more passionate about accessing the social media and share information.

Moreover they have been using their mobile phones to do so.

Smartphones have started to become more common nowadays, having the number

of sales been increasing around the world, as well as their penetration on the

market in such a way that over 722 million smartphones were shipped to vendors

1

Chapter 1. Introduction 2

in 2012[2]. These devices are used daily to access all kind of social media networks

as well as to communicate and share information with other people[1].

1.1 Motivation

This research topic approaches several technologies that have been improving and

growing its acceptance, leading to new opportunities and applications by using mo-

bile devices through peer-to-peer (P2P) networks. This technology can be applied

to various areas of research and development, therefore becoming a really interest-

ing topic to research. There have been some improvements regarding the hardware

provided on mobile devices that have allowed to the development community the

possibility to apply existing technologies and architectures on the mobile devices

that would not be viable otherwise.

Some of the technologies used are state-of-the-art, as a result some of the features

available are still under development and there are still some things to be improved

and fixed. On one hand this makes research on this area very important and

contribute to a better continuous development, but on the other hand it means

that there are some features that do not perform as expected, which can become

a challenge for any kind of research in this area.

1.2 Goals

The research project has as a primary goal to analyse the possibility to create an

Android[3] information sharing peer-to-peer framework and develop an application

to share a specific type of content between several Android devices through a peer-

to-peer (P2P) network.

In order to achieve this main goal, the following steps are required to take with

the purpose of having a thorough analysis and a steady development process:

Chapter 1. Introduction 3

• Create an overview of the software architecture;

• Analyse the best techniques to search and retrieve information on a mobile

P2P environment;

• Explore the Android’s Wi-Fi, Wi-Fi Direct and Bluetooth capability to share

information across the network;

• Build a Web Service to provide in a centralised way the information that

will be distributed through the P2P network;

• Develop an Android application that takes advantages of its network capa-

bilities and analyse its behaviour in a P2P network to share information.

• Allow Android devices to publish on the network the services it provides;

• Allow Android devices to find other services that are being provided across

the network;

• Keep synchronised the information on the devices with the same desired

information that are connected to the same network.

1.3 Report Structure

This report have been separated into several chapters, each one of them approaches

different concerns that are directly and indirectly related to the research project.

The chapter 2, regarding the literature review describes and analyses research

projects that are somehow related to the work done for this project.

Afterwards, on the technology section, the technologies that were used in order to

develop this project are described and shown its relation to the project and how

they contribute to achieve the goals previously set.

Chapter 1. Introduction 4

The chapter 3, concerning the implementation describes the implementation spec-

ifications and after in chapter 4 dedicated to evaluation that shows the experi-

mental procedures, the results obtained and then analyse the feasibility of such

functionality to be used regularly by any smartphone owner.

The chapter 5, discusses some decisions made during the implementation of this

project as well as the impact on the results.

At last but not least the chapter 6 regarding the conclusion will give a brief con-

clusion on the practicability of the technology and some future features that can

be extended to other applications.

Chapter 2

Literature Review

2.1 Contextualization and Background

The age of mobile networks is upon us. The number of people with wireless capable

devices have grown exponentially on the last years[4, 5], giving the opportunity to

innovate and port methodologies and architectures, that before could only be done

with fixed computers with a steady network connection, to mobile devices which

have a quite good computational power, storage capacity and suitable hardware.

Now, more than ever people are getting more and more social over the network and

accepting this new way for communicating with each other, as well as embracing

the opportunities it gives to get to know new people[6].

One type of social networking that has been around for some time now are the peer-

to-peer networks, where several users spread over a determined area share with

each others resources (e.g. media files, computational resources, sensors feedback).

When joined the smartphone’s new capabilities with the growing trend to create

a social network among friends and even unknowns to share and discover new

information, the result can only be interesting and worth researching at a greater

depth.

5

Chapter 2. Literature Review 6

This research project plans to implement and analyse the usage of peer-to-peer mo-

bile network on the smartphone platform Android[3] to share information among

users. By creating peer-to-peer mobile networks it is required to take into con-

sideration some concerns such as peer discovery, network stability, network failure

recovery, distributed data management, which are also described in this disserta-

tion.

2.2 Previous Work

Due to the mobile different capabilities to discover neighbours across a certain

range (Bluetooth, Wi-Fi, Wi-Fi Direct and NFC) there have been already some

research regarding the discovery of neighbours. Although inherent to this research

there has always been a big concern regarding power management as these radios

that are used for searching have different ranges but also different power consump-

tion rates. The task of discovering peers, as shown on previous research[7], can

be improved through an hybrid discovery process using high-power (HP) and low-

power (LP) radios to find neighbours. It is improved by combining both an having

a lower cost to find neighbours that are near the device.

The discovery of new neighbours in this paper only has as a goal to find new

devices, not having any knowledge on which services each device provides, which

low-power radios do not provide, meaning that in this case it would require the

device to connect to another device to acknowledge if the service needed is being

executed on the other device, increasing the cost of discovering of new peers that

provide the same service.

As this process have a high energy cost while searching for peers on a HP radio,

there have been some research on this area where it has been proposed by Bakht[8]

the usage of an asynchronous periodic slot-based discovery scheme named Search-

light which uses active and sleep slots to search for new peers instead of being

continuously searching for them. The scheme proposed is said to provide better

Chapter 2. Literature Review 7

bounds on discovery latency than any existing protocol when nodes have similar

energy requirements[8].

Although this scheme has been proven to improve the latency of peer discovery,

it is not implemented on the platform that is being used in this research for peer

discovery and energy management since Android has its own scheme. Some of the

constrains of this existing scheme are going to be detailed across this thesis.

Another research area that is of extreme interest to this research project is service

discovery across a network. Over the last years there have been some research

on this area regarding service broadcasting and discovery. These researches led

to a methodology called ZeroConf that stands for zero configuration networking.

ZeroConf’s vision is to search and use services and not about its configuration[9].

This methodology provides an easy framework to find and analyse all the services

available[9].

Through research and development there has been created an implementation

of a DNS-based service discovery (DNS-SD) called Bonjour provided by Apple

Inc.[10, 11] to accelerate the process of service discovery. The Bonjour implemen-

tation uses a multicast DNS[12] (mDNS) which is a protocol similar to DNS but

is implemented over a multicast protocol.

Using this idea and concept, Arthur van Hoff started in 2002[13] a pure java

implementation of multicast DNS called JmDNS that implements most of the

Bonjour functionalities while still remaining fully compatible with it.

Since Android uses Java as the programming language for development and the

library works with the Dalvik Virtual Machine, which is the process virtual ma-

chine for Android instead of the normal JVM, this library can be used in this

research project in order to achieve its goals.

Chapter 2. Literature Review 8

2.3 Research Novelty

The main objective of this thesis is to find out the main constrains and how feasible

it is to create a peer-to-peer network on a mobile environment in order to share

data that would be beneficial to all the users involved.

Since the mobile industry have been improving and innovating in this area, it is

needed to see the current status of this technologies and how far can we push them

to provide a better service to the users.

This thesis will take into account the current standards that have been imple-

mented on the Android operating system (OS) for peer discovery using its default

API for wireless network and peer discovery.

2.4 Technologies

2.4.1 Peer-to-Peer Networks

In this section there will be an overview about how a peer-to-peer network works, as

well as the concerns that need to be taken into account on a decentralised networks

structure. It will also address the main topics regarding peer-to-peer networks

such as the performance of several search methods, indexing and discovering new

resources within the network, data integrity, network security and distributed data

management.

A peer-to-peer (P2P) network, where the “peers” are computers connected to

each other through an access point (internet, intranet or others), allowing shared

access to some resources, such as data, sensors, processors and do not require a

central server[14]. This meaning that if you retrieve any “peer” from a N +3 peers

network, the service must remain active.

Chapter 2. Literature Review 9

Figure 2.1: Representation of a peer-to-peer network.

Regarding a network architecture like the one presented above on the figure 2.1

there are several concerns that need to be taken into account. For example the

ones described in the next sections.

2.4.1.1 Search

In order to have an efficient search mechanism it must be possible to locate the

data required in an efficient way provided its resources. Although in a peer-to-peer

network the individuality of each peer turns the resources unstable and unreliable.

For these reasons when implementing a search mechanism for key lookups on a

peer-to-peer network, the developer must be aware of the autonomous peers and

the probability of redundancy within all the resources available.

2.4.1.2 Security

On peer-to-peer networks security is very important and while implementing such

architecture it is necessary to guarantee access control, data analysis and anonymity.

Chapter 2. Literature Review 10

Any other peer across the network should not have access to any other resource

than the ones specific to the architecture, allowing only access to the resources

needed for such interaction.

In terms of data analysis, the data that is being transferred across the network

must always be analysed in order to check if the data being received is the one

expected.

The anonymity provides the peers to only disclosure information about their iden-

tity that is necessary in order to proceed with the interactions happening across

the peer-to-peer network.

2.4.2 Mobile Devices

On the last few years the number of smartphones sales have been increasing very

rapidly[2] and their computational specifications have been improving in a way

that it is possible to obtain a mobile phone that has more computational power

then a computer a few years ago. This opens up new horizons in the field of mobile

computing and networking, which still is a broad unexplored research area.

2.4.2.1 Android Platform

The Android platform is based on the Linux operating system but applied to

mobile devices, where it uses its own dedicated libraries, APIs and frameworks.

Android’s development is led by Google that uses Dalvik virtual machine(VM),

which is a fast just-in-time compiled and optimised bytecode VM. Being the code

developed in Java, its bytecode is translated into Dalvik bytecode in order to be

possible to run it on the Dalvik VM[15].

The development of the idea proposed on this research project will be put into

practice by using the operating system developed by Google[16]. This operating

system was chosen because it has a strong development support given by a reli-

able company such as Google and besides providing several technologies that will

Chapter 2. Literature Review 11

help the implementation of a peer-to-peer network it is also the world’s leading

smartphone platform with around 70% of the market share[2]. Therefore in the

eventuality that this research project reaches the deployment stage it would reach

a broaden range of users. By using the Android platform it is also possible to

develop a cost free prototype (unlike some of its competitors) where it could be

done a more extensive testing by deploying it to a selected group of testers.

2.4.2.2 Android SDK

The Android Software Development Kit (SDK) provides the API libraries and

developer tools that allows the user to build, test and debug applications for the

Android Platform[17].

The API libraries available on the Android SDK allow the programmer to access

some of the hardware capabilities of the mobile devices, in order to build the

prototype it will be used some of the main developer APIs and specifically it will

be analysed the possibility to use some that would allow access to the network

hardware such as Wi-Fi and Bluetooth.

2.4.2.3 Ad-Hoc Network

In order to create a peer-to-peer network it is required that the devices are able

to connect with each other without having a centralised structure, therefore using

ad-hoc connections between the devices.

With the purpose of creating ad-hoc connections between the devices to share

information among them, in this research project it will be analysed two different

technologies that allows that. These technologies are Bluetooth and Wi-Fi, each

of them have its constrains, so it will be selected the one that best fits this project.

Chapter 2. Literature Review 12

2.4.2.4 Bluetooth

This is a wireless technology for short-range communications that provides a sim-

ple, secure and a low cost solution to realise communications between two devices.

This type of connections is called pairing, which allows the two devices to securely

send data to each other[18].

Bluetooth technology was originally invented in 1994 by engineers at Ericsson. In

1998, a group of companies agreed to work together using Bluetooth technology as

a way to connect their products. These companies formed the Bluetooth Special

Interest Group (SIG). This organisation is devoted so maintain the technology and

control the technical aspects of it[19].

2.4.2.5 Wi-Fi Direct

Wi-Fi Direct is a wireless technology that enables devices with Wi-Fi capability to

connect with each other without the need of an access point or internet[20]. This

technology takes all the advantages of an Wi-Fi connection, such as medium-range

communications and large bandwidth connections that allows the devices to send

data using the Wi-Fi standards at a fast speed[20].

The devices that support Wi-Fi Direct can create a connection between them

anywhere, as long as both devices are within Wi-Fi range. When this happens

the device will signal other devices within the area range and this way view the

available devices and afterwards send a request to connect to one of them, or

receive an invitation from any other device within range.

After two devices are connected they form a Wi-Fi Direct Group and afterwards

any device can ask to join that group, forming this way a peer-to-peer network

with several devices[20].

Chapter 2. Literature Review 13

2.4.3 Web Services

In order to control the data that is going to be shared within the testing framework

application it will be created a simple RESTful Web Service (WS) that will provide

with daily news retrieved from other sources (e.g. RSS feeds). This information

provided by the WS is going to be used as reliable and secure data that will be

transferred among the devices through a peer-to-peer network without the access

to the internet after at least one of them have downloaded the information. The

Web Service will be implemented through the programming language Ruby using

the framework Rails. The information will be transferred using the open standard

JSON since it is a lightweight data-interchange format when compared to XML

[21].

2.4.3.1 RESTful Web Service

REST defines a set of architectural principles by which you can design Web services

that focus on a system’s resources, including how resource states are addressed and

transferred over HTTP[22].

This architectural style follows four basic design principles [22]:

• Use HTTP methods;

• Stateless;

• Use URIs as structured directories;

• Transfer messages using XML or JSON.

A RESTful service uses HTTP methods such as GET, POST, PUT and DELETE

to accomplish CRUD (Create, Read, Update, Delete) operations on a data storage.

All the requests sent through HTTP on a RESTful service are completely stateless,

as the server should not maintain any session from the client, allowing it to scale

and meet high demands [22]. In order to access different resources in a RESTful

Chapter 2. Literature Review 14

service there are specific and intuitive URIs that indicate the resources that are

being accessed. In this kind of service there is the need to transfer messages with

resources representation and they could be either in XML or JSON.

2.4.3.2 Ruby on Rails

2.4.3.3 Ruby

Ruby is a dynamic, open source programming language with a focus on simplicity

and productivity. It has an elegant syntax that is natural to read and easy to

write[23].

The programming language (PL) Ruby has several strong arguments on its side

that makes it a perfect PL to use for prototyping[24] (and further related to Web

Development):

• Simple programming language;

• Easily scalable;

• Small learning curve;

• Ideally suited to rapid application development.

As well as Python, it is a programming language that is easy to learn and al-

lows fast prototyping and helps you improve the productivity by maintaining the

simplicity.

Chapter 2. Literature Review 15

2.4.3.4 Rails

Rails is an open source web application framework developed for the Ruby pro-

gramming language, which denominates Ruby on Rails. This framework empha-

sizes the use of well-known software engineering patterns, such as model-view-

controller, do not repeat yourself, among others.

The Ruby on Rails framework allows the developer to easily create a Web Service,

maintain a database record and without difficulty manage the controller between

the requests and the retrieval of information. As well as Ruby, the framework have

as a positive aspect the easy scalability of its applications[25].

2.4.3.5 JSON

The lightweight data-interchange format JSON (JavaScript Object Notation) is

based on a subset of the JavaScript Programming Language[21], which is easy to

read and write for humans and easy as well to parse and generate through code.

The JSON has almost no learning curve for developers that are already familiar

with JavaScript or other programming language with similar support for rich literal

notation such as Python and Ruby [26].

The structure of a JSON Object can be of two types:

• A collection of name-value pairs;

• An ordered list of values.

The JSON Object is a unordered set of name-value pair that starts with a left

brace ({) and ends with a right brace (}). Within the braces the name-value pairs

are separated by a coma (,). Having each name followed by a colon (:) and then

the value related to that name. On the other hand the JSON Object Array is set

by starting with a left square bracket ([), followed by a list of values (or JSON

Objects) split by a coma (,), ending with a right square bracket(]) [21].

Chapter 2. Literature Review 16

An example:

{

"title" : "NASA Award Grant To Cranfield University",

"date" : "18th Mar 2013",

"keywords" : [

"nasa",

"cranfield",

"uk",

"award"

]

}

The example above shows the structure of a JSON Object and demonstrates how

easy it is to read and write using the JSON standards.

Chapter 3

Methods

The main goal of this research is to evaluate the feasibility and constrains that cur-

rently exist on sharing social data through peer-to-peer networks taking advantage

of the mobility that mobile devices allow. In order to achieve this it is necessary

to develop an application that would take advantage of these characteristics that

could reach the most people as possible. Due to this it was chosen to implement

it to the Android OS, due to its current enormous market share of all the mobile

devices sold around the world [27].

This chapter will be divided into the architectural design of the project and how

each of the two main parts (Server and Client) were implemented. Furthermore

it explains how such experiment could be replicated and also how does the peer

discovery and the data management are implemented in order to have an easy,

non-interactive and smooth transition of information between devices.

17

Chapter 3. Methods 18

3.1 Development Techniques

With the purpose of achieving the goals initially set for this project it was created

a project plan with several milestones within several iterations of the process called

sprints. Each sprint had its own features and goals, which could provide an easy

way to check if the project was on schedule or not. These sprints were useful also

to keep track and report to my supervisor of my progress and difficulties found

along the way that are also described ahead in this report.

In addition this project was developed on the operating system Mac OS X, using

the text editor Sublime 2 in order to write the Ruby code for the web service and

the new Android development environment provided by Google called Android

Studio. This integrated development environment (IDE) is an useful tool to de-

velop applications for Android as it allows the developer to deploy the application

to a physical device and run it directly on an Android smartphone. It also allows

the developer to have realtime access to the logs being produced on runtime with

debug information. This helps to debug the application and find the problems

that occur on runtime, which can be difficult to figure it out otherwise, if we take

in to consideration the complex and unpredictable environment that mobile and

network development normally are.

Also in order to have an attractive design that would engage the end user and at

the same time would be intuitive and easy to use, it was used the image manip-

ulation software Adobe Photoshop CS6 for mac. This allowed the creation of a

user interface (UI) that could provide a good user experience (UX) and separate

completely the end user from all the background procedures that allow the social

information sharing to happen.

Furthermore in the development process of this project it was used a git repository

to register all the changes made and trace all the work done, from design reports

to source code for both parts. In order to maintain the privacy of this project it

was used a private server to store all the information regarding the development

Chapter 3. Methods 19

process. By using this technology it allows a more agile and flexible approach to

the development process and keep track of the progress done across the project.

3.2 Architectural Design

This section will demonstrate how each one of the main components are designed

and show its elements and their expected behaviour that will have an impact in

achieving the goals previously set.

The first step, when creating a distributed system, should be to analyse all the

different main components that such system include and study their interaction

with each other.

Another important step is for each one of these main components, explore its archi-

tecture and the elements that are needed in order to achieve its desire functionality

in the global environment of the distributed system.

The architectural design of this distributed system can be divided into two main

different parts, the server-side (web service) and a client-side (mobile device ap-

plication) in this section each one of these parts are explained in depth.

3.2.1 Server - Web Service

One of the main components of this general architecture is the web service that

provides an easy access to collected and stored information. This component will

be a very important part of the system as it provides all the information that is

shared within this project environment.

The main reason for having this component on this environment is to be able to

control and analyse all the data that is in the system which is transferred to mobile

devices and then shared among them.

Chapter 3. Methods 20

The service being provided allows that all the information is gathered from several

sources and afterward they can be formatted into a single standard, keeping all

the information formatted the same way so they can be sent to mobile devices as

if they were all from the same source .

This part of the architectural design of the web service can be described by the

following figure:

Figure 3.1: Feed collection to the web service.

The figure 3.1 shows that the server, which has its own database (DB), fetches the

news from several sources periodically and afterward this information is parsed,

so it can be stored, categorised and inserted them into the its corresponding table

on the database.

In order to keep a clean and separated categorisation of the news collected from the

several feeds, each category is considered as separate modules. This consideration

enables the addition of future source feeds for specific categories and handle them

to integrate the database and merge with all the previous source feeds.

Since each category is considered a different module, the database schema for

this project contain a table for each category which allows the implementation of

specific attributes for some categories in the future, such as tags, teams involved

in a sports news, economical information drawn from data mining of each news

and others.

Chapter 3. Methods 21

This technique can provide a better metadata of the news for a specific category

which can change the way the news are presented to the users afterward.

An example of a table schema being used for the database in the web service can

be described by the following table:

Column Type Modifiers

id integer not null default nextval([category seq])

name varchar not null

summary text

url varchar not null

published at timestamp not null

guid varchar not null

created at timestamp not null

updated at timestamp not null

Table 3.1: Database schema

As it is possible to see by analysing the table 3.1 each entry on the database have

some metadata that helps further on with some tasks to provide a better UX, for

example: sort the news by date, provide a direct link for the news source’s website,

check the guid to see if the analysing news already exist on the environment

database.

How all these steps were done, are explained when the web service implementation

is described further in the subsection 3.3.3.

After collecting all the information it is required for the web service to set available

all this information to the mobile devices so they can fetch all the news for a specific

category instead of for a specific source.

As the web service main purpose is to feed information to the Android application

for development and testing environments, it is required to have a REST service

to provide an application programming interface (API). This API must provide

an interface for the mobile application to access the information stored on the web

Chapter 3. Methods 22

service database, this interface should allow access through normal GET request,

for example using the following URI:

http://newsfeeder.herokuapp.com/<category name>?format=json

The response for this request is in a JSON format, with information of all the

news from the category specified in the URI. Being this an array of news where

each news it is available as a JSON object with some attributes such as the title

of the news, its summary, the publish, update and creation date and a direct URL

to the source’s website. Following the JSON format an example of a news object

from such response containing those information should be as following:

{

"created_at":"2013-08-01T23:25:18Z",

"guid":"feedzilla.com:323367660","id":2503,

"name":"Hulu, HBO Working with Google to add content to

Chromecast (Mercury News)",

"published_at":"2013-08-01T23:06:00Z",

"summary":"Hulu, the TV streaming company owned by major media

companies, and Time Warner Inc.’s HBO said they’re working with

Google to add their paid-subscription services to the company’s

new Chromecast device.",

"updated_at":"2013-08-01T23:25:18Z",

"url":"http://news.feedzilla.com/en_us/stories/technology/323367660"

}

Given such representation, it can be interpreted and stored in the mobile device’s

database so it can be displayed properly to the user afterward. The choice of using

JSON as the data representation type is based on the fact that it is simple, light

and easy to read either literally or programmatically.

These are the main design concepts behind the architecture of the web service

that provide the two main features that will be provide for the distributed system

Chapter 3. Methods 23

environment: collect data from several sources and present them to the mobile

devices as a single source in a light and simple way.

3.2.2 Client - Mobile Device Application

The other main component in this system is the client side component which is

a mobile device application that any user can install on theirs mobile device and

have access to all the information either from downloading it through the web

service or by peer-to-peer network with other devices using the same application.

On the client side, the Android application have two different modules within its

own architecture. The application that runs on the foreground which displays the

information and is managed by the user interaction and the service that runs in the

background and manages all the discoveries and the synchronisation of information

between either other devices or the web service.

Figure 3.2: Client-side architecture.

The application module that is shown in the figure 3.2 is responsible for the user

interaction and the display of information to the user when the Android application

is open on the foreground. This module can also call some functionalities that the

Chapter 3. Methods 24

Service module provide that will update the current information stored on the

device by downloading it through the web service if it has an internet connection.

The service module on the other hand is running on the background of the device

as a service and is responsible for continuously keep track of the discovered peers,

discover new ones and synchronise the required information between them. The

Service will download new information from the web service when an internet

connection is available as well as it will manage all the requests (sent and received)

from other devices within the network and also manages its corresponding data

transition (lookup, send and receive).

The application and the service module have direct access to the device SQLite

database which allows both modules to execute queries to display the news to the

user as well as to lookup for information when a request is received, which allows

the device to send the information to the request sender if the data is found.

Both of these modules are described further in this chapter, more specific on

the section regarding the implementation of each system that will cover every

functionality for each module and explain how they all are connected.

Chapter 3. Methods 25

3.3 Web Service

For this research project it was required to exist a web service where all the data

could be provided as a single source and all with the same structure so that the

information could be fetched by the client side (mobile device application). This

allows the addition of new sources of information without any effort from the user,

which enables the service to expand to new categories and sources without the

user having to interact with the system.

3.3.1 Framework

In order to do so, it was chosen to implement the web service using the framework

Rails[25] which runs on Ruby programming language, due to its flexible and scal-

able structure that can be easily changed to support new categories of information

and from different sources.

This framework also allows the creation of a MySQL, PostgreSQL or SQLite

database[28] to store all the information. This shows the flexibility that this

framework have and also have the possibility to change the database technology

between development, production and testing environments. This flexibility can

be seen as the project was developed using SQLite for development and testing

and in order to be compatible with the cloud service that was used to deploy the

web service (see subsection 3.3.2), it was changed to PostgreSQL for the production

environment.

One of the greatest advantages of using Rails is that it also provides a structure

to build a REST service by allowing several types of response to the same GET

request only needing one extra parameter to determine the response type which

could be for example HTML, JSON or XML (see section 3.3.3.4).

Chapter 3. Methods 26

3.3.2 Cloud Service

With the purpose of having a service that would be available at all time and could

handle several requests from a large number of users without having any constrain

the web service was deployed to a cloud service called Heroku[29]. It provides a

free service when using one virtual machine to handle the requests, this number

can be increased as required by altering a parameter but it has some extra costs.

In order to provide this service for free to several developers it has some constrains,

for example there are two main server cycles, active and sleep. When a service

does not have a request for a certain period of time it enters on a sleep cycle where

there is a front service provided by Heroku that will wake up the service when a

new request is received. This means that after the service has been inactive for a

while it will take longer to respond to the first request made after that inactive

period.

The constrain stated above was solved by adding to the service a plug-in called

New Relic[30] that provides an in-depth analysis of a service by sending a ping to

the service from time to time and check the response time and availability. Taking

advantage of this plug-in, it was set to verify the performance of the service every

half an hour, allowing the service to be in the active cycle always, therefore having

a better response time even when there are no requests in a long period of time.

Another feature this cloud service provides is a git repository where all the changes

can be tracked and as soon as a push (upload of the changes made) is done, it

automatically restart the server with the new changes. This provides an easy way

to deploy all the new functionalities, after they have been tested locally, and have

a realtime update on the information passed by to the mobile application.

Chapter 3. Methods 27

3.3.3 Implementation

This section will approach several topics regarding the web service implementation

which will describe how each feature was implemented and its role in the system.

Regarding the web service, the components explained in this section are the

database where all the information is stored, the service that keeps the infor-

mation up to date and the application programming interface that uses REST to

distribute the information to the mobile devices through requests.

3.3.3.1 Database schemas

As stated earlier, with the purpose of allowing the customisation of each set of

information to each news category, the database used to storage all the information

gathered through all the feeds have a different table for each category.

By using the cloud service Heroku (see section 3.3.2) it was required that the

database for the production environment to be a PostgreSQL database and Ruby

on Rails allows us to do this by declaring on the Gemfile (configuration file) which

“gems” (standard Ruby libraries) to use. For example, for this project it was used

an SQLite database for development and testing and a PostgreSQL database for

production. This was set by inserting the following declaration to the Gemfile:

group :development, :test do

gem ’sqlite3’

end

group :production do

gem ’pg’

end

As we can see the declaration can be personalised to several different environ-

ments for development, testing and production which allows a great flexibility for

a distributed system.

Chapter 3. Methods 28

In Ruby on Rails the database can be created through the usage of table schemas

written into a file and then run the command:

rake db:migrate

This command checks for changes on the database schemas and execute them to

change the database structure.

In order to create a table with the necessary attributes it should have enough

metadata and information regarding the news so it can be presented the best way

possible to the user.

It has been decided that to analyse the possibility of using peer-to-peer networking

capabilities for social interactions among mobile devices the following attributes

were enough: name, summary, url, published at and guid.

With the purpose of creating a table with those specific attributes, the following

schema allowed that:

class CreateTechnologies < ActiveRecord::Migration

def change

create_table :technologies do |t|

t.string :name

t.text :summary

t.string :url

t.datetime :published_at

t.string :guid

t.timestamps

end

end

end

Chapter 3. Methods 29

This schema is an example for the creation of the table regarding the technology

category of news. As for this research project all the other category schemas are

the same, having the possibility to change these attributes for extra metadata on

some categories for a more personalised information on some categories.

3.3.3.2 Database access

The Model-View-Controller (MVC) design pattern that Ruby on Rails integrates

allows a clear division between the data structure (Model), the user interaction

(View) and the data process between database access through the Model so it can

be displayed at the View.

The usage of the data structure (Model) to access the database enables an easy

access to the information without having to execute complex queries to obtain the

data required.

For example, in order to access all the news of one specific category (e.g. Sports)

it is possible to use the Sport object from the Model declaration and use the

following method:

@sports = Sport.all(:order => ’"published_at" DESC’)

This simple method returns an array of all the news about sport in a descending

order of its published date. The Sport data structure (or any other from any

category) have some methods implemented that allow a quick and easy access to

the information stored at the database.

In this project in order to keep a simple web management tool that enables the

control of the data on the server some methods were implemented that can create,

read, update and delete (CRUD) information stored in the database. This methods

are the same that can be accessed through the REST API.

All these methods implementation are explained at section 3.3.3.5, regarding the

REST implementation.

Chapter 3. Methods 30

3.3.3.3 Information feed

Since the web service provides news information, it is required that the information

should be always up to date. So the information feeds should be regularly checked

for new data so it can have access to the newest information as soon as possible.

Ruby has a gem library that allows the schedule of tasks at every x minutes, hours

or days called rufus-scheduler [31]. The usage of this gem library enabled a way to

update the database regularly by checking the feed sources for new information at

every 15 minutes.

This can be achieved by creating a task scheduler.rb file at the initializers folder

and insert all the tasks that are required to be executed within intervals of time.

In order to initialise the rufus-scheduler so that a thread can be created to proceed

with the tasks that have been allocated, the library must be initialised by inserting

the following at the top of the task scheduler.rb file:

scheduler = Rufus::Scheduler.start_new

For example, in order to update the news for the Art category every 15 minutes

from a RSS source using the rufus-scheduler library, the following piece of code

should be inserted on the task scheduler.rb file:

scheduler.every("15m") do

Art.update_from_feed(

"http://api.feedzilla.com/v1/categories/13/articles.rss")

Art.count

puts ’feed updated.’

end

Within this task that occurs every 15 minutes all the different categories are up-

dated using different source feeds by calling the update from feed method that has

Chapter 3. Methods 31

been implemented at the Model data structure of every category. This method is

implemented so it can fetch the news through the RSS feeds by using another gem

library called Feedzirra[32].

def self.update_from_feed(feed_url)

feed = Feedzirra::Feed.fetch_and_parse(feed_url)

add_entries(feed.entries)

end

The method update from feed uses the Feedzirra library which allows an easy

technique to parse RSS feeds, which can be afterward inserted into the database

through the Model method for adding entries.

def self.add_entries(entries)

entries.each do |entry|

unless exists? :guid => entry.id

entry.summary = entry.summary[0, entry.summary.index(’<br’)]

create!(

:name => entry.title,

:summary => entry.summary,

:url => entry.url,

:published_at => entry.published,

:guid => entry.id

)

end

end

end

The add entries method, which receives as an argument an array of new entries,

checks if the guid is unique and if it already exists, in order to remove advertising

nodes that sometimes are inserted within RSS feeds. Afterward the method strips

the string in the summary node so it only contains plain text.

Chapter 3. Methods 32

After the feed has been parsed, the information have been treated and it is ready

to be stored into the database, the default method for creating a new entry inserts

the information on the Model’s respective table using the PostgreSQL standards.

These are the mains steps from gathering the information from the source feeds,

this is done periodically so it can keep the information up date and store them

into the database after it have been through the data analysis process.

3.3.3.4 Response type

In order to provide the service that the server enables to other systems it was

required the creation of a REST API. Its main purpose is to allow the transfer

of representations of resources existing on the server. This way the mobile device

application can access the resources that exist on the database of the server to

download data to its own database to display to the user afterward and even share

among other devices.

As stated previously, JSON is the standard used in this project to represent data

structures on the transactions of information between the server and the mobile

device. This standard is also used for the transitions between mobile devices for

sharing information as it can be seen on section 3.4.2.7.

The usage of this standard is a perfect match with Ruby on Rails as it has a gem

library that turns parsing and construct JSON objects trivial, this gem can be

used by simply adding on the Gemfile the following line:

gem ’json’

This library allows the construction of a JSON object from any Ruby object or

array, which allows an easy data process in order to format the information and

respond to requests using the JSON standards.

For example, in order to format a single news information to a JSON format can

be done through the following method:

Chapter 3. Methods 33

render :json => @single_news

The return of this method call is the following JSON object, which represents one

single news from the category Art:

{

"guid":"feedzilla.com:324590381",

"name":"Laura Benanti, Norm Lewis & More to Lead The Public

Theater’s Musical Adaptation of THE TEMPEST at Delacorte

Theater, 9/6-8 (Broadway world)",

"published_at":"2013-08-07T16:54:00Z",

"summary":"The Public Theater announced today that Todd Almond

Ariel, Laura Benanti Goddess, Carson Elrod Caliban, Jeff Hiller

Trinculo, Norm Lewis Prospero, and Jacob Ming-Trent Stephano

have been cast in the free, original musical adaptation of

THE TEMPEST, part of The Public’s groundbreaking new

initiative for community-based theater, PUBLIC WORKS.

Directed by Public Works Director Lear deBessonet, with

music, lyrics and book by Almond, and choreography by Chase Brock,

THE TEMPEST will run September 6 through September 8 at 800 p.m. at

the Delacorte Theater in Central Park.",

"url":"http://news.feedzilla.com/en_us/stories/art/324590381?

client_source=api&format=rss"

}

As it is possible to conclude from this example the JSON structure can be easily

readable either by a human or by a parsing method. Since all the request responses

are in JSON this method is called on every API request that is sent to the server.

3.3.3.5 REST API

With the purpose of providing access to the mobile device application to repre-

sentations of some of the web service resources it was necessary the creation of a

Chapter 3. Methods 34

REST API that could facilitate the access to the information stored in the web

service database.

Since the web service provides a REST API, it implements the acronym CRUD

that stands for Create, Read, Update and Delete. The CRUD refers to the main

methods that are implemented on any relational database application that can

be translated into HTTP methods such as: POST, GET, PUT and DELETE

(corresponding to Create, Read, Update and Delete).

The access to the information stored in the web service database must meet the

mobile device application’s needs, to achieve such access the following methods

were implemented:

• Request all news stored of one category;

• Request one single news given its id number;

• Add a recent news (web management);

• Edit an existing news (web management);

• Delete an existing news (web management);

• Request all news stored of one category after a given time.

Because managing the data that is being inserted into the environment of this

research project it is important, some of the previous stated methods exist with

the goal of providing a better management tool.

The API request to get all the news stored in the web service database of one

category can be called by using an HTTP GET request through the following

URI:

http://newsfeeder.herokuapp.com/<category>?format=<json or html>

Chapter 3. Methods 35

This request will invoke the corresponding format type method, which will respond

with either an HTML page providing all the news of that category or return a

JSON array with all the news of that category.

This request is handled by the corresponding category’s controller (within the

MVC design pattern) that is responsible to invoke the database request and format

the response according to the request.

An example of this procedure is the following:

GET /arts

GET /arts.json

def index

@arts = Art.all(:order => "published_at desc")

respond_to do |format|

format.html # index.html.erb

format.json { render :json => @arts }

end

end

Comparing with this previous example, the single news request is exactly the same

except for the database query where the SELECT request specifies the ID number,

returning only that specific news.

In order to provide an easy management interface it was created three management

methods that allow to create, edit and delete any news. These methods take

advantage of the Model data structure already implemented methods, which can

be seen in appendix A.

The method that requests all the news from a specific category after a certain time

is the most important request as it is the one that will provide the mobile devices

to keep updating their database when they have an internet connection.

Chapter 3. Methods 36

This method has a specific handler that takes as an argument an integer that

corresponds to the id number of the category and a string with a time and date

that must be previous than all the news of the response.

An example of a HTTP request of news from the category Art that are more recent

than the 7th of August is the following:

http://newsfeeder.herokuapp.com/request/1/’2013-08-07T17:43:02Z’.json

It will return an JSON response with all the news published (that have been stored

in the web service) after the 7th of August at 17:43:02.

If the request sends as an argument a category id that does not exist the JSON

response provides the list of existing categories and its id numbers. This can be

useful if a category is added or removed the mobile device application can be

implemented to handle this type of changes and readjust (see section 3.4.2.1).

All of these REST methods implemented enable to the mobile device application

a controlled access to the information stored in the web service database, this way

providing an unique source of information with data from several different sources

as it was the main goal of the web service.

Chapter 3. Methods 37

3.4 Mobile Device Application

The mobile application can be considered the main focus of this research project

as it will take advantage of the web service information to investigate the aims of

this project.

The main topics that are investigated on this implementation are the network

capabilities of Android to share information over a peer-to-peer network, to publish

and discover services across a network to be aware of surrounding peers and to

execute this process without the least user interaction as possible.

3.4.1 Framework

The Android OS have a powerful API that allows developers to use the mobile

device’s hardware capabilities and truly explore the features the mobile device

has to offer and innovate by combining existing technologies to achieve new goals,

making it perfect match for this research project.

Some of the API methods available allow the usage of some of the network ability

that these mobile devices enable. In this research project there are two main API

topics that are within the research interest, those topics are the WiFi and the

Network Service Discovery API.

The Network Service Discovery API that is available for development in the An-

droid Developers API allows the usage of some methods that enables a new area

of research for service discovery within a network, which will be taken into consid-

eration on the implementation of the mobile application for this research project.

Also the Android Developers API have certain methods that allow the creation

of listeners on some of the default network methods such as network discovery,

connection status, WiFi Direct methods and the usage of sockets to transfer data

over a network.

Chapter 3. Methods 38

The usage of the Android framework enabled the implementation of this mobile

application that allowed the achievement of the research project goals.

3.4.2 Implementation

The implementation of the mobile application can be divided into two different

modules, the application and the service module, as it was previously presented

in section 3.2.2.

These two modules have different purposes, although there are some similar actions

they both take such for example accessing the mobile device database for data

processing (display, store or transfer).

This section firstly describes the database schema and how it is implemented its

access, after it describes the connection between the mobile application and the

web service to feed information as a single source to the device, then it describes the

process of discovering a new service, analysing those discoveries, keeping track of

services available and afterward the process of sharing the data available between

the devices that require it.

3.4.2.1 Database schemas

The Android framework allows the creation of SQLite databases, which makes

possible the creation of a database on the mobile device to store all the information

that can be used afterward, such as news informations and user’s preferences.

The SQLite database management classes that Android provide can be used to

manage the application own private database, which is how the database for this

application was implemented.

Through the usage of the OpenHelper java class that extends the SQLiteOpen-

Helper it is possible to create a local private database by using its default construc-

tor with the application context, database name (p2pnews.db) and the database

version.

Chapter 3. Methods 39

The database version allows further upgrades on the database to add or remove

new tables and enable the adaptability stated in section 3.3.3.5. This upgrade and

adaptability can be implemented in the following method:

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

for(String cat : Categories.db){

db.execSQL("DROP TABLE IF EXISTS " + cat);

}

onCreate(db);

}

The override of the onCreate method of this class make possible the execution

of an SQL schema to create the tables for each category. Each table has the

same attributes as the ones that can be found in the web service’s response: title,

summary, url, published date and guid.

The schema that is executed to create the table of each news category can be seen

on the following source code:

@Override

public void onCreate(SQLiteDatabase db) {

for(String cat : Categories.db){

Log.d(TAG, "Creating table: " + cat);

db.execSQL("CREATE TABLE " + cat +

"(title TEXT, " +

"summary TEXT," +

"url TEXT," +

"published TEXT," +

"guid TEXT PRIMARY KEY" +

")");

}

}

Chapter 3. Methods 40

The implementation of these methods allow the creation of a local private database

that can store the information gathered from the web service regarding several

news categories and still keep separated a table for each category in order to

permit a future implementation of extra attributes more specific to each category.

3.4.2.2 Database access

Database access is an important component of the mobile application, as it is used

by both modules (application and service).

The main methods that the database access class have implemented are:

• Insert information about a single news;

• Retrieve a specific news information;

• Update information about a single news;

• Delete a single news from the database;

• Delete all the news from a category;

• Retrieve all the news from a category;

• Retrieve all news from a specific category after a given time;

• Retrieve the most recent news of a specific category.

The first four methods stated on the previous listing are required to enable the

database maintenance (CRUD) for operations like create a new entry, read the

information of a single entry, update any entry of the database and delete entries

when they are no longer needed or by user’s request.

Delete all the news from a category — On the preferences menu of the

application there is the option to delete every data that was previously stored

in the application database, for that option it was implemented a method that

deletes all the content stored in one or every category’s table in the database.

Chapter 3. Methods 41

public void deleteAll(String table_name) {

this.db.delete(table_name, null, null);

}

public void deleteAll() {

for(String cat : Categories.db){

this.db.delete(cat,null,null);

}

}

Retrieve all the news from a category — At the home screen of the application

the user can choose one from its favourite category to see all the news that are

currently stored in the device as a list, in order to display that list it is required

to retrieve from the database all the news data for a single category.

This can be done by executing the following SQL query and then iterate for each

entry to get all the column values:

Cursor cursor = this.db.query(table_name, null,

null, null, null, null, "published DESC");

if (cursor.moveToFirst()) {

do {

ArrayList<String> info = new ArrayList<String>();

for(int i = 0; i < cursor.getColumnNames().length; i++){

info.add(cursor.getString(i));

}

list.add(info);

} while (cursor.moveToNext());

}

Retrieve all news from a specific category after a given time — It retrieves

from the database all the news from a specific category that were published after a

Chapter 3. Methods 42

certain date and time. This feature is extremely helpful further in the data sharing

process as it can allow to only send the news that are more recent than the date

in the request that was received by the device.

The difference between this last feature with the previous one is that it should only

return the entries that have a published date more recent than the date passed as

argument. This can be achieved by changing the SQL query to the following:

this.db.query(table_name, null, "published > ?",

new String[] {String.valueOf(date)}, null, null, "published DESC");

Retrieve the most recent news of a specific category — This method

returns the information on the most recent news of a specific category. In order

to the mobile device send a request either to the web service or to another mobile

device working as a peer on the network it requires the date of the newest news

within the category it is searching for, so it can receive only the news that are

more recent than the ones it already has in the database.

In order to get the latest news from a category it is required that when executing

the SQL query the results should be in a descending order by its published date

and only the first result entry is needed. This can be achieved by the following

method invocation:

this.db.query(table_name, null,

null, null, null, null, "published DESC", "1");

It will only return one entry as stated on the last argument, afterward for metadata

purposes the date of that entry can be verified by analysing the corresponding

entry’s column.

All these methods are implemented in order to facilitate the mobile application’s

access to its own database and provide an easier way to acquire the information

needed to display, request and send information between the mobile devices or

even the web service (request only).

Chapter 3. Methods 43

3.4.2.3 Information gathering

The mobile application needs to gather information in order to display to the user

the news from the categories that have been previously set as interesting to him.

As stated previously there are two completely different ways on how the mobile

application can receive new information about the new categories that the user

defined as interesting. This means that there are two different implementations

when it comes to information gathering.

These two different ways to transfer the information to the mobile device can be

illustrated in the following figure:

Figure 3.3: The two different types of information gathering.

As it is possible to see by analysing the figure 3.3, the mobile application can

gather the information from the web service (see section 3.3) or from another

mobile devices that are within the local network and have the information it

requires.

Web Service Transfer — The more trivial one is the transfer type 1 that can

be seen in the figure 3.3, which requires an internet connection to make HTTP

Chapter 3. Methods 44

requests to the web service in order to download the news (from the chosen cate-

gories) from the server.

This type of requests are done by the service module (see figure 3.2) as soon as

the user has an internet connection, downloading the news as soon as possible.

In order to achieve this it was implemented by creating a listener called receiver

that listens to the mobile device connectivity changes. It is possible to declare this

listener on the Android’s manifest file (configuration file), this way the user when

installing also can have knowledge of what type of features are being used to give

some sense of security. The declaration in the manifest file is the following:

<receiver android:name="com.android.sync.NetworkStateReceiver">

<intent-filter>

<action android:name="android.net.conn.CONNECTIVITY_CHANGE" />

</intent-filter>

</receiver>

By analysing the changes of connectivity in order to find if the device has gain

access to an internet connection, it is possible to filter some types of connectivity

such as bluetooth, near field controller (NFC) and standard cell network.

Afterward, whenever the device gains internet connection, the device invokes the

service method called NewsRetriever which runs as an AsyncTask, allowing the

method to run on background without the user even noticing. This method can

be customised through the user preferences menu, where the user can decide the

interval period between server synchronisations and how further back the user

wants to acquire news information (one week, two weeks, one month or since

ever).

These preferences make the NewsRetriever method act differently in order to pro-

ceed with the most appropriate request type. If the user prefers to acquire all the

information about the news of its favourite categories that exist on the server the

method will create a HTTP GET request to the following URI:

Chapter 3. Methods 45

URL uri = new URL("http://newsfeeder.herokuapp.com/"+

Categories.codeNames.get(category_index)+".json");

On the other hand if the user only wants the news after a certain period of time,

it gets the date of the latest news in the database, if that date is previous than

the user’s preference then it uses a method that was implemented called weekAGo

that calculates the date of x weeks ago, where the x is the user’s preference and

is passed as an argument to the method.

String latest = sdf.format(weekAGo(week)).toString();

URL uri = new URL("http://newsfeeder.herokuapp.com/request/"+

(category_index)+"/’"+ latest +"’.json");

After the HTTP GET request has been done the web service will reply with

a JSON response (see section 3.3.3.4). This response is parsed by getting the

JSON Object response that contains an JSON Array with all the news requested.

Afterward the JSON Array is parsed into an ArrayList that contains all the news

information which are inserted into the database as a transaction which keeps

the connection to the database open when inserting the news, by inserting as

a transaction it is possible to reduce significantly the amount of time spent on

this task as it does not lose time on creating and destroying connections to the

database.

This way all the information requested is transferred from the web service to the

mobile device and stored in the local database, completing the transfer type 1 (see

figure 3.3).

Peer-to-Peer Transfer — This type of transfer is done by sharing information

between mobile devices that are located within the same network.

Chapter 3. Methods 46

Figure 3.4: Mobile devices sharing within a LAN Network.

In figure 3.4 it is possible to observe that sharing does not occur among all the

devices, this is because the devices can only share their available information, so

transfers can only occur with devices that have matching chosen news categories.

Although, the devices can only send requests and data after they gain awareness

that other devices that provide the same service are in the same network. This

can be achieved through the process publishing a service over the network and dis-

covery the published services that provide the same service. The implementation

of the service publish and discovery are described in the next section.

Due to the complexity of this type of transfer, it will be described more thoroughly

over the next four sections.

3.4.2.4 Service discovery

The service discovery is one of the most important steps on mobile peer-to-peer

networking, because in order to initiate any interaction among peers it is required

that one peer acknowledge the existence of the other.

A service in order to be discovered, first needs to be register its own service across

the network so other devices may discover it. This will allow other devices to verify

Chapter 3. Methods 47

that there are other services on the network and after resolving their metadata it

can be analysed and check what kind of service is being provided.

In the Android application it takes advantage of the same listener to connectivity

changes so the service module (see figure 3.2) can start running on the background

whenever the mobile device connects to a network.

The service module after starting, it registers a service across the network with all

the metadata of the P2PNews service which will turn possible the discovery from

other mobile devices that such service is being provided.

The registration of the service across the network can be customised by changing

some metadata such as name, protocol, transport layer, port and register a listener

to handle possible outcomes such as registration or unregistration success or failure.

An example of the configuration of a service before its registration across the

network can be given by the following code snippet:

public void registerService(int port) {

NsdServiceInfo serviceInfo = new NsdServiceInfo();

serviceInfo.setPort(port);

serviceInfo.setServiceName("P2PNews-Service");

serviceInfo.setServiceType("_http._tcp.");

mNsdManager.registerService(

serviceInfo, NsdManager.PROTOCOL_DNS_SD, mRegistrationListener);

}

The previous code registers a service called P2PNews-Service that uses an HTTP

protocol over a TCP transport layer and registers using the DNS service discovery

protocol.

After registering the service across the network it becomes available to every device

that searches for services that have been register on the network. Therefore the

next step is to create the service discovery which will allow the awareness of other

peers within the network.

Chapter 3. Methods 48

In order to start a service discovery it is necessary to implement listeners and

then to invoke the network service discovery (NSD) Android’s API. This way the

listeners that have been implemented can receive updates on the Android’s service

findings.

The two main methods that are implemented on the Android’s network service

discovery listener are the onServiceFound and onServiceLost. These two methods

are invoked every time the Android’s service discovery framework finds and loses

a service on the network. Therefore it is needed to keep track of all the services

that have been currently found on the network and have not been lost yet. This

process is done as the following method:

@Override

public void onServiceFound(NsdServiceInfo service) {

Log.d(TAG, "Service discovery success" + service);

if (!service.getServiceType().equals(SERVICE_TYPE)) {

Log.d(TAG, "Unknown Service Type: " + service.getServiceType());

}

else if (!service.getServiceName().contains("P2PNews")) {

Log.d(TAG, "Not the service I am looking for:" + mServiceName);

}

else{

Log.d(TAG,"Trying to resolve service: " + service.getServiceName());

mNsdManager.resolveService(service, mResolveListener);

}

}

As we can see by analysing the code above, after finding a service with the charac-

teristics we were searching for it is required to resolve the service in order to get a

valid ip address so it can be connected afterward. For a further in depth analysis

on how this was implemented see section 3.4.2.5.

Chapter 3. Methods 49

On the other hand whenever a service is lost the service must be aware and remove

that service from the list of services available on the network. A service lost can

be invoked if the other device has disconnected from the network, unregistered its

service or even because of some Android internal errors that causes unexpected

service loss.

Therefore the listener for the service lost method can be implemented as the fol-

lowing:

@Override

public void onServiceLost(NsdServiceInfo service) {

Log.e(TAG, "service lost" + service);

Log.d(TAG, "Removing the service: " + service.getServiceName());

for(int i=0; i<mServiceList.size(); i++){

if(mServiceList.get(i).getServiceName().

compareToIgnoreCase(service.getServiceName())==0){

Log.d(TAG, "Removing service: " + mServiceList.get(i));

mServiceList.remove(i);

break;

}

}

}

This implementation removes the service from the available services list after it

has been lost, which will prevent in the future to send requests when there are no

services available in the network.

By keeping track of the services available on the current network it is important

as it keeps the device from making request unnecessarily and prevent devices from

flooding the network with requests that are never going to be answer.

With this it is possible to keep a good awareness of the mobile devices within the

network that provide the same service and afterward initialise interaction between

Chapter 3. Methods 50

them, but before it is required that the Android framework resolve the services so

it can get a valid IP address that can be used for further interaction.

3.4.2.5 Service Analysis

Once a network service has been discovered it is necessary to wait for the Android

system to resolve the service’s IP address in order to allow future connections to

the device broadcasting that specific service.

Afterward it is required to check if the service that is being providing the type of

service it is expected and then check if the service found is not an echo of our own

published service.

This can be done by analysing the IP address of the service, after it has been

resolved, and check if it is the same as the device that is searching. Furthermore

it is also required to check if the service has already been registered in the device’s

system and if it is an echo from another device that has been previously found.

Both of these checks can be verified by the following source code on the onSer-

viceResolved listener:

Log.e(TAG, "Resolve Succeeded. " + serviceInfo);

if(serviceInfo.getHost().getHostAddress()

.compareToIgnoreCase(Protocol.getIPAddress(true))==0){

Log.d(TAG, "This is my own service.");

return;

}

for(NsdServiceInfo nsdInfo : mServiceList){

if(serviceInfo.getHost().getHostAddress()

.compareToIgnoreCase(Protocol.getIPAddress(true))==0){

Log.d(TAG,"Already on the list.");

return;

Chapter 3. Methods 51

}

}

/**

* New service has been found

*/

Log.d(TAG, "Adding the service: " + serviceInfo.getHost().getHostAddress());

mServiceList.add(serviceInfo);

After the service has been added to the list that keeps track of all the services that

provide the expected service over the network, it is required to send a request to

that service’s device in order to discover if it has any data that would be useful to

the sender.

These requests are the method to keep track of the information that exist over the

network. This way devices get awareness of not only the devices that exist over

the network that are providing the same service but also all the information that

the other devices have.

3.4.2.6 Data requests

As a way to gain awareness of the information that other devices over the network

have, each device can send data requests through a control channel using a Multi-

Cast Socket that every peer that provide the service starts listening as soon as it

is aware of other devices on the network.

This approach avoid one device having to make multiple requests if there are

several peers on the network and it requires new information.

Chapter 3. Methods 52

Figure 3.5: Example of a data request being sent.

The figure 3.5 shows that the request sent by the device (New request) is received

by all the other devices within the network that are listening to the MultiCast

Socket as the control channel.

Each request sent through the control channel has some metadata that allows the

receiving devices to check for the information requested and if it exists, sends the

data to the request sender.

In order to keep track of the requests that are sent over the network, each request

has its own unique identification string that is created by the combination of the

Android ID and the number of milliseconds since the 1st January 1970.

Every request have the following structure:

Search <unique_id> <num_categories> <category> <last_date> ...

<ip_address> <port>

As it is possible to see the requests contain the list of categories and the date of

the last information gathered on it, so it is not necessary to send multiple requests

if the device has several categories.

Search cff7efaca91dccaa-1376151971277 6 Art 2013-08-10T16:14:58Z

Chapter 3. Methods 53

Business 2013-08-08T12:50:52Z Entertainment 2013-08-10T16:15:01Z

Politic 2013-08-08T12:50:55Z Technology 2013-08-08T12:50:57Z

Travel 2013-08-08T13:05:53Z 192.168.1.5 8000

After other peers connected to the network receive a request, the devices will send

to the request sender the information they have that is useful for such request.

3.4.2.7 Data sharing

Upon receiving a new data request the device promptly accesses the database by

invoking a method to check the date of the latest information on each category

(see section 3.4.2.2) that appears on the request.

Once the device compared all the database dates with the dates on the request it

creates a queue with all the categories that are required to send and the dates of

the oldest information that is necessary.

The device executes a background process by using an AsyncTask for each category

in the queue and sends over a socket (data channel) a JSON object containing the

data request for that specific category.

This process includes accessing the database to get all the news that are prior to

the date sent on the request:

ArrayList<ArrayList<String>> news = dh.selectAllNewer(category,latest);

And afterward it is required to create a JSON object that contains a JSON array

with all the news entries that are returned by the method above. In order to create

this JSON object, it is used the org.json library that allows the construction of a

JSON object by invoking the following methods:

JSONObject sendJSON = new JSONObject();

sendJSON.put("error","none.");

Chapter 3. Methods 54

sendJSON.put("database",category);

JSONArray arr = new JSONArray();

int index = 0;

for(ArrayList<String> obj : news){

JSONObject each = new JSONObject();

each.put("name",obj.get(0));

each.put("summary",obj.get(1));

each.put("url",obj.get(2));

each.put("published_at",obj.get(3));

each.put("updated_at",obj.get(3));

each.put("guid",obj.get(4));

arr.put(each);

}

sendJSON.put("response",arr);

At the end of having the JSON object with all the information regarding a specific

category the mobile device creates a socket connecting to the ip and port of the

data request and sends the information.

Figure 3.6: Data transfer to the request sender.

Chapter 3. Methods 55

On the figure 3.6 two of the devices on the network have the same categories as

their favourite and have all or part of the information requested by the initial peer,

sending to it that data.

The mobile device when receiving the information analyses the data and stores

to the corresponding table on the database. If it receives data that had been

previously received this information is not stored on the database as it has the

same ids of the previous data.

Upon receiving new information, either from the server or from another peer, the

device sends through the control channel an update broadcast so that other devices

on the network are aware of the new data available on that specific peer.

Update <category> <latest date>

This way it is possible to keep track of all the information that exists on the

network and as soon as new data becomes available it can be distributed over the

network to devices that require such information.

Chapter 3. Methods 56

3.5 Graphical User Interface

This section is dedicated to the graphical user interface (GUI) of the mobile ap-

plication that had some requirements from the start, where it should be appealing

to the daily user and should keep user completely unaware of the more technical

concepts behind it.

In order to create a logo that could transmit the feeling of sharing and building

something while still giving it a technological aspect, the application logo is the

following:

Figure 3.7: Mobile device application logo.

The mobile application should also be intuitive and easy to use and personalise.

Taking advantage of the Android UI design principles[33] to produce an GUI

with a small learning curve. At the beginning the user is requested to go to the

application settings to add to the home screen its favourites categories.

Chapter 3. Methods 57

Figure 3.8: Initial home screen.

In the settings menu the user can personalise the application to fit his needs, by

turning on and off the peer-to-peer sharing and therefore still use the application

as a news reader in case the user does not want to share any data. Other settings

can be set as well, such as syncing frequency and how far back in time the user

wants to receive news information.

Chapter 3. Methods 58

Figure 3.9: Settings menu.

As it is possible to see in the figure 3.9, in this menu the user can determine which

news category are relevant to him.

After adding the relevant categories they will be added to the home screen, creating

an easy to use interface to navigate through the categories (figure 3.10).

Chapter 3. Methods 59

Figure 3.10: Home screen with categories.

Once the categories are added the mobile application service starts searching for

news information of those categories as well, sending requests if there are any peers

on the network to synchronise the information as soon as possible or download from

the internet if connected.

After the mobile device receives the data for any of the categories the user can

simply click on the category slot and it will display an UI that contains a list with

all the news that have been transferred previously to the device (figure 3.11).

Chapter 3. Methods 60

Figure 3.11: List of news of a category.

This way the user have quick access to all the news of one specific category and

can read them as he browses them.

Furthermore, by clicking on the Android’s settings button the user can select to

synchronise the news at that moment if connected to the internet (figure 3.12).

Figure 3.12: Synchronisation button.

Chapter 4

Evaluation

In order to analyse the feasibility of such system it was decided to take four metrics

to study the impact of such architecture on the mobile device and to check if it

fits the environment it is inserted on.

The metrics chosen for evaluation of the system were the rate of success transfers

among peers that have the requested data, the transfer time and speed between

the devices on a LAN network and the impact of the application and service on

the device’s battery consumption.

To evaluate the system the devices used during the experiments were an ASUS

Nexus 7 and a LG Nexus 4, both devices developed closely with Google, developer

of the Android OS.

4.1 Transfer Analysis

In this section it will be explained how the transfer analysis were implemented in

order to produce results to be studied afterward.

With the purpose of analysing the rate of success transfer, the time and speed of

each transfer it has been implemented an AnalysisTest class that can reproduce

testing scenarios and log the outcome.

61

Chapter 4. Evaluation 62

This class runs on background in order to reproduce a normal usage environment

and do not interfere with the user’s interaction with the device so it can work as

well without any user awareness.

4.1.1 Procedure

In order to create a testing environment there are some variables that are needed

to be reproduced. In the environment it is required to exist at least two devices

and from time to time one device must send a request and wait to receive the data

from the other device.

This experiment was reproduced two hundred times with requests being sent every

thirty seconds and it was measured the number of bytes transferred through the

data channel as well as the time elapsed between when the request was sent and

all the data requested was received, finishing a “request cycle”.

The first step to each experiment is to delete all the data stored in the database

previously so the device has no prior data and can always ask the same data to

another peer. Afterward the device executes a data request and waits for thirty

seconds to start another experiment.

int i = 0;

int num_Of_Experiment = 100;

while(i<num_Of_Experiment){

Log.d("TestEnvironment","Trial number: "+i);

try{

//Delete all the stored data

DataHelper dh = new DataHelper(mContext);

dh.deleteAll();

dh.close();

//Send a new data request

new SyncManager(mContext).executeOffline();

Chapter 4. Evaluation 63

//Wait 30 seconds until new trial

Thread.sleep(30000);

}

catch(InterruptedException ie){

Log.e("TestEnvironment", ie.getMessage());

}

i++;

}

The executeOffline method and the background process to receive data through

the data channel were modified in order to create a log file to save each one of the

actions with a timestamp of the exact moment.

Calendar calendar = new GregorianCalendar(TimeZone.getTimeZone("GMT"));

//BufferedWriter for performance, true to set append to file flag

BufferedWriter buf = new BufferedWriter(new FileWriter(logFile, true));

buf.append(calendar.get(Calendar.HOUR)+":"+calendar.get(Calendar.MINUTE)+

":"+calendar.get(Calendar.SECOND)+":"

+calendar.get(Calendar.MILLISECOND)+"|"+text);

buf.newLine();

buf.close();

An example of the output of a single experiment to the log file is:

2:49:47:973|Search 8c20fff20c0be722-1376318987819 1 Business

2013-07-29T15:49:47 192.168.1.3 8000

2:49:52:990|Received data for: Business

2:49:53:123|Size: 1159519 Bytes.

By running this procedure it is possible to reproduce data to be further analysed

to check the success rate, mean time and speed for the data transfers.

Chapter 4. Evaluation 64

Although, due to the length of the log file it was necessary to create a script that

could analyse the output and calculate the results. This script was created using

the script programming language Python which is a powerful and fast language

that allows quick prototyping and data analysis[34].

The Python script analyses every line of the log file and gathers all the data of each

experiment and while it is gathering all the information also searches for outputs

that are not complete, meaning that there was an error during the transfer and it

was completed.

This is done by analysing every single line and storing the timestamp along with

the first word on the metadata (search, received and size), if for some reason the

following sequence pattern does not occur it registers the error:

Search -> Received -> Size

After the file has been analysed through the Python script it is possible to check

how many transfers were successful and how many failed.

Once the information of each successful experiment has been gathered it is possible

to compare the timestamps in order to get the time elapsed for each experiment

and calculate a mean of them all. Since the size information is also available it is

also possible to analyse the transfer speed between the two peers.

In the two hundred experiments run the success rate was 93.5%, which means that

only 6.5% of the transfers did not complete successfully.

The results regarding this analysis can be displayed in the following chart:

Chapter 4. Evaluation 65

Figure 4.1: Transfer success rate chart.

Then by analysing the subset of successful transfer cycles it is possible to get the

elapsed time for each one of the 187 experiments. The average elapsed time for

these 187 experiments is 4,79 seconds.

The following chart demonstrates the time elapsed for every experiment and can

be compared with the average time line.

Figure 4.2: Average transfer cycle time.

As it is possible to verify by analysing the chart on the figure 4.2 that even though

there are in a very few cases a big delay on the transferring time, almost every

Chapter 4. Evaluation 66

time it keeps under 6 seconds which means that even on a unstable environment

the results have a small deviation.

Figure 4.3: Approximate transfer cycle time.

By rounding the time of the transfer cycles to 1 decimal place it is possible to

gather some of the results together to display a clean view of the outcome in the

figure 4.3.

The last metric used to analyse the transfer cycles is the transfer speed (kb/s)

which can be calculated by the following formula:

speed =
num bytes

time elapsed ∗ 1024

The Python script was used to calculate the speed per experiment and then cal-

culate the average of all the experiments.

Chapter 4. Evaluation 67

Figure 4.4: Transfer cycle speed.

The average speed achieved with the 187 experiments for a transfer cycle is

238kb/s. In the figure 4.4 it is also possible to see that on the experiment number

138 the speed of the transfer achieves its minimum with 95kb/s, taking around 11

seconds to complete the transfer cycle.

4.2 Battery Consumption Analysis

In order to analyse the battery consumption there are three scenarios that can be

compared, when the service is being run on the background of the device and from

time to time it finds new services and transfer data between the peers simulating

a normal usage environment, the normal device without the service running but

with WiFi turned on and for last the device with no WiFi radio usage.

The service was running for two hours and every time an action was taken it

would analyse the battery level and log it into a file. The battery percentage was

calculated by using the Android’s available API to do so:

IntentFilter ifilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);

Intent batteryStatus = mContext.registerReceiver(null, ifilter);

int level = batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);

Chapter 4. Evaluation 68

int scale = batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1);

float batteryPct = (level / (float)scale)*100;

Protocol.appendLog("Battery: " + batteryPct);

After the trial run is complete the log file can be analysed through a Python script

to transform the raw data into a comma separated value (.csv) file to be able to

later reproduce a chart with the battery usage for both scenarios.

Every trial run was made with the device screen on at its lowest brightness without

any user interaction.

Having done the three trial runs the chart obtained by processing the log raw data

it was the following:

Figure 4.5: Battery consumption at each experiment.

As it is possible to see in the figure 4.5 the battery usage for when using the

service is fairly similar to when the device has the WiFi radio on and have no

service related tasks. Surprisingly, the device’s energy consumption when not

using the WiFi radio was also similar to the other two.

This proves that by using the service implemented the battery consumption is not

deeply affected, which means that the service itself does not have a big impact on

the mobile device’s normal battery usage.

Chapter 5

Discussion

The evaluation shown in the chapter 4 can demonstrate a successful implemen-

tation of the concept proposed in this research project. This proves that using

peer-to-peer networking to share social data between mobile devices can be imple-

mented using the constrains chosen for this project.

During the development of this research project there were several paths that

could be taken and in this chapter they will be explained and how that affected the

outcome. Such architecture can be implemented in the three different technologies

the mobile devices have to transfer information among other peers: Bluetooth,

WiFi and WiFi Direct.

The Bluetooth is a low power radio, which would mean a lower battery con-

sumption but on the other hand it would also decrease substantially the radius

for finding peers as well as the transfer rate is much smaller than the other two

available.

Due to the reason stated above, the only two viable choices were the WiFi and

the WiFi Direct. Both of these technologies use the same radio, meaning that

the power consumption is roughly the same as it inherits all the power saving and

quality of service that has been developed for WiFi infrastructure mode over the

years[35].

69

Chapter 5. Discussion 70

Prior research on WiFi Direct performance shows that the current technology

is unstable on its implementation on Android, mainly on discovering peers and

successfully connecting to them[36]. Such instability can be also seen by several

topics on highly regarded forums such as the open source Google groups for the

Android platform[37].

Concerning that one of the main goals of this project is to turn possible peer-

to-peer social data sharing without any user interaction, the WiFi Direct at its

currently implementation (Android 4.2.2) makes it necessary that the user ac-

cept all incoming connections. This is another problem that has been researched,

discussed and due to currently security issues there is no work around for such

interaction.

A WiFi Direct implementation was made using the framework presented in this

research project but only to discover the drawbacks stated above.

These reasons make it impossible to use WiFi Direct to implement this architecture

in order to analyse its true impact on the mobile environment with the goals

initially set to this project.

Even though the WiFi implementation have the constrain that users must be

connected to the same network, the framework implemented can be used as a base

for future implementation on a WiFi Direct infrastructure when it becomes more

stable.

Due to the technical similarities between WiFi and WiFi Direct (except peer con-

nection) the results can be also taken in consideration for a future implementation

on WiFi Direct.

As the results show, due to the advances in the hardware of the mobile devices

available peer-to-peer data sharing is a possibility and can be used for several

purposes without having a great impact on the mobile device battery consumption

comparing to when having WiFi turned on.

Chapter 6

Conclusion

The main goal of this research project was to verify the possibility to use the

mobile devices capabilities to create a framework that allows peer-to-peer data

sharing across a network with peer discovery and no user interaction.

Following the methods presented on chapter 3 it was possible to implement a

framework to discover peers across a network and keep track of them. Further-

more the framework implemented allows the device to acknowledge all the existing

information across the local network and request data from others peers when nec-

essary.

This meaning that all the goals set to this research project were successfully

achieved through the implementation of a web service to provide information about

all the news categories as a single source and the development of a mobile appli-

cation to allow the devices to share information across the network without any

user interaction prior or during the process.

It is possible to conclude from the results demonstrated on the chapter 4 that

this implementation allow a steady method, having in mind the mobile network

instability, to share information with a high rate of success without having a great

impact on the device’s battery consumption.

71

Chapter 6. Conclusion 72

The successful implementation of the work presented in this research project allows

it to be used as reference to future projects regarding the same topic using other

technologies for comparison.

Chapter 7

Future Work

Regarding social data sharing using peer-to-peer networks there are a lot of further

concepts and implementations that could be achieved by changing the metadata

provided with each news. An example is the possibility to also share the number

of people across the network that liked a certain news, comments on some news

by other peers and much more.

Through the usage of metadata on social data sharing it is also possible to gather

demographic information and analyse the behaviour of a social network in several

ways, such as preferences, influence a social network has on each individual and

others.

Although this research project designed and implemented a method to share in-

formation across a network using mobile devices as peers with capability to ac-

knowledge each others through service discovery, there is still a lot to research on

this field as the technologies improve.

73

Appendix A

WS News Management

In order to allow content management through a web browser, the following meth-

ods were implemented:

GET /arts/new

GET /arts/new.json

def new

@art = Art.new

respond_to do |format|

format.html # new.html.erb

format.json { render :json => @art }

end

end

GET /arts/1/edit

def edit

@art = Art.find(params[:id])

end

POST /arts

75

Appendix A. WS News Management 76

POST /arts.json

def create

@art = Art.new(params[:art])

respond_to do |format|

if @art.save

format.html { redirect_to @art, :notice =>

’Art was successfully created.’ }

format.json { render :json => @art, :status =>

:created, :location => @art }

else

format.html { render :action => "new" }

format.json { render :json => @art.errors, :status =>

:unprocessable_entity }

end

end

end

PUT /arts/1

PUT /arts/1.json

def update

@art = Art.find(params[:id])

respond_to do |format|

if @art.update_attributes(params[:art])

format.html { redirect_to @art, :notice =>

’Art was successfully updated.’ }

format.json { head :no_content }

else

format.html { render :action => "edit" }

format.json { render :json => @art.errors, :status =>

Appendix A. WS News Management 77

:unprocessable_entity }

end

end

end

DELETE /arts/1

DELETE /arts/1.json

def destroy

@art = Art.find(params[:id])

@art.destroy

respond_to do |format|

format.html { redirect_to arts_url }

format.json { head :no_content }

end

end

end

Bibliography

[1] The Nielsen Company. The social media report, state of the media: 2012.

Technical report, NM Incite, 2012. URL http://www.targetspot.com/

wp-content/uploads/2012/12/The-Social-Media-Report-2012.pdf.

[Accessed April 3, 2013].

[2] International Data Corporation. IDC Worldwide mobile phone tracker,

February 2013. URL http://www.idc.com/getdoc.jsp?containerId=

prUS23946013#.UWCkuKt4ZAj. [Accessed April 3, 2013].

[3] Android developers. About Android, 2012. URL http://developer.

android.com/about/index.html. [Accessed April 4, 2013].

[4] Fumiyuki Adachi. Wireless past and future–evolving mobile communications

systems–. IEICE transactions on fundamentals of electronics, communica-

tions and computer sciences, 84(1):55–60, 2001.

[5] KH Gamble. Wireless tech trends 2010. trend: smartphones. Healthcare infor-

matics: the business magazine for information and communication systems,

27(2):24–26, 2010.

[6] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution

of online social networks. In Link Mining: Models, Algorithms, and Applica-

tions, pages 337–357. ISBN 1441965149.

[7] Mehedi Bakht et al. United we find: enabling mobile devices to cooperate

for efficient neighbor discovery. In Proceedings of the Twelfth Workshop on

Mobile Computing Systems & Applications, page 11. ACM, 2012.

79

http://www.targetspot.com/wp-content/uploads/2012/12/The-Social-Media-Report-2012.pdf
http://www.targetspot.com/wp-content/uploads/2012/12/The-Social-Media-Report-2012.pdf
http://www.idc.com/getdoc.jsp?containerId=prUS23946013#.UWCkuKt4ZAj
http://www.idc.com/getdoc.jsp?containerId=prUS23946013#.UWCkuKt4ZAj
http://developer.android.com/about/index.html
http://developer.android.com/about/index.html

Bibliography 80

[8] Mehedi Bakht, Matt Trower, and Robin Kravets. Searchlight: helping mobile

devices find their neighbors. In Proceedings of the 3rd ACM SOSP Work-

shop on Networking, Systems, and Applications on Mobile Handhelds, page 9.

ACM, 2011.

[9] Daniel H Steinberg and Stuart Cheshire. Zero configuration networking: The

definitive guide. O’Reilly, 2010. ISBN 9780596101008.

[10] Se Gi Hong, Suman Srinivasan, and Henning Schulzrinne. Accelerating service

discovery in ad-hoc zero configuration networking. In Global Telecommunica-

tions Conference, 2007. GLOBECOM’07. IEEE, pages 961–965. IEEE, 2007.

[11] Stuart Cheshire and Marc Krochmal. Dns-based service discovery. Work in

Progress, 2011.

[12] Stuart Cheshire and Marc Krochmal. Multicast dns. Internet Engineering

Task Force, 2011.

[13] Arthur van Hoff. Java implementation of Multicast DNS. URL http://

jmdns.sourceforge.net/. [Accessed April 15, 2013].

[14] Rüdiger Schollmeier. A definition of peer-to-peer networking for the classifi-

cation of peer-to-peer architectures and applications. In Peer-to-Peer Com-

puting, 2001. Proceedings. First International Conference on, pages 101–102.

IEEE, 2001.

[15] Android developers. Android technical information. Android Open Source

Project, 2010. URL http://source.android.com/tech/index.html. [Ac-

cessed April 4, 2013].

[16] Ed Burnette. Hello, Android: Introducing Google’s Mobile Development Plat-

form. Pragmatic Bookshelf, 2nd edition, 2009. ISBN 1934356492.

[17] Android developers. Get the Android SDK, 2010. URL http://source.

android.com/tech/index.html. [Accessed April 4, 2013].

http://jmdns.sourceforge.net/
http://jmdns.sourceforge.net/
http://source.android.com/tech/index.html
http://source.android.com/tech/index.html
http://source.android.com/tech/index.html

Bibliography 81

[18] Bluetooth SIG. A look at the basics of Bluetooth wireless technology, 2013.

URL http://www.bluetooth.com/Pages/basics.aspx. [Accessed April 4,

2013].

[19] Bluetooth SIG. Fast facts - Bluetooth SIG, 2013. URL http://www.

bluetooth.com/Pages/Fast-Facts.aspx. [Accessed April 4, 2013].

[20] Wi Fi Alliance. Wi-Fi Direct, 2013. URL http://www.wi-fi.org/

discover-and-learn/wi-fi-direct. [Accessed April 5, 2013].

[21] Sang Shin. Introduction to JSON (JavaScript Object Notation). Presentation

www.javapassion.com, 2010.

[22] Alex Rodriguez. Restful web services: The basics. Online article in IBM

DeveloperWorks Technical Library, 36, 2008.

[23] Yukihiro Matsumoto. Ruby Programming Language, 2013. URL http:

//www.linuxdevcenter.com/pub/a/linux/2001/10/25/ruby.html. [Ac-

cessed April 6, 2013].

[24] Colin Steele. An introduction to Ruby, 2001. URL http://www.

linuxdevcenter.com/pub/a/linux/2001/10/25/ruby.html. [Accessed

April 6, 2013].

[25] Viswa Viswanathan. Rapid web application development: a ruby on rails

tutorial. Software, IEEE, 25(6):98–106, 2008.

[26] Atif Aziz and Scott Mitchell. An Introduction to JavaScript Object Notation

(JSON) in JavaScript and .NET, 2007. URL http://msdn.microsoft.com/

en-us/library/bb299886.aspx. [Accessed April 6, 2013].

[27] International Data Corporation. IDC Worldwide mobile phone tracker,

May 2013. URL http://www.idc.com/getdoc.jsp?containerId=

prUS24108913. [Accessed July 28, 2013].

[28] Ryan Bigg et al. Configuring Rails Applications, 2013. URL http://guides.

rubyonrails.org/configuring.html#configuring-a-database. [Ac-

cessed July 29, 2013].

http://www.bluetooth.com/Pages/basics.aspx
http://www.bluetooth.com/Pages/Fast-Facts.aspx
http://www.bluetooth.com/Pages/Fast-Facts.aspx
http://www.wi-fi.org/discover-and-learn/wi-fi-direct
http://www.wi-fi.org/discover-and-learn/wi-fi-direct
http://www.linuxdevcenter.com/pub/a/linux/2001/10/25/ruby.html
http://www.linuxdevcenter.com/pub/a/linux/2001/10/25/ruby.html
http://www.linuxdevcenter.com/pub/a/linux/2001/10/25/ruby.html
http://www.linuxdevcenter.com/pub/a/linux/2001/10/25/ruby.html
http://msdn.microsoft.com/en-us/library/bb299886.aspx
http://msdn.microsoft.com/en-us/library/bb299886.aspx
http://www.idc.com/getdoc.jsp?containerId=prUS24108913
http://www.idc.com/getdoc.jsp?containerId=prUS24108913
http://guides.rubyonrails.org/configuring.html#configuring-a-database
http://guides.rubyonrails.org/configuring.html#configuring-a-database

Bibliography 82

[29] Heroku Inc. Heroku — Cloud Application Platform, 2013. URL https:

//www.heroku.com/. [Accessed August 2, 2013].

[30] New Relic Inc. Application Performance Management & Monitoring — New

Relic, 2013. URL http://www.newrelic.com/. [Accessed August 2, 2013].

[31] John Mettraux. Rufus—Scheduler gem library, 2013. URL https://github.

com/jmettraux/rufus-scheduler. [Accessed May 8, 2013].

[32] Paul Dix. Feedzirra gem library, 2013. URL https://github.com/pauldix/

feedzirra. [Accessed May 9, 2013].

[33] Android developers. Android design principles, 2013. URL http:

//developer.android.com/design/get-started/principles.html. [Ac-

cessed June 21, 2013].

[34] Python Software Foundation. Python programming language, 2013. URL

http://www.python.org/about/. [Accessed August 7, 2013].

[35] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano. Device to

device communications with wifi direct: overview and experimentation. IEEE

Wireless Communications Magazine, 2012.

[36] Hugo Negrette Otaola and Miguel Sosa. Using multiple transport networks

in netinf enabled android devices. Master’s thesis, KTH, 2012.

[37] Android Software Developers. WiFi Direct questions, 2013. URL http:

//goo.gl/RwfZxS. [Accessed August 13, 2013].

https://www.heroku.com/
https://www.heroku.com/
http://www.newrelic.com/
https://github.com/jmettraux/rufus-scheduler
https://github.com/jmettraux/rufus-scheduler
https://github.com/pauldix/feedzirra
https://github.com/pauldix/feedzirra
http://developer.android.com/design/get-started/principles.html
http://developer.android.com/design/get-started/principles.html
http://www.python.org/about/
http://goo.gl/RwfZxS
http://goo.gl/RwfZxS

