
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Implementation of a Knowledge Discovery
and Enhancement Module from structured

information gained from unstructured sources
of information

Celso Ricardo Costa

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rui Ferreira da Silva, PhD

26th July 2010

Implementation of a Knowledge Discovery and Enhancement Module
from structured information gained from unstructured sources of
information

Celso Ricardo Martins Maia Costa

Mestrado Integrado em Engenharia Informática e Computação

Aprovado em provas públicas pelo Júri:

Presidente: Jaime Cardoso (Assistant Professor)

Vogal Externo: José Luis Oliveira (Associated Professor)

Orientador: Rui Carlos Camacho de Sousa Ferreira da Silva (Associated Professor)

__

26 de Julho de 2010

Resumo

O conhecimento é um dos maiores diferenciadores entre empresas, é essencial para criar
uma vantagem competitiva sobre a concorrência. O acesso ao conhecimento hoje em dia não é
restringido por limitações físicas. Toda a informação está a um clique de distância, mas sistemas
modernos proporcionam fraco acesso a informação, especialmente se não existirem ferramentas
correctas para a localizar e processar. Como parte de um desafio global para desenhar e criar
uma arquitectura foi implementada uma prova de conceito de um Sistema de Gestão de
Conhecimento, com o apoio de Processamento de Linguagem Natural e informação semântica,
seguindo uma filosofia de “Open Innovation”. Esta dissertação descreve toda a pesquisa e todo
o sistema desenvolvido. O sistema é uma prova de conceito de um método para gerar uma
representação semântica de um documento, melhorar o volume de informação actual e
respectiva qualidade recorrendo a dados externos e metadados para aumentar a base de
conhecimento existente.

Com a expansão da web semântica, uma rede de dados com um significado definido,
transversal a vários domínios, permite aos computadores e utilizadores trabalhar em cooperação
para gerar novas possibilidades de representar e integrar o conhecimento emergente.

A análise sintáctica e semântica dos documentos, origina uma representação do
conhecimento, numa estrutura taxonómica Quando combinadas com ferramentas de anotação de
metadados, que podem expor informações semânticas novas, escondidas noo conteúdo e
conectar com outros dados relacionados, o volume de dados e a qualidade é muito superior.

Ao explorar a estrutura da taxonomia, mecanismos de inferência e consulta, a informação
contida na rede é muito superior à existente nos documentos; relações novas são reveladas.

i

Abstract

Knowledge is the largest differentiator between companies and essential to create a
competitive advantage over competitors. Nowadays access to knowledge is not hindered by
physical limitations; all information is a click away, still modern systems provide poor
information distribution, especially if there are no proper tools to locate and process.

As part of a global challenge to conceptualize, design and implement a proof of concept
Knowledge Management System, with the support of Natural Language Processing and
semantic information, following a philosophy of "Open Innovation". This dissertation focuses
on all the research and the system it originates. The system is a proof of concept of a method for
generating a semantic representation of a document; enhance the volume of current information
and their quality, using external data and metadata to improve the existing knowledge base.

With the raise of the semantic web, a web of data with defined meaning, transverse to
multiple domains, enable computers and users to work in cooperation to generate new
possibilities to represent and integrate knowledge.

The syntactical and semantic analyses of the documents lead to a knowledge
representation, a taxonomical structure. When combined with metadata annotation tools, which
can expose new semantic information, hidden in any content and connect to related data, the
data volume and quality is greatly increased.

By exploring the taxonomy structure, inference and query engines, the network
information is vastly superior to the original document knowledge; new relations are revealed.

ii

Acknowledgments

Those who provided know their importance.

iii

Index

1 Introduction... 1
1.1 The Context.. 1

1.2 Retail Business... 2

1.3 Wipro Retail... 2

1.4 Motivation.. 2

1.5 Problem Description and Objectives.. 3

1.6 Dissertation Structure... 5

2 Relevant Technologies... 6
2.1 Semantic Web... 6

2.2 Semantic Web Objectives.. 7

2.3 Open Semantic Enterprise.. 9

2.3.1 Semantic Web layer... 11

2.3.2 Ontologies.. 12

2.3.3 Languages... 13

2.4 Ontology Web Language.. 17

2.4.1 OWL Classes.. 18

2.4.2 OWL Properties.. 18

2.4.3 OWL Individual... 19

2.5 Ontology Inference... 19

2.6 Sparql.. 20

2.7 Linked Open Data.. 21

2.8 Named Entity Recognition... 23

2.8.1 Word Sense Desambiguation... 24

2.8.2 Co-Reference and Alias Resolution... 25

2.9 Conclusion.. 26

3 Related Work... 28
3.1 Jena... 28

3.1.1 Jena OWL... 29

3.1.2 Jena ARQ... 30

iv

3.2 AlchemyAPI... 30

3.3 Tuple Extraction... 32

3.4 Conclusion ... 33

4 The Prymas System... 34
4.1 Knowledge System... 34

4.1.1 Architecture Overview... 34

4.1.2 Knowledge Aquisition Module.. 36

4.1.3 Knowledge Discovery Module... 37

4.1.4 Knowledge Retrieval Layer... 37

4.2 Expectations... 38

4.3 Methodology.. 39

4.4 Development Enviroment... 40

5 Knowledge Discovery.. 42
5.1 Base ontology and semantic Web.. 42

5.1.1 Language.. 42

5.1.2 Ontology... 43

5.2 Ontology Creation.. 43

5.2.1 Namespace... 44

5.2.2 Entity and action... 44

5.2.3 Concept... 47

5.2.4 Individual creation.. 48

5.3 Conclusions.. 53

6 Test Case... 54

7 Conclusions.. 58
7.1 Restrospective.. 58

7.2 Objective satisfaction... 58

7.3 Future Work... 59

 References... 61

Annex A: Named Entity Recognition... 66

Annex B: Base Ontology.. 68

Annex C: Test Results 1... 70

Annex D: Test Results 1 Entailments... 74

v

List of Figures

Figure 2.1: Existing web and Semantic Web... 8

Figure 2.2: Foundations for the Open Semantic Enterprise... 9

Figure 2.3: Semantic Web Stack.. 11

Figure 2.4:Semantic Languages Layers... 14

Figure 2.5: RDF triple model... 15

Figure 2.6: RDF Graph representation. ... 16

Figure 2.7: Linked Open Data as in July 2009... 22

Figure 2.8:Named Entity Recognition.. 23

Figure 2.9: Name Entity collision.. 25

Figure 2.10: Classic co-reference in sentences... 25

Figure 2.11:Entity alias sample.. 26

Figure 3.1: Coarse Jena Architecture... 29

Figure 3.2: Alias Resolution... 31

Figure 3.3: Co-reference resolution.. 31

 Figure 3.4: Tuple creation pipeline... 32

Figure 4.1: System Architecture... 35

Figure 4.2: Knowledge Acquisition Flow.. 36

Figure 4.3: Knowledge Discovery flow .. 37

Figure 4.4:Indexing Flow. ... 38

Figure 4.5:Question and Answering Flow.. 38

Figure 5.1: RDF triple.. 44

Figure 5.2: Simple tuple mapping.. 45

Figure 5.3: Elements representation collision.. 46

Figure 5.4: NER pipeline.. 47

Figure 5.5: AlchemyAPI result schema.. 48

Figure 5.6:Individual relation... 49

Figure 5.7:Individual modifiers.. 50

Figure 5.8: Entity desambiguation... 51

Figure 5.9: Linked Open Data resource... 52

vi

Figure 5.10: Linked Open data resource desambiguation.. 52

vii

Symbols and Abreviations

AI Artificial Inteligence

API Application Programming Interface

DC Document Clustering

DOM Document Object Module

FOL First Order Logic

IT Information Techologies

IR Information Retrieval

LOD Linked Open Data

KD Knowledge Discovery

KM Knowledge Management

KMS Knowledge Management System

KR Knowledge Retrieval

NLD Natural Language Desambiguation

NLI Natural Language Interface

NLP Natural Language Processing

NER Named Entity Recognition

NET Named Entity Type

OWL Ontology Web Language

PDF Portable document Format

POS Part of Speach

Q&A Question and Answering

RDF Resource Description Format

RDFS Resource Description Format Schema

viii

SDK Software Development Kit

SW Semantic Web

SPARQL SPARQL Protocol And RDF Query Language

TM Text Mining

TREC Text Retrieval Conference

W3C World Wide Web Consortium

WD Working Draft

WSD Word Sense Desambiguation

WWW Wold Wide Web

XML Extensible Markup Language

XPath XML Path Language

ix

1 Introduction

This chapter provides a context for the tackled problem and proposes a solution. The
problem understanding helps with the problem interpretation, and shines a quick look over the
proposed solution.

The Section Context presents the background of the project. Retail Business offers a peek
into retail and the retailer's world. Wipro Retail section gives a historic portrayal of the company
and proficiency area. The dissertation incentive is described in Motivation. The coarse problem
definition and objective enumeration is presented in Problem Description and Objectives.

Finally, Dissertation Structure describes the organizational structure of this document.

1.1 The Context
Developed in a business environment, over a restrictive 16 weeks length period, with a

clear goal, the project combined individual and team effort to give birth to the thesis.

The thesis proponent, Wipro Portugal SA, presented the challenge of conceptualizing and
implementing a Knowledge Management System (KMS) with support for Natural Language
Processing (NLP), giving special focus to the study of the current state-of-the-art, both in
technological and scientific approaches, while following a spirit of Open Innovation.

“Open innovation is a paradigm that assumes that firms can and should use
external ideas as well as internal ideas, and internal and external paths to market, as
the firms look to advance their technology” [CHW03]

Aiming to improve the research process the foment Open Innovation, incitement to create
a blog1 and use of some agile software development processes, who would reduce and improve
research and experimentation times was given.

The blog was intended to disclose more than experiences, research and work. Feedback
from external sources and interaction with specialists was extremely valuable. The blog is
supported by the project team.

The project is developed by a research team composed of three elements; also as part of
their dissertations. Despite having different dissertations, each member did a combined effort

1 http://whatisprymas.wordpress.com

1

Introduction

into research, on the behalf of the overall project. After the whole concept and global
architecture design were defined, individual research focus started. The individual research
focused in differnt sets of modules.

1.2 Retail Business
The retail business can be defined as "the sale of products or marketing services directly to

final consumers" [BDS91]. However, nowadays the focus is set in the management involved in
the acquisition and provision of resources to address the customer needs [GDA93].

Business requirements are dynamic. To sustain current needs and provide a stable and
continuous growth, retailers discuss different evolution processes. Most times the approaches
are dissimilar, different approaches are used to satisfy customer needs, nowadays more
observant and demanding, a reflection of the modern competition between retailers. To satisfy
customers, the "shopping experience" takes particular important [PHM08].

The businesses and market evolution increased the processes complexity. Today, the
amount of business processes, concepts and their relations is intricate to experts, but daunting to
new system users.

Information technologies emerge to lend a hand. The use of information systems dedicated
to the business enable Retailers on the front line to manage the market evolution and manage
customer's satisfaction, creating further value, essential to the company sustainability.

1.3 Wipro Retail
Enabler was formed in 1997 from the “Direcção de Sistemas de Informação da Sonae

distribuição”. In few years Enabler become a multinational company, relying on their list of
large retailer clients, spread across United Kingdom, Italy, Spain, Germany and Brazil.

In 2006, the Enabler was acquired by Wipro, a multinational company based in Bangalore,
India. The Enabler acquisition by Wipro emerged as a way to solve the needs of retail
customers. Enabler is now Wipro Retail SA, a division of Wipro Technologies for retail
business solutions. The company's growth has become even more rapid after acquisition.

With the knowledge base, attained over the years in retail price management, customer
analytics, global data synchronization, store management and supply chain management, Wipro
Retail provides customers with methods to link business processes and information systems.
Business solutions support all supply chain operations, in domains as different as food
administration and fashion retail.

1.4 Motivation

“Knowledge is power.” Sir Francis Bacon [BAC97].

“All men by nature desire knowledge.” Aristotle [WDR53].

The combination of both Sir Francis Bacon and Aristotle wisdom makes clear that
knowledge is the power everyone covets.

2

Introduction

Companies are not different. Among the ones who produce, collect and store more
information are organizations.

Information Technology (IT) plays a vital role in modern society. Technology has found
its place, reaching to all the tools and activities of modern civilization. Access to knowledge
nowadays is not hindered by physical limitations; all information is a click away.

With large datasets, forecasts can be made and they are crucial to most organizations.
Banks anticipate which loan applicants are likely to default, treasuries forecast tax revenues and
medical researchers use bioinformatics to predict the likelihood of illness from gene sequences.
Also the growing access to information has drastically changed the behaviour of markets, the
course of business and private life of people, leading to new ways to make use of it.

However as Salton and McGill [SMJ86] foreseen, finding useful information would be
rather difficult as information increases. Just like text information on the Web, text information
in retail is growing at an astounding pace. When the information was small, it could be found
based on naming conventions or organized file systems [MKO06], but the rapid growth of
information in retail and the distribution across multiple platforms made it increasingly difficult
to locate knowledge, which could improve in the decision-making process and improve further
the costumer relation. There is a modern problem of information management.

Despite the ease to download and store most of the information, the abundance is a modern
problem and the fact is that unstructured text overwhelms the user without the correct tools to
locate and process the information. Furthermore knowledge is also distributed across multiple
platforms and specialities.

It is unlikely we could find or think of any material that is not already documented and
accessible. This has led to a great deal of interest in developing useful and efficient tools to
assist users in the search [FAA03, YQG07].

Since data increases at a huge pace, to achieve a comprehensive and dynamic Information
Retrieval Systems, the use of automatic methods and semi-automatic methods for knowledge
enhancement, process and extraction, from multiple sources, grows in demand.

Moreover, there is a classic need for methods to consult and visualize data. Nowadays
users want simple systems, with simple interfaces and meaningful results, beyond classic
information query. The necessity for new means to solicit knowledge requires both direct use of
information, but also use of new inference tools and natural language processing.

The above mentioned needs lead to the research and creation of this document.

1.5 Problem Description and Objectives
To Wipro Retail, information maintenance is essential for the company strategy.

According to [AMS05], knowledge is the biggest differentiator between companies, and
essential to create a competitive advantage over competitors.

According to results of a recent Accenture survey2, middle managers spend up to 2 hours a
day searching for information to do their jobs, and more than 50% of the information they
obtain has no value to them, still more problems exist. Below presents the results of the
percentage proportion of respondents:

• 59% - every day as a consequence of poor information distribution, information is
missed, which might be valuable to the job, cause it exists somewhere else in the
company and they just can’t find it.

2 http://newsroom.accenture.com/article_display.cfm?article_id=4483

3

Introduction

• 42% - accidentally use the wrong information at least once a week.

• 53% - less than half of the information received is valuable .

• 45% - gathering information about what other parts of their company are doing is a
big challenge, whereas only 31% said that competitor information is hard to get.

• 57% - having to go to numerous sources, just to compile information is a difficult
to manage. In order to get information about competitors, customers, project
responsibility or another department, respondents said they have to go to three
different information sources, on average.

• 36% - there is so much information available that it takes a long time to actually
find the right piece of data.

Wipro teams are generally disseminated across multiple geographic places and time zones,
use multiple knowledge directories and the specialist are numerous, with diverse skills and
schedules; the effort to obtain and effective share the knowledge becomes too high.

Whenever a collaborator needs to gather new knowledge, he is limited to three options:

• Keyword search in the documentation.

• Online search engine, the classic Google.

• Ask a specialist in the module.

All options have significant drawbacks.

Documents are no more than vector words, the keyword search provides good results, for a
single and even for a combination of keywords (to represent a concept), but usually only the
search for a single word or concept provides results, even when combining regular expressions.
The number of results can range from zero to the total number of appearances in the documents,
but the information is not sorted by relevance. The search system pays no attention to context
and semantic relations.

On a classic search engine, when searching the document database for the keyword and
concept combinations, depending on the engine aptitude, can gather a huge list of result or very
small (possibly no result). If we want superior efficiency we need, besides indexing documents
and ranking algorithms, methods to use the text semantics to boost results.

Of course asking a specialist, will surely generate a good answer, on the other hand,
besides taking our time (like the other options) and the specialist time, we need to wait for the
answer, especially if we use email for questioning or set a time to call (direct call, skype, instant
messaging) and ask about the problem. It can be problematic since team can be spread across
the world, and matching communications can be complicated. Furthermore it can overburden
the specialist with support work, blocking an important company asset allocated to other task.

 It’s especially nefarious if the information exists in physical or electronic format but the
specialist is still required in support. Moreover it’s difficult to know all the system specialists
and the directory were the knowledge resides.

Users want to go beyond classic search, they want to provide a question and retrieve a
simple concise answer. A challenge to study of the current state of art, both in technological and
scientific approaches to conceptualize and implement a KMS with support for NLP, who could
do something similar rises.

The majority of Wipro information is in documents and they have no metadata, it’s going
to be an uphill struggle to get better results out of the capable search technologies, without
adding some metadata. When creating a document representation it’s important to include the
semantic information in the text.

4

Introduction

The NLP has techniques to analyse text, extract information and gather relations between
words, allowing fragments of information to represent the text semantics, but it still only solves
part of the problem.

The Semantic Web (SW) is a very recent trend and seemingly all can be represented in the
semantic web, from molecules description, to business processes; options present themselves as
unlimited.

According to the original vision, machine-readable metadata is kept in a format helpful to
machines and automatic information gathering agents. Some systems already provide
information in this format, making tempting the creation of mashups3 to integrate the interesting
parts in the system and make the most of it.

The research presented in this dissertations document aims to create a semantic
representation of documents. To improve the representation, enhancement and deduction of
additional information is essential. It aims to improve question and answering (QA) systems
results.

The time constrains put a strain in the objectives, but results are essential, a proof of
concept is required.

To achieve the objectives and make the most of the time, it is necessary to resort to a rich
set of knowledge areas and use community open standards and make use of useful agile
software development techniques. Furthermore following the Open Innovation idea and the
need to collaborate in work, and the business environment require extra effort.

1.6 Dissertation Structure
The objective of this work, as a part of a larger KM system developed by Wipro, is

grounded in the research and creation of a proof of concept mechanism to generate a document
representation, with semantic knowledge, to improve the QA system results and solve Wipro’s
knowledge access problems.

To improve the representation, enhancement and deduction of additional information is
essential. Our proposal is to resort to a rich and diverse knowledge areas and use community
open standards.

The dissertation innovative format and relations is also a novelty factor to analyse and
experiment.

The following chapter makes a synthesis of the essential concepts required to automating
the process of gathering and structuring information in order to create a knowledge
representation. A complementary focus is also given to methods that enhance knowledge and
improve inference in the proof of concept.

A description of related work, previously done and essential to the current implementation
is given in Chapter 3. A broad description of the tools and methods is given, together with
reasons who led to the preference. Chapter 4 makes a deeper description of the proposed system
architecture and result expectations, followed by the methodology taken and a complete
rundown of the development environment. The proposed system implementation is given in
Chapter 5. A practical example, some tests and result examination is provided in Chapter 6. A
discussion of the dissertation, implementation results and expectations is given on Chapter 7.

3 Applications that take data, usually Web service data, usually from more than one source.

5

2 Relevant Technologies

To better understand the work, an introduction to the research field and related concepts is
essential.

Section 2.1 gives an overview of the Semantic Web. Section 2.2 gives the objectives and
expectations, with a deeper view of the SW architecture and layers (Section 2.2.2). In
Subsection 2.2.3, the concept of ontologies is discussed, followed by a list of SW languages
(Section 2.2.4).

OWL language is the knowledge representation language used in our project and is
discussed more deeply in section 2.3, with information about the building blocks classes
(Section 2.3.1), properties (Section 2.3.2) and individuals (Section 2.3.3). A view into OWL
query language is also given (Section 2.3.4).

The world of named entity recognition (Section 2.4) is an intricate field in NLP. It faces
many problems like word sense disambiguation (Section 2.4.1), co-reference and alias
resolution (Section 2.4.2).

Built side by side with the semantic web, linked open data (Section 2.5) presents a lot of
potentialities when the addition of knowledge is important.

A short resume and conclusion about the technologies and relevance to the work is
provided in Section 2.6.

2.1 Semantic Web
The Semantic Web is a Web of data. Nine years ago in Scientific American magazine, Tim

Berners-Lee, James Hendler and Ora Lassila unveiled a nascent vision of the Semantic Web; a
highly interconnected network of data that could be easily accessed and understood by
automatic processing tools [TBL01].

“The Semantic Web is a vision: the idea of having data on the Web defined and
linked in such a way that it can be used by machines not just for display purposes,
but for automation, integration and reuse of data across various applications." in
Semantic Web Activity Statement4

4 http://www.w3.org/2001/sw/Activity

6

Relevant Technologies

They illustrated a future with intelligent software agents that would head out on the World
Wide Web and automatically book flights, hotels or trips, update medical records and give a
customized answer to a particular question, without having to search for personal information or
explore through results. The Semantic Web is a vision of information that is understandable by
computers.

They also proposed the technologies required to make the vision come true, the 4 building
blocks of the Semantic Web:

• Resource Description Format data model

• Ontology languages

• Inference engines

• Support technologies

Sceptics have said the Semantic Web would be too difficult for people to understand and
exploit. Not so; technologies have come a long way. A large and active community of early
adopters provided a steady output of tools for exploiting Semantic Web. Large companies and
research facilities have ongoing major projects that have greatly improve the existing tools and
improve common operation and scientific research [DLS07].

Companies are also using the Semantic Web to enhance business-to-business and business-
to-costumer interactions [DHY08, RDO05], enhancing data-processing structures, and backend,
with new services. And like an iceberg, the tip of this large body of work is emerging in direct
consumer applications, too. Examples of application already using it are:

• Dbpedia - Published structured data from wikipedia.

• Good relations - Standardized language e-comerce application, adopted by
BestBuy, Yahoo, OpenLink Software, O'Reilly Media and others.

• Linked Open Data - W3C sponsored effort to create openly accessible, and
interlinked, data on the Web.

• OpenPsi - Linked data service that supports research.

• Umbel - Concept reference structure for the Web.

There is already hundreds of components that can be used in creation or extention of
semantic web applications.

2.2 Semantic Web Objectives

"The Semantic Web is an extension of the current web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation." [MKB09]

The Semantic Web is not a separate entity from the World Wide Web, it is simply a
component of it. It associates meaning with data, extending documents into further data, it
describes methods and technologies to allow machines to understand the meaning also referred
as "semantics".

New standards and technologies provide automated environments for machine and
databases processing, taking away some of the burdens currently faced and access the Web
more intelligently way.

7

Relevant Technologies

Figure 2.1: Existing web and Semantic Web5.

 Even though the SW is a Web of data (Figure 2.1), it is above all intended for creation of
automatic content for humans. The agents would be able to perform tasks automatically and
locate related information on behalf of the user. The work focus is shifted into delivering better
services and experiences.

Semantic publishing refers to produce new information, to enhance the meaning of a
document. It aims to add metadata to document, allowing computers to understand the structure
and even the meaning of the published information

Semantic publishing on the Web or semantic web publishing refers to publishing
information on the web as documents accompanied by semantic markup. Currently there are
two main approaches to semantic publishing:

• Formal markup, like microformats6, who use custom HTML/XHTML tags to
convey metadata.

• Ontologies and vocabularies, to create domain specific information and publish as
data objects

Providing support to current KD is one of the main goals and ontologies and vocabularies,
they present good list of data sources and support tools. The support to knowledge discovery
and integration, with support for automated tools can lead to the creation of outstanding
products, services and experiences.

The Semantic Web has the potential to improve human information access to unstructured
and semi-structured information. One of most sought fields is automatic processing of textual
document. With the integration of semantic web tools new ways to deal information are
expected, like:

• Enhancement – Data integration from multiple external sources.

• Search – Go beyond keyword search, into semantic search.

• Publication – New formats to encoding descriptive, administrative, and structural
metadata

• Presentation – Different publication format require new visualization formats.

• Share - New ways to distribute information.

5 http://semanticwiki-en.saltlux.com/index.php/Semantic%20Web

6 http://microformats.org/wiki/existing-classes

8

Relevant Technologies

Searches should be more precise, data more complete, within context and less prone to
human error. The quality of information should go beyond what is available.

Nowadays a large number of data is already presented in Semantic Web format, including
documents. Still the majority of textual data (produced nowadays, older and in physical format)
is unstructured.

If semantic web is to surpass the current size of the web, all available current data need to
be annotated, metadata needs to be included, leading to the need of semantic publishing. The
transformation of unstructured data presents itself as an excellent way to create new and unique
data to integrate with the semantic web format. In short term only domain specific documents
are relevant, but long term, any kind of document need to be supported.

The Semantic Web will enable machines to comprehend documents.

2.3 Open Semantic Enterprise
Suitable business applications include data federation, data warehousing, search engine,

enterprise information integration, business intelligence, competitive intelligence, knowledge
representation, and so forth. They aim to reduce risks and costs for business, while improving
deployment speed and responsiveness.

Figure 2.2: Foundations for the Open Semantic Enterprise.

The integration of domain knowledge and semantic technologies don’t require discarding
good practices, replacing current systems or assets. It can be applied equally to public or
proprietary information. It can be deployed incrementally at low risk and cost; RDF, RDFS,
OWL, SPARQL and others can be integrate into existing information assets, using the best
practices of linked data and the open world assumption, and targeting knowledge management
applications. Results will appear even early on.

• The integration of domain knowledge and semantic technologies can assure:

• Incremental analysis and refinement of domain representations.

9

Relevant Technologies

• Flexible and robust frameworks, with constant infusion of new information.

• Data with partial characterizations can be combined with other data having partial
or complete characterizations

• The data and the structures can be used and expressed in multiple building blocks.

• Public and private information can be combined.

By providing successful web architectures, users can create loosely coupled, distributed
systems that can grow and interoperate in a decentralized manner, the perfect architectures for
flexible collaboration systems and networks.

As stated by Mike Bergman (Figure 2.2), the benefits rise from a combination of
technologies and interactions between them. Let’s take a look at them:

• RDF Data Model – Used to structure content, it is possible to create more
expressive vocabularies within RDF, making it a powerful data model and
language for data federation and interoperability across disparate datasets.

• Linked Data Techniques – Set of best practices7 for publishing and deploying
instance and class data using the RDF data model, useful to both humans and
machine agents. Linked data is applicable to public or enterprise data, open or
proprietary.

• Ontologies - The guiding structures for how information is interrelated and made
coherent using RDF and its related schema and ontology vocabularies, RDFS and
OWL. A large number already exists, ranging from generic, to domain oriented.
The reuse of existing ontologies is encouraged.

• Ontology-driven Applications - modular, generic software applications designed
to operate in accordance with the specifications contained in an adaptive ontology.
The design limits software frailty and maximizes software re-use. It also reduces
creation and maintenance effort.

• Web-oriented Architecture – Provide industry backed methods for linking
documents. Web-oriented architecture is a subset of the service-oriented
architectural and integrates diverse disparate applications, which can be used
within multiple business domains and platforms.

• Layered Approach - Adaptive layer is an interoperable stack, following industry
standards. Semantics help to bridge and communicate across multiple existing
systems and schema. The layered approach allows incremental improvement and
separation between ontologies and assets.

• The Open World Mindset – Companies are hostage of closed world assumption,
very fit to transaction and operational systems, but not supportable by real
circumstances. While transactions require completeness and performance; insight
requires drawing connections in the face of incompleteness or unknowns. Open
World Mindset doesn’t assure it, but thresholds on information and understanding
aren’t affordable or achievable with traditional, closed-world approaches.

These practices do not require replacing current systems and provide a significant initiative
which can lead to potentially huge benefits, with manageable risks and costs.

7 http://www.mkbergman.com/index.php#ose8

10

Relevant Technologies

2.3.1 Semantic Web layer

The Semantic Web Stack is an illustration of the hierarchy of languages, where each layer
exploits and uses capabilities of the layers below. It shows how standard Semantic Web
technologies are organized to make the Semantic Web possible.

Figure 2.3: Semantic Web Stack.

As shown in Figure 2.3, the lower layer, URI and Unicode, follows the important features
of the existing WWW. Unicode is a standard of encoding international character sets and it
allows representation and manipulation of text in many languages. Semantic Web should also
help to bridge documents in different human languages.

Uniform Resource Identifier (URI) provides means for uniquely identify resources 8 (e.g.,
documents). An international variant, the Internationalized Resource Identifier (IRI) allows
usage of Unicode characters in identifier and for which a mapping to URI is defined. URI is a
subset of IRI. Semantic Web needs unique identification to allow provable manipulation with
resources in the top layers.

Extensible Markup Language (XML) layer with XML namespace and XML schema
definitions makes sure that there is a common syntax used in the semantic web. XML enables
creation of documents composed of structured data. A XML document contains elements that
can be nested and that may have attributes and content. XML namespaces allow specifying
different markup vocabularies in one XML document. XML schema serves for expressing
schema of a particular set of XML documents.

A core data representation format for semantic web is Resource Description Framework
(RDF). RDF is a framework for representing information about resources in a graph form, so-
called triples. It was primarily intended for representing metadata about WWW resources, such

8 A Resource is anything that can have a URI; this includes dividual elements of an XML document

11

Relevant Technologies

as the title, author, and modification date of a Web page, but it can be used for storing any other
data. All data in the semantic web use RDF as the primary representation language. The
normative syntax for serializing RDF is XML in the RDF/XML form. Formal semantics of RDF
is defined as well.

RDFS9 has a collection of controlled vocabulary terms organized into a hierarchical
structure and can be can be used to describe taxonomies of classes and properties to create
lightweight ontologies. RDF Schema (RDFS) was created together with its formal semantics
within RDF.

More detailed ontologies can be created with Web Ontology Language (OWL). The OWL
is a language derived from description logics, and offers more constructs over RDFS.

RDFS and OWL don’t provide enough rules to fully support description logic. RIF and
SWRL are rule languages, being standardized for the semantic web to bring rule support.

For querying RDF, RDFS and OWL, a Simple Protocol and RDF Query Language
(SPARQL) is available. SPARQL is SQL-like language, but uses RDF triples and resources for
both matching part of the query and for returning results of the query. It is also a protocol for
accessing RDF data.

Unifying Logic and Proof layers are undergoing active research. It is expected that all the
semantics and rules will be executed at the layers below Proof and the result will be used to
prove deductions.

On top of these layers, application with user interface can be built.

2.3.2 Ontologies

Ontology has been attracting a lot of attention recently, while research started in the 90’s, it
accelerated due to recent efforts to extend the capabilities of the World Wide Web through the
addition of formal semantics.

One of the key concepts is conceptualisation, the AI term defined as:

“a set of objects which the observer thinks exists in the world of interest and
relations between them” [GNN87].

So ontology can be seen as a "formal, explicit specification of a shared conceptualisation"
[TGR93]. Ontologies are engineering artefacts that can formally represent the concepts and their
relationships within the given knowledge domain, while supporting automatic processing.

Individuals or groups may want to define terms and data they frequently use, as well as the
relations among those items [FAF02]. This bag of definitions is called ontology. To specify the
conceptualisation, common components of ontologies include:

• Classes: represent general concepts in the domain.

• Properties or attributes of the objects described.

• Relation between objects.

Ontologies are used by people to exchange information about a given domain or
knowledge area (medicine, biology, pharmacy). Some of the practical benefits:

• Make explicit the scope, definition, and language and semantics of a given domain
or world view.

9 http://www.w3.org/TR/rdf-schema

12

Relevant Technologies

• Generalize about the domains .

• When hierarchically structured in part, can provide the power of inheritance.

• Mechanisms to reason or infer over its domain.

• Structured and controlled vocabularies, helpful for disambiguating context.

Ontologies facilitate information search and integration of data from different
communities, because they provide a common basis that ensures consistency of data.

Ontologies can be classified into 2 groups. Upper ontologies (also known as foundation
ontology or adaptive ontology), assures semantic interoperability between a large numbers of
ontologies, without detailing concepts [WMA04]. The domain ontology models a specific
domain, its complement to upper ontologies and structures the information driving the
applications [RPV04].

Recently, ontologies have found their way into higher-level information fusion where they
provide means to combine heterogeneous data sources, to maximize knowledge sharing.
Thoughts on how to improve and provide better services are already available. Let’s see some
examples:

• Web Portals – Information is optimized for human readability, with special focus
on aesthetic concerns. If the portal provides methods for automatic representation
with ontologies, it opens the door to automatic external contributions and
enrichment of information.

• Multimedia – Nowadays multimedia content is tagged, but the tagged information
provides little semantics, relations between content are feeble. If ontologies are
used, besides the original information, additional cues can be provided, and
automatic agents can add overtime more related data.

• Services – Creation of mashups have provided good results. Mashups are
applications that take data, usually Web service data, usually from more
than one source, and uses it to create something new. From collecting
friend’s messages, to business forecast systems, the potentialities are
enormous.
With the power to create taxonomies, the expressive power

2.3.3 Languages

Ontolingua10 is the original language for ontology representation and sharing. Create by
Knowledge System Lab (KSL) at Stanford University, it is designed by adding a frame like
representation to the Knowledge Interchange Format11 (KIF), a computer-oriented language for
the interchange of knowledge among disparate programs.

10 http://www.ksl.stanford.edu/software/ontolingua/

11 http://www-ksl.stanford.edu/knowledge-sharing/kif/

13

Relevant Technologies

Figure 2.4:Semantic Languages Layers12.

With the emergence of the Semantic Web as a broad, commercial platform, new encoding
tools for semantic information in documents were fashioned.

Following is a description of the major languages (Figure 2.4) that have marked the
evolution of the Semantic Web.

RDF

“A framework for describhttp://www.w3.org/TR/REC-rdf-syntax/ing and
interchanging metadata “ [BRT98]

Developed by the WWW Consortium (W3C), the language Resource Description
Framework13 (RDF), the first draft was published in October 1997 and achieved W3C
recommendation status in February 2009.

Resource Description Framework (RDF) is a framework for representing information
about resources in a graph form. RDF has XML based syntax, and resembles XML markup 14,
but it’s more than a language; it’s a data representation model 15.

RDF is carefully designed to have the following characteristics:

• Scalability

• PropertyTypes are Resources

• Independence

• Interchange

• Values Can Be Resources

• Properties Can Be Resources

RDF is a standardised top-level XML, that has metadata and elements follow domain-
specific schemata. 16.

12 http://instructionaldesign.com.au/Academic/TechnicalTheme1.htm

13 http://www.w3.org/TR/rdf-mt/

14 http://www.w3.org/TR/REC-xml/

15 http://www.w3.org/TR/rdf-concepts/

16 http://www.w3.org/TR/REC-rdf-syntax/

14

Relevant Technologies

By generalizing the concept of resource (web resource), metadata can represent document
information like author or title or any other information available. The mechanism for doing this
with RDF is to construct an RDF triple which consists of a subject (the resource), property and
object (its value).

Since it was primarily intended for representing metadata about WWW resources, it is
built around resources with URI.

Figure 2.5: RDF triple model.

Information is represented by the AI well known triplet model (Figure 2.5), a <resource,
attribute, value> tuple. All elements of this triple are resources by default, defined by a unique
URI. The last element, value; it can be also a literal.

Resources and Value are nodes; attribute is a link between nodes. They are the base of the
semantic network.

Literal in the RDF sense is a constant string value such as string or number. Literals can be
either plain literals (without type) or typed literals typed using XML Datatypes 17.

Lets check the string “Celso Costa”, the document author, the markup is:

<author>Celso Costa</author>

Its markup is clear enough to informe that “Celso Costa” is the author. But lets say the
document is available at “http://www.example.org/crc.pdf", the RDF description would be:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 ...

<rdf:description rdf:about=”http://www.example.org/crc.pdf”>

 <author>Celso Costa</author>

 </rdf:description>

 ...

</rdf:RDF>

The graph representation would be:

17 http://www.w3.org/TR/xmlschema-2

15

www.example.com/index.html

www.example.com/staff/12356

EN

August,
19, 1999

www.example.com/term/creationdata

www.purl.org/dc/elements/1.1/language

www.purl.org/dc/elements/1.1/creator

- Literal
- Resource

Relevant Technologies

Figure 2.6: RDF Graph representation.

The first line of the xml code identifies the xml version. The default namespace is in the
second line and is used to identify the author, about, rdf and description. The resource “crc.pdf“,
with URI http://www.example.org/ has author18 “Celso Costa”. A visual representation is
provided in Figure 2.6.

RDFS
RDF schema (RDFS) extends RDF vocabulary to allow describing taxonomies of classes

and properties.

RDFS has built-in classes and meta-classes (classes with other classes as members), by
which users can define new classes and relations to define resources and objects. The resources
and objects can be further characterized, with properties like domain and range of properties,
relations of the RDF classes and taxonomic properties using the XML vocabulary.

The RDFS vocabulary is uses a XML namespace with code RDFS:.

Taking previous example, the property “author” could be further characterizing in the
following way:

<rdfs:Property ID=“author” >
<rdfs:label>Author</rdfs:label>

<rdfs:subPropertyOf
rdf:resource=“http://purl.org/dc/elements/1.1/dcmes.rdf#Creator”/>

<rdfs:domain rdf:resource=“#Person”/>

<rdfs:range rdf:resource=“http://www.w3.org/2000/01/rdf-schema#Literal”/>

</rdfs:Property>

The RDF declaration label element provides a human-readable version of a resource's
name. The type hierarchy is defined using subPropertyOf element. The domain constraint
specifies the attachment of properties to classes and the range constraint can be used to indicate
the classes that the values of a property must be members of.

Topic Maps
Topic Maps is a standard for knowledge integration developed by the ISO's SGML

working Group in 1996. The specification was developed had different purposes than RDF,

18 As defined in Dublin Core

16

http://www.example.org/crc.pdf

Celso
Costa

http://www.w3.org/1999/02/22 -rdf-syntax-ns#author

Relevant Technologies

however, the results turned out to have a lot in common and this has led to calls for their
unification19.

Besides semantic networks [SBA91] and conceptual graphs [SJF84], topic maps are one
candidate for the task of information encoding. The methods attempt similar ways to connect
pieces of data into a graph which represents the relationships between them. These methods do
not attempt to enforce a rigid structure on the information they describe but rather they provide
a lightweight way of navigating the information which exists in separately maintained data
sources.

One potential application of these technologies would be to facilitate translating the
knowledge provided by one source into a form that can be used elsewhere, much like semantic
web.

OWL
Web ontology language (OWL) is a language developed by w3c (reference). It’s a

common language for ontology representation based on DAML+OIL (reference), based on the
design and experience achieved from its use. OWL is an extension of RDF schema (and RDF of
course) and also employs the triple model.

It was designed to enable Semantic Web and extensibility, modifiability and
interoperability were the highest priorities, while trying to keep scalability and expressive
power.

A more complete description can be found in Section 2.3.

2.4 Ontology Web Language
In 2000, DARPA 20started development of DAML[LLW05]. In March 200121, the “Joint

US/EU ad hoc Agent Markup Language Committee” decided that DAML should be merged
with OIL [LLW05]. DAML+OIL was intended to be a thin layer above RDFS, with formal
semantics(study of the semantics, or interpretations, of formal and also natural languages) based
on a Description Logic (DL) [IPP03] . OWL started as a research-based22 revision of
DAML+OIL aimed at the semantic web.

The Web Ontology Language OWL extends RDF and RDFS. The primary aim is to bring
the expressive and reasoning power of description logic to the semantic web. Unfortunately, not
everything from RDF can be expressed in DL. For example, the classes of classes are not
permitted in the DL, and some of the triple terms would have no sense in DL. That is why OWL
can be only syntactic extension of RDF/RDFS. To partially overcome this problem, and also to
allow layering within OWL, three species of OWL are defined.

• OWL Lite can be used to express basic taxonomy and constraints, such as 0 and 1
cardinality. It is the simplest OWL language which corresponds to description
logic SHIF.

• OWL DL supports maximum expressiveness while retaining computational
completeness and decidability. The DL in the name shows that it is intended to

19 http://www.w3.org/TR/2005/WD-rdftm-survey-20050329

20 Defense Advanced Research Projects Agency.

21 http://www.daml.org/2001/03/daml+oil-index

22 http://www.w3.org/TR/2002/WD-owl-features-20020729/

17

Relevant Technologies

support description logic capabilities. OWL DL corresponds to description logic
SHOIN.

• OWL Full is the complete OWL language and has no expressiveness constraints,
but also does not guarantee any computational properties. It is formed by the full
OWL vocabulary, but does not no impose any syntactic constrains, so that the full
syntactic freedom of RDF can be used.

Every legal OWL Lite ontology is a legal OWL DL ontology, every legal OWL DL
ontology is a legal OWL Full ontology. Furthermore, validity OWL Lite conclusions are the
same for OWL DL conclusions, all featured in OWL Full conclusions. The inverses of these
relations generally do not hold. The chosen language takes into account the problem
requirerments.

Every OWL ontology is a valid RDF document (DL expressions are mapped to triples), but
not all RDF documents are valid OWL Lite or OWL DL documents.

2.4.1 OWL Classes

Classes are the basic building blocks of an OWL ontology. A class is a concept in a
domain. Classes usually constitute a taxonomic hierarchy.

OWL classes have associated a sets contain individuals, called the class extension. The
individuals in the class extension are called the instances of the class.

A class has an intentional meaning, a concept manifestation, which is related but not equal
to its class extension. Thus, two classes may have the same class extension, but still be different
classes.

All ontologies classes start with the namespace definition of the syntax used. For OWL,
the prefix is “owl:”. Classes are defined with the prefix “owl:Class”.

The owl:Thing is the root class. Every individual in the ontology is a member of the class
owl:Thing, thus each class is implicitly a subclass of it.

The property subClassOf (rdfs:subClassOf), declares that the class derives from another
and in OWL declares class hierarchies. Multiple inheritance is possible.

<owl:Class rdf:ID=“CarMidSize”>
 <rdfs:subClassOf rdf:resource=“CarShape”/>

<owl:Class/>

The example creates the class “CarMidSize” as subclass of “CarShape”.

2.4.2 OWL Properties

Properties are binary relations on individuals23. OWL distinguishes between two main
categories of properties that an ontology builder may want to define:

• Object properties relates individuals to individuals.

• Datatype properties relates individuals to datatype values. OWL uses XML
schema to define datatypes

The presented code gives information about the car manufacturer and its horsepower.

23 instances of properties linking individuals.

18

Relevant Technologies

<owl:ObjectProperty rdf:ID="manufacturer">
<rdfs:domain rdf:resource="# CarMidSize " />

<rdfs:range rdf:resource="# CarBrand " />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="horsepower">
<rdfs:domain rdf:resource="# CarMidSize " />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

The 2 properties are different, shown by the fields rdfs:domain and rdfs:range. The first
sample is a object property and relates relate one instance “CarMidSize” with an instance of
“CarBrand”, while the second is a datatype property and relates a class instance with a string.

OWL allows the meaning of properties, enhancing reasoning24 through use of property
characteristics. The characteristics of OWL Lite25 can be transitiveProperty,
SymmetricProperty, FunctionalProperty, inverseOf and InverseFunctionalProperty26.

2.4.3 OWL Individual

Individuals, are instance of the classes, represent objects in the domain of discourse.
Properties can be used to relate one individual to another.

<owl:thing rdf:ID="Charger">
<rdf:type rdf:resource=" CarMidSize”/>

< manufacturer rdf:resource=”Dodge”/>

< horsepower rdf:datatype="&xsd;string">325HP</ horsepower >

</owl: thing >

This represent the individual “Charger”, who is “CarMidSize” instance, has manufacturer
“Dodge” and horsepower “325HP”.

2.5 Ontology Inference
The OWL language is rooted in description logic, a family of knowledge representation

languages designed for encoding knowledge about concepts and concept hierarchies. An OWL
inference engine’s core responsibilities are to follow the formal semantics while processing
information encoded in OWL, discover inconsistencies and derive new information from known
information [YTH04].

A simple example demonstrates the power of inference: Joe is visiting San Francisco and
wants to find an Italian restaurant in his vicinity. His wireless PDA tries to satisfy his desire by
searching for a thing of type restaurant with a cuisineType property with the value Italian. The
goodPizza restaurant advertises its cuisine type as Pizza. These cannot be matched as keywords
or even using a thesaurus, since Italian and Pizza are not equivalent in all contexts. The
restaurant ontology makes things clearer: Pizza rdfs:SubClassOf ItalianCuisine. By using an

24 More restriction and constrains lead to better reasoning.

25 http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2.1

26 http://www.w3.org/TR/2004/REC-owl-guide-20040210/#PropertyCharacteristics)

19

Relevant Technologies

inference engine, Joe’s PDA can successfully determine that the restaurant goodPizza is what he
is looking for. An inference engine for OWL language is designed to accomplish this task.

An inference engine is required for the processing of the knowledge encoded in the
semantic web language OWL. An OWL inference engine should have following features:

• Checking ontology consistency - The ontology imposes a set of restrictions on
the model graph. The OWL inference Engine should check the syntax and usage of
the OWL terms and ensure that the OWL instances meet all of the restrictions.

• Computing entailments - Entailment, also known as logic implications are used
to control the inference tasks for an OWL inference engine. They should provide a
convenient interface to process rules that involve OWL classes, properties and
instance data.

• Processing queries - OWL inference engines need powerful, yet easy-to-use,
language to support queries, both from human users and software components.

• Handling XML data types - An OWL inference Engine should be able to test the
satisfiability of XML data types, such as integers, floating point numbers, strings
and complex types.

Description Logics are generally given a semantics that make them subsets of first-order
logic. Therefore, several different approaches based on those logics have been used to design
OWL inference engines:

• Using a specialized description logic reasoned - Since OWL is rooted in
description logic, it is not surprising that DL reasoners are the most widely used
tools for OWL reasoning. DL reasoners are used to specify the terminological
hierarchy and support subsumption. It has the advantage of being decidable.

• Using full first order logic (FOL) theorem tester. OWL statements can be easily
translated into FOL, enabling one to use existing FOL automated theorem test to
do the inference.

• Using a reasoner designed for a FOL subset. A fragment of FOL and general
logic based inference engine can also be used to design the OWL inference engine.

2.6 Sparql
SPARQL Protocol And RDF Query Language (SPARQL) for data stored natively as RDF

or viewed as RDF via middleware.

Built upon rdfDB, RDQL, and SeRQL, SPARQL has several valuable new features of its
own. It is designed to meet the use cases and requirements identified by the RDF Data Access
Working Group27. On 15 January 2008, SPARQL became an official W3C Recommendation28.

Even the simplest dialect of OWL, OWL Lite, is a DL without algorithms allowing for
efficient entailment29 and query answering over knowledge bases (KB) scaled to millions of
facts (triples). SPARQL allows globally unambiguous queries using triple patterns,
conjunctions, disjunctions, and patterns. Like SQL for conventional databases, SPARQL is now
emerging as a leading query framework for RDF based “triplestores30”, allowing globally
unambiguous queries using triple patterns, conjunctions, disjunctions, and patterns.
27 www.w3.org/2009/sparql/wiki

28 http://www.w3.org/blog/SW/2008/01/15/sparql_is_a_recommendation

29 Logic implication.
30 Form of database.

20

Relevant Technologies

Moreover, in keeping with the distributed nature of the Internet, distributed SPARQL
“endpoints” are emerging, which represent specific data query points at IP nodes, the results of
which can then be federated and combined. Every day new endpoints emerge to support
integration models that can either follow the data federation31 approach or the consolidated data
warehouse32 approach or combination of both.

The answer to a SPARQL query depends on the ontology entailment regime and the
vocabulary from which the resulting answers are taken.

The first version of SPARQL was defined only for simple entailment 33, defining a set of
conditions the result need to meet. Different entailment regimes can lead to different sets and
more complex inferences. The current entailment regimes are34:

• RDF Entailment

• RDFS Entailment

• OWL RL Entailment

• OWL Full Entailment

• OWL 2 DL, EL, and QL Entailment

• RIF Entailment

With SPARQL and correct exploitation of entailment regimes, besides the existing, new
knowledge can be derived. The new knowledge is dependent on the ontology taxonomy and
instances relations.

2.7 Linked Open Data
Integrating large dissimilar data sources in a large corporation is expensive, but the use of

Semantic Web can significantly reduce costs35.

In 2006 Tim Berners-Lee wrote the following seminal linked data design note [TBL06]:

“The Semantic Web isn't just about putting data on the web. It is about making
links, so that a person or machine can explore the web of data. With linked data,
when you have some of it, you can find other, related, data.”

He proposes the philosophy of web of document in data. The Web enables us to link
related documents. Similarly it enables us to link related data. Linked Data refers to a set of best
practices for publishing and connecting structured data on the Web, four linked data principles
are stated in Tim Berners-Lee note:

• All items should be identified using URI.

• All URI’s should be dereferenceable, using HTTP URI36

31 Search of multiple online databases or web resources.

32 Dimensional approach or the normalized storage of data.

33 http://www.w3.org/TR/rdf-mt/#entail

34 http://www.w3.org/TR/2009/WD-sparql11-entailment-20091022/#d4e619

35 http://www.w3.org/DesignIssues/Business.html

36 http://www.w3.org/Protocols/rfc2616/rfc2616.html

21

Relevant Technologies

• When someone looks up a URI (rdf property is interpreted as hyperlink), return
useful information.

• Links to other URIs should be included, to enable discovery of more knowledge.

In 2009 Tim Berners-Lee modernized the concept, he stated that data lookup should be
done “using the standards (RDF, SPARQL)”. The discussion about the inclusion of RDF in core
principles is ongoing37.

Figure 2.7: Linked Open Data as in July 2009.

The data can be accessed using Linked Data browsers, just as the traditional Web of
documents is accessed using HTML browsers. However, instead of following links between
HTML pages, Linked Data browsers enable users to navigate between different data sources by
following RDF links. This allows the user to start with one data source and then move through a
potentially endless Web of data sources connected by RDF links. Data sources can be:

• More easily crawled by search engines.
• Accessed using generic data browsers.
• Enables links between data from different data sources.

From 2007 on, things advance at a sound pace in the Linked data initiative. Chris Bizer
and Richard Cyganiak launched the Linked Open Data Community Project38 and W3C
standards to support LOD were released.

37 http://cloudofdata.com/2009/07/does-linked-data-need-rdf/

38 http://linkeddata.org

22

Relevant Technologies

The results, as of July 2009 (Figure 2.7), show the data sets that have been published and
interlinked by the project so far. Collectively, the data sets consist of over 13.1 billion RDF
triples39, which are interlinked by around 142 million RDF links40.

Mashup are Web application that pulls data from different sources. Mashups are fairly
common these days, Mashupfeed.com lists 4674 existing mashups, with 2.88 being added per
day. But each of these mashups is fairly static as far as the types of information they can
present. LOD gives control over a multitude of dynamic data.

2.8 Named Entity Recognition
The Named Recognition Field (NER) field was coined at the sixth Message Understanding

Conference (MUC-6) [MUC95]. It has emerged as an important step for many natural language
applications. When defining IE tasks, its common the extraction of entities mentions (Figure
2.8), such as person names, locations, dates, numeric expressions, specialized terms and product
terminology to integrate in the model and empower organizations [CSS92]. Noteworthy
research was conducted by extracting proper names from texts.

Figure 2.8:Named Entity Recognition.

Saul Kripke ´s work Naming and Necessity [KRP82], in the expression “Named Entity”,
the word “Named” refers to entities that refer one or more rigid designators. A rigid designator
designates the same object in all possible worlds [FEB82]. Rigid designators include proper
names as well as certain natural terms, such as biological species and substances. They are used
when identifying mentions of entities.

One of the first works was done by Lisa F. Rau [RLF91] at the 7th IEEE Conference on
Artificial Intelligence Applications. Rau’s paper describes a system to “extract and recognize
company names.

The NER identifies NEs in texts using methods ranging from spelling and contextual rules
to vast and heterogeneous pool of strategies, methods, and representations, like Maximum
Entropy Taggers, SVMs and CRFs. Most early studies were based on hand-crafted rules
[MUC07], the most recent use supervised machine learning techniques [SSN04].

Common exploits in the NER approaches:

• Word features of the token and the words in its neighborhood.

• The parts of speech of the word in question and its neighbors.

• Features corresponding to certain prefixes and sufixes of the word and its
neighbors.

39 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics

40 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/LinkStatistics

23

“[Country Germany]’s representative to the
[OrganizationEuropean Union]’s veterinary
committee [Person Werner Zwingman]
validated on [LocationFrance] report …”

[Named Entity Type, Named Entity]

Relevant Technologies

• Features corresponding to the labels of its neighbors.

Built upon the concept of rigid designator, some tasks related to NER:

• Personal name disambiguation - Algorithms for distinguishing personal names
with multiple real referents in text, using little or no supervision [MGY03].

• Named entity translation – Using the hidden Markov model (HMM), task of
translating NEs from one language to another [HFE05].

• Entity anaphora resolution - A lightweight practical approach to pronoun
resolution in the case when the antecedent is named entity, using Gate [DMB02].

• Acronym identification - A supervised learning approach to the acronym
identification task [NDT05].

• Case restoration - Truecasing technique, a technique for restoring the normal case
form to an all lowercased or partially cased text [AAK06]. Useful in machine
translation.

Some applications already make use of NER for information retrieval, to improve and
facilitate information mining or to linking across documents. Some examples are:

• Question answering - A study on low-level information extraction like NER for the
Q&A TREC-8 tests [SRI99].

• Semantic information retrieval - recognition of names and their associated
categories within unstructured text traditionally relies on semantic lexicons and
gazetteers [PMA04].

• Local search - Geographical location associated with a query in collective human
knowledge and propose a solution to correctly detect it [WLW05].

• Text/Web mining - Agent applications to address healthcare problems, including
that highlight the close fit between intelligent agent properties and healthcare
problems [SDM05].

More than improve keyword search it can open the door to semantic search, faceted search
and document repurposing [DPS07], while providing essential resources to domain ontologies
[RPV04] .

Human language is ridden with semantic ambiguity. Semantic ambiguity refers to
differences in meaning, and is further broken down into homonymy or polysemy, depending on
whether or not the meanings are related.

2.8.1 Word Sense Desambiguation

The bark of a dog versus the bark of a tree is an example of homonymy; opening a door
versus opening a book is is one of polysemy.

Syntactic and semantic ambiguity are orthogonal, since a word can have related meanings
in different categories (“He will review the review when he gets back from vacation”), or
unrelated meanings in different categories (“Can you see the can?”).

24

Relevant Technologies

Figure 2.9: Name Entity collision.

Several instances of the same class (e.g., different people, with same name) or different
classes (e.g., a type of snake, a programming language, or a movie) may share the same name
in. The text referring to the name "John Williams" can mean "John Williams the star wars
composer" or "John Williams the professional wrestler", depending on the surrounding context
(Figure 2.9).

Word sense disambiguation (WSD) is the process that governs the identification of the
sense of a named entity, using a predefined inventory of senses. WordNet41 is the most
commonly used computational lexicon of English for WSD.

There are four conventional approaches to WSD:

• Dictionary based: These rely primarily on dictionaries, gazetteers and lexical
knowledge bases, without using any corpus evidence.

• Supervised methods: These make use of annotated corpora to train from.

• Semi-supervised : These make use of a secondary source of knowledge such as a
small annotated corpus as seed data in a bootstrapping process, or a word-aligned
bilingual corpus.

• Unsupervised methods: Avoid external information and work directly from raw
unannotated corpora.

The distinction between the different senses of words will favour ontologies [GCC05],
especially in large document corpus [HCU04].

2.8.2 Co-Reference and Alias Resolution

Co-reference resolution can be viewed as the classification task of finding the right
antecedent for a referent using grammatical, contextual and morphological features. The use of
semantic resources is uncommon, co-references is mainly done by exploiting the context of
every occurrence.

Figure 2.10: Classic co-reference in sentences.

For example, in the Figure 2.10, Bill Gates and he are most likely co-referent to the same
named entity.

41 Lexical concept network

25

“[Person John Williams] conducted a summer
Star Wars concert...”

“[Person John Williams] lost a Taipei death
match ...”

[Named Entity Type, Named Entity]

“Bill Gates was chairman of M icrosoft. He is married to M elinda
Gates.”

Relevant Technologies

Figure 2.11:Entity alias sample.

Aliases of an entity are the various ways in which the entity is written in a document. For
example in the figure Hewlett-Packard Computers and HP are alias for named entity Hewlett-
Packard (Figure 2.11).

Co-references and aliases resolution in a text can be reduced to the same problem of
finding all occurrences of a named entity in a document. They pose one of the biggest problems
in modern semantic analysis. Methods ranging from supervised to unsupervised exist to tackle
the problem [LXM04].

2.9 Conclusion
Ontology design is a crucial research area for semantic technologies. The Semantic Web

initiative offers a set of standards (RDF, RDFS and OWL) for the representation and exchange
of information.

From the test cases done while exploring the use of RDF/OWL, a range of potential
RDF/OWL applications were idealized. It would be foolish to assume any depth knowledge of
the RDF and OWL standards, due to scale and complexity, but a summary of their main features
in order to make the discussion accessible.

We identify the primary strengths of RDF/OWL as:

• Support for information integration and reuse of shared vocabularies

• Management of semi-structured data

• Web integration

• Flexibility to changes

• Inference mechanisms power

• Classification mechanism, based on a formal semantics, help knowledge extraction

• Representation flexibility, with syntax separated from data modelling

• Ability to represent instance and class information in the same formalism and
hence combine them.

Weaknesses noted are:

• Fairs poorly in document validation

• Expressive limitations

• Serious performance issues in larger ontologies

• Learning curve is steep, the concept is abstract

• It is also largely unsuited to domains involving continuous or fuzzy categories

• No support to processes and change representations in vanilla version.

26

“Hewlett-Packard Computers is the leading consumer notebook PC
brand"

“HP had a market share of 35 per cent in lap top space last year.”

Relevant Technologies

• RDF/OWL is particularly suited to model applications and data, while providing
fairly good support to data integration and distribution, providing interoperability
and development of resilient systems networks to cope with data models.

The usefulness is diminished in pipeline processing problems, where data model is very
stable, not available to clients, and with little or no external interaction. It is also mostly
unsuitable to map fuzzy domains.

The combination of a large documentation corpus, with data disambiguation and
enhancement, promises a wide variety of approaches to problems.

27

3 Related Work

The current chapter presents a synthesis of related work, essential to the dissertation, more
precisely to the module presented in this document, and the reasons who lead to the choices.

Section 3.1 is dedicated to Jena, the main tool to manipulate ontologies and RDF. The
ontology (Section 3.1.1) and query (Section 3.1.2) manipulation are also presented.

The AlchemyAPI is one of many entity recognition and disambiguation tools, the
preference over competition is presented in Section 3.2.

The module discussed in this document requires a specific input format. The details are
explained in Section 3.3.

Final a short resume and conclusion is provided in Section 3.4

3.1 Jena
Some aspects of W3C's RDF Model and Syntax Specification require careful reading and

interpretation to produce a conformant implementation[MBR00]. Jena2 is an API in the Java
programming language, for the creation and manipulation of RDF graphs. It implements the
interpretation of the RDF specifications described in sections 2.2.4 and 2.3 above and specified
in [RDS04]. Jena was developed to satisfy two goals:

• Provide an API that was easier for the programmer to use than alternative
implementations

• Conformant to the RDF specifications.

Jena2 is the second generation of the Jena toolkit, an Open source Java framework
ontology API [JNOWL] to construct Semantic Web Applications [BMC02]. Jena 2 supports the
Jena 1 API [JIC03] and will from now on be known as Jena.

28

Related Work

Figure 3.1: Coarse Jena Architecture.

The API (Figure3.1) is particularly adjusted to programmers who wish to learn RDF by
rapid prototyping.

It has a collection of Java interfaces representing resources, properties, literals, containers,
statements and models. A common set of classes implement these interfaces, though these may
be sub-classed or replaced to optimize particular implementations. The model class is a generic
implementation of an RDF graph. A standard interface connects model to classes that
implement storage and basic querying of RDF statements. The implementation allows the
integration of specialized modules for handing parsing, serialize, entailment regimes, store and
query of RDF [MBR00].

3.1.1 Jena OWL

The API Jena enables the creation ontologies from scratch with diferent entailment
regimes42. In Jena, an ontology is treated as a special type of RDF model, OntModel. This
interface allows the ontology to be manipulated, by coding convenience methods to create
classes, property restrictions, and so forth.

Given an ontology and a model, Jena's inference engine support multiple entailment
regimes to derive additional statements from the model doesn't express explicitly. Jena provides
several Reasoner types to work with different types of ontology. The primary use of this
mechanism is to support the use of languages such as RDFS [JAK03] and OWL which allow
additional facts to be inferred from instance data and class descriptions.

The framework has various internal reasoners. The default OWL rule reasoner has a rule-
based algorithm and gives full support to its own rule format. For complete OWL DL reasoning
Jena uses an external DL reasoner such as Pellet, Racer or FaCT.

Jena2 includes an RDFS reasoner43. RDFSRuleReasoner can be configured to work at
three different compliance levels:

• Full - This implements all of the RDFS axioms and closure rules with the
exception of bNode entailments and datatypes (rdfD 1). This is an expensive mode
because all statements in the data graph need to be checked for possible use of

42 http://jena.sourceforge.net/inference/index.html

43 http://www.w3.org/TR/rdf-mt/#RDFSRules

29

Related Work

container membership properties. It also generates type assertions for all resources
and properties mentioned in the data (rdf1, rdfs4a, rdfs4b).

• Default - This omits the expensive checks for container membership properties
and the "everything is a resource" and "everything used as a property is one" rules
(rdf1, rdfs4a, rdfs4b). The latter information is available through the Jena API and
creating virtual triples to this effect has little practical value. This mode includes
all the axiomatic rules.

• Simple - This implements just the transitive closure of subPropertyOf and
subClassOf relations, the domain and range entailments and the implications of
subPropertyOf and subClassOf. It omits all of the axioms. This is probably the
most useful mode but is not the default because it is a less complete
implementation of the standard.

The OWL reasoners are extensions of the RDFS reasoner and support to all entailments
supported by the RDFS reasoner. RDFS is not a subset of the OWL/Lite or OWL/DL languages
the Jena implementation is an incomplete implementation of OWL/full.

Currently there are three different implementations of reasoners:

• OWLFull – the default implementation, supports all constructs44.

• OWLMini – Nearly the same as OWLFull, but omits the forward entailments
from minCardinality/someValuesFrom restrictions.

• OWLMicro – Trimmed version of OWLMini, supports RDFS plus the various
property axioms, intersectionOf, unionOf (partial) and hasValue.

The three implementations are a set of useful but incomplete implementation of the
OWL/Lite subset of the OWL/Full language. The full reasoner passes the normative OWL
working group positive and negative entailment tests, and is the one use in the work.

3.1.2 Jena ARQ

SPARQL support in Jena is currently available via a module called ARQ. In addition to
implementing SPARQL, ARQ's query engine can also parse queries expressed in RDQL or its
own internal query language. ARQ is under active development, and is not yet part of the
standard Jena distribution. However, it is available from either Jena's CVS repository or as a
self-contained download.

Queries to the created model will return not only those statements that were present in the
original data but also additional statements than can be derived from the data using the rules or
other inference mechanisms implemented by the reasoner. With Jena when the inference Model
is queried then the query is translated into a goal and the engine attempts to satisfy that goal by
matching to any stored triples and by goal resolution with backward chaining rules.

3.2 AlchemyAPI
Alchemy has built in 'entity recognition and disambiguation' mechanisms, employing tens

of millions of contextual hints describing traits of the world’s objects, individuals, and
locations. It employs a variety of public and non-public data-sets.

44 Resources that increase the ontology instances expressive power.

30

Related Work

Hints vary depending on the specific type of entity being disambiguated. For example,
when disambiguating people, the person career information is used, where they’re located, who
they work for, and so on. For companies: key executives, notable products, industry, location,
etc.

Whenever an entity is successfully disambiguated, additional information is returned in
API responses.

Figure 3.2: Alias Resolution.

The entity extractor knows that "HP" is a common alias for "Hewlett-Packard" and it then
can check the employee directory and put the correct full name of the person in the person
attribute (Figure 3.2). The date extractor knows about many different date formats that might
appear in text and can use document context (such as the year the document was created) to
infer the precise date referenced in the document even though it was not specifically provided.
The product name extractor can look up the new name of a product and associate it with a
product database and insert the correct product ID. Future keyword searches can look up
product history and search for all documents with multiple product names.

Figure 3.3: Co-reference resolution.

The AlchemyAPI now resolves he/she/his/her/etc co-references into named entities (Figure
3.3), providing a more comprehensive view of processed texts.

The AlchemyAPI provides Named Entity Extraction, with support to semantic ambiguity,
alias resolution and disambiguation capabilities for text. It can identify dozens of entity types
[AET10] and context-sensitive entity disambiguation [AED10].

Linked Data is a method of exposing, sharing, and connecting data on the Web via
dereferenceable URIs. AlchemyAPI integrates with a variety of resources within the Linked
Data cloud45, to provide additional information describing named entities and enriching the
overall content. Whenever an entity is successfully disambiguated, Linked Data about the
resource is included in API responses. Listed below are the Linked Data resources currently
leveraged by AlchemyAPI:

• Freebase

• US Census

45 http://linkeddata.org/

31

“[Company Hewlett-PackardHewlett-Packard Computers] is the
leading consumer notebook PC brand"

“[Company Hewlett-PackardHP] had a market share of 35 per cent
in lap top space last year.”

[Named Entity Type, Named Entity Disambiguation, Named Entity]

“[Person Bill GatesBill Gates] was chairman of M icrosoft. [Person
Bill GatesHe] is married to M elinda Gates.”

[Named Entity Type, Named Entity Disambiguation, Named Entity]

Related Work

• Geo Names

• UMBEL

• OpenCyc

• Yago

• MusicBrainz

• CIA Factbook

• CrunchBase

• Dbpedia

With AlchemyAPI, semantic content is exposed, allowing the creation of tools to execute
analysis and include meta-data annotation in data.

3.3 Tuple Extraction
The process of tuple46 extraction requires the application of a range of techniques for

natural language processing. A related module was developed to handle the natural language
processing and organized it in a chain of sequential execution, ie a module takes as input the
information from its immediate predecessor.

 Figure 3.4: Tuple creation pipeline.

The algorithm described here was implemented based on the work presented in [DLF07], it
extracts from triple trees generated from parsing the format of annotations style Penn Treebank
[PPB04].

The work presented in [JLE04] defines a tuple as a relationship between subject and
object, an attribute that relates the predicate. Pretty much the same as RDF, but to achieve a
richer knowledge representation, it is necessary to extract the modifiers associated with each of
the three basic components of a tuple. Thus an approach was adopted in which the modifiers of
a word / phrase is neatly attached to the element of triples that are changing, providing extra
semantics.

So for every element that is a tuple is searched their modifiers. For example, the attributes
of a name are mostly adjectives, attributes of a verb are mostly adverbs.

46 Ordered list of elements.

32

Tuple

Related Work

A complete research into the subject (Figure 3.4) was done by Fabio Malheiro in
“Extracção, Semi-Estruturação e Interacção com Informação utilizando técnicas de
Processamento de Linguagem Natural“.

3.4 Conclusion
AlchemyAPI provides Named Entity Extraction and disambiguation capabilities for

analyzing text, providing very fast response time. Compared to existing tools in market (Anexo
A), returned entities have good quality and with a few exceptions. With every disambiguation a
dereferenceable links to other structured databases such as Freebase and Dbpedia is given.

One tools who provides similar resources is Evri47, who gathers named entities and
include semantic links, but recognizes less entities and only provides a reference to the entity in
Evri’s own system. The other is OpenCalais48, fared well in entity recognition, but lacks good
disambiguation and Linked Data features. In its current incarnation, OpenCalais results require
manual linking between Named Entities to LOD.

Alchemy calls to the API are very fast, and the usage limits are generous, with 30,000 calls
per day available, even for commercial uses. The support of 97 different languages is positive,
but the best support is in english.

Jena proved to be a very powerful tool for supporting ontologies, with the added bonus of
being developed in Java, which is a programming language commonly used commercially, with
a large number of resources.

The Jena has a very ample documentation. In large part this is due to the fact that its origin
is in the laboratories of HP, which today contribute to the development and documentation
generation.

It should also be emphasized that the tutorials and online support facilitate the
understanding of the framework.

Without the concept provided in the work “ Triplet extraction from sentences” [DLF07],
the module developed by Fabio Malheiro wouldnt be possible to develop. The subject of
document representation was one of the main subjects of research of this work.

47 www.evri.com/
48 www.opencalais.com/

33

4 The Prymas System

This chapter makes a deeper description of the proposed system architecture, followed by
the methodology required to achieve the planned goals.

This section clarifies the Prymas Knowledge Management system concept, design and the
modules relations. Secondly, the Knowledge Discovery Layer architecture is presented in
particular, showing relations between the Knowledge acquisition layer and knowledge retrieval
layer.

Moreover, special relevance to system expectations, methodology and tools are given.

4.1 Knowledge System
To handle the demands of a vibrant growing market, large organizations began to pay

special attention to the problems of knowledge management. Users nowadays don't want to use
complex technical systems to access information, in the majority of the cases a simple question
should be more than enough to find the information in the system.

Recognizing the problem, Wipro Portugal, Department of Innovation, put forward the
challenge to conceptualize and implement a Knowledge Management System (KMS) with
support for Natural Language Processing (NLP), to supporting the entire lifecycle of
acquisition, process and access to knowledge, giving special focus to the study of the current
state of art, both in technological and scientific approaches

Prymas is the end result. A distributed Knowledge Management system to acquire,
process, and inference of knowledge from fragments of text. Split into 3 different modules.

Prymas is intended be one answer to current knowledge management problem within
Wipro Retail and customers, supporting better management practices on large collections of
knowledge assets and allowing a more effective and quickly interaction with knowledge.

4.1.1 Architecture Overview

Prymas is designed to support all the knowledge development cycle, allowing
identification, representation, construction and distribution of knowledge, by adopting the best
practices and solutions, within the organization and offer a more effective and closer

34

The Prymas System

engagement of individuals with the business processes. Corporate employees will have the
opportunity to continuously contribute with knowledge and access information from a central
knowledge repository.

Later, this project aims to lend a hand in training processes and consulting projects in retail
environment. As a matter of fact, it will provide untrained users with swift access to knowledge
that in many cases would take an expert some time to find.

Prymas will materialize into a virtual knowledge expert agent. The document collection,
stored in a knowledge repository is linguistically analysed, in order to create a semantic network
of facts and relations. The same document collection is also indexed by an Information
Retrieval module, allowing a fast retrieval of its contents.

Figure 4.1: System Architecture.

As represented in Figure 4.1, Prymas is a Question and Answering (Q&A) system to
supports information retrieval, searching relevant passages and references across the document
collection. Besides, the document collection it also includes Natural Language processing, in
order to build an intermediary representation to facilitate the relationship construction of the
semantic network system.

With his contribution, Prymas is expected to provide active support to knowledge
management, since individuals will make an effort to explicitly encode their knowledge into a
shared knowledge repository, plus retrieved knowledge takes into consideration previous
feedback from users.

35

The Prymas System

The motivation underlying the development of KM system considers several
considerations:

• Increase the use of the organization knowledge base.

• Ease the use of the organization knowledge base.

• Support the products and services lifecycles.

• Ease new product and services learning curve, reduce the overall development
cycle.

• Provide access to expert knowledge across the organization in a distributed way.
• Managing intellectual capital and intellectual assets in the workforce (such as the

expertise and know-how possessed by key individuals).
Prymas is divided into three important modules; Knowledge Acquisition, Knowledge

Discovery, and Knowledge Retrieval.

4.1.2 Knowledge Aquisition Module

The first module from Prymas, Knowledge Acquisition, is concerned with acquiring and
interpreting information from unstructured sources, such as text documents and technical
reports. Then, through text extraction techniques a structured meta-model is produced,
containing explicit knowledge in their representations. This is an in-between-representation
between data and knowledge, as it already comprises some syntactic relationships between
concepts.

Thus, this process includes all the phases from the conversion of the raw text lines from
one sentence, to explicit knowledge relationships mapped into a meta-model representation
from the original text sentence.

Figure 4.2: Knowledge Acquisition Flow.

Figure 4.2 describes the knowledge acquisition flow, from an unstructured text documen
that include the following steps:

• Tokenization

• Part-of-Speech tagging

• Stemming

• Stop-words removal

• Triples Construction (subject-predicate-object)

In fact, the Knowledge Acquisition process described in Figure 4.2, comprises the
application of Natural Language mechanisms in order to perform the interpretation and
transformation of unstructured knowledge into a structured and explicit relationship. This task
uniforms information into a unified representation. Then, as soon as the facts representation is
built, it can be manipulated and exploited by automatic computer mechanisms.

36

Text Document Tokenization
Part-Of-
Speech
tagging

Stemming Stop-words
removal

Triples
Construction

The Prymas System

4.1.3 Knowledge Discovery Module

The second module from Prymas, Knowledge Discovery, is responsible for obtaining
implicit knowledge trough explicit knowledge analysis and association. This is carried out
through the automatic ontology construction, where relationships within triples are mapped into
a network. The input for this layer is the output meta-model representation from the previous
Knowledge Acquisition module.

With the raise of the Semantic Web, a web of data with defined meaning, transverse to
multiple domains, enabling computers and users to work in cooperation. New possibilities to
represent and integrate knowledge emerge, and new languages to deal with information are
implemented, for an assortment of purposes.

The ontology is a dependable way to publish information, a declarative description of a
concept fundamental understanding, in the world of interest, and is used in this work as
structure to represent knowledge.

This form of Knowledge Representation is represented by a graph, where the vertices are
the concepts, and the edges are the relationships between the concepts. Each relation in the
network is a representation of a fact that is classified by a relation type. Ontology representation
supports mechanisms to reason and infer, allowing exploitation of the knowledge. Furthermore,
this module uses a generic ontology hierarchy in order to reflect the state of the world.

One of the key challenges of the Semantic Web is how to go from today’s unstructured
web to a web rich with semantic information. On today’s Web, there is a growing number of
data sets published according to the Linked Data principals, the majority of them being part of
the Linked Open Data (LOD) cloud. As LOD connects data and people across different
platforms in a meaningful way, one can assume that harnessing LOD, by means of inclusion and
manipulation of data, can greatly improve the KR and the overall KMS.

The ontology’s construction method allows the use of diverse domains, increasing the
flexibility of the module.

Figure 4.3: Knowledge Discovery flow .

As we can see in the Figure 4.3, this Prymas architecture includes an important layer of
knowledge detection and enhancement. After the knowledge buried within documents is
converted into a triples representation, this Knowledge Discovery layer is responsible for
processing the relations and enhanced existing content with recognition of entities and using
relations existing in linked open data format, in the web. This increases the existing knowledge
with new and useful knowledge .

4.1.4 Knowledge Retrieval Layer

The third module from Prymas, Knowledge Retrieval, comprises the interaction and
communication between the user and the Question and Answering System. It embraces all the
phases from one question from a user, to the final response to the user. This layer includes a
natural language interface. More precisely, users interact with the knowledge base my means of

37

Triples meta-
model

Triples
Validation

Triples
Integration

Semantic
Relationship

Entity
Enrichment

The Prymas System

a Question and Answering system. Users ask questions in English, and receive answers also in
natural language. QA systems grant users the ability of easily inquire knowledge database,
requiring only a small learning curve of the system. This is a valuable feature, as we want to
have a system that can be used not only by technicians, but also for a wide range of users
without technical background.

Figure 4.4:Indexing Flow.

Figure 4.5:Question and Answering Flow.

As the Figure 4.4 shows, after the unstructured knowledge berried within the documents
being indexed by an Information Retrieval engine, passages from documents can be searched.

It is shown in the Figure 4.5, Question and Answering flow, from the user question until
the final passage as response to the used. The first step from this module is to perform a set of
Natural Language tasks by the question analyzer in order to processes the user question, and
convert into query term that will be useful for the IR system. Moreover, the terms are enriched
with linguistic features that will support the enhancement of the passage retrieval, such as entity
recognition and synonyms to the query terms. The entities are also searched in the ontology
network, in order to provide further information to the IR system.

4.2 Expectations
The semantic web is a whole new research field. Ontology is a building block of the SW

and its development is not an easy task. The success is dependant more on the creator art than
technology. Common problems arise when defining the concepts of the ontology, this raises
questions like:

• The ontology should be manually or automatically built?

• Is the ontology right for the problem?

• Do we have access to domain experts to build and\or validate the ontology?

• Should the knowledge be strongly domain-specific focused?

• How can we use the ontology mechanisms for inference?

Every time a new ontology is built related to a different concept, the same barriers appear.
There is no definite process and can run into two completely different problems:

• Ontology too simple and too generic.

• Ontology so complex that makes their use impractical.

A balance is essential, where represented information is meaningful, reusable, and can be
used with semantic web technologies, especially reasoners, to provide inference.

On today’s Web, there are a growing number of data sets, published according to the
Linked Data principals, the majority of them being part of the Linked Open Data cloud. The

38

Documents Collection Indexing Passages Indexes

User Question
Natural

Language
Processing

Query Searching Ranking Passages
Retrieval

The Prymas System

goal of Linked Data is to enable people to share structured data on the web. Taking the basic
assumption behind linked data that the value of information increases the more it is interlinked
with other data49, a reliable way to integrate and exploit the existing information within linked
data is sought.

An Information Retrieval Systems is useless if we can’t retrieve information. To take
advantage of the ontology semantic power and knowledge inference mechanism and the free
and readily available linked data information, a method that is capable of querying the system is
required.

The work at hand deals with this problematic, particularly in terms of automating the
process of creation and instantiation of the ontology and query construction.

The project will run as part of an overall project of creating a system for Acquisition and
Management of Distributed and Dynamic Knowledge in Natural Language Interaction with
support for knowledge development and consultancy projects in the Retail sector.

Taking the existing available retail knowledge, distributed across multiple documents, we
try to create an automatic system to represent knowledge, instantiate and enhance information
as ontology.

The time constrains put a strain in the objectives, but results are essential. After 16 weeks
the following results are expected:

• Insight into current state of art both market ready in scientific research knowledge
representation systems.

• Experience Semantic Web building blocks, taking into special account semantic
languages, ontologies and tools.

• Generalize the handled problems to related applications.

• Generate an automatic system to represent knowledge.

• Instantiate and enhance information as ontology, using the power given by the SW
to exploit the data.

• Provide a system that will help user in the pursuit of knowledge existent in the
documents

To resume, as part of a global challenge to conceptualize, design and implement a proof of
concept Knowledge Management System, with the support of Natural Language Processing and
semantic information, following a philosophy of "Open Innovation".

This dissertation focuses on all the research and the system it originates. The system is a
proof of concept of a method for generating a semantic representation of a document; enhance
the volume of current information and their quality, using external data and metadata to improve
the existing knowledge base.

4.3 Methodology
After a process of joint research, followed by an individual phase, a common set of

technologies promised solution to the problem presented. The focus lies on the SW
technologies, with particular focus on ontologies, properties, languages and associated tools.

49 http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

39

The Prymas System

When the technological focus has been reached, the design of architecture began. After a
team process of workload division and experimentation with technology was done. After having
a architecture and solid experience with the technologies, the development process started.

The development process of this module is composed of 6 steps:

1. Build of a tuple knowledge base

2. Extract named entities

3. Enhance tuples with Linked data

4. Ontology inference

As described, the tuples represent the sentence syntax and semantic, inspired in the RDF
subject-predicate-object information representation with some adaptations [ADE09]. It
represents the relation between a subject, predicate and object elements, where each one can
have or more modifier elements. From the analyses of the text document, with a syntactical
parser for English is generated a parse tree with metadata of the sentence, followed by the
extraction of the tuples elements using a heuristic parser dependent techniques. The result is a
semantic representation of each sentence, following a customized tuple representation.

For each customized tuple, with Jena is created its OWL language representation. OWL
uses a triple format knowledge base. With the tuple elements, when mandatory, new classes are
built and respective individuals created. Data properties and Object properties are used as
required. They represent the sentence structure.

Using the tuples and the AlchemyAPI, named entities are extracted, alias and basic co-
reference solved. With the extracted entities, new classes are built and respective individuals
created. The Data properties and Object properties are also used as required.

In the final step, for each tuple element, if the AlchemyAPI provides Linked Data the data
is used to create new individuals Data properties and Object properties, to enhance the ontology.

Jena supports instance-based reasoners [JNINF]. That is, they work by using rules to
propagate the if- and only-if- implications of the OWL constructs on instance data. They infer
OWL instances for the existing classes, from the fashioned representation of triple knowledge
base. It allows the inference of new knowledge.

The OWL classes and instances generated by the system are used as knowledge base by
the system, to infer new answers to user queries. The answers are supported by ARQ a query
engine for Jena that supports the SPARQL RDF Query language.

By adding new sentences, more tuples are created, more named entities recognized and
more Linked Data added, interlinking more data and improving user queries results.

4.4 Development Enviroment
The work was developed in the operative system Windows XP. The creation, manipulation

and publish of the ontology is done with Jena [Jena].

It provides a programmatic environment for manipulating RDF, RDFS and OWL,
SPARQL and includes a rule-based inference engine. The ontology is manipulated in the OWL
format [RFOWL]. It expresses everything that RDFS allows and much more.

The Jena inference subsystem, [JNRES] is designed to allow a wide range of inference
engines or “reasoners” to be plugged into Jena. The primary use of this mechanism is to support

40

The Prymas System

the use of languages such as RDFS and OWL which allow additional facts to be inferred from
instance data and class descriptions. The reasoner has a validation interface to detect when such
constraints are violated by some data set.

ARQ is a query engine for Jena that supports the SPARQL RDF Query language [RDAT],
a query language [RSPQL] and a protocol [SPQLP] for accessing RDF designed by the W3C
RDF Data Access Working Group.

The AlchemyAPI [ALAPI] is capable of identifying people, companies, organizations,
cities and other typed entities from text. To provide additional information describing the named
entities detected, the AlchemyAPI provides comprehensive support for RDF and Linked Data to
enriching the content. It is integrated into the project with the Java SDK.

The Protégé-OWL editor is an extension of Protégé that supports OWL, and is used to
visualize classes, properties and individuals generated by the java code. It also allows the test of
different reasoners such as pellet [PELLT] or Fact++ [FACTR].

41

The Prymas System

5 Knowledge Discovery

With a work plan cut, the implementation process starts. This chapter gives a step by step
description of the implementation.

Besides the semantic web view (Section 5.1), a description of languages (Section 5.1.1),
and the relation with the ontology (Section 5.1.2) in the work is provided. Trailing is the actual
implementation process (Section 5.2), where the namespace (Section 5.2.1), action and entity
classes are created (Section 5.2.2), follow by the creation of class concept (Section 5.2.3), and
all the individuals (Section 5.2.4).

Final a short resume and conclusions are provided in Section 5.3.

5.1 Base ontology and semantic Web
Semantic Web is a term coined Tim Berners-Lee [TBL98]. It is a vision for the future of

the Web, in which information is linked up and have explicit meaning [WOT04], making it
easier for machines to automatically process and integrate information available on the Web,
providing a common framework that allows data to be shared and reused across application,
enterprise, and community boundaries.

According to the original vision, the porting of a document to Semantic Web involves the
insertion of semantic notes (machine-readable metadata) to the original data, enabling machines
to perform in a more intelligent way [TBL01]. No information is added, we only represent
information in a more accessible format to access and infer.

5.1.1 Language

The Semantic Web initiative offers a set of standards (RDF, RDFS and OWL) for the
representation and share and reuse of information [DCJ05].

OWL, web ontology language, is a representation of term vocabularies and relations
between them. It’s based in DAML+OIL [DOL01] (a successor language to DAML and OIL),

42

Knowledge Discovery

where refinements of design and use where done. OWL extends RDF and RDF Schema and
employs a triple representation model. Its design principle includes developing a standard
language for ontology representation, to enable semantic web, and consequently extensibility,
modifiability and. The normative exchange syntax for OWL is RDF/XML [RDF04].

The expressive and reasoning power of description logic to the semantic web made it the
chosen tool to use in the ontology built the knowledge database.

5.1.2 Ontology

With the language defined and a 3-tuple representation of the documents, the domain
ontology, a meaningful representation of the documents content and structure, can be built.

The Ontology is a formal representation of domain knowledge. In general, domain experts
work with strong domain specific knowledge. With the help of domain ontology, we can
understand the relationships among the concepts in a text, and use the knowledge in various
applications [GTR93]. But it’s rather difficult, even for experts to come up with objective and
generic knowledge to represent in the ontology, hence making it.

The creation and update is costly, but crucial, specially now with dynamic data. An
automatic domain ontology acquisition is preferred. Most approaches use only nouns as the
bricks for ontology building. These methods usually resort to clustering methods and disregard
any ontological relations between other word classes.

The ontology needs to se semantically coherent and capable of represent significant
concepts and pertinent relations, but at the same time provide a useful domain description. It’s
composed of classes, data properties, object properties and individuals.

One of the building pillars of this dissertation is the possibility of enhance the ontology
with linked data, using shared structured data on the Web, to create typed links between data
from different sources. Importing other resources from the web brings the entire set of
assertions provided by their ontology into the current ontology. In order to make best use of this
imported ontology they are coordinated with a namespace declaration, fully supported by OWL
[OWL04].

Additionally we don’t want to retrieve just explicit stated knowledge, with OWL reasoning
capabilities we want to infer implicitly stated knowledge on the ontology [JNI10].

OWL makes use of the Open World Assumption [], under this open world assumption, if a
statement cannot be proved to be true using current knowledge, we cannot draw the conclusion
that the statement is false.

Finally the creation of the ontology and their enhancement leads to improve the capability
of querying the information. As a query language, SPARQL is "data-oriented", it only queries
the information held in the model [SPARQ]. SPARQL does not do anything other than take the
description of what the application wants, in the form of a query, taking into account entailment
regimes[ENT10] and returns that information, in the form of a set of bindings [PPA10] or an
RDF graph [ARQ10]. ARQ is a query engine for Jena that supports the SPARQL RDF Query
language.

5.2 Ontology Creation
The name “ontology” comes from Greek philosophy and means “the study of the nature of

being”. The term is used in the domain of Knowledge Representation “to categorize the kinds

43

Knowledge Discovery

of things existing”. The aim is to fix a common vocabulary of terms able to describe as much
knowledge about the world as possible from given domain, and to subdivide this knowledge in a
coherent class hierarchy, so as to create a shared knowledge representation language.

Usually an Ontology is composed of the following:

• classes of objects

• instances

• relations between instances and classes

Existing ontology construction have severe limitations in creating ontologies from
representative text collections. Considerable research has gone into developing ontologies and
applying them to a variety of applications. The extraction of domain knowledge for developing
these ontologies is often performed on a manual basis, depending of the Ontologycreator’s
preferences and abilities.

Ontology creation is iterative process of modelling the given domain, by choosing the most
important concepts and identifying the most relevant relations between them.Extracted
knowledge is then organized into a domain ontology.

5.2.1 Namespace

XML namespaces provide a simple method for qualifying element and attribute names
used in Extensible Markup Language documents by associating them with namespaces
identified by URI references.

The base ontology and instances use the namespace with name “sample” and location
“http://www.example.com/ontologies/”.

5.2.2 Entity and action

It is essential to create a simple representation, but at the same time reliable and robust.
The system can’t have serious limitations that could hinder future improvement iterations. The
semantic web provides a vast array of tools and technologies to solve these problems.

The simplest building block is the triple, conventionally written in the order subject,
predicate. An RDF triple contains three components:

the subject, which is an resource or a blank node.

the predicate, also known as property, is an resource.

the object, which is resource, a literal or a blank node.

A resource is an attribute where the value of which is interpreted from a RDF URI
reference object node.

Figure 5.1: RDF triple.

44

Knowledge Discovery

As shown in figure 5.1, the expressions are known as triples in RDF terminology. The
subject denotes the resource, and the property denotes traits or aspects of the resource and
expresses a relationship between the subject and the object.

The first step of the automatic pipeline for ontology creation is complete. We have a
custom built, automatic, tuple elements creation process. Each sentence is represented by one or
more tuples.

The first step of the automatic pipeline for ontology creation is complete. We have a
custom built, automatic, tuple elements creation process. Each sentence is represented by one or
more tuples.

The tuples keep the majority of the sentence semantic and structure, as feasible. When
creating the sentence ontological representation, the loss of information is also avoided, taking
into account the tuple original representation limitations.

From the tuples, we can create the classes for entities, actions and their relations. It
requires no human intervention. Classes provide an abstraction mechanism for grouping
resources with similar characteristics.

Figure 5.2: Simple tuple mapping.

The action is the tuple elements representation of the sentence structure and the notions
relation. The class keeps the essential sentence structure.

In every tuple, elements represent an ontology notion, even modifiers. Entity is the system
top class to represent sentences elements as basic notions.

For each element in the tuple we will create a new class representation, if the notion
doesn’t exist. They are called Entity Elements.

New Entity Elements are created from new tuple elements and added to the ontology, they
represent a new notion. The notion created is a subclass of entity. Some tuple elements have
modifiers. Every modifier element is processed as any other tuple element. It is represented as
subclass of entity.

45

Entity

Action

Entity A
ind

Entity B
ind

Entity C
ind

Action
X

Subject Predicate Object

P_Entity BO_Entity A O_Entity C

- Class

- Individual

- Object Property
- Type
- Superclass

Thing

Entity D
ind

O_Entity D

Modifier

Knowledge Discovery

Figure 5.2 shows a representation mock of a tuple with 4 different elements. Following the
rules, 4 new unique entities, subclass of Entity are created.

Figure 5.3: Elements representation collision.

Despite all the effort with NER, there are still problems with WSD. The tools are
unreliable, and the science models incomplete. To reduce syntactic and semantic ambiguity, at
least a bit, when creating a new class a different tag is given, a prefix in the name. Elements
representing the action notions subject, object and their modifiers get “O_”, the representation
of predicate and their modifiers get “P_” preffix.

As shown in Figure 5.3, in “John can you review my review.” the first review is a verb in
base form, but the second is a noun in singular form. This is a simple and neat way to avoid
crossing of elements representation of subject and object, and their modifiers, with elements
representation the predicate and their modifiers, who are more relevant to the relations between
subject and object.

For the case shown, the base skeleton of the classes are:

 <owl:Class rdf:about="&sample;Entity">
 <rdfs:label rdf:datatype="&xsd;string">Entity representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of entity. Keeps every

entity in a document</rdfs:comment>
 </owl:Class>

 <owl:Class rdf:about="&sample;Action">
 <rdfs:label rdf:datatype="&xsd;string">Action representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of Action. Represents

46

John can you review my review.

Action
- Type
- Superclass

Entity

...

Review
Individual

1

...
Predicate

P_Review

- Class

- Individual

- Object Property

Thing

Action
X

Review
Individual

2

O_Review

Knowledge Discovery

the tuple relations</rdfs:comment>
 </owl:Class>

5.2.3 Concept

The term “Named Entity Recognition” (NER) refers to the process of recognizing
information units such as names, including person, organizations, locations, times and
quantities, etc, from unstructured text.

Figure 5.4: NER pipeline

The tuples extracted from each sentence don’t provide extra information, but at the same
time the majority of the semantic context and structure is not lost.

Doing Named Entity Recognition only for each tuple element would provide fewer results.
They would be of feeble quality, since the surrounding text relations are not examined for
contextual cues.

The determination of he/she/his/her/etc co-reference into named entities provides a more
comprehensive view of processed texts, but it’s impossible, if examination is done tuple by
tuple.

To improve the NER process, and allow co-reference resolution, sentence regeneration50 is
done. Keeping the tuple creation order is essential to produce correct co-reference resolution.
For each tuple a direct concatenation elements is done as shown in Figure 5.4.

50 Custum built process to recreate sentence semantics, from the tuples.

47

Triple(William Gates, be, chairman [Microsoft Software])
Triple(He, study , Harvard University)

“William Gates was chairman of Microsoft Software. He studied at
Harvard University.”

[Named Entity Type, Named Entity Disambiguation, Named Entity]
[Person Bill Gates William H. Gates]
[Company Microsoft Microsoft Software]
[Person Bill Gates He]
[Organization Harvard University Harvard University]

Triple extracted

William Gates be chairman Microsoft Software
He study Harvard University

Sentence regeneration

Named Entity Recognition

Knowledge Discovery

Figure 5.5: AlchemyAPI result schema.

The AlchemyAPI identifies information units, in the sentence, returning the result in the
XML format, where the original text, type and disambiguation are held (Figure 5.5).

When we create the Entity class, we check if there is Named Entity information. In the
NER XML we look for the text element [WSM04, XML08], inside entity element, with the
same name as the tuple element, using XPath [XPA99]. Each new Named Entity Type (NET),
leads to the creation of a new class representation. They are created as subclass of Concept.

The class Concept groups Named Entity type information into relevant groups, providing
extra information to the entity notions.

The process is repeated till all tuples are processed. The concept representation class is:

 <owl:Class rdf:about="&sample;Concept">
 <rdfs:label rdf:datatype="&xsd;string">Action representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of Concept. Represents

named entity types and relations with entities</rdfs:comment>
 </owl:Class>

5.2.4 Individual creation

Each class has associated a unique set of individuals and each tuple element is represented
by and unique single individual. The individual creation process runs simultaneous with the
class creation process. Individuals represent objects in domains of interest [OWL04].

Properties are URI references [URI98] and Individuals have a relationship denoted by the
properties. Action is related with the respective entity, using properties subject, predicate and
object. The properties have Domain Action, Range Entity, are functional [FUN04] and share the
base ontology namespace.

Property modifier relates entities. They have Domain and Range Entity. The properties are
functional and have the base ontology namespace.

48

<?xml version='1.0' encoding='UTF-8'?>
<!ELEMENT results (entities|language|url|usage|status)*>
<!ELEMENT entity (disambiguated|text|count|relevance|type)*>
<!ELEMENT disambiguated (yago|opencyc|umbel|freebase|dbpedia|name)*>
<!ELEMENT disambiguated (website|semanticCrunchbase|crunchbase)*>
<!ELEMENT status (#PCDATA)>
<!ELEMENT usage (#PCDATA)>
<!ELEMENT url EMPTY>
<!ELEMENT language (#PCDATA)>
<!ELEMENT entities (entity)*>
<!ELEMENT type (#PCDATA)>
<!ELEMENT relevance (#PCDATA)>
<!ELEMENT count (#PCDATA)>
<!ELEMENT text (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT dbpedia (#PCDATA)>
<!ELEMENT freebase (#PCDATA)>
<!ELEMENT umbel (#PCDATA)>
<!ELEMENT opencyc (#PCDATA)>
<!ELEMENT yago (#PCDATA)>
<!ELEMENT crunchbase (#PCDATA)>
<!ELEMENT semanticCrunchbase (#PCDATA)>
<!ELEMENT website (#PCDATA)>

Knowledge Discovery

Every time a tuple is processed, a new action individual is created. The individual has as
superclass Action, denotes as being of the type Action.

The tuple elements (subject, predicate, object and every modifier) originate always one
single unique individual. The individual has as superclass Entity Element. Due to the ontology
inference mechanisms it has also superclass Entity and Thing. The individual is acknowledged
as Entity individual.

OWL individuals don’t have "unique names”. On the web, such an assumption is not
possible. For example, the same person could be referred to in many different ways. For this
reason OWL does not make this assumption. Unless an explicit statement is being made that
two URI references refer to the same or to different individuals.

The avoid namespace collisions, each individual has a unique hash attached as prefix
name. The individual has the property label, with namespace RDFS, used to provide a human-
readable version of a resource's name.

Figure 5.6:Individual relation.

The individual of type action is related to individuals of the type entity, by the object
properties subject, predicate and object [OPR04] (figure 5.6).

This relation represents the simplest sentence representation, a sentence with a noun
related by the predicate with other noun or adjective.

49

Entity

Action

Entity_A_
hash

Entity_B_
hash

Entity_C_
hash

Action_ha
sh

Subject Predicate Object

P_Entity BO_Entity A O_Entity C

- Class

- Individual

- Object Property
- Type
- Superclass

Thing

Knowledge Discovery

Figure 5.7:Individual modifiers.

Some tuple elements have modifiers; they provide extra information about the entity and
are essential to keep sentence semantics. This leads to improve the ontological sentence
representation and overall ontology semantics.

Every modifier element is also a subclass of entity. One individual can have one or more
modifiers to an existing entity individual, related by the functional property named modifier.
Each individual of type entity can have one or more modifiers (figure 5.7).

Besides knowing the Entity individual name, representation in the sentence and relation to
other Entity individuals, no extra information is provided; it’s time to start enhancing
knowledge. Every time a new individual of type Entity is created, the enhancement process is
attempted.

The first footstep is Named Entity Disambiguation. We already run AlchemyAPI to find
anfd create Named Entity Types in Concept class, but Alchemy provides much more, it can
expose semantic hidden content .

After running AlchemyAPI, for each tuple element, the NER XML return is one of 3
possible:

• NER doesn’t return nothing, finds no entity

• NER process returns only the Named Entity Type and solves co-reference.

• NER process returns the Named Entity type, disambiguation information and
solves co-reference.

If the NER process doesn’t return information, no named entity was found, and at the
moment no information enhancement is possible, no more individuals are created. With future
improvements, AlchemyAPI might provide results.

50

Entity

Individual
B_hash

O_Entity A O_Entity B

Individual
A_hash

- Class

- Individual

- Object Property
- Type
- Superclass

Individual
C_hash

O_Entity C

modifier

modifier

Thing

Knowledge Discovery

Figure 5.8: Entity desambiguation.

If the NER process returns the Named Entity Type, with co-reference solved, but no
disambiguation information is available, a new individual is create with the same name as the
Tuple element (and in case of a co-referring the resolution name) and has the same superclass or
type as the NET class. The individual is acknowledged Concept individual, as shown in Figure
5.8.

The built-in OWL property sameAs links a Concept individual to an Entity individual. The
sameAs statement indicates that two URI references actually refer to the same thing: the
individuals have the same "identity" or meaning.

The return with the most appealing information is the third, besides the Named Entity type,
it also provides disambiguation information. The new individual is created with the same name
as the disambiguated name and has the same superclass or type as the NET class. The OWL
property sameAs links the created Concept individual to the equivalent Entity individual.

51

[Named Entity Type, Named Entity Disambiguation, Named Entity]
[Person PersonX person]
[Company CompanyX company]
[Person PersonX He]

Concept

PersonX

Person Company

CompanyX

Entity

Thing

person_hash

O_person

company_
hash

O_company

- Class

- Individual

- sameAs
- Superclass

he_hash

O_he

Knowledge Discovery

Figure 5.9: Linked Open Data resource.

Whenever an entity is successfully disambiguated, Linked Data resource location is built-
in in API response. The desambiguation includes "sameAs" RDF links to Identifiable Resources
(Data Sources) in the Linked Data cloud (Figure 5.9).

Figure 5.10: Linked Open data resource desambiguation.

52

Linked Data Cloud

- Individual\Resource

- Ontology

- sameAs
- Instance linkages

Base Ontology

[Named Entity Type, Named Entity Disambiguation, Named Entity]
[EntT EntX ent]
[EntT EntX entx]

Concept

EntX

EntT

Entity

Thing
ent_hash

O_ent

- Class

- Individual

- sameAs
- Superclass

entx_hash

O_entx

EntX

EntX

EntX

Linked data resources

Knowledge Discovery

The Concept individual is connected to the Linked Data cloud resource, by slash51 URI, as
a way to expand the current knowledge database.

The inclusion of the link to the LOD resource in the Concept individual allows the reuse of
well know mix of vocabularies available in the semantic web (Figure 5.10), adapting the data to
the application needs, allowing further expansion of the application usefulness.

The LOD resources have useful data to integrate in the current KD. SPARQL Protocol and
RDF Query Language (SPARQL) are to the semantic Web as SQL is to a relational database.
With Jena and ARQ support, sophisticated queries against distributed LOD resources or any
other RDF databases can be done, to capture fragments52 of information and integrate them in
the knowledge domain, the system is bonded.

Using a custom query is built in the Sparql language, taking into account the domain, KD
needs and LOD resource namespace, endpoint53 and Jena ARQ API. The data acquired from the
query is integrated into the Concept individual, while keeping the original namespace
unchanged, since the LOD guidelines state:

• Do not define new vocabularies from scratch.

• Make use of other people terms.

One or more Concept individual links to LOD resources are queried.

The query result and relations to the individual are integrated in the base ontology, keeping
original namespaces as possible. New relations are created when needed. As example a LOD
resource regarding a person won’t provide the grandfather relation, but will when possible
provide father. To obtain the grandfather relation, the query will search for the father of the
resource father. The grandfather resource will keep original namespace, but grandfather
property will keep the base ontology namespace.

5.3 Conclusions
An automatic process for ontology creation and enhancement was presented. After

applying the process to tuples, who can be created from full texts in documents, a representation
in OWL is created and merged with enriched data, obtained from named entity resolution, co-
reference and alias resolution and LOD inclusion. The OWL representation provides a
pragmatic interpretation of its content.

The reasoner engine allows the queries used with the model to return not only those
statements that were present in the original data representation, but also additional statements
than can be derived from the data using the rules or other inference mechanisms implemented
by the reasoner.

51 303 redirect type, used when the RDF and HTML convey the same information in different forms.

52 Triples.

53 Standard SPARQL protocol service as defined in the SPROT specification.

53

6 Test Case

This chapter provides a working sample of the tackled problem, helping in the
understanding and interpretation of the problem.

A basic sentence can be reduced to three basic elements: subject, predicate and
complement, similar to the tuple <subject, predicate and object>. Subject usually indicates a
person, object or idea, executed by the verb. The predicate refers the action; it is the verb of the
sentence and is the relation between subject and complement. Complement also know as object
in the tuple indicates the element affected by the action, i.e., the predicate.

Let’s take as example the following sentence “Bill Gates was chairman of Microsoft”, the
relation with name “was”, relates subject “Bill Gates”, with complement “chairman”. The
complement has also a modifier, “president”.

When applied to the sentence the algorithm for tuple extraction, the result will be the
following:

• Subject – “Bill Gates”

• Predicate – “be”

• Object - “chairman”, with modifier “Microsoft”

Now starts the project related to this document, with the base ontology already created, the
results are:

The resulting action would store the tuple subject, predicate and object.

<sample:Action rdf:about="&sample;Action_111bd81a-97ff-45fd-9512-5b2cead9ba33">
<rdf:type rdf:resource="&sample;Action"/>
<sample:object rdf:resource="&sample;Bill_Gates_a7325220-bf8e-47ba-9ea9-985c4ee1a231"/>
<sample:subject rdf:resource="&sample;chairman_931ea3e6-b50d-428a-86ba-2763c220eb29"/>
<sample:predicate rdf:resource="&sample;be_46ea77c2-3d30-44a8-8a6c-e815ff47af5b"/>

</sample:Action>

The subject, predicate, object and modifier classes result would be:

<owl:Class rdf:about="&sample;O_Bill_Gates">
<rdfs:subClassOf rdf:resource="&sample;Entity"/>

</owl:Class>

<owl:Class rdf:about="&sample;O_chairman">

54

Test Case

<rdfs:subClassOf rdf:resource="&sample;Entity"/>
</owl:Class>

<owl:Class rdf:about="&sample;P_be">
<rdfs:subClassOf rdf:resource="&sample;Entity"/>

</owl:Class>

<owl:Class rdf:about="&sample;O_Microsoft">
<rdfs:subClassOf rdf:resource="&sample;Entity"/>

</owl:Class>

The individuals generated are:

 <owl:Thing rdf:about="&sample;Bill_Gates_a7325220-bf8e-47ba-9ea9-985c4ee1a231">
 <rdf:type rdf:resource="&sample;O_Bill_Gates"/>
 <rdfs:label xml:lang="EN">Bill Gates</rdfs:label>
 <owl:sameAs rdf:resource="&sample;BillGates"/>
 </owl:Thing>

 <owl:Thing rdf:about="&sample;chairman_931ea3e6-b50d-428a-86ba-2763c220eb29">
 <rdf:type rdf:resource="&sample;O_chairman"/>

<rdfs:label xml:lang="EN">chairman</rdfs:label>
<sample:modifier rdf:resource="&sample;Microsoft_46ea77c2-3d30-44a8-8a6c-e815ff47af5b"/>

 </owl:Thing>

 <owl:Thing rdf:about="&sample;be_46ea77c2-3d30-44a8-8a6c-e815ff47af5b">
 <rdf:type rdf:resource="&sample;P_be"/>
 <rdfs:label xml:lang="EN">be</rdfs:label>
 </owl:Thing>

<owl:Thing rdf:about="&sample;Microsoft_46ea77c2-3d30-44a8-8a6c-e815ff47af5b">
 <rdf:type rdf:resource="&sample;O_Microsoft"/>
 <rdfs:label xml:lang="EN">Microsoft</rdfs:label>

<owl:sameAs rdf:resource="&sample;Microsoft"/>
</owl:Thing>

The subject, predicate, object and modifers are created. the relations between the are kept,
and connections of type sameAs to concept individuals are created. The next step is the named
entity recognition, concept creation and enrichment of data. First lets check the OWL code for
the concepts.

<owl:Class rdf:about="&sample;Company">
<rdfs:subClassOf rdf:resource="&sample;Concept"/>

 </owl:Class>

<owl:Class rdf:about="&sample;Person">
 <rdfs:subClassOf rdf:resource="&sample;Concept"/>
 </owl:Class>

The concept created refer to the person “Bill Gates” and the company “Microsoft”. Each
concept contain one or more individuals, related to entities. The Linked Open Data extracted,
depends on the endpoint used and the information requested by the query. The query is adapted
to the required information, so to improve the gathered element from each LOD resource, a
special query is created for each named entity type.

55

Test Case

Using Dbpedia endpoint54, resourceNamespace with name equal to the LOD resource name
and the following query, constructed for every concept of type “Company”:

PREFIX ont: <http://dbpedia.org/ontology/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT *
WHERE
{
resourceNamespace ont:foundationPerson ?founder .
resourceNamespace ont:industry> ?industry .
resourceNamespace ont:product> ?product .
resourceNamespace ont:location ?location .
resourceNamespace prop:slogan> ?slogan .
}

The combination of the AlchemyAPI, plus the query result, when inserted into the
ontology, for the example of the company “Microsoft”is the following:

<owl:Thing rdf:about="&sample;Microsoft">
 <rdf:type rdf:resource="&sample;Company"/>

<ontology:foundationPerson rdf:resource="&resource;Bill_Gates”/>
<ontology:foundationPerson rdf:resource="&resource;Paul_Allen”/>
<ontology:industry rdf:resource="&resource;Computer_software”/>
<ontology:industry rdf:resource="&resource;Consumer_electronics”/>
<ontology:industry rdf:resource="&resource;Video_game_console”/>
<ontology:product rdf:resource="&resource;Microsoft_Game_Studios”/>
<ontology:product rdf:resource="&resource;Zune”/>
<ontology:product rdf:resource="&resource;Microsoft_Windows”/>
<ontology:product rdf:resource="&resource;Microsoft_Office”/>
<ontology:product rdf:resource="&resource;Microsoft_Servers”/>
<ontology:product rdf:resource="&resource;Microsoft_Visual_Studio ”/>
<ontology:product rdf:resource="&resource;Microsoft_Expression_Studio”/>
<ontology:product rdf:resource="&resource;Microsoft_Dynamics”/>
<ontology:product rdf:resource="&resource;Windows_Live”/>
<ontology:product rdf:resource="&resource;Bing_(search_engine)”/>
<ontology:product rdf:resource="&resource;Windows_Phone”/>
<ontology:location rdf:resource="&resource;Redmond,_Washington”/>
<ontology:product rdf:resource="&resource;Windows_Phone”/>

 <prop:slogan>Your potential. Our passion.</prop:slogan>
<owl:sameAs rdf:resource="http://dbpedia.org/resource/Microsoft”/>
<owl:sameAs rdf:resource="http://rdf.freebase.com/ns/guid.9202a8c04000641f8000000000026344”/>
<owl:sameAs rdf:resource="http://umbel.org/umbel/ne/wikipedia/Microsoft”/>
<owl:sameAs rdf:resource="http://sw.opencyc.org/concept/Mx4rvVjegpwpEbGdrcN5Y29ycA”/>
<owl:sameAs rdf:resource="http://mpii.de/yago/resource/Microsoft”/>
<owl:sameAs rdf:resource="http://www.crunchbase.com/company/microsoft”/>
<owl:sameAs rdf:resource="http://cb.semsol.org/company/microsoft.rdf”/>

 </owl:Thing>

The query created for type person is:
PREFIX ont: <http://dbpedia.org/ontology/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT *
WHERE
{
resourceNamespace ont:foundationPerson ?founder .
resourceNamespace ont:birthDate> ?birthdate .
resourceNamespace ont:birthPlace> ?birthPlace .

54 http://dbpedia.org/sparql

56

http://dbpedia.org/ontology/
http://dbpedia.org/ontology/

Test Case

resourceNamespace ont:occupation ?occupation .
resourceNamespace prop:name> ?name .
}

The combination of the AlchemyAPI, plus the query result, when inserted into the ontology, for the
example of the person “Bill Gates”is the following:

<owl:Thing rdf:about="&sample;Bill_Gates">
 <rdf:type rdf:resource="&sample;Person"/>

<ontology:birthDate> 1955-10-28 </ontology:birthDate>
<ontology:birthPlace rdf:resource="&resource;Seattle,_Washington"/>
<ontology:occupation rdf:resource="&resource;Bill___Melinda_Gates_Foundation”/>
<ontology:occupation rdf:resource="&resource;Cascade_Investment”/>
<ontology:occupation rdf:resource="&resource;Microsoft”/>
<ontology:occupation rdf:resource="&resource;Berkshire_Hathaway”/>
<ontology:occupation rdf:resource="&resource;Bill_Gates__Chairman_of_Microsoft”/>
<ontology:occupation rdf:resource="&resource;Bill_Gates__Co-
Chair_of_Bill___Melinda_Gates_Foundation”/>
<ontology:occupation rdf:resource="&resource;Bill_Gates__CEO_of_Cascade_Investment”/>
<ontology:occupation rdf:resource="&resource;Bill_Gates__Director_of_Berkshire_Hathaway”/>
<prop:name>Bill Gates </prop:name>
<prop:name>Gates, William Henry, III </prop:name>
<owl:sameAs rdf:resource="http://www.microsoft.com/presspass/exec/billg/default.mspx”/>
<owl:sameAs rdf:resource="http://dbpedia.org/resource/Bill_Gates”/>
<owl:sameAs rdf:resource="http://rdf.freebase.com/ns/guid.9202a8c04000641f8000000000009e99”/>
<owl:sameAs rdf:resource="http://umbel.org/umbel/ne/wikipedia/Bill_Gates”/>
<owl:sameAs rdf:resource="http://sw.opencyc.org/concept/Mx4rvYwpvpwpEbGdrcN5Y29ycA”/>
<owl:sameAs rdf:resource="http://mpii.de/yago/resource/Bill_Gates”/>
<owl:sameAs rdf:resource="&sample;Bill_Gates_a7325220-bf8e-47ba-9ea9-985c4ee1a231"/>

 </owl:Thing>

Both individual share the same namespace as the base ontology, they also keep the LOD
resource's links, very useful for any future update or change. Also each new resource, if it's a
member of the LOD initiative, it can be used to further improve the knowledge representation,
it’s only necessary to adapt or create new queries. From a complete view of the example consult
Annex C.

The ontology tools automatically infer new knowledge thanks to the reasoner and the
entailment regimes. The complete list of the example can be seen in Annex D.

The knowledge resulting from the representation is huge.

We know from the inferred results that the “Bill Gates” referred in the sentence has the
real name “William Henry Gates the III”, was born “1955-10-08” in “Seattle Washington”, one
of his occupations is CEO of “Cascade Investment”.

We know from the representation that the “Microsoft” referred in the sentence, has as
founder “Paul Allen” and “Bill Gates”, the same “Bill Gates” referred in the text. It created
products such as “Zune” and “Microsoft Windows”. The industry attention is focused in
“Computer Software”, “Video Game Consoles” and “Consumer Electronics”.

From a simple sentence lots of useful information was gathered, all without human
intervention. As more sentences are added, more relations are created and more information
generated. This is the power of the Semantic Web.

57

http://mpii.de/yago/resource/Bill_Gates

7 Conclusions

This chapter presents the conclusions drawn from the project. The retrospective of the work
brings together scope, objectives and results. It also presented an analysis of the accomplished
objectives originally proposed and where further work should be done to improve this project.

7.1 Restrospective
The market competition put a big strain into current evolution and quality of services. A

motionless company is a fading company. Research is a building block of every vigorous
business, but confidential work, with no external interaction is a past trend, especially in IT.
 The world of retail is one of the drivers of evolution in the area, and therefore, also one of the
most demanding.

As the firms look to advance their technology, keeping input\output streams of external
and internal ideas, lead to unidentified and improbable research paths. Open and networked
innovation is the key building block for a healthy research environment.

Wipro Retail by nature tries to develop their own support tools, from ground up or by
expanding market solutions. Due to the research nature, little is done into the subject and no
similar systems exist.

The realization proved to be very challenging, due to the technological and novelty of the
associated concepts, but the inclusion in Wipro Retail, work conditions and individual support,
gave way to personal growth and good work realization.

7.2 Objective satisfaction
This report objective was materialized as part of Prymas, a knowledge managing and

sharing solution. Using some agile methodologies, Prymas gathered a lot of attention and
receptivity inside and outside of the company.

During development, parallel objectives set were also meet; the knowledge sharing led to
unknown inputs, both internally and externally, mainly in research directions, work focus and
available tools.

58

Conclusions

The communication lines lead us from classic knowledge representation systems into
ontologies and Semantic Web data manipulation. It directed us into automatic ontology creation
and the Linked Open Data initiative.

Discussions with multiple researchers, especially those who pursue related subjects helped
outline the bleeding edge research state and lead to access to personal tools, experimentations
and results. Personal opinions were also very useful when decisions were taken or alternatives
required.

Even after the system and architecture definition, constant community input guided to
improvements. Still the primary objective was the study of the state of art, both in technological
and scientific approaches, to implement a proof of concept method for automatic acquire,
structure and enhancement of information, in order to create a knowledge representation. The
objective is fully meet; a coarse model is implemented.

From the syntactical and semantic analysis a representation is created, <resource, attribute,
value> tuple, with modifiers, who will lead to the creation of concepts, entities and taxonomy
structure.

The instance creation creates a hypothesis as its end result. The instances are set of
seemingly unrelated facts, but when instances and classes are created in OWL, and suffer a
semantic enhancement, the knowledge goes beyond a set of seemingly unrelated facts, it is
connected.

When the inference engine is coupled with the query engine, the amount of inferred
knowledge is very satisfying, unidentified relations in the documents are made available. But
were the system really shines is with linked data integration.

The amount and quality of information provided by LOD is unmatched, the ontology
incorporation straightforward. This gives the ontology new related and structured knowledge,
outside the documentation domain, to incorporate and query as required.

Taking into the account the project complexity, author previous knowledge and
experience, time constrains, the creation, interrogation and enhancement of an ontology, created
from a document, while enlisting internal and external opinion was fully meet.

The projects gave a relevant view of the state of semantic web, current applications and
futures uses, essencial to the company future research.

As a side note the blog got good traffic (blog of the week, with a good daily average) and
enrolment from community, who is very dispersed around the internet.

7.3 Future Work
Natural language processing, is still limited, especially when the processing is done on a

semantic level, the results can be fuzzy, even incorrect.

The tuple format loses some semantic information and context, compared to the original
sentence. Co-reference, word sense disambiguation and alias resolution produce decent results,
but incomplete. The Semantic Web already gave the first steps, the concept is well defined, but
the tools and support data is still very immature. There is also a good degree of uncertainty on
how to explore SW.

The current tools, methods and knowledge representation are very coarse. With time
methods can be reviewed and improved and KR adapted. The tools and research approaches are
improving at a outstanding pace, two years ago, it would be impossible to reproduce the same
work, one year ago the results would be much more incomplete.

59

Conclusions

The tools and research approaches are improving at a outstanding pace: two years ago-
would be impossible to reproduce the same work; one year ago- the results would be very
feeble.

Stronger and better relations between ontology instances lead to more knowledge and
impressive inferred results. Combined with better queries, the efficiency can improve.

Still the best way to improve is to test the system under real world condition, with real
users, and a constant stream of feedback, to fine tune the system.

60

References

[MUC95] 1995 Message Understanding Conference Proceedings (MUC-5), May 2010,
http://cs.nyu.edu/cs/faculty/grishman/muc6.html

[MUC01] 2001 Message Understanding Conference Proceedings (MUC-7), May 2010,
http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_toc.html

[AMS05] A.U. Michael R. Solomon, "Knowledge Management as Competitive Advantage in
the Textile and Apparel Value Chain," 2005.

[ADE09] Aaron Defazio, Natural language question over triple knowledge bases, 2009.

[AAK06] Agbago, Akakpo; Kuhn, R. and Foster, G., Truecasing for the Portage System.
Proc. Of International Conference on Recent Advances in Natural Language
Processing, 2006.

[ALAPI] AlchemyAPI, April 2010, http://www.alchemyapi.com.

[AED10] AlchemyAPI Entity Desambiguation, April 2010,
http://www.alchemyapi.com/api/entity/disamb.html

[AET10] AlchemyAPI Entity Types, April 2010,
http://www.alchemyapi.com/api/entity/types.html

[BMC02] B. McBride, Jena IEEE Internet Computing, 2002.

[TBL01] Berners-Lee, Tim; James Hendler and Ora Lassila, "The Semantic Web". Scientific
American Magazine. 2001.

[BRT98] Bray, T., RDF and Metadata, 1998.

[CHW03] Chesbrough, H.W., Open Innovation: The new imperative for creating and
profiting from technology. Boston: Harvard Business School Press, 2003.

[CSS92] Coates-Stephens, Sam,The Analysis and Acquisition of Proper Names for the
Understanding of Free Text. Computers and the Humanities, 1992.

[DLF07] D. Rusu, L. Dali, B. Fortuna, M. Grobelnik, and D. Mladeni , Triplet extractionć
from sentences, Knowledge Creation Diffusion Utilization, 2007.

[DOL01] DAML+OIL Reference Description. April 2010 Dan Connolly, Frank van
Harmelen, Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and
Lynn Andrea Stein. W3C Note 18 December 2001.

[DPS07] David Nadeau, Peter D. Turney, and Stan Matwin. Semi-supervised named entity
recognition: Learning to recognize 100 entity types with little supervision, 2007.

[DCJ05] Dave Reynolds, Carol Thompson, Jishnu Mukerji, and Derek Coleman, An
Assessment of RDF/OWL Modelling, HPL Technical Report 2005-189, 2005.

61

References

[DMB02] Dimitrov, Marin; Bontcheva, K.; Cunningham H and Maynard, D., A Light-weight
Approach to Co-reference resolution for Named Entities in Text. In Discourse
Anaphora and Anaphor Resolution Colloquium, 2002.

[FAF02] F. Arvidsson and A. Flycht-Eriksson, Ontologies I, 2002.

[FACTR] Fact++ reference, April 2010, http://owl.man.ac.uk/factplusplus/.

[FAA03] Freitas, A. A. A survey of evolutionary algorithms for data mining and knowledge
discovery. In Advances in Evolutionary Computing: theory and Applications, A.
Ghosh and S. Tsutsui, Eds. Natural Computing Series, 2003.

[FEB82] Frank B. Ebersole, TI: Stalking the Rigid Designator, Philosophical Investigations,
1982.

[GW71] Gaisi Takeuti, W. M. Zaring, Introduction to Axiomatic Set Theory, Springer GTM
1, 1971.

[GAW93] Gale, W. A., K. W. Church, and D. Yarowsky, A method for disambiguating word
senses in a large corpus. Computers and the Humanities, 1993.

[GDA93] Gary Davies, Is Retailing What The Dictionaries Say It Is, Manchester Business
School, Manchester, International Journal of Retail & Distribution Management,
Volume 21, Número 2, 1993.

[GNN87] GENESERETH, M.R., Nilsson, N., Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers, 1987.

[GCC05] Gliozzo, A., C. Giuliano, and C. Strapparava, Domain kernels for word sense
disambiguation. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics, 2005.

[GTR93] Gruber, T.R., A translation approach to portable ontologies, 1993.

[HCU04] Hamish Cunningham, Information Extraction, Automatic., Encyclopedia of
Language and Linguistics, 2006.

[HFE05] Huang, Fei, Multilingual Named Entity Extraction and Translation from Text and
Speech, 2005.

[IPP03] Ian Horrocks, Peter F. Patel-Schneider, Frank van Harmelen, Journal of Web
Semantics, 2003.

[JIC03] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, The
Jena Semantic Web Platform: Architecture and Design, HP Laboratories Technical
Report HPL, 2003.

[JLE04] J. Leskovec, "Learning Sub-structures of Document Semantic Graphs for
Document Summarization”, Linguistic Analysis, 2004.

[BDS91] J. S. Baron, B. Davies, D. Swindley, Dictionary of Retailing, Macmillan, 1991.

[JAK03] Jeen Broekstra, Arjohn Kampman, Inferencing and Truth Maintenance in RDF
Schema Exploring a naive practical approach, 2003.

[ARQ10] Jena ARQ tutorial, March 2010, http://jena.sourceforge.net/ARQ/Tutorial/.

[JNI10] Jena Inference API, May 2010, http://jena.sourceforge.net/inference/.

[JNOWL] Jena Ontology API, May 2010, http://jena.sourceforge.net/ontology/

[JTC05] Jenny Rose Finkel, Trond Grenager, and Christopher Manning, Incorporating Non-
local Information into Information Extraction Systems by Gibbs Sampling. In

62

References

proceedings of the 43nd Annual Meeting of the Association for Computational,
2005.

[KRP82] Kripke, Saul,Naming and Necessity. Harvard University Press, 1982.

[LLW05] Lacy, Lee W., OWL: Representing Information Using the Web Ontology
Language. 2005.

[LXM04] Li, Xin., Morie, P. and Roth, D., Identification and Tracing of Ambiguous Names:
Discriminative and Generative Approaches. Proc. National Conference on
Artificial, 2004.

[MKO06] M. Konchady. Text Mining Application Programming. Charles River Media; 1
edition, 2006.

[MMC08] Marie-Catherine de Marne and Christopher D. Manning, Stanford typed
dependencies manual September 2008, 2008.

[MGY03] Mann, Gideon S. and Yarowsky, D., Unsupervised Personal Name
Disambiguation. Proc. Conference on Computational Natural Language Learning,
2003.

[MBR00] McBride, Brian, Jena: Implementing the rdf model and syntax specification.
Technical report, Hewlett Packard Laboratories, 2000.

[NDT05] Nadeau, David and Turney, P., A Supervised Learning Approach to Acronym
Identification. Proc. Canadian Conference on Artificial Intelligence, 2005.

[FUN04] OWL features, April 2010, http://www.w3.org/TR/2004/REC-owl-features-
20040210/#FunctionalProperty.

[OPR04] OWL Properties, April 2010, http://www.w3.org/TR/owl-ref/#Property.

[RFOWL] OWL W3C reference, April 2010, http://www.w3.org/2004/OWL/.

[PPB04] P. Buitelaar, P. Cimiano, and B. Magnini, Ontology Learning from Text: An
Overview, 2004.

[PMA04] Pasca, Marius, Acquisition of Categorized Named Entities for Web Search. In
Proc. Conference on Information and Knowledge Management, 2004.

[PELLT] Pellet Inference Engine, April 2010, http://clarkparsia.com/pellet/.

[PHM08] Philip H. Mitchell, Discovery-Based Retail: Unlock Your Store's Potential ,
Bascom Hill Publishing Group, 2008.

[PTK01] Poibeau, Thierry and Kosseim, L., Proper Name Extraction from Non-Journalistic
Texts. In Proceedings of Computational Linguistics in the Netherlands, 2001.

[RLF91] Rau, Lisa F., Extracting Company Names from Text. Proc. Conference on
Artificial Intelligence Applications of IEEE, 1991.

[RDS04] RDF Grammar reference, April 2010, http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/.

[RDF04] RDF Syntax reference, April 2010, www.w3.org/TR/REC-rdf-syntax/

[RPV04] Roberto Navigli e Paola Velardi. Learning Domain Ontologies from Document
Warehouses and Dedicated Web Sites, 2004.

[RBE04] Russell, Bertrand, Knowledge by Acquaintance and Knowledge by Description, In
The Problems of Philosophy, 2004.

[SMJ86] Salton, G. and McGill, M. J. Introduction to Modern Information Retrieval,
McGraw-Hill, Inc. 1986.

63

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/

References

[SDM05] Sánchez, David and Moreno, A. (2005) Web Mining Techniques for Automatic
Discovery of Medical Knowledge. Proc. Conference on Artificial Intelligence in
Medicine.

[SSN04] Sekine, Satoshi and Nobata, C. (2004) Definition, dictionaries and tagger for
Extended Named entity Hierarchy. Proc. Conference on Language Resources and
Evaluation.

[WOT04] Semantic Web Web ontology requirerments, April 2010,
http://www.w3.org/TR/webont-req.

[RDATA] Semantic Web Data Access, April 2010, http://www.w3.org/2001/sw/DataAccess.

[TBL98] Semantic Web design issues, April 2010,
http://www.w3.org/DesignIssues/Semantic.html.

[RDATA] Semantic Web Data Access, April 2010, http://www.w3.org/2001/sw/DataAccess.

[SLB10] Shah, R., Lin, B., Gershman, A. & Frederking, R., SYNERGY: A Named Entity
Recognition System for Resource-scarce Languages such as Swahili using Online
Machine Translation. In Proceedings of International Conference on Language
Resource and Evaluation Workshop on African Language Technology, 2010.

[BAC97] Sir Francis Bacon. Religious Meditations, Of Heresies. 1597.

[SJF84] Sowa, John F. (1984), Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley, Reading, MA, 1984.

[SBA91] Sowa, John F. Borgida, Alexander, Principles of Semantic Networks: Explorations
in the Representation of Knowledge, 1991.

[SPA10] Sparql Query system, April 2010, http://www.w3.org/TR/2010/WD-sparql11-
query-20100126/.

[PPA10] Sparql Property Paths, April 2010, http://www.w3.org/TR/2010/WD-sparql11-
property-paths-20100126/.

[ENT10] SPARQL Entailmente regimes, April 2010, http://www.w3.org/TR/2010/WD-
sparql11-entailment-20100126.

[SPQLP] SPARQL protocol reference, April 2010, www.w3.org/TR/rdf-sparql-protocol/.

[RSPQL] SPARQL reference, April 2010, http://www.w3.org/TR/rdf-sparql-query/.

[SRI99] Srihari, Rohini and Li, W., Information Extraction Supported Question Answering.
Proc. Text Retrieval Conference, 1999.

[URI98] T. Berners-Lee, R. Fielding and L. Masinter, RFC 2396 - Uniform Resource
Identifiers (URI): Generic Syntax, 1998.

[TGR93] T. Gruber, A translation approach to portable ontology specifications, 1993.

[GAT10] The gate team, Developing Language Processing Components with GATE Version
5 (a User Guide) For GATE version 5.0,2009

[WLW05] Wang, Lee, Wang, C., Xie, X., Forman, J., Lu, Y., Ma, W.-Y. and Li, Y, Detecting
Dominant Locations from Search Queries. Proc. International ACM SIGIR
Conference, 2005.

[WDR53] W. D. Ross, Aristotle's Metaphysics, 1953.

[WSM04] W. Scott Means, XML in a Nutshell, Third Edition, O'Reilly Media, 2004.

[XPA99] XML XPATH reference, April 2010, http://www.w3.org/TR/xpath.

64

References

[XML08] XML reference, April 2010, http://www.w3.org/TR/2008/REC-xml-20081126/.

[YQG07] Yin, S., Qiu, Y., and Ge, J., Research and Realization of Text Mining Algorithm on
Web. In Proceedings of the 2007 international Conference on Computational
intelligence and Security Workshops, 2007.

[YTH04] Youyong Zou, Tim Finin, and Harry Chen, F-OWL: an Inference Engine for the
Semantic Web, 2004.

65

Annex A: Named Entity Recognition

First transcript, from What is Prymas55:

“A report in the Wall Street Journal indicates that the Facebook, along with
MySpace, Digg, and half dozen other social-networking sites, have been sharing
users’ personal data with advertisers, without users’ knowledge or consent.

After some recent vouched fears, some have been realized. All of those promises
that sites such as MySpace and Facebook have made regarding the safety of user
personal information has been proven to be untrue.

After Facebook release of OpenGraph, it made promisses of safety and privacy to
users. The sent data included user names or ID numbers tied to personal profiles
being viewed when users click on ads. Facebook goes as far as providing the user
name and complete profile to the advertiser, who’s add was clicked.

This action was first noticed (PDF) in August 2009 by researchers from Worcester
Polytechnic Institute and AT&T Labs, who brought it up with the sites in question.
Until the Wall Street Journal contacted them the action continued.”

For a full report of the case complexity go here.

Second transcript:

“Therese Rein was born in 1958. Therese Rein is a Australian Business woman.
Therese Rein is the wife of Kevin Reid.”

Alchemy results transcript 1:

Company: Facebook, Myspace, Digg, AT&T labs

Print media: Wall Street Journal

Facility: Worcester Polytechnic Institute

Links to disambiguate in linked data were given.

55 http://whatisprymas.wordpress.com/2010/05/22/facebook-and-friends-caught-red-handed/

66

Named Entity Recognition

Alchemy results transcript 2:
Person: Kevin Rein, Therese Rein

No links to disambiguate in linked data were given.

Open Calais Results transcript 1:
Company: Wall Street Journal,AT&T Labs,Facebook,MySpace

Organization: Worcester Polytechnic Institute

Product: OpenGraph

PublishedMedium: the Wall Street Journal

Technology: PDF

Open Calais Results transcript 2:
Person: Kevin Rein, Therese Rein

Position: Business woman

67

Named Entity Recognition

Annex B: Base Ontology

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY sample "http://www.example.com/ontologies/sample.owl#" >
]>

<rdf:RDF xmlns="file:/C:/Documents%20and%20Settings/ccost/Desktop/test/sample1.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:sample="http://www.example.com/ontologies/sample.owl#">
 <owl:Ontology rdf:about=""/>

 <!--
 ///
 // Object Properties
 ///
 -->

 <!-- http://www.example.com/ontologies/sample.owl#modifier -->
 <owl:ObjectProperty rdf:about="&sample;modifier">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:range rdf:resource="&sample;Entity"/>
 <rdfs:domain rdf:resource="&sample;Entity"/>
 </owl:ObjectProperty>

 <!-- http://www.example.com/ontologies/sample.owl#object -->
 <owl:ObjectProperty rdf:about="&sample;object">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&sample;Action"/>
 <rdfs:range rdf:resource="&sample;Entity"/>
 </owl:ObjectProperty>

68

Base Ontology

 <!-- http://www.example.com/ontologies/sample.owl#predicate -->
 <owl:ObjectProperty rdf:about="&sample;predicate">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&sample;Action"/>
 <rdfs:range rdf:resource="&sample;Entity"/>
 </owl:ObjectProperty>

 <!-- http://www.example.com/ontologies/sample.owl#subject -->
 <owl:ObjectProperty rdf:about="&sample;subject">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&sample;Action"/>
 <rdfs:range rdf:resource="&sample;Entity"/>
 </owl:ObjectProperty>

 <!--
 ///
 // Classes
 ///
 -->

 <!-- http://www.example.com/ontologies/sample.owl#Concept -->
<owl:Class rdf:about="&sample;Concept">

 <rdfs:label rdf:datatype="&xsd;string">Action representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of Concept. Represents named entity types and relations
with entities</rdfs:comment>
 </owl:Class>

 <!-- http://www.example.com/ontologies/sample.owl#Action -->
 <owl:Class rdf:about="&sample;Action">
 <rdfs:label rdf:datatype="&xsd;string">Action representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of Action. Represents the tuple relations</rdfs:comment>
 </owl:Class>

 <!-- http://www.example.com/ontologies/sample.owl#Entity -->
 <owl:Class rdf:about="&sample;Entity">
 <rdfs:label rdf:datatype="&xsd;string">Entity representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of entity. Keeps every entity in a document</rdfs:comment>
 </owl:Class>

</rdf:RDF>

69

Base Ontology

Annex C: Test Results 1

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY ontology "http://dbpedia.org/ontology#" >
 <!ENTITY resource "http://dbpedia.org/resource/" >
 <!ENTITY prop "http://dbpedia.org/property/" >
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY sample "http://www.example.com/ontologies/sample.owl#" >
]>

<rdf:RDF xmlns="file:/C:/Documents%20and%20Settings/ccost/Desktop/test/sample1.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:resource="http://dbpedia.org/resource/"
 xmlns:ontology="http://dbpedia.org/ontology#"
 xmlns:prop="http://dbpedia.org/property#"
 xmlns:sample="http://www.example.com/ontologies/sample.owl#">
 <owl:Ontology rdf:about=""/>

 <!--
 ///
 // Object Properties
 ///
 -->

 <!-- http://www.example.com/ontologies/sample.owl#modifier -->
 <owl:ObjectProperty rdf:about="&sample;modifier">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:range rdf:resource="&sample;Entity"/>
 <rdfs:domain rdf:resource="&sample;Entity"/>
 </owl:ObjectProperty>

70

Test Results 1

 <!-- http://www.example.com/ontologies/sample.owl#object -->
 <owl:ObjectProperty rdf:about="&sample;object">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&sample;Action"/>
 <rdfs:range rdf:resource="&sample;Entity"/>
 </owl:ObjectProperty>

 <!-- http://www.example.com/ontologies/sample.owl#predicate -->
 <owl:ObjectProperty rdf:about="&sample;predicate">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&sample;Action"/>
 <rdfs:range rdf:resource="&sample;Entity"/>
 </owl:ObjectProperty>

 <!-- http://www.example.com/ontologies/sample.owl#subject -->
 <owl:ObjectProperty rdf:about="&sample;subject">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="&sample;Action"/>
 <rdfs:range rdf:resource="&sample;Entity"/>
 </owl:ObjectProperty>

 <!--
 ///
 // Classes
 ///
 -->

 <!-- http://www.example.com/ontologies/sample.owl#Concept -->
 <owl:Class rdf:about="&sample;Concept">
 <rdfs:label rdf:datatype="&xsd;string">Action representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of Concept. Represents named entity types and
relations with entities</rdfs:comment>
 </owl:Class>

 <!-- http://www.example.com/ontologies/sample.owl#Action -->
 <owl:Class rdf:about="&sample;Action">
 <rdfs:label rdf:datatype="&xsd;string">Action representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of Action. Represents the tuple
relations</rdfs:comment>
 </owl:Class>

 <!-- http://www.example.com/ontologies/sample.owl#Entity -->
 <owl:Class rdf:about="&sample;Entity">
 <rdfs:label rdf:datatype="&xsd;string">Entity representation</rdfs:label>
 <rdfs:comment rdf:datatype="&xsd;string">Base class of entity. Keeps every entity in a
document</rdfs:comment>
 </owl:Class>
 <!--
 ///
 // Instances
 ///
 -->

<sample:Action rdf:about="&sample;Action_111bd81a-97ff-45fd-9512-5b2cead9ba33">
<rdf:type rdf:resource="&sample;Action"/>
<sample:object rdf:resource="&sample;Bill_Gates_a7325220-bf8e-47ba-9ea9-985c4ee1a231"/>
<sample:subject rdf:resource="&sample;chairman_931ea3e6-b50d-428a-86ba-2763c220eb29"/>
<sample:predicate rdf:resource="&sample;be_46ea77c2-3d30-44a8-8a6c-e815ff47af5b"/>
</sample:Action>

<owl:Class rdf:about="&sample;Company">
<rdfs:subClassOf rdf:resource="&sample;Concept"/>

71

Test Results 1

</owl:Class>

<owl:Class rdf:about="&sample;Person">
<rdfs:subClassOf rdf:resource="&sample;Concept"/>
</owl:Class>

<owl:Class rdf:about="&sample;O_Bill_Gates">
<rdfs:subClassOf rdf:resource="&sample;Entity"/>
</owl:Class>

<owl:Class rdf:about="&sample;O_chairman">
<rdfs:subClassOf rdf:resource="&sample;Entity"/>
</owl:Class>

<owl:Class rdf:about="&sample;P_be">
<rdfs:subClassOf rdf:resource="&sample;Entity"/>
</owl:Class>

<owl:Class rdf:about="&sample;O_Microsoft">
<rdfs:subClassOf rdf:resource="&sample;Entity"/>
</owl:Class>

<owl:Thing rdf:about="&sample;Bill_Gates_a7325220-bf8e-47ba-9ea9-985c4ee1a231">
<rdf:type rdf:resource="&sample;O_Bill_Gates"/>
<rdfs:label xml:lang="EN">Bill Gates</rdfs:label>
<owl:sameAs rdf:resource="&sample;Bill_Gates"/>
</owl:Thing>

<owl:Thing rdf:about="&sample;chairman_931ea3e6-b50d-428a-86ba-2763c220eb29">
<rdf:type rdf:resource="&sample;O_chairman"/>
<rdfs:label xml:lang="EN">chairman</rdfs:label>
<sample:modifier rdf:resource="&sample;Microsoft_46ea77c2-3d30-44a8-8a6c-e815ff47af5b"/>
</owl:Thing>

<owl:Thing rdf:about="&sample;be_46ea77c2-3d30-44a8-8a6c-e815ff47af5b">
<rdf:type rdf:resource="&sample;P_be"/>
<rdfs:label xml:lang="EN">be</rdfs:label>
</owl:Thing>

<owl:Thing rdf:about="&sample;Microsoft_46ea77c2-3d30-44a8-8a6c-e815ff47af5b">
<rdf:type rdf:resource="&sample;O_Microsoft"/>
<rdfs:label xml:lang="EN">Microsoft</rdfs:label>
<owl:sameAs rdf:resource="&sample;Microsoft"/>
</owl:Thing>

<owl:Thing rdf:about="&sample;Bill_Gates">
<rdf:type rdf:resource="&sample;Person"/>
<ontology:birthDate> 1955-10-28 </ontology:birthDate>
<ontology:birthPlace rdf:resource="&resource;Seattle,_Washington"/>
<ontology:occupation rdf:resource="&resource;Bill___Melinda_Gates_Foundation"/>
<ontology:occupation rdf:resource="&resource;Cascade_Investment"/>
<ontology:occupation rdf:resource="&resource;Microsoft"/>
<ontology:occupation rdf:resource="&resource;Berkshire_Hathaway"/>
<ontology:occupation rdf:resource="&resource;Bill_Gates__Chairman_of_Microsoft"/>
<ontology:occupation rdf:resource="&resource;Bill_Gates__Co-Chair_of_Bill___Melinda_Gates_Foundation"/>
<ontology:occupation rdf:resource="&resource;Bill_Gates__CEO_of_Cascade_Investment"/>
<ontology:occupation rdf:resource="&resource;Bill_Gates__Director_of_Berkshire_Hathaway"/>
<prop:name> Bill Gates </prop:name>
<prop:name>Gates, William Henry, III </prop:name>
<owl:sameAs rdf:resource="http://www.microsoft.com/presspass/exec/billg/default.mspx"/>
<owl:sameAs rdf:resource="http://dbpedia.org/resource/Bill_Gates"/>
<owl:sameAs rdf:resource="http://rdf.freebase.com/ns/guid.9202a8c04000641f8000000000009e99"/>
<owl:sameAs rdf:resource="http://umbel.org/umbel/ne/wikipedia/Bill_Gates"/>
<owl:sameAs rdf:resource="http://sw.opencyc.org/concept/Mx4rvYwpvpwpEbGdrcN5Y29ycA"/>

72

Test Results 1

<owl:sameAs rdf:resource="http://mpii.de/yago/resource/Bill_Gates"/>
<owl:sameAs rdf:resource="&sample;Bill_Gates_a7325220-bf8e-47ba-9ea9-985c4ee1a231"/>
</owl:Thing>

<owl:Thing rdf:about="&sample;Microsoft">
<rdf:type rdf:resource="&sample;Company"/>
<ontology:foundationPerson rdf:resource="&resource;Bill_Gates"/>
<ontology:foundationPerson rdf:resource="&resource;Paul_Allen"/>
<ontology:industry rdf:resource="&resource;Computer_software"/>
<ontology:industry rdf:resource="&resource;Consumer_electronics"/>
<ontology:industry rdf:resource="&resource;Video_game_console"/>
<ontology:product rdf:resource="&resource;Microsoft_Game_Studios"/>
<ontology:product rdf:resource="&resource;Zune"/>
<ontology:product rdf:resource="&resource;Microsoft_Windows"/>
<ontology:product rdf:resource="&resource;Microsoft_Office"/>
<ontology:product rdf:resource="&resource;Microsoft_Servers"/>
<ontology:product rdf:resource="&resource;Microsoft_Visual_Studio"/>
<ontology:product rdf:resource="&resource;Microsoft_Expression_Studio"/>
<ontology:product rdf:resource="&resource;Microsoft_Dynamics"/>
<ontology:product rdf:resource="&resource;Windows_Live"/>
<ontology:product rdf:resource="&resource;Bing_(search_engine)"/>
<ontology:product rdf:resource="&resource;Windows_Phone"/>
<ontology:location rdf:resource="&resource;Redmond,_Washington"/>
<ontology:product rdf:resource="&resource;Windows_Phone"/>
<prop:slogan>Your potential. Our passion.</prop:slogan>
<owl:sameAs rdf:resource="http://dbpedia.org/resource/Microsoft"/>
<owl:sameAs rdf:resource="http://rdf.freebase.com/ns/guid.9202a8c04000641f8000000000026344"/>
<owl:sameAs rdf:resource="http://umbel.org/umbel/ne/wikipedia/Microsoft"/>
<owl:sameAs rdf:resource="http://sw.opencyc.org/concept/Mx4rvVjegpwpEbGdrcN5Y29ycA"/>
<owl:sameAs rdf:resource="http://mpii.de/yago/resource/Microsoft"/>
<owl:sameAs rdf:resource="http://www.crunchbase.com/company/microsoft"/>
<owl:sameAs rdf:resource="http://cb.semsol.org/company/microsoft.rdf"/>
</owl:Thing>
</rdf:RDF>

73

Test Results 1 Entailments

Annex D: Test Results 1 Entailments

74

Test Results 1 Entailments

75

