

CRANFIELD UNIVERSITY

João Pedro Rodrigues de Almeida

Visualising defects in source code

School of Engineering

MSc in Computational Software Techniques in Engineering

MSc

Academic Year: 2011 - 2012

Supervisor: Stuart Barnes

August/2012

CRANFIELD UNIVERSITY

School of Engineering

MSc in Computational Software Techniques in Engineering

MSc

Academic Year 2011 - 2012

João Pedro Rodrigues de Almeida

Visualising defects in source code

Supervisor: Stuart Barnes

August/2012

This thesis is submitted in partial fulfilment of the requirements for

the degree of MSc

© Cranfield University 2012. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

Abstract

 Debugging and testing phases are usually the tasks that consume most

of the resources and time of a software project. Though defect detection can be

fully automated, defect localization cannot, as a software developer is needed

to solve most encountered defects. This thesis project aims to ease the work of

software developers in these tasks by creating a defect visualization framework

to automate part of the process of solving defects in source code and allow

software developers to save time and resources in their projects.

Keywords: visualization, defects, source code

ii

Acknowledgements

 I would like to express my thanks to Dr. Stuart Barnes, whom guidance

truly helped me through this master thesis, to Mrs. Pauline Buck, for always

supporting her students and making them feel at home, and to my parents, who

were and always will be there for me.

iii

Table of Contents

Abstract ... i

Acknowledgements ... ii

List of figures .. v

1 Introduction .. 1

1.1 Defects .. 1

1.2 Code Review .. 2

1.2.1 Defect Detection ... 3

1.2.2 Testing ... 4

1.2.3 Debugging .. 4

1.2.4 Source Code Analysis .. 5

1.3 Visualization .. 6

1.4 Software Quality ... 6

2 Research Plan ... 9

2.1 Research Aim ... 9

2.2 Research Questions ... 9

2.3 Boundaries .. 9

2.4 Research Methods .. 9

3 Literature Review .. 11

3.1 Defect Detection and Localization .. 11

3.1.1 Software for Source Code Analysis .. 11

3.1.1.1 Static analysis .. 12

3.1.1.2 Machine learning analysis ... 13

3.1.1.3 Testing suite analysis .. 13

3.1.2 Defect Localization ... 14

3.2 Visualization of Defects ... 14

3.2.1 Requirements for Software Visualization Tools 15

3.2.2 Software Tools for Defect Detection and Visualization 16

3.2.3 Visualization Methods and techniques ... 17

3.2.3.1 Meta-model for Visualization Tools .. 17

3.2.3.2 Visual Representations and Interactions 19

3.2.3.3 System Radiography and Bug Watch .. 22

3.2.3.4 Seesoft .. 23

3.2.3.5 Tarantula ... 24

3.2.3.6 xSlice ... 26

iv

4 Project ... 27

4.1 Requirements: Problems and Solutions .. 27

4.1.1 Scalability ... 27

4.1.1.1 Rendering Speed ... 27

4.1.1.2 Information Scalability .. 28

4.1.2 Interactivity ... 29

4.1.2.1 View Navigation ... 29

4.1.2.2 View Integration ... 30

4.1.3 Customizability ... 30

4.1.3.1 Input Files .. 30

4.1.3.2 View Options.. 31

4.1.3.3 Defect Prioritization .. 31

4.1.4 Usability .. 32

4.1.4.1 User interface .. 32

4.1.4.2 View Usage.. 32

4.1.5 Interoperability .. 33

4.1.5.1 Defect Detection Tool Integration .. 33

4.1.5.2 Editor Integration ... 33

4.1.5.3 Time Consumption ... 34

4.1.6 Adaptability ... 34

4.2 Methodology ... 35

4.2.1 Visualization tool .. 35

4.2.2 Framework Integration ... 36

4.2.3 Directory View .. 38

4.2.4 File View ... 40

4.2.5 Defect View .. 42

4.2.6 Statistics View .. 43

4.2.7 Framework Example .. 44

4.3 Results and Discussion ... 50

5 Conclusion ... 55

5.1 Method Overview .. 55

5.2 Product Analysis ... 55

5.3 Future Work .. 56

6 References .. 59

v

List of figures

Figure 1 - Meta-model of visualization tools ... 18

Figure 2 - Line representation of the source code .. 19

Figure 3 - Pixel and line representations of the source code 20

Figure 4 - Summary representation of the source code 21

Figure 5 - Hierarchical representation of the source code 21

Figure 6 - System Radiography .. 22

Figure 7 - Bug Watcher .. 23

Figure 8 - Seesoft ... 24

Figure 9 - Tarantula .. 25

Figure 10 - xSlice ... 26

Figure 11 - Results of scaling different objects in a view 28

Figure 12 - Defect Visualization Tool Framework ... 35

Figure 13 - Defect Visualization Tool Views and Representations 36

Figure 14 - Command Lines Options .. 38

Figure 15 - Directory View .. 39

Figure 16 - Directory View Options ... 39

Figure 17 - File view ... 40

Figure 18 - File View Options ... 41

Figure 19 - Filter Options .. 41

Figure 20 - Defect View .. 42

Figure 21 - Statistics View .. 43

Figure 22 - Framework Example .. 44

Figure 23 - Framework Example - Setting up options 45

Figure 24 - Framework Example - Creating input file 46

Figure 25 - Framework Example - Opening input file 46

Figure 26 - Framework Example - Directory View .. 47

Figure 27 - Framework Example - File View ... 48

Figure 28 - Framework Example - Defect View .. 49

vi

Figure 29 - Framework Example - File Editor ... 50

Figure 30 - File view with many lines and few errors .. 51

Figure 31 - File view with the use of filters ... 52

1

1 Introduction

 This report is my master thesis for the conclusion of the Computational

Software Techniques in Engineering Master Course at the School of

Engineering, in Cranfield University. It aims to create a framework that will allow

software engineers to visualize defects in source code, in order to help them

test and debug their software. As a software developer, I end up losing too

much time either in the testing phase or in the debugging phase of my software

projects. If there is any way of decreasing the amount of time of these two

phases of any project by automating some of the testing or debugging tasks not

only the software project will be done in less time and with more quality but also

these tasks will be less monotonous of doing.

 I chose this subject for my thesis because I believe there is not much

done in this area and that my work can help in improving the quality of future

software projects and easing the work of software developers in two of the most

important phases of any software project: testing and debugging.

 Within this chapter I will define and explain some of the subjects of this

thesis project as an overview and introduction to the problem and its specifics.

1.1 Defects

 Defect is a failure, a fault or a deviation from quality on a software

system [1] and is many times referred as error, failure, bug or fault [2]. As a

failure, a defect will allow the software's source code to be compiled, though it

will generate problems during its execution; as a fault, a compiler won't even be

able to compile the source code and, finally, as a deviation from quality, the

defect will allow to run the software and will not be noticed unless the software

developer is keen to find it [3].

 As a software developer, a distinction between the different types of

defects has to be made. It is of highly importance to actually take notice that

different types of defects must be dealt with in different ways.

2

 Defects should be distinguished in two categories: functional and

evolvability [1]. Functional defects affect actual functionalities of the software

system while evolvability defects affect the non-functional requirements of the

software system during its life time.

 The functional defects are the ones we see as a failure or a fault on

compilation or execution, and even though they sometimes are not easy to find,

a great portion of them are easy to detect [1]. Evolvability defects are hard to

detect during the development phase of the software project [4,5]. Though they

can be detected after, most of them will not be, since the users of the software

normally are not experienced in software development and do not know the

development of their software to an extent that would allow them to detect those

kind of defects. Even so, although evolvability defects are harder to detect and

represent the most part of the defect that are not encountered during the

development phase of the project, no one can say a software is free of

functional defects either [1,6], since there is always the chance something has

escaped the grasp of the software developer, and only in very few rare cases

there is not.

1.2 Code Review

 No software developer will ever say they will create a software in one go,

without code reviewing. Code review is an important task of any project and its

process has a direct effect on the final quality of the software [1], though it is

many times not so well performed because it is a tedious task and software

developers tend to lose focus quickly on such tasks [7,8]. It can be said that a

fault will always result from an human error, being that error in the source code

or in the lack of it [9].

 Code review is always a good instrument to be used by a software

developer, a skill they must try to get better and better, so they can prevent as

many defects as possible [1]. Nevertheless there are a few approaches and

software that can be used in order to ease that amount of work in this particular

task.

3

 Defect detection and correction phases of a project are always time

consuming [8-12] and sometimes prevent projects from finishing within the time

line available, either with manual code reviewing or with debugging and testing

tools. Every software developer does code reviewing in their specific way and

even so there is no full proof software or method known, it is a matter of

minimizing liabilities and work out their set of skill as software developers that

can make a difference.

1.2.1 Defect Detection

 Finding a defect in the source code is a task that cannot be taken lightly

and it should be done by a software developer that really understands what the

software is supposed to do at that given function [3,13], that is the reason why

normally it is the software developer the responsible for detecting and, more

importantly, correct every possible defect.

 Also, software developers can ask their peers to do a revision for them

after, to an specific fault or to the entire software system, because sometimes a

new view over the software can bring new valuable insight and it can help in

defect detection [14].

 That is not the case of big corporations or big projects where the

software developer that created the software is many times not the person that

will review its code and the software that will be used is normally project

independent [15]. In the maintenance of the code during the life time of the

software there is the same issue: How to be sure we are maintaining the

functional and non-functional requirements of the software we are reviewing?

Even the documentation sometimes does not help or because it is outdated or

because it simply does not state every design decision [16].

 One more problem to add is that although manual code review is many

times done by the software developer, that task usually only detects functional

defects [1], and it is very difficult to assure that the non-functional requirements

will all be met when making changes to the source code of the software.

4

 Defect detection tools and methods are often used to decrease the

amount of defects in the source code as well as ease the work of the software

developer [7]. It is important to grab as much as information as possible about

the software requirements and at least try to prevent certain aspects of the

software to turn worse, like runtime execution for example.

 The cost of software defects grows exponentially in the life cycle of a

software project [15] so the better the testing and debugging tasks in a

development phase of the software project are performed, the less the software

project will cost. Those two tasks should also not be performed only once, since

they are not immune to the creation of new defects [14,17].

1.2.2 Testing

 A programmer will almost always follow some predefined steps in order

to correct defects in their software: check test failure, try to figure out the defect,

correct the defect and restore the software in order to test it again [3,8]. These

tasks are estimated to consume more than a half of the time a programmer is

working on the project in most cases [9-12]. So, there are tools to help the

software developer, not only creating an extensible test suite based in source

code but also giving a feedback of whether the software is giving the correct

answers to the given inputs.

 Although it is a great help to be sure the functionality of the software is

achieved, there are always some concerns about the kind of tests created, that

can not contain all system requirements, and also about the feeling that a full

passed test suite means that the system has no defects, which is also not true.

A test is conducted under specific conditions [2] which means that most of the

possible conditions are not tested at all, we just assume those do not need to

be tested. A testing suite is always a good start point for defect detection but it

is not a standalone solution for software validation and verification.

1.2.3 Debugging

 We would assume that every software developer does debugging to their

software with an automated tool before releasing it, which is actually not true

5

[15]. Debugging is all about defect detection and localization [18] and one of the

most important tools of a software development. It helps to assure that a given

piece of software is doing everything it is supposed to do every step of the way,

instead of assuming that by the outputs and inputs, like in testing.

 Each software developer has a way of debugging their programs, task

that needs that he/she can actually understand the meaning of each variable

value in a certain point in the source code. There are many ways of debugging

a program [19] and each software developer will do it his/her own way.

1.2.4 Source Code Analysis

 Software analysis is a step prior to any defect visualization, but must be

taken in consideration when creating a visualising tool, which will bring to the

user the output of that analysis [16]. In the case of defect detection, the

software analysis tool will have to output all defects of the software so that the

visualization tool can properly present the information to the software developer.

These analysis can be done using different methods, which will influence the

output obtained.

 In order to be sure the information it is given to the visualising tool is the

best one to present, the software analysis tool method must be the best one for

the task in hand, which can differ from project to project [6]. We cannot forget

that when a defect detection software detects a defect it is the software

developer that will have to actually check the faulty source code and correct it

[11,20], so the visualization of those defects is as important as its localization.

 In some cases it will be impossible to detect a defect in the source code,

even when the software is running [21], because there are libraries that can be

used that can create a problem in the operative system itself for example, so

the task of any software developer is also not to rely only in the software but

also in his/her knowledge of the language and the software system in

development.

 In the end, the aim is to increase software quality [7]. Software quality

decreases with the system vulnerability to faults, either in the source code of the

6

software system or in the language itself. A software system must abide the

language rules in which is made, and sometimes it is necessary to apply some

measures in the source code to avoid later exploits of the software system [22].

As is was stated before, it is the responsibility of the software developer to use

any software tools at its best capability without discarding the chance of those

tools being misdirected or even wrong in some cases.

1.3 Visualization

 Visualization is a viable mean of showing and analyzing large amounts of

information [5] and a powerful tool that allows a better understanding on a

software system by presenting the data in such a way that allows software

developers to identify complex regularities and discontinuities [23]. Different

techniques and methods can be used to create an appealing visualization of

any system that will allow different analysis to be made by the software

engineer in order to complete an specific task.

 Automated tools often miss details regarding unknown factors and fail to

find patterns that are not 100% logical. Automated tools combined with human

expertise through visualization normally offer a better solution when analysis is

needed [23].

 Representing software is difficult as it has no form or tangible perception

besides its source code which makes any software visualization bound to the

software analysis output [23] as it cannot create a visualization for data which

does not exist or was not given to the system to be visualized.

1.4 Software Quality

 Although this project itself is not about the quality of the software, it sure

increases the quality of any software that may use it to decrease the number of

defects in its source code, so software quality should be defined within this

project.

 Software quality can be seen as anything that can be improved in a

software to meet its requirements [2,24,25]. To have the best quality possible is

7

an ideal objective, though unrealistic, since it is always possible to do better and

better, but it is possible to know if the next version of the source code of our

project has better quality than the previous one and that is one of the goals of

this project, to allow software developers to use a tool that ultimately will always

improve their software quality.

 Software developers that are always concerned with the quality of their

software systems will not only correct known defects but also try to detect the

ones that are not visible yet to both solve and prevent the release of faulty

software [14].

 Although it is possible to measure software quality by the number of

defects encountered [24], that can turn out to be inaccurately, since we can

have no information about the number of defects which are still in the source

code [25]. All we can say is that if a defect is corrected or prevented the

software quality increases, despite not knowing in percentage or value by how

much.

 An interactive process to help software developers to quickly narrow

down the search space of the defect and correct it will always help the software

developer in their defect detection and location task [18] thus decrease the time

needed to conclude that process and increase the overall software quality.

8

9

2 Research Plan

 This chapter will elucidate the reader about the research done in order to

create this document and project.

2.1 Research Aim

 This research aims to find the goals of a visualization of defects in source

code software solution and to create the best visualization method possible for

all types of defect detection software.

2.2 Research Questions

• What is the aim of a visualization of defects in source code software?

• What are the needs of a software developer in such software?

2.3 Boundaries

 Although this thesis aims to create a framework for visualization of

defects in source code, it will not focus on the defect detection itself, so the

methods used by the defect detection software will not be taken into account,

only its output, in order to focus the thesis on the visualization itself.

2.4 Research Methods

 The research was done in Scopus [26], IEEE Xplore [27] and Google

Scholar [28], three of the biggest search engines that contain engineering

journals conference papers from many sources.

 This research was conducted first into the literature advised by the

advisor of this thesis and some of its references, then by searching into the

keywords "fault detection", "visualization" and "software analysis" and their

possible combinations, in order to create a good spectrum of results. In the end,

a few more articles were researched for the different software encountered

during the previous research, in order to accurately decide which one would be

better for the framework that in being created and which ones had

characteristics that should be used or taken into account on this project.

10

11

3 Literature Review

 In this chapter it will be presented the state of art taken into account to do

this project, result of all the research made prior to the work development in

order to figure out the best way to visualize defects in source code.

 The reader will be able to understand the content of this project, as well

as analyze the problem and the different existent solutions.

3.1 Defect Detection and Localization

 Any automation tool for defect detection and localization will ease the

work of the software developer and save time, resources and costs [9-12], but

studies have shown that a defect detection software solution can only detect

about half of the existing defects in a software system [6], which creates the

necessity of making different solutions work together in order to increase the

percentage of the defects detected.

 Another problem is that only a few percentage of software engineers

actually use a defect detection tool while creating their software mostly because

their time consumption in a project and their lack of integration with compilers

and other software systems [15].

 These problems require a good and practical solution, since defect

detection and localization are of most importance for software development [5]

as increases its quality. In function libraries or software frameworks the problem

increases as defects become historical dependents of other software systems

[4].

3.1.1 Software for Source Code Analysis

 Testing and debugging consume not only time, but also resources and

project budget [9,11,12] so any method that allows a faster defect detection

potentially decreases the cost of a project [10].

 It is very difficult to establish a mathematical model for fault detection

[21], not only because the software languages allow different approaches in the

12

way of writing the source code to do an specific task, but also because every

software system aims for a different set of requirements, which makes each one

of them completely different from the others.

 In order to automate defect detection in a software development there

are many approaches that can be taken [6]. Which method to choose will

depend on the project itself and in what information the software developer

wants to visualise. The well known methods for defect detection are static

analysis, machine learning analysis and suite testing analysis.

 All these method contribute in a different way for the verification and

validation of the source code, resulting in a better quality piece of software [6],

and they can even be used simultaneous. The fact is the greater barrier to any

software defect detection is the uncertainty of the way software developers write

their source code as the code languages accept numerous ways of creating the

same software [21].

3.1.1.1 Static analysis

 Static analysis is an method of defect detection that will increase the

quality of any software system, as it will make hidden defects in the source code

to surface [22]. It is done by most software development software nowadays,

since it is an analysis to the source code as a file, without running the program.

 For example, static analysis will attempt to find buffer overflows defects

in the source code, preventing future security and reliability problems in the

software [15].

 One of the most used static analysis is a data flow analysis, which has a

much wider defect detection than its peers as it saves the change of states of

the program, either as a change of values in variables or even in the source

code structure. It will relate all variables from a software source code in order to

detect inconsistencies, by creating a flow graph [29].

 Often the need of detecting defects exists from modifications to the initial

code, so a data flow analysis would be able to test only the flow which would

13

differ from the last version of the code, thus saving a huge amount of time,

essential in a software development project [19].

3.1.1.2 Machine learning analysis

 Though data flow analysis is pretty consistent for one runtime of the

program, a machine learning analysis uses the combination of the analysis of all

runtime executions of a software in order to detect evolvability defects [7]. But,

in order to do that, the software must be trying to do always the same thing, that

meaning the different versions of the code must be trying to achieve exactly the

same goals.

 For a code review of a software project that aims to improve their source

code, this analysis should be the best choice [7]. That doesn't happen most of

the times though. Since this method doesn't allow requirement or functionality

changes without the change of giving false positives in the defect detection it is

risky to use it in this thesis project.

3.1.1.3 Testing suite analysis

 In this method the fault detection is based on the test suite to the source

code, using their information to narrow down the fault whereabouts [11]. If the

test suite saves data for the debugging task, that will allow a faster and most

accurately fault detection and localization [9,20].

 This kind of analysis allows multiple executions of the code and allows

system and unit testing at the same time, without compromising requirement

changes, as long as the testing suite changes accordingly. A source code with a

high degree of testability will also less likely contain defects [29].

 Also, it gives the control of the visualization and analysis to the software

developer. That advantage is also its bigger problem: since the software

developer has full control over the test suite if he/she fails to address all

possible tests, a defect can stay undetected [11].

14

 This approach also allows to test some non-functional requirements as

execution time or find bottlenecks in the software by timing the actual tests and

saving result for comparison with later code releases.

3.1.2 Defect Localization

 To correct a defect first we need to detect and locate it, then solve it.

While the first two tasks can be almost single handled by an automated

process, given that process can detect and locate that specific defect, the third

one must be carried by a software engineer [17]. That fact makes defect

localization of key importance on a defect detection software system, since it

cannot detect a defect and then do not locate it at all, it must at least give an

approximately accurate location of the defect.

 Many approaches have been developed to in order to partially automate

defect localization, though they cannot substitute the manual approach [18], that

is why defect detection software systems should be integrated within a

framework that will allow the software developer to easily finish the task of the

automated tool. Actually, an experienced and informed software engineer's

intuition about the location of a defect is generally correct [17], so there is little

an automated tool can do to try to surpass that fact.

3.2 Visualization of Defects

 Visualization is a valuable tool to quickly and effectively analyze big data

structures [16]. When we talk about software projects with millions of lines of

source code in thousands of files it is almost impossible to prevent the software

developer losing focus during the debugging task and a lot of time searching for

the line of code where the defect might be. Defect detection and localization is

turned into a task almost impossible to quickly achieve successfully without a

visualization tool. Visualization can help to locate faulty source code by

managing the visual output of the software in a way that helps the software

developer fulfil the debugging task easily [10].

 Most of software developers consider visualization tools important in the

software development process [16] as they were created in order to allow

15

software developers not only to analyze a big number of files and lines of code

at the same time but also to prevent loss of time in the overall software project

development or in its maintenance. It is possible to use colour, brightness and

even contrast in order to highlight the errors within the source code [10].

 Two of the most important tasks in a visualization software system is the

definition of what will be visualized and how that information will be presented

[23], as it is of most importance for any visualizing tool to show the right amount

of information for its viewers [3]. To show more than the necessary information

can make the viewer lose focus or even miss what is important on that specific

task and to show less will make the viewer lose valuable information and

possibly make wrong decisions within the scope of the project.

3.2.1 Requirements for Software Visualization Tools

 A survey about functional and quality requirements for software

visualization tools showed that the most important quality attributes of a

software visualization tool are rendering scalability, information scalability,

interoperability, customizability, interactivity, usability and adoptability [30]. So, a

defect detection software tool should have no scalability or performance

problems, the information to be shown should always be perceptible and its

views and objects should be easy to customize, use and interact with.

 The same survey showed that the functional requirements required for a

visualization tool are views, abstraction, search, filters, code proximity,

automatic layouts, history, colour, notes, zooms, pans, delete and edit entries

and save and load options [30]. In the case of a defect detection visualization

tool, some of this functional requirements may depend on the defect detection

system, though if possible they should exist within the visualization system.

 All these requirements are important for a defect detection software tool

because as it was said before, poor integration is one of the reasons why

software engineers do not use defect detection tools [15].

 Regarding the specifics of a defect detection tool, all defects should have

a category [1,17] as they should be solved based on a priority system [17].

16

Categorizing defects is one of the most important tasks of a defect detection

system as most of them do not affect functionalities of the system [1] and

should have less priority than the ones that do [17].

3.2.2 Software Tools for Defect Detection and Visualization

 Defect visualising tools are one of the most important parts of a software

developer software configuration, though it is many times undervalued or

present but not noticed. This kind of tools run many times under the surface of

the user interface of many compilers, so software developers tend to assume

they are part of the system and sometimes forget they can be improved.

Actually many defect visualising tools are made only for certain purposes or

goals and that makes them unsuitable for general defect detection and

localization [16].

 Most of defect detection tools detect defects on the source code, but that

does not have to be that way. Defect detection tools can also defect defects on

the software structure or even in given information about different runtime

behaviours [8] and then locate the defect in the source code.

 Every defect detection software solution has its defect visualization, even

if not graphical at all like in the case of most compilers, that just give a

statement of the defects in text. This is the case of Eclipse [31] and Microsoft

Visual Studio [32] for example. There are also tools that provide to the software

developer a graphical interface and present all the errors on his/her software in

a view, like Tarantula [33] or xSlice, a tool within Cleanscape TestWise [34],

and that is the kind of solution this project aims to be.

 Most of defect detection software provides a non-graphical view of the

errors similar to a compiler, that is the case of the ones found during this

research: Cleanscape C++ Lint [35], Cleanscape LintPlus for C [36],

Cleanscape FortranLint [37], Coverity Scan [38], FADA toolkit [39] and

Cppcheck [40].

 All this defect detection software have a few things in common like the

type of information they display (type of error, line and file in which the error was

17

encountered and error message) and the fact that the visualization is used only

for that specific defect detection tool [31-40]. That means that depending on the

defect detection tool used the software developer will get a different output, fact

that will make the software developer to lose a great amount of time in defect

localization when using more than one defect detection tool. Another problem is

that each defect detection tool is used for a single code language and that

makes the visualization tool bound to that language as well.

 Since this project is focused in the visualization of defects in source code

and not in the defect detection itself, it is of most importance that the solution

will be able to get as much information as possible from the defect detection

tools. The output of each one of the defect detection tools should be analyzed in

order to guarantee that the visualization tool is able to show the necessary

information, which is one of the most important goals in a visualization system

[3].

 Tarantula and xSlice are test-based defect detection solutions [33,34]

and they have graphical visualization methods that will be presented on the next

section of this paper.

3.2.3 Visualization Methods and techniques

 Not only a visualization system should allow the viewer to choose what to

see, but also it should allow different types of views over the same data and

different approaches to the same view [23]. Different methods and techniques

have been developed in order to fulfil the need of software developers on

automated tools for defect visualization.

3.2.3.1 Meta-model for Visualization Tools

 A visualization tool always includes one or more graphical

representations and views of one or more types of data [16]. In the case of

defect detection, the object of the visualization tool is the output data of a defect

detection software and not the source code or the defects themselves, because

they do not have a natural representation [23].

18

Figure 1 - Meta-model of visualization tools

 Representation problems aside, when creating a visualization tool, a

software developer should always aim for a generic framework rather than one

that will only be useful for a specific task or a specific project [16], so it is

important to define first a meta-model of the visualization to be developed.

 Generically, a visualization tool links the various graphical

representations the user needs to visualize by allowing the user to use

exploring and acting features in a certain amount and type of views [16] that will

allow the user to browse through the different representations and explore each

one of them to find the necessary information.

 As we can see from Figure 1, graphical representation can include other

representations within, allowing different layouts and layers to be defined within

the visualization tool, giving the opportunity to the viewer to choose what to see

and how to see it, feature of most importance in visualizing tools [23].

19

3.2.3.2 Visual Representations and Interactions

 There are three main properties of the software that are used in

visualization: software structure, runtime behaviour and the source code itself

[8]. In this project we will focus on the source code, as software defects are

bound to a line of code.

 The four general graphical representations of a software source code are

line, pixel, summary and hierarchical representations [8]. While the first two

represent each line of the source code a line or a pixel respectively, the last

ones are used when the number of lines of code is greater than the size of the

actual visual representation or when the software is not using any scrolling

feature: a summary representation within the different files and a hierarchical

representation across all files.

 From Figure 2 it is easy to understand how the line representation of the

source code. By preserving indentation the representation makes it easy to

search for the line of code in the code itself once we go from the representation

to the actual file.

Figure 2 - Line representation of the source code

20

Figure 3 - Pixel and line representations of the source code

 The problem with indentation is that sometimes it is useful to fill the line

to both margins (as shown in Figure 3) in order to prevent the user to miss

some of the lines [8]. Another problem with the indentation is that if we keep the

real length ratio of the source code we may end with some lines too small or too

large in the visualization.

 As we can see by Figure 3, the pixel representation of the code will allow

the visualization of much larger data sets without the use of scrollbars, since we

can represent more in less space [8]. Another advantage is that we can

represent the lines in another order, as in the line representation without

indentation, since they are no longer bound to the perception of the source code

by the user. Pixel representation will also ease the user need to find patterns on

the code, as although a pixel is small, its colour is easy perceivable [8].

21

Figure 4 - Summary representation of the source code

 As proved by Figure 4, the summary representation is handy for quick

analysis of the code, where details are not important and the user rather wants

to see the whole source code within the same view. An hierarchical approach

(see Figure 5) can be taken to link the summary representation and a more

detailed one (like a pixel or line representation) to allow a visualization tool to be

fully capable of giving the information the user requires at certain moment.

Figure 5 - Hierarchical representation of the source code

22

3.2.3.3 System Radiography and Bug Watch

 System Radiography and Bug Watch are two software defect

visualization that complement each other, as System Radiography is suited for

an overall view of the system and bug distribution and Bug Watcher for

understanding the phase transitions and the specifics of a single defect [4,5].

 These two visualizations are time-based, meaning they require a time-

frame [5], so they are good tools for the detection of evolutionary defects and

for the cross-reference of system versions and defect analysis [4]. That means

that these two visualization are more useful in system maintenance rather than

in the development phase of the software system, in which the time frame is

much shorter and many times does not carry any meaning related to the defect.

 In a System Radiography components are grouped by products and

assigned to a line and its colour varies with the number of detected defects, in

order to be easy to perceive where the defects are concentrated [5]. As we can

see from the example in Figure 6, there are 5 components where the number of

detected defects is higher, so in this case those components should be the first

ones to be debugged.

Figure 6 - System Radiography

23

Figure 7 - Bug Watcher

 A Bug Watch visualization aims to give the maximum information about

an specific defect and helps the viewer to understand the many defect status

transitions [4,5], as it can be seen in Figure 7. It is a type of visualization that

works well with a single defect, but it fails to be a visualization tool for many

defects at once, as the defect status transitions and defect information can

become imperceptible to the viewer [5].

 In the end, the ideal is to use System Radiography for the system

overview and the Bug Watcher for the visualization of the defects [5].

3.2.3.4 Seesoft

 Seesoft is a line oriented visualization tool oriented for software statistics

[41] and can be used to visualize defects in source code. It is based in four key

ideas: reduced representation, colouring by statistic, direct manipulation and

capability to read the actual code [41].

24

Figure 8 - Seesoft

 As it is shown in Figure 8, Seesoft displays files as columns and lines as

thin rows, providing a qualitative view of the distribution of the code

characteristics [41]. For a defect visualization tool, this method is intuitive to use

and it allows a quick localization of a defect.

 Seesoft is useful to discover patterns in small projects, but not suitable

for bigger ones. As it shows the entire project in one visualization, the bigger the

project or the files, the smaller the lines will be, which will make them

imperceptible [41]. This can be solved with visualization features though, like

filtering and zooming, with a search engine or even with a hierarchical

representation of the source code, creating more layers to the view.

3.2.3.5 Tarantula

 Tarantula is a visualization system that is cross-references the lines of

code with a test suite and colours the lines based on the amounts of passed

and failed tests that crossed that line of code [33].

 Though it is has an

visualization system [3,10

information and code outside the visualization

problem referred in the previous section

by brightness and not only by colour and the possibility to change to different

types of visualization on the same data to maximize its usability and perception.

As we can see from Figure 9, it is now possible to address much more lines of

code in a single visualizati

Tarantula only shows one file at a time and has some usability problems like

scrolling both vertically and horizontally, is still in its beta state at this point [33],

so a further analysis of this method and software will only be possible after its

release.

25

an entirely different design, it is based i

3,10], some of the differences being the detailed

outside the visualization view to solve the scalability

the previous section, the mapping of the source code lines

and not only by colour and the possibility to change to different

types of visualization on the same data to maximize its usability and perception.

As we can see from Figure 9, it is now possible to address much more lines of

code in a single visualization.

only shows one file at a time and has some usability problems like

scrolling both vertically and horizontally, is still in its beta state at this point [33],

so a further analysis of this method and software will only be possible after its

Figure 9 - Tarantula

entirely different design, it is based in the Seesoft

], some of the differences being the detailed

to solve the scalability

of the source code lines

and not only by colour and the possibility to change to different

types of visualization on the same data to maximize its usability and perception.

As we can see from Figure 9, it is now possible to address much more lines of

only shows one file at a time and has some usability problems like

scrolling both vertically and horizontally, is still in its beta state at this point [33],

so a further analysis of this method and software will only be possible after its

3.2.3.6 xSlice

 xSlice is a program slicing debugger based on software testing [

main difference between

software slices and statements, and not on the whole source code and its lines

of code.

 A slice is a set of statements from the source code. In this case a slice

represents the statements affected by a test

mapping to each slice of the software, allowing the viewer to visualize the faulty

statements, the statements in that particular slice and all other statements in

different colours [10], as it can be seen by Figure 10.

 Further analysis on the methods of

solution, as it is a commercial one.

26

is a program slicing debugger based on software testing [

main difference between xSlice and its peers is that it bases its analysis on

software slices and statements, and not on the whole source code and its lines

A slice is a set of statements from the source code. In this case a slice

represents the statements affected by a test case [13]. xSlice applies a colour

mapping to each slice of the software, allowing the viewer to visualize the faulty

statements, the statements in that particular slice and all other statements in

different colours [10], as it can be seen by Figure 10.

urther analysis on the methods of xSlice will require the purchase of this

solution, as it is a commercial one.

Figure 10 - xSlice

is a program slicing debugger based on software testing [34]. The

and its peers is that it bases its analysis on

software slices and statements, and not on the whole source code and its lines

A slice is a set of statements from the source code. In this case a slice

applies a colour

mapping to each slice of the software, allowing the viewer to visualize the faulty

statements, the statements in that particular slice and all other statements in

will require the purchase of this

27

4 Project

 The project of this thesis is a defect visualizing tool that was developed

based on a methodology to be explained later on this paper. An analysis and

discussion of the results will also be done further on, after the overview of all the

requirements gathered during the research for this thesis project.

4.1 Requirements: Problems and Solutions

 The requirements, problems and solutions encountered during this

research should be enunciated for later explanation of the specifics of the

methodology used in this thesis product. To better understand the types of

problems normally encountered and to structure its presentation, they were

separated in six types of quality requirements: scalability, interactivity,

customizability, interoperability and usability.

4.1.1 Scalability

 Scalability is a requirement any software system should be able to meet.

In the case of defect visualization, if scalability is not properly met as a

requirement, the use of the visualization system will be restricted to small

projects. The bigger the software system, the bigger the necessity of using

visualization for defect detection and localization, so any visualization system

should be able to scale up as maximum as possible.

 In the case of defect visualization, there are two main problems

regarding scalability: the rendering speed and the scalability of the information

to be seen on the view of the visualization system.

4.1.1.1 Rendering Speed

 One of the reasons most pointed by software engineers not to use defect

detection software is their time consumption, therefore it is of extreme

importance that the visualization tool do not consume unnecessary time.

Discarding the time usage of the defect detection tool, which is not the object of

this thesis project, there are a number of effective ways of reducing the

rendering speed of a visualization tool.

28

 Each view can be computed either in the beginning of the visualization

process or in a demand system where the views are computed as they are

requested by the viewer. Another problem is the amount of information to be

computed, which should never be more than the necessary, not to create

bottlenecks in the rendering of each view. Though less information normally

means faster computation, it is not good to have less information than the

necessary either, as the software engineer may miss some important aspect of

the software or the defect if not presented with all the information needed.

 The choices of libraries and the objects for the visualization tool should

also be taken carefully, as the more complex they are, the more time the

computer will need to render the views.

4.1.1.2 Information Scalability

 The scalability of a visualization tool is not only about performance, as

each view has graphical aspects that must be taken into account when scaling

up or down. Every graphical aspect of a view is composed by pixels, though a

pixel can be seen as the limit of any scaling system.

 The objects chosen for a visualization tool should not only be simple, but

also easily scalable without losing its properties. In a screen, a square will

always be more scalable a circle for example, because it can be represented as

a pixel and a circle cannot without losing its properties, as we can see from the

example shown in Figure 11. If more than one type of objects is represented in

the same view, one should always aim to choose forms and aspects of the

objects which will not disappear when scaling the view.

Figure 11 - Results of scaling different objects in a view

29

 The more scalable a view is, the more objects it can represent within its

area, though there is always a maximum number of possible representations,

as a screen as a limited number of pixels (and not necessarily equal to the

number of pixels as a pixel can represent more than one object). As we can see

from Figure 11, using a square instead of using a rectangle in a representation

of an object in a view for example will also increase the amount of objects the

view can support.

 The ability to represent lines of source code as rectangles or pixels is not

a novelty and as it was already said in this thesis paper, a visualization tool can

and should be able to represent in different ways the same data.

4.1.2 Interactivity

 A software system must be interactive. That means simply that the way

to navigate through the system must be easily perceptible and should not

chance as the user navigates.

 In a visualization system, it is important to keep the panels always in the

same place in the view and create tools that can be used in all views, not just in

some of them.

4.1.2.1 View Navigation

 View Navigation is of extreme importance for the user, as it is the way

he/she will interact with the system to obtain the necessary information. Each

view should always have navigation tools that must work in any possible case

scenario. If a view cannot be navigated in all of its extension, the user will lose

information that cannot be recuperated.

 A view should also be a fair abstraction of its object, to be easily

understood by the user. Like it was said before in this thesis paper, the more

approaches to view that can be taken the better.

 In the case of defect visualization, the four basic approaches to the

source code view should always be taken into consideration in the build of a

30

defect visualization system: pixel, line, summary and hierarchical

representations.

4.1.2.2 View Integration

 A visualization system normally is composed by more than one view

which creates several layers of visualization. Those layers must be connected

logically and it should be easy to navigate between them.

 There are several problems that must be avoided while creating different

layers in a visualization system. Each lower layer of the view must be fully

integrated to the previous one, so that every view on the system becomes

accessible. Information that needs to be passed between different layers and

views must be saved by the system in order to ensure the user is opening the

desired view.

4.1.3 Customizability

 Even the most specific task or software system can be made in different

ways by different people, so customizability becomes important when creating a

software tool that aims to be used by many different people.

 For a visualization system, not only the visualization but also the way the

information is gathered and rendered should always be presented to the user as

something that can be changed in some sort or by options or by different

approaches to the software.

4.1.3.1 Input Files

 In a visualization system the information must first be gathered and it is

normally contained in a file. That file should be easy to write, read and

understand, not only to prevent bad usage and following miss representation in

the visualization system, but also to allow any defect detection tool to easily

output the desirable file for visualization.

 The format of the file is also important, as it should not be protected by

the system and should also be readable in any operative system by other

31

software than the visualization tool (for debugging and researching tasks of the

defect detection tool).

4.1.3.2 View Options

 View Options are very important in a visualization system, as the aim of

the visualization is not only to show the data but also to allow the viewer to work

with the visual output.

 Options like zoom, panes, edit, delete, save, load, filter and search

should be present any time it is possible, as it will improve the usability of the

software system as it will prevent users from not using the visualization system

because of lacking of options or visualization tools.

 Options to the view itself are also desirable, as different users will have

different hardware where they use the visualization and not always the same

visualization is well presented in every piece of hardware. Another common

problem is the inability of a view to show the data properly in different monitor

resolutions, and that is something it needs to be though about when creating a

visualization tool.

 In the case of defect detection tools, the proper tools for the solution of

the defect and the proper view options are of key importance, to be sure the

software developer can not only easily solve the defects that are shown in the

visualization view but also see all the defects that the software actually have.

4.1.3.3 Defect Prioritization

 Regarding specifically defect visualization tools, there is a common

problem that must be taken into account when creating a visualization of

defects. Defects have, besides their id/name, location and description, a

category/priority that must be treated in a special way.

 When debugging a software, the software developer follows a priority

system, which means we will solve first the defect with certain characteristics. A

software developer must be able to filter the data by defect category or priority,

either with filtering or searching options, in order to prevent a great loss of time

32

usage in searching the defects with the same priority level before solving them

before passing to the next priority level.

4.1.4 Usability

 As a tool, a software system must not have any usability issues as it will

require more time for the user not only to overcome them but also to work

around them. The user interface, the software assistance and, in the case of

any visualization tool, the view usage must be as good as possible.

4.1.4.1 User interface

 The general user interface of any system is important as it is what it feels

the gap between the software system and its user and it allows that user to

work with the system.

 In a defect visualization tool, the user interface must be able to allow its

user to quickly refresh the view with new information, edit the file with the

defect, find the next defect to correct and get a global summary of the project.

Other options are also important as the navigation and utilities of the view, but

these four elements are the key for the debugging task in hand that must be

present for the software developer to make use of the system.

4.1.4.2 View Usage

 It was said before in this paper that view options are very important in a

visualization system to allow the viewer to work with the visual output and that

each view should have as many options as possible. Another problem arises

when the options exist but are not perceptible or the place they exist are not

conducive to its use.

 The view usage must always be intuitive and easy to percept or, if not,

the software should have a quick introduction to the tools and how to use them,

like a tutorial for example.

33

4.1.5 Interoperability

 When a software system is working within a framework, its

interoperability is essential to the aim of that framework, whatever it might be.

The input and output of each system must be well defined and its

characteristics should be as open to change as possible, as long as do not

corrupt the entire framework.

 In the present case, the defect visualization tool is a bridge between the

defect detection tool and the file editor, as the software developer uses a defect

detection tool to detect the defect, the defect visualization tool to locate it and

the file editor to solve it.

4.1.5.1 Defect Detection Tool Integration

 Defect Detection tools output must be consider to define an input system

for the visualization tool. Not only the type of information but the actual

composition of the file must be entirely defined regarding not only different tools

and systems as well as different technologies.

 The visualization tool should be able to read the input file regardless of

the defect detection tool that created it, as long as the defect detection tool

follows the rules for that file imposed by the visualization system.

 The creation of those rules must also take into consideration not only the

vital information for rendering the view but also the information that may be

necessary for the software developer to locate and solve every possible defect

encountered.

4.1.5.2 Editor Integration

 The visualization tool could allow a file edition within its views, but in the

case of defect visualization that is not the best solution.

 The debugging task is not free of new defects and any compiler can

easily discover many of the errors mostly common done by software developers

during the development phase of the project, so the ideal solution is to open

those compilers or a file editor with programming attributes that will allow the

34

software developer not only to change the software in a known environment but

also will prevent the creation of many more defects.

 As it is not bound to any code language, the user of the visualization tool

must be able to change the editor in which it pretends to solve the defect.

4.1.5.3 Time Consumption

 Time Consumption is one of the most important reason why software

developers do not use defect detection tools, so integration between those tools

and the file editors through visualization is key for the successful accomplish of

this thesis project, as it translates in a major time saving.

 That integration should be extended as far as possible, as long as it not

constitutes a threat to any other goal of the visualization tool.

4.1.6 Adaptability

 Adaptability is one of the most difficult aspects of the software system to

be taken care of, since there is no way of telling beforehand what will be

expected from the software system during its life cycle. In this precise case, no

one can tell what will be chances in the requirements for defect visualization in

the next development of a defect detection tool.

 What it should be guaranteed is that the visualization system will be able

to adapt to new situations and can be easily improved without jeopardizing

previous work.

 The system must be able to get information from different defect

detection tools, regardless of their methods and systems. That means that the

connection between the visualization and the defect detection software must be

done in a way that can be easily extended to any defect detection tool.

 The system should also be able to visualize defects in all types of

software in any source code language, so it cannot depend on specifics of any

type.

 At last, the visualizatio

systems, so that it can be inserted in the same system as the defect detection

tool if necessary.

4.2 Methodology

 The methodology used in the defect visualization tool created during this

thesis project is based on the literature review presented so far. This software

aims to be used within a defect detection framework that will

4.2.1 Visualization tool

 This visualization tool was developed in a Java Environment, as its

executable file is not bou

current platforms known. Its purpose is to become

defect detection tools to communicate with file editors

Figure 12. In order to allow the software develop

task, he/she can use this visualization to locate the defects in the source code

and then use the file editor to solve them.

Figure 12

35

At last, the visualization tool must be able to be used in most of operative

systems, so that it can be inserted in the same system as the defect detection

The methodology used in the defect visualization tool created during this

ased on the literature review presented so far. This software

aims to be used within a defect detection framework that will now

Visualization tool

This visualization tool was developed in a Java Environment, as its

executable file is not bound to any platform and it can executed in almost all

current platforms known. Its purpose is to become an interface to be used by

defect detection tools to communicate with file editors and compilers, as in

order to allow the software developer to save time in its debugging

task, he/she can use this visualization to locate the defects in the source code

and then use the file editor to solve them.

12 - Defect Visualization Tool Framework

n tool must be able to be used in most of operative

systems, so that it can be inserted in the same system as the defect detection

The methodology used in the defect visualization tool created during this

ased on the literature review presented so far. This software

 be explained.

This visualization tool was developed in a Java Environment, as its

nd to any platform and it can executed in almost all

interface to be used by

and compilers, as in

er to save time in its debugging

task, he/she can use this visualization to locate the defects in the source code

Figure 13 - Defect Visualization Tool Views and Representations

 Within the defect detection tool, three visualization layers were created,

each one with its view, represented in Figure 13, in order to provide the user the

four graphical types of visualization views referred in the literature review.

 This approach was taken also to ensure a faster localization by the

software developer of the defect he/she wants to correct. While the directory

view presents all the files within the project (not on

file system of the operating system, but all files presented in the input file, which

will be referred further in this thesis paper), the file view allows the user to see

all the defects within a file, and finally the defect

be corrected.

 The creation of these three layers were necessary for different reason

and serve many purposes as it will be discussed in the continuation of this

chapter.

4.2.2 Framework Integration

 The integration of the defe

and command lines. The input file is

36

Defect Visualization Tool Views and Representations

Within the defect detection tool, three visualization layers were created,

each one with its view, represented in Figure 13, in order to provide the user the

visualization views referred in the literature review.

This approach was taken also to ensure a faster localization by the

software developer of the defect he/she wants to correct. While the directory

view presents all the files within the project (not only a directory in the directory

file system of the operating system, but all files presented in the input file, which

will be referred further in this thesis paper), the file view allows the user to see

all the defects within a file, and finally the defect view specifies a chosen error to

The creation of these three layers were necessary for different reason

and serve many purposes as it will be discussed in the continuation of this

Framework Integration

The integration of the defect visualization tool is made by an input file

command lines. The input file is a XML file that should be created

Defect Visualization Tool Views and Representations

Within the defect detection tool, three visualization layers were created,

each one with its view, represented in Figure 13, in order to provide the user the

visualization views referred in the literature review.

This approach was taken also to ensure a faster localization by the

software developer of the defect he/she wants to correct. While the directory

ly a directory in the directory

file system of the operating system, but all files presented in the input file, which

will be referred further in this thesis paper), the file view allows the user to see

view specifies a chosen error to

The creation of these three layers were necessary for different reasons

and serve many purposes as it will be discussed in the continuation of this

ct visualization tool is made by an input file

a XML file that should be created by the

37

defect detection tool, so that every defect detection tool will be able to work with

the defect visualization tool. The file in XML should have all the input

information needed for the visualization tool to be able to show it. An example

schema of the XML file one should create to work with this tool can be found in

the Appendix A of this paper.

 If a defect detection tool cannot provide the necessary XML file as the

visualization tool needs it is necessary to include a parser in the framework,

before the defect visualization tool, to ensure the information required is in the

defect visualization tool XML input file. The same process can be applied to

quickly merge the information provided by several defect detection tools in order

to create a single input file with all the information.

 The fact that different defect detection tools treat their information

differently makes it impossible for the defect visualization tool to be able to

search for the rest of the information if not all provided in the input file, so the

input file must complete and trustful information (the only exception could be the

actual line of code, but it would be a great performance lost in making the

visualization tool to search for such information when the defect detection tool

has it as it had to analyse it, so the input file should always contain it, with all

the information required).

 Currently there are no defect detection tools that have the necessary

output for this defect visualization tool, though some of them already include the

option of outputting the information as a XML file, as it is the case of Cppcheck

[40]. A full example of how the defect visualization tool currently works within a

framework is presented in the end of this section of the thesis paper, after the

description of the defect visualization tool.

 The integration with the defect detection tool and the file editor is made in

the options of the visualization tool, to ensure that the software developer

doesn't need to manually change between tools.

Figure

 Figure 14 is an example of how the tool can be used with

and Notepad++ [42] (the

the input desired for the visualization tool as it is, as the XML schema differs, to

use Cppcheck a batch file would be needed as after executing

would be necessary to execu

 To fully integrate any possible editor, the user can use the tokens *FILE*

and *LINE* to define where is the command those should be, and the defect

visualization tool will change them to the desired def

debugging process.

 Using command lines and XML files, the defect visualization tool makes

it possible to be used with any compiler, file editor and defect detection tool. It

makes it possible as well to work simultaneous with more th

detection tool, using batch files.

4.2.3 Directory View

 The directory view presents to the user all the files within a project in a

simple representation, an abstraction of a directory file to allow the user a

simple recognition of what the view

drive, but rather a list of all the files within a project).

 Figure 15 is a directory view example with 4 files. The name of the files

and the colours are defined by the XML input file, so the defect detection

prioritize or categorize files at will. Plus, each file will show a tooltip with the

number of errors encountered.

38

Figure 14 - Command Lines Options

Figure 14 is an example of how the tool can be used with

[42] (the Cppcheck command will work but it will not produce

the input desired for the visualization tool as it is, as the XML schema differs, to

a batch file would be needed as after executing

would be necessary to execute a tool to parse the file to the desired schema).

To fully integrate any possible editor, the user can use the tokens *FILE*

and *LINE* to define where is the command those should be, and the defect

visualization tool will change them to the desired defect attributes in the

Using command lines and XML files, the defect visualization tool makes

it possible to be used with any compiler, file editor and defect detection tool. It

it possible as well to work simultaneous with more th

detection tool, using batch files.

The directory view presents to the user all the files within a project in a

simple representation, an abstraction of a directory file to allow the user a

simple recognition of what the view is (not an actual directory file on the hard

drive, but rather a list of all the files within a project).

Figure 15 is a directory view example with 4 files. The name of the files

and the colours are defined by the XML input file, so the defect detection

prioritize or categorize files at will. Plus, each file will show a tooltip with the

number of errors encountered.

Figure 14 is an example of how the tool can be used with Cppcheck [40]

command will work but it will not produce

the input desired for the visualization tool as it is, as the XML schema differs, to

a batch file would be needed as after executing Cppcheck it

te a tool to parse the file to the desired schema).

To fully integrate any possible editor, the user can use the tokens *FILE*

and *LINE* to define where is the command those should be, and the defect

ect attributes in the

Using command lines and XML files, the defect visualization tool makes

it possible to be used with any compiler, file editor and defect detection tool. It

it possible as well to work simultaneous with more than one defect

The directory view presents to the user all the files within a project in a

simple representation, an abstraction of a directory file to allow the user a

(not an actual directory file on the hard

Figure 15 is a directory view example with 4 files. The name of the files

and the colours are defined by the XML input file, so the defect detection can

prioritize or categorize files at will. Plus, each file will show a tooltip with the

 A good example of prioritizing (and shown in Figure 15) is the colouring

of the file by the same colour as its defect with most priority, but other colouring

techniques may apply. Depending on the defect detection tool capability it is

possible to define files by package, folder or class within the software or even

categorize the files per software developer in charge of them (if there is a team

of 5 people the defect detection tool will be able to assign files or packages to

each individual).

 The scalability of the directory view is assured by a horizontal scroll,

which will appear automatically if necessary, and the width and the amount of

rows in the view can be easily changed, as shown by figure 16.

Figure

39

Figure 15 - Directory View

A good example of prioritizing (and shown in Figure 15) is the colouring

file by the same colour as its defect with most priority, but other colouring

techniques may apply. Depending on the defect detection tool capability it is

possible to define files by package, folder or class within the software or even

s per software developer in charge of them (if there is a team

of 5 people the defect detection tool will be able to assign files or packages to

The scalability of the directory view is assured by a horizontal scroll,

utomatically if necessary, and the width and the amount of

rows in the view can be easily changed, as shown by figure 16.

Figure 16 - Directory View Options

A good example of prioritizing (and shown in Figure 15) is the colouring

file by the same colour as its defect with most priority, but other colouring

techniques may apply. Depending on the defect detection tool capability it is

possible to define files by package, folder or class within the software or even

s per software developer in charge of them (if there is a team

of 5 people the defect detection tool will be able to assign files or packages to

The scalability of the directory view is assured by a horizontal scroll,

utomatically if necessary, and the width and the amount of

4.2.4 File View

 The file view presents to the user the lines of code which have or have

not defects. Based on the

as full bars in a range of colours representing the presence or not of a certain

type of error. As directory view, scalability is assured by an horizontal scrolling

bar when the screen cannot support the entire view at once.

 By Figure 17 it is possible to see that the view does not present the

indentation of the code as the

the code could become imperceptible, and because it is not an essential or

many times even desirable feature. Besides its line representation, with the

possibility of changing the number of rows and the width of the "lines of code",

as shown in Figure 18, makes it possible to create a pixel representation of the

source code as well.

40

The file view presents to the user the lines of code which have or have

not defects. Based on the Seesoft [41] visualization, it presents the lines of code

as full bars in a range of colours representing the presence or not of a certain

irectory view, scalability is assured by an horizontal scrolling

bar when the screen cannot support the entire view at once.

By Figure 17 it is possible to see that the view does not present the

indentation of the code as the Tarantula system, as by doing so some lines of

the code could become imperceptible, and because it is not an essential or

many times even desirable feature. Besides its line representation, with the

possibility of changing the number of rows and the width of the "lines of code",

own in Figure 18, makes it possible to create a pixel representation of the

Figure 17 - File view

The file view presents to the user the lines of code which have or have

visualization, it presents the lines of code

as full bars in a range of colours representing the presence or not of a certain

irectory view, scalability is assured by an horizontal scrolling

By Figure 17 it is possible to see that the view does not present the

so some lines of

the code could become imperceptible, and because it is not an essential or

many times even desirable feature. Besides its line representation, with the

possibility of changing the number of rows and the width of the "lines of code",

own in Figure 18, makes it possible to create a pixel representation of the

 To allow not only the categorization but and

defects in the debugging process, the view can be easily filtered in the filter

menu, shown in Figure 19.

 Since the defect visualization tool is decoupled from the defect detection

tool, it is possible to use any method for colou

are defined in the input file. Using more than one defect detection tool at the

same, the only thing that the software developer must assure, is that the

different methods and approaches used by the defect detection tools d

neutralize or disturb encountered defects of each others.

41

Figure 18 - File View Options

To allow not only the categorization but and the prioritization of the

defects in the debugging process, the view can be easily filtered in the filter

menu, shown in Figure 19.

Since the defect visualization tool is decoupled from the defect detection

tool, it is possible to use any method for colouring the defects, as the colours

are defined in the input file. Using more than one defect detection tool at the

same, the only thing that the software developer must assure, is that the

different methods and approaches used by the defect detection tools d

neutralize or disturb encountered defects of each others.

Figure 19 - Filter Options

the prioritization of the

defects in the debugging process, the view can be easily filtered in the filter

Since the defect visualization tool is decoupled from the defect detection

ring the defects, as the colours

are defined in the input file. Using more than one defect detection tool at the

same, the only thing that the software developer must assure, is that the

different methods and approaches used by the defect detection tools do not

This way it is possible for the software developer to choose what to see, when

to see it, which is of most importance not to be overpow

information during the most critical phase of the debugging process.

4.2.5 Defect View

 The file view has a bottom panel that will show the information about the

current defect. That was designed in order to

increased. Putting the information in another panel, it is assured that the

information will always be readable and easily accessed even when the view is

scaled to the maximum possible.

 The defect view is composed by the defect data and a tool to open t

desired file in the line where the error was encountered, as shown by Figure 20.

42

This way it is possible for the software developer to choose what to see, when

to see it, which is of most importance not to be overpowered with useless

information during the most critical phase of the debugging process.

The file view has a bottom panel that will show the information about the

current defect. That was designed in order to allow the file view scalability

. Putting the information in another panel, it is assured that the

information will always be readable and easily accessed even when the view is

scaled to the maximum possible.

The defect view is composed by the defect data and a tool to open t

desired file in the line where the error was encountered, as shown by Figure 20.

Figure 20 - Defect View

This way it is possible for the software developer to choose what to see, when

ered with useless

information during the most critical phase of the debugging process.

The file view has a bottom panel that will show the information about the

scalability to be

. Putting the information in another panel, it is assured that the

information will always be readable and easily accessed even when the view is

The defect view is composed by the defect data and a tool to open the

desired file in the line where the error was encountered, as shown by Figure 20.

4.2.6 Statistics View

 Until now hierarchical, line and pixel representations of the source code

were presented in this paper,

In the case of defect visualization software, the summary should always present

the size of the project and the number of encountered defects that it contains.

For this project a statistics view was created t

(until a defect is selected by an user and after the user closes the defect view),

represented in Figure 21.

 The statistic view was created with the same height as the defect view,

so that the view does not lose eyesight of

changing from the directory view to the file view or the other way around.

43

Until now hierarchical, line and pixel representations of the source code

were presented in this paper, which leave us with the summary representation.

In the case of defect visualization software, the summary should always present

the size of the project and the number of encountered defects that it contains.

For this project a statistics view was created to be shown in the bottom panel

(until a defect is selected by an user and after the user closes the defect view),

represented in Figure 21.

The statistic view was created with the same height as the defect view,

so that the view does not lose eyesight of the necessary information when

changing from the directory view to the file view or the other way around.

Figure 21 - Statistics View

Until now hierarchical, line and pixel representations of the source code

which leave us with the summary representation.

In the case of defect visualization software, the summary should always present

the size of the project and the number of encountered defects that it contains.

o be shown in the bottom panel

(until a defect is selected by an user and after the user closes the defect view),

The statistic view was created with the same height as the defect view,

the necessary information when

changing from the directory view to the file view or the other way around.

4.2.7 Framework Example

 Now that the reader understands how the views work and interact, an

example of a specific fully integrated system will be presented. In this example

all the steps to setup the framework and correct the first defect will be taken and

explained in detail for fully understanding of the process.

 For this example an executable file wa

Cppcheck [40] tool and parse

defect visualization tool. The File Editor used was the Notepad++ [42]. The final

framework of this example is represented by Figure 22.

 In this example only one defect detection tool is being used to make it of

simple reading, but more defect detection tools could be used and then with a

parser merge all the results into one file to serve as input for the defect

visualization tool. In the future

be easily treated, but that does not happen in the present moment, so a parser

is always needed for now.

 For the defect visualization tool to work properly, the command lines

options must be well defined.

detection tool command is set for the created parser executable file and the edit

file command set for Notepad++ with the proper nomenclature for file path and

line number.

Figure

44

Framework Example

Now that the reader understands how the views work and interact, an

of a specific fully integrated system will be presented. In this example

all the steps to setup the framework and correct the first defect will be taken and

explained in detail for fully understanding of the process.

For this example an executable file was prepared to

parse its output file to create the proper input file for the

defect visualization tool. The File Editor used was the Notepad++ [42]. The final

framework of this example is represented by Figure 22.

example only one defect detection tool is being used to make it of

simple reading, but more defect detection tools could be used and then with a

parser merge all the results into one file to serve as input for the defect

visualization tool. In the future defect detection tools can have outputs that will

be easily treated, but that does not happen in the present moment, so a parser

is always needed for now.

For the defect visualization tool to work properly, the command lines

options must be well defined. As it can be seen by Figure 23, the defect

detection tool command is set for the created parser executable file and the edit

file command set for Notepad++ with the proper nomenclature for file path and

Figure 22 - Framework Example

Now that the reader understands how the views work and interact, an

of a specific fully integrated system will be presented. In this example

all the steps to setup the framework and correct the first defect will be taken and

s prepared to execute the

to create the proper input file for the

defect visualization tool. The File Editor used was the Notepad++ [42]. The final

example only one defect detection tool is being used to make it of

simple reading, but more defect detection tools could be used and then with a

parser merge all the results into one file to serve as input for the defect

defect detection tools can have outputs that will

be easily treated, but that does not happen in the present moment, so a parser

For the defect visualization tool to work properly, the command lines

As it can be seen by Figure 23, the defect

detection tool command is set for the created parser executable file and the edit

file command set for Notepad++ with the proper nomenclature for file path and

Figure 23 -

 The *FILE* and *LINE* values will be changed according to the defect

view choice by the user, so that the file editor opens the file in the proper line of

code. This is important as it saves the software developer the time of being

looking for the line of code where the error occurred, as it will be possible to

confirm later on.

 To be able to visualize the output of the defect detection tool the user

must refresh the view (this command can be seen in Figure 24 and it will always

execute the defect detection command defined within the defect visualization

tool options and update the views) and then open the desired file that should be

defined within the open f

necessary only for the first refresh command, or when the user wants to change

the input file, so that the defect visualization tool knows where the input file is).

45

- Framework Example - Setting up options

The *FILE* and *LINE* values will be changed according to the defect

view choice by the user, so that the file editor opens the file in the proper line of

ode. This is important as it saves the software developer the time of being

looking for the line of code where the error occurred, as it will be possible to

To be able to visualize the output of the defect detection tool the user

fresh the view (this command can be seen in Figure 24 and it will always

execute the defect detection command defined within the defect visualization

tool options and update the views) and then open the desired file that should be

defined within the open file menu, as shown in Figure 25 (that option is

necessary only for the first refresh command, or when the user wants to change

the input file, so that the defect visualization tool knows where the input file is).

Setting up options

The *FILE* and *LINE* values will be changed according to the defect

view choice by the user, so that the file editor opens the file in the proper line of

ode. This is important as it saves the software developer the time of being

looking for the line of code where the error occurred, as it will be possible to

To be able to visualize the output of the defect detection tool the user

fresh the view (this command can be seen in Figure 24 and it will always

execute the defect detection command defined within the defect visualization

tool options and update the views) and then open the desired file that should be

ile menu, as shown in Figure 25 (that option is

necessary only for the first refresh command, or when the user wants to change

the input file, so that the defect visualization tool knows where the input file is).

Figure 24

Figure 25

 As soon as all the information is saved, the defect visualization tool will

allow the user to visualize the directory and the statistic vie

this example the project contains four files, in two different folders, as its

visualization can be seen in Figure 26.

46

 - Framework Example - Creating input file

 - Framework Example - Opening input file

As soon as all the information is saved, the defect visualization tool will

allow the user to visualize the directory and the statistic views or the project. In

this example the project contains four files, in two different folders, as its

visualization can be seen in Figure 26.

Creating input file

Opening input file

As soon as all the information is saved, the defect visualization tool will

ws or the project. In

this example the project contains four files, in two different folders, as its

47

Figure 26 - Framework Example - Directory View

 In this case the files are coloured by defect priority (main.cpp and

global.cpp contain errors, test.cpp contain no errors but contain warnings and

library.cpp contains no errors of any priority). This colouring was obtained by

the analysis of the data within the output of Cppcheck [40] by the created parser

as Cppcheck does not create priorities for its defects or files, only categories.

 To solve the desired defect, the file global.cpp was opened, resulting in

the file view represented by Figure 27. In this case the defects appear within the

first 280 lines of code, so the view does not need to be scrolled or scaled (280

lines of code represent a view of 7 columns by 40 rows, which were created

based on the defined options shown in the beginning of this section).

 Though by prioritizing errors over warnings, one of the three presented

errors in red should be dealt with first, in this example the warning will be solved

first.

48

Figure 27 - Framework Example - File View

 By clicking on the yellow box, representing the warning to solve, the

bottom panel no longer shows the statistic view, rather changes its content to

the defect view, as it shown by Figure 28.

 The defect view will always show the line of the file in which the defect

was encountered, the type of defect, the defect statement or explanation and

the actual line of code in the source code file. This information is the basic

information given by all the defect detection tools encountered during the

literature review on this thesis project. As it was discussed before, it is the

essential information for the software developer to quickly solve the defect .

Figure

 As it can be easily seen by Figure 28, the defect view has two buttons,

one on the top, represented by a cross, is used to close the defect view and

return to the statistic one, and another on the bottom, represented by a paper,

which is used to open the file editor with the information provided by the defect

and the file editor command in th

the result is, as presented in Figure 29, the opening of the source code file in

the line where the defect was encountered so that the software developer can

easily solve the defect.

 This way the defect detection

defect detection tool but also with the file editor, preventing the software

developer to be lost within changes in the software and defect localization within

the source code files, searching for the correct line o

49

Figure 28 - Framework Example - Defect View

As it can be easily seen by Figure 28, the defect view has two buttons,

represented by a cross, is used to close the defect view and

return to the statistic one, and another on the bottom, represented by a paper,

which is used to open the file editor with the information provided by the defect

and the file editor command in the options. When the second one is pressed,

the result is, as presented in Figure 29, the opening of the source code file in

the line where the defect was encountered so that the software developer can

This way the defect detection software not only communicates with the

defect detection tool but also with the file editor, preventing the software

developer to be lost within changes in the software and defect localization within

the source code files, searching for the correct line of code.

As it can be easily seen by Figure 28, the defect view has two buttons,

represented by a cross, is used to close the defect view and

return to the statistic one, and another on the bottom, represented by a paper,

which is used to open the file editor with the information provided by the defect

e options. When the second one is pressed,

the result is, as presented in Figure 29, the opening of the source code file in

the line where the defect was encountered so that the software developer can

software not only communicates with the

defect detection tool but also with the file editor, preventing the software

developer to be lost within changes in the software and defect localization within

50

Figure 29 - Framework Example - File Editor

 To continue to solve the rest of the encountered defect the software

developer would only have to click in another defect and again on the edit file

button until no defect is left to solve. At any time the software developer can

update the visualization by clicking in the refresh menu, so that it can check if

the previous defects were corrected or if new defects arose from the correction

of the solved ones.

4.3 Results and Discussion

 The most important thing in a visualization system, and one that it was

the first priority of this visualization method, is scalability. The visualization

method proved to be greatly scalable. It allows the user to scale up to one line

of source code per pixel and on top of that it allows filtering within the view,

which reduces the amount of information necessary to the visualization and

thus also increases the scalability of the system.

 Although in terms of scalability the method proved to be as good as

possible for any size project, the fact is there is a few details that should be

improved. The first one is a vertical scroll that appears when an user wants to

create more rows than the existent in a view, the necessity of knowing the

51

actual height of the view to maximize its capability is not something that should

be necessary. Another problem is that when viewing lines as pixels, clicking on

the actual defect may become a harder task that it should be. A tooltip or a local

zoom option within the mouse range should solve that problem.

 The most important problem that needs a real and fast solution is when a

line of code has more than one defect, as they can have different priorities and

characteristics. A possible solution to that problem would be to create a "fake

line", that meaning there would be more than one object in the visualization

representing the same line but different defects.

 The current solution is that the defect visualization tool should choose

which defect to present, since the defect visualization tools knows the types of

defects but not its priority level.

Figure 30 - File view with many lines and few errors

 Regarding scalability there is still one last minor problem: in the directory

view one must be careful with the length of the names in the files, as it can be

as big as one wants to and that will make a file harder to find (a search option in

the directory view is necessary and should be implemented).

 Within a file view, if a file is great in numbe

finding one may become a task hard to complete in a few time. As it can be

seen by Figures 30 and 31, in that situation the user will have to manually scroll

the view until the desired location, scale down the view in order

file at once or, if not possible, will to have to scroll the minimum required. The

best option in this case is to resort to the filters, as it is shown in Figure 31, that

will allow the user to see only the defects disregarding all lines o

have none.

Figure

52

Regarding scalability there is still one last minor problem: in the directory

careful with the length of the names in the files, as it can be

as big as one wants to and that will make a file harder to find (a search option in

the directory view is necessary and should be implemented).

Within a file view, if a file is great in number of lines and short in defects,

finding one may become a task hard to complete in a few time. As it can be

seen by Figures 30 and 31, in that situation the user will have to manually scroll

the view until the desired location, scale down the view in order

file at once or, if not possible, will to have to scroll the minimum required. The

best option in this case is to resort to the filters, as it is shown in Figure 31, that

will allow the user to see only the defects disregarding all lines o

Figure 31 - File view with the use of filters

Regarding scalability there is still one last minor problem: in the directory

careful with the length of the names in the files, as it can be

as big as one wants to and that will make a file harder to find (a search option in

r of lines and short in defects,

finding one may become a task hard to complete in a few time. As it can be

seen by Figures 30 and 31, in that situation the user will have to manually scroll

the view until the desired location, scale down the view in order to view all the

file at once or, if not possible, will to have to scroll the minimum required. The

best option in this case is to resort to the filters, as it is shown in Figure 31, that

will allow the user to see only the defects disregarding all lines of code which

53

 It is also possible that the user wants to find an specific defect among

many others, and for that there must be a search option for the file view as well,

for the software developer be able not only to find defect by type but also by

content.

 There is a good general abstraction used by this method and the

visualization layers are well defined, but further analysis on the information

presented itself may be necessary as defect detection tools are always using

more and more types of information to find defects in source code and that

information may need to be passed to the defect visualization tool.

 The integration within the framework is key for the success of this type of

software and the way this project does it is also remarkable, but its setup may

be a too troublesome for small projects, unless the software developer uses the

same defect detection many time, as there is no standard for defect

representation and one will have to create a parser for each defect detection

with which desires to use the visualization tool. There should be a major gain of

time once it is done though.

 This visualization system can be used in almost any platform and works

with any tool that has a workable output and any compiler or file editor that has

command line options, but the system has an handicap, as in software projects

with more than one source code language, or with files with many different

characteristics, the software developer may need the files to have different

options depending on their localization, extension or any other characteristic

and the system does not offer that.

54

55

5 Conclusion

 Any defect visualization tool must aim to be able to be fully integrated in

a framework and to use a method that ultimately will always save time to its

user, as these two are the most common reasons why software developers do

not use defect detection tools.

 Though further work and analysis must be done, it is a good first step

towards the definition of defect visualizing tools as a standalone software

capable of working with more than one defect detection tool and a file editor at

the same time, as it was seen in the last chapter.

5.1 Method Overview

 As a defect visualization tool, scalability is the most important feature of

its method, and as it is the method corresponds to a highly capable scaling

visualization. It is not only possible to reduce its views components to a

minimum without losing information or perception of the object of the

visualization but also to filter the results in order to diminish the amount of

unnecessary information to be visualized.

 As an interactive process, this method is still not fully capable of being

operated without concern, as it still fails to attend some important aspects

necessary for a defect visualization method, like the fact of not addressing two

errors to the same line of code.

 That problem could be solved by approaching the view as xSlice [34] and

instead of creating an object per line of code rather doing it by statement in the

code, but that would turn the defect visualization tool not compatible with most

of defect detection tools available. The creation of a "fake line" seems the best

solution for that problem.

5.2 Product Analysis

 As a prototype, the defect visualizing tool behaves well, though it still

lacks functionalities like search and zoom options.

56

 The language and communication within the framework chosen was

good and there are numerous possibilities of usage of this software, as

presented in the previous chapter. It is a simple software and easy to navigate

and has the capacity of being used in most current system platforms.

 Its categorization and prioritization system allows a quick decision in

which defect to correct next and the options given, refresh of the defects (as

soon as the defect detection ends its analysis) and a clear and simple usage of

the file editor or compiler for its user to correct the defect.

 The decision on how to use the visualization tool is always on the side of

the defect detection tool, which is good in a way that will not restring its use, but

at the same time if defect detection tools do not work towards a common use of

output solutions, it can increase the cost of creating similar frameworks to the

one in the example on the previous chapter.

 One last problem with this defect visualization tool is that it doesn't allow

two or more files or defects to be opened at the same time, so a software

developer cannot compare two different defects or files if needed. Further

analysis to the system is necessary and user feedback would also improve its

quality.

5.3 Future Work

 From a method perspective, it is necessary to address the problem of

two defects in the same line of code. An extension to the phase of software

maintenance rather than only be used for the debugging phase of the software

development would also be desirable, as it would constitute a clear step

towards a fully integrated method for defect visualization (and not only a method

for software development).

 For that to happen, further analysis and research would be necessary as

the method would have to approach defects time life, status and status

transitions, as the System Radiography and the Bug Watcher methods. The two

systems cannot co-exist in the same visualization though, as the creation on an

extra layer in not necessary for the visualization of defects in the development

57

phase of the project (and it would only result in more time consumption) it is

absolutely essential for software maintenance.

 As a defect visualization tool, it lacks functionality. As it was said above,

file search, defect search and zoom options would be a major update to the

system. Many other details can be improved and many of them will only be

noticeable as its users need extra functionality, so user feedback should also be

a priority. Another functionality that makes some projects incapable of using this

tool is the options system, as it should be possible to change the options of only

one file without changing for the entire project. In projects with source code with

more than one language or with different characteristics within the files the

software developer cannot be losing time is changing the options every time he

wants to visualize another file. Files with different sizes or that need a different

file editor can also create a similar problem.

 At last, a software developer should be able to compare files and

defects, which this tool does not allow him/her to do.

58

59

6 References

[1] Mantyla, M.V.; Lassenius, C. (2009), "What Types of Defects Are Really

Discovered in Code Reviews?", IEEE Transactions on Software Engineering,

pp.430-448.

[2] IEEE Computer Society (1990), "IEEE Standard Glossary of Software

Engineering Terminology".

[3] Eagan, J.; Harrold, M.J.; Jones, J.A.; Stasko, J. (2001), "Technical note:

visually encoding program test information to find faults in software", IEEE

Symposium on Information Visualization, INFOVIS 2001, 22-23 October 2001,

San Diego, California, USA, pp.33-36.

[4] D'Ambros, M. (2008), "Supporting software evolution analysis with historical

dependencies and defect information", IEEE International Conference on

Software Maintenance, ICSM 2008, 28 September - 4 October 2008, Beijing,

China, pp.412-415.

[5] D'Ambros, M. (2007), ""A Bug's Life" Visualizing a Bug Database", 4th IEEE

International Workshop on Visualizing Software for Understanding and Analysis,

VISSOFT 2007, 24-25 June 2007, Banff, Ontario, Canada, pp.113-120.

[6] Runeson, P.; Andersson, C.; Thelin, T.; Andrews, A.; Berling, T. (2006)

"What do we know about defect detection methods?", Software, Vol.23, no.3,

pp.82-90.

[7] Axelsson, S.; Baca, D.; Feldt, R.; Sidlauskas, D.; Kacan, D. (2009),

"Detecting defects with an interactive code review tool based on visualisation

and machine learning", 21st International Conference on Software Engineering

and Knowledge Engineering, SEKE 2009, 1-3 July 2009, Boston,

Massachusetts, USA, pp. 412-417.

[8] Ball, T.; Eick, S.G. (1996), "Software visualization in the large", Computer,

Vol.29, no.4, pp.33-43.

60

[9] Chaim, M.L. (2003), "A debugging strategy based on requirements of

testing", 7th European Conference on Software Maintenance and

Reengineering, 26-28 March 2003, Benevento, Italy, pp.160-169.

[10] Jones, J.A.; Harrold, M.J.; Stasko, J. (2002), "Visualization of test

information to assist fault localization", 24rd International Conference on

Software Engineering, ICSE 2002, 19-25 May 2002, Penang, Malaysia, pp.467-

477.

[11] Yu, Y.; Jones, J.A.; Harrold, M.J. (2008), "An empirical study of the effects

of test-suite reduction on fault localization", ACM/IEEE 30th International

Conference on Software Engineering, ICSE 2008, 10-18 May 2008, Leipzig,

Germany, pp.201-210.

[12] Jones, J.A.; Harrold M.J.; Stasko, J. (2001), "Visualization for Fault

Localization", 23rd International Conference on Software Engineering, ICSE

2001, 12-19 May 2001, Toronto, Ontario, Canada, pp.71-75.

[13] Agrawal, H.; Horgan, J.R.; London, S.; Wong, W.E. (1995), "Fault

localization using execution slices and dataflow tests", 6th International

Symposium on Software Reliability Engineering, 24-27 October 1995, Toulouse,

France, pp.143-151.

[14] Tam, K. (2011), "Debugging Debugging", IEEE 35th Annual Computer

Software and Applications Conference Workshops, COMPSACW 2011, 18-22

July 2011, Munich, Germany, pp.512-515.

[15] Kleidermacher, D.N. (2008), "Integrating Static Analysis into a Secure

Software Development Process", IEEE Conference on Technologies for

Homeland Security, 12-13 May 2008, Waltham, Massachusetts, USA, pp.367-

371.

[16] Sfayhi, A.; Sahraoui, H. (2011), "What You See is What You Asked for: An

Effort-Based Transformation of Code Analysis Tasks into Interactive

Visualization Scenarios", 11th IEEE International Working Conference on

61

Source Code Analysis and Manipulation, SCAM 2011, 25-26 September 2011,

Williamsburg, Virginia, USA, pp.195-203.

[17] Wong, W.E.; Debroy, V.; Golden, R.; Xiaofeng X.; Thuraisingham, B.

(2012), "Effective Software Fault Localization Using an RBF Neural Network",

IEEE Transactions on Reliability, Vol.61, Issue 1, pp.149-169.

[18] Hao, D.; Zhang, L.; Mei, H.; Sun, J. (2006), "Towards Interactive Fault

Localization Using Test Information", 13th Asia Pacific Software Engineering

Conference, APSEC 2006, 6-8 December 2006, Bangalore, India, pp.277-284.

[19] Gupta, R.; Soffa, M.L. (1994), "A framework for partial data flow analysis",

International Conference on Software Maintenance, ICSM 2004, 19-23

September 1994, Victoria, British Columbia, Canada, pp.4-13.

[20] Gonzalez-Sanchez, A.; Piel, E.; Gross, H.-G.; van Gemund, A.J.C. (2010),

"Prioritizing Tests for Software Fault Localization", 10th International

Conference on Quality Software, QSIC 2010, 14-15 July 2010, Zhangjiajie,

China, pp.42-51.

[21] Hayashi, S.; Asakura, T.; Zhang, S. (2002), "Study of machine fault

diagnosis system using neural networks", International Joint Conference

onNeural Networks, IJCNN 2002, Vol.1, 12-17 May 2002, Honolulu, Hawaii,

USA, pp.956-961.

[22] Li, P. (2010), "A comparative study on soft1ware vulnerability static analysis

techniques and tools", IEEE International Conference on Information Theory

and Information Security, ICITIS 2010, 17-19 December 2010, Beijing, China,

pp.521-524.

[23] Langelier, G.; Sahraoui, H.; Poulin, P. (2005), "Visualization-based analysis

of quality for large-scale software systems", 20th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2005, 07-11 November

2005, Long Beach, California, USA, pp.214-223.

[24] Kitchenham, B.; Pfleeger, S.L. (1996), "Software quality: the elusive target",

Software, Vol.13, no.1, pp.12-21.

62

[25] Weerahandi, S.; Hausman, R.E. (1994), "Software quality measurement

based on fault-detection data", IEEE Transactions on Software Engineering,

Vol.20, Issue 9, pp.665-676.

[26] Elsevier B.V (2012), Scopus - Document Search, available at:

http://www.scopus.com/ (accessed April-May 2012).

[27] IEEE (2012), IEEE Xplore, available at: http://ieeexplore.ieee.org/

(accessed April-May 2012).

[28] Google (2012), Google Scholar, available at: http://scholar.google.com/

(accessed April-May 2012).

[29] Yeh, P.-L.; Lin, J.-C. (1998), "Software testability measurements derived

from data flow analysis", 2nd Euromicro Conference on Software Maintenance

and Reengineering, 8-11 March 1998, Florence, Italy, pp.96-102.

[30] Kienle, H.M.; Muller, H.A. (2007), "Requirements of Software Visualization

Tools: A Literature Survey" , 4th IEEE International Workshop on Visualizing

Software for Understanding and Analysis, VISSOFT 2007, 24-25 June 2007,

Banff, Ontario, Canada, pp.2-9.

[31] The Eclipse Foundation (2012), Eclipse - The Eclipse Foundation open

source community website, available at: http://www.eclipse.org/ (accessed June

2012).

[32] Microsoft Corporation (2012), Microsoft Visual Studio, available at:

http://www.microsoft.com/visualstudio/en-us (accessed June 2012).

[33] Georgia Tech College of Computing (2005-2011), Tarantula - Fault

Localization via Visualization, available at:

http://pleuma.cc.gatech.edu/aristotle/Tools/tarantula/index.html (accessed June

2012).

[34] Cleanscape Software International (2006-2011), Cleanscape Software

Visualization and Analysis Toolset: xSlice dynamic debugging tool, available at:

63

http://legacy.cleanscape.net/products/testwise/tools_xslice.html (accessed June

2012).

[35] Cleanscape Software International (2006-2011), Cleanscape C++ Lint,

available at: http://legacy.cleanscape.net/products/cpp/index.html (accessed

June 2012).

[36] Cleanscape Software International (2006-2011), Cleanscape LintPlus C

Source Code Analysis Tool, available at:

http://legacy.cleanscape.net/products/lintplus/index.html (accessed June 2012).

[37] Cleanscape Software International (2006-2011), Cleanscape FortranLint

Fortran source code analysis tool, available at:

http://legacy.cleanscape.net/products/fortranlint/index.html (accessed June

2012).

[38] Coverity (2012), Coverity Scan Site: Accelerating Open Source Software

Integrity, available at: http://scan.coverity.com/ (accessed June 2012).

[39] UVSQ and INRIA (2010), FADA toolkit, available at:

http://www.prism.uvsq.fr/~bem/fadalib/index.html (accessed June 2012).

[40] Geeknet, Inc. (2012), Cppcheck - A tool for static C/C++ code analysis,

available at: http://cppcheck.sourceforge.net/ (accessed June 2012).

[41] Eick, S.C.; Steffen, J.L.; Sumner Jr., E.E. (1992), "Seesoft - A tool for

visualizing line oriented software statistics", IEEE Transactions on Software

Engineering, Vol.18, Issue 11, pp.957-968.

[42] Don Ho (2011), Notepad++, available at: http://notepad-plus-plus.org/

(accessed August 2012).

64

65

Appendix A

A.1 XML Input File Schema

<?xml version="1.0" encoding="UTF-8" ?>

<errors>

 <type id="" r="" g="" b="" />

 <type id="" r="" g="" b="" />

 <file name="" path="" lines="" r="" g="" b="">

 <error line="" type="" msg="" content="" />

 <error line="" type="" msg="" content="" />

 </file>

 <file name="" path="" lines="" r="" g="" b="">

 </file>

</errors>

A.2 Defects

 A defect is always defined within a file and has a type, defined in the top

on the XML file. Besides its type, a defect is composed by a line that represents

the line in the source code file where the error was encountered, a message

that represents the error itself and a content representing the actual content of

the line of code in the file.

A.3 Files

 A file can have none or more defects. It has a path that represents the

actual path for the file, a name representing the name of the file, the number of

lines which the file has and a colour, represented by its red, green and blue

components.

A.4 Types

66

 All defects must have a valid type, composed by an id, which represents

its name, and a colour, represented by its red, green and blue components. The

type with id="noerror" defines the colour of the files which have no defect at all.

A.5 Example

<?xml version="1.0" encoding="UTF-8" ?>

<errors>

 <type id="noerror" r="0" g="255" b="0" />

 <type id="error" r="255" g="0" b="0" />

 <file name="main.c" path="C:\test\main.c" lines="518" r="255" g="0"

b="0">

 <error line="82" type="error" msg="The local variable i may not

have been initialized" content="if (i > 0)" />

 </file>

 <file name="library.h" path=" C:\test\ library.h" lines="423" r="0" g="255"

b="0">

 </file>

</errors>

