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Abstract

Be it in a university, in a manufacturing company or in an airline business, if a set of
entities are collectively collaborating and contributing toward one common goal, then we
have an organizational structure. Nowadays, with the increasing complexity of goods and
services, and competing in a globalized world, organizations require tuned work systems,
involving human capital interwoven with the latest technological innovations.

Evolving an established organizational structure is often daunting when it is behind the
core mission of a business or when it operates uninterruptedly. In these cases, software
simulations are an invaluable tool to explore new work practices, information flows or
even decision making processes. Modeling and simulating complete or small portions
of critical workflows, makes it feasible to collect a set of metrics as well as introducing
organizational transformations. Brought together, these factors allow for organizational
performance assessment and evolution.

This research project is founded on such observations and aimed at proposing im-
provements to the operational control within a real airline company. To accomplish this,
it departed from the empirical knowledge conveyed through interviews with airline op-
erators and built an analytical infrastructure geared towards evaluating the current and
hypothetical organizational structures.

At its core, this study pioneered the first simulation of a real airline operations con-
trol scenario, involving human actors, existing computerized systems, time and spatial
location, operational activities and reasoning processes. Besides the faithful modeling of
airline entities, it used pre and post real operational data to better reproduce workflow
inception and disruption handling.

Along with operational performance assessment, the conducted research also delved
into the decision making practices of the Airline Operational Control Centre specialists,
performing a comparison between empirical probabilistic action and tangible solutions
obtained through operational records analysis. The usage of learning techniques was
demonstrated as a mean to optimize the reasoning accuracy within the simulation.

In terms of tools, Brahms, a human-centered multi-agent environment was used to
implement and simulate the conceptual representation of the airline operational entities.
The academia and research nature of this tool makes it lack a large user base, that justified
the publication of educational tutorials.

By the end of the research study, the simulation of the same operational scenario
across four distinct organizational structures demonstrated improvements up to 15% in
disruption handling time and up to 21% in collaborator stress. The usage of decision tree
classifiers made it possible to raise the 21% reasoning accuracy from the probabilistic
empirical model to 86%.
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Resumo

Seja numa universidade, na indústria, ou numa companhia aérea, quando um conjunto de
entidades contribui e colabora no sentido de alcançar um objectivo comum, está-se em
presença de uma estrutura organizacional. Nos dias de hoje, com a crescente complexi-
dade de bens e serviços e enfrentando competição a nível internacional, as organizações
necessitam de sistemas de trabalho eficientes, envolvendo capital humano interligado com
as últimas inovações tecnológicas.

As simulações através de software assumem especial relevância na exploração de no-
vas práticas de trabalho, fluxos de informação ou processos de decisão. A modelação e
simulação de fluxos de trabalho torna possível a recolha de um conjunto de métricas bem
como introduzir diversas transformações à estrutura organizacional vigente. Em conjunto,
estes factores permitem avaliar e optimizar o desempenho de uma organização.

O presente projecto de investigação surge das observações acima e tem como objectivo
último propor melhorias ao nível do controlo operacional de um companhia aérea real.
Para o conseguir, parte do conhecimento empírico transmitido através de entrevistas com
os principais colaboradores da companhia aérea e constrói uma infra-estrutura analítica
destinada à avaliação da actual e hipotéticas estruturas organizacionais.

Este estudo protagoniza a primeira simulação de um cenário de controlo operacional
no interior de uma companhia aérea, envolvendo colaboradores, sistemas computacionais,
localização espaço-temporal, actividades operacionais e processos de raciocínio. Para
além da fiel modelação das entidades aeroportuárias, são utilizados dados pre e pós-
operação reais com vista a reproduzir o arranque de fluxos de trabalho e a gestão de
perturbações de forma mais fidedigna.

No seguimento da avaliação operacional, a investigação conduzida aborda também as
práticas de tomada de decisão ao nível do Centro de Controlo Operacional da companhia
aérea. Aqui estabelece-se a comparação entre acções probabilísticas empíricas e soluções
tangíveis obtidas pela análise dos registo da operação. A utilização de técnicas de apren-
dizagem supervisionada é demonstrada como veículo de optimização dos processos de
raciocínio embebidos na simulação.

Em termos de ferramentas, o ambiente multi-agente Brahms foi utilizado para modelar
e simular as entidades associadas à companhia aérea. A natureza académica e científica
desta ferramenta justifica uma restrita e parca comunidade de utilizadores, facto que mo-
tivou a publicação de diversos artigos educacionais.

No final deste estudo, a simulação do mesmo cenário operacional tendo por base qua-
tro estruturas organizacionais distintas demonstrou melhorias até 15% no tempo de gestão
de perturbações aéreas e até 21% ao nível do stress dos colaboradores. A utilização de
classificadores baseados em árvores de decisão tornou possível aumentar a precisão dos
processos de raciocínio de 21%, associado ao modelo probabilístico empírico, para 86%.
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Chapter 1

Introduction

This chapter sets the frame for the presentation of introductory and general information
related to the dissertation. It starts by providing a broad picture of the research study,
exposing its foundations and establishing its objectives and expected results. In the end,
a brief section details the overall structure of this report.

1.1 Overview

Over the last 40 years, the miniaturization and increasing affordability of electronic and
automated systems made computers ubiquitous in homes and offices. Nowadays, busi-
nesses from different fields and all over the world use silicon-based systems to record
data, assist decision processes, automate tasks, among other uses.

If on one hand technological systems play an important role promoting business growth
and competitiveness, on the other hand human capital still takes part in the majority of
decision processes.

The previous observations are transversal, in different extents, to every business sector.
The airline business is no exception and it currently relies on a number of computerized
systems to plan flight activity, track aircrafts and crew members and record operational
activity.

In an airline company, as in any other contemporary business, human collaborators
live together with machines creating an interconnected organizational structure aiming at
carry out a set of operations. While the established organizational structure might serve
its purposes, it does not mean that analyzing its intrinsic aspects, such as communica-
tion flow, number of collaborators and decision making, will not allow for tuning up the
working practices and optimizing the output.

1



Introduction

The academia dissertation that will be described along this document lies in the sci-
entific fields of Operations Management and Artificial Intelligence and departs from the
observations drawn in the previous paragraphs. It starts from the empirical knowledge of
the operations carried out by an airline company, then it delves into historical data analy-
sis and work practice simulation, concluding about business processes and work practice
improvement.

1.2 Motivation

Falling into different knowledge fields, Operations Management and Artificial Intelli-
gence, provides different incentives to develop this research study.

From an Operations Management perspective, having a clear understanding of how
processes take place inside a business translates a way of improving the efficiency of those
processes. The study of heuristic decision making opens the door to a more structured and
automated choice analysis and selection. All this analytics may be later implemented or
incorporated in software leading to determinant decision support systems.

It worths explaining why an airline company was chosen as an Operations Manage-
ment case study. The airline business spans far broader than the usual traveler’s view
of checking-in, safety procedures, flight to destination and baggage reclaim. Actually it
comprises a large number of internal processes, a great network of agents and very com-
plex information flows. All these features translate a very rich and semi-computerized
Operations Management scenario where automated systems play a role in gathering, dis-
playing and logging data but the reasoning over decision parameters is still performed by
humans.

Still on the Operations Management case study, it is relevant to emphasize the achieved
cooperation with TAP, the major portuguese air carrier. At first, having someone pro-
foundly familiar with airline operations co-supervising this dissertation allows for con-
tinuous monitoring and feedback over the work performed, drastically increasing the
chances of a more targeted and realistic research study. The partnership also lead to inter-
views with the most relevant company employees undertaking decision roles, the Aircraft
Manager and Crew Manager. Last but not least, TAP kindly provided real operational
data from its databases regarding scheduling, flights and delays. This data might be re-
garded as an important stimulus to perform real data analytics that may help the company
not only reduce their costs but also provide a better service, namely, increase customer
satisfaction.

As previously stated, Artificial Intelligence is also heavily related with this research
study in the sense that it provides valuable knowledge to classify and simulate operational
data and processes promoting the uttermost understanding over the operations manage-
ment taking place in an airline company.

2
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In this case, the challenge is to bring and apply Artificial Intelligence research topics,
such as Supervised Learning techniques, Multi-Agent Systems and Simulation concepts
to the Operations Management field, namely related to the airline business.

In the next section, Objectives, it will be thoroughly described how both fields of
knowledge, Operations Management and Artificial Intelligence will be articulated but for
now, it worths mentioning the usage of a powerful but still emerging simulation engine
combining a Multi-Agent System with Production Rules geared to model work practices
systems, such as an airport and associated business processes.

As mentioned, if the adoption of a purely scientific and academic simulation engine,
with a short user community, requires an extra effort in order to understand new paradigms
and learn new programming languages it also motivates an educational approach by trying
to transmit gathered experience to community newcomers.

To conclude, a last word goes to the engineering challenge of interacting with the
simulation engine, a closed and command-line software tool, through a browser window
in a web oriented environment. In order to accomplish this, recently released technolo-
gies related with data visualization and browser communication will be used. Learning
and applying such emerging techniques, that will play an important role in tomorrow’s
Software Engineering is always stimulating.

1.3 Objectives

Being an Artificial Intelligence research project focused on Operations Management anal-
ysis, it comprises a broad set of minor goals targeting the general objective summarized by
the dissertation title: study the impact of the organizational structure on airline operations
management.

Starting from the aforementioned general goal, it worths explaining the concepts in-
volved. As briefly stated, the organizational structure of a company is the network of
entities collaborating and contributing to serve one common aim. Following this, the or-
ganizational structure seen on TAP, the case study airline company, includes human em-
ployees and computerized systems performing activities and communicating with each
other. They are distributed across several locations, occupying different facilities and
their processes aim at assuring that flights depart and arrive according a previously de-
fined schedule.

Back to the research general goal, it intends to provide a way of mimic, visualize and
evaluate different hierarchical and collaborative work scenarios among entities within an
organization. In the end, the research study is expected to appraise different operational
models, proposing changes that lead to a more efficient organization.

3
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In order to accomplish such thriving goal, the research will materialize a parametric
simulation of a real-world organization, the major portuguese air carrier, comprising the
following features:

• Human entities — The most relevant company employees will be modeled as
agents; they all play a role in the simulation, usually regarded as activities.

• Computerized systems — Represent computer or other automated systems; in a
similar fashion to humans, they will be also modeled as autonomous agents that
react and decide upon requests.

• Activities — Might translate communication flow between agents, the interaction
with a system or complex reasoning processes that end in decision making; they
usually consume time.

• Input/Output — In order to simulate the airline company as faithfully as possible,
real data will be used; meaning that the simulation will be fed with a real flight
schedule and verified anomalies and it is expected to produce results as similar as in
real life.

This initial simulation, that intends to mirror an actual airline company, will allow to
quantify the amount of time required to operate the business across a given period of time.
Having a model of what happens in a real world scenario and being able to gather a set
of metrics to evaluate that scenario, opens the door to perform a fair comparison between
different models.

Following this, the second major goal of this research study is to model second simu-
lations by altering the current organizational structure and propose changes that prove to
raise its effectiveness.

Concerning this second goal, it will require, for instance, to add or remove human
employees or change the way they act. Then, after running the new simulation model and
gathering its output, if the cost is inferior, the changes might be regarded as an operational
management improvement.

Although the aforementioned goals are well defined, they hide some challenges that
need to be addressed and, as such, might be seen as intermediate goals.

First, the usage of real operational data provided by TAP mandates a deep analysis and
filtering of the supplied database dumps. Given the large number of attributes and records,
it is relevant to understand the meaning of every database column, how the records relate
to each other and detect redundant fields. The file cleanup and data analysis carried out
on this step will lead to better data manageability at the simulation level and establish the
foundations for further decision making studies.

Second, in order to better simulate an operations management scenario, it is required
to have an extensive understanding on how business processes take place inside the airline
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company. While the cooperation with TAP will provide interviews and supervised model-
ing, that is definitely insufficient when facing the complexity and multitude of anomalies
taken care by airline companies. In order to overcome this issue a thoroughly analysis
of the real operational data, including the use of machine learning techniques, may boost
the comprehension of the decision making processes happening at some stages of the
simulation.

Last but not least, some minor goals are related to the usage of certain software tools.
The most prominent is the development of the simulation using Brahms, Business Re-
design Agent-Based Holistic Modeling System. As the name implies, it consists in a
multi-agent system that features a high-level programming language suited to model and
simulate business processes. Closely related to this minor goal is the development of an
accessible visualization of the simulation.

1.4 Expected Results

The last section conceptually presented the objectives of the dissertation using a top-down
approach. First, we detailed the broader, higher, main goals and then attention was given
to more specific, lower challenges that need to be overcome in order to reach the former.

This section extends the previous one, by listing the results expected to be achieved
at each step and by the end of the ongoing research. In order to do so and aiming at
clarify the concepts presented in Section 1.3, this section follows a bottom-up approach
depicting, through simplistic examples, how the research will be conduced. On chapter
3, one may find an in-depth analysis and description of the full airline operations control
case study.

1.4.1 Operational Data Analysis and Decision Making Improvement

As mentioned, one of the intermediate goals of the study it to understand the business
and decision making processes taking place at an operational control level of an airline
company. After interviewing someone in charge of taking decisions one may get the
following hypothetical excerpt:

“... if there is a problem with an aircraft that will cause a delay, we look
into the flights that will depart afterwards and, if any, we change aircrafts.
Otherwise we delay the departure.”

By looking into the above quotation, it seems straightforward to implement such de-
cision making procedure. Nevertheless, it worths paying attention to the database dumps
with operational data provided by the airline company. Table 1.1 depicts a simplified
excerpt showing some hypothetical operational data.
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Table 1.1: Hypothetical operational data.

FLT_NBR SCHD_DEP_DATE AIRC_REG ACTL_DEP_DATE DEP_DLY_TYP

452 15/02/2010 14:15 CSTMU
894 15/02/2010 14:30 CSTPB
972 15/02/2010 15:30 CSTPG
452 15/02/2010 14:15 CSTMU 15/02/2010 14:20 831
894 15/02/2010 14:30 CSTPG 15/02/2010 14:50 831
972 15/02/2010 15:30 CSTPB 15/02/2010 15:30

At this point, and as mentioned early, efforts should be made in order to understand
how the company logs its operational events. For instance, the column names of the
table 1.1 are not self-explanatory and it requires further inspection to comprehend the
meaning of those abbreviations:

• FLT_NBR — Flight number.

• SCHD_DEP_DATE — Scheduled departure date.

• AIRC_REG — Aircraft registry, the univocally identifying aircraft label.

• ACTL_DEP_DATE — Real departure date.

• DEP_DLY_TYP — Departure delay type code.

Table 1.1 was purposely slitted in two parts, the first three rows correspond to sched-
uled flights; the second half represents what really happened. For instance, the flight 452
was planned to depart at 14:15 and has the CSTMU aircraft assigned, but it left airport 5
minutes later, caused by a 831 delay.

In order to clearly present the expected results at this stage, let’s assume that all the
flights listed on table 1.1 depart from the same airport and consider 831 the flight delay
type code corresponding to Aircraft Defects at Home Base.

Comparing the interview statements with the logged operational data shows different
resolution methods to the same problem. Corroborating the interview is the flight 894. It
suffered a 831 delay, which means that aircraft CSTPB was having problems, so it was
replaced by CSTPG from flight 972, departing afterwards. Contradicting the interview is
flight 452. It also suffered a 831 delay but the aircraft wasn’t replaced, while it could have
been.

As stated in the previous section, the logged data will be cleaned up, analyzed, pre-
processed and classified using Artificial Intelligence algorithms. During this phase, one
is expected to tune up the empirical decision making procedures suggested by the in-
terviews. For instance, figure 1.1 illustrates two decision trees. The first, on the left,
was obtained solely by contextually interpreting the interview excerpt; the second, on the
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right, corresponds to the application of the C4.5 algorithm to the database records, using
the delay time as an estimate.

aircraft problem

aircraft
exists?

replace aircraft delay flight

yes no

delay code 831

aircraft
exists?

replace aircraft

delay
estimative

> 5

delay flight

<= 5

delay flight

yes no

Figure 1.1: Hypothetical decision tree improvement.

To conclude, it is very important to emphasize that the example presented till now
is an hypothetical and over-simplified one. While the operational data analysis to carry
out along this research study assumes an extreme importance, expectation should be kept
moderate because when dealing with human decisions, many random and unreported fac-
tors come into play. It worths remember that, even the same person, facing the same
inputs, chooses distinct paths at different points in time.

1.4.2 Organizational Structure Performance Assessment

In the Objectives section, it was explained that one of the major goals to accomplish
along the research study herein documented is to assess different organizational structures
related to the airline business. The previous subsection, about operational and decision
making analysis, is seamlessly interwoven with this subject as it will provide much of the
knowledge required to model the simulation behind such assessment.

Continuing with the bottom-up approach proposed in the beginning, and using an
example as a mean to clarify the goals presented beforehand, this subsection intends to
show the final expectations concerning the evaluation of different operational workflows.

To determine the most relevant business processes related to the airline operations
control, and in a similar fashion to what was divulged above, interviews will be used. An
excerpt of an hypothetical inquiry might look like:

“There are several employees on the ground of the airport, mechanics, clean-
ing personnel, catering,... They are usually split into different groups, Main-
tenance and Passenger Services. When something goes wrong, for instance,
an aircraft didn’t pass all the mandatory mechanical checks, someone from
the maintenance team alerts via radio the Hub Control Centre supervisor. The
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later then fills a form on the Aircraft Movement System making the Opera-
tional Control Centre personnel aware of the problem.”

Even if the above quotation is fairly abbreviated it contains lots of unfamiliar infor-
mation. Besides the human agents identified, such as supervisors or mechanics, it also
aggregates those agents into groups, Maintenance services and Operational Control Cen-
tre personnel. Computerized systems, like the Aircraft Movement Systems are also made
known, as some locations, Airport Ground, Hub Control Centre and Operational Control
Centre.

More important than the entities identified in the excerpt is the set of activities and
information flow ascertained. These relations between human agents, systems and work
practices are the foundation of an organizational structure and will be the building blocks
for the simulation.

In order to evaluate a collaborative workflow, some metrics are needed. A natural
variable might be the time taken to perform the set of tasks required to complete a process.
This way, inquiries will be made to gather statistics about the amount of time spend on
each activity.

The better way of displaying workflows is by means of sequences and/or activity di-
agrams. Following this, figure 1.2 depicts the agents, systems, activities and information
flow associated with the quotation above.

Aircraft Mov 
System

HCC
Supervisor

Maint
Services

OCC
Personnel

2-5
mins

5-8
mins

1-3
mins

Figure 1.2: Example of an airline operational workflow.

The icons of a radio, keyboard and computer screen illustrate the activities played by
the agents and by their side, is a roughly hypothetical estimation of the time intervals, in
minutes, that those activities may take. Summing up the minimum and maximum values
of the activities, it is possible to assert that the considered business process will consume
between 8 and 16 minutes.
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Without forgetting that the main goal of the research is to assess different organiza-
tional structures in order to propose changes that lead to business process improvement,
figure 1.3 represents the same business process with noticeable modifications.

Aircraft Mov 
System

Maint
Services

OCC
Personnel

7-11
mins

1-3
mins

Figure 1.3: Hypothetical airline operational workflow improvement.

When reengineering business processes one should keep in mind which are the inputs
and the outputs of the work flow. Failing to do that, and introducing changes at the start
or at the end of the sequence, will definitely originate a different business process, some-
thing undesirable. In the example proposed, the objective is to notify the OCC personnel
about an aircraft problem, so the Maintenance Services and the OCC team must remain
untouched.

As it is possible to observe, the organizational structure was altered by removing the
HCC Supervisor. This way, the interaction between the Maintenance Services and OCC
personnel was greatly simplified by dropping the radio communication and moving the
AMS terminal input to the Maintenance Services. Concerning the time spent to complete
the steps, and because the Maintenance Services work at the Airport Ground, where the
aircrafts are parked, while the AMS computer is inside the Hub Control Centre, it just
dropped from 7-13 minutes to 7-11 minutes. This new estimation took into account the
time required for the mechanics to reach the AMS terminal.

Assessing this last organizational structure would give a total operational time between
8 and 14 minutes, around 9.1% performance increase on average. It would be possible
to raise this amount if, for instance, it was introduced some sort of mobile computing
solution, such as a laptop or smartphone, that would allow data input on AMS anywhere.

Finally, it is important to recall that the above business process was just a fairly sim-
ple example to illustrate and clarify what is expected to achieve when speaking about
organizational structure assessment and optimization. On chapter 3, where the airline op-
erations management scenario will be profusely described, business processes will be far
more complex, involving a higher number of entities.
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1.5 Document Structure

Throughout this chapter it was presented a comprehensive overview of the research study.
By providing simplified and hypothetical examples that better illustrate the methodologies
to be used and the outcomes to be achieved, emphasis was given to the goals and expected
results.

This chapter is not finished until it presents how this document will be structured and
how the next chapters will be articulated with the subjects brought along this introduction,
a matter to be covered in the next paragraphs.

Chapter 2, State of the Art, follows this introduction and, in broader terms, it will
present the theoretical and foundational scientific knowledge behind the majority of method-
ologies and techniques to be used along the research study. To the best of our knowledge
we were the first to simulate the Airline Operational Control Centre organizational struc-
ture in order to study its impact in airline disruption handling. Because of that it is difficult
to compare our approach with others. Nevertheless, the State of the Art will be divided
into three unrelated sections. The first, Airline Operations Control, delves into the world
of airlines companies, detailing some of the major issues they face nowadays, such as the
Scheduling Problem and the Disruption Management Problem. Next, Machine Learn-
ing and Data Classification will appear as the second section integrating Chapter 2 and
will present the underlying theory behind the analysis of airline operational data and de-
cision making improvement. Finally, the third and last section, Work Systems Design
and Simulation, is dedicated to expose some emerging Multi-Agent Systems supporting
human-centered features in order to model and simulate work practices.

Airline Decision Making Improvement and Organizational Structure Assessment, is
the title of chapter 3, dedicated to present the most practical and targeted concepts in-
volved on the research study. As the name implies, and after a brief introduction, the
content will be split into three sections. First, in a section named Airline Empirical Obser-
vation, it will be exposed the experimental knowledge about airline operations, founded
on interviews and direct inquiries. The second section, Operational Data Analysis and
Decision Making Improvement will describe the methodologies and approaches used in
analyzing the large database records provided by the airline company and how they in-
duce systemic decision making improvements. Next, a section entitled Organizational
Structure Performance Assessment will provide insights into airline work systems mod-
eling using human-centered and academic multi-agent system and how it can be used
to collect a set of metrics behind organizational structure assessment. This last section
also briefly exposes the development of a visualization module intended to raise airline
workflow understanding.

Chapter 4, Results and Analysis, starts with a comprehensive section entitled Exper-
iments dedicated to thoroughly describe input data sets, organizational scenarios, output
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appraisal metrics, among other relevant and conceptual data information. Then, two other
sections come up, each one related to the major goals of the Dissertation. The first, Op-
erational Data Analysis and Decision Making Improvement presents the results of the
machine learning techniques, such as output decision trees, always establishing a com-
parison with the human classification counterpart. The second, focused on the Organi-
zational Structure Performance Assessment, depicts the aggregate evaluation of different
workflows using charts associated to the chosen metrics.

Finally, chapter 5, Conclusion and Future Work, links the objectives proposed through-
out this chapter with the results obtained and listed on chapter 4. After wrapping up the
work performed, it also exposes the limitations faced along the research and points out
other fortuitous achievements not initially planned. To conclude, it suggests further addi-
tions to the work carried out.
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Chapter 2

State of the Art

This chapter intends to describe the current level of development of the scientific fields
related to the research study herein documented. To that purpose, it is divided into three
distinct sections covering the knowledge areas visited along this study. The first one
will present an overview about the Airline Operations Control Centre structure and the
Disruption Management problem. Next, it follows a theoretical exposition on the Ma-
chine Learning discipline, mainly focused on Supervised Learning and the underlying
algorithms. Finally, the third section will start by introducing some human centered com-
puting methodologies intended to modeling and simulating work practices, a topic closely
related to Multi-Agent Systems.

2.1 Airline Operations Control

When it comes to the airline business, scientific research is usually focused on a narrow
range of topics mainly associated with scheduling problems, extensible to other fields,
and the Disruption Management problem, a less familiar but growing on interest subject
commonly connected with operational scenarios. Any literature concerned with Disrup-
tion Management in the airline field would be incomplete without defining and exposing
the Airline Operational Control Centre Organization.

2.1.1 Airline Scheduling Problem

Some months before the departure date of a flight, a sequential planning approach takes
place. There are two distinct stages when it comes to airline scheduling: long-term and
short-term [KK04]; and this process may be seen from three different dimensions: air-
craft, crew and passenger.
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fleet assignment
crew pairing

revenue management
crew rostering

roster maintenance
tail assignment

publish timetable

flightshort-term long-term

Figure 2.1: The airline scheduling process (adapted from [CO10]). Aircraft, crew and passenger
views are signaled with different icons.

Figure 2.1 illustrates the Airline Scheduling Problem [Gro09]. First, the flight sched-
ule is determined, based on forecasts of passenger demand, available slots at the airports
and other relevant information. This phase determines a public timetable triggering the
revenue management phase, where tickets are sold at variable prices, in order to maximize
profit.

Thereafter, specific types of aircraft are assigned to individual flights in the schedule,
and sequences of flights are generated within each fleet (fleet assignment and aircraft
routing). This step defines the number of seats on each flight.

Next, starts the crew scheduling procedure where flight crew and cabin crew are as-
signed to all flights based on the already determined aircraft plan. Each pairing (crew
duty periods) starts and ends at the same crew base and has a typical length of three–four
days. Afterwards, pairings are grouped to form personnel rosters (assign crew members
to pairings), which are lines of work typically for 14 days or one month, including rest
periods, vacations and training.

Finally, physical aircrafts from a given fleet are assigned to flights in the tail assign-
ment process.

During the Airline Scheduling Process, several restrictions and rules have to be con-
sidered. For aircrafts, there are rules on maintenance, differences between aircraft types,
airport characteristics, etc. For crew, rules on flying time, off-time, etc. must be consid-
ered.

The Airline Scheduling Problem is taken care in the planning department of the airline
company and its main goal it to maximize the airline operating profit. As mentioned it
spans from months to some days before the flight day, time when the schedule is handed
over to the operations control centre (OCC).
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2.1.2 Airline Operational Control Centre Organization

The main role of the Airline Operational Control Centre (AOCC) is to monitor the con-
formance of flight activity according to the previously defined schedule (see subsec-
tion 2.1.1). The occurrence of some unexpected events might prevent operations to take
place as planned, such as aircraft malfunction, crew delays, crew members absence, etc.

Following this, the AOCC is a human decision system composed by teams of experts
specialized in solving the described problems. Teams act under the supervision of an
operational control manager and their goal is to restore airline operations in the minimum
frame and at a minimum cost.

According to Castro [Cas08], there are three main AOCC organizations:

• Decision Centre: the aircraft controllers share the same physical space. The other
roles or support functions (crew control, maintenance service, etc.) are in a different
physical space. In this type of Collective Organization all roles need to cooperate to
achieve the common goal.

• Integrated Centre: all roles share the same physical space and are hierarchically
dependent of a supervisor. For small companies we have a Simple Hierarchy Orga-
nization. For bigger companies we have a Multidimensional Hierarchy Organiza-
tion. Figure 2.2 shows an example of this kind of AOCC organization.

• Hub Control Centre: most of the roles are physically separated at the airports
where the airline companies operate a hub. In this case, if the aircraft controller role
stays physically outside the hub we have an organization called Decision Centre
with a hub. If both the aircraft controller and crew controller roles are physically
outside the hub we have an organization called Integrated Centre with a hub. The
main advantage of this kind of organization is to have the roles that are related with
airport operations (customer service, catering, cleaning, passengers transfer, etc.)
physically closer to the operation.

As mentioned, figure 2.2 shows the traditional Integrated Operational Control Centre.
As previously stated, the AOCC is composed by groups of workers, each one with its own
responsibilities. They must report their activity to a Supervisor, translating a two-level
hierarchical system. Figure 2.2 also represents the activity time-window of the AOCC, it
starts 72 to 24 hours before the day of operations and ends 12 to 24 hours after.

The roles more common in an AOCC are, according to Kohl [KK04] and Castro [Cas08]:

• Flight Dispatch: prepares the flight plans and requests new flight slots to the Air
Traffic Control (ATC) entities (FAA in North America and EUROCONTROL in
Europe, for example).
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Figure 2.2: Integrated airline operational control centre (adapted from [CO10]).

• Aircraft Control: manages the resource aircraft. It is the central coordination role
in the operational control.

• Crew Control: manages the resource crew. Monitors the crew check-in and check-
out, updates and changes the crew roster according to the disruptions that might
appear during the operation.

• Maintenance Services: responsible for the unplanned maintenance services and for
short-term maintenance scheduling. Changes on aircraft rotations may impact the
short-term maintenance (maintenance cannot be done at all stations).

• Passenger Services: decisions taken on the AOCC will have an impact on the pas-
sengers. The responsibility of this role is to consider and minimize the impact of
the decisions on passengers. Typical this role is performed on the airports and for
bigger companies is part of the HCC organization.

2.1.3 Disruption Management

Disruption Management [KK04], also known as Operations Recovery, is the process car-
ried out by the Airline Operational Control Centre when an unexpected problem prevents
a flight to operate as planned.

The first overview of the state-of-the-practice in operations control centres in the af-
termath of irregular operations was provided by Clarke [Cla98]. In his study, besides an
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extensive review over the subject, he proposes a decision framework that addresses how
airlines can re-assign aircraft to scheduled flights after a disruptive situation.

Currently, the most thoroughly analysis of the discipline is presented by Kohl et
al. [KLL+07] where their conclusions are supported by the DESCARTES project, a large-
scale airline disruption management research and development study supported by Euro-
pean Union.

Other authors propose more general perspectives regarding disruption management.
Yu and Qi [YQ04] analyze airline disruption management from different angles: crew
and aircraft recovery; and applied to other fields as well: machine scheduling and supply
chain coordination. Given the large scope of their work, airline operations recovery are
not particularly detailed.

On the other hand, Ball et al. [BBNO07] give insight into the infrastructure and con-
straints of airline operations, as well as the air traffic flow management methods and
actions. Simulation and optimization models for aircraft, crew and passenger recovery
are also discussed. Furthermore, the authors give an excellent survey of the airline sched-
ule robustness as a proactive alternative to recovery, including model descriptions and a
literature review.

From the mentioned studies it is clear a tendency to consider the disruption manage-
ment problem as twofold: aircraft recovery and crew recovery. For each type of recovery
several solution approaches were proposed based on different methodologies.

Before presenting some research works related operations recovery, it is important to
list and briefly describe the methodologies used on those works [CLLR10]:

• Connection Network (CN)

Is is an activity-on-node network, where flight legs correspond to nodes in the net-
work and connections between flight legs correspond to directed edges (arcs) be-
tween the nodes. A flight leg is given by its origin, destination, departure time and
date and arrival time and date.

• Time Line Network (TLN)

In this case, the purpose is to represent the possible schedules in a natural way from
the time-and-station point of view, which is not possible when using a CN. A time-
line network has a node for each event, an event being an arrival or a departure of
an aircraft at a particular station. Time-line networks are activity-on-edge networks,
where directed edges correspond to activities of an aircraft, and schedule informa-
tion is represented explicitly by the event nodes.

• Time Band Network (TBN)

Proposed by Arguello [Arg97] in order to model the aircraft schedule affected by
disruptions, and is used in the context of aircraft recovery. The network can be
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constructed dynamically as disruptions occur, for a certain recovery time period.
There is a set of station-time nodes and a set of station-sink nodes. A station-time
node represents activities at a particular airport aggregated within a certain discrete
time interval, a time band. The time label of a station-time node corresponds to the
availability time (the arrival time plus the turn-around time) of the first available
aircraft in the time band. A station-sink nodes represent the end of the recovery
period at each station. The edges in the network represent the flights.

From the methodologies described, all of them might be used on the scheduling or
on disruptions management but only the last, TBN, was created to be used in the last
scenario.

The pioneer researchers on aircraft recovery are Teodorovic and Guberinic [TG84],
and their study is extended by Teodorovic and Stojkovic [TS90, TS95]. Given the small
size of the problem instances, the solution proposed by these author, among others, are to
a larger extent based on the original planning models.

Other works formulate the aircraft recovery problem as a minimum cost network flow
problem and use network flow algorithms to solve it. The studies from Mathaisel [Mat96]
and Yan and Yang [YY96] are examples that illustrate this approach.

While the vast majority of the publications use integer programming solution methods
to solve the aircraft recovery problem, the most recent works apply some metaheuristics
to the problem, such as described by Anderson [And06] and Liu et al. [LJLT06, LJC08].

Moving to crew recovery, the majority of publications formulate the crew recov-
ery problem under assumption that the flight schedule is recovered before the crew re-
scheduling decisions are made, thereby following the hierarchical structure of the disrup-
tion recovery in practice. These publications include Wei et al. [WYS97], Guo [Guo05]
and Nissen and Haase [NH06].

For instance, from the list of authors presented in the last paragraph, Wei et al. [WYS97]
model the crew pairing repair problem as an integer multicommodity network flow prob-
lem on a connection network. The challenge is to repair the pairings that are broken and
the objective is to return the entire system to the original schedule as soon as possible
while minimizing the operational cost.

Something interesting about Nisses and Haase [NH06] research is its founding on
European reality. They propose a duty-based formulation for the crew recovery problem,
which is especially well suited for solving the crew disruption for European airlines, as
these, contrary to the North American airlines, employ fixed monthly crew rates, which
should be taken into consideration when solving a crew disruption.

Other approaches to crew recovery might arise when the flight schedule is fixed and
the crew recovery problems can be formulated as tactical crew pairing or rostering models.
Other authors extend the classical crew scheduling formulation of the recovery problem
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by adding a set of decision variables, which allow to cancel flight legs. This formulation
is presented in Johnson et al. [JLN+94] and Yu et al. [YAS+03].

The 1994 paper of Johnson et al. [JLN+94] is the first published work regarding the
airline crew recovery. The problem is formulated as a set covering problem with decision
variables allowing flight cancellations, determining the number of deadheading crew on a
flight leg and forcing crew to stay at base in the recovery solution. The authors consider
the recovery of pilot pairings when a single flight is delayed at a single airport.

Yu et al. [YAS+03] report a successful implementation of a crew recovery decision
support system CrewSolver in Continental Airlines. The system is interconnected with
other systems of the airline. The optimization engine of CrewSolver uses the depth-first
search procedure developed by Wei et al. [WYS97], and can generate several solutions to
give the operator a flexibility to choose the most suitable recovery solution.

Finally, Castro and Oliveira [CO10] pioneer an approach that not only accounts for
the aircraft and crew perspectives but also considers passengers. An implementation of
an intelligent and distributed multi-agent system (MAS) represents the operations control
center of an airline. MAS includes a crew recovery agent, an aircraft recovery agent and
a passenger recovery agent. They use concepts of direct and qualitative cost to determine
solutions for the disruption problem.

2.2 Machine Learning and Data Classification

The concept of Supervised Learning fits into an important scientific discipline generically
named Machine Learning. Given the relevance of the later topic, it worths defining its
purposes and the clarifying the relation with Supervised Learning.

According to [DC96], who presents a brief review of what Machine Learning includes,
there are several applications for the discipline, the most significant of which is data min-
ing. Starting from structured or even unstructured data sets, the main goal of Machine
Learning is to perform systematic analysis and complex pattern recognition that lead to
knowledge extraction and decision making formulations.

Tightly connected to the above definition, is the natural meaning of the discipline
name, Machine Learning, an artificial system that automatically improves with experi-
ence. In more precise terms, it is said that a machine “learns” with respect to a particular
task T, performance metric P, and type of experience E, if the system reliably improves its
performance P at task T, following experience E [Mit06]. In this case, Machine Learning
is more concerned with computational behavior evolution by means of algorithm devel-
opment and continuous improvement [MA98].

Following this, the increasing popularity of Machine Learning is due to its capability
of establishing relationships between multiple features on very large data sets [Alp04].
Nowadays, Machine Learning finds applications in several fields of knowledge such as
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Speech Recognition, Computer Vision, Bioinformatics, Robotics, Marketing, Economics,
among many others [Mit06].

Given its broad applications and with the purpose to fulfill different data set struc-
tures, Machine Learning offers a wide variety of algorithms that might be classified into
groups [WF05]. Bellow is a comprehensive list containing the most relevant Machine
Learning techniques followed by a short description [BD04].

• Supervised Learning: its goal is to generate a function y = f(x) by analyzing ex-
amples of the form (xi, yi), where yi = f(xi). Each input value xi is usually an
n-dimensional vector, where each dimension is either discrete or real-valued. Each
output value yi is typically either a discrete value or a continuous quantity. This
way, it make it possible to map a set of inputs to putatively desired outputs.

• Reinforced Learning: examines the current state, s, of the world and then chooses
an action, a. The action causes the world to change to a new state, s’. After each
state transition, the computer receives a reward, R(s’). The goal is to build an op-
timal policy for choosing actions. This approach is mostly, but not only, used in
Game Theory and Robotics.

• Unsupervised Learning: departs from a set of unlabeled data points and attempts to
find its structure, a process that often involves clustering data into classes [JMF99].

As explained on chapter 1, the airline operational data to be analyzed in the early
stages of the research project herein documented, has its origin in the company databases.
This implies a certain level of structuring and labeling, what motivates an in-depth expo-
sition of Supervised Learning in the next subsection.

2.2.1 Supervised Learning

Table 2.1 shows an example of a labelled data set; feature 1 till feature n name the at-
tributes (labels) of the underlying fields. Every instance in any data set used by supervised
machine learning algorithms should be represented using the same set of features.

Table 2.1: Example of data with known labels.

case feature 1 feature 2 ... feature n class

1 xxx xxx ... xxx good
2 xxx xxx ... xxx good
3 xxx xxx ... xxx bad

Features or attributes in Supervised Machine Learning may be continuous, such as
integers or floats; categorical, like strings of characters belonging to a finite set; or binary,
usually translated by a boolean.
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The process of Supervised Learning must be regarded as stepped and iterative one [Kot07].
Figure 2.3 aims at illustrating it and the next paragraphs describe all the stages from data
set collection to classifier output.

Problem

Data collection

Training set definition

Algorithm selection

Data pre-processing

Training

Test set evaluation

Parameter tuning

OK? Classifieryesno

Figure 2.3: The supervised machine learning process (adapted from [Kot07]).

The first step of solving a problem by means of Supervised Learning is collecting
the data set. After ensuring that it conforms to the well-structured format illustrated by
table 2.1 the next step is to select the relevant features or attributes. If a requisite ex-
pert is available, then she could suggest which fields are the most informative. If not,
“brute-force” may be used which means using all the information available in the hope
that the right (informative, relevant) features can be isolated. Usually, having to rely on
the “brute-force” workaround will introduce noise and missing feature values, making it
undesirable [ZZY02].

Even with careful feature selection, the second stage of the process is data preparation
and preprocessing. During this step efforts are made to handling not only missing data
but also reduce noise. A number of studies have identified the techniques’ advantages
and drawbacks of managing missing fields, such as the research carried out by Batista
and Monard [BM03], and detecting noise, like the study of Hodge and Austin [HA04].
Instance selection in the data set is an optimization problem that attempts to maintain the
mining quality while minimizing the sample size [LM01]. It reduces data and enables
a data mining algorithm to function and work effectively with very large data sets. A
variety of procedures for sampling instances from a large data set is proposed by Reinartz
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in [Rei02].
Back to figure 2.3, it worths noticing that the data preprocessing step usually overlaps

with the definition of the training set, although this last step before algorithm selection
and consequent training is more concerned with the effectiveness and performance of the
data mining algorithm. While defining the training set, it is important to identify and
remove as many irrelevant and redundant features as possible [YL04]. This reduces the
dimensionality of the data and enables a faster and effective algorithm operation.

The fact that many features depend on one another often unduly influences the ac-
curacy of Supervised Learning classification models. This problem can be addressed by
constructing new features from the basic feature set, such as proposed by Markovitch and
Rosenstein [MR02]. This technique is called feature construction. These newly generated
features may lead to the creation of more concise and accurate classifiers. In addition, the
discovery of meaningful features contributes to better comprehensibility of the produced
classifier, and a better understanding of the learned concept.

As mentioned early, the Machine Learning discipline has many algorithms associated.
This fact makes the selection of a specific learning technique a critical step. During
this stage is important to keep in mind that the final classifier will map from unlabeled
instances to classes, so a good way of assessing the algorithm selection is evaluating the
classifier’s output. Usually, this is done through prediction accuracy, the percentage of
correct prediction divided by the total number of prediction.

There are several techniques used to calculate a classifier’s accuracy. One technique is
to split the training set by using two-thirds for training and the other third for estimating
performance. In another technique, known as cross-validation, the training set is divided
into mutually exclusive and equal-sized subsets and for each subset the classifier is trained
on the union of all the other subsets. The average of the error rate of each subset is
therefore an estimate of the error rate of the classifier. Leave-one-out validation is a
special case of cross validation. All test subsets consist of a single instance. This type
of validation is, of course, more expensive computationally, but useful when the most
accurate estimate of a classifier’s error rate is required. These and other techniques are
thoroughly described in Tjen-Sien et al. [TSW00] research articles.

Recalling figure 2.3, if the error rate evaluation is unsatisfactory, we must return to a
previous stage of the Supervised Learning process. Usually, a high error might translate a
number of factors, such as incomplete feature selection, insufficient number of instances
in the training set, a huge dimensionality of the problem, inappropriate algorithm selection
or required parameter tuning [JS02].
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2.2.2 Decision Trees

After dedicating some attention to the Supervised Learning process, mainly the training
set definition and classifier evaluation, it’s now time to focus on the classifier internals.
This subsection intends to describe how a set of unlabeled instances maps to a a given
class and it will expose one of the most popular classification algorithms known as C4.5.

Supervised Learning is connected to a broad range of knowledge fields, mostly with
Artificial Intelligence but also with Statistics, Data Mining, Pattern Recognition, and so
on. Given its multi-disciplinarily, there is a broad range of classifiers, each one relating to
a different learning algorithm. This subsection is dedicated to decision trees in general,
a type of classifiers that, together with rule-based classifiers, fit into the logical or sym-
bolic learning methods. A comparison of several classifiers/algorithms might be found in
Kotsiantis work[Kot07].

Decision trees are well-known as a management decision support tool that depicts
a set of decisions and their possible consequences. They maybe enriched by including
probabilities, resource costs, and other metrics intended to identify a set of options most
likely to reach a goal.

In order to better contextualize decision trees on the Supervised Learning process,
figure 2.4 is an example of a decision tree classifier for the training set of table 2.2.

at3

at1

at2no no

yes at4

yes no yes no

b1 c1a1

b2 a2 c2

a3 b3 a4 b4

Figure 2.4: A symbolic learning decision tree.

On Machine Learning, decision trees are structures that classify instances by sorting
them based on feature values. Each node in a decision tree represents a feature in an
instance to be classified, and each branch represents a value that the node can assume.
Instances are classified starting at the root node and sorted based on their feature val-
ues [Mur98].
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After applying a decision tree learning algorithm to the training set shown on table 2.2,
one will get an abstract representation of the decision tree depicted on figure 2.4. There-
after it is possible to, given a set of input attributes, achieve the corresponding conclusion.
For instance, assuming the attributes: at1 = a1, at2 = c2, at3 = a3 and at4 = b4; the tree
would be percolated visiting the nodes at1, at2 and finally at4, which would classify the
instance as being “No”. In the middle of the procedure, the node at3 would be ignore as
it was proved to be irrelevant next to the set of inputs.

Table 2.2: The decision tree training set (figure 2.4).

at1 at2 at3 at4 class
a1 a2 a3 a4 yes
a1 a2 a3 b4 yes
a1 b2 a3 a4 yes
a1 b2 b3 b4 no
a1 c2 a3 a4 yes
a1 c2 a3 b4 no
b1 b2 b3 b4 no
c1 b2 b3 b4 no

The general idea behind decision tree development is fairly straightforward. First, it
is required to find the feature that promotes the highest normalized information gain. To
do so, every attributed must be checked in order to determine which one best divides the
training set. Once found it is possible to define a decision node, subtracting it from the
feature set and recursing on the remaining sublists.

Several authors propose different methodologies for building decision trees. Since it
is a procedure covering several steps, specific literature dedicated to each stage might be
found. Hunt et al. [HMS66] and Breiman et al. [BFOS84] present different methods for
finding the feature that best divides the training data such as the information gain and
the gini index, respectively. More recent methodologies, such as the RelieF algorithm
determine the training set division by looking into each attribute independently [Kon94].

Another topic of extensive research, mostly justified by the large size of some training
sets, is decision tree optimization. There are numerous scientific articles on tree sim-
plification an pruning. To name some comprehensive papers, Breslow & Aha [BA97]
survey some methods of tree simplification to improve their comprehensibility, while a
comparative study of well-known pruning methods is presented by Elomaa [ER99].

The most popular algorithm in the literature for building decision trees is the C4.5 [Qui93].
C4.5 is an improvement of Quinlan’s earlier ID3 algorithm [Qui79], sporting the follow-
ing characteristics:

• Discrete and Continuous Attributes: in order to handle continuous features, C4.5
creates a threshold and then splits the list into those whose attribute value is above
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the threshold and those that are less or equal to it [Qui96];

• Missing Attributes: null or features marked with a special “missing” character are
not used in gain and entropy calculations and therefore will not take part in the
respective decision tree branch;

• Different Cost Attributes: features might be given different costs and C4.5 will
perform the required calculations to raise the attribute gain according to its cost;

• Pruning Trees After Creation: C4.5 goes back through the tree once it has been
created and attempts to remove branches that do not help by replacing them with
leaf nodes.

C4.5 uses the concept of information entropy which, in turn, measures the uncertainty
associated with random variables. The difference in entropy corresponds to the normal-
ized information gain, referred above as a criterion to split the training set within the
same feature. This way, the C4.5 algorithm go after the general idea behind decision tree
generation, translated by the following pseudocode [Kot07]:

1. Check for base cases (see bellow)

2. For each attribute a

- Find the normalized information gain from splitting on a

3. Let a_best be the attribute with the highest normalized information gain

4. Create a decision node, node_a, that splits on a_best

5. Recur on the sublists obtained by splitting on a_best, add those nodes as children of
node_a

As other algorithms, C4.5 has a few base cases. For instance, if all the instances in
the training set belong to the same class, it simply creates a leaf node for the decision
tree pointing to that class. Other cases might be that none of the features provide any
information gain or a previously-unseen class is encountered, on both the C4.5 creates a
decision node higher up the tree using the expected value of the class.

To conclude, although decision trees offer many advantages such as, simplicity, adapt-
ability to several types of data and robustness on missing features, it is important to point
out some of their limitations. Some decision-tree learners create over-complex trees that
do not generalize the data well, an issue usually called overfitting [Bra07] and possibly
overcome by using pruning techniques. But the greatest limitation of decision tree learn-
ing is its inability to handle XOR, parity or multiplexer problems, like medical diagnosis
or protein classification. These concepts are hard to learn leading to prohibitively large

24



State of the Art

decision trees. Approaches to solve this limitation usually requires using learning algo-
rithms based on more expressive representations, such as statistical relational learning,
inductive logic programming or multi-label classification.

2.2.3 WEKA

According to the Objectives (section 1.3), the research study described along this doc-
ument includes an extensive classification of real airline operational data. In order to
speedup the analysis and test multiple learning approaches, third-party open-source soft-
wares will be used. This subsection aims at present those libraries, conveniently aggre-
gated under the project WEKA.

WEKA stands for “Waikato Environment for Knowledge Analysis”, and it is a suite
of scientific machine learning software written in Java and developed at the University of
Waikato, New Zealand. Unlike other machine learning projects, the emphasis is on pro-
viding a working environment for the domain specialist rather than the machine learning
expert. It provides a wealth of interactive tools for data manipulation, result visualiza-
tion, database linkage and cross-validation and comparison of rule sets, to complement
the basic machine learning tools.

Witten & Frank [WF05], present an exhaustive book about Machine Learning an its
articulation with the WEKA workbench. They start by explaining how data mining al-
gorithms work and how to evaluate the results of different techniques applied to specific
problems. In the end, they cover some performance improvement approaches, including
input preprocessing and output combination.

2.3 Work Systems Design

A work system involves people engaging in activities over time. Human participants
might not just interact with each other, but also with machines, tools, documents, and
other artifacts [Pav84]. The activities performed often produce goods, services or data.

There are two different approaches when it comes to designing or improving systems:
machine-centered and human-centered [SC02].

The former is usually accomplished through a business process reengineering ap-
proach [MBCP98] based on business process flow analysis focused on work products. In
this case, the functional transformations are evaluated and, in the end, the improvement
will likely involve technology, such as workflow software.

The latter also takes into account how the people in the organization actually prefer
to work [Ehn88, GK91]. Unlike the machine-centered approach, which neglects human
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communication, collaboration, workspaces, problem solving and learning; the human-
centered approach analyze human activities, work processes or tasks, comprehensively
and chronologically throughout the day [Cla02].

The human-centered work system design approach is based on modeling and simu-
lating work practices [SC02]: what people actually do, rather their outcomes. This way,
it is possible to understand the effects of human behaviors in different places and times,
details often omitted in a product-oriented task analysis. In the end, besides the tradi-
tional system workflow, human-centered approach might also propose some work system
transformations, including different tools, resources, locations or scheduling.

Efforts to develop and formalize human-centered work system design date back to
1980 when a group of Scandinavian researchers conducted a participatory-design study
involving all the stakeholders [Ehn88]. Since then, different work design approaches have
been proposed, within interdisciplinary academic fields, that combine social science with
a system analysis perspective [CRR91, Vic99].

The lack of theory and associated methods for developing formal models of work
practice, common to the aforementioned studies, has hampered the development of a
generic work system engineering approach, making the discipline like an art.

Trying to bring the human-centered work system design approach into mainstream
methods for technology development, especially software engineering, Marteen Sierhuis
proposed BRAHMS: a multi-agent modeling and simulation language for work system
analysis and design [Sie01]. Promoting work system design as an engineering discipline
would facilitate design conversations, creating a bridge between scientist, workers, man-
agers and technology engineers.

2.3.1 Brahms

Brahms is a software tool to help understanding complex work system interactions, and
thus providing a way for system design prototyping. It is a multi-agent modeling and
simulation environment for dealing with the complex human–machine system interac-
tions [Sie01, CSS98].

Brahms follows a holistic approach to systems modeling. By developing formal mod-
els of people’s behavior at the activity level, it is possible to determine the impact of these
actions on the whole system.

By relying on software models [You89], Brahms language describes the structure and
behavior of work system defined components. The specificity of human activities, require
dynamic models that shows how the system evolves over time and space.

Figure 2.5 depicts an operational method for developing a formal computational model
and a simulation of a work practice for a human activity system. It also shows the relation
between the four steps for using Brahms in a modeling effort.
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human activity 
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work practice 
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soft-system 
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formal-system 
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S1: analyze work practice S4: observing simulated
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S2:  formal modeling
of the work practice 

S3: simulation

Figure 2.5: Brahms work practice modeling of a human activity system (adapted from [SC02]).

• Step 1: Work practice analysis

Aims at observing and analyzing a human activity system [HB98, BSW93]. The
goal of the analysis is to gather useful data that informally describes work practice
and then to create (with the Brahms language) a formal model of work practice
in Step 2. During this step, interviews with workers from the work system and
participation of all stakeholders are recommended.

• Step 2: Formal model of the work practice

Intends to formalize the informal data gathered in Step 1, conducing to Brahms
model development. This stage is usually accomplished by people who understand
the concept of agent-base modeling and simulation and often have experience in
developing rule-based systems.

• Step 3: Simulation

Brahms has a built-in simulator. Using the formal model developed in Step 2 as
input, running a simulation outputs the modeled work practice. This stage is highly
related to Brahms compile-simulate-debug cycle because the modeler will compile,
simulate, and fix the errors in the formal model until the desired agent behavior is
simulated.

• Step 4: Observing the simulation

Aims at observing and investigate the work practice simulation output and compare
it with the human activity system with the goal of creating a shared understanding
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of the results of the work practice model and simulation. The result might suggest
some changes to the formal model.

Steps 2 to 4, inclusive represent the iterative process of modeling a Brahms work prac-
tice simulation. After Step 4 the simulation must be reviewed with system stakeholders to
verify and validate the model created in Step 2. If the model does not correctly describe
the work system, then more detailed information must bet gathered in order to fix the
Brahms model, returning to Step 2 of the process.

2.3.2 Developing a Model of Work Practice

In general, Brahms models represent work with much more detail than business process
models but somewhat less detail (and far more broadly) than cognitive models. Consid-
erable effort is devoted to modeling objects (for example, fax machines) and computer
systems, with which people often interact to accomplish their work. The Brahms lan-
guage and simulation engine relates several levels of detail (areas and objects, groups and
agents, activities and actions) and integrates different perspectives: physical, cognitive,
and social [SC02].

The following list describes the model components present in Brahms [vHS00].

• Agent/Groups: represents the group-agent membership hierarchy of the people in
the work system. Agents may be grouped representing formal roles and functions
or be based on location, interpersonal relations or interests.

• Object: is a class hierarchy of all the domain objects and artifacts (tools, desks,
documents and vehicles).

• Geography: describes areas in which agents and objects are located, consisting of
area definitions (user-defined types of areas such as buildings, rooms, and habitats)
and areas (instances of area definitions).

• Activity: the behaviors of agents and objects are expressed in terms of the activities
they perform over time [Cla02]. Agent or object activities are mostly represented
at the group or class level, but they are also often specific to agents and objects.
Activities are inherited and blended through a priority scheme.

• Timing/Workframes: constraints on when the activities in the activity model can
be performed are represented as preconditions of situation action rules (workframes) [Kon82,
Sho93]. Activities take time, as determined by the predefined duration of primitive
actions. Workframes can be interrupted and resumed, making the actual length of
an activity situation dependent.
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• Knowledge: agents represent the world state internally as propositions called be-
liefs [Hin62]. An agent’s reasoning is represented as forward-chaining production
rules (thoughtframes) that fall at group and class levels and can be inherited. Inquiry
is modeled as a combination of activities (such as detecting information, communi-
cating, and reading or writing documents) and thoughtframes. Perception is mod-
eled as conditions attached to workframes (called detectables). Thus, observation
depends on what the agent is doing.

• Communication: describes actions by which agents and objects exchange beliefs,
including telling someone something or asking a question. A conversation is mod-
eled as an activity with communication actions, either face to face or through some
device such as a telephone or email. The choice of device and how it is used are part
of the work practice.

Usually, the Brahms modeling process starts by specifying the geography groups first.
Then, common objects and activities are modeled such as telephones and phone conver-
sations, which can be easily reused or adapted across Brahms environment. Finally, the
grain size of the simulation clock (time per tick) might be adjusted from one second or less
to five minutes or more, depending on the information available and modeling purposes.

2.3.3 Human-centered Work System Design Examples

The most visible example of work systems design using Brahms was conduced by Sier-
huis et al. [SCS03] and involved the design of a mission operations system for a proposed
NASA discovery mission to the Moon with a semiautonomous rover. The work intended
to produce useful insights about vehicle power consumption and its potential impact on
science objectives.

The NASA mission, code-named Victoria, included the exploration of the south pole
region of the Moon by a robotic vehicle. Its primary mission was to verify the presence
of water ice and other volatiles in the permanently shadowed regions of the Moon. The
NASA team decided the most efficient approach would be to use a high-speed semiau-
tonomous rover that could traverse a long distance (several hundreds of kilometers) for
a long time period (three months to a year) while gathering the necessary geological and
physics data [Cab01].

Using the Brahms approach, Sierhuis et al. [SCS03] developed a model of the total
mission operations work system during the proposal phase of the project, including a
model of people’s work practice in mission operations, the rover on the Moon, the infor-
mation systems and people’s workspaces. With Brahms, they were able to quantify the
impact of the human work practice on the productivity of the rover on the Moon.
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Currently, the tool is being researched in context with the Mars Exploration Rover
(MER) mission operations, as well as other areas of space exploration, including the
International Space Station, a Mars habitat and surface exploration vehicles.

MER is a campaign employing 240 highly skilled scientists and engineers who will
work around the clock to manage a new space mission in just three months. NASA has
never managed a planetary rover exploration mission involving so many collaborators.
The days will be tightly scheduled, requiring order among the hundreds of team members.

For the 120 scientists, each day the job requires analyzing volumes of existing and
incoming data to determine a set of priorities for the rovers and build plans to achieve a
goal. The same number of engineers will translate the scientists’ goals into instructions
for the rovers and will uplink the information.

Current research involves how the Brahms model can be used to develop an actual
workflow system for mission operations, based on the Brahms agent technology and
models of mission operations. The Brahms team plans to observe mission operations at
NASA’s Jet Propulsion Laboratory, and is hoping to assist in designing and implementing
a surface mission operation.
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Chapter 3

Airline Decision Making Improvement
and Organizational Structure
Assessment

After presenting the goals behind the research study documented throughout this report
and exposing the most relevant underlying theoretical concepts, this chapter should be
regarded as the showcase for more practical and oriented matters. Here, we will detail all
the available information, data, models and approaches taken along the study.

Following the sequence of objectives and expected results presented on chapter 1,
and relying on a bottom-up approach, this chapter will first delve into the empirical ob-
servations of a real airline operations environment. Next, a section will be dedicated to
explaining the fundaments and methodologies behind the analysis of real operational data
coming from the airline company databases and how this analysis relates to the decision
making processes observed during airline operations control. Last but not least, the last
section will wrap all the previous concepts together and build models that will allow us to
provide an answer to the main concern of this research study, assessing the performance
of different airline organizational structures.

3.1 Airline Empirical Observation

To begin this section, and reinforcing what was stated in the motivation (section 1.2,
chapter 1), it worths emphasize the collaboration with TAP, the major Portuguese airline
company, as a mean to get a higher detailed and more targeted research study. This fact,
combined with the lack of other studies around the topic, makes us pioneer an in-depth
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investigation about the current state of airline organizational structures and associated
business processes.

Given the need to start from scratch, this section aims at organizing and systematizing
the knowledge that is nowhere but on the heads of those that, working on airline facilities
for many years and on a daily basis, kindly accepted to provide interviews and answer
direct inquiries as a mean to share their experience.

Despite the existing literature on the problems around Airline Operations Control (sec-
tion 2.1, chapter 2), such as the Airline Scheduling problem and the Disruption Manage-
ment problem, and because we chose to scrutinize a particular airline company, the re-
search study herein described, first attempted to grab a general overview on the current
organizational structure, business processes and decision making practices. This step was
possible trough a number of informal and unstructured conversations with the airline com-
pany personnel. Right after these interviews, efforts were made to shape and formalize all
the received information, an often ungrateful task given the abstract nature of concepts or
the multitude of possible scenarios.

During the first stages described above, we also received the operational data files cor-
responding to company database dumps. In an opposite fashion to the informal concepts
gathered during personnel interviews and despite its massive extension and complexity,
the database provenance conferred structure and integrity to the operational data at hands.

The next section on this chapter will be solely dedicated to the analysis of the supplied
data but it is important to mention that along the analysis process our awareness around
the business process and decision making practices in an airline company increased, mo-
tivating direct inquiries to airline personnel in order to corroborate or clarify arisen for-
mulations.

Following the above explanation, this section will start by presenting a broad overview
on the airline business and organizational concepts. This knowledge roughly overlaps
with the simulation foundations that will be dissected on section 3.3. Next, the con-
nection and information flow between previously described concepts will be clarified by
means of sequence diagrams supported on interview excerpts. With a direct correlation to
the airline operations organizational structure, there will be a section dedicated to opera-
tional anomalies description and historical classification. Finally, and given the in-depth
coverage that will be carried out on section 3.2, a brief word goes to the format of the
database files received and how the airline company logs its activity information.

3.1.1 Airline Business and Organizational Concepts

Trying to fully describe the airline business on this subsection would be, at least, impos-
sible. As one of the most international, fastest growing, and revenue generating business
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sectors, the aviation put on practice through airline companies certainly assumes a place
among the most complex and risky businesses nowadays.

As other large companies, TAP, our case study airline company, involves a lot of de-
partments each one dedicated to its business area. For instance, Human Resources takes
care of managing the personnel required to run the company; Marketing is concerned with
promoting the services and attracting consumers; Information Technology department de-
velops and implements automated systems to assist other business areas; Administration
Board decides upon long-term strategies; and so on.

The big picture given above is required to emphasize that the research study herein
documented was solely concerned about the organizational structure and decision making
processes related to the operations control “department” of the airline business.

Assuming that the information provided on the Airline Operations Control portion of
the State of the Art (section 2.1, chapter 2) is comprehensive and general enough, atten-
tion will now be devoted to the TAP case study. From the information gathered next to
the airline personnel and in order to better translate the current operations organizational
structure seen on TAP, figure 3.1 depicts the most relevant facilities, collaborators and
computerized systems.

LIS
HCC

ACT

OCC

DOV

AMS

AMS CTS

as

<AIRPORT>
AP

CI

os

cs

fd

ss
hs

cms

pss

mss

gs

Figure 3.1: Current operations organizational structure at TAP. Extended caption on table 3.1.

When looking into the clean schemata illustrated in figure 3.1, one may find three
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types of elements: rectangles, ellipses and pictorial representations of the human body.
There is also an aircraft icon and small dark points symbolizing passengers, but they are
both for decoration purposes only. Back to the diagram, rectangles represent airline facil-
ities, usually buildings and other infrastructures; ellipses translate computerized systems,
often a thin-client terminal; and as the name implies, the pictorial representations of the
human body portray airline collaborators. Special attention goes for the later given their
ability to form groups, corresponding to real life services or workforces.

In order to facilitate the use of language, and because of their different nature, we
decided to gather facilities, collaborators and systems representations under the name
“concepts”. And as it is possible to observe, in figure 3.1, every concept has an associated
label: facilities (rectangles), capital letters on the superior left corner; systems (ellipses),
capital letters centered at the origin; and collaborators (human icons), lower-case letters
beneath the representation.

Besides depicting TAP’s current operations organizational structure concepts, the di-
agram on figure 3.1 also intends to present the spatial relations among them. For the
purpose of better explaining those relations, table 3.1 lists all the labels shown on the
above diagram, providing some descriptive captions for each one.

Table 3.1: Operations organizational structure concepts.

Facilities
ACT Areeiro Crew Terminal
AP Aircraft Parking
CI Passenger Check-In

HCC Hub Control Centre
LIS Lisbon Airport

OCC Operational Control Centre
Computerized Systems
AMS Aircraft Movement System
CTS Crew Tracking System
DOV Flight Operations Portal
Human Collaborators

as Aircraft Specialist
cms Crew Members
cs Crew Specialist
fd Flight Dispatcher
gs Ground Supervisor
hs HCC Supervisor

mss Maintenance Services
os OCC Supervisor
pss Passenger Services
ss Station Supervisor

As we will see next, the majority of the action will take place at the Lisbon Airport,
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represented by the rectangle labelled “LIS”. The three-letter code “LIS” is the IATA air-
port code, also referred as IATA station code, designating the Lisbon International Airport.
In a similar fashion, every airport around the world has an IATA code.

For a better comprehension of the schema, it worths explaining that TAP, follows
the airline hub model. This means that it uses the Lisbon International Airport, as a
transfer point to get passengers to their intended destination. Being part of a hub and
spoke model1, travelers moving between airports not served by direct flights change planes
en route to their destinations. For instance, all the TAP passengers flying from Rio de
Janeiro, Brazil, to Gothenburg, Sweden, will likely stop on Lisbon Airport, in order to
gather other travelers moving to Gothenburg and departing from locations other than Rio
de Janeiro.

The airline hub model adopted by TAP, makes its activity more prominent at the Lis-
bon Airport, allowing the company to concentrate its operations control at this airport
which is generally called “base airport” or simply “base”.

Crossing the above information with the schema on figure 3.1 allows us to easily un-
derstand the dashed rectangle with the “<AIRPORT>” label. This representation intends
to represent all the airports having TAP flights as departure or destination points. The
“<AIRPORT>” label is just a generic placeholder for the three-letter IATA code designat-
ing the origin or destination airport. On the airports outside Lisbon, also called stations,
the operations control scenario is way simpler than on the base, comprising just a collab-
orator, the Station Supervisor, whose role will be detailed soon.

Going back to the “LIS” facility, Lisbon International Airport, one may notice that a
great portion of the current organizational structure stands on it. There are two distinct
buildings worth reference, the first, “HCC” or Hub Control Centre is where the “hs”
or HCC Supervisor plays his role, often using the “AMS”, Aircraft Movement System,
terminal; the other building is the “ACT”, Areeiro Crew Terminal, where we may find the
“fd” collaborator, Flight Dispatcher and the “DOV”, Flight Operations Portal, system.

At this point, it is desirable to explain that, while there was an attempt to kept the
schema simple and straightforward, it somehow resembles the physical separation be-
tween different spatial locations, buildings, humans and systems. This means that the
“DOV” system is directly unaccessible to any collaborator other than the Flight Dis-
patcher. For instance, if the HCC Supervisor needs to enter some data into the “DOV” it
would have to leave the Hub Control Centre, move to the Areeiro Crew Terminal, enter
the later building and then finally interact with the Flight Operations Portal.

Still inside “LIS”, one may find other facilities such as the “AP”, Airport Parking and
the “CI”, Passenger Check-In. These facilities are well-known to anyone who already
travelled by plane and they have two related groups of collaborators, “mss”, Maintenance

1Also called hub and spoke distribution paradigm, it is a system of connections arranged like a bicycle wheel, in
which all traffic moves along spokes connected to the hub at the center.
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Services, and “pss”, Passenger Services. The former is concerned with aircraft mechan-
ical and safety checks, the later cares about passenger identification, luggage collection,
security supervision, and so on. The Ground Supervisor, “gs” is somehow related to the
aforementioned groups as he takes cares of other pre-flight routines, such as assure lug-
gage and catering boarding or aircraft refueling. Last but not least, the “cms” represents
the Crew Members, which are required to enter on the Areeiro Crew Terminal and report
for duty through “DOV”.

Moving outside the Lisbon Airport, the TAP Operational Control Centre, “OCC” in
figure 3.1, is an office somewhere in the Lisbon city, that may be regarded as a traditional
Decision Centre. On the State of the Art (section 2.1, chapter 2) it was thoroughly de-
scribed the relation between the OCC and the Disruption Management problem. Soon
it will be explained how the information reaches the OCC, but for now it is sufficient to
describe its concepts.

The main character found on the “OCC” is the “os”, OCC Supervisor. As the name
implies, he is responsible for supervising the activity of “as” and “cs”, Aircraft and Crew
Specialists, by confirming or rejecting their resolution proposals. On their turn, the Air-
craft and Crew Specialists, rely on two computerized systems, namely the “AMS”, Air-
craft Movement System terminal and the “CTS”, Crew Tracking System, to trigger, sup-
port and synchronize their decisions.

A final word goes to the relation between all the referred automated systems. As op-
posed to the human spatial limitations, the data inputted into any system flows between
all the other systems, making it visible and accessible instantaneously. This means that,
whenever a Crew Member reports for duty on the “DOV”, at the Areeiro Crew Termi-
nal, this fact is immediately propagated to the “AMS” and “CTS”, making it promptly
known to HCC Supervisor and Specialists (assuming they are paying attention to com-
puter screens).

3.1.2 Operational Inputs, Outputs and in between Workflows

The previous section exposed the main concepts involved on the operational activities of
TAP, our case study real airline company. These included collaborators and automated
systems occupying several facilities, spread across distinct geographical locations. As
any other work environment, and although a somehow static representation was provided,
collaborators actively interact with each other, creating networks where information flows
and collaborative decisions are made. This subsection intends to make explicit the aim of
such organizational structure, presenting the most relevant business processes.

An excerpt from an interview with the HCC Supervisor follows:

“... It’s a 24 hours job. We [the HCC personnel] spend all day here to ensure
that our passengers reach their destinations on time. When a problem arrises,
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we must take action. Obviously, there are issues that are beyond our capacity
and flights get delayed, people get unsatisfied, the company loses money. For-
tunately, we serve around 30000 passengers a day but only a small percentage
gets angry!”

The brief quotation above was the starting point for a very interesting conversation
with someone that supervises TAP operational activities on Lisbon Airport. As HCC Su-
pervisor, he leads Maintenance Services, Passenger Services and the Ground Supervisor
on their roles. Grouped together they are usually referred as HCC personnel.

Following HCC Supervisor words, and matching what was written about Airline Op-
erations Control on section 2.1, the goal of the whole organizational structure presented is
to ensure that flights depart, and consequently arrive, according to a predefined schedule.
The schedule that was advertised next to travelers, that bought airline tickets for a specific
day, hour and even minute.

Taking an aircraft with hundreds of passengers to a destination several kilometers
away involves a number of procedures and verifications before, during and after the flight.
In the next section, a thorough list of anomalies related with those procedures and other
unmanageable irregularities faced by airline companies will be presented, but for now, it
is important to distinguish a couple of general cases.

• Maintenance Procedures: when an aircraft, coming from a foreign destination ar-
rives into an airport, Maintenance Services, composed by mechanics, engineers and
technicians perform some routine checks to the most important aircraft components,
trying to assure passenger safety for the next flight.

• Aircraft Loading: besides the mandatory fuel, before taking off an aircraft is
loaded with meals, toilet stuff, water, cabin accessories, passenger luggage, and
other cargo. The collaborator responsible for monitoring proper aircraft loading is
the Ground Supervisor.

• Passenger Procedures: passengers are required to check-in on time. Then it fol-
lows security inspection and often, customs verification, finally passengers are boarded
into the aircraft, which sometimes demands airport buses or other infrastructures.
Passenger Services are responsible to carry out all the aforementioned procedures.

• En Route Verifications: before departing, the Flight Dispatcher monitors en route
problems, such as bad weather, destination airport restrictions, air-controllers ca-
pacity, natural disasters, and so on.

• Crew Reporting: an aircraft is only allowed to depart if a minimum number of
crew members are available, a number that is related with aircraft size and seats
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occupancy. In order to track Crew Members presence, they are required to report
for duty on “DOV”, the Flight Operations Portal.

• Rotations: after landing into an airport, and according to a predefined schedule,
the aircraft has a limited time to reach the gates and get ready for the next flight.
In a similar fashion, crew members are sometimes required to change flights fol-
lowing a predetermined roster. This usage of resources across subsequent flights, is
called “rotation”, and the “AMS” and “CTS” systems are ready to monitor its proper
execution.

After the above list and keeping in mind HCC Supervisor words, some procedures
might lead to problems. For instance, defects were detected in the aircraft during mainte-
nance inspections or because of a tight schedule an aircraft had not the time to rotate and
will not be able to depart on time.

As mentioned before, the “OCC”, Operational Control Centre, was regarded as a De-
cision Centre. The reason behind this characterization lies on its responsibility to decide
upon the best solutions for a given operational problem. This way, and because of its
remoteness, the Aircraft and Crew Specialists must be warned to the issues arose during
operations, in order to take action. On the other way around, after reaching a conclusion
on which is the best way to address a problem, Lisbon Airport personnel must be notified,
with the purpose of executing the decision.

In the context of this research study is therefore of essential importance to understand
how the information flows, back and forth, within TAP organizational structure. This will
allow us to model it with the highest fidelity, ending up with a simulation as closer to the
reality as possible.

Based on the TAP personnel interviews, it were identified eight sources of anomaly re-
porting, and for each one a workflow diagram were depicted. Section A.1 on appendix A,
Current TAP Operational Sequence Diagrams, contains all the eight operational scenarios
triggered by the identified concepts.

The aforementioned diagrams follow the Object Management Groups UML v2.0 di-
rectives, but taking into account their pictorial representation of actors and activities, it is
important to clarify the meaning of such icons and identify the actions performed by TAP
collaborators as well as the resources they use. Figure 3.2 provides a great heads-up on
the interpretation of section A.1 diagrams.

Aiming at keep the figure 3.2 concise, actors were represented as general entities. The
labels that appear bellow actors on appendix A diagrams match the Computerized Systems
and Human Collaborators labels of table 3.1 making straightforward to track information
flow. Concerning activities, they represent what collaborators actually do such as phoning
to each other, reading data from systems, or reasoning over problems to reach conclusions.
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ACTORS ACTIVITIES

aaa
colective 

aa
singular 

aa
singular supervisor

AAA
computer system

instanteneous information 
propagation 

communicate by radio 

communicate by phone 

data input on system 

perceive or read data

human reasoning or 
solution approval

Figure 3.2: Operational workflow entities at TAP.

Describing all the eight workflow diagrams would not add value to this document
as they are very similar and share the same concepts. With this in mind, we opted to
choose the most complex sequence schema and thoroughly explain it, making it easier to
interpret the remaining diagrams. Following this, the next paragraph is dedicated to detail
the operational workflow triggered by an aircraft of crew anomaly detected by the Flight
Dispatcher, figure 3.3.

As stated above, the Flight Dispatcher is responsible for monitoring en route problems,
such as bad weather, destination airport restrictions, air-controllers capacity, and so on.
The Flight Dispatcher is also concerned with previous flight anomalies that may threat
a delay after a connection. Let’s take an example given during an interview with OCC
Supervisor.

“The the aircraft CSTOL is assigned to flight 355 and flight 423. The first de-
parts at 15:00 from Heathrow Airport and should arrive at 17:00 at Lisbon Air-
port. The second departs from Lisbon Airport at 18:00 and arrives on Charles
de Gaulle Airport two hours later. Bad weather on United Kingdom prevented
flight 355 from departing on time and it was delayed 45 minutes. Keeping
the 2 hours flight duration from London to Lisbon, flight 355 would arrive
at Lisbon Airport, in the best scenario, at 17:45. This would only provide 15
minutes for aircraft rotation (reach gates, maintenance, passenger boarding,...)
making it impossible to depart to Paris on the scheduled time.”

Knowing in advance that flight 355 would arrive late, Flight Dispatcher should alert
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asAMSos CTS csfd hs gs mss

[ac]

[cr]

Figure 3.3: Current operational workflow triggered by an aircraft or crew anomaly detected by
Flight Dispatcher.

the OCC personnel about that issue so they can try to find a solution. Looking into the
diagram illustrated in figure 3.3, he first calls the OCC Supervisor to let him know about
that. The OCC Supervisor now has a conditional action to take, if it is an aircraft anomaly
he inputs the problem on the “AMS”, if it is a crew problem he opts by the “CTS”. An
example of a crew problem might be the case of a cabin assistant of flight 355 that would
travel to Paris on flight 423 that gets sick on the meantime.

Back to our workflow, the OCC Supervisor has an aircraft anomaly at hands, so he fills
a form on the Aircraft Movement System, to which the Aircraft Specialist is hopefully
paying attention. Now the Aircraft Specialist, also called Aircraft Manager, has to reason
over the problem, looking for a solution. In subsection 3.1.4, the decision making and
reasoning processes found on the Operational Control Centre will be audited, but for now,
let’s assume that there is an Airbus A330 on Lisbon Airport that arrived at 16:00 and is
being prepared to flight to Frankfurt International Airport at 18:45. Let’s also assume that
CSTOL ship, from our example, is an Airbus A320. For a better comprehension, table 3.2
summarizes the considered flight schedule.

Bearing in mind the above scenario is likely that Aircraft Specialist decides to switch

40



Airline Decision Making Improvement and Organizational Structure Assessment

Table 3.2: Conjectural flying schedule illustrating operational workflow (figure 3.3).

FLT_NBR FROM_AIRP TO_AIRP SCHD_DEP_DATE SCHD_ARR_DATE AIRC_REG ACTYP_CD

355 BAA LIS 15/02/2010 15:00 15/02/2010 17:00 CSTOL A320
423 LIS CDG 15/02/2010 18:00 15/02/2010 19:00 CSTOL A320
534 FRA LIS 15/02/2010 14:00 15/02/2010 16:00 CSTMU A330
534 LIS FRA 15/02/2010 18:45 15/02/2010 20:45 CSTMU A330

aircrafts. Such change would prevent an estimated 45 minutes delay on flight 423. Pas-
sengers heading to Charles de Gaulle Airport would board on CSTMU, supposed to be
ready to takeoff by 18:00, as it arrived at 16:00. Then, the CSTOL aircraft, estimated to
arrive at 17:45 will have an hour to “rotate” and take flight 534 passengers to Frankfurt.

Returning to the workflow diagram, figure 3.3, the Aircraft Specialist enters his deci-
sion on the “AMS” terminal. This information is instantaneously synchronized over the
network with the Crew Tracking System, making the new schedule visible to the Crew
Specialist. In a similar fashion, the “cs” has now to analyze the solution proposed by the
“as”, in order to foresee potential crew shortages or other irregularities. For instance, Air-
bus A330 is larger than Airbus A320, thus requiring more crew members to carry out on
flight duties. Another problem might have its origin on crew member rotation. If the crew
members on duty on the late flight 355 are also assigned to flight 423 then 15 minutes
might be insufficient to move crewman from one aircraft to the other, or some mandatory
resting periods might be violated.

Mandating or not some crew assignment changes, the Crew Specialist is required to
evaluate, take action and confirm the solution suggested by the Aircraft Specialist through
the “CTS” terminal. His input will be readily synchronized, once again, with the Aircraft
Movement System, making it available to both OCC Supervisor and HCC Supervisor.
As the main character on the Operational Control Centre, “os” is required to ratify the
decisions proposed by the Specialists, while the “hs” uses a VHF radio to communicate
changes to ground operatives, namely the Ground Supervisor and Maintenance Services.
Considering our example, the later collaborators will now be responsible to take action
regarding CSTMU aircraft provision.

Before going back to workflow description, it is desirable to mention the lack of in-
formation about OCC Supervisor criteria to ratify or not the decisions recommended by
Specialists. The interviews carried out indicate an “always accept” criteria, with some
few, random and circumstantial exceptions. As we will see next, this step on the airline
organizational processes will assume a lower relevance when compared to other activities.
It was just included on the workflow diagram in order to attest the supervising role of the
OCC Supervisor.

The sequence of activities illustrated till now, had origin on an aircraft anomaly fore-
seen by Flight Dispatcher but figure 3.3, also depicts an alternative operational workflow
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translated by the conditional input action carried out by the OCC Supervisor. As the
schema shows, if we consider a crew problem, then “os” would directly fill a form on the
“CTS” terminal, triggering Crew Specialist action. This possibility hardly requires Air-
craft Specialist participation and putative solutions arisen for the problem are transmitted
to Flight Dispatcher using phone, so he can notify involved crewman.

To conclude this subsection, it worths emphasizing that the sequence diagrams grouped
on section A.1 correspond to abstractions of the most patterned and typical operational
workflows observable during regular flight operations. Unanticipated global events, such
as natural disasters, acts of terrorism, extreme weather conditions; or even disruptive lo-
cal happenings, like work stoppages promoted by workers’ union or emergency landings,
may lead to extraordinary measures that will mirror different operational workflows.

3.1.3 Activity Duration and Geographical Dispersion

The most prevailing goal of the research study documented along this text, is to simulate
the organizational structure and operations management practices observable on a real
airline company. Thereafter it should propose and introduce changes into the simulation,
assessing putative improvements. For other words, this roughly means converting the
operational workflows analyzed in the previous subsection into software models, that may
receive input data and mimic the collaborative work scenarios.

In order to do that and figuring a way to evaluate workflow performance, we had
to know the amount of time consumed by the various subprocesses that compose every
operational workflow. These subprocesses overlap, to some extent, with the notion of
activity illustrated in figure 3.2. Besides having some perception on those durations, it
was also important to understand if the time required to perform an activity on a given
workflow was the same time to perform the very same activity on a distinct workflow.

Although section 3.2 will be solely dedicated to present the methodologies behind
simulation, given the fact that we had to deliberately send inquiries to airline personnel
in order to gather the activities duration and geographical dispersion, we opted to un-
veiled some simulation intrinsic data at this stage, as it is mainly concerned to empirical
observation.

Before presenting some numbers, it is important to note some points. First, the major-
ity of TAP collaborators agreed that it was impossible to assign an objective duration to
each activity. It does not matter if it was communicating via radio or reading data from a
computer screen, every case has its nuances motivating a random value within a minimum
and maximum duration. Second, when confronted with the same activity having differ-
ent starting and ending points, for instance, if filling forms on “AMS” or “CTS” would
take the same amount of time or if a phone call between Station Supervisor or Flight
Dispatcher and the OCC Supervisor would present the same duration, they told us that
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they were unable to precisely point out differences. Interactions were about anomalies
and/or solutions, so if there were differences, they would have to be tracked individually,
a tedious, subjective and error prone task.

After gathering TAP collaborators answers, and assuming some commitments in terms
of data expressiveness versus simulation complexity, we ended up with the activity dura-
tions exposed on table 3.3.

Table 3.3: Time intervals of TAP operational activities.

Duration (mins)

Activity Min Max Avg

Communicate by radio 2 5 3.5
Communicate by phone 4 8 6
Data input on system 2 7 4.5
Perceive or read data 1 4 2.5
Solution reasoning 8 15 11.5
Decision approval 0 1 0.5

As stated before, the activities listed on table 3.3 match the activities found on the
appendix A diagrams and described on figure 3.2 with one exception. On the durations
table, Solution Reasoning and Decision Approval actions were split in order to better dis-
tinguish the role of Specialists from Supervisors. As explained in the previous subsection,
while the decision making processes carried out by Specialists are systematic, complex
and time consuming, on the other hand the decision approval performed by supervisors is
fuzzy, based on a “always accept” criteria.

Another interesting fact demanding attention is the reason behind the different times
across communications, or why interacting by VHF radio is less time consuming than
using the phone. The justification lies on the typology of the anomalies to be reported.
While the radio is used between HCC Personnel, comprising Maintenance Services, Pas-
senger Services and the Ground Supervisor, and the HCC Supervisor; the phone links
OCC Supervisor with Station Supervisor and Flight Dispatcher. The anomalies detected
by HCC Personnel are always related to “on base” (Lisbon Airport) operations, such as
aircraft defects, mandatory passenger security, late cargo loading, and so on. On the op-
posite side, Station Supervisor reports from a foreign station, for instance, a TAP flight
had problems on Frankfurt International Airport. Concerning the Flight Dispatcher, as
we saw before, he is also concerned with en route problems, harder to transmit to OCC
Supervisor.

Anticipating the need to reengineer the airline business processes exposed on the pre-
vious section, we were also concerned about understanding the geographical dispersion
of operations control since the early stages of our research. On subsection 3.1.1, Airline
Business and Organizational Concepts, we distinguish different facilities spread trough
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several locations.
Aiming at having an idea about the distances between facilities we soon questioned

the time taken to move from one point to another. Once again the answer was multifold.
While the airline personnel would kindly provide objective metric distances, measuring
the time to reach a facility from a given point is not as straightforward. The problem
sometimes lies on the notion of facility, or the resources that maybe used to help personnel
mobility. For instance, the Airport Parking occupies an area of several square kilometers,
so inquiring about how long would it takes for a technician from the Maintenance Services
to reach, by feet, the Hub Control Centre, will return an indefinite answer. But if we
provide a vehicle to the technician we will get two indefinite answers.

Even facing the above shortcomings on obtaining accurate data, we were able to com-
plete table 3.4.

Table 3.4: Time intervals between TAP operational facilities.

Duration (mins)

feet vehicle
Facility 1 Facility 2 Min Max Avg Min Max Avg

Airport Parking Hub Control Centre 5 15 10 1 3 2
Airport Parking Areeiro Crew Terminal 20 40 30 2 5 3.5
Passenger Check-In Hub Control Centre 2 6 4 – – –
Passenger Check-In Areeiro Crew Terminal 18 30 24 3 5 4
Areeiro Crew Terminal Hub Control Centre 15 25 20 2 4 3
Lisbon Airport Operational Control Centre – – – 15 45 30

Data on table 3.4 will be helpful on redesigning current TAP work practices, on the
final stages of the research study. Given the impossibility to get precise durations for hy-
pothetical moving activities one must rely on minimum and maximum values to describe
the time intervals between facilities.

A final word goes for empty cells, such as the Passenger Check-In to Hub Control
Centre and the Lisbon Airport to Operational Control Centre. In the first case, the facilities
are fairly close to each other, making it inconvenient to use a car or other vehicle to travel
between them. The second case is the opposite scenario, facilities are located at distinct
points of Lisbon city, making it impossible to reach each other by feet. On this later
case, the huge variation across minimum and maximum values is relate to traffic and rush
hours.

3.1.4 Airline Anomalies Description and Classification

While having an in-depth understanding about the current TAP organization structure,
concepts involved, observable workflows and subprocesses duration was mandatory to
set out our research efforts, the decision making carried out at the Operations Control
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Centre was another topic that deserved our attention. The goal was not only simulate
how TAP collaborators act on a daily basis, but also how they reason in order to solve
operational problems.

As stated before, when it comes to figuring out a way of suppressing a soon-to-happen
or already-happening flight delay, two main characters come into play, the Aircraft Spe-
cialist and the Crew Specialist. They are often called Managers given their ability to
change previously defined rosters (see subsection 2.1.1). Besides gathering some knowl-
edge about how these collaborators solve the airline operational problems, we were also
interested in understanding the nature of the anomalies behind putative delays.

Fortunately, airline companies are aware for the need of label and categorize the dif-
ferent delay reasons, and TAP is no exception. On the other hand, at the moment, there
is not a standard delay list widely adopted by airline companies thorough the world. The
most comprehensive and popular attempt to standardize the reasons behind commercial
flight late departures was brought by IATA, the International Air Transport Association,
an industry trade group involving airline companies from multiple nations.

Table B.1 on appendix B, section B.1, lists all the 72 delay reasons proposed by IATA,
spread by 13 categories. It includes the numeric delay code accompanied by a label
and a textual description. Airline companies willing to use those codes should add an
additional column to their databases in order to record the anomalies. For instance, if
a flight suffered a delay because there were no parking stands available, the code 87,
AIRPORT FACILITIES should be used.

As we will see later, TAP had already adopted IATA delay codes, although it is used
next to the proprietary delay labeling system. Given the lack of extended descriptions or
categorization, the later is more dubious and complex comprising more than 200 delay
codes. Table B.2 on section B.2 lists a subset of 101 TAP proprietary delay codes and
related labels. A brief comparison between IATA and TAP delay classification shows
more precision on the later but also some redundant and doubtful entries.

Having a precise understanding of how airline companies identify and record com-
mercial flight delays represented a huge step on the later research stages as it allows to
treat anomalies in a targeted way. But, as stated in the beginning of this subsection, it was
also desirable to know how different anomalies were handled by Hub and Operational
Control Centers personnel. For instance, in the occurrence of a 41 IATA code, TECHNI-
CAL DEFECTS, that roughly corresponds to a 831 TAP delay, AIRCRAFT DEFECTS AT
HOME BASE, what are the measures proposed to minimize or suppress the foreseeable
delay?

While we knew, in advance, that scrutinizing the decision making practices would not
be as straightforward and precise as receiving a delay code list, TAP are beginning to un-
dertake some business analytic approaches in order to improve its performance. Luckily,
they were willing to share some statistics for the purpose of our research study.
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Tables 3.5 and 3.6 provide a clear, although probabilistic, view of the decision mak-
ing processes involved in operations control. The first is concerned with role of Aircraft
Specialist, the second respects to the Crew Specialist. Both tables share the same typol-
ogy, the rows indicate resolution methodologies, while the central columns are related to
problem categories.

Table 3.5: Aircraft Specialist action probability according to problem category.

Flight/Aircraft Problem Category
Action AIRP ATC COMM HAND MAINT METEO CREW ROT SEC OTH Avg

Change aircraft 0% 0% 0% 0% 80% 0% 0% 80% 0% 60% 22%
Reroute 0% 50% 0% 0% 0% 0% 0% 0% 0% 7% 6%
Join flights 0% 0% 0% 0% 2% 0% 0% 0% 0% 4% 1%
Delay flight 95% 45% 90% 98% 15% 98% 95% 19% 100% 25% 68%
ACMI 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0%
Cancel flight 5% 5% 10% 2% 2% 2% 5% 1% 0% 3% 4%

Table 3.6: Crew Specialist action probability according to problem category.

Crew Problem Category
Action SIGN RULES INDUTY ROT METEO Avg

Use reserve at airport 10% 5% 0% 20% 0% 7%
Use nearest reserve at home 40% 20% 0% 40% 0% 20%
Exchange with crew another flt 10% 10% 0% 10% 0% 6%
Use crew with free time 10% 10% 0% 5% 0% 5%
Use day off crew 10% 10% 0% 10% 0% 6%
Use crew on vacation 5% 10% 0% 5% 0% 4%
Propose aircraft change 1% 0% 0% 0% 0% 0%
Proceed without crew 2% 5% 90% 5% 0% 20%
Cancel flight 2% 10% 10% 0% 2% 5%
Accept delay 10% 20% 0% 5% 98% 27%

Before presenting further explanations around those tables, it worths explaining the
newly arisen concepts. The actions shown on the rows translate the decisions proposed
by the Specialists after being notified about an operational anomaly/problem. In its turn,
the anomalies/problems listed on appendix B are grouped forming “problem categories”,
that are represented by means of capital letters. This anomaly clustering is carried out by
TAP to allow a better statistical analysis.

One point that deserves a special focus is the categories associated with each Special-
ist. It is very important to note that the Crew Specialist is solely concerned with crew
problems while the Aircraft Specialist cares not only about aircraft problems but also
flight problems. This way, despite they are both required to the proper function of the
Operational Control Centre, the Aircraft Specialist assumes a more relevant role than the
Crew Specialist. If we look back to the workflow diagrams presented on subsection 3.1.2
it is clear that, neglecting the anomalies detected by the “DOV” and “CTS” terminals,
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which are directly related crew problems, the Aircraft Specialist is the first to be notified
about problems. It then analyses the anomaly, reasons about it, and transmits its conclu-
sions to Crew Specialist.

Back to anomaly categorization, TAP statisticians kindly provided the description of
the categories found in the central columns of the probability tables. Flight and Aircraft
problem categories are explained in table 3.7 while crew counterparts are shown in ta-
ble 3.8.

Table 3.7: Flight/Aircraft problems category description.

AIRP
Airport infrastructure causes: SEF, Stands, Airport Ca-
pacity, ULDs, RX machines, etc.

ATC
En route and destination ATC restrictions as well as en
route and destination meteo conditions.

COMM
Protection of passengers due to cancellation of another
flight or passengers missing after check-in.

HAND
Problems boarding passengers and/or loading cargo,
problems related with taxing/runway officer.

MAINT
Problems due to some kind of malfunctions and/or main-
tenance related.

METEO
Adverse meteorological conditions at departure airport
impairing landing or handling.

CREW
Missing crew members and other crew related problems
(table 3.6 and 3.8).

ROT
Problems related with the rotation of the aircraft. For ex-
ample, late arrival of the incoming aircraft.

SEC
Baggage identification, search and retrieve of baggage af-
ter boarding.

OTH All others problems not related with any of the previous.

The categories within the tables should not be confused with the previous IATA anomaly
grouping previously mentioned and evident on table B.1, IATA Numeric Delay Codes and
Description. While there are some similarities between them, this categorization is in-
tended to mirror the operational issues faced by TAP, while the later aims at being more
prevalent.

Now that all concepts were clarified, it is easy to describe an anomaly resolution pro-
cess. For instance, a ULD, Unit Load Device, inadvertently hits an aircraft during cargo
loading. Consulting our delay code tables on appendix B, a 52 IATA delay code or a 980
TAP delay code was raised. The Aircraft Specialist is notified and starts to analyze the
problem. This kind of code corresponds to an aircraft problem related with the MAINT
category, as it roughly translates a new malfunctioning problem or some maintenance
will be required. According to table 3.5, there is 80% probability of changing the aircraft
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(subject to ship availability), 15% chances of delaying the flight (until repair), 2% likeli-
hood of joining flights (moving the passengers to another TAP flight), 2% probability of
cancel the flight and, finally, 1% chances of ACMI (leasing an aircraft from other airline
or leasing company).

Table 3.8: Crew problems category description.

SIGN Crew member not reporting for duty at home base.

RULES
Crew member has exceeded any labour/law rules like
duty time.

INDUTY
Crew member unavailable after sign-on. For instance, ac-
cident or illness during flight.

ROT
Crew member miss a flight due to the delay of a previous
flight or other causes related with crew rotation.

METEO
Adverse meteorological conditions at departure airport
impairing landing or handling.

OTH Other reasons not included on previous.

Now let’s see an hypothetical anomaly where the Crew Specialist will intervene. A
flight was schedule to depart from the home base at a given time, crew members were
timely assigned to the flight but a cabin assistant did not report for duty. This will likely
raise a 67 IATA delay code or a 1001 TAP delay code. As this is an inherently crew prob-
lem, the Aircraft Specialist would not be notified. If he was, he would decide based on
the CREW category, 95% chances of delaying the flight or 5% probabilities of canceling
it. Then, he would inform the Crew Specialist about his conclusion. One way or another,
and since the anomaly belongs to the SIGN crew category, the Crew Specialist would
propose the all the actions included on table 3.6, but with different probabilities. First he
would try to contact a spare reserve crew member that is not on duty (40%), other options
would include changing the missing cabin assistant with a crew member assigned to a
future flight, use a crew member that is on the airport or having free time (10%). Crew
members having the day off or on vacations might be called to ascertain availability (10%
and 5% respectively). If there was a decision, coming from the Aircraft Specialist, geared
towards delaying the flight and pending for approval, that might be an option (10%). De-
cisions unlikely to be taken include proceeding without crew, proposing aircraft change
and cancel de flight (all <5%).

Although the above examples were intended to make clear how the decision making
processes were driven by anomaly classification and probabilistic action, the later also
proved that the information provided till now is insufficient to properly model the op-
erations related to an airline. At some point, on the crew example, we did not know if
the Aircraft Specialist would participate or not on the reasoning process. This happened
because we have already linked anomaly classification with decision making but we are
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still missing some connections between operational problems, translated by delay codes,
and the concepts that trigger the workflows on appendix A.

Trying to illustrate this lacking of information, and back to the crew example depicted
on the previous paragraph, if we know who gets aware of the missing crew member, than
we will be able to match an existing workflow and understand if the Aircraft Specialist
would take part of the resolution process. After inquiring airline personnel, we were told
that 1001 TAP delay codes are reported by the “DOV” system, where the crew members
must register for service, and is set up to raise an alarm if a crewman misses the call.
Accounting for this extra information, and crossing it with the workflow associated to the
Flight Operations Portal, figure A.6, we realize that the Aircraft Specialist doesn’t take
part in the process, allowing us to simulate such event without glitches.

The lack of this important piece of information had led us to manually classify all the
provided delay codes, both IATA and TAP, into two dimensions. The first is concerned
with who detects the anomaly and, therefore, who triggering the respective workflow. The
second is around the TAP categorization used to probabilistically precipitate a decision
making process. Concerning the latter, the last portion of section 3.2 will be dedicated
to describe how we tried to improve the manual assigning of problem categories to delay
codes by means of decision trees.

As one can imagine, manually classifying 173 delay codes according to textual and
thus imprecise descriptions, was an inglorious and tedious task. Having in mind the di-
mension of the challenge, mainly in terms of time consumption and patience proofing, we
opted to personally classify the codes and later deliver it to airline personnel asking for
data validation. That was how it happened, and after getting back the documents, around
30 out of 173 possible corrections were made, which somehow attests our familiarity with
airline operations.

Appendix C gathers the final human (manual) classification of IATA and TAP delay
codes accomplished during the aforementioned phase or our research study. It is split
into two sections, each one dedicated to a different set of codes. Table C.1 is concerned
with IATA delays, so the first column of the table corresponds to the values shown on
table B.1 of the appendix B. On the other hand, the subsequent section contains a table
classifying TAP delays, table C.2, and therefore the first column matches the codes listed
on table B.2.

Despite representing distinct instances, the second, third and last column of appendix C
tables respects to the same entities. As one may observe, they are both labelled with the
same attributes: concept, flight/aircraft problem and crew problem. The first attribute
conforms with the notion of operational concept, described on section 3.1.1, and its set
of values should match the items listed on table 3.1, namely the Human Collaborators
or Computerized Systems two or three letters identifiers. The third column, flight/aircraft
problem, is in close connection to the TAP flight/aircraft problem categorization explained
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above and restricting its values to the capital letter labels listed on table 3.7. Similarly, the
last column cares about TAP crew problem classification, being related with the identifiers
in table 3.8.

It worths remembering that crew problem classification is conditionally dependent on
flight classification and thus, the majority of fields associated with the last column, crew
problem, are empty. If a flight/aircraft problem is classified as CREW, then it will require
further inspection in order to determine the nature of the crew problem.

On the later stages of this study, the plain text version of the appendix C tables will
be used to generate code to be embedded on our simulation but for now, it is useful to
conceptually explain how the empirical elements presented fit together. Let’s assume that
at some point in our operations scenario, a 33 IATA anomaly, LOADING EQUIPMENT,
occurs. This means that a ULD, provided by the airport, was required to load some cargo
into the ship but it was not available. According to our manual classification of IATA
codes and later validated by TAP personnel (table C.1), this anomaly was detected by the
Ground Supervisor, so it will trigger the corresponding workflow A.1. Following the se-
quence of activities illustrated on the later diagram, Ground Supervisor will communicate
the problem to the HCC Supervisor, which in turn will fill a form on the “AMS” termi-
nal alerting the Aircraft Specialist, a deciding agent. He will then analyze the problem,
which virtually corresponds to cross the classification data with the action probabilities
on table 3.5. Since a 33 IATA anomaly belongs to the AIRP problem category, there are
95% chances of the Aircraft Specialist delaying the flight, and a 5% likelihood of cancel-
ing it. The Crew Specialist will be aware of the Aircraft Specialist solution but having in
mind that AIRP problems do not mandate crew changes, it will not take action. Back to
the workflow, the OCC Supervisor will accept the solution proposed by the Aircraft Spe-
cialist and the HCC Supervisor will communicate the decision to the Ground Supervisor,
who will wait for an ULD to be available (flight delayed) or dismiss ULD necessity (flight
cancelled).

To conclude this subsection, it is important to justify the Station Supervisor absence
from the classification tables, when there is a workflow diagram dedicated to him. As
explained at the beginning of this section, Station Supervisor works on a foreign base,
meaning that it exists a Station Supervisor in every airport to where TAP flies. In a real
life scenario, when a TAP aircraft reaches a foreign base, let’s say Frankfurt Airport,
the servicing is carried out by local outsourced entities. When an anomaly is detected,
for instance, when there is a problem with the aircraft or adverse weather conditions,
Frankfurt Airport personnel reports to the TAP Station Supervisor who is then responsible
to call TAP OCC Supervisor as indicated by the respective workflow diagram. When
looking to the classification tables, this means that the triggering concept is not only
concerned with the delay code but also the departure airport. Disregarding the delay code,
if the departure airport is other than Lisbon International Airport, then the operations
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triggering concept is always the Station Supervisor.

3.1.5 Operational Activity Logging

Section 3.2 will be solely concerned on expose the approaches followed for operational
data analysis and how it allowed decision making improvement. Therefore, this subsec-
tion will not go farther than justifying the need for real data usage and presenting an
overview about TAP operational activity logging.

At the beginning, when we thought about pioneering a simulation of an airline organi-
zational structure aiming at assessing its performance, two things were clear. First, it was
required an in-depth understanding about airline operations control, ideally supported on
airline collaborators experience. Second, we needed to have access to real operational
data with the purpose of feeding our simulation and after compare reality with simulated
outputs.

Fortunately TAP was receptive to the idea of not only share the intrinsic empirical
knowledge exposed till now but also open its databases to our research study. Obviously
we were not given direct access to its repositories but TAP agreed to provide large text
files with requested dumps.

At this point, it is important to clarify the concept of operational activity from a
database recording perspective. Wrapping up all the empirical observations made till now,
besides the mandatory flight schedule and delay codes logging, the inputs for our simu-
lation, it would be very interesting to have some way of comparing the real-life decision
making processes to the artificial reasoning implemented at simulation level.

When looking into tables 3.5 and 3.6 the most prevailing way of solving an airline
operational disruption is by delaying the flight or changing the aircraft/crew member.
This way, we requested data that would allow us to compare the scheduled to the real
operational plan, thus allowing to track decision level changes.

At its origin, the current database implementation at TAP only maintains a single flight
record at a time, overwriting any changes to the scheduled record. Table 3.9 intends to
illustrate the referred approach.

When looking into table 3.9, the most relevant database field to comprehend the log-
ging mechanism at TAP is the TABLE_ID. Before 15/02/2010, three flights were sched-
uled, so the ACTL_DEP_DATE field, actual departure date, was obviously empty. On
the 15/02/2010, as the flights successively take place, the ACTL_DEP_DATE is updated,
causing no harm to the existing data. But an anomaly on flight 894 motivated an aircraft
change, instead of the CSTPB ship, it was used the CSTPG. This update query was carried
out over the existing record, as the table id, 3231344 may attest.

At first, the described logging methodology in use at TAP may serve it purposes but
in the context of our research study it is worthless. Assuming that we ask for data on the
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Table 3.9: Current operational logging approach at TAP.

TABLE_ID FLT_NBR SCHD_DEP_DATE AIRC_REG ACTL_DEP_DATE

Database before day of operations
3231343 452 15/02/2010 14:15 CSTMU
3231344 894 15/02/2010 14:30 CSTPB
3231345 972 15/02/2010 15:30 CSTPG

Database after day of operations
3231343 452 15/02/2010 14:15 CSTMU 15/02/2010 14:20
3231344 894 15/02/2010 14:30 CSTPG 15/02/2010 14:50
3231345 972 15/02/2010 15:30 CSTPB 15/02/2010 15:30

17/02/2010, we would be given the last portion of table 3.9, after the day of operations,
and consequently we would never get to know that the CSTPB aircraft was changed.

To overcome this problem, a database service was implemented in order to take snap-
shots of relevant table rows, before and after operations. This service was not solely con-
cerned with daily data, but also weekly and monthly. It relied on a “PHASEs” approach
to distinguish scheduled from real data, according to table 3.10.

Table 3.10: Operational data collection methodology.

Schedule Real
Period PHASE Collected PHASE Collected

Day 10 Daily for the next day 11 Daily for the previous day
Week 5 Every sunday for the next week 6 Every tuesday for the previous week

Month 1 Every 27th day for the next month 2 Every 4th day for the previous month

From the table above, is clear that “PHASE” is a numerical database field introduced
to ease the retrieval and comparison of records. In the next section, it will be demonstrated
how the systematic analysis between scheduled and real events took place.

To finalize this short subsection and put an end on the broad Airline Empirical Obser-
vation section, brief mention goes to the scope of files kindly provided by TAP.

As mentioned before, although we pointed out the limitation of current database
recording and described a solution based on a database service, when we requested TAP
for operational data we received an archive containing large CSV files corresponding to
database dumps. Four types of files were included:

• op_flight: related to the flight plan, including departures and arrival time, origin
and destination airports, flight numbers, and so on.
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• op_aircraft_roster: concerned about aircraft planning, it involves aircraft model
and registry plate, number os seats available and sold, among other ship related
information.

• op_crew_roster: the aircraft roster counterpart, but dedicated to crew members, it
contains data about TAP employees position and numbers, crew pairings, activity
planning, flight assignment, etc.

• op_flight_dep_dly: includes the time of delay suffered by some flights accompa-
nied by the underlying IATA and TAP delay codes. From the above files, it is the
only which has just one related “PHASE”, the real operational scenario.

The topics surrounding operational activity logging will be still revisited twice along
this document. First, on the next section, where the processes of data understanding,
clearance, analysis and classification will be unveiled. Next on the Experiments section of
chapter 4.1, where it will be described the data used to feed our analysis and simulations.

3.2 Operational Data Analysis and Decision Making Improvement

Considering the empirical knowledge presented in the previous section, and keeping in
mind that one of the main goals of the research study herein documented is to assess or-
ganizational structure performance, one may question the reason for a section dedicated
to operational data analysis. In fact, and inline with other research activities, we often do
not have a clear understanding of all the concepts at the beginning, but then, as our com-
prehension increases, other topics of interest might arise and the will to explore different
approaches start to emerge.

This section roughly fits in the above description. Originally, the operational data
analysis that partially entitles this section was intended to create a short size infrastructure
where one would preprocess the raw operational files coming from TAP and calculate and
visualize results after simulation execution. As it is easy to imagine, such infrastructure
started to quickly evolve providing tools well beyond the initial aspirations and assuming
and increasingly important role next to the organizational structure performance assess-
ment.

Given the amount and complexity of the concepts involved, figure 3.4 tries to illustrate
how data analytics finds its way in-between reality and simulation.

A closer and descriptive inspection of figure 3.4 is worthy. At its core, it illustrates
three distinct scenarios represented by cloud or elliptical shapes. The first, on the top
translates what is happening, right now, on the Lisbon TAP facilities. The real organi-
zational structure contains a set of operational workflows and another of reasoning pro-
cesses, which were thoroughly described on section 3.1, Airline Empirical Observation.

53



Airline Decision Making Improvement and Organizational Structure Assessment

reality

real
organizational
structure

reasoning 
processes

operational 
workflows

simulation A

simulated
organizational
model A

reasoning 
processes

operational 
workflows

simulation B

simulated
organizational
model B

reasoning 
processes

operational 
workflows

scheduled 
activity

real
activity

simulated 
activity

operations
log

simulated 
activity

operations
log

decision making
accuracy

organizational
performance5

5

1

3

3

4

4

7

7

2

2

6

Figure 3.4: The role of analytics in the organizational performance assessment. Extended caption
on table 3.11.

The cloud-shaped icon was purposely used, due to the intrinsic complexity of reality, and
an always incomplete knowledge about it. At this moment, there is a flighting schedule
that must be carried out, there are anomalies that may arise, decisions are taking place
to overcome delays, all these activities are being logged into databases. The input and
output of all these actions are represented by the arrows starting in the “scheduled activ-
ity” file icon, going through the “real organizational structure” and ending up on the “real
activity” file icon. Those inputs and outputs match the files referred on section 3.1.5, real
airline activity planned in advance and real airline activity that took place afterwards.

Still on figure 3.4, but now moving to “simulation A”, the cloud shape of the previous
scenario was replaced by an ellipsis. This option reflects the formalism required to model
the reality, and thus translating more precise and determined concepts. At this point, the
set of fuzzy operational workflows and reasoning processes was replaced by formal algo-
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rithms that, even if characterized by some random or probabilistic nature, their behavior
will always be deterministic. It is important to recall that “simulation A” does not in-
troduce other constructions or changes beyond a faithful formalization of the knowledge
provided by TAP. In other words, “simulation A” attempts at mimic “reality” with the
highest fidelity. The same scheduled flight activity that feeds the real airline operations is
now inputted into the simulation but unlike “reality”, two outputs are produced. Besides
the simulated flighting activity, all the operations carried out but virtual TAP collaborators
are now logged into files.

“Simulation B” is represented in the same way as “simulation A”. The only differ-
ence is that a second, “B”, organization model is used which involves introducing some
changes, at the operational workflows and/or reasoning processes levels.

The scenarios considered allow us to perform comparisons at two distinct levels, deci-
sion making accuracy and organizational performance. The former is a side effect of the
latter. Actually such comparisons are very different in essence. While the decision mak-
ing accuracy requires analyzing real and simulated flighting activity measuring the level
of similarly, the higher the better; assessing organizational performance requires to define
a set of metrics and perform comparisons between them, usually the lower the better.

Back to the title of this section and trying to explain its scope within this research
study, the aforementioned analytics infrastructure evolved from input and output file in-
spection to more advanced data analysis aimed at improving the simulation reasoning
processes. Attesting this fact are the seven black numbered dots that represent analytical
infrastructure levels and which are spread all over the stages.

From now on this section will be split into smaller subsections, each one dedicated
to the most relevant analytical steps or other relevant support features. Heading these
document parts, the next subsection wraps up the analysis approach followed along our
research study.

3.2.1 Analytical Infrastructure and Support Tools

Since they were mentioned in the introductory portion of this section, this subsection will
start by explaining the meaning of the black numbered dots in figure 3.4.

In general terms, figure 3.4 translates the simulation and results analysis stages of the
research study documented along this text. The black dots signal the intermediate steps of
those stages where the analytical infrastructure takes position. Table 3.11 describes each
of the dots.

As one may observe in table 3.11 not all the levels listed are directly related to data
analysis and thus this subsection title also mentions the support tools. For instance, levels
2, 5 and 6 are more geared towards file and code generation and handling. In spite of that,
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Table 3.11: Analytical infrastructure and support levels (cross-referenced with figure 3.4).

1
Understand database operational attributes as well as track redun-
dant columns in order to simplify the problem at hands and assure
the proper selection of data structures.

2
Perform raw data validation, remove unneeded operational attributes
and generate lightweight files to feed simulations and ease subse-
quent information analysis.

3
Compare distinct data PHASEs (section 3.1.5) aiming at gather
statistics and produce reports or charts that provide an aggregate
view over the airline activity.

4
Based on the comparison described on step 3, apply supervised
learning algorithms to observations in order to generate classifica-
tion decision trees.

5
Generate code from reasoning models, such as classification arrays,
decision trees and probability tables, and later merge it into simula-
tion modules.

6
Set up an accessible and intuitive interface that allows for parameter
configuration and simulation control, such as the number of execu-
tions or simulation speed.

7
Parse output activity files or operational logs in order to collect
statistics and present final results by means of tabular reports or pic-
torial charts.

the analytical infrastructure is of an unquestionable relevance, with an importance on par
with the simulation itself.

Back to table 3.11 the levels description numbering was not randomly chosen. It tries
to outline the sequence of steps required to assess organizational structure performance,
from the raw operational data received from TAP to report and chart generation with
aggregate final comparisons. Obviously, and as we will see later, not all the steps have to
be touched when researching new simulation scenarios.

The next subsections will be dedicated to specifically explain each level in detail.
Nevertheless, in order to provide insight into how levels articulate between themselves, a
diagram was produced and it is illustrated in figure 3.5.

In the center of figure 3.5, one may see a sequence of the levels listed on table 3.11,
sporting their number and a short description. The connection across units is made
through files, that also represent the inputs and output of each step. Arrows were used
to represent data flow.

Before presenting an in-depth description of the diagram, it worths clarifying that a
level should be understood as an approach to address a particular problem. It is usually
supported by a specific software model, relying on a set of scripts. As such, and on the
context of the analytical infrastructure, another definition for level might be a functionality
available to humans or other scripts aiming at carry out a specific process.

Returning to figure 3.5, level 1 acts upon the raw operational files provided by TAP
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Figure 3.5: The analytical infrastructure articulation process.

and outputs “stub labels” conceptually wrapped in code. Later, the concept of stub label
will be presented but for now, it matters underlining two aspects. First, the “raw op. files”
and the “cleaned op. files”, makes no distinction between PHASEs (see section 3.1.5),
treating scheduled and real operational activity in the same way. Second, by the end of
the process, a set of files are generated containing information used to understand TAP
databases attributes as well as placeholders to be filled.

On stage 2, the “stub labels” files and the “raw op. files” are crossed in order to
produce “stub classes” and “cleaned op. files”. Stub classes will be used on the data
analysis of level 3, while the “cleaned op. files” correspond to lightweight versions of the
“raw op. files” containing just the relevant columns. The latter are very important files as
they will be used in several analytic and simulation processes across the research study.

The next level, uses customized extensions of the “stub classes”, to establish com-
parisons between the scheduled and real airline activity. This analysis is of uttermost
importance as it allows to track several parameters such as the number of flights that will
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be used during the simulation phase, the number of delays reported, the decision making
processes that really took place, and so on. Besides some tables and charts for human vi-
sualization, level 3 also generates an “ad hoc report” of the reasoning processes attained
in reality.

Level 4 is solely feed with the “ad hoc reports” previously produced. It then uses
different rules to produce formal reports according to the WEKA data mining tool syntax.
Later it calls the J48 Java implementation of the C4.5 classification algorithm, shipped
with the WEKA tool, in order to classify the reasoning processes according to delay codes
and delay estimation. This process will be thoroughly described on subsection 3.2.4, but
at this moment it is enough to understand that level 4 outputs files containing formal
representations of decision trees.

As we saw previously, reasoning processes are embedded into simulation models, so
level 5 aims at converting the formal representations of decision trees into “java code”.

The next level, 6, deserves special attention because it may lead to some confusion.
While on the aforementioned levels continuous-line arrows were used, inputs and outputs
related to level 6 use dashed-line arrows. This is due to the implicit simulation execution
inherent at this stage. In few words, level 6 solely handles some simulation configura-
tions, and provides access to simulation control. It is, by no means, the simulation. The
files represented are used by the simulation, and not by the support tool itself, therefore,
dashed-lines were used.

Finally, and assuming simulation execution, the analytics infrastructure comes back
into play as level 7 uses the “simulated op. files and op. logs” (see figure 3.4). At this step,
several cross-comparisons between file sets are performed such as, simulated records with
the real counterparts, considering decision making processes; or two or more simulated
organizational scenarios, regarding workflow performance assessment.

Now that a big picture over the analytical infrastructure and other support tools was
drawn, it matters to detail the intrinsic nature of the most relevant levels by making explicit
the underlying implementation or other relevant aspects. We will delve into this subject
on the following subsections.

3.2.2 Raw Operational Data Understanding and Clearance

While this subsection is of arguable relevance, it was purposely included to describe some
issues faced at the early stages of our research study, when we received large data sets with
few or none metadata about them.

After asking TAP for a whole week of scheduled and real operational data, it promptly
replied with a link to an archive, containing 7 CSV files, as listed in table 3.12.

At first we were amazed by such amount of data, but if the number of rows, databases
records, were more or less expected, the number of columns, database fields, impressed.
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Table 3.12: Real operational data set size.

Number
Filename Rows Columns
w2010_02_15_ops_plan_aircraft_roster_phase05.csv 7320 72
w2010_02_15_ops_plan_aircraft_roster_phase06.csv 7302 72
w2010_02_15_ops_plan_crew_roster_phase05.csv 22196 78
w2010_02_15_ops_plan_crew_roster_phase06.csv 22424 78
w2010_02_15_ops_plan_flights_dep_dly_phase11.csv 992 32
w2010_02_15_ops_plan_flights_phase05.csv 7318 72
w2010_02_15_ops_plan_flights_phase06.csv 7304 72

Besides its high number, columns had short underscored versions of their real meaning
and we did not know which it was. Examples were, SCHD_DEP_DATE, EMPL_PREF_LEV
or OP_SUFFIX. While the first label resembled Scheduled Departure Date, the next two
were impossible to scrutinize. Appendix D lists all the operational database fields accom-
panied by other information made available during level 1 analysis. Bear in mind, that at
the beginning we only had the labels, the second column of each table.

Besides the aforementioned issue, visual inspection of the data suggested redundancy
between columns, emptiness across all records, or prevalence of certain instances. Simply
put, it “suggested” because it was impossible to visually track thousands of rows.

Following this, we decided to implement a set of scripts that would read all the
database records and calculate diverse parameters aimed at help us decide upon which
fields would deserve our focus. After executing the script, a set of files with the parameter
results would be generated, making it easy to select the fields to maintain or to remove.
These files are captioned on figure 3.5 as “stub labels”, and table 3.13 depicts its structure
and provides and example.

Table 3.13: Stub database label files anatomy.

label description removable regex redundant values

LABEL <text> <yes|no> <regex> a,b,c x%: [val1]; y%: [val2]

RANK_CD
Crew rank or
flight position no /[A-Z]3$/ 54,60

53%: [CAB]; 17%: [SCB];
15%: [CPT]; 15%: [OPT]

As one may see, there are three placeholder fields, description, removable and regex,
along the automatically filled attributes. It is noteworthy to remember that besides opera-
tional database logging comprehension this analytical level also aims at file clearance and
validation, a step where the removable and regex fields will become determinant.

Looking into the example, after executing the script one would get a file will all the
attributes listed, including our “RANK_CD”. Besides the label textual meaning, we also
know that “RANK_CD” is redundant with the the columns 54 and 60, and the relative
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distribution of its values: 53% of the rows are filled with “CAB”, 17% with “SCB”, 15%
take the value “CPT” and finally “OPT” holds the remaining records.

After checking the values in columns 54 and 60, likely to provide additional insights,
and using the common sense around the “CPT” short form for “Captain” we would con-
clude that “RANK_CD” points out the inflight position assumed by a crew member. This
information could be manually entered on the description placeholder, for later reference.
Subsequently, and with further inquiry, we would be able to figure out that “CAB” de-
scribes regular cabin personnel, “SCP” stands for cabin supervisor and “OPT” means
co-pilot.

Tables of appendix D list all the labels per database file. At this stage we discovered
that op_flight and op_aircraft_roster files (see section 3.1.5) contained roughly the same
information, so the latter was disregarded in subsequent analysis. The reason for this is
because TAP does not have a dedicated database table to track specific aircraft informa-
tion, storing this information next to the flights data.

Back to table 3.13 example, after knowing what “RANK_CD” stands for, one should
decide if the column is relevant for the research study. By filling the removable field with
“yes” or “no” and providing an additional regular expression on regex, the “stub label”
files will be complete and ready to proceed to level 2.

Level 2 is regarded as a support stage with straightforward outcomes, therefore it
won’t deserve a special subsection. Having the raw operational files and the stub label files
as inputs, it simply crosses the latter with the former, skipping all the attributes marked as
removable, validating the syntax of the others and creating by copy cleaned operational
files (captioned as “cleaned op. files” in figure 3.5). It also produces “stub classes” files,
that render an object-oriented approach to the forthcoming analysis processes.

3.2.3 PHASE Comparison and Statistical Analysis

Till now, we saw the goals of the research study documented along this text and we have a
set of cleaned and targeted files comprising pre as post airline activity records. In order to
provide an answer to the goals set, we must simulate various airline operational scenarios,
but if we do not have a clear understanding over the data that will feed the simulation we
will not be able to evaluate its efficiency, at least in terms of decision making processes.

Following this, the present subsection aims at explaining what happens at level 3 of the
analytical infrastructure. This level carries out a statistical analysis of flights, delays and
crew rosters, intersecting the information in-between them and attempting to generate a
informal and aggregated representation of the real airline reasoning processes, the “ad hoc
report”. In the meantime, it presents several reports to the user, pointing out interesting
facts about the records to be inputted into the simulation and alerting for data consistency
and integrity violations.
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Bearing in mind that operational data is split into PHASEs (subsection 3.1.5), the list
bellow summarizes the main statistical analysis implemented on level 3:

• IDs and Foreign Keys: for each file/table, we had to determine the set of fields that would uniquely
identify each row, its identifier. It was also important to link the different files/tables by means of
foreign keys.

• Number of Flights: by traversing op_flight files we were able to determine the number of flights
before and after operations, tracking down orphan flights on both sides.

• Flight Row Completeness: checking the number of empty fields on each row across PHASEs,
proven useful into evaluating the integrity of the data at hands.

• Flight Column Completeness: comparing the number of empty fields per column between PHASEs,
allowed us to understand which attributes were updated after operations.

• Flight Field Difference: this analysis measured the number of different fields across PHASES. For
instance, if the AIRC_REG (see table D.1) column would show 3 occurrences then 3 aircrafts did
not fly as scheduled, and putatively had to be replaced.

• Number and Grouping of Delays: by tracking the op_flight_dep_dly file, we were able to determine
which flights suffered anomalies. This analysis was behind a crucial discovery by reveling that a
flight might had more than one delay associated.

• Delay Types and Resources: in order to assist the manual delay code classification (appendix C),
this stage aimed at gather unique delay type/resource pairs as well as the number of their occurrence.

• Crew Roster Matching: from the op_crew_roster files, we examined the number of crew rosters
pre and post operations, detecting orphan rosters on both PHASEs.

• Delay Calculations: considering all the files, there were 3 ways of retrieve the flight departure delay,
in minutes. Verifying the consistency between different values was accounted for on this analysis.

• Time Difference Distribution: the time between real and scheduled departures was calculated for
each flight allowing us to understand the distribution of positive or negative (because some flights
leave ahead of time) time differences.

The incremental analysis discriminated above yielded not only an in-depth understanding of

the fields used in airline operational logging but also some awareness concerning missing or in-

consistent data. On chapter 4, Results and Analysis, some statistics collected after the data set used

in the research study will be unveiled, evidencing the relevance of this stage.

Exposing the implementation behind each item of our PHASE comparison is beyond the scope

of this study. Nevertheless, and at this point, it is noteworthy to mention the absence of true linkage

between tables, which revealed to be a moderate shortcoming on data analysis.

As explained on subsection 3.1.5, our post-operational data was spread by 3 files, while our

pre-operational data was spread by just 2. The difference lies on the op_flight_dep_dly file, which

contains the anomalies that motivated a late flight departure. For each set of files we had to figure

out a group of fields to reference each other rows. In few words, and considering the schedule

PHASE, we had to know which crew roster, on the op_crew_roster file, belonged to each flight,

on the op_flight file.
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After some testing we determined that to univocally identify a flight one would require four at-

tributes, FLT_NBR, FROM_AIRP_CD, SCHD_DEP_DATE and FLEG_STAT. Appendix D con-

tains the description of the columns but further explanation should be supplied regarding the last

one. FLEG_STAT registers the number of failed take offs. At the beginning, every flight is as-

signed “S”, but if there is a problem after departure that forces the aircraft to go back to the origin

airport, the database record is duplicated and the FLEG_STAT field is set to “1” on the new row.

Back to flight ID, we noted that in most cases two or more flights departing from the same air-

port on the same day get different numbers. This logic would made FLT_DATE, FROM_AIRP_CD,

SCHD_DEP_DATE and FLEG_STAT enough to identify a flight. Unfortunately, some cases fell

out of this rule and we were forced to use SCHD_DEP_DATE instead of FLT_DATE. And this

is where the problem began, since SCHD_DEP_DATE cannot be found on delay and crew roster

files.

Further file inspection, showed us that this problem could be alleviated by tracking DATE_TIME

and/or STRT_DATE of the op_flight_dep_dly and op_crew_roster files, respectively. The former

indicates the date and time of delay registration, while the latter points out the crew member start

of activity. Despite this fact, those attributes also proved to be very inaccurate and given the small

percentage of affected flights, less than 0.1%, we preferred to use the FLT_DATE as foreign key.

To enlighten the aforementioned problem, table 3.14 shows two flight records suffering from

referential deficiency.

Table 3.14: The operational database foreign key problem (attribute description on appendix D).

flights (op_flight)
FLT_DATE FLT_NBR FROM_AIRP_CD FLEG_STAT SCHD_DEP_DATE

15/02/2010 114 OPO S 15/02/2010 06:45
15/02/2010 114 OPO S 15/02/2010 14:15

delays (op_flight_dep_dly)

FLT_DATE FLT_NBR FROM_AIRP_CD FLEG_STAT SCHD_DEP_DATE
DATE_TIME MINS

15/02/2010 114 OPO S 15/02/2010 15:30 45

crew roster (op_crew_roster)

FLT_DATE FLT_NBR FROM_AIRP_CD FLEG_STAT SCHD_DEP_DATE
STRT_DATE EMPL_NBR

15/02/2010 114 OPO S 15/02/2010 12:15 65290.3255

According to table 3.14 there are two flights 114 from Porto on the 15th June 2010, so it is

impossible to distinguish them by FLT_DATE. Using the SCHD_DEP_DATE instead makes it

possible to uniquely identify each other. But, now we want to know which flight suffered the

45 minutes delay on the op_flight_dep_dly file. That is something impossible to state for sure,

because the DATE_TIME field is manually inserted into the database, making the gap between

scheduled departure plus delay and time of registration impossible to estimate. In this case, if we

consider the 06:45 flight it took 8 hours for the airline personnel to register the delay; assuming
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the second flight, just 30 minutes. The likelihood of the delay corresponding to the 14:15 flight is

well greater than the 06:45 flight, but not with complete certainty. Regarding the crew roster, the

linkage is less dubious. If the employee 65290.3255 will start his activity at 12:15, he would not

be assigned to a flight that had already departed, so he is related with the 14:15 flight.

Now that some referential constraints between files were exposed and workarounds were sug-

gested, it is time to return to level 3 expected outcomes, namely the “ad hoc reports”. This last

level 3 feature intends to draw a big picture over the reasoning processes carried out by Aircraft

and Crew Specialists (refer to section 3.1).

For the purpose of accomplish this goal, we needed to compare each PHASE concerning

aircraft and crew rosters. An excerpt of such comparison report is displayed in table 3.15 and the

some points worth consideration are described next.

Table 3.15: Excerpt of a PHASE comparison ad hoc report. ac and cm abbreviations found on the
solution column stand for aircraft and crew member respectively.

PHASE 1|5|10 PHASES 2|6|11

fid pre
aircraft pre crew tap

code
iata
code

dly1
(mins)

dly2
(mins)

dly3
(mins)

post
aircraft post crew solution

...
(1) CSTOL

27423.3|CAB
27626.1|OPT
27941.4|CAB

858
951
1032

93
35
9

41
6

25
72 72 CSTOL

23250.4|CAB
27626.1|OPT
27941.4|CAB

cm replaced

...
(2) CSTOO 9 9 CSTOO

...
(3) CSTOJ

18079.4|CCB
19823.4|CPT
27908.3|OPT

1004 68 8 7 7 CSTOJ
12793.6|CCB
19823.4|CPT
27628.7|OPT

cm replaced
(2x)

...
(4) CSTTS 1021 93 10 8 8 CSTTG ac replaced

...
(5) CSTTR

30236.4|CAB
30244.8|CAB
30309.9|CAB

1018 89 12 15 15 CSTTD
30236.4|CAB
30244.8|CAB
29466.0|CAB

ac replaced
cm replaced

...
(6) CSTNP

25060.5|CPT
28375.4|CAB
30540.9|OPT

-7 -7 CSTNP
25060.5|CPT
28375.4|CAB

cm missing

...
(7) CSTJE

18127.1|CCB
25849.1|CPT
28081.8|CAB
28277.2|OPT

949
1018
858

34
89
93

15
5
5

25 24 CSTJE

18127.1|CCB
25849.1|CPT
28081.8|CAB
28277.2|OPT

...
(8) CSTNM

24532.4|CPT
25099.3|CAB

836 85 5 5 5 CSTNM
24532.4|CPT
29599.8|CAB
30295.0|CAB

cm replaced
cm added

...
(9) CSTNN

20328.1|CCB
23103.5|CPT
28620.3|OPT

1018 89 5 0 0 CSTNN
20328.1|CCB
23103.5|CPT
28620.3|OPT

Table 3.15 is an excerpt of an “ad hoc report” obtained with real data. It is purportedly long

in order to include some inconsistent cases, which in turn show how imprecise and inaccurate the

provided records are. Later, on the next subsection about data classification, we will show the

compromises we had to assume and the efforts made to allow a reasonable analysis.

Before presenting some notes about the cases illustrated on table 3.15, it matters to point out

that “fid” stands for flight ID, a string of characters comprising by FLT_NBR, FROM_AIRP_CD,
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SCHD_DEP_DATE and FLEG_STAT, but here replaced by a numbering scheme to keep the table

more compact an easier to reference. Next, the table shows nine columns retrieved or calculated

from the different PHASE files. The first two, related to PHASEs 1, 5 or 10, depict the scheduled

aircraft and crew. The next illustrate the post-operational scenario, indicating the anomaly codes

suffered by the flight, associated delays, and the aircraft/crew really used. The final column,

analyses the data on the row to determine the putative solution(s) taken by Operational Control

Centre Specialist.

Another brief word goes to the delays. Including three time intervals on the table might look

strange at first but they correspond to the three available ways of calculating the real delay of a

given flight. The first one, corresponds to the MINS database field of the op_flight_dep_dly file

and it is manually filled by a TAP collaborator; the second one is the difference between the actual

and scheduled departure date, or the ACTL_OFFBLK_DATE and SCHD_DEP_DATE fields, and

the latter is the automatically calculated field DLY_DEP_MIN of the op_flight file. Including the

three delays aimed at showing the rare but existing discrepancy between them, something that

although exquisite, was later used in our favor during reasoning algorithm generation.

Back to table 3.15, on the first row one may see that flight (1) suffered three distinct anomalies,

858, 951 and 1032, that motivated a crew member replacement. On the next subsection, we will

come back to this case as it is a specimen that imposed heavy constrains to our research.

Flight (2) represents data incompleteness, because it suffered a delay of 9 minutes but it has no

delay codes associated or even crew assigned. These cases were, unfortunately common, and they

were impossible to analyze. On the next chapter, some numbers regarding the relative amount of

missing information will also be presented.

The next row, (3) alerts for two aspects. First the discrepancy between delays; second the

deepness of our analysis. Considerations about the former were already made, the TAP collabora-

tor inputted a 8 minutes delay while TAP database and our calculations determined just 7 minutes.

Regarding the latter, our “ad hoc report” tracked multiple crew roster changes not only considering

the crew member number but also accounting for his rank.

On the 4th flight, (4), an aircraft change was detected after a 1021 anomaly that also caused a

moderate and divergent delay of 10/8 minutes. More notorious was the inability of track down any

crew changes given their absence, both on pre and post operational scenarios. Another unfortunate

case of missing data.

Flight (5) simply illustrates our algorithm capability of determine aircraft and crew member

alterations at the same time; while flight (6) points out an interesting fact. First and foremost, a

flight may depart ahead schedule, as the -7 minutes proves. Second, even though there was not

anomalies or delays reported, crew changes were detected, namely a crew member missed the

flight (and was not replaced).

The next row, (7) illustrates a scenario where there were 3 reported anomalies that produced

delays of 15, 5 and 5 minutes respectively but there were not any aircraft or crew changes. At this

point we are not concerned about justifying such behavior but if the anomalies were related with

adverse weather or restrictions on departure airport, there was nothing airline personnel could do.
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On flight (8), an anomaly translated by a TAP 836 delay code, caused not only a crew member

replacement but also a crew member addition. These cases assumed some prevalence uncovering

putatively incomplete crew roster assignments during the schedule phase.

Finally, row (9) translates a flight that suffered no delays but was signaled as having suffered a

1081 anomaly that caused no changes. The TAP collaborator putatively tried to overcome system

validation by inputting a delay of five minutes.

The paragraphs above and originating table 3.15 revealed the analysis made possible through

the provided TAP operational files and pointed out some shortcomings on that analysis. The next

subsection explains how the “ad hoc reports” were used to improve the decision making algorithms

of our simulations.

3.2.4 Data Classification and Reasoning Code Generation

Recalling section 3.1, we saw that on a real airline company the decision making agents, the Air-

craft and Crew Specialists, reason solely according to IATA or TAP delay codes. At least, that was

the only information made available by TAP. Since we will be simulating operational activities,

we may consider the reported delay codes as anomalies happened before decision making and try

to have Specialists behave as in reality, using the provided action probability tables.

Although the approach described in the last paragraph is perfectly valid from a simulation

perspective, where agents decide based on reasoning schemes provided by real-life counterparts,

in our study we wanted to go farther than that and research new decision making practices based

on additional parameters or existing reasoning algorithms.

Other motivation to apply supervised learning techniques was the impossibility of tracking

certain real resolution actions through the provided real data. For instance, looking into probability

tables 3.5 and 3.6 there are 6 actions associated to Aircraft Specialist and 10 actions that might

be chosen by the Crew Specialist. Accounting for the data on the real files, and the analysis

materialized by the “ad hoc reports” we are only capable of validate some sort of the actions,

namely “Change aircraft”, “Cancel Flight”, crew member changes and as a resort, “Delay Flight”.

Figure 3.6 hopes to clarify the trichotomy between Operational Control Centre actions, our

simulation reasoning algorithms and the possible real-life data validation.

First and foremost, and as the caption points out, the squares containing numbers and lower-

case letters in the diagram illustrated on figure 3.6 are closely related to the action taken by airline

Specialists when facing an anomaly during operations. An exception worthing notice is the ab-

sence of the “Propose aircraft change”, “Cancel flight” and “Accept delay” Crew Specialist actions

(lower-case letters), as they somehow overlap with the Aircraft Specialist ones.

The diagram is divided into three columns. The first tries to symbolize the reasoning processes

that lead to actions on reality and “simulation A”. Subsection 3.1.4 describes those decision making

practices that are based on action probabilities. On real-life, an anomaly is communicated to

Specialists and later, on the TAP operational databases is registered the delay code that describes

it. In an opposite direction, our “simulation A” will use those delay codes to become aware of

anomalies and reason about them.
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reality and
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simulation B
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?

validation

1
2
3
4
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6
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d
e
f
g
h
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cs

Figure 3.6: The real-life, simulated and validated reasoning trichotomy (numbers from 1 to 6
match the actions on table 3.5; letters from a to h correspond to actions on table 3.6; as and cs
stands for Aircraft Specialist and Crew Specialist).

The next section will be solely dedicated to detail our simulation internals, but after running

“simulation A”, we will get operational results translating the decisions carried out by our virtual

Specialists. That is where the column in the middle comes into play as it translates the solutions

calculated in the PHASE comparison “ad hoc report” illustrated in table 3.15.

The arrows in-between the first and second columns attempt to indicate which actions might

be validated after real operational data analysis. Trying to concretize, the next paragraph presents

a simplified example.

Let’s imagine that an aircraft would take much time to get ready for departure, an already

defined aircraft rotation problem. In reality, someone would notify the Aircraft Specialist, on our

“simulation A” a 1021 TAP delay code or a 93 IATA delay code would be raised (more details

later). According to our manual delay code classification (see appendix C) both codes fall into

the “ROT” category (see table 3.7). In reality the Aircraft Specialist would change the aircraft on

80% of the cases (see table 3.5) and since our simulation agent implements the same reasoning
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strategy, it would do the same. Consider they both acted that way, replacing the aircraft. Now,

let’s assume this case corresponded to the row (4) of our “ad hoc report” (table 3.15) where the

aircraft was replaced in reality. The decision of changing the aircraft at the simulation level was

validated by real-life data analysis. To a short extent, as we considered just one flight, this proves

the correctness of the reasoning algorithms implemented at the simulation. Performing this kind

of analysis for many flights may confirm or deny such observation.

Back to figure 3.6, this comparison between reasoning output and real data analysis is repre-

sented using the middle arrows and as it is possible to verify not all the actions validation is as

straightforward as the example above. Actually, the example on the prior paragraph fits on the

“Change aircraft” action, represented by “square 1”, and linked with a continuous line arrow to

the validation column. Unfortunately, the remaining validations are not as seamless, except the

“square h”, representing the “Proceed without crew” action, which, as we saw on the “ad hoc

report” is easily tracked.

“Squares 2” and “3” respects to “Reroute” and “Join Flights”. These cases are impossible to

discover from the analysis of the files provided by TAP, and thus are not even linked to validation

column. On chapter 4, where the simulation results will be exposed, these cases will be measured

as uncertainty.

“Delay flight”, or the case depicted by “square 4” is very interesting to analyze. We opted to

signal it with a dashed arrow because, while it is one of the most prominent decisions to surpass

an anomaly, it is very hard to track it when examining the real operational data supplied by TAP.

Delaying a flight is usually regarded as a fallback action to which Specialists resort when nothing

else is possible. Leasing an aircraft and canceling the flight are the other two and will be explained

next. The problem with validating a delay decision is because it assumes the role of cause and

consequence. The op_flight_dep_dly file from where we obtain the delay codes to identify the

disrupted flights, only lists the flights that actually suffered a delay. This causes difficulties in

simulating the operational decision of delaying a flight because that action is always implicit, even

if the Specialists never wanted it to be. For instance, a flight might had a mechanical problem,

so the Aircraft Manager decided to replace it. Fortunately airline personnel was able to prepare

the new aircraft on time, so it did not suffer any delay. Although there was an anomaly this flight

would not be registered on the op_flight_dep_dly file. Shortly, we will see how this implicit nature

of the delay, obliged us to assume some compromises when classifying the data.

The last dashed validation related to Aircraft Specialist (5 and 6) are concerned with “ACMI”

and “Cancel flight”. When looking into table 3.5 probabilities, one may notice that the later two

actions are used in less than 5% of anomaly occurrences. That is because leasing an aircraft to

other airlines/renting companies (ACMI) or canceling a flight is very expensive when compared

to other solution strategies. Along their low probability, it is not precise to determine “ACMI” or

flight cancelations from the TAP operational data. Having an orphan scheduled flight that is not

listed on the post-operational flights does not necessarily mean that the flight was cancelled. It

is the same logic of the absence of crew members on certain flights (see table 3.15). As we saw,

and just because a flight does not have an assigned crew, it obviously does not mean that the flight
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took place without pilots or cabin personnel. Crew members flew with the aircraft, the missing

ones are the records. Regarding the “ACMI”, is it easier to determine than cancelations, although

it requires an additional list of all the aircrafts operated by TAP without extra cost.

Now moving to the Crew Specialist actions, and as already discussed, they are much less

prevalent than the flight or aircraft actions previously described (refer to subsection 3.1.4). “Square

a” to “square g” translate the actions from “Use reserve at airport” to “Use crew on vacation” (see

table 3.6). Although there are 6 variants, in essence they all translate the same action, the absent

crew member is replaced by another one. Following this, we chose to represent the validation

arrow using a dashed line since it is possible, with some uncertainty, to validate the decision

making process behind such action. The “square h” was mentioned at the beginning, as being a

case, on par with “square a” that we can track down with absolute confidence.

Before explaining “simulation B”, it is clear that our reasoning validation strategy is far from

ideal when it comes to assess the empirical decision making processes exposed. Aiming at simu-

lating hundreds or even thousands of flights, we are not able to inquiry TAP personnel for action

validation, or try to manually analyze all the output produced. We must rely on what we have,

the database records and if we want our simulation to perform better, we should try to figure out

new reasoning algorithms. That is where classification is handy, as it provides some Artificial

Intelligence tools that may be used to teach our simulation to reason over the inputs.

“Simulation B” uses a different approach when it comes to decide upon an anomaly. The

general idea is using the supervised machine learning techniques explained on the State of the Art

(section 2.2) to generate decision trees that will replace the empirical probabilistic action tables

used on “simulation A”. Doing so, and as figure 3.6 illustrates, we will be able to classify the delay

codes, and other additional information according to our validation strategy. The question mark

on the top of the “simulation B” denotes such additional data. In the next chapter, Results and

Analysis, we will demonstrate how the use of the recorded delay as an hypothetical estimation of

the forthcoming delay, contributes to increase the reasoning accuracy. Actually, this is not new, as

the airline personnel accounts for delay estimation on their decision practices, they simply were

not able to determine or provide insights to the extent of such accounting.

With the purpose of classify the data at hands, we had to take our “ad hoc report”, and follow

the supervised machine learning process illustrated in figure 2.3. The first step of the process,

“Data collection”, was already concluded and its output was our informal “ad hoc report”. The

next step was “Data pre-processing”, so we had to define a set of formalisms to filter and prepare

the information analyzed on level 3 of our analytical infrastructure (see figure 3.5).

In order to clarify the set of formalisms, listing 3.1 depicts the contents of table 3.15 after the

classification preprocessing phase.

Listing 3.1: Ad hoc report classification preprocessing

(3),1004,68,8,7,7,cr

(5),1018,89,12,15,15,ac|cr

(8),836,85,5,5,5,ac

(9),1018,89,5,0,0,dl
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A first look into table 3.15, figure 3.5 and listing 3.1 allows us to clearly understand what

we wanted to achieve with such data conversion. With data classification, we intended to remove

the dubious dashed validation arrows and have straightforward and precise ways of verifying the

performance of simulation output. This way, we had no other options than target our approach

towards the analysis of the real operational data. Let’s describe the contents of listing 3.1.

Each row from the listing is related to a row from table 3.15. The numeric “fid” at the be-

ginning is for reference only. The formal reported produced after the “ad hoc report” follows the

comma-separated values syntax.

Although flight (1) had a crew member replaced, it did not show up in the preprocessing text.

It worths underline that the reason for this fact has to do with multiple anomalies associated with

just one flight. As we saw on subsection 3.1.5 about how TAP record its pre and post operational

activity, the minimum granularity between the same flights was one day. This means that we can

track the flight the day before and the day after operations. Having multiple anomalies, each with

its own associated delay, might cause different actions that lead to roster changes. For instance,

we know that flight (1) had three reported anomalies, namely 858, 951 and 1032 if considering

the TAP delay codes, and we also know that a crew member was replaced. What we do not know

is which anomaly motivated such crew change. This way, in order to avoid harming the correct

and precise classification of single anomalies, these rows were subtracted to the classification and

simulation process. Later, on chapter 4 the impact of these subtraction on our research study will

be determined.

Moving to the 2nd flight of table 3.15, it easy to understand its absence from listing 3.1. De-

spite its nine minutes delay, no associated delay code was filled so it is unsuitable for classification.

Flight (3) allows us to start to present our formalism regarding solution encoding, as it appears

on listing 3.1. As one may observe, the delay codes 1004 and 68 and the delays, 8, 7, 7, were

directly migrated from the “ad hoc report” to our preprocessing report. The difference lies in

the last value cr. In order to prepare data for algorithmic classification, we had to encode the

different solutions into symbols. Looking into figure 3.6 it is clear our compromise in grouping

all the crew changes into one class, designated by “A”. This simplification also translate the lower

relevance of the Crew Specialist on the empirical actions observation. At this point, it worths

momentarily suspend our listing 3.1 exposition to introduce table 3.16 containing our proposed

mapping between solutions and their symbolic representation.

Table 3.16: Ad hoc report solution symbolic representation (ac and cm abbreviations found on the
solution column stand for aircraft and crew member respectively).

solution symbol
cm replaced

crcm missing
ac replaced ac
ac replaced
cm replaced or missing ac|cr

fallback dl
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Table 3.16 will be revisited as we explain listing 3.1. But at this moment, it worths emphasizing

that the number of changes was disregarded during the conversion between solutions and symbolic

character strings. Flight (3) illustrates this case. There were two crew members replaced but the

formal representation only includes the label cr.

Even though flight (4) has an associated anomaly it was ignored during the preprocessing

phase. The reason is again data incompleteness. As it is possible to observe, no crews were

assigned to the flight and therefore we are not able to determine if the delay code usually motivates

crew changes. Following this, we preferred to ignore rows with missing fields in order to prevent

later corruption on the learning process.

The 5th flight meets all the conditions to be accepted for classification. All the database fields

are present, it has a reported anomaly that caused changes on both aircraft and crew. This way,

and according to table 3.16 it would be represented with the ac|cr symbol, what is reflected in

listing 3.1.

Flights (6) and (7) do not appear on the formal report due to reasons already pointed out. The

former lacks an anomaly, while on the other hand, the latter has multiple anomalies.

The 8th row of table 3.16 presents a special case worthing attention. While at first it would

deserve the ac|cr it was solely labelled with ac. The reason for this already deserved a brief

mention, when we figured out that crew member addition was not listed as an action taken by

the Crew Specialist. This way, when a crew member was added to the post-operational roster, it

regarded as incomplete scheduling and thus, not considered at this conversion stage.

Finally, the last row, depicts the fallback solution on table 3.16. Some paragraphs ago, we

underlined the “Delay flight” action as being a last resort to where the Specialists recur when

nothing else was possible. We followed the same logic here. Flight (9) had an anomaly reported,

some precise delays set, but no changes on rosters. On this cases, we considered that the Specialist

simply decided to delay the flight, and accordingly we mark it with the dl symbol.

At this moment is important to recall that the approach used to analyze and encode the “ad

hoc report” produced in level 3 of our analytical infrastructure is taking place at level 4, which in

turn is dedicated to operational data classification and decision tree generation. As we stated at

the beginning, all the methodology explained on the previous paragraphs correspond to the “Data

pre-processing” stage of supervised learning process, figure 3.4.

The next step on the classification process is to select a set of features to classify our solutions.

This simply implies going to our listing 3.1 and specify which features (tap code, iata code, delay1,

delay2 and/or delay2) will be used to categorize the solutions. Actually, as unveiled in the State

of the Art, our research study will make use of the WEKA data mining tool, making it seamless to

classify our data according to just a subset of the features.

In the next chapter, Results and Analysis, we will perform some tests using different features,

so for now it remains explaining how the WEKA libraries were used and showing a putative

outcome of our classification.

Simply put, after having a structure of attributes and classes identical of our formal report,

listing 3.1, it is straightforward to use the decision tree generation algorithms ship with the WEKA
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tool. The only thing we need is to add an header to the text presented on listing 3.1 precisely

indicating the name and type of the attributes and their symbols list. Since this step is more

concerned with WEKA internal, it will not be extensively discussed here.

WEKA tool provides a graphical interface to select the attributes to classify and choose from

different decision tree generation algorithms. After classifying the inputted data it returns a textual

representation of a decision tree among several statistics. The WEKA tool also performs decision

tree validation according to user defined rules. Again, we will defer the exhibition of different

algorithm usage and validation statistics to the next chapter.

In order to demonstrate how the obtained decision tree fits in our decision-making improve-

ment and proceed to the next analytical infrastructure level, dedicated to reasoning code genera-

tion, listing 3.2 shows an excerpt of a decision tree obtained with C4.5 classification algorithm.

It is convenient to underline that the tree bellow was not produced solely after the data on

listing 3.1 as it was insufficient to produce significative results. It corresponds to an excerpt of the

classification of more than three hundred flights, that used the tapcode and delay1 features. To be

more comprehensive, only the tap codes branches that match listing 3.1 code were included.

Listing 3.2: Decision tree obtained with C4.5 algoritm

tapcode = 836

| delay1 <= 7

| | delay1 <= 5: dl

| | delay1 > 5: cr

| delay1 > 7

| | delay1 <= 9: ac

| | delay1 > 9: cr

tapcode = 1004

| delay1 <= 8: cr

| delay1 > 8: ac|cr

tapcode = 1018

| delay1 <= 6: dl

| delay1 > 6

| | delay1 <= 11: cr

| | delay1 > 11: ac|cr

Aiming at providing an example of decision tree improvement, let’s cross the data on listing 3.1

with the decision tree above. At first we have a 1004 anomaly with an estimated delay of 8 minutes.

According to our decision tree this will cause our Specialists to change the crew. The next row

shows a 1018 anomaly with 12 minutes delay, which is classified as ac|cr, that is changes of both

aircraft and crew. The flight (3) suffered a 836 anomaly and a 5 minutes delay, which translates

into a “Delay flight” action. Last but not least, the 4th flight has a 1018 reported anomaly next to

a 5 minutes delay, which corresponds to dl. Summing up the above classifications we have cr,

ac|cr, dl and dl. Matching with the real solutions representation, cr, ac|cr, ac and dl, we

have a 75% success, putatively higher than the probability-based reasoning supplied by TAP.
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To conclude this subsection it is important to mention that level 5 of the analytical infrastruc-

ture, figure 3.5, provides support tools that convert WEKA generated decision trees, such as the

one depicted on listing 3.2, to Java code. This code is later embedded into the reasoning modules

of our simulation, allowing for interchangeable decision making strategies.

The next section will be solely dedicated to expose the internals of the simulation itself. Instead

of extensibly describe the code implementation behind the organizational structure modeling, we

preferred to present the most scientific features of Brahms, the simulation engine used, and how

they articulate with the TAP operational workflows. A brief reference goes to the limitations of

Brahms in terms of execution and visualization, and how they were overcome through software

engineering solutions.

3.3 Organizational Structure Performance Assessment

The analytical infrastructure detailed on the previous section is useful not only to understand the

limitations of the empirical airline reasoning processes but also to develop new decision making

methodologies to be embedded on our simulation. Although the reasoning accuracy was object of

scrutiny, the text did not mention how the other side of our research study, organizational structure

performance, will be assessed.

This section intends to suppress the lack of information regarding the organizational structure

simulation by presenting the main features of Brahms, the modeling and simulating tool that in-

troduces a new human-centered computing paradigm. In order to accomplish this, we will first

draw a big picture of the simulation system as a whole justifying the use of certain technologies

and pointing out additional contributions to the communities behind those technologies. Next, we

will explain how Brahms greatly improved the experience of modeling the workflows on TAP (ap-

pendix A). Finally, a subsection will also be dedicated to expose some aspects of a visualization

module developed to allow a better understanding of the concepts being simulated.

3.3.1 Background and Overall Simulation Architecture

As referred during introduction and incrementally uncovered along the text, the main goal of this

research study was to simulate the operational control on a real airline company. Obviously, simply

creating a model of such reality and mimic its intrinsic features would be of arguable interest so we

aimed at, thereafter, propose changes that would lead to more efficient activities and workflows.

The empirical observations listed on section 3.1, made us aware of the reality in TAP, our case

study airline company. We soon noticed that we would be treating a case that falls into the popular

business process reengineering paradigm.

Following this, we had to adopt a simulation tool that would simplify the modeling of the

concepts related to our airline company while at the same time featured some business process

reengineering capabilities. Meeting this requirements was Brahms the Business Redesign Agent-

Based Holistic Modeling System.
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Although some theoretical information was already presented about Brahms on the State of

the Art, it worths point out some technical information about this system for the purpose of clarify

certain options or side activities carried out along this study.

First and foremost, Brahms is a Multi-Agent System featuring the BDI, Beliefs, Desires, Inten-

tions, architecture 2. While these characteristics are not enough to distinguish it from many other

simulation engines, Brahms is currently being developed by the Brahms Team at NASA Ames Re-

search Center in collaboration with the Carnegie Mellon University and it have been successfully

used in NASA’s Mission Control, to automate human tasks for the International Space Station. Its

source code is proprietary but NASA freely distributes it for research purposes only.

At this point, we simply thought that if Brahms was enough for NASA it would certainly suit

our needs. After further inspecting the features provided by Brahms, we noticed that it was a much

more advanced tool than other Multi-Agent Systems that we knew about. It sports its own agent-

oriented programming language, adds up some human-centered computing concepts and has its

own production rules system.

The characteristics above ought to require an additional effort in implementing our airline

company but we decided to take the challenge. Another feature lacking in Brahms is the ability

to visualize the concepts being simulated. While this functionality was not required to get a

quantitative comparison of different organizational structures, it was regarded as an educational

and clarifying way of understanding the operations carried out in an airline company.

Being mostly characterized as an academia or scientific tool, Brahms lacks a wide user com-

munity, where one may get models, code examples or help. Despite of that, it is thoroughly

documented and their creators lead a discussion group to assist early-adopters.

As Brahms runs in a closed virtual machine, the first contact with the simulator community

intended to inquiry about the possibilities of developing a visualization of a running simulation.

While the primary approach would be to interpret a set of output files post-simulation, Brahms

features a Java API (JAPI) allowing for environment expansion and control.

Interacting with JAPI would be roughly the same as interacting with a java application there-

fore we decided that our visualization would be built-in in the analytical infrastructure, described

on section 3.2.1, and use the latest advancements in browser technology.

Figure 3.7 depicts the components and architecture beneath the simulation portion of our study.

The first noticeable aspect is the mention to the analytical infrastructure. Actually, and recalling

figure 3.5, the BROWSER component on the diagram above matches the 6th step in the analytical

infrastructure articulation process, mainly the simulation control. The 6th step is responsible to

trigger simulation execution, which in turn reads the cleaned operational files and produces a set

of simulated files, flighting activity and operation logs, used in later analysis.

While this section is not meant to be too technical, other aspects of figure 3.7 require fur-

ther inspection. Starting from the beginning, the human user has the ability to interact with the

analytical infrastructure through a browser. Given the set of technologies used, it is important to

emphasize that at the time of writing, the only browser that supports our infrastructure was Google

2Software model that implements the main aspects of Michael Bratman’s theory of human practical reasoning.
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Figure 3.7: Overall simulation architecture and components.

Chrome. Nevertheless, with the fast technological evolution, it is likely in the near future other

major browsers start to implement the technical innovations employed by our simulations.

Along with other analytical infrastructure features, besides visualizing the “ad hoc reports”

and other analysis, the user may configure certain simulation parameters, as the time window, the

number of executions, select the different reasoning modules available, among other. Concerning

the outputs, simulations produce reports that are not directly accessible to the user. Instead, level

7 of the analytical infrastructure (see figure 3.5) provides features to read the reports, statistically

aggregate the data and display easy manageable charts. As a side note, those charts use the Google

Visualization API, making them dynamic and recalculated every time a simulation runs or new

configurations are requested.

Moving down in figure 3.7, the browser portion of the simulation architecture contains the

visualization module. It is mainly composed of two interwoven parts: the “javascript engine” and

“processing”. The former handles all the communications with the “websockets server”, discussed

soon, decoding the incoming messages and controlling “processing” animations.

Processing is widely used in the scientific and academic field given its ability to create power-

ful representations of large sets of data. While the original Processing is based and to be used with

the Java programming language, considering our browser requirements we had to use a javascript

port of the language.

The BROWSER component also allows for simulation control, that is, starting, pausing and

stop the simulation. The visualization module will be described on subsection 3.3.3, so at this
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point it just matters to understand we are in presence of a distributed infrastructure where messages

come in, go out and an animation of the simulated theatre is displayed in-between.

The “websockets server” uses NETTY, a Java non-blocking I/O socket framework, to imple-

ment the recently introduced websockets protocol as part of the HTML5 specification. The use

of such technology is solely implemented on Google Chrome, thus the reason of our simulations

only work with this browser.

The NETTY component is too much technical to deserve further inspection. As any server, it

establishes TCP connections with remote clients and then exchanges messages with the Java API

of Brahms. Besides a message gateway, it shares some similarities with the “javascript engine” as

it decodes and encodes the messages exchanged with the simulation core.

The next subsection, 3.3.2, will be solely concerned the next component, BRAHMS. As we

referred, the selected simulation engine to implement our organizational structures features an

agent-environment, “core” and a Java API, “JAPI”. The former is more concerned with agent,

geography, activities and other real entities modeling; the latter, is more technical, being used for

handling java objects or other services.

To conclude, it worths pointing out an important contribution to the Brahms community made

along the research study herein documented. Given the need to explore Brahms to its full extent,

and attending to scarcity of examples over the internet, we decided to publish a set of tutorials

in the Brahms discussion group. This initiative was warmly welcomed by Brahms creators and a

transcript of such articles may be found on appendix E.

3.3.2 The Simulation Module

This section is focused on the BRAHMS component of the simulation architecture (figure 3.7).

We will start by describing the “core”, that is how we used Brahms formalisms and programming

language to implement the empirical observation exposed on section 3.1. As stated, the “JAPI”

side is more technical, therefore we will not delve deep into it, solely pointing its use as mean to

solve some Brahms shortcomings.

Recalling section 2.3.2 of the State of the Art, Brahms supplies a number of human-centered

structural formalisms to help modeling real entities. Thus, one of the first steps in modeling a

scenario with Brahms is to make a correspondence between real and artificial concepts. Table 3.17,

intends to clarify our approach concerning such mapping.

Besides presenting a number of associations, table 3.17 also hopes to illustrate the expressive-

ness offered by the Brahms modeling language. Although comprehensive it just contains a subset

of Brahms concepts.

The first column respects to the reality, the next two contain the name of virtual entities im-

plemented on our simulations. Starting by “Facilities and Locations”, Brahms is very complete

in what concerns geography modeling. There are areas and areadefs and we may not have the

former without the latter, that is, first the area must be defined, we must specify what it is then we

may name it. Looking at the “ACT” example, we first had to create a generic “ACT” extending the

Building definition shipped with Brahms and then we were able to define “LisbonAirportACT” as
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Table 3.17: Concept mapping between reality and Brahms formalisms (caption in table 3.1).

Reality Brahms
Facilities and Locations area areadef

ACT LisbonAirportACT ACT (Builing)
AP LisbonAirportAP AP (BaseAreaDef)
CI LisbonAirportCI CI (Building)

HCC LisbonAirportHCC HCC (Building)
LIS LisbonAirport Airport (BaseAreaDef)

OCC TapOCC OCC (Building)
Computerized Systems object location

AMS HCC_AMS LisbonAirportHCC
OCC_AMS TapOCC

CTS OCC_CTS TapOCC
DOV ACT_DOV LisbonAirportACT
(AS) Lisbon_AS (World)

Human Collaborators agents groups
as AircraftSpecialist OCCSpecialists

cms CrewMember CrewMembers
cs CrewSpecialist OCCSpecialists
fd FlightDispatcher TriggeringAgents
gs GroundSupervisor GroundPersonnel, TriggeringAgents
hs HccSupervisor ApprovingAgents

mss MaintenanceMan GroundPersonnel, TriggeringAgents
os OccSupervisor ApprovingAgents
pss PassengerMan TriggeringAgents
ss StationSupervisor TriggeringAgents

an instance of it. In the case of “AP”, Aircraft Parking, as it is not a Building, we had to choose

the BaseAreaDef as parent.

Our naming conventions reveal another Brahms feature not foreseeable in the table, the part

of construct. Listing 3.3 shows an excerpt of the part of and path formalisms.

Listing 3.3: Excerpt of Brahms area and path definitions

area LisbonAirportAP instanceof AP partof LisbonAirport { }

path LisAP_to_from_LisHCC {

area1: LisbonAirportAP;

area2: LisbonAirportHCC;

distance: 600;

}

As it is clear, besides specifying what the area is, we may also specify the relation between

areas (part of ). Figure 3.1, shows the Aircraft Parking inside the Lisbon Airport and Brahms

allows such modeling. Another very convenient feature is the path. It defines a relationship

between two areas not in terms of composition but geographical dispersion. Again, something

very handy to set the distances (in seconds) between buildings or areas. According to table 3.4,

the distance, on average, between the Aircraft Parking and the Hub Control Centre is, by feet, 10
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minutes, so we must specify it as 600 seconds. As we will see later, if our agents use a vehicle,

and thus only spend 2 minutes, the 600 seconds time may be overwritten in the move activity.

Moving on to the next portion of table 3.17, it is about computerized systems. To model

inanimate things, Brahms offers the concept of object. Actually, some real world objects might be

modeled as agents because while they are physically inanimate, they may be used to reason over

facts and therefore help humans take decision, e.g., a computer. The notion of agent in Brahms

is a little narrower than other multi-agent systems because objects might also react and reason

as agents. Apart from the naming convention used for systems, which is irrelevant, another key

property is its location. In Brahms every object and agent might be given a location. Again,

according to figure 3.1 the airline systems were distributed across different locations.

Concerning the human collaborators, and as stated above they were modeled as agents. As a

multi-agent system, this is no surprise. The innovative factor in Brahms is the existence of groups.

When implementing an agent, one may use the memberof keyword to set its group membership.

For instance, In table 3.17, the “AircraftSpecialist” and the “CrewSpecialist” are members of the

same group, the “OCCSpecialists”. This is a very powerful feature in Brahms because when need

to implement activities to be performed by the agents, we just need to implement them at the group

level, then the activities are automatically inherited.

Before introducing Brahms activities, we may not skip the “Lisbon_AS” object. The “AS”

systems stands for Airport Screen and during our interviews with airline personnel nobody noticed

its existence, thus the reason for appearing between parentheses. It is here to illustrate a simple

case where a modeler needed to use a workaround to simplify or make it computationally feasible

to mimic reality.

Recalling our empirical scenario, when some agents detected anomalies they would trigger

workflows. In table 3.17 they appear as members of the “TriggeringAgents” group. In reality, they

perceive anomalies in the course of their activities: verifying an aircraft, checking-in passengers,

loading cargo, and so on. But in our simulation we only had files with those anomalies. The closer

approach would be to put those agents all reading the file and checking if they were responsible to

trigger the next anomaly. While it would be correct to do that way, it would not be wiser because

it would put too much strain on IO operations to read the same file (or checking the same list),

over and over again.

Following this, we created the Airport Screen system that roughly mimics those screens found

at the airports with the next departures or flight delays. It reads the file and “tells” the agents about

upcoming anomalies. Now that hopefully the notion of auxiliary object was explained another

topics worths discussion: how does the Airport Screen tell the other agents?

Answering this question definitely proves that Brahms is a fairly different multi-agent system

founded on a totally new paradigm. As any other programming language, the Brahms agent-

oriented programming language also supports the primitive types, such as integers, characters,

etc. and the map collection. Unfortunately, it does not support lists, a major flaw that had to be

overcome through the use of JAPI, a workaround explained soon. While Brahms supports those

data types, agents and objects are unable to directly handle them. At this point is very important
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to underline that Brahms is human-centered and human beings do not act or reason upon integers,

they do that according facts or beliefs. This is where the BDI software model enters and somehow

distinguishes Brahms from the majority of multi-agent systems.

Now that facts and beliefs were introduced, when our Airport Screen detects an anomaly it

creates a fact or belief. As it is located in the “World”, a Brahms abstraction to everywhere, all the

agents or objects perceive such fact/belief. It is up to the modeler to implement the activities they

must perform, if any, when they detect the fact.

To better illustrate the human-centered paradigm of Brahms, listing 3.4 contains a purportedly

oversimplified code excerpt. It shows a routine that every minute checks the flight list using a Java

object (more about this later) and concludes a fact, triggerConcept, represented by the conceptid

string. In the TriggeringAgents when the triggerConcept fact matches the conceptCode the agent

does something.

Till now we presented an overview about how we modeled facilities, systems, and collabora-

tors. The next step is to summarily expose the Brahms formalisms concerned with activities.

Listing 3.4: The Brahms human-centered paradigm

// in Lisbon_AS...

repeat: true;

when(knownval(current.currMinute > current.cfMinute))

do {

string conceptid = as.checkFlights();

conclude((current.triggerConcept = conceptid), bc:0, fc:100);

}

// in TriggeringAgents group...

when(knownval(Lisbon_AS.triggerConcept = current.conceptCode))

do {

...

}

// in GroundSupervisor agent...

initial_facts:

(current.conceptCode = "gs");

Revisiting figure 3.2 we identified six main activities: communicate (by radio and phone), data

write, data read, reasoning and approve. To these six, let’s add a new one that will be used on our

future organizational structure proposals: move between locations.

Brahms supports multiple activities, one of them is the Java activity. The Java activity will not

be discussed into detail but it worths mention because it might be regarded as executing a Java

method, with inputs and multiple return values. As such, it virtually allows Brahms to achieve

anything possible with Java. For instance, the activity of checking flights on listing 3.4, which

required to read from a file, could have been implemented using a Java activity.

Other types of activities, more relevant to our study were the communicate and the move

activities. Concerning the former, what we knew was that certain airline operators, in presence of
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an anomaly, would pick the radio or phone and communicate such fact to a supervisor. We also

knew that such activity would consume an indefinite amount of time (refer back to table 3.3).

As in other systems, there are always a number of ways to implement the same scenario and

our simulation was no exception. There would be several ways of communicating a disrupted

flight but in our case we opted by the flight number. Ideally, it would have been better to pass a

Java object because, as we will see soon, our flights were implemented as such. The problem is

that agents in Brahms, as human counterparts, are solely capable of transmitting facts or beliefs,

usually represented through primitive data types.

Listing 3.5 intends to show how easily Brahms makes the transmission of facts and beliefs

across agents. The excerpt presented is, again, part of the TriggeringAgents group, therefore it

will be inherited by multiple agents, each one with its own recipient. To surpass this issue the

communicate activity showed resembles a function where the “with” field is variable.

Still on listing 3.5 the “about” field indicates the fact or belief to be sent, in this case the

disruptedFlightNumber. Once in possession of the fact or belief, the recipientAgent may act or

reason upon it. Last but not least, the activity duration. By asserting the “random” property as

true, we want Brahms to pick a value between the “min_duration” and the “max_duration”. Those

values were taken from table 3.3 of the real activities duration and simply converted to seconds.

Listing 3.5: The Brahms communicate activity

communicate reportDisruptedFlightByPhone(BaseGroup recipientAgent) {

with: recipientAgent;

about: send(current.disruptedFlightNumber);

random: true;

min_duration: 240;

max_duration: 480;

}

The way Brahms handles activity timing was of uttermost importance for our study. The other

activity types benefit from the same random approach and therefore the previously seen “distance”

in geography paths (see listing 3.3), may be overwritten using a move activity.

The move activity is not much different from the communicate activity, instead of a “with”

and “about” properties, it has a “location” property telling the agent where to go next. The motion

takes a certain amount of time that might be random, as in listing 3.5 or static, asserting “random”

as false and providing a “max_duration”.

Before moving to the JAPI component of the simulation architecture (refer back to figure 3.7),

a brief word goes to Brahms classes. Along with areas, objects, groups and agents, Brahms

also supports classes. The problem is, these classes are not as powerful as the Java counterparts.

Actually, they use the same Brahms agent-oriented programming language syntax, and the same

human-centered paradigm. Therefore and simply put, classes are to objects as groups are to agents.

We did not list the classes in table 3.17 as there is solely one, the TriggeringObjects that works in

a similar fashion than TriggeringAgents.
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Till now described our approach in what concerns the modeling of the most visible concepts

and activities using the Brahms proprietary agent-oriented language. Although we recognized how

expressive, distinct, innovative and somehow powerful it is, we must also underline its shallow

learning curve and, as we will see next, the lack of some widely used data types and support

functions.

As we stated previously, Brahms supports several primitive data types and maps. Unfortu-

nately, lists are not available and they are one of the key data structures to store our flights. Even

the flight object, which composed of several attributes, such as scheduled departure date or flight

number, would be much better abstracted by means of plain Java objects.

To address such issues Brahms provides two options. The latest alpha version allows for direct

Java objects manipulation. Older versions support already mentioned Java activities. In one case

or the other, there are some conventions one should respect but in the end is roughly like calling a

static java methods.

Without getting into much detail, in the implementation of our simulations, the Brahms JAPI

was used in several scenarios. First and foremost to store within ArrayLists our flights and delays

objects. Second to perform file input and output, operations not supported at the Brahms level.

Third to implement the Specialists reasoning activities. Last and fourth to stream the ongoing

events to the “websockets server”, see figure 3.7.

To conclude, it worths emphasizing that this section did not aim at thoroughly describe the

implementation of our simulation using Brahms. That would require a technical manual as long

as this report. The intention here was to present the human-centered nature of Brahms and how

that paradigms fit the reality being modeled.

3.3.3 The Visualization Module

As a side goal, the visualization module was not required to produce the answers to the main goals

of this research study. It simply receives some messages from the Brahms component, such as

which activity is being carried out by which agent, and displays an animation of the simulated

theatre. Therefore, the main purpose of the visualization was to provide an educational tool to

allow people to learn how the airline operations management work and to better understand the

proposed organizational changes.

As it was explained in subsection 3.3.1, the visualization module uses Processing.js to render

images and animations on the recently introduced HTML5 canvas. It is tightly connected to the

javascript that decodes the messages coming from the simulation.

The visualization is composed by two distinct areas, the operational area, very similar to fig-

ure 3.1 and an airport screen. The former its where the main action takes place, through arrows

we may observe the current workflow state. The latter provides visual hints about flight depar-

tures and state. The airport screen lists all the flights within a future time frame, if a flight suffers

an anomaly it is depicted in a different color and a workflow is triggered in the operational area.

Assuming it was the Ground Supervisor to detect the anomaly, and its next activity is to notify the
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HCC Supervisor, then an arrow is displayed between him and the HCC Supervisor with a visual

indicator of a radio communication.

Without being too much technical, the underlying architecture of the visualization had to

closely implement the concepts introduced by Brahms. This means we had to implement classes

to represent the agents, the objects, the area definitions and so on. While requiring an additional

effort, such approach also allows for a flexible display.

Given the need to represent several distinct organizational structure, the visualization had to

be dependent on the simulation. At the beginning, a list of the Brahms concepts is passed to

the visualization so they can be displayed. Other features are also present such as onMouseOver

actions that return further information about the concepts and so on.

To conclude, a final words goes to the amount of Processing code required to implement

solely one action or even Brahms concept. We must keep in mind that behind a Brahms concept

abstraction there is a complex and large code base, therefore the need to execute the Brahms

environment in a virtual machine. The problem is that we lack such constructions in Processing

and we are required to implement them by hand. Following this, to implement every activity or

concept is a lengthly process, the reason why the visualization will always be less expressive than

the simulation itself.
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Chapter 4

Results and Analysis

The practical concepts presented in the previous chapter aimed at deepen the knowledge over the

approaches taken along this research study. First, we started by understanding the organizational

structure at TAP, the more relevant business processes in airline operations and how TAP records

its operational information. After these empirical observations, it was also exposed the role of the

real operational data on decision making improvements at simulation level. This step counted on

supervised learning techniques from the Artificial Intelligence discipline to replace probabilistic

reasoning by the decision tree counterpart. Finally, the adoption of Brahms as a Multi-Agent mod-

eling and simulation system, was promoted as a way of boosting business process reengineering.

At this point, one should have an in-depth understanding about not only the goals of this

research study but also the methodologies used to accomplish them. With that in mind, this chapter

gathers the answers to the most prevalent questions raised in the beginning by presenting and

discussing the final results obtained. To do so, it is split into three sections. The first analyses

the experiments carried out, such as which data was used or which scenarios were tested. Next,

the conclusions about reasoning accuracy will be depicted by comparing the different reasoning

approaches outputs with real-life counterparts. Finally, the organizational structure performance

of TAP will be evaluated based on its time efficiency and workload balance.

4.1 Experiments

Throughout this document, the importance of using operational data from a real airline company

has been promoted not only as a source of increased confidence on the future results but also as

the origin of some troubles. Following this, the first subsection bellow will be dedicated to present

not the format of the input data, a subject covered on section 3.1.5, but the substance of simulation

inputs. That is, which flights were used to produced the results to be unveiled on the next sections.
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Next, the subsection 4.1.2, will briefly discuss some experiments with classification algorithms

or alternative features selection during the decision making improvement phase. It is mostly re-

garded with WEKA data mining tool settings and reports analysis.

Finally, and converging to the most relevant goal of the research study documented along this

text, some current operational workflows on TAP will be subject to minimal transformations that

will hopefully make the overall organizational structure score higher after a set of metrics that will

also be explained.

4.1.1 Simulation Input Data

As referred since the beginning, we knew in advance that our research study would require the

imitation of what takes place in an airline company. Following this, a simulation would be the

most scientific approach to our problem, so we took the challenge and adopted a targeted tool to

do so, as described in section 3.3.

After implementing a simulation, another point requiring debate was which data would be

used to feed the simulation. In other words, what would be the inputs after which our simulation

would generate the outputs. This topic was of uttermost importance because in an organizational

structure not all the business processes assume the same prevalence, there are workflows that take

place a higher number of times than others. Using random data would never be the same, and the

trust on the final results would be compromised.

Getting access to real airline operational information beyond the advertised by travel agencies

or online tickets shops would be impossible due to the data confidentiality featured by the majority

of companies, not only in the airline field. Fortunately, the collaboration with TAP, the major

portuguese commercial airline, allowed us to use real pre and post operational flights.

In what concerns data logging, format and analysis, sections 3.1.5, 3.2.2 and 3.2.3 already

provide in-depth information. What remains is characterizing the data used to generate the results,

that will be displayed shortly, of our research study.

As we saw, the logging mechanism purportedly implemented by TAP in order to fulfill our

requests, performed on a daily, weekly and monthly basis. This means that we would not be able

to request flights from day x to day y and data would always come in chunks of one day, week or

month. Merging chunks together would not be reasonable, as it would cause the repetition of some

flights, something far from desirable.

When considering the amount of data to be analyzed, we had to keep in mind other short-

comings such as the time of execution and memory consumption. For start, the Brahms Agent-

Environment that interprets the simulation code, works as Virtual Machine inside the Java Virtual

Machine, making computations slower by several order of magnitude. Another factor adding up to

the increasing execution time is the need of run the simulation several times to mitigate the effect

of the probabilistic nature of reasoning algorithms and Brahms activities time intervals.

Accounting for all the aspects above, and after some experimental evaluation of different data

set sizes, we decided to use the flights spanning across one week. We observed that one week

of regular airline operations, without personnel strikes or extraordinary adverse conditions, was
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enough to determine a proportional pattern in results with a satisfactory running time. Using more

records would increase the computational time, without noticeable variations in results, relatively

speaking.

To be more precise, our simulation was fed with the flights operated by TAP from 15th Febru-

ary 2010 to 21st February 2010, a whole seven days week of activity. As mentioned before, some

records had to be excluded according to different criteria. Figure 4.1 points out some interesting

intersections between files to illustrate data set reduction.

7317
flights

7282
flights

975
delays

22195
rows

22423
rows

PHASE05 PHASE06 PHASE05 PHASE06

op_flight op_crew_rosterop_flight
dep_dly

affecting
745

flights
only 1810
departed

1358 
assigned 

crews

1347
assigned 

crews
∩

1801
matching 

flights

556
with one 
anomaly

1331
matching 
rosters

∩

∩

500
affected 
flights

∩

389
final flights

1 2 3

4

2

5

6

Figure 4.1: Operational files intersection and data set reduction. Extended caption on table 4.1.

As it is immediate to observe and without going into much detail, our initial data set started

with a significative number of flights that was reduced by means of data clearance and intersection.

The process of file joining and flights reduction is signaled with black numbered dots that are

described on table 4.1, but by the end of the process we ended with 389 flights that triggered

workflows or decisions during our operational simulation.

In general terms, figure 4.1 starts with the three kinds of files provided by TAP divided

by the weekly phase identifiers (see section 3.1.5). “PHASE05” corresponds to pre operations,

“PHASE06” translates post operations. At the beginning we had a number of flights, delays and

crew member scheduling that started to be excluded after some criteria and the sets intersected
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with each other. Orphan entries were not accounted for as they could introduce errors or dis-

crepancies. In few words, we may say that we only cared about flights that really occurred, with

precise aircraft and crew rosters signaled, that suffered one and just one anomaly before departure.

Table 4.1 thoroughly explains the points of intersection and exclusion.

Table 4.1: Operational file intersection and exclusion points (cross-referenced with figure 4.1).

1

For some indefinite reason, from the 7282 flights listed on the post-
operational file, only 1810 had the ACTL_OFFBLK_DATE field
(actual departure date) filled with meaningful dates, so we had to
exclude 5472 putative flights.

2
There were 975 delays reported on the op_flight_dep_dly file but,
as referred on section 3.2.3, some flights had more than one delay
reported. Those with just one anomaly totaled 556.

3

The crew roster files contained much unneeded rows containing, for
instance, crew member days off or vacations. Every crew roster
involves between 5 and 10 crew members so in the end we had 1347
and 1356 flights with crews assigned.

4
Intersecting the scheduled flights with those who really took place,
gave us 1801 flights. This means that there were 9 flights that we
could not analyze as we did not their scheduled aircraft or crew.

5
Crossing the flights with complete information with the disrupted
flights gave 500 flights. Unintentionally we discovered 56 delays in
non-scheduled flights.

6
Finally, and once again, intending to only process complete and con-
sistent records, we intersected the flights that suffered one anomaly
with the available crew rosters.

To conclude, two points worth mention. The first, less relevant, is concerned with simula-

tion feeding. Given the visualization module developed, and in order to provide and educational

perception about the operational control on airline companies, the simulation is really inputted

with the 1801 scheduled flights. Therefore, the flights that did not suffered anomalies, are only

displayed to the user and do not trigger any reasoning or workflow processes, not accounting for

statistics. Next, despite only 389 flights contributed to measure reasoning accuracy and work-

flow performance, this number is enough to produce trustful results in a timely manner. As stated,

experiments were made with a larger number of records and, in relative terms, results were similar.

4.1.2 Reasoning Algorithms and Classification Features

Recalling subsection 3.2.4 about data classification and reasoning code generation, we presented

an infrastructure geared towards producing input files for the WEKA data mining tool and convert

its outputs into Java code. Later, this Java code would be migrated to our simulation in order to

take decisions after the 389 disrupted flights mentioned in the previous section.

This side goal of this research study aimed at better mimic the decision processes currently

seen on TAP. As explained on section 3.1.4, our case study airline company provided probabilistic

tables with the actions take after a specific anomaly category.
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At this point, the first step of our research was to obtain the decision based on those probabilis-

tic tables. Then, we compared the solutions outputted by our simulation with the real life actions,

gathered during the operational data analysis stage (see section 3.2.3).

Following this, the reasoning accuracy results that will be presented shortly will be twofold.

First, the solutions obtained after the probabilistic tables provided. Second, the solutions based on

supervised learning techniques.

Concerning the first, there are two scenarios to consider based on TAP or IATA delay codes.

As mentioned early, we may use TAP or IATA delay codes as putative anomalies suffered by the

flights, and although some similarity, these sets of codes are different in specificity and number.

Another peculiar aspect related to the empirical probabilistic action is its randomness, therefore

we run the simulation 100 times trying to mitigate the effect of casual actions. It is noteworthy to

mention that considering the symbolic nature of the actions, the aggregate function used to extract

an action from the 100 was the maximum number of occurrences, instead of the average.

Now moving to the supervised learning techniques, as we saw on subsection 3.2.4, there were

five features to be used in the classification process: tapcode, iatacode, delay1, delay2 and delay3.

Eventually other features could have been calculated but we intended to keep the logic behind the

airline operations control. If on the empirical probabilistic action we solely used the tapcode or

the iatacode, during classification we made some experiments mixing one or two delays as if they

were operational delay estimations. For instance, assuming that a technician diagnoses a failure

on the air conditioning system of an aircraft, the deciding Specialists may ask him how long will

it take to fix the problem. This kind of delay estimation on advance is perfectly valid from an

operational perspective and adds value to the classification process.

Concerning the classification algorithms and despite the broad offer of the WEKA data mining

tool, we focused on the C4.5 and Random Forrest algorithms. The reason was the popularity of

the first and the good results obtained with the second. Here is important to point out that other

algorithms were briefly tested using the flexibility of WEKA, although their inferior or identical

performance prevented them to be included in our results. One must bear in mind that the goal

was to improve reasoning accuracy through the use of supervised learning techniques and not to

perform a comparative study across different classifiers.

Still on the supervised learning, it is desirable to mention that the results presented respects

to decision tree implementation and input at the simulation level. This means that we got the

WEKA formal description of the different decision trees, it was converted to Java code, merged

into the simulation and then results were obtained through the simulation. Albeit this approach,

some cross-validation statistics will be briefly discussed.

To conclude, a final word goes for the evaluation of the reasoning accuracy. For both scenar-

ios, empirical probabilities or decision trees, the process is the same. There is a list, similar to

listing 3.1, with the actual actions taken by the Operational Control Centre Specialists (last col-

umn). During each simulation run, an output file is produced following the same conventions (see

table 3.16). Thereafter, the analytical infrastructure described in the previous chapter has tools to

traverse both listings and return the number of matches between the real and simulated lists.
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4.1.3 Operational Workflow Transformations

Assessing the impact of the organizational structure on airline operations is the major goal of this

research study. As such, and recalling section 3.1, Airline Empirical Observation, we collected a

number of elements that allowed us to simulate a real airline company.

At the center of our simulation lies the operational workflows gathered on appendix A, they

represent the activities undertaken by airline personnel to carry out certain tasks. Other relevant

participants are the time required to complete those activities (see table 3.3) and the concepts,

human collaborators or automated systems, that trigger the aforementioned workflows.

Following this, the metric used to assess organizational structure performance was time. Actu-

ally, and as we will see shortly, time is enough to estimate other direct metrics such as collaborator

stress and well-being or indirect ones like personnel cost or phone bills. While the former were

analyzed, the latter were not. Again, we preferred to stay away from random values and therefore

calculating costs was impossible due to the lack of accurate data.

As we saw on the previous subsection, the reasoning accuracy study was mostly a compari-

son between empirical probabilistic actions and machine learning techniques counterparts. Here,

we follow a similar criteria. We will start by assessing the current performance of TAP’s opera-

tions control structure and thereafter we will evaluate three incremental transformations of the real

organizational structure.

Also in a similar fashion to reason accuracy, the empirical workflow scenario will be assessed

using TAP and IATA delay codes. In order to detach observations from simulation results, it

worths presenting at this point two diagrams comparing the distribution of workflows analysis per

simulation execution. As clarified on section 3.1.2 the workflows of appendix A are triggered by

airline employees or automated systems.

ss
140

other
249

Figure 4.2: Station Supervisor versus other concepts workflow distribution.

As we saw on chapter 3, the Station Supervisor differ itself from other concepts because it

triggered a specific operational workflow independently of the nature of the anomaly reported.

Figure A.4 depicts the workflow triggered by the Station Supervisor from a foreign base and

figure 4.2 above illustrates the number of such workflows in our simulation. As it is possible

to observe, the number of delays reported from airports other than Lisbon International Airport,

the home base, correspond to 56% of the anomalies reported. Although it is not a high number

given the amount of airports to where TAP flies, we must keep it in mind for later performance

assessment discussion.
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Excluding the anomalies triggered from foreign bases, solely concerned with Station Super-

visor, it now matters to draw a picture about the concepts responsible for reporting anomalies at

Lisbon International Airport. Figure 4.3 illustrates such distribution.
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Figure 4.3: Home base concept workflow distribution (TAP/IATA). Caption on table 3.1.

It is very important to emphasize that from now on, and in order to preserve the familiar short

notation, the diagrams comparing different concepts use the labeling on table 3.1. Therefore, the

higher number of workflows, 116 and 108, are triggered by the Flight Dispatcher, labeled with

“fd”.

Proving a consistent manual classification, the TAP and IATA distributions on figure 4.3 do

not differ substantially. Summing up the number of occurrences will give 249 anomalies which in

turn, summed with the 140 triggered by the Station Supervisor, totals for the final 389 anomalies

on figure 4.1.

Now that an overview about the anomaly distribution across concepts was provided, it remains

to explain the experiments carried out during our research. As stated, we propose three distinct

incremental and slightly different organizational structures. Along with the real operational work-

flows, the proposed ones are gathered at section A.2 of appendix A. The new sequence diagrams

are captioned with proposed (I), proposed (II) or proposed (III) depending on their nature.

Before explaining our proposals, a brief mention goes for new activities and symbols intro-

duced. Adding up to the actors and activities illustrated on figure 3.2 there is now a symbol to

represent a “move” activity and another for an Aircraft Movement System with mobile computing

support. Figure 4.4 presents the icons associated with the new entities.
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Figure 4.4: New operational workflow entities at TAP.

When proposing new organizational structure scenarios, we kept in mind their feasibility. We

did not want to force great performance improvements at the cost of affecting the successful con-

trol of operations. This way, we proceeded to small changes never related with operational inputs

or outputs, that is never altering the triggering or deciding entities. Taking this approach, and con-

sidering the set of TAP collaborators or computerized systems, our initial choice was to remove

the Hub Control Centre Supervisor from the operational theatre.

Looking for the current sequence diagrams on appendix A, it is possible to observe that the

HCC Supervisor usually plays as information distributor, only assuming a supervising position

when facing anomalies related to Passenger Services. Removing the HCC Supervisor required

three major changes in the sequence diagrams. First, the Ground Supervisor and Maintenance

Service that previously communicated with HCC Supervisor via radio were now required to move

to the Hub Control Centre in order to fill a form on the Aircraft Movement System. Second,

the decisions taken by Aircraft and Crew Specialist, previously returned by radio through the

HCC Supervisor, were now communicated by the OCC Supervisor via phone. Third, the decision

carried out by the HCC Supervisor after Passenger Services anomaly reporting was migrated to

the OCC Supervisor. All the above changes are clearly illustrated on figures A.9, A.10, A.11, A.12

and A.13 of appendix A.

At this point, it is desirable to mention that the new sequence diagrams on appendix A, only

translate the new business processes, therefore, the old TAP operational workflows where the HCC

Supervisor did not take part, remained unchanged and were not duplicated.

As we will see, our proposal (I) had a negative impact on TAP operational performance, so we

analyzed the results and proposed a second scenario with minor changes. Our proposal (II) departs

not from the current TAP organization structure but from our first proposal. We now suggest to add

intranet mobility support to the existing Aircraft Movement System, making it easily manageable

through a wireless smartphone or laptop computer inside the airport.

Figures A.14, A.15, A.16 and A.17 evidence or proposal (II). It is important to emphasize that

proposal (II) only introduces intranet wireless interactivity, thus only the Ground Supervisor and

the Maintenance Services benefit from in. These restrictions opens the door o proposal (III).

On our third proposal, the Aircraft Movement System is fully converted from a terminal with

intranet wireless to a internet-based system accessible from everywhere. The airline operators that

would benefit from the new AMS, were instructed to properly handle the system. These include

the already seen Ground Supervisor and Maintenance Services and now the Flight Dispatcher and

Station Supervisor. Figures A.18 and A.19 represent the new changes in operational workflows.
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To conclude, a brief word goes for the random nature the activity duration and consequently

the execution of the simulation 10 times to mitigate the appearance of extreme and casual results.

This number was enough because the inherent amount of anomalies, and thus workflows (see

figure 4.3) already balance the results obtained.

4.2 Simulated Decision Making Discussion

On subsection 4.1.2 we described the experiments carried out to obtain the results that will be

listed shortly. As referred, and in a similar fashion to what we will find in organizational struc-

ture assessment, there are two broad comparisons that could be made. The first respects to the

empirical and probabilistic decision making processes, based on historical statistics and unveiled

by TAP (refer to subsection 3.1.4). The second is related to the application of supervised learn-

ing techniques to the operational data sets supplied in order to extract reasoning algorithms (see

subsection 3.2.4).

Each of these sides has its variants. In the empirical, one may use the TAP or IATA delay

codes manually classified according to a set of TAP categories (refer to table 3.7); in the machine

learning process the variants may be obtained by changing the feature selection or using a different

classifier.

On section 3.2.3 we thoroughly presented an approach to compare the pre and post operational

data provided by TAP and extract the solutions proposed in real life. At this point, we emphasized

several inconsistencies in the data and alerted for the impossibility of inferring certain resolution

methodologies from the data set at hands (figure 3.6).

In order to better understand such problems and establish a control to group to compare against

our reasoning algorithm results, figure 4.5 illustrates the distribution of the real solutions.
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104
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95ac|cr

99

ac
91

Figure 4.5: Distribution of the real reasoning processes solutions. Caption on table 3.16.

As we conveyed on subsection 3.2.4, the data provided solely allowed us to determine crew

changes (“cr”), aircraft changes (“ac”), crew and aircraft changes (“ac|cr”) and flight delay (“dl”).

Coincidently, the real solutions found for the 389 disrupted flights that will be inputted into the rea-

soning algorithms, are almost evenly distributed with a maximum of 13 flights difference between

crew changes and aircraft changes.
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This list of flights and solutions behind the pie chart on figure 4.5, will be used to verify

our artificial solutions. Starting with the empirical reasoning algorithms, figure 4.6 displays the

solution distribution considering TAP or IATA delay codes.
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Figure 4.6: Distribution of the empirical reasoning processes solutions. Caption according to
table 3.16 and “rr” stands for re-routing.

The two most noticeable differences when comparing the empirical outputs with our control

distribution is the absence of the “ac|cr” solution and an unrecognized “rr” solution. The former

is related with the incomplete information provided by TAP. Recalling subsection 3.1.4, no details

were provided about the articulation between the decision making processes of Aircraft and Crew

Specialists and therefore we were unable to implement such relation in our algorithms. The later,

“rr”, which stands for re-routing seems to be a popular (according to TAP statistics) solution

employed by the Specialists but unfortunately it is untraceable from the provided operational data,

thus it is absent from figure 4.5.

Given the impossibility of tracking the re-routing operational action, we may associate an

uncertainty level to the outputs of the empirical reasoning algorithms. According to figure 4.6,

when using TAP delay codes there is a 16.5% uncertainty in the solution matching, and regarding

IATA delay codes this value raises for 19.5%. In few words, these numbers translate the amount

of anomalies that will be putatively solve through re-routing and therefore will not be able to be

validated.

Regarding the empirical decision making algorithms, the similarity with the real solutions

were around 19% if using TAP delay codes and 22% in the case of IATA delay codes. Despite

these low matching rates, we must keep in mind the associated uncertainty.

Starting from these considerably lower correspondence between reality and the empirical prob-

abilistic methods provided by TAP, we tried to use decision tree classifiers to improve the solution

matching. At this point, it is important to briefly justify our option for decisions trees. Unlike Neu-

ral Networks or Naive Bayes, decision trees are straightforward for humans to understand. Since

we were trying to improve the reasoning algorithms related to be simulated by human agents, it

would make sense to implement simple constructions. Other reason is related to the use of the

occurred delay as an estimated delay. This simple approach may also be explored to improve the
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real decision processes seen at a real operational control centre, being easily ported to the actual

human reasoning practices.

Considering the algorithms used, we started by solely focus our attention on the widely know

C4.5. Thereafter, and given the interface provided by WEKA to test other decision tree based

algorithms, we run other tests. A distinguishable performance was obtained by Random Forrest

so we decided to also include the results for this last algorithm.

Figure 4.7 shows the distribution of solutions using the C4.5 algorithm as classifier.
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Figure 4.7: Distribution of the C4.5 artificial reasoning processes solutions. Caption according to
table 3.16.

As expected, the re-routing, “rr”, action does not show up which translates an inexistent uncer-

tainty level. All the anomalies are solved using a decision possible to verify after the pre and post

operational data analysis. Ideally, such absence of uncertainty would be converted into a solution

matching increase between 16.5% and 19.5%, the uncertainties respecting to the re-routing action

calculated for the empirical probabilistic algorithms.

From the charts above it is also possible to infer the feature selection carried out when using

the C4.5 algorithm. In the first experiment, tapcode and delay1 were used, the second used iat-

acode and delay2, and the last included delay2 to the first experiment. In terms of distribution,

the first experiment is the one to translating a closer proximity with the real distribution (see fig-

ure 4.5). Other feature selections were explored, although we opted for simply present the most

representative ones.

Nevertheless the distribution, different algorithm and features selection output different match-

ings percentages. Table 4.2 depicts such reality.

Table 4.2: Comparative solutions matching between simulation and reality.

Empirical C4.5 Random Forrest

tapcode iatacode
tapcode
delay1

iatacode
delay2

tapcode
delay1
delay2

tapcode
delay1

tapcode
delay1
delay2

19%
(16.5%)

22%
(19.5%)

54% 46% 57% 73% 86%
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Table 4.2 is split into three parts. The first contains the percentage of matching solutions when

using the manually classified TAP and IATA delay codes on the empirical probabilistic actions

unveiled on subsection 3.1.4. These percentages were referred above and the small numbers in

parentheses respects to the uncertainty levels. The central part of table 4.2 is concerned with

the C4.5 classification using different features. As one may observe, although IATA codes have

outperformed TAP codes in the empirical scenario, this time it is the opposite. This fact will be

explained shortly so for now it matters to understand that with C4.5 we we able to increase the

matching solutions up to 57% using TAP codes and two delay estimates. It also matters to point

out that we carried out test with three delay estimates but no significant results were obtained and

therefore were suppressed. The third part of table 4.2 respects to the Random Forrest algorithm.

Generating widely branched trees, this algorithms was able to raise our solution matching till 86%.

One aspects are important to stress at this point, the numbers shown above correspond simula-

tion results and were obtained by taking the decision trees produced by the classifiers, generating

Java code and embedding such code in the Specialist agents. Therefore, the results above might

be regarded as validating the decision trees against the training set. While this seems a blurred

approach to assess the classification process, our aim was to improve the decision making prac-

tices within the simulation, that is, trying to reproduce the decision carried out in the real airline

as close as possible.

Adding to the above, if we were trying to build a Decision Support System to assist OCC

personnel reason over the arisen anomalies, then the decision tree validation process had to be

different. For instance, we had to use cross-validation as explained in subsection 2.2.1. Table 4.3

contains the decision tree cross-validation results.

Table 4.3: Cross-validation results for the decision trees used.

C4.5 Random Forrest

tapcode
delay1

iatacode
delay2

tapcode
delay1
delay2

tapcode
delay1

tapcode
delay1
delay2

25% 24% 27% 30% 32%

The cross-validation results are more even than our simulated results. Random Forrest main-

tains its leadership but for a lesser margin. If we were building a DSS, we were not able to assure

more than 32% of correct classification.

To conclude, the reason for the TAP codes outperform IATA counterparts is their higher num-

ber. As stated, the anomaly classification problem presents some shortcomings such as the lower

number of features and their similarity. Therefore the higher number of symbolic attributes (fea-

tures) the better as they increase the probability of matching different a class.
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4.3 Simulated Organizational Performance Discussion

After presenting the experiments carried out to determine organizational performance on subsec-

tion 4.1.3, it is time to display the aggregate results obtained after simulation execution.

As stated, to beginning our assessment we started to measure the overall time required for the

current TAP organizational structure to handle the 389 flights that suffered one anomaly within the

week considered in subsection 4.1.1. This preliminary control assessment was twofold. First we

used manually classified TAP delay codes to trigger the different workflows (see table C.2). Then

we also tested the IATA delay codes counterparts (table C.1).

It is very important to not confuse triggering concept classification with solution classifica-

tion. As one may see in appendix C the former relates to who detected the anomaly, the latter

is concerned with the resolution method. While manual classification of problems was improved

by using decision trees (refer back to the previous section), we would not be able to apply the

same approach to the concepts classification since TAP does not record such information on any

database.

Back to our performance assessment results, and before displaying some illustrative charts,

table 4.4 gathers the most relevant labels found on the future bar charts making it easier to interpret

the results.

Table 4.4: Column identifiers for operational performance results.

Human Collaborators
as Aircraft Specialist

cms Crew Members
cs Crew Specialist
fd Flight Dispatcher
gs Ground Supervisor
hs HCC Supervisor

mss Maintenance Services
os OCC Supervisor
pss Passenger Services
ss Station Supervisor

Activities
radio Communicate by radio
phone Communicate by phone
input Input data on system
read Read data from system
rson. Decide upon anomaly
appr. Approve solution
move Move between locations

Considering the current TAP organizational structure and the TAP delay code categorization,

the 389 anomalies required 283.29 hours to be addressed. Using the IATA delay codes, this time

slightly dropped to 282.47.

Before proceeding it worths elucidating how the values in bold were calculated. When an

anomaly is detected, that is, when our simulation reads a flight associated with a delay code, it
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gets the concept that in real-life detected the anomaly and starts a workflow. This workflow is

composed by a set of activities each one with a minimum and a maximum time to complete. As

mentioned in section 3.3, Brahms randomly assigns a duration to an activity and those durations

are store in a file. Later the analytical infrastructure reads the file and sums up all the activity

durations.

It matters to point out that, unlike collaborator stress, a metric that we will see next, the

summing of durations is exclusive between agents. For instance, let’s consider a communication

by phone, which always involves two agents. Considering that the phone call lasts for 3 minutes,

the overall organizational structure timing is incremented in 3 minutes. On the other hand, each

agents’ stress metric is also incremented in 3 minutes, contributing 6 minutes for the total stress.

On this context, stress might be understood as collaborator workload. It is a metric directly

obtained from the activities duration, but attending to the example presented on the previous para-

graph, with a distinct impact on the organizational structure.

Charts 4.8 and 4.9 show the collaborator stress and the summing of durations per activity

associated to the current TAP organizational structure. The only difference between them lies on

the manual delay code classification used to produce both statistics. The first used the proprietary

TAP delay codes, the second used the open and more generic IATA codes.
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Figure 4.8: Collaborator stress and activity durations (Real/TAP). Caption on table 4.4.

As one may observe, if there was not many differences in the overall organizational perfor-

mance, 283.29 of TAP against 282.47 of IATA, around 0.3% difference, the values between col-

laborator stress and activity duration are also roughly the same. But we should not see TAP and

IATA codes as performance competitors, the competition will start soon, with our proposals of

workflow changes.

Actually, and we underline this point, the charts above were solely included for two reasons.

First, to understand that even though there are huge difference between delay code sets, the manual
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Figure 4.9: Collaborator stress and activity durations (Real/IATA). Caption on table 4.4.

concept classification undertaken by us and later validated by airline company personnel is faithful

and trustful. While this seems pointless, it allows us to exclusively focus on a set of delay codes,

be it TAP or IATA ones. We are now aware that, neglecting slight variations caused by the random

nature of activity duration, drawing a chart for a set of codes is automatically valid for the other.

The other reason is to present a control experiment that will allow us compare the future workflow

transformations.

Since we are in presence of some data about each collaborator and aggregate activities, it is

interesting to analyze the different distributions. For instance, the longer stress columns corre-

spond to the Aircraft Specialist, OCC Supervisor and Crew Specialist. This really matches what

happens in reality since these agents were characterized as the deciding personnel, and they are

all located at the Operational Control Centre of TAP, a Decision Centre (see subsection 3.1.1).

Other interesting observation is the difference between the stress of Aircraft and Crew Specialists.

Throughout this text, we depicted the former as being more prevalent than the latter and looking

into figure 4.5 we saw that Aircraft Specialist takes part in around 40% more decision processes

that the Crew Specialist. Looking into the above charts, the stress levels between those actors

differ around 30%.

Concerning cumulative activity duration times, it worths mention the absence of moving activ-

ities, since the agents communicate through radio or phone and the current collaborator placement

suppresses the need to reach distant automated systems for form filling or information inputing.

Another interesting point is the low value of “Solution Approval” time reflecting the low relevance

of such activity, emphasized on subsection 3.1.3.

We are now ready to move into our first organizational structure transformation proposal. As

referred on subsection 4.1.3, we suggested the removal of the Hub Control Centre Supervisor and

after simulating the new workflows (see appendix A, section A.2) we obtained the chart 4.10.
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Figure 4.10: Collaborator stress and activity durations (Proposal I/TAP). Caption on table 4.4.

The two most noticeable difference between the real operational scenario and our proposal is

the absence of stress in the HCC Supervisor (“hs”) column and 4.40 hours of accumulated moving

activities. The reasons for these are simple. First, the HCC Supervisor was removed and therefore

does not produce work. Second, the Ground Supervisor and the Maintenance services had to start

moving into the Hub Control Centre in order to report the anomalies, an activity later carried out

by the “hs”. A brief note goes to the time consumed by moving activities. We based our estimation

on the table 3.4 with a vehicle usage of 50%.

Inline with the previous paragraph, the stress levels of the Ground Supervisor and Maintenance

Services increase 90% and 61% respectively. OCC Supervisor also suffered a 36% increase on his

workload because he now assumed other responsibilities, like communicating decisions to Ground

Personnel and approving passenger anomalies solutions.

In what concerns cumulative activity durations, the most noticeable change was the huge de-

crease of communications by radio, 66% and the even higher increase on phone transmissions,

68%. Obviously, these changes would have a negative impact on cost but, as previously explained,

our study did not covered such metric. There was also a slight increase in system inputting and

moderate decrease on data perception (read), 14%.

Finally, the overall performance of our proposal scored 293.24 hours, far worst than the current

TAP organizational structure. It is discussable that in terms of financial impact this solution would

have scored lower, given the absence of the salaries of HCC Supervisors. While this might be

truth, since we had no accurate data of such financial values we were not able to scrutinize those

hypothesis.

By analyzing the increments in terms of moving and communication activities we realized

that having a static computer terminal where data is inputted, besides technologically outdated

was preventing us from optimizing the time efficiency of TAP organizational structure. This way,
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in our proposal II we suggested to modify the Aircraft Movement System so it can be accessed

through mobile devices, such as smartphone or laptops, within the airport range.

After implementing such changes at the simulation level, chart 4.11 was obtained.
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Figure 4.11: Collaborator stress and activity durations (Proposal II/TAP). Caption on table 4.4.

At first it is desirable to recall that our proposal II is a transformation after our proposal I, we

did not go back to the current TAP organizational structure. Following this, the HCC Supervisor

is absent from chart 4.11. Another important consideration should be made regarding the new

“AMS” system. Since the system now features intranet wireless capabilities, it was considered

that only the Ground Personnel, “gs” and “mss”, have direct access to it.

Considerations made, when we compare proposal I with proposal II, the first noticeable dif-

ference is the reduction in the stress levels of Ground Supervisor, Maintenance Services and OCC

Supervisor, that is, those who were highly affected when we removed the HCC Supervisor on our

first proposal. The decrements in workloads represent, 46%, 48% and 18% respectively. It is also

very interesting to notice that proposal II stress levels are very close to those observed in the cur-

rent TAP organizational structure (see chart 4.8), the only exception is the OCC Supervisor, that

suffered a raise from 75.85 hours to 85.40 hours, a 13% increase.

Comparing the accumulated activity timing across proposals I and II, it is easy to perceive a

decrement in communication activities of around 47% on average. One may also notice the now

absent time consumed on moving activities but an increase on 25% on data reading from systems,

translating the now required attention to mobile devices. When comparing proposal II cumulative

values with the current TAP performance, we denote a massive decrease in radio communications

of around 90% and a lighter raise of 18% on the time spent on phone. Justifying the former is the

current heavy usage of radio communications inside the airport, that we suggest to be replaced by

direct access to the Aircraft Movement System.
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Simulating our second proposal according to TAP delay code categorization, the 389 anoma-

lies required 272.87 hours to be addressed, the best mark till now.

Given the good results obtained after a simple technological transformation and considering

that other agents could benefit from the same accessibility, mainly the Station Supervisors spread

across foreign bases that represent 56% of the total number of anomalies reported, in proposal III

we converted the intranet wireless support to an internet-based system remotely accessible from

everywhere.

Chart 4.12 was obtained after implementing an internet-based Aircraft Movement System at

the simulation level.
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Figure 4.12: Collaborator stress and activity durations (Proposal III/TAP). Caption on table 4.4.

The stress chart in figure 4.12 is noticeably different from the previous. Comparing with

Proposal II, the best overall performer till now, the OCC Supervisor stress dropped 67%, Flight

Dispatcher and Station Supervisors also suffered reductions of 24% and 42% respectively.

When analyzing the cumulative duration per activity, the reason behind such decreases is clear.

Communications by phone dropped an amazing 80% because now Flight Dispatcher and Station

Supervisor were able to input disruption directly in the AMS, surpassing the need to transmit them

by phone. On the other way around, the OCC Supervisor was no longer required to call to “fd”

and “ss” with the purpose of passing resolution instructions.

On the last chart, the read activity slightly increased 11% representing the necessity of agents

to pay attention to a screen in order become aware of decisions taken at the OCC. Anyway, ac-

cording to table 3.3, the time consumed in reading activities is inferior to a phone call, so it is a

beneficial tradeoff.

As one might imagine, our proposal III performed better than others, handling the 389 disrup-

tions in just 240.88 hours.
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To wrap all the above results, table 4.5 groups the overall performance scores as well as statis-

tical aggregations regarding collaborator stress. Cumulative activity duration was left outside as it

would hardly be taken into account for putative organizational structure selection. If, for instance,

we had costs associated with each activity, such as phone or internet tariffs or fuel pricing, that

would promote another metric, another deciding factor.

Table 4.5: Organizational structure performance assessment final results.

Real Proposal I Proposal II Proposal III
TAP IATA TAP TAP TAP

Overall Score 283.29 282.47 293.24 272.87 240.88

Collaborator
Stress

Avg 39 38 46 40 31
Min 2.86 3.0 2.95 2.97 2.84
Max 99.08 97.93 103.79 98.75 100.09

To conclude, one must keep in mind that it would be possible to assess a great number of

operational scenarios and introduce a number of metrics well beyond those presented on this sec-

tion. When looking into table 4.5, the airline company manager would be induced to introduce the

changes on our proposal III, but we are the first to recognize that we are not in presence of the full

scenario.

As we will see in the Conclusion, although our research study pioneered the application of

simulation techniques to the airline business, other variables had to be taken into account when

applying the measures proposed. And as any other simulation, our model may be gradually im-

proved in the future, always providing more accurate results and accounting for a higher number

of variable, but in the end it will always be a model of the reality.
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Chapter 5

Conclusion

This chapter aims to wrap up all the research work carried out. In a section named Goal Com-

pletion Assessment, it starts by crossing the initial objectives with the answers provided. Within

this section a comprehensive and systematic summary of the approaches followed as well as side

activity will also be presented. The next section, Future Work, departs from the work already

performed and suggests additions for forthcoming research journeys.

5.1 Goal Completion Assessment

The research project documented along this text was mainly motivated by the curiosity to under-

stand the extent at which operations management is influenced by the underlying organizational

structure.

Nowadays, with the increasing complexity of goods and services, organizational structures are

present almost everywhere. All the human achievements that required more than one person to

fulfill them, certainly required an organizational structure, even if nobody realized that.

The prevalence of progressively larger and complex organizational structures in a globalized

world, where organizations face ferocious competition, tight deadlines and hostile economic envi-

ronments, reveals the uttermost pertinence and applicability of the study at hands.

Trying to theoretically improve the putative efficiency of an operations management scenario

based on a hypothetical organizational structure would have been daunting. Therefore, we brought

the airline operational control centre case study. Despite not being the most familiar operational

theatre, it is allegedly in the core of the success of an airline company within the competitive

commercial aviation business.

The definition of a case study, while encouraging, was simply the beginning of our research

endeavor. The next step was to specify which would be our approach to the problem. Instead of

the traditional business process reengineering approach, focused solely in inputs and outputs, we

wanted to go further, we aimed at an holistic representation of the problem, that would take into
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account not only the assessment of the organizational structure outputs but also the evaluation of

its organic parts.

Following this, we envisioned our first goal as a simulation of a real airline organizational

structure. This simulation would comprise the most determinant entities in the success of airline

operations management, not only human beings but also computerized systems and other relevant

concepts. This simulation would mimic reality as closer as possible, would provide accurate data

and would be the foundation for future organizational structures transformations.

Several scientific and technical repositories were searched, looking for previous research works

around the same topic, at no avail. To the best of our knowledge we would be the first to simulate

the airline operational control centre organizational structure in order to study its impact in airline

operations management.

By the end of our research, we must acknowledge that this initial simulation effort was not

only succeeded but also surpassed. Surpassed in the sense that along our research, other goals

emerged and they were addressed as well.

The next paragraphs uncover our research work progress, some shortcomings faced and make

the bridge with the achieved results at every stage.

Up to this moment, still on the early stages of our research, we only had a case study company

and the holistic approach aspiration. The next steps were clear, select a tool to materialize our

simulation and understand the reality to be modeled.

Our experience told us that multi-agent systems were the best suited to implement a distributed

environment with multiple actions being carried out by multiple entities. From the wide range of

multi-agent systems, we chose Brahms as modeling and simulation tool. Now that we already

have a virtual airline organizational structure running, we must admit that Brahms was the riskiest

choice of all.

At the beginning, in favor of Brahms we only had the NASA assurance that it would suit our

holistic modeling desires. Brahms is being used in several NASA mission operations and the core

developers of the tool are NASA researchers themselves. On the other hand, we were not aware

of the challenges that had to be faced in the adoption of such tool. Brahms introduces an emergent

human-centered paradigm based on the BDI software model and features its own agent-oriented

programming language. If these two factors were not enough to require a lot more effort during the

airline modeling, Brahms community is almost inexistent, which justifies the absence of articles,

tutorials or code examples, besides the official documentation.

Neglecting the negative side of Brahms we accepted the challenge after the enthusiastic sup-

port offered by its creators. Attempting to promote their tool, they compromised themselves to

help us through the recently introduced discussion group. At this point, we also intended to give

back the knowledge they were willing to share. Therefore we decided to publish a set of tutorials

in the discussion group, detailing step by step some undocumented procedures required to handle

the tool.
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While this was not a primary goal, it should be understood as an informal contribution to a

scientific community and should be regarded as the fulfillment of a side objective. On appendix E

is listed the result of such goal.

Back to the early days of our research, we had to get familiar with the operational reality

within an airline company. Although we do not consider this stage as a goal, we must emphasize

its value. For start, and as an highly restricted business, there is not much published information

about this topic. While there are many software houses per country in the world, the same logic

does not apply to airline companies. Therefore, the software development methodologies are

widely know and scrutinized, the airline operations management are not. Also valuing the airline

empirical observation stage is its hidden complexity. The empirical knowledge was conveyed

trough interviews or direct inquires, which used informal textual or verbal language. An additional

effort was required to shape and formalize such amount of information, as in its essence there were

many flaws and imprecisions.

Still on the underlying observation stage of our simulation, we always advocated the use of

real operational data as a mean to achieve a more faithful and realistic simulation. Given the will-

ingness of the airline company to provide such data, on our side that would not be an obstacle

but another challenge. If at the beginning we were unfamiliar with airline operations manage-

ment, we were completely outsiders regarding airline operations database logging. With the help

of self-made data mining scripts, we started to figure out the information beyond hundreds of

unrecognized database column names.

The real pre and post operational data, the former containing the schedule airline activity and

the latter capturing what actually took place, led us to delve into the airline operational control

centre decision making processes. This must be underlined as the second major goal of our re-

search work, with an importance on par with the impact of the organizational structure primary

goal. Whilst we did not have a control group to test our organizational structures against with, the

post operational data would allow to track the reasoning accuracy of our simulation, the closer to

the reality the better. Starting from here, a new goal was established, improve the decision making

practices within our simulation.

From our empirical observation, including some historical probabilistic reasoning tables pro-

vided by the airline company, we built the first simulation of an airline organizational structure.

Then we fed the simulation with real 1801 scheduled flights that took place between 15th and

21st February 2010. We also inputted 389 anomalies suffered by those flights, such as aircraft

defects, crew shortages, late cargo loading, and so on. The goal was threefold: measure the time

taken by the overall organizational structure to handle such flight disruptions, evaluate the stress

suffered by each airline operator and compare the number of simulated disruption solution against

real life counterparts. The first two assessments would be grouped as organizational performance,

the latter was categorized as reasoning accuracy.

The first results were obtained. The current airline organizational structure took 289.29 hours

handle the 389 disrupted flights, and the 9 airline operators suffered, on average, 39 hours of

stress each one. Concerning reasoning accuracy, implementing the empirical probabilistic actions
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kindly provided by the airline company did not allow our simulation to match more than 21% of

the real solutions, with 18% of associated uncertainty.

Based on such scenario, our next goals were straightforward, improve those values. Recalling

our initial holistic simulation aspirations, in order to increase the current organizational perfor-

mance we made three incremental transformations at the simulation level, later named proposals.

In the first proposal we removed one airline operation foreseen as redundant; our second proposal

gave intranet wireless capabilities to an existing static computerized terminal; the third proposal

provided internet features to the last system.

Proposal I took 293.24 hours to handle the 389 disrupted flights and each operator suffered,

on average, 46 hours of stress time. We were proved wrong concerning the redundancy of the

subtracted operator since the overall organizational performance has degraded. Despite this fact

and because, empirically speaking, the role of such operator was questionable, the intranet wireless

capabilities given to the existing system aimed at remove certain moving activities introduced after

the operator subtraction.

Proposal II scored 272.87 hours to handle all the disruptions with an average stress of 40 hours

per operator. This represents a 4% overall optimization of the organizational structure but with a

penalty of 3% in operator stress. Although the marginally better performance, airline collaborator

would not definitely enjoy such structural transformations. Accounting for human well-being, our

last proposal keep its bet on technological expansion. The once intranet wireless capability of the

computerized system was replaced by a new internet-based system accessible from everywhere

and all the operators that would benefit from it were instructed about how to use the system.

Our third proposed took 240.88 hours to manage the 389 disrupted flights and each operator

suffered 31 hours of stress, on average. This means a up to 15% improvement in the overall dis-

ruption handling time and a up to 21% decrease in operator stress. Clearly the best organizational

structure from the three proposed.

It worths emphasize that the quantitative organizational structure comparison exposed on the

last paragraphs is the direct and unequivocal answer to the major goal of our research study, assess-

ing the impact of different organizational structure on operations management. Nevertheless, in

the middle of our research, the improvement of the reasoning accuracy within our organizational

structure was also set as goal, therefore some approaches and results remain unexplained.

To increase the 21% reasoning accuracy obtained with the empirical methods, and possessing

pre and post operational data, we relied on Artificial Intelligent supervised learning techniques

to classify the solutions carried out on an airline operational scenario. Our classes match the

solutions, such as changing aircraft or crew member, or delay the flight; while our features were

the anomalies codes and some delays motivated by the anomaly.

From the existing supervised learning classifiers we solely used decision tree based classifiers.

Other methodologies could have been used such as Naive Bayes or Neural Networks, in spite of

that we opted for decision tree given their simplicity and understandability. Actually, using the

delay as a feature that will participate in the reasoning process, might resemble the a real airline

scenario where the estimated delay is accounted for when taking action to face a disruption.
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At this stage we used the WEKA data mining tool to speed up our tests and mainly explored

distinct feature sets across the C4.5 and Random Forrest algorithms. After obtaining the decision

trees from the input data, a script converted such trees into Java code that was later embedded into

our simulation.

Using the C4.5 algorithm we were able to match up to 57% of the real solutions, but with

Random Forrest the solutions correspondence raised to 86%. Besides answering our interim goal,

this results might sustain further research on the airline decision making research field.

To conclude, and after proving the successful completion of the established goals, one last

objective started to make sense. Given the unfamiliarity of airline operations managements to the

majority of people, attested on the absence of literature, and since we have a running simulation

of the real and proposed airline organizational structures it would be interesting to develop and

educational visualization of the simulated theatre. With this ludic challenge in mind, we explored

the Brahms JAPI and the most recent browser technologies to implement a cartoonish but self-

explanatory airline operational animation.

5.2 Future Work

This section aims at suggest some improvements or expansions to the current research work.

As any other modeling work, the simulation of a live reality is never complete. There is always

something to be added to a simulation in order to better mimic its underlying reality. Bearing this

in mind, our suggestions are all geared towards the improvement of the developed simulations,

mainly in terms of completeness.

The ultimate goal should be to incrementally achieve higher levels of realism, therefore our

first step would definitely be to validate and tune up the empirical knowledge conveyed through

interviews. Unfortunately, accomplish such proposal would be very hard as it requires full col-

laboration of the airline company and its operators, and some procedures would be regarded as

obtrusive.

For instance, the duration of our activity are based on estimates provided by the airline per-

sonnel. Whilst this is way better than random values, the ideal would be to record on video the

daily activity of the operators and later calculate the time, not only by activity but also by operator,

anomaly, weather conditions, time of the day, among so many other factors.

A more doable suggestion, still aiming at validating the current model, would be to take our

simulation and visualization next to the involved airline entities, ask their opinion and how could

we improve the existing model.

Other important expansion, mainly associated with the reasoning accuracy simulation and im-

provement but still requiring airline collaboration would be to introduce some changes on how the

operational data is logged into databases. Throughout our pre and post operational data analysis,

we were forced to remove orphan entries, neglect incomplete flights or ignore multiple anoma-

lies due to a deficient and inaccurate logging system. Actually, the businesses in general should
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be more conscious to this regard as massive data analytics is becoming increasingly important

nowadays.

In what concerns the exploration new organizational structure scenarios, the possibilities are

endless. Starting with the existing structure, one may add or remove collaborators and see how

their stress levels react, other systems could be added, new activities that complement the existing

activities. The perturbation of the actual system might be an option, such as taking into account

operators distraction during work, or put some strain, e.g., high number of flight disruptions, in

the organizational structure, among many others.

Also interesting would be to introduce other assessment metrics. In our research we were

solely able to decently track time. The lack of information regarding salaries or even work plans

prevented us to include the important economic factor. But this would have been critical in a real

business process reengineering study. Accounting for the economic aspect would require not only

the cost per hour, day, week or month for each operator but also the collaborator shifts and work

plans. As one may recall, the Operational Control Centre of an airline company works 24 hours a

day, 7 day a week, and therefore it must exist a working plan split across several employees.

Still on the metrics side, and having some payrolls, we would be able to track the amortization

time of certain organizational structure transformations. For instance, in our proposal II and III

we gave extra functionalities to an existing system. This had some costs involved that were not

accounted for. Using the transformations costs and the increased productivity costs, we would be

able to tell how long an investment would take pay off.

Last but not least, regarding the reasoning accuracy improvement, one could use other su-

pervised learning techniques to try to increase the already high 86% match obtained through

the Random Forrest classifier. An even more interesting approach would be to leave the easily

comprehensible decision trees to the human agents and introduce decision support systems at the

simulation based on more complex reasoning schemes, such as the ones obtained through Neural

Networks or Naive Bayes.
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Appendix A

Operational Workflows

This appendix aims at gathering all the diagrams illustrating operational workflows in one place,
allowing for better comparison and understanding.

According to Johansson et al. [JMPW93], the best way to describe and depict business work-
flows is by means of activity and sequence diagrams or a combination of both. After this, the
present appendix is divided into two sections. The first includes the work interactions observable
at TAP today. The second, groups the proposed workflows, that will be modeled and simulated in
order to evaluate putative improvements.

A.1 Current TAP Operational Sequence Diagrams

asAMShs CTS cs osgs

Figure A.1: Current operational workflow trig-
gered by an aircraft anomaly detected by Ground
Supervisor.

asAMShs CTS cs osmss

Figure A.2: Current operational workflow trig-
gered by an aircraft anomaly detected by Main-
tenance Services.
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asAMSos CTS csfd hs gs mss

[ac]

[cr]

Figure A.3: Current operational workflow trig-
gered by an aircraft or crew anomaly detected by
Flight Dispatcher.

asAMSos CTS csss

[ac]

[cm]

Figure A.4: Current operational workflow trig-
gered by an aircraft or crew anomaly detected by
Station Supervisor.

pss hsgs

Figure A.5: Current operational workflow trig-
gered by a passenger anomaly detected by Pas-
senger Services.

CTS cs osDOV fd

Figure A.6: Current operational workflow trig-
gered by a crew anomaly detected by the Flight
Operations Portal.
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Operational Workflows

asAMS CTS cs os hs mss

Figure A.7: Current operational workflow trig-
gered by an aircraft anomaly detected by Aircraft
Movement System.

CTS cs os DOV fd

Figure A.8: Current operational workflow trig-
gered by a crew anomaly detected by the Crew
Tracking System.

A.2 Proposed Operational Sequence Diagrams

asAMS CTS cs osgs

Figure A.9: Proposed (I) operational workflow
triggered by an aircraft anomaly detected by
Ground Supervisor.

asAMS CTS cs osmss

Figure A.10: Proposed (I) operational work-
flow triggered by an aircraft anomaly detected by
Maintenance Services.
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Operational Workflows

asAMSos CTS csfd gs mss

[ac]

[cr]

Figure A.11: Proposed (I) operational workflow
triggered by an aircraft or crew anomaly detected
by Flight Dispatcher.

pss osgs

Figure A.12: Proposed (I) operational workflow
triggered by a passenger anomaly detected by
Passenger Services.

asAMS CTS cs os mss

Figure A.13: Proposed (I) operational workflow
triggered by an aircraft anomaly detected by Air-
craft Movement System.

as CTS cs osgs AMS

Figure A.14: Proposed (II) operational work-
flow triggered by an aircraft anomaly detected by
Ground Supervisor.

as CTS cs osAMSmss

Figure A.15: Proposed (II) operational work-
flow triggered by an aircraft anomaly detected by
Maintenance Services.

115



Operational Workflows

asos CTS csfd gs mss

[ac]

[cr]

AMS

Figure A.16: Proposed (II) operational workflow
triggered by an aircraft or crew anomaly detected
by Flight Dispatcher.

as CTS cs os mssAMS

Figure A.17: Proposed (II) operational workflow
triggered by an aircraft anomaly detected by Air-
craft Movement System.
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as osCTS csfd

[ac]

[cm]

AMS gs mss

Figure A.18: Proposed (III) operational work-
flow triggered by an aircraft or crew anomaly de-
tected by Flight Dispatcher.

as osCTS csss

[ac]

[cm]

AMS

Figure A.19: Proposed (III) operational work-
flow triggered by an aircraft or crew anomaly de-
tected by Station Supervisor.
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Appendix B

Delay Codes

Whenever a flight suffers an anomaly on the ground, airline companies use a set of proprietary
delay codes to signal what happened wrong. As an attempt to help airlines standardize the rea-
sons behind commercial flight late departures, IATA, the International Air Transport Association,
created a set of delay codes.

This appendix is intended to gather all the delay codes, both IATA and TAP, for easier ref-
erence. Given their general purpose, IATA codes are grouped into related operational fields and
offer a more detailed textual description.

B.1 IATA Numeric Delay Codes and Description

Table B.1: IATA numeric delay codes and corresponding descriptions.

code label description

Others
6 NO GATE/STAND AVAILABLE Due to own airline activity
9 SCHEDULED GROUND TIME Planned turnaround time less than declared minimum

Passenger and Baggage
11 LATE CHECK-IN Check-in reopened for late passengers
12 LATE CHECK-IN Check-in not completed by flight closure time
13 CHECK-IN ERROR Error with passenger or baggage details
14 OVER-SALES Booking errors not resolved at check-in
15 BOARDING Discrepancies and paging, missing checked in passengers

16 COMMERCIAL PUBLICITY OR
PASSENGER CONVENIENCE

Local decision to delay for VIP or press, delay due to offload of
passengers following family bereavement

17 CATERING ORDER Late or incorrect order given to supplier
18 BAGGAGE PROCESSING Late or incorrectly sorted baggage

Cargo and Mail
21 DOCUMENTATION Late or incorrect documentation for booked cargo
22 LATE POSITIONING Late delivery of booked cargo to airport/aircraft
23 LATE ACCEPTANCE Acceptance of cargo after deadline
24 INADEQUATE PACKING Repackaging and/or re-labelling of booked cargo

25 OVER-SALES
Booked load in excess of saleable load capacity (weight or volume),
resulting in reloading or off-load
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27 DOCUMENTATION/PACKING (Mail Only) Incomplete and/or inaccurate documentation
28 LATE POSITIONING (Mail Only) Late delivery of mail to airport/aircraft
29 LATE ACCEPTANCE (Mail Only) Acceptance of mail after deadline

Aircraft and Ramp Handling

31 LATE/INACCURATE AIRCRAFT
DOCUMENTATION

Late or inaccurate mass and balance documentation, general decla-
ration, passenger manifest

32 LOADING/UNLOADING Bulky items, special load, lack loading staff
33 LOADING EQUIPMENT Lack of and/or breakdown, lack of operating staff
34 SERVICING EQUIPMENT Lack of and/or breakdown, lack of operating staff
35 AIRCRAFT CLEANING Late completion of aircraft cleaning
36 FUELLING/DEFUELLING Late delivery of fuel, excludes late request
37 CATERING Late and/or incomplete delivery, late loading
38 ULD Lack of and/or unserviceable ULDs or pallets

39 TECHNICAL EQUIPMENT
Lack and/or breakdown, lack of operating staff, includes GPU, air
start, push-back tug, de-icing

Technical and Aircraft Equipment
41 TECHNICAL DEFECTS Aircraft defects including items covered by MEL
42 SCHEDULED MAINTENANCE Late release from maintenance

43 NON-SCHEDULED
MAINTENANCE

Special checks and/or additional works beyond normal maintenance
schedule

44 SPARES AND MAINTENANCE
Lack of spares, lack of and/or breakdown of specialist equipment
required for defect rectification

45 AOG SPARES Awaiting AOG spare(s) to be carried to another station
46 AIRCRAFT CHANGE For technical reasons, e.g. a prolonged technical delay
47 STANDBY AIRCRAFT Standby aircraft unavailable for technical reasons

Damage to Aircraft

51 DAMAGE DURING FLIGHT OP-
ERATIONS

Bird or lightning strike, turbulence, heavy or overweight landing,
collisions during taxiing

52 DAMAGE DURING GROUND
OPERATIONS

Collisions (other than taxiing), loading/offloading damage, towing,
contamination, extreme weather conditions

EDP/Automated Equipment Failure

55 DEPARTURE CONTROL
Failure of automated systems, including check-in, load control sys-
tems producing mass and balance

56 CARGO PREPARATION DOCU-
MENTATION

Failure of documentation and/or load control systems covering
cargo

57 FLIGHT PLANS Failure of automated flight plan systems

Flight Operations and Crewing
61 FLIGHT PLAN Late completion of or change to flight plan
62 OPERATIONAL REQUIREMENT Late alteration to fuel or payload

63 LATE CREW BOARDING OR
DEPARTURE PROCEDURES

Late flight deck, or entire crew, other than standby; late completion
of flight deck crew checks

64 FLIGHT DECK CREW SHORT-
AGE

Sickness, awaiting standby, flight time limitations, valid visa, health
documents, etc.

65 FLIGHT DECK CREW SPECIAL
REQUEST

Requests not within operational requirements

66
LATE CABIN CREW BOARD-
ING OR DEPARTURE PROCE-
DURES

Late cabin crew other than standby, late completion of cabin crew
checks

67 CABIN CREW SHORTAGE
Sickness, awaiting standby, flight time limitations, valid visa, health
documents

68 CABIN CREW ERROR OR SPE-
CIAL REQUEST

Requests not within operational requirements
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69 CAPTAIN REQUEST FOR SECU-
RITY CHECK

Extraordinary requests outside mandatory requirements

Weather
71 DEPARTURE STATION Below operating limits
72 DESTINATION STATION Below operating limits
73 EN-ROUTE OR ALTERNATE Below operating limits
75 DE-ICING OF AIRCRAFT Removal of ice and/or snow; excludes equipment

76 REMOVAL OF SNOW, ICE OR
SAND FROM AIRPORT

Runway, taxiway conditions

77
GROUND HANDLING IM-
PAIRED BY ADVERSE CONDI-
TIONS

High winds, heavy rain, blizzards, monsoons etc.

Air Traffic Flow Management Restrictions

81 ATFM DUE TO ATC EN-ROUTE
DEMAND/CAPACITY

Standard demand/capacity problems

82 ATFM DUE TO ATC STAFF OR
EQUIPMENT EN ROUTE

Reduced capacity caused by industrial action or staff shortage,
equipment failure, military exercise or extraordinary demand due
to capacity reduction in neighboring area

83 ATFM DUE TO RESTRICTION
AT DESTINATION AIRPORT

Airport and/or runway closed due to obstruction, industrial action,
staff shortage, political unrest, noise abatement, night curfew, spe-
cial flights

84 ATFM DUE TO WEATHER AT
DESTINATION

Airport and/or runway closed due to weather conditions

Airport and Government Authorities
85 MANDATORY SECURITY Passengers, baggage, crew, etc.

86 IMMIGRATION, CUSTOMS,
HEALTH

Passengers, crew

87 AIRPORT FACILITIES
Parking stands, ramp congestion, lighting, buildings, gate limita-
tions etc.

88 RESTRICTIONS AT DESTINA-
TION AIRPORT

Airport and/or runway closed due to obstruction industrial action,
staff shortage, political unrest, noise abatement, night curfew, spe-
cial flights

89 RESTRICTIONS AT AIRPORT
OF DEPARTURE

Including air traffic services, start-up and push-back, airport and/or
runway closed due to obstruction or weather (restriction due to
weather in case of ATFM only) industrial action, staff shortage, po-
litical unrest, noise abatement, night curfew, special flights

Reactionary
91 LOAD CONNECTION Awaiting load from another flight
92 THROUGH CHECK-IN ERROR Passenger or baggage check-in error at originating station
93 AIRCRAFT ROTATION Late arrival of aircraft from another flight or previous sector
94 CABIN CREW ROTATION Awaiting cabin crew from another flight
95 CREW ROTATION Awaiting flight deck, or entire crew, from another flight

96 OPERATIONS CONTROL
Re-routing, diversion, consolidation, aircraft change for reasons
other than technical

Miscellaneous

97 INDUSTRIAL ACTION WITHIN
OWN AIRLINE

Industrial action (includes Air Traffic Control Services)

98 INDUSTRIAL ACTION OUT-
SIDE OWN AIRLINE

Industrial action (except Air Traffic Control Services)

99 MISCELLANEOUS No suitable code; explain reason(s) in plain text
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B.2 TAP Delay Codes and Labels

Table B.2: TAP delay codes and related labels.

code label

829 LACK OF OR LATE FUEL TRUCK
831 AIRCRAFT DEFECTS AT HOME BASE
832 AIRCRAFT DEFECTS AT OUTSTATIONS
833 LACK OF STAFF
835 X-RAY BAGGAGE SCANNING
836 SUSPEND MISSING PAX BAG SEARCH
837 OPERATIONAL SECURITY INSPECTION
838 ACC OCC-PAX IRREG
841 SLOW BOARD ON PREVIOUS FLT
843 LOADING/UNLOADING DELAYED ON PREV FLT
848 AIRCFT DEF ON PREV FLT
849 DCS DELAYED ON PREV FLT
850 LACK OF FLT CREW ON PREV FLT
851 LATE CREW BOARD ON PREV FLT
852 WEATHER COND ON PREV FLT
853 AIR TRAFFIC SERVICES ON PREV FLT
854 SECURITY DELAY ON PREV FLT
855 AIRPORT FACILITIES ON PREV FLT
856 LOAD CONNECTION PREV FLT
857 FLT/BLOCK TIME OF PREV FLT
858 ROTATION OTHERS
860 PASSENGER
861 WEATHER AT STATION OF DEPARTURE
865 LATE BAGGAGE ACCEPTANCE
868 SEARCHING/OFF LOADING MISSING PAX BAG
870 COMMERCIAL REASONS, PUBLICITY, PAX’S CON
871 AIRPORT SLOT
877 BAGGAGE
884 ULD LACK OF/OR SERVICE ABILITY
885 PGA OPS CONTROL
887 HCC
888 LATE CHECK-IN/ACEPTANCE AFTER DEADLINE
893 LATE CHECK-IN/CONGESTION CHECK AREA
897 CHECK-IN ERROR/PASSENGER AND BAGGAGE
904 SLOW BOARDING,DISCREPANCIES AND PAGING
905 SLOW BOARDING/GATE ERROR, LACK OF STAFF
908 EXCESSIVE HAND LUGGAGE
909 ILLNESS/DEATH OF PAX
911 LATE OR WRONG DELIVERY FROM DEPARTURE HA
912 LATE OR WRONG DELIVERY FROM TRANSFER HAL
914 BAGGAGE PROCESSING, SORTING, ETC.
919 DOCUMENTATION, ERRORS, ETC.
923 LATE ACCEPTANCE
936 AIRCRAFT DOCUMENTATTION LATE/INACCURATE
940 CABIN CLEANING
941 LOADING/UNLOADING
942 LACK OF LOADING STAFF, ERROR
946 LOADING EQUIPMENT
947 SERVICING EQUIPMENT
948 LACK OF OR LATE PAX. STAIRS
949 LACK OF OR LATE PAX. BUS
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951 AIRCRAFT CLEANNING
952 FUELLING/DEFUELLING
953 CATERING, LATE DELIVERY OR LOADING DISCR
954 LATE CATERING DELIVERY BY CATERING COMPA
955 DISCREPANCIES
956 AIRCRAFT CHANGE, MEAL PLAN
959 TECHNICAL EQUIPMENT
963 AIRCRAFT DEFECTS
964 SCHEDULED MAINTENANCE/LATE RELEASE
968 NON SCHEDULED MAINTENANCE
975 AIRCRAFT CHANGE FOR TECHNICAL REASONS
976 AIRCRAFT CHANGE DUE AIRCRAFT DEFECT
980 DAMAGE DURING GROUND OPERATION
984 DEPARTURE CONTROL SYSTEM
985 DCS ERROR
987 FLIGHT PLANS
988 OTHER SYSTEMS
990 DATA LINE INTERRUPTED
991 OPERATIONAL REQUIREMENTS
992 LATE CREW BOARD/DEPARTURE PROCEDURES
993 ENTIRE CREW LATE BOARDING
998 FLIGHT DECK CREW SHORTAGE
999 FLIGHT DECK CREW SPECIAL REQUEST
1000 CABIN CREW BOARDING
1001 CABIN CREW SHORTAGE
1002 CABIN CREW ERROR OR SPECIAL REQUEST
1003 WRONG HEAD CHECK
1004 RE-ORDERS
1006 WEATHER AT STATION OF DESTINATION
1008 ATFM DUE TO ATC EN-ROUTE DEMAND/CAPACITY
1009 DE-ICING OF AIRCRAFT
1011 GROUND HANDLING IMPAIRED
1013 ATFM DUE TO RESTRICTION AT DEST APT
1014 ATFM DUE TO WEATHER AT DESTINATION
1015 MANDATORY SEGURITY
1016 IMMIGRATION, CUSTOMS
1017 AIRPORT FACILITIES
1018 RESTRICTIONS AT AIRPORT OF DEPARTURE
1019 LOAD CONNECTION (PAX/CARGO/MAIL)
1021 AIRCRAFT ROTATION
1022 CABIN CREW ROTATION
1023 CREW ROTATION
1024 ENTIRE CREW TOO LATE DUE TO ROTATION
1025 FLIGHT CREW TOO LATE DUE TO ROTATION
1026 OPERATIONS CONTROL
1028 INDUSTRIAL ACTION OUTSIDE OWN AIRLINE
1029 NOT ELSEWHERE SPECIFIED
1031 DPG (Planning and Management)
1032 SCHEDULED GROUND TIME LESS THAN DECLARED
1035 LATE AIRCRAFT DOCUMENT BRIEFCASE
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Appendix C

Manual Delay Code Classification

This appendix contains the human classification of IATA and TAP delay codes according to work-
flow triggering concepts and TAP problem clustering. Background information about the classifi-
cation process may be found on subsection 3.1.4, Airline Anomalies Description and Classifica-
tion.

C.1 IATA Delay Code Classification

Table C.1: Manual IATA delay code classification.

code concept flight/aircraft
problem

crew
problem

6 gs AIRP –
9 AMS OTH –

11 pss COMM –
12 pss COMM –
13 pss COMM –
14 pss HAND –
15 pss COMM –
16 pss HAND –
17 gs HAND –
18 pss SEC –
21 gs HAND –
22 gs HAND –
23 gs HAND –
24 gs HAND –
25 gs HAND –
27 gs HAND –
28 gs HAND –
29 gs HAND –
31 gs HAND –
32 gs AIRP –
33 gs AIRP –
34 gs AIRP –
35 gs AIRP –
36 gs AIRP –
37 gs AIRP –

code concept flight/aircraft
problem

crew
problem

38 gs AIRP –
39 gs AIRP –
41 mss MAINT –
42 mss MAINT –
43 mss MAINT –
44 mss MAINT –
45 mss MAINT –
46 mss OTH –
47 mss MAINT –
51 mss MAINT –
52 mss MAINT –
55 fd ATC –
56 gs HAND –
57 fd ATC –
61 AMS ROT –
62 fd ATC –
63 CTS CREW INDUTY
64 DOV CREW SIGN
65 fd CREW OTH
66 CTS CREW INDUTY
67 DOV CREW SIGN
68 fd CREW OTH
69 fd CREW OTH
71 fd ATC –
72 fd ATC –
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code concept flight/aircraft
problem

crew
problem

73 fd ATC –
75 gs AIRP –
76 gs AIRP –
77 gs METEO –
81 fd ATC –
82 fd ATC –
83 fd ATC –
84 fd METEO –
85 pss SEC –
86 pss SEC –
87 gs AIRP –

code concept flight/aircraft
problem

crew
problem

88 fd ATC –
89 fd ATC –
91 AMS ROT –
92 pss SEC –
93 AMS ROT –
94 CTS CREW ROT
95 CTS CREW ROT
96 fd ATC –
97 gs OTH –
98 gs OTH –
99 gs OTH –

C.2 TAP Delay Code Classification

Table C.2: Manual TAP delay code classification.

code concept flight/aircraft
problem

crew
problem

829 gs AIRP –
831 mss MAINT –
832 mss MAINT –
833 gs AIRP –
835 pss SEC –
836 pss SEC –
837 pss SEC –
838 pss COMM –
841 pss HAND –
843 gs HAND –
848 AMS MAINT –
849 AMS MAINT –
850 DOV CREW ROT
851 DOV CREW ROT
852 fd METEO –
853 fd ATC –
854 pss SEC –
855 gs AIRP –
856 gs HAND –
857 fd ROT –
858 AMS ROT –
860 pss COMM –
861 fd METEO –
865 pss COMM –
868 pss HAND –
870 pss HAND –
871 gs AIRP –
877 pss HAND –
884 gs AIRP –
885 gs AIRP –
887 gs AIRP –
888 pss COMM –
893 pss COMM –
897 pss HAND –

code concept flight/aircraft
problem

crew
problem

904 pss COMM –
905 pss HAND –
908 pss SEC –
909 pss COMM –
911 gs HAND –
912 gs HAND –
914 gs HAND –
919 gs HAND –
923 gs HAND –
936 gs HAND –
940 gs AIRP –
941 gs AIRP –
942 gs AIRP –
946 gs AIRP –
947 gs AIRP –
948 gs AIRP –
949 gs AIRP –
951 gs AIRP –
952 gs AIRP –
953 gs AIRP –
954 gs AIRP –
955 gs OTH –
956 gs OTH –
959 mss MAINT –
963 mss MAINT –
964 mss MAINT –
968 mss MAINT –
975 mss MAINT –
976 mss MAINT –
980 gs MAINT –
984 fd ATC –
985 fd ATC –
987 fd ATC –
988 fd OTH –
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code concept flight/aircraft
problem

crew
problem

990 fd ATC –
991 gs OTH –
992 CTS CREW INDUTY
993 CTS CREW INDUTY
998 DOV CREW SIGN
999 fd CREW OTH
1000 CTS CREW OTH
1001 DOV CREW SIGN
1002 fd CREW OTH
1003 pss COMM –
1004 fd ROT –
1006 fd ATC –
1008 fd ATC –
1009 gs AIRP –
1011 gs METEO –
1013 fd ATC –

code concept flight/aircraft
problem

crew
problem

1014 fd METEO –
1015 pss SEC –
1016 pss SEC –
1017 gs AIRP –
1018 fd ATC –
1019 AMS ROT –
1021 AMS ROT –
1022 CTS CREW ROT
1023 CTS CREW ROT
1024 CTS CREW ROT
1025 CTS CREW ROT
1026 fd ATC –
1028 gs OTH –
1029 gs OTH –
1031 DOV CREW RULES
1032 AMS OTH –
1035 AMS OTH –
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Operational Database Fields

Following subsection 3.2.2 this appendix contains all the operational database column names of
the files provided by TAP which, in turn, are described on subsection 3.1.5.

As mentioned on the text body, the op_airc_roster file holding the aircraft roster had the same
information as the op_flight file. Consequently there is no reason for it to appear here, as it was
not considered on further analysis.

According to table 3.13, the id, label and redundant database fields of the tables bellow were
filled by automatic analysis, while description, rem. (removable) and regex required human deci-
sion.

A final word goes for the (not depicted) values field, containing a list with the relative fre-
quency of the instances associated with each column. Attending to the huge values list produced,
we opted for keep the tables comprehensive and not depict it.

D.1 Op_flight File Label Analysis

Table D.1: Extended op_flight file labels and details.

id label description rem. regex redundant
0 OP_FLIGHTSID Database ID yes
1 PHASE Record phase no /^[0-9]{2}$... 3
2 PERIOD_TIME Date related to record yes
3 UPDATE_TIME DB record time yes 1
4 FLT_DATE Date of the flight no /^([0-9]{2}...

5 FLT_NBR Flight number no /^[0-9]{2,4...

6 CARR_CD Carrier code yes
7 FROM_AIRP_CD Departure airport code no /^[A-Z]{3}$...

8 OP_SUFFIX — yes 14
9 FLEG_STAT Flight record state no /^(S|X|[1-9...

10 TO_AIRP_CD Arrival airport code no /^[A-Z]{3}$...

11 ACTYP_CD Aircraft type code no /^([A-Z]|[0...

12 AIRC_OWNR_CD Aircraft owner code yes 21;22
13 OPER_FLT_NBR Operational flight number yes
14 OPER_OP_SUFFIX — yes 8
15 SCHD_DEP_DATE Scheduled departure time no /^([0-9]{2}...

16 SCHD_ARR_DATE Scheduled arrival time no /^([0-9]{2}...

17 SRVCE_TYP — yes
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18 FRST_SEATS First class seats bought yes
19 BUS_SEATS Business seats bought no /^[0-9]+$/

20 ECON_SEATS Economic seats bought no /^[0-9]+$/

21 CABN_CARR_CD — yes 12;22
22 CKPT_CARR_CD — yes 12;22
23 LCL_FLT_DATE — yes
24 AIRC_REG Aircraft registry/plate no /^(([A-Z]|[...

25 TRFFC_RSTR_LST — yes
26 CLS_SALE_LST — yes
27 INFLT_SRVCE_LST — yes
28 LEASE_FLG — yes
29 DEP_TERM_CD Departure terminal code yes
30 ARR_TERM_CD Arrival terminal code yes
31 FICTITIOUS_EXT — yes
32 OLD_DEP_AIRP Old departure airport yes
33 OLD_ARR_AIRP Old arrival airport yes
34 DIV_IND — yes 44;45;46;66
35 RESCHD_IND Reschedule indicator yes
36 EST_OFFBLK_DATE Estimated takeoff time no /^(([0-9]{2...

37 EST_AIRB_DATE Estimated airborne time yes
38 EST_LNDNG_DATE Estimated landing time yes
39 EST_ONBLK_DATE Estimated arrival time no /^(([0-9]{2...

40 ACTL_OFFBLK_DATE Real takeoff time no /^(([0-9]{2...

41 ACTL_AIRB_DATE Real airborne time yes
42 ACTL_LNDNG_DATE Real landing time yes
43 ACTL_ONBLK_DATE Real arrival time no /^(([0-9]{2...

44 TRVLING_TECH — yes 34;45;46;66
45 SPARES_PACK — yes 34;44;46;66
46 TECH_STOP — yes 34;44;45;66
47 NEXT_INFO_DATE — yes
48 RET_RAMP_DATE — yes
49 RET_LNDNG_DATE — yes
50 RET_ONBLK_DATE — yes
51 CURR_LEASE_FLG — yes
52 CURR_ACTYP_CD — yes
53 CURR_OWNR_CD — yes
54 REM — yes
55 ADMIN_CARR_CD — yes
56 FRST_MEALS First class meals yes
57 BUS_MEALS Business class meals yes
58 ECON_MEALS Economic class meals yes
59 FRST_SALE_SEATS First class seats available yes
60 BUS_SALE_SEATS Business seats available no /^[0-9]+$/

61 ECON_SALE_SEATS Economic seats available no /^[0-9]+$/

62 CYCLS — yes
63 MANL_SALE_CONFIG — yes
64 ADMIN_FLT_DATE — yes
65 SCHD_FLT_TYP Schedule flight type yes
66 HIGHLIGHT — yes 34;44;45;46
67 MANL_SCHD_FLT_TYP — yes
68 ENGNRS — yes
69 LCL_ADMIN_FLT_DATE — yes
70 DLY_DEP_MIN Departure delay (minutes) no /^-?[0-9]+$...

71 DLY_ARR_MIN Arrival delay (minutes) no /^-?[0-9]+$...
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D.2 Op_flight_dep_dly File Label Analysis

Table D.2: Extended op_flight_dep_dly file labels and details.

id label description rem. regex redundant
0 OP_FLIGHTS_DEP_DLYID Database ID yes
1 PHASE Record phase yes
2 PERIOD_TIME Date related to record yes
3 UPDATE_TIME DB record time yes
4 FLT_DATE Date of the flight no /^([0-9]{2}...

5 FLT_NBR Flight number no /^[0-9]{2,4...

6 CARR_CD Carrier code yes
7 FROM_AIRP_CD Departure airport code no /^[A-Z]{3}$...

8 OP_SUFFIX — yes
9 STAT Flight record state no /^(S|X|[1-9...

10 DEP_DLY_TYP TAP delay code no /^[0-9]{3,4... 13;17;24
11 DATE_TIME Time of delay registration no /^[0-9]{2}-...

12 MINS Delay minutes no /^[0-9]+$/

13 SYSTEM_PKEY System primary key yes 10;17;24
14 DLY_CD IATA delay code no /^[0-9]{2}$... 18;20;21;22
15 DLY_SUB_CD Delay sub code yes 19;23
16 RSPBL_CD Responsible code no /^[A-Z]{2}$... 26;27
17 DESCR Delay description no /^.+$/ 10;13;24
18 CHNG_REASN_CD Change reason code yes 14;20;21;22
19 CHNG_REASN_SUB_CD Change reason sub code yes 15;23
20 CHNG_REASN_CD_1 Change reason code 1 yes 14;18;21;22
21 DESCR_1 Delay description 1 yes 14;18;20;22
22 CHNG_REASN_CD_2 Change reason code 2 yes 14;18;20;21
23 CHNG_REASN_SUB_CD_1 Change reason sub code 1 yes 15;19
24 DESCR_2 Delay description 2 yes 10;13;17
25 IATA_CHNG_REASN_CD IATA change reason code yes
26 RSPBL_CD_1 Responsible code 1 yes 16;27
27 DESCR_3 Delay resp. description no /^.+$/ 16;26
28 RSRC_NAME Resource name no /^([A-Z])+$...

29 RSRC_AREA Resource category no /^([A-Z])+$...

30 RSRC_TEL_NBR Resource telephone number yes
31 REM Delay additional comments yes

D.3 Op_crew_roster File Label Analysis

Table D.3: Extended op_crew_roster file labels and details.

id label description rem. regex redundant
0 OP_CREW_ROSTERID Database ID yes
1 PHASE Record phase no /^[0-9]{2}$... 3
2 PERIOD_TIME Date related to record yes
3 UPDATE_TIME DB record time yes 1
4 CRW_GRP_CD Crew group code no /^1|2$/

5 ACTV_TYP Activity type no /^[0-9]{1,2...

6 EMPL_NBR Employee number no /^[0-9]{5}.̇.

7 STRT_DATE Activity start date no /^([0-9]{2}...

8 END_DATE Activity end date no /^([0-9]{2}...

9 ACTV_STAT Activity attribution phase no /^(S|T)$/

10 ASSGND_USR_ID — usr yes
11 ASSGN_TYP — yes
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12 GRND_ACTV_FK — foreign key yes
13 LEAV_TYP Absence type no /^([A-Z]{4}...

14 LEAV_CD Absence code no /^([A-Z]{3,...

15 PRNG_CD Pairing code no /^.*$/ 49
16 PRNG_FROM_DATE Pairing from date no /^(([0-9]{2... 48
17 PRNG_LVL Pairing level yes 51
18 EMPL_TYP Employee type yes 52
19 RSRV_ACTV_FK — foreign key yes
20 DUTY_MINS Expected duty minutes no /^-?[0-9]+$...

21 CRED_MINS Credits in minutes yes
22 POSN_CD Position in flight code no /^(([A-Z]|[...

23 FLEET_CD Fleet type no /^(([A-Z]|[...

24 ACTL_SGNON_DATE Real sign-on date no /^(([0-9]{2...

25 ACTL_SGNOFF_DATE Real sign-off date no /^(([0-9]{2...

26 ACTL_CRED_MINS Real credits in minutes yes
27 POOL_CD Type of aircraft code no /^([A-Z]|[0...

28 RANK_CD Crew rank or position no /^[A-Z]{3}$...

29 ASSGND_DATE Time of pairing assignment no /^([0-9]{2}...

30 EMPL_PREF_LEV — yes
31 CRED_FLG — yes
32 PUBLISH_DATE Planning publishing date yes
33 PUBLISH_USR_ID — usr yes
34 NOTIFY_DATE Crew notify date no /^(([0-9]{2...

35 NOTIFY_USR_ID — usr yes
36 REM Additional comments yes
37 FLYNG_MINS Expected flying minutes no /^-?[0-9]+$...

38 ACTL_DUTY_MINS Real duty minutes no /^[0-9]+$/

39 ACTL_FLYNG_MINS Real flying minutes no /^[0-9]+$/

40 BID_TYP — yes
41 RNWL_ACTV_FK — foreign key yes
42 CRSE_ACTV_KEY — foreign key yes
43 SERIAL_NBR — yes
44 CRED_FLG_REASN_CD — yes
45 DSRPTD_NBR — yes
46 RELEASED_USR_ID — usr yes
47 DUTY_GRP_SEQ_NBR — yes
48 PRNG_DATE Pairing date yes 16
49 PRNG_CD_1 Pairing code 1 yes 15
50 CRW_GRP_CD_1 Crew group code 1 yes
51 PRNG_LVL_1 Pairing level 1 yes 17
52 EMPL_TYP_1 Employee type 1 yes 18
53 STRT_DATE_1 Start date 1 yes
54 FLT_SET_NAME Pairing preffix yes
55 END_DATE_1 End date 1 yes
56 PRNG_TYP Pairing type yes
57 FLT_DATE Date of the flight no /^([0-9]{2}...

58 FLT_NBR Flight number no /^(-1)|([0-...

59 OP_SUFFIX — yes
60 CARR_CD Carrier code yes
61 FROM_AIRP_CD Departure airport code no /^([A-Z]{3}...

62 TO_AIRP_CD Arrival airport code no /^([A-Z]{3}...

63 HOTEL_CD Night sleep hotel code yes
64 PAX_CARR_CD Crew as pax carrier code yes
65 PAX_FLT_NBR Crew as pax flight number yes
66 PAX_OP_SUFFIX — yes
67 PAX_COST Crew as pax cost yes
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68 ACTYP_CD Aircraft type code no /^(([A-Z]|[...

69 PNTS — yes
70 FLEG_STAT Flight record state no /^((S|X|[1-...

71 FDT_END_IND — yes
72 NOTIFY_DATE_1 Crew notify date 1 yes
73 NOTIFY_USR_ID_1 — usr yes
74 DSRPTN_DATE — yes
75 REINF_BY — yes
76 RTE_IND — yes
77 SRVC_TYP_IND — yes
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Appendix E

Brahms and JAPI Tutorials

Being an academic and research tool, Brahms penetration is weak when compared to other multi-
agent systems or simulation engines. A short user base prevents articles, tutorials or examples
about Brahms usage to be widely available on the internet, making it difficult for newcomers to
understand or get familiar with the tool.

This appendix intends to aggregate a set of tutorials purportedly written along our research
study as a contribution to the growing Brahms community. They are mostly concerned with
Brahms installation, model compilation and execution and advanced JAPI features.

E.1 Installing Brahms on Mac OS X

The first step in using a software tool is to download, install and configure it. By the time of
this writing, the Brahms download page provided two versions of the Brahms: an alpha, not
extensively tested, and a stable (older). For this tutorial the later was chosen, version 1.3.2.

Brahms is only available for research purposes, so registration is required in order to download
the installer. A varying time after registration an email should be received containing download
credentials and a license file.

Requirements

• Mac OS X 10.5.8

• Brahms Agent Environment v1.3.2

Procedure

1. After registration, download the Brahms installer.

2. Unzip the downloaded file, setup.zip, by clicking on it.

3. Open the Terminal (console).

4. Following UNIX best practices and in order to allow simultaneous installations of other versions, the
goal is to install Brahms in the /usr/local/brahms-1.3.2 directory. Create it.

$> sudo mkdir /usr/local/brahms-1.3.2

5. Now, set the right ownership on the folder.
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$> sudo chown ‘echo $USER‘:staff /usr/local/brahms-1.3.2

6. Click on the setup.app file and proceed with installation. When prompted for “Choose Install Folder”
click “Choose...” and then press Command-Shift-G. Enter /usr/local/brahms-1.3.2/ in the
box and complete installation.

7. For convenience, Brahms binaries should be added to the PATH. The environment variable BRAHMS_HOME
should be also set. Open the .bash_profile file using your favorite text editor, for instance:

$> vim ~/.bash_profile

8. Copy and paste the next instructions:

export PATH="$PATH:/usr/local/brahms-1.3.2/AgentEnvironment/bin"
export BRAHMS_HOME="/usr/local/brahms-1.3.2/AgentEnvironment"
alias bc="/usr/local/brahms-1.3.2/AgentEnvironment/bin/bc"

The alias instruction is required because Mac OS X already ships with a tool invoked using bc
command, an thus colliding with the Brahms compiler (also bc).

9. Copy the license file, brahms.lic, to /usr/local/brahms-1.3.2/AgentEnvironment. As-
suming it is on /Desktop:

$> mv ~/Desktop/brahms.lic /usr/local/brahms-1.3.2/AgentEnvironment

10. Quit and reopen Terminal (to refresh environment variables).

11. Test Brahms installation by issuing the Brahms Virtual Machine.

$> bvm

The list of bvm options should appear but if something went wrong a Java Exception is thrown.

E.2 Installing Brahms on Ubuntu (server)

In Brahms download page the Linux version of Brahms Agent Environment already ships with Sun
JRE 1.6 and was solely tested in Fedora Core 8. When it comes to Linux, Ubuntu is undoubtedly
the most popular distribution and you may want to install Java JRE/JDK using a system-wide
package manager, such as aptitude or apt-get.

Given the cross-platform nature of Java, and if you followed the previous tutorial, installing
Brahms on a Ubuntu headless server, remotely administered through SSH, is fairly easy.

This tutorial arose from the need of having a remote, always available installation of Brahms
controlled through a web browser.

Requirements

• Headless Ubuntu server

• Java JDK 5

• Brahms Mac OS X installation

Procedure

1. Brahms should have been installed on Mac OS X according to previous instructions.

2. Create a “tar gunziped” archive of the whole installation folder.

$> sudo tar -zcvf brahms-1.3.2.tar.gz /usr/local/brahms-1.3.2

3. Upload the archive to Ubuntu server home folder.
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$> scp brahms-1.3.2.tar.gz <user>@<host>:/home/<user>/

This tutorial tries to be as generic as possible, so you should replace <user> and <host> by your
username and host/IP address of your server. Additional scp parameters might be needed, such as a
private key path or a custom port. Alternatively, you may also use ftp.

4. Optionally, remove the created “tar gzip” archive as it’s no longer needed.

$> sudo rm brahms-1.3.2.tar.gz

5. Establish a secure shell connection with your server.

$> ssh <user>@<host>

Again, replace <user> and <host> by proper values.

6. Determine if Java is installed on server and which version.

$> java -version

7. If last command returned a “command not found” or Java version is 4 or bellow, install Java JDK 5.

$> sudo apt-get install sun-java5-jdk

You may chose to install JDK 6 but since Mac OS X ships with JDK 5, this version was preferred.

8. Move the uploaded archive (2) from home folder to Ubuntu /usr/local directory.

$> sudo mv brahms-1.3.2 /usr/local

9. Extract the brahms-1.3.2.tar.gz archive, maintaining the folder tree structure.

$> sudo tar -zxvf /usr/local/brahms-1.3.2.tar.gz

10. Remove the now unneeded archive.

$> sudo rm /usr/local/brahms-1.3.2.tar.gz

11. Installation is complete but you should add Brahms binaries to the PATH and set BRAHMS_HOME
environment variable. Open the .bashrc file using your favorite text editor, for instance:

$> vim ~/.bashrc

12. Copy and paste the next instructions:

export PATH="$PATH:/usr/local/brahms-1.3.2/AgentEnvironment/bin"
export BRAHMS_HOME="/usr/local/brahms-1.3.2/AgentEnvironment"

13. Reload .bashrc and test Brahms installation.

$> source ~/.bashrc && bvm

The list of bvm options should appear but if something went wrong a Java Exception is thrown.

E.3 Running the Example Simulation (GUI)

In the previous tutorials we see how to install and setup Brahms. In the first case, Mac OS X
provides a graphical environment and Brahms ships with graphical tools, such as the Brahms
Composer.

This tutorial will show how to compile and run the Brahms simulation provided in the official
Brahms tutorial using the graphical Brahms Composer on Mac OS X.

Requirements

• Brahms installation (Mac OS X)
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• Brahms environment variables set

• Brahms Tutorial Files

Procedure

1. Refer back to Brahms Tutorial 01 on how to install a Brahms on Mac OS X and set environment
variables.

2. Download the Atm Tutorial files (on Brahms webpage).

3. Extract the archive to your Desktop. You will end with an AtmModel folder in /Desktop.

4. Open Terminal, change current working directory and check if old Brahms compiled XML files are
present.

$> cd ~/Desktop/AtmModel
$> find . -name "*.xml"

5. If a list of XML files appears, remove them. (In the past, Brahms compiler output files had the XML
extension. Currently it generates BCC files.)

$> find . -name "*.xml" -delete

6. Let’s now open Brahms Composer, it is located in the bin folder under $BRAHMS_HOME.

$> open $BRAHMS_HOME/bin/Composer.app

7. A new graphical window will open asking to “Open Brahms Model”, select “Import” and in the
combo-box navigate to Desktop.

8. Open AtmModel > final_source > gov > nasa > arc > brahms > atm, and in the end select the
AtmModel.b file.

9. Keep the option to create a build directory selected and click “Import”.

10. All the simulation files will be loaded, and you can navigate over the model concepts using the
left-side panel of Brahms Composer. Before running the simulation, the Brahms model must be
built/compiled. To do so, click on the blue down-arrow in the topmost toolbar or choose “Build” >
“Build Model” in main menu. The message “Successfull Build” should appear in the status bar.

11. Now you may execute the model, by clicking on the blue right arrow in the toolbar or choosing
“Run” > “Run Model” in the menu.

12. The Brahms Composer right panel should switch to the “VM Log” viewer and some messages are
displayed.

13. During the AtmModel execution, several simulation output files were produced, namely:

$BRAHMS_HOME/Databases/AtmModel_<date>_<time>.txt
$BRAHMS_HOME/logs/EventInformation_<date>_<time>.txt
$BRAHMS_HOME/logs/vm_<date>_<time>.log

Where <date> and <time> correspond to the date and time of simulation execution.
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E.4 Running the Example Simulation (CLI)

In the previous tutorial the provided example simulation was compiled and executed using Brahms
Composer (a GUI front-end). This time we use Brahms command line tools to perform the same
tasks.

Requirements

• Brahms installation

• Brahms environment variables set

• Brahms Tutorial Files

Procedure

1. Refer back to Brahms Tutorial 01 or Brahms Tutorial 02 on how to install and set Brahms environ-
ment variables through command line.

2. Download the Atm Tutorial files (on Brahms webpage).

3. Extract the archive to your Desktop. You will end with an AtmModel folder in /Desktop.

4. Open Terminal, change current working directory and check if old Brahms compiled XML files are
present.

$> cd ~/Desktop/AtmModel
$> find . -name "*.xml"

5. If a list of XML files appears, remove them. (In the past, Brahms compiler output files had the XML
extension. Currently it generates BCC files.)

$> find . -name "*.xml" -delete

6. There are four Brahms projects in the AtmModel folder: final_source, lesson_7_source, lesson_8_source,
lesson_9_source; corresponding to incremental development stages of the tutorial. First, get some
info about bc (Brahms Compiler) tool, then compile the final source.

$> bc -?
$> bc -lp $BRAHMS_HOME/Models/lib -dtd $BRAHMS_HOME/DTD \

-source final_source final_source/gov/nasa/arc/brahms/atm/AtmModel.b

If all went well, you will see the message “Exporting model as XML” and some BCC files will
appear in /Desktop/AtmModel/final_source/gov/nasa/arc/brahms/atm.

7. Now it’s time to run our simulation. First you need to add the final_source folder path to the vm.cfg
file located in $BRAHMS_HOME/config. Open the file and change the line:

library_path=/usr/local/brahms-1.3.2/AgentEnvironment/Models/lib;
/Users/<homefolder>/Desktop/AtmModel/final_source

Remember to change <homefolder> by the proper value. If you don’t know it, the pwd command
might come to rescue.

8. Now start the simulation using the bvm (Brahms Virtual Machine) tool.

$> bvm -cf $BRAHMS_HOME/config/vm.cfg gov.nasa.arc.brahms.atm.AtmModel

You can add the -ui option if you want to graphically pause/play the simulation.

9. After running the model, you will find Brahms output simulation files in logs and Databases
folders under $BRAHMS_HOME.
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E.5 Introducing Brahms JAPI

Now that we have seen how to compile and run a Brahms model, it is time to move to more
advanced topics.

This tutorial intends to show how to work with Brahms JAPI, Java Application Programming
Interface. In the previous tutorials we used the AtmModel example, available at the Brahms web-
site. This time, we will also use an example shipped with Brahms installation, located in the
examples folder under $BRAHMS_HOME.

According to the shipped ReadmeJAPI.txt:

The Java API (JAPI) contains all that is need to develop external activities, aka Java
activities and external agents. The Java activities allows a model builder to perform
tasks that are not supported by the Brahms language itself. The Java activities have
to written using the Java language. External agents can be used to wrap external
processes as an agent that needs to interact with other agent and objects present in the
virtual machine.

Requirements

• Brahms installation

• Sun JDK 1.5 or above

Procedure

1. Copy and rename the example project folder, to the Desktop. This way it will allow you to make
changes without messing the original code.

$> cp -r $BRAHMS_HOME/examples/japi ~/Desktop/myjapi

2. As you may see, the project is ideally structured by separating Brahms from Java code and source
from built files. Let’s do some cleanup first.

$> cd ~/Desktop/myjapi && \
rm -r java/build/* && \
rm java/lib/*

3. The Java source folder contains two packages, jact and jagt, you may delete the later, as we won’t
need it for this tutorial.

$> rm -r java/src/gov/nasa/arc/brahms/jagt

4. Now we are ready to compile Java code making sure to add Brahms libraries, namely vm.jar and
common.jar, to the CLASSPATH.

$> javac -cp $BRAHMS_HOME/lib/vm.jar:$BRAHMS_HOME/lib/common.jar \
-d java/build \
java/src/gov/nasa/arc/brahms/jact/*.java \
java/src/gov/nasa/arc/brahms/jact/string/*.java

5. Create a JAR, named japitutorial.jar, containing the built class files inside the lib folder.

$> jar cvf java/lib/japitutorial.jar -C java/build .

6. For Brahms models make use of the Java classes, the JAR archive has to be copied to $BRAHMS_HOME/deploy
folder.

$> cp -f java/lib/japitutorial.jar $BRAHMS_HOME/deploy

7. Now it’s time to turn into Brahms model, starting by compiling it.
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$> bc -lp $BRAHMS_HOME/Models/lib -dtd $BRAHMS_HOME/DTD \
-source brahms/JACExample/source -d brahms/JACExample/build \
brahms/JACExample/source/example/JACExample.b

8. Append the Brahms build folder path to the vm.cfg file located in $BRAHMS_HOME/config. Open
the file and change the line (if you are following along, it will look like):

library_path=/usr/local/brahms-1.3.2/AgentEnvironment/Models/lib;
/Users/<homefolder>/Desktop/myjapi/brahms/JACExample/build

Where <homefolder> must be changed to the proper value. If you don’t know it, the pwd com-
mand might help.

9. Now that everything is setup and in place, execute Brahms model using the bvm tool.

$> bvm -ui -cf $BRAHMS_HOME/config/vm.cfg example.JACExample

As you will see, there are messages printed from the Java code.

10. By the end of simulation, you may want to clean Java built files.

$> rm -r java/build/* java/lib/* $BRAHMS_HOME/deploy/japitutorial.jar

11. And Brahms counterparts.

$> rm -r brahms/JACExample/build/*

12. As stated in the previous tutorials, Brahms output simulation files might be found in logs and
Databases folders under $BRAHMS_HOME, you may delete them as well.
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