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ABSTRACT 
This paper considers the optimal market entry timing of a firm facing price uncertainty and 
investment irreversibility. When the entry decision is made, the firm has to pay the necessary 
investment costs and from then onwards will receive the expected future cash-flows. The total 
expected income of the investment is given by the sum over time of the expected discounted 
future cash-flows. For the investment to be worthwhile this value must be significantly above, 
and not just above, the investment cost. Therefore, we address investment decisions where one 
must decide when it is the best time to make a commitment, losing the option to wait for a better 
market opportunity. 
We developed a model that provides us with a rule that specifies under which conditions we 
should enter the market. In addition, the methodology developed also provides an estimate on 
how long we should wait before entering the market. 
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1. Introduction 
Deciding on the timing for market entry is a strategic question for enterprise management. This 
type of decisions involve trade-offs between commitment and flexibility under uncertainty. Entry 
decisions involve a monetary commitment, i.e. necessary investment costs, a loss of flexibility, 
since the postponement option is lost, and an increased exposure to market uncertainty, such as 
prices or demands.  
Research on real options has been contributing on how to determine the timing of entry decisions 
since it, explicitly, takes into account the value of waiting (e.g., Ingersoll and Ross, 1992; 
McDonald and Siegel, 1986; Trigeorgis, 1991). The fundamental conclusion from the Real 
Options theory is that, under uncertainty, deferring sunk commitments (i.e. irreversible 
investment costs) may increase the expected value of the investment. If the value of waiting is 
larger than the benefits of commitment, then delaying entry increases firm value. 
Consider a natural resources, e.g. oil, exploration firm that holds a long term exploration 
leasehold. Net Present Value (NPV) calculations that result from marketing forecasts of price 
may or may not indicate to be profitable to explore the aforementioned natural resources, given 
the price uncertainty. In some cases, it is more reasonable to postpone the initiation of the 
exploration in order to learn more about market conditions or to wait for better market conditions. 
Similar investment decisions are made in other type of applications, e.g. production of a new 
product (Pennings and Lint, 2000), disposal of nuclear waste (Loubergé et al., 2002), amongst 
others. 
The NPV valuation procedure does not take into account managerial flexibility and thus it, 
typically, undervalues projects since it is static in nature. The flexibility to adapt decisions to 
changes in market conditions can be used to increase the value of investment by improving its 
upside potential and limiting the downside losses in relation to initial expectations under passive 
management. 
This paper considers the optimal market entry timing of a firm facing price uncertainty and 
investment irreversibility. Our problem is an optimal stopping problem, comparable to the 
definition of the optimal exercise policy for a perpetual American call option. Thus, our model 
fits into the real options approach to investment under uncertainty (see Dixit and Pindyck, 1994; 
McDonald and Siegel, 1986). An investment project is an option which may be exercised, or not. 
Even though the project may have positive present value, i.e. computed as the present value of 
the sum of the future cash flows net of investment costs, given current information on future cash 
flows, it may be optimal to postpone it, in order to keep alive the option to make better decisions 
in the future. In financial theory, such a problem may be solved using risk-neutral valuation. In 
our case, we can also do so since it is possible to replicate the underlying random variables using 
options and futures on oil or shares in oil companies, assuming oil to be our natural resource. 
In this work, we formulated the market entry problem in terms of call option exercise timing. The 
market uncertainty is represented by the commodity market price uncertainty which is modeled 
by a Markov decision process. The exploration can start at any time within a temporal window, 
typically large enough for the exploration to take place. Once the investment decision has been 
taken, then an investment cost is incurred and a series of expected cash-flows are to be received. 
This value must be compared with the value of the alternative decision, i.e. wait and make the 
decision later that is given by the expected income at all other possible future decision timings. 
We developed a model that provides us with a rule that specifies under which conditions we 
should enter that market, that is, the results obtained specify the commodity price threshold value 
for which we should start the commodity exploration. This decision rule draws attention to the 
opportunity cost (i.e., the loss of call option value) associated with moving from positions of 
flexibility to sunk commitments. In addition, for a given current commodity price we can also find 
out an estimate for how long we should wait before starting the commodity exploration. 
 



2. Markov Chains and Potentials 

Consider a stochastic process { }X n INn: ∈  taking values in a countable state space E. This 
process is a Markov chain if it satisfies 

( ) ( )Prob ProbX j X X X j Xn n n n+ += = =1 0 1,..., , for all j∈E, n∈IN. 

We will restrict our attention to the time-homogeneous case, i.e. the case in which the transition 
probabilities are independent of n. The transition probabilities will be denoted by 

{ }P i j X j X i i j En n( , ) | ,= = = ∈+Prob 1 , 
and the transition matrix by P, having as entries P i j i j E( , ) ,  ∈ . This matrix has the properties 
that :a) all entries are non-negative; and b) row sums are equal to one. Generally matrices 
satisfying these properties are called Markov Matrices. 
The m-step transition matrix is given by the mth power of P. And it obviously satisfies the semi-
group property that P P Pm n m n+ =  which written for a particular entry (i,j) is known as the 
Chapman-Kolmogorov Equation, 
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2.1 Potentials 

Consider the process { }X n INn , ∈  with transition matrix P. Suppose that the process is in state i, 
and that at time n a reward g i( ) is given. Furthermore, suppose that all future rewards are 
discounted with a rate α∈ [0,1], then the present worth of the rewards received at times 0,1,2,.. 
will be ( ) ( ) ( )g X X g X0 1

2
2, , , ...α α . 

We will call α-potential of the function g to the expected value of the total discounted return, 
which starting at i is 

( )R g i E g X i Ei
n
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The potential Rα  can be thought as an operator acting on a function or as a matrix multiplying a 
vector, g  being the vector whose component g g i

i
= ( ), 
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where the matrix Rα  is given by 
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and it can be computed by the use of the following results: 
Proposition 1 
If )[α ∈ 0 1,  and g is a non-negative function bounded on E, r R g= α  is the unique solution of 
the system of equations 

( )I P r g− =α . 

Justification 
R g g Pg P gα α α= + + +2 2 ... , 

multiplying by αP  we have 

( )α α α αα αP R g Pg P g P g R g g= + + + = −2 2 3 3 ... , 

yielding the result.� 
 



Proposition 2 
For a stopping time T and a non-negative function g  

( ) ( )[ ]R g i E g X E R g Xi
n

n
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For the proof of these propositions see Çinlar [1975]. 

3. Optimal Stopping 
In the optimal stopping problem we are faced with two possible actions that we can generally call 
"to stop" and "to continue". The action "to stop" may be taken only once, and the discussion 
concerns when it should be taken in order to optimise a certain objective function. 
Having a stochastic process { }X t  we can associate a cost ( )c X t  to the decision "to continue" 

and a reward ( )g Xt  to the action "to stop".The objective function will typically be to maximise 
an expectation of a functional of c( )⋅  and g( ).⋅  
An example of an application is statistical inference, where the experimenter should decide when 
the increase in information contained in further data will outweigh the cost of collecting it. 
Another example, the one in which we are interested in here, is the irreversible investment 
problem where we have to decide when the expected profit of investing immediately will 
outweigh the value of waiting for further information about the future prospect of investment. 
For this latter case the objective can be to maximise the expected discounted value of a function 
of the state at the time of stopping, over all possible stopping times. 
3.1 Optimal stopping of a Discrete Time Markov Process. 

Consider the discrete time stochastic process { }X n INn , ∈  with transition matrix P. Consider 
also that we get a reward ( )g X n  if we take the action "to stop" at time n. At each instant of time 
we can take one of two decisions, to stop, or to continue. 
We define ( )V Xn n , the value function, as the value we get for choosing the best decisions at 
time n and afterwards. 
Consider first the finite horizon case where n N≤ , using a simple dynamic programming 
argument we can say that at time N, ( ) ( )V X g XN N N= , and that for n=1,...,N-1 

( ) ( ) ( ){ }V X g X E V Xn n n X n nn
= + +max , 1 1 . 

And we say that we stop if 
( ) ( )g X E V Xn X n nn

≥ + +1 1 , 
and we continue if 

( ) ( )g X E V Xn X n nn
< + +1 1 . 

For an infinite time horizon, the value function, which can be thought of as ( ) ( )V X V X
n n=

→∞
lim , 

is simply defined by 
( ) ( ) ( ){ }V X g X E V Xn n X nn

= +max ; 1 . 
For Markov processes with transition probability matrix P, we can define the operator T as 

( ) ( )[ ]TV X E V X X i P i j V jn n n
j

= = =+ ∑1 ( , ) ( ) , 

and hence 
( ) ( ) ( ){ }V X g X TV X= max , , ( 1 ) 

which is known as the Wald-Bellman equation and can be computed by the usual dynamic 
programming algorithms. 
The usual way to formulate the optimal stopping time problem is defining the value function as  

( )[ ]V X E g XX( ) sup=
τ

τ , 



where the supreme is taken over all possible stopping times of the Markov process { }XT , 
because at each time n, the decision to stop or to continue must be made on the basis of the 
history of the process available at that time. 
An important concept is the concept of α-excessive functions that we will now define. 
Definition 
Let f be a finite-valued function defined on E, the state space of a Markov chain with transition 
matrix P, and let α be a number in [0,1]. The function f is said to be α-excessive if  

( )

( ) ( )
f X

f X T f X
X E

X E

≥ ∀

≥ ∀
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∈
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If f is 1-excessive it is simply called excessive. 
It follows that the value function defined by (1) can be characterised by the following theorem 
Theorem 
The value function V is the minimal excessive function greater than or equal to the gain function 
g. 
Justification 
From (1) we have 

( ) ( )

( ) ( )
V X g X

V X TV X
X E

X E

≥ ∀

≥ ∀
∈

∈

,

,
 ( 2 ) 

and clearly ( )V X ≥ 0. 
And we can also, from (1), say that at least one of these constraints is always active (i.e. satisfied 
as an equality). Hence V is the minimal function satisfying these constraints (for a rigorous proof 
see Shiryayev [1978] chapter 2). 
As T is a linear operator, this provides a computational way to compute V by linear programming 
simply by minimising V j

j E
( )

∈
∑  subject to the mentioned constraints. 

Having defined the value function, for all x E∈  we can easily determine the stopping set, S, the 
set of states for which it is optimal to stop. 
This set is defined as 

{ }S x E V x g x= ∈ =: ( ) ( ) . 

A typical representation of V x( ) and g x( ) is 

 
FIGURE 1. 

The optimal stopping time τ , is the time of the first visit to the set S, 
( ) ( ){ }τ = ≥ =inf :t V X g Xt t0 . 

3.2. ε-Optimal Stopping Times 
In the case of infinite state-spaces, it is possible that an optimal stopping time does not exist. 
However, for any defined ε > 0, there is a strategy that yields an expected payoff of at least 
V x( ) − ε  for all x E∈ . Such strategies are called ε-optimal. 



Theorem 
Let τ ε  be the first time of visit to the set 

{ }S x E g x V xε ε= ∈ ≥ −: ( ) ( ) . 

Then  

( )[ ]E g X V xx τ ε
ε≥ −( ) . 

For a proof see Çinlar [1975]. 
3.3 Discounting 
In many applications, particularly for the problem we are interested in, a reward received at a 
future time T, has to be valued at the present by multiplying by discounting factor α T . Where 
α = + −( )1 1r , r being the interest earned in alternative investments per unit time. Hence, the 
reward being given as usual by g x( ) , the optimal stopping problem can be formulated as 

( ) ( )[ ]V X E g X X EX= ∈sup ,
τ

τ
τα , 

where the supreme is taken over all possible stopping times of the Markov process { }XT . 
The equivalent Wald-Bellman equation is 

{ }V x g x TV x( ) max ( ), ( )= α . 

Hence, V is the minimal α-excessive function which is greater or equal to g. 
For any ε >0, the ε-optimal stopping set is 

{ }S x E g x V xε ε= ∈ ≥ −: ( ) ( ) , 

and the ε-optimal stopping time is the first visit time to this set. 
It can be noted that if the gain function is α-excessive, then the minimal α-excessive function 
majoring g is obviously g. Hence, the optimal stopping time is τ = 0. Moreover, an α-potential 
of a non-negative function is α-excessive because 

( ) ( )
R g g Pg P g Pg P g

P g Pg P R g

α

α

α α α α

α α α

= + + + ≥ + + =

= + + =

2 2 2 2... ...

... .
 

In the irreversible investment problem, if the fixed sunk cost is zero, then the gain function is an 
α-potential, and hence we would have the trivial solution τ = 0. 

4. Decision Model 

4.1 Problem formulation 
The problem is to decide the best instant of time to invest in the extraction of a resource given its 
actual price and a stochastic model of the price evolution. It is assumed that the investment can 
be done immediately, once decided, and the corresponding income start on the next time instant. 
The prices are considered to evolve according to 

pk+1=(1+wk) pk, ( 3 ) 

where wk values are uncorrelated, belonging to a finite ordered set of values Ω={Ω
1
,...,ΩΝ} 

distributed according to F(Ωi)=Prob(wk≤Ωi) and corresponding mean Ewk=m and density 
f(Ωi)=Prob(wk=Ωi). 
Our decision is the time instant to invest that maximises the expected discounted profit 

ma x
k

E r p r I p pi
i

i k

k
k( ( ) ) ( ) ,..., )1 1

1
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where I is the fixed cost of investment and r the interest rate. 



Alternatively the decision at each time instant is to invest now or wait at least one more unit time 
max  J0(p0), where 
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                                                 (invest)                             (wait) 
or using the value function at current prices 

VK(pk)=(1+r)kJk(pk), 

 V p E r p I r E V pk k p
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i
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    (invest)   (wait) 
For the infinite time horizon case, the case in which we are interested, Vk(p)=V(p) for all k, and so 
the value function V satisfies 

 
V p E r p I r E V pk p
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    (invest)   (wait) 
which falls within the Optimal Stopping Problems. 
4.2 Solution method 
Defining h(p) as the expected return of investing now, i.e. the sum of the discounted incomes 
from now till infinity 

h(pk)=E r p I m
r

p I m
r m

p Ip
i

i k
i

i
k

i
kk

( ( ) ) ( )1 1
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1
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and υ(p) as the expected return if we wait at least one unit time 
υ(pk) =( ) ( ( ))1 1

1 1+ −
+ +r E V pp k kk

. 
At time k our decision will be to invest if h(pk)>υ(pk), to wait if h(pk)<υ(pk) and either decision is 
optimal if  h(pk)=υ(pk) . If in this last case we choose to invest, our decision rule will be to invest 
if and only if h(pk)≥υ(pk), i.e. 

iff         
1+

−
− ≥

m
r m

p I pk kυ( ) , 

iff         p
r m

m
p Ik k≥

−
+

+
1

( ( ) )υ , 

iff         p pk ≥ * where p* satisfies p
r m

m
p I* *( ( ) )=

−
+

+
1

υ . 

A graphical interpretation would be 

 
Figure 1. 



Note that for p greater than p* (inside the stopping region), h(p) is greater than υ(p) because we 
are in fact loosing an opportunity if we do not make the correct decision even if it is only for one 
instant of time. The value function V coincides with υ(p) for p less or equal to p* and coincides 
with h(p) for p greater or equal to p*.  
To achieve the solution it remains only to develop υ(p). 
4.2.1 Determination of υ(p) 
We know that υ(pk) satisfies 

υ
υ

υ υ

( )0 0=
(p*) = h(p*)
(p) = (1+ r) E { V [(1+ w)p] } = (1+ r) E{max{ h[(1+ w)p], [(1+ w)p]}}.-1 -1 

 

In order to develop it further we will consider separately the cases when (1+w)p>p* and when 
(1+w)p≤p*. 
a) Case (1+w)p>p*⇔w>Erro! - 1 
Let N1 be such that  ΩN1=min{Ωi∈Ω:Ωi>Erro! - 1}, 

 i.e. N1 is the index of the first term in Ω that satisfies the condition of being in this case. 
 υa(p)=(1+r)-1 E { h[(1+w)p] | w>ΩN1 }= 
       =(1+r)-1 ( Erro! E[ (1+w)p | w>ΩN1]-I )= 

       =(1+r)-1 ( Erro! 
( ) ( )

( )

1
1

1

+
=

=

∑

∑

Ω Ω

Ω
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N
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f
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And the probability of being in this case is 

f i
i N

N

( )Ω
=
∑

1
=1-Prob(w≤Erro! - 1)=1-F(Erro! - 1). 

b) Case (1+w)p≤p*⇔w≤Erro! - 1 
Let N2 be such that   ΩN2=max{Ωi∈Ω:Ωi≤Erro! - 1}. 

i.e. N2 is the index of the last term in Ω that satisfies the condition of being in this case. 
 υb(p)=(1+r)-1 E { υ[(1+w)p] | w≤ΩN1 }= 

        =(1+r)-1 
[ ]υ ( ) ( )

( )

1
1

2

1

2

+
=

=

∑

∑

Ω Ω

Ω

i i
i

N

i
i

N

p f

f
. 

And the probability of being in this case 

f i
i

N

( )Ω
=
∑

1

2

=Prob(w≤Erro! - 1)=F(Erro! - 1). 

Finally, using the Bayes rule, υ(p) is given by 
 (1+r) υ (p)=[1-F(Erro! - 1)] υ a(p)+F(Erro! - 1) υ b(p), 

 (1+r) υ(p)= Erro! ( ) ( )1
1

+
=
∑ Ω Ωi i
i N

N
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4.2.2 Determination of the Optimal Stopping time 
Recalling that the original problem was 
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In the case that at the present time k, the decision obtained is to wait, we may wish to know 
(given the present data p0,...,pk) how much time we should wait in order to invest. The answer is 
given by 

τ=min{t≥0 : E[h(pk+t) | p0,...,pk] ≥ E[υ(pk+t) | pk] }= 
   =min{t≥0 : Epk[h(pk+t)] ≥ Epk[υ(pk+t)]}, 

which, as we have seen, is equivalent to  
τ=min{t≥0 : E[pk+t | p0,...,pk] ≥ p* }. 

As E(pk+t | p0,...,pk)= E(pk+t | pk)=(1+m)t pk, we get 
τ=min{t≥0 : (1+m)t pk ≥ p* }, 

and so τ=min{t≥0 : t ≥ 
( )
( )

ln
ln

*p p
m

k

1+
 }. 

Hence for each value of pk, the corresponding stopping time can be directly determined as 
( )

τ =
+

∗ln
ln( )

p p
m

k

1
. 

4.3 Algorithm 
An algorithm to compute the solution to this problem could be the following: 
1. Set iteration index K=1 and initial guess for p*1 

2. Initialise υ(p) as straight lines 
 for p=0...p*1 
  υ(p)=Erro!p, 
 for p=p*1...Pmax 

  υ(p)=h(p). 
3. Update estimate of υ(p) 
 for p=0..Pmax 

υ(p)=(1+r)-1{ Erro! ( ) ( )1
1

+
=
∑ Ω Ωi i
i N

N

f p-I[1-F(Erro!-I)]+ [ ]υ ( ) ( )1
1

2

+
=
∑ Ω Ωi i
i

N

p f }. 

4. Stop condition 

     If   max ( ) ( )
p OLDp p
 

υ υ ε− <    then STOP. 

5. Update estimate of p* 
 p*k+1=min{p:υ(p)=h(p)}. 
6. k=k+1; GOTO 4. 

4.4 Special Case 
In the special case where the prices are monotonically increasing  (i.e. Prob(w>0)=1) we have 
that F(Erro! - 1)=0 for p=p*, and so the expression for υ(p) simplifies to 

υ(p*)=(1+r)-1{ Erro! ( ) ( )1
1

+
=
∑ Ω Ωi i
i N

N

f p*-I}, 

and as υ(p*)=h(p*) and ( ) ( )1
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Finally, after some algebra we get  



p*=Erro!. 
So p*can be determined explicitly in closed form for this special case. In the general case this can 
be used as an initial guess for p* in the previous algorithm. 
4.5 Examples 
To illustrate the method and the proposed algorithm, consider the following examples: 
Example 1 
 interest rate: r=0.6 and investment cost: I=20, 
 Sample space of w: Ω={-0.5, -0.2, 0.1, 0.4, 0.7, 1}, 
 f(Ωi)=1/6   i=1,...,6   (Uniformly distributed). 
Starting with p*=9.6 (calculated as suggested in the special case) it converges to its final value 
p*=10.7 at the 2nd iteration, and the function υ(p) converges after 13 iterations. 
The results obtained were: 

 
FIGURE 2. 

Iteration: 1    Pstar: 9.6    Error: 0 

Iteration: 3    Pstar: 10.7   Error: 0.768 

Iteration: 5    Pstar: 10.7   Error: 0.16 

Iteration: 7    Pstar: 10.7   Error: 0.0373 

Iteration: 9    Pstar: 10.7   Error: 0.00916 

Iteration: 11    Pstar: 10.7   Error: 0.00291 

Iteration: 13    Pstar: 10.7   Error: 0.00104 

Example 2 
  interest rate: r=0.9, and  investment cost: I=20, 
 Sample space of w: Ω={0.1, 0.2,..., 1}, 
 f(Ωi)=1/9   i=1,...,9   (Uniformly distributed). 
This example falls within the special case because all the elements of the sample space are 
positive numbers. Hence, p* can be computed explicitly in closed form giving p*=11.5. 
Starting with an initial guess of p*=16 we can check that it converges rapidly to its correct value 
of 11.5. 

 



FIGURE 3. 

Iteration: 1    Pstar: 16   Error: 0 

Iteration: 3    Pstar: 11.5   Error: 2.542 

Iteration: 5    Pstar: 11.5   Error: 0.601 

Iteration: 7    Pstar: 11.5   Error: 0.151 

Iteration: 9    Pstar: 11.5   Error: 0.0386 

Iteration: 11    Pstar: 11.5   Error: 0.00953 

Iteration: 13    Pstar: 11.5   Error: 0.00215 

Pstar: 11.5 

4.6 Reformulating as a finite state Markov chain model 
As the evolution of the prices considered before is a process with independent increments, it 
satisfies the Markov property. 
In order to get a finite state-space (the previous case had not a finite state-space unless the 
(1+Ωι)'s were multiples of each other) we will first apply logarithms to both sides of equation (1) 
getting 

( )log log log .P P wk k k+ = + +1 1  
Defining  

X Pk k= log , 

we have now a countable state-space for the process { }X k INk , ∈ . If we now set upper and 
lower bounds for the state-space, Xmin and Xmax , defining x X1 = min  and x Xn = max , we get a 

finite state-space { }X = x x xn1 2, ,..., . Naturally, by clipping the state-space in this way, we will 
get a different process, but in a real problem, the majority of the possible prices will certainly be 
within a bounded interval with high probability and so the difference will not be significant. 
In such case, the new gain function h x( )  would be defined as 

h x E r e Ii X

i

i( ) ( )= +
⎡
⎣⎢

⎤
⎦⎥

−−

=

∞

∑ 1
1

, 

which is the ( )1+ r -potential of the exponential function minus the fixed cost of investment I. 
Defining  

( ) ( )[ ]
( ) ( )[ ]

[ ]

h h x h x

f x x

I I

n

T

n

T

T

=

=

=

1

1

11 1

,..., ,

exp ,...,exp ,

* , ,..., ,

 

and In as the identity matrix of dimension n. By proposition 1 of section 2 
( )h I r Q f In= − + −( )1 . 

Now the problem, 

( ) ( ) ( )[ ]V X E r h X
k

k
k0 1= + −max , 

would be solved simply for this finite state-space case, by calculating V for all x ∈ X , such that V 
satisfies 

{ }V x h x TV x( ) max ( ), ( )= , 
where 

( ) ( ) ( ) ( ) ( ) ( )TV X r EV X r Q X x V xk k k j j
x j

= + = +−
+

−

∈
∑1 11

1
1 ,

X
. 

Alternative solution method 1 
This function V can be calculated iteratively as 



{ }
V x h x

V x h x TV xm m

0

1

( ) ( )

( ) max ( ), ( ) ,

=

=

⎧
⎨
⎩ +

 

and V Vm →  as m → ∞. 
Alternative solution method 2 
We have seen in section 3 that V, the value function, is the minimum ( )1+ r -excessive function 
that majorises h. Hence it can be computed by linear programming as  

min ( )

. . ( ) ( )
( ) ( ) ( )
( ) .

V x

s t V x h x
V x r TV x
V x

x∈

−

∑
≥

≥ +
≥

X

1
0

1
 

These alternative solution methods will not be implemented here in this work. But a more general 
case of the Markov jump processes developed in another work (Fontes and Fontes 2007) include 
a comparative implementation of the three solution methods discussed here applied to the case of 
Markov Jump Processes. 
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