
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Computer-Based Assessment System for
e-Learning applied to Programming

Education

Pedro Xavier Pacheco

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: António Fernando Coelho (Professor Auxiliar)

July 2010

Computer-Based Assessment System for e-Learning
applied to Programming Education

Pedro Xavier Pacheco

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: João Pascoal Faria (Professor Auxiliar)

External Examiner: Luís Borges Gouveia (Professor Associado com agregação)

Supervisor: António Fernando Coelho (Professor Auxiliar)

22nd July, 2010

Abstract

E-learning systems have been widely adopted in Universities, helping to diminish the dis-
tance between teaching staff and students and allowing a better monitoring of the learning
process. The impact of these systems can be quite significant in programming courses.
It is essential for programming students to solve a considerable amount of problems and
assignments in order to become familiar with the concepts involved in the complex craft
of programming. The combination of this high amount of exercises with a high number
of students is leading to staff work overload in many academic institutions. Nevertheless,
the process of assessing programming assignments can be automated by using a specific
kind of e-Learning systems, the Computer-Based Assessment (CBA) systems.

This dissertation proposes a new CBA system for supporting the programming com-
ponents of the courses of DEI, FEUP. The system was specified to have a core compo-
nent, behaving as an independent service, responsible for the automatic assessment of
programming assignments and flexible enough to be integrated with other platforms such
as Moodle, SIGEX and an eBook system.

In order to achieve the proposed goals, a number of steps were followed and the results
are detailed in this document. A study of state-of-the-art CBA systems was performed in
order to understand the types of available features. Then, it was analyzed how these sys-
tems are currently being used to support programming courses in academic institutions
and what best-practices emerge from their use. Knowing what features are usually avail-
able in CBA systems, an online survey was built to collect the opinions and needs of DEI
teaching staff. The system specification was then built, taking in consideration the survey
results. It includes a prioritized list of features, as well as the system’s architecture. Dur-
ing the specification phase it was also decided to use DOMjudge, a CBA system used in
programming contest, as the basis for the new system. Then, a prototype of the system
was implemented and the results of the project were evaluated.

During the results evaluation, it was concluded that the developed prototype, which
was configured in a test server and can be freely used, implements a significant amount
of the specified features. The system has two innovative mechanisms not found in other
CBA systems: the possibility of defining test cases with attributes, such as personalized
feedback messages, and a skeleton file mechanism. However, in order to become a mature
system, further development and validation is still needed.

i

ii

Resumo

Os sistemas de e-Learning têm sido adoptados em Universidades, ajudando a vencer a bar-
reira da distância entre docentes e estudantes e permitindo um melhor acompanhamento
do processo de aprendizagem. O impacto destes sistemas pode ser bastante significativo
em unidades curriculares de programação. É essencial que os estudantes de programação
resolvam uma quantidade assinalável de exercícios de forma a se familiarizarem com os
conceitos envolvidos. A combinação deste número elevado de exercícios com o elevado
número de estudantes, tem levado a uma sobrecarga dos docentes em muitas instituições
académicas. Contudo, o processo de correcção de exercícios de programação pode ser
automatizado através da utilização de um tipo específico de sistemas de e-Learning: os
sistemas de avaliação automática.

Esta dissertação propõe um novo sistema de avaliação automática para suporte às
componentes de programação das unidades curriculares do DEI, FEUP. O sistema foi
especificado de forma a conter uma componente central, funcionando como um serviço
independente, responsável pela avaliaçao automática de exercícios de programação e su-
ficientemente flexível para ser integrada com outras plataformas como o Moodle, SIGEX
e um sistema de eBooks.

De forma a alcançar os objectivos propostos, uma série de passos foi seguida e os
seus resultados encontram-se detalhados neste documento. Foi efectuado um estudo dos
sistemas de avaliação automática correntemente em uso, de forma a perceber quais as
funcionalidades disponibilizadas. De seguida, analisou-se a forma como estes sistemas
têm sido utilizados em instituições académicas e quais as boas-práticas que emergem
desse uso. Sabendo quais as funcionalidades habitualmente disponíveis neste tipo de sis-
temas, criou-se um inquérito online, para recolher as opiniões e necessidades dos docentes
do DEI. Tendo em consideração os resultados do inquérito, desenvolveveu-se a especifi-
cação do sistema. Esta inclui uma lista prioritizada das funcionalidades, assim como a
arquitectura do sistema. Durante a fase de especificação, foi também decidido utilizar
o DOMjudge, um sistema utilizado em concursos de programação, como a base para o
novo sistema. Seguidamente, um protótipo foi implementado e os resultados do projecto
foram avaliados.

Na avaliação de resultados, concluiu-se que o protótipo desenvolvido, que foi config-
urado num servidor de testes e pode ser livremente utilizado, implementa um conjunto
significativo de funcionalidades. O sistema possui dois mecanismos inovadores, que não
foram encontrados noutros sistemas de avaliação automática: a possibilidade de definir
casos de teste com atributos, tais como mensagens personalizadas de feedback, e um
mecanismo de código esqueleto. No entanto, ainda são necessários mais avanços em
termos de implementação e validação.

iii

iv

Acknowledgements

I would like to thank everyone who contributed in some way to this dissertation.
First of all, I would like to thank my supervisor, Professor António Fernando Coelho,

for all enthusiasm, efforts and good ideas. Thank you for all the useful guidelines for
keeping this project on track.

Special thanks go to Professor Fernando Nunes Ferreira, António Bandeira and Tito
Vieira for all the suggestions concerning the final system specification.

I would like to add further thanks to António Bandeira for his suggestions about the
system’s architecture and communication protocol.

Thank you to all CICA’s staff involved in creating the virtual machines used for setting
up a test server for the new CBA system.

Special gratitude goes to my parents and sister for all their support, love and care.
Thank you for creating an environment which made my life easier.

And last but not least, I would like to thank everyone who has made this semester
such a fantastic one. Thank you for all the great chats, lunches, afternoon snacks, dinners,
nights and amazing events full of cheer. I won’t list any name, because I could forget
someone and you folks know who you are ;)

Pedro Pacheco

v

vi

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Goals . 2
1.3 Methodology . 2
1.4 Document Structure . 3

2 CBA Systems 5
2.1 CourseMarker . 6
2.2 BOSS . 10
2.3 xLx . 13
2.4 Mooshak . 16
2.5 RoboProf . 18
2.6 Submit! . 19
2.7 GAME . 22
2.8 DOMjudge . 24
2.9 Summary of Features . 26

3 Application of CBA Systems in e-Learning 35
3.1 Case Studies Analysis . 35

4 Analysis of Learning Needs 45
4.1 Survey Analysis . 45

5 Specification of a New CBA System 55
5.1 New System Proposal . 55
5.2 Reusing an Existing System . 62
5.3 Integration With Moodle . 65
5.4 From Programming Contests to University Assignments 68
5.5 Architecture . 69

6 Implementation 73
6.1 Entity Mapping . 74
6.2 Front End and Communication Protocol 77
6.3 Extending DOMjudge’s Features . 77
6.4 Polling of Automatic Assessment Results 77
6.5 Test Cases Configuration and Personalized Feedback 78
6.6 Skeleton File Mechanism . 79

vii

CONTENTS

6.7 Feedback System . 82

7 Results 83
7.1 Implemented Features . 83
7.2 Prototype Validation . 86
7.3 Summary . 87

8 Conclusions and Future Work 89
8.1 Work Summary . 89
8.2 Future Work . 91

References 93

A Survey 99

B Installation Guide 107
B.1 Installing the Main Automatic Assessment Server 107
B.2 Installing a Judgehost . 108
B.3 Installing the Moodle Server . 109

C Programming Language Configuration Guide 111
C.1 DOMjudge Configuration . 111
C.2 Moodle Configuration . 112

D Assessment Creation Guide 115
D.1 Accessing the Test Server . 115
D.2 Assessment with Skeleton Code . 116
D.3 Assessment without Skeleton Code . 121

E A Scheme Assessment 125
E.1 Approach 1 . 126
E.2 Approach 2 . 127

F Solution Submission Guide 129

G Communication Protocol 135

viii

List of Figures

2.1 CourseMarker architecture . 8
2.2 CourseMarker main student interface . 9
2.3 CourseMarker student interface - representation of marks and feedback . 9
2.4 BOSS architecture . 12
2.5 BOSS student interface - Java client . 12
2.6 BOSS student interface - web client . 12
2.7 xLx interface - GUI for a tutor to configure new exercises 15
2.8 xLx interface - Annotation window from the student’s point of view . . . 15
2.9 Mooshak graphical interface - judges’ view 18
2.10 Submit! graphical interface - basic assessment configuration screen . . . 21
2.11 GAME user interface . 23

4.1 Curricular years of the positive answers’ courses 47
4.2 Study areas of the positive answers’ courses 47

5.1 Use cases overview . 56
5.2 Assessments Management use cases . 57
5.3 Assessments Solving use cases . 57
5.4 Submissions Management use cases . 58
5.5 DOMjudge’s architecture . 70
5.6 Overall architecture . 71

6.1 DOMjudge main entities . 75
6.2 Moodle plugin main entities . 76

A.1 Survey page 1 - Initial page . 99
A.2 Survey page 2 - Creation of new assessments 100
A.3 Survey page 3 - Test case definition and automatic assessment 100
A.3 Survey page 3 - Test case definition and automatic assessment (cont) . . . 101
A.4 Survey page 4 - Creation and submission of solutions 102
A.5 Survey page 5 - Feedback system . 102
A.5 Survey page 5 - Feedback system (cont) 103
A.6 Survey page 6 - Submissions management 103
A.6 Survey page 6 - Submissions management (cont) 104
A.7 Survey page 7 - Extra features . 104
A.7 Survey page 7 - Extra features (cont) . 105
A.8 Survey page 8 - Final page . 105

ix

LIST OF FIGURES

B.1 Setting up the contest table . 108
B.2 Adding a new judgehost to DOMjudge 109

C.1 Programming Language Configuration - Step 2 112

D.1 Programming assessment general settings 116
D.2 Programming assessment grading settings 117
D.3 Programming assessment uploading of files settings 118
D.4 Programming assessment programming languages settings 118
D.5 Programming assessment skeleton code 118
D.6 Programming assessment feedback settings 119
D.7 Programming assessment test cases . 119
D.8 Programming assessment description . 121
D.9 Programming assessment description - sample input and output 122
D.10 Programming assessment grading settings 122
D.11 Programming assessment uploading of files settings 123
D.12 Programming assessment programming languages settings 123
D.13 Programming assessment skeleton code 123
D.14 Programming assessment feedback settings 123
D.15 Programming assessment test cases . 124

F.1 Solution submission general view . 129
F.2 Compilation playground . 130
F.3 Compilation playground - successful compilation 130
F.4 Solution submission . 131
F.5 Submission feedback . 132
F.6 Input and output data . 133

x

List of Tables

2.1 Types of assessments supported by CBA systems 27
2.2 Methodologies for test case definition available in CBA systems 28
2.3 Environment for Solutions Development 29
2.4 Support for Skeleton Solution Mechanism 30
2.5 Programming Languages Supported by the CBA systems 32
2.6 Type of interface of CBA systems . 33

3.1 CBA systems used in different institutions 35

4.1 Course information of positive answers 46
4.2 Usefulness of the different assessment types 48
4.3 Parameters for assessment configuration 48
4.4 Votes on the different test-cases definition methodologies 48
4.5 Importance of different test-case parameters 49
4.6 Votes on the solution development alternatives 49
4.7 Usefulness of a mechanism for definition of skeleton solutions 50
4.8 Votes on the different levels of feedback 50
4.9 Usefulness of a mechanism for personalized feedback messages 51
4.10 Usefulness of features related to the management of solutions 51
4.11 Usefulness of some suggested extra features 52

5.1 Types of supported assessments . 59
5.2 Parameters for assessment configuration 59
5.3 Methodologies for test-cases definition 59
5.4 Parameters for test-case configuration 60
5.5 Features for supporting the elaboration and submission of solutions 60
5.6 Features related to the feedback system 61
5.7 Features related to the management of submissions 61
5.8 Extra features . 62
5.9 Features with high priority . 62
5.10 Features with medium priority . 63
5.11 Features with low priority . 63
5.12 Implementation freedom of the different plugin alternatives 65
5.13 Implementation effort of the different plugin alternatives 66
5.14 Number of pre-implemented configuration parameters for the different

plugin alternatives . 66
5.15 Availability of a pre-implemented mechanism for upload of solutions in

the different plugin alternatives . 66

xi

LIST OF TABLES

5.16 Vulnerability to future Moodle structural changes of the different plugin
alternatives . 67

5.17 Means for reusing problems of the different plugin alternatives 67

7.1 Implementation of the types of supported assessments 84
7.2 Implementation of the parameters for assessment configuration 84
7.3 Implementation of the methodologies for test-cases definition 84
7.4 Implementation of the parameters for test-case configuration 85
7.5 Implementation of the features for supporting the elaboration and submis-

sion of solutions . 85
7.6 Implementation of the features related to the feedback system 85
7.7 Implementation of the features related to the management of submissions 86
7.8 Implementation of the extra features . 86

xii

Abbreviations

ACM Association for Computing Machinery
API Application Programming Interface
CBA Computer-Based Assessment
CGI Common Gateway Interface
CICA Prof. Correia de Araujo Computer Centre
CPU Central Processing Unit
DEI Department of Informatics Engineering
FEUP Faculty of Engineering of the University of Porto
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
ICPC International Collegiate Programming Contest
ICT Information and Communication Technology
IDE Integrated Development Environment
MIEEC Master in Electrical and Computers Engineering
MIEIC Master in Informatics and Computing Engineering
RMI Remote Method Invocation
SOAP Simple Object Access Protocol
UML Unified Modeling Language
SQL Structured Query Language
SSL Secure Sockets Layer
VPN Virtual Private Network
WSDL Web Service Definition Language
WWW World Wide Web
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformations

xiii

ABBREVIATIONS

xiv

Chapter 1

Introduction

E-Learning is defined as all forms of electronic supported learning and teaching, which
are procedural in character and aim to effect the construction of knowledge with refer-
ence to individual experience, practice and knowledge of the learner. Information and
communication systems, whether networked or not, serve as specific media to support the
learning process [TLN+04]. An e-Learning system is a comprehensive software pack-
age that supports courses that depend on the WWW for some combination of delivery,
testing, simulation, discussion, or other significant aspect [Rob99]. Examples of such
systems are the Blackboard Learning System, Claroline, Dokeos, HotChalk, Moodle and
Sakai. These systems have been widely adopted in universities, helping to diminish the
distance between teaching staff and students and allowing a better monitoring of the learn-
ing process.

Programming problems and assignments are considered essential elements of software
engineering and computer science education. They can help students become familiar
with the attributes of modern programming languages, become acquainted with essential
tools, and to understand how the principles of software development and design can be
applied [DLO05]. In addition, a large number of students are enrolling in introductory
programming courses annually. As a consequence, teaching staff in many universities
and institutes are facing a great number of assignments that require marking and grading
[MKKN05].

Automation of the assessment process can be achieved by using a specific kind of
e-Learning systems, the Computer Based Assessment (CBA) systems. Moreover, these
systems are a good way of creating new exercises for students and, at the same time,
provide them with more and more accurate feedback, when compared with traditional
teaching methods [CAMF+03]. This combination of factors is leading to a wide accep-
tance of CBA systems among teaching staff at many universities.

1

Introduction

1.1 Problem Statement

For the last years, a simple CBA system has been used in a first-year programming course,
where the functional language Scheme is taught. Despite its success, it has some limita-
tions in terms of the supported functionalities and flexibility and hence the creation of a
new system is desirable. This new system should be extensible in order to easily incorpo-
rate the introduction of new programming languages.

1.2 Goals

The goals of this dissertation are to specify and to develop a prototype of a CBA sys-
tem for supporting the programming components of the courses of the Departamento de
Engenharia Informatica (DEI - Department of Informatics Engineering) of the Faculdade
de Engenharia da Universidade do Porto (FEUP - Faculty of Engineering of the Univer-
sity of Porto). The core component of the CBA system should behave as an independent
service and it should be possible to integrate it with other platforms such as Moodle, the
e-Learning platform used at the Faculty.

1.3 Methodology

A number of procedures were followed in order to produce a complete specification and
to implement a prototype of the CBA system:

• Study of the existing CBA systems - a study of the existing CBA systems was
performed with the objective of understanding what features are available in current
state-of-the-art systems;

• Evaluation of the needs DEI teaching staff - this evaluation was performed with
an online survey with the goal of understanding what courses may benefit with the
CBA system and what functionalities are considered to be the most important;

• Analysis of the system requirements - using the answers to the online survey, the
system requirements were analyzed;

• Specification of the new CBA system - having a description of the requirements of
the system, its functional specification was documented;

• Prototype development - within the available time, a functional prototype of the
system was implemented;

• Evaluation of results - finally, the results achieved by the system specification and
by the prototype were assessed.

2

Introduction

1.4 Document Structure

This document is structured in 8 chapters, being the first one composed by this introduc-
tion.

Chapter 2 gives an overview of the features available in eight of the CBA systems
currently in use. These features are divided in topics for a better comprehension. The
chapter ends with a summary that compares the features of the different systems.

The third chapter presents how CBA systems have been used to support the learning
process in different Universities. Some case studies, from where some best practices were
extracted, are discussed.

The fourth chapter consists of the analysis, supported by an online survey, of DEI’s
teaching staff learning needs. The survey structure was based on the features usually
available on CBA systems.

Chapter 5 consists of the specification of the new CBA system, based on the require-
ments description. A proposal, including the features that should be supported, is intro-
duced. Then, a study about reusing one of the studied CBA systems is presented and
a decision is made about the type of Moodle plugin to use. The chapter ends with a
discussion about the system’s architecture.

The sixth chapter is about the prototype implementation. It contains the most relevant
implementation details, divided in seven main topics.

The evaluation of the results of achieved by this project is presented in chapter 7.
The implemented features are listed, the validation of the system is discussed and some
general considerations about the system features are made.

The last chapter contains some conclusions about the project as well as future work
perspectives.

Some appendixes, regarding the configuration and usage of the system, were included
at the end of the document.

3

Introduction

4

Chapter 2

CBA Systems

CBA systems seem to have existed for as long as educators have asked students to build
their own software [DLO05]. Probably, the earliest example of such a system is the
one developed by Hollingsworth for assessing programs written in assembly language on
punched cards [Hol60]. Between the decades of 1980 and 1990, a number of CBA sys-
tems based on command-line interfaces and manual operation of scripts were developed
[DLO05]. More recent systems such as CourseMarker, BOSS, TRAKLA and RoboProf
make use of the recent developments in web technology, graphical interfaces and adopt
increasingly sophisticated assessment approaches. A pretty recent project, the EduJudge
project, is taking the concept of CBA systems one step further. It has the objective of inte-
grating the University of Valladolid (UVa) Online Judge [uva10] into an effective educa-
tional environment, in order to satisfy the users demand of a greater pedagogic character
and, in this way, facilitate the use of the Online Judge as one more activity for official
courses in several institutions [edu10, RML08].

This chapter gives an overview of the features available in some of the CBA systems
currently in use. If enough information available in existing literature, the following topics
are presented for each system.

• The Automatic Assessment - description of how the solutions for exercises are
assessed;

• Setup of New Exercises - explanation of the workflow that course tutors need to
follow for setting up new exercises;

• Solving Exercises - explanation of the workflow that students need to follow for
solving exercises;

• Feedback System - description of how (and how detailed) is the automatic feedback
given to students;

5

CBA Systems

• Management of Submissions - enumeration of the functionalities available to the
course tutors for management and analysis of the students’ submissions;

• Architecture - explanation of the architecture of the system: modules, relations
between them and different responsibilities;

• Graphical Interface - description of the graphical user interface;

• Security and Reliability - presentation of the existing mechanisms for assuring
system’s security and reliability;

• Extensibility - description of how to customize/extend the system features;

After the description of the different systems, a set of tables is used to summarize and
compare the available features.

2.1 CourseMarker

The CourseMarker CBA system, developed at the University of Nottingham and first used
in 1998, was created as the replacement of the Ceilidh system from the same University
[BBFH95, FHTS00, FHST01]. Ceilidh was created in 1988 and was based on an auto-
matic assessment mechanism that could test and mark programs using different perspec-
tives: check a program’s dynamic correctness, the programming style and layout, among
others [BBFH95]. Copies of Ceilidh were taken by over 300 establishments worldwide
and installed at many of them around the globe. However, Ceilidh had several limitations
and hence CourseMarker was created to overcome them [HGST05]. As of 2005, about
50 universities worldwide have taken copies of CourseMarker for trial and approximately
15 purchased the system for actual use [HGST05].

2.1.1 The Automatic Assessment

CourseMarker has a set of marking tools to automatically assess the quality of students’
submissions. Three tools are used for assessing programming exercises [HST02]: the
Typographic Tool checks the program layout, indentation, choice and length of iden-
tifiers and usage of comments; the Dynamic Tool runs the students’ programs with var-
ious sets of test data with the intent of verifying whether the students’ programs satisfy
the stated specification; the Feature Tool checks the students’ source code for special
features that are exercise dependant (for example, an exercise set on a unit that teaches
the difference between while and for statements would typically include a feature test
to ensure the appropriate use of each construct).

6

CBA Systems

2.1.2 Setup of New Exercises

When setting up a new exercise, the exercise developer has to define a skeleton for the
solution. This skeleton may be totally empty, contain a semi or fully functional program
or even a flawed program to be debugged. The developer also has to customize the param-
eters of the different marking tools that are going to be used. In addition, the following
files need to be specified:

• mark.java - contains Java code that can access CourseMarker’s state or call external
tools, like compilers, to help with the assessment;

• properties.txt - defines parameters for the exercise settings, such as: exercise’s file-
name, maximum number of submissions, whether the exercise is open or closed to
students, maximum size of a solution’s output, maximum running time, etc;

• mark.scale - if required, this file can be used to specify information on how to scale
marks.

2.1.3 Solving Exercises

The workflow followed by students for solving an exercise can be defined as follows
[HST02]:

1. Login into the system and read the exercise description which explains the specifi-
cations that the solution has to comply with, and the formats of any input and output
files;

2. Obtain a skeleton solution along with header files and/or testing tools;

3. Solve and test the exercise locally, in their workplace;

4. Submit their solution for assessment, by uploading it to the system, and receive
marks and feedback. Solutions can be resubmitted as many times as allowed by the
exercise developer.

2.1.4 Feedback System

CourseMarker has mechanisms for providing automatic and immediate feedback and re-
sults. This information is provided in a graphical tree structure which may also contain
comments on how to improve the solutions and links for further reading material [HST02].
The amount of feedback can be regulated by the exercise developer to match the needs of
the classroom.

7

CBA Systems

2.1.5 Management of Submissions

When using CourseMarker, course tutors have access to a set of functionalities related
to the management and analysis of students’ solutions. Among them are [HHST03,
HGST05]: view students’ solutions and marks, view statistics of marks for particular ex-
ercises, view missing/submitted students, search for and view plagiarism results, expunge
students’ work.

2.1.6 Architecture

CourseMarker was architected with extensibility and maintainability in mind. As can be
seen in figure 2.1 it is composed by several subsystems. Each one has different responsi-
bilities [HGST05].

Figure 2.1: CourseMarker architecture

2.1.7 Graphical Interface

CourseMarker’s graphical user interface was developed with Java Swing. The student’s
interface is split into three areas (figure 2.2). A row of function buttons that initiate a
variety of actions appears along the top. The area on the left side is used as the course
view frame. It displays the courses students are registered for and the units and exercises
available for viewing and submitting. Information is displayed on the right side, which
can consist of course notes, question specifications, or even test data [HGST05]. The
students can also access a graphical representation of their marks as well of the feedback
received for the different assessments (figure 2.3).

8

CBA Systems

Figure 2.2: CourseMarker main student interface
Figure 2.3: CourseMarker student interface - rep-
resentation of marks and feedback

2.1.8 Security and Reliability

CourseMarker was designed and developed with security and reliability in mind. The
main reliability problems which may arise are related to corrupted/invalid exercise data,
faulty execution of student programs and problems with the marking subsystem. The
system has mechanisms for coping with and for logging this kind of problems [HGST05].

In terms of general security, CourseMarker has a password encryption mechanism and
a session key security feature. When it comes to the marking system, two security checks
are performed [HGST05]: the first identifies potential security risks on students’ code,
such as "*.*", "unlink", "delete" and the use of network sockets/RMI; the second consists
in a protected sand-box, with restricted privileges, for running the submissions.

2.1.9 Extensibility

CourseMarker was also designed with extensibility in mind, so that new features can be
easily added, along with a variety of new types of courses and exercises. The marking
process itself can be extended/customized in two different ways [HGST05]. The first
one is related with the creation or modification of exercises for types of courses already
supported by the system. In this case, exercise developers only need to customize the
files referred in section in 2.1.2 and therefore do not need to alter the source code of the
system. The second type of customization is related with the customization of the marking
server. To introduce new functionalities, like a new kind of course still unsupported, it is
necessary to create new marking tools and hence the source code has to be changed.

9

CBA Systems

2.2 BOSS

BOSS is a CBA system developed by the University of Warwick. It started in the mid-
1990s has a collection of programs without graphical interface [JL95], but soon it was
decided that an improved interface was desirable and graphical interfaces were imple-
mented [JL98, JGB05].

Since BOSS is an open source product [War09], the authors do not have accurate
information as to which other institutions have deployed it and what local changes they
have made to the software [JGB05].

2.2.1 The Automatic Assessment

The BOSS system automatically evaluates correctness of submitted solutions by the ap-
plication of automatic tests. Two methodologies for defining and running the tests can be
employed, although the software is structured to allow the incorporation of more in the
future [JGB05]. The first methodology consists in the definition of the expected inputs
and outputs in data files, while the second methodology consists in the definition of JUnit
test. The latter approach applies only when Java is the language used in the submissions.
To support the manual marking of subjective attributes related to code quality, BOSS pro-
vides a set of program metrics, such as number of comments and percentage of methods
declared abstract.

2.2.2 Setup of New Exercises

In order to setup new exercises, exercise developers use a data model available in BOSS:
the component model. This model is intended to support arbitrarily complex assessment
structures, composed by one or more problems [JGB05]. Then, for each problem, the
developers have to use one of the methodologies, presented in the previous section, for
defining the test cases to assess students’ solutions. Part of these tests can be made avail-
able to students, so they can use them to check their solutions before submitting.

2.2.3 Solving Exercises

The workflow followed by students for solving an exercise can be defined as follows:

1. Login into the system and read the exercise description which explains the specifi-
cations that the solution has to comply with, and the formats of any input and output
files;

2. Solve and test the exercise locally, in their workplace;

10

CBA Systems

3. Submit their solution for assessment, by uploading it to the system. Before sub-
mitting, students can run a set of automatic tests (which are a subset of the final
tests) on their programs. There is no limit for the maximum number of submissions
(within the prescribed deadline).

2.2.4 Feedback System

When running the set of automatic tests available before submitting their solution, stu-
dents receive immediate feedback about whether or not their program succeeds in pro-
ducing the right outputs. However, the feedback of their final mark is not immediate.

After the deadline for the submissions has passed, course staff can run the final auto-
matic tests and mark the solutions. Since it is desirable for students to receive an explana-
tory result rather than just a number, the system allows the staff to attach written feedback
to each submission. The final results and feedback are then e-mailed by the system to the
students [JGB05].

2.2.5 Management of Submissions

The BOSS software permits staff to perform five principle tasks [JGB05]:

• Run automatic tests on the students’ submissions;

• Use the plagiarism detection software to detect plagiarism in the solutions;

• Mark submissions, by viewing the results of the automatic tests, running the sub-
mitted programs and viewing the source code;

• Authorized staff can moderate the marks given to students’ by other markers;

• Associate manual feedback to students’ submissions.

Some other features are available from BOSS’ interface [JGB05]: consult student
details, penalize late submissions, save submission, submit on the behalf of a student,
publish marks, etc.

2.2.6 Architecture

Figure 2.4 presents the architecture of the system. Technologies like SSL and RMI are
used to support the communication between the different components [JGB05].

11

CBA Systems

Figure 2.4: BOSS architecture

2.2.7 Graphical Interface

BOSS has two kinds of interfaces available: one developed with Java Swing, to be used
mainly on machines connected to the campus network; the second is a web-based solu-
tion, to be used at home [JGB05]. Figures 2.5 and 2.6 present screenshots of the student
interface of, respectively, the Java client and the web client.

Figure 2.5: BOSS student interface - Java client Figure 2.6: BOSS student interface - web client

12

CBA Systems

2.2.8 Security and Reliability

BOSS has security mechanisms to identify the student using the software, to assure the
integrity of submitted files and to protect data stored on the system from unauthorized
access.

In order to protect the system from unsafe or malicious code, the automatic tests are
executed inside a sandbox able to limit the amount of available CPU time and memory
and with strictly controlled set of permissions [JGB05].

2.2.9 Extensibility

In terms of extensibility, it is know that BOSS is prepared to easily incorporate new
methodologies for defining and running test cases [JGB05]. Although no more infor-
mation was found about the ease of extending other parts of the system, it is important to
note that, being an open source project, BOSS can be extended and customized by any
institution.

2.3 xLx

The eXtreme e-Learning eXperience (xLx) system is a web based online learning plat-
form developed at the University of Muenster and can either be used in university or
commercial contexts. Its main objective is to support the exercise portion of technically
oriented university courses [SVW06]. Initially, it supported the training of skills related
to techniques like SQL queries, object-relational features of SQL and transformation of
XML documents with XSLT or XQuery [HLVW02]. Later on, the possibility of auto-
matic assessment of Java programming exercises was also incorporated [SVW06]. Quite
recently, xLx was redesigned and rewritten over a 5 month period by a 12-student team
and a xLx2 system is now available [Mue08].

2.3.1 The Automatic Assessment

The xLx system automatically assesses the exercise solutions with two types of tests:
static and dynamic. Only one static test is performed and simply consists in verifying
whether or not the code compiles. The dynamic tests are specified with the JUnit test
framework. To better handle the compilation and test process, Apache Ant is used to both
compile the submitted solutions and execute the JUnit test cases [SVW06].

2.3.2 Setup of New Exercises

When setting up a new exercise, tutors have to define a set of properties [SVW06] (see
also figure 2.7):

13

CBA Systems

• Section - the exercise can be assigned to an existing section comprising associated
exercises;

• Level - this property defines the difficulty of the exercise;

• Exercise type - the only exercise type available for programming assignments is
Java;

• Exercise text - description of the exercise to be solved.

In addition, the files containing the dynamic JUnit test cases need to be indicated.
When creating the tests (which as to be done with an external IDE or text editor), tutors
can declare them either as public or hidden. The result of public tests is presented to
students, but does not count for the grading of the exercise, while hidden tests results are
not presented and count for the grading.

The system also provides the tutors with the facility of uploading sample solutions
that can be used by the correctors of the exercise.

2.3.3 Solving Exercises

The workflow followed by students for solving an exercise can be defined as follows:

1. Login into the system and read the exercise description which explains the specifi-
cations that the solution has to comply with;

2. Solve and test the exercise locally, in their workplace;

3. Submit their solution for assessment, by uploading it to the system. Once a correct
submission is made, i.e. the code compiles, solutions cannot be changed anymore.

2.3.4 Feedback System

When students submit a solution, they receive immediate feedback about whether or not
their solution compiles successfully. In the case of an unsuccessful compilation, students
get the chance to submit the code again. After a successful compilation, students receive
immediate feedback about the performance on the public test cases. The system distin-
guishes between two kinds of test case failure: the program output does not match the
expected or an unhandled exception occurred during the execution.

The system provides the tutors with a feature to easily annotate students’ source code.
For these annotations, a special Java syntax-highlighting scheme (figure 2.8) is used to
make the reading of the source code more comfortable [SVW06].

14

CBA Systems

2.3.5 Architecture

In terms of architecture, xLx is a Web based application implemented in typical three-tier
client-server architecture and to access it only a standard Web browser is needed. The
xLx platform is implemented on top of an Apache Web server and a mySQL database
running on a Linux platform [HLVW02, SVW06].

2.3.6 Graphical Interface

The Web pages that compose xLx’s graphical interface are generated dynamically by
PHP4 scripts and Java Servlets. Figure 2.7 presents the graphical interface used by a
tutor to configure new exercises, while figure 2.8 presents the window where students can
consult the annotations performed by their tutors.

Figure 2.7: xLx interface - GUI for a tutor to con-
figure new exercises

Figure 2.8: xLx interface - Annotation window
from the student’s point of view

2.3.7 Security and Reliability

Since unknown code provided by students is compiled and executed on the same server
on which xLx itself is running on, special security measures are taken to guarantee that
malicious code does not affect the system. Given that Java applications run on a virtual
machine, Java policies are used to define a very restricted policy for the programming
exercise module [SVW06].

15

CBA Systems

2.4 Mooshak

Mooshak is a system developed at the DCC-FC and LIACC of the University of Porto
[LS03] with the main purpose of conducting programming contests based on the ICPC
rules [AI10]. Although the system was originally intended for contests, it is increasingly
being used in programming courses: to give instant feedback on practical classes, to
receive and validate assignments submissions, to pre-evaluate and mark assignments, etc
[Lea09].

2.4.1 The Automatic Assessment

Mooshak’s automatic assessment consists in two different types of analysis [LS03]:

• Static - checks for integrity of the submission. For instance, the size of the program
is verified to prevent a denial of service attack by a submission of a too large pro-
gram. Also, the system tries to compile the code. If the compiler produces errors or
warnings, the assessment is aborted and an error message is presented to the student.
Otherwise, an executable program is produced to be used in the dynamic analysis;

• Dynamic - in the dynamic analysis, the solution is tested against a set of test cases,
defined by input and output files. Depending on the behavior of the submitted
program, the system produces different classifications which have different levels
of severity [LS03]. From the most to the least severe, the classifications may be:
Requires re-evaluation, Time-limit exceeded, Output too long,
Run-time error, Wrong answer, Presentation error and Accepted;

2.4.2 Setup of New Exercises

When setting up a new exercise, and after defining the text of its description, exercise
developers have to specify a set of input and output files for testing the submissions. They
also need to upload a sample solution to the problem which is used by the system to
automatically determine the maximum allowed running time for the submissions [LS03].

2.4.3 Solving Exercises

The workflow for solving an exercise can be defined as follows:

1. Login into the system and read the exercise description which explains the problem
and the formats of the expected input and output;

2. Solve and test the exercise in a local workplace;

3. Submit the solution for assessment, by uploading it to the system. The system shows
the classification resultant from the static and dynamic analyses.

16

CBA Systems

2.4.4 Feedback System

Immediately after a submission has been made, Mooshak produces feedback which con-
sists in the classifications produced by the static and dynamic analyses [LS03]. In case
of a compilation error or warning, an additional message containing the compiler output
may be presented.

2.4.5 Management of Submissions

Mooshak provides some features related to the management of students’ submissions. For
instance, it is possible to re-evaluate submissions, by re-running the automatic assessment
process. This is useful when mistakes in the input or output files are detected. It is also
possible to consult information related to the submissions: source code, running time,
memory used, produced output, etc.

2.4.6 Architecture

The architecture of Mooshak is that of a typical Web application: a client-server frame-
work connecting the users with the machine where submissions are assessed [LS03]. The
server is an Apache HTTP server extended with external programs using the CGI proto-
col and running on Linux. The external programs are responsible for generating HTML
interfaces and processing form data [LS03].

2.4.7 Graphical Interface

Figure 2.9 presents a screenshot of Mooshak’s HTML interface. The screenshot illustrates
the judges’ view of the list of submissions [LS03].

2.4.8 Security and Reliability

In order to assure the security of the server where Mooshak is running on, a set of security
measures are used. For instance, all the submissions are executed in a sandbox with
restricted privileges. Furthermore, the system defines upper bound limits for execution
and compilation time, code size, output size, process data and stack size [LS03].

2.4.9 Extensibility

Although no information was found about the ease of extending Mooshak functionali-
ties, it is important to note that, being an open source project, it can be extended and
customized by any institution.

17

CBA Systems

Figure 2.9: Mooshak graphical interface - judges’ view

2.5 RoboProf

RoboProf is an online teaching system based on WWW technology and developed at
the Department of Computer Applications of the Dublin City University to automatically
mark Java programming exercises [Dal99, DH04]. The access to exercises is sequential,
which means that students have to solve the easier problems in order to have access to
the harder ones. Besides the automatic correction of code, RoboProf has a feature for
plagiarism detection.

2.5.1 The Automatic Assessment

RoboProf has a marking scheme that corrects a program depending on its output. It
compares the numbers in the output with the expected output, using a set of test data that
may be fixed for each submission or generated randomly. Random generation of test data
prevents students from tricking the system by writing code that just prints the expected
output [DH04].

2.5.2 Setup of New Exercises

Setting up a new assignment requires the teaching staff to define the start time and dead-
line, as well as the information needed to set up the test data.

18

CBA Systems

2.5.3 Solving Exercises

The workflow followed by students for solving an exercise can be defined as follows:

1. Login into the system and read the exercise description which explains the problem
and the formats of the expected input and output;

2. Solve and test the exercise locally, in their workplace;

3. Submit their solution for assessment, by uploading it to the system, and receive
marks and feedback. There is neither limit for the maximum number of submissions
nor penalization for multiple submissions (within the prescribed deadline).

2.5.4 Feedback System

After submitting their solutions, students receive automatic and immediate feedback re-
garding the obtained mark, in percentage, and the expected and obtained outputs.

2.5.5 Security and Reliability

The automatic testing is performed in students’ machines in order to reduce the load on
the server and to facilitate immediate feedback [DH04]. This also contributes for keeping
the server safe from malicious code.

2.5.6 Extensibility

As referred in [DH04], the default behavior of RoboProf is to present a constant specifi-
cation, to mark the programming exercises based on output, and to read a file containing
the required test data. However, since the system is written in Java, dynamic loading of
program modules is possible without having to modify the engine. In addition, RoboProf
is structured in a hierarchical fashion which makes it possible to add new programs and
marking schemes. In addition, since marking is based on output, RoboProf may be used
to teach any programming language using the same set of exercises.

2.6 Submit!

Submit! is an open-source CBA system developed at the School of Communications and
Informatics of the Victoria University of Technology with the goal of improving the quan-
tity and quality of feedback given to students studying introductory Java programming
[VH03, PRS+03].

19

CBA Systems

2.6.1 The Automatic Assessment

Submit! automatically evaluates the correctness of the submitted solutions by applying
automatic tests defined by text files with input and output data. The system also analy-
sis students’ code for elements of good style such as comments and length of methods
[VH03].

2.6.2 Setup of New Exercises

Setting up an assignment requires some input from the lecturer, such as due date, number
and weighting of marking criteria, the type of output and samples of input and desired
output [VH03].

2.6.3 Solving Exercises

The workflow followed by students for solving an exercise can be defined as follows:

1. Login into the system and read the exercise description which explains the problem
and the formats of the expected input and output;

2. Solve and test the exercise locally, in their workplace;

3. Submit their solution for assessment, by uploading the source files to the system and
by nominating a main class. Run the automatic tests by requesting for automatic
feedback. There is no limit for the maximum number of submissions (within the
prescribed deadline).

2.6.4 Feedback System

After submitting their solutions and requesting for the automatic feedback, students im-
mediately receive some comments regarding code quality. Afterwards, and if the code
compiles successfully, the program’s output is displayed for the students to compare with
the model output supplied by the lecturer. Apart from this immediate and automatic feed-
back, students are also able to view tutor’s comments and their final mark on-line as soon
as the tutor has graded it [VH03].

2.6.5 Management of Submissions

Submit! has interfaces available to the teaching staff for viewing submitted files and
grade assignments, for consulting various statistics and review or re-assess students’ sub-
missions [VH03].

20

CBA Systems

2.6.6 Architecture

Submit! is written in Java using servlets, residing on a dedicated UNIX machine running
a Java servlet platform, Tomcat. The database backend is a hierarchy of flat files [VH03].

2.6.7 Graphical Interface

Figure 2.10 presents a screenshot of Submit!’s interface. The screenshot illustrates the
screen for the basic configuration of an assessment [PRS+03].

Figure 2.10: Submit! graphical interface - basic assessment configuration screen

2.6.8 Security and Reliability

Security is assured via login names and passwords already allocated to students by the
School. Students must also be officially enrolled in a subject in order to login. A restricted
execution environment, a Java sandbox, is used to execute the students programs [VH03].

2.6.9 Extensibility

Although no information was found about the ease of extending Submit! functionalities, it
is important to note that, being an open source project, it can be extended and customized
by any institution.

21

CBA Systems

2.7 GAME

The Generic Automated Marking Environment (GAME) was developed at the School of
Information Technology of the Griffith University, Australia. GAME is the successor
of the C-Marker [GVN02] system which marks programming assignments written in C,
and was designed to address its limitations [BGNM04a]. GAME has been developed to
automatically assess programming assignments written in a variety of languages, to apply
a generic strategy for looking at source code structure and to apply different types of
marking strategies for examining the correctness of students’ program output. As of the
publication of [BGNM04a] it was still only able to mark programs written and Java and
C.

2.7.1 The Automatic Assessment

Teaching staff can define different marking criteria for different types of assessment
[BGNM04a]. This allows for the use of different marking strategies to test the correct
results produced by the submitted programs. As of the publication of [BGNM04a] there
were two marking strategies available: a "keyword" strategy that examines the student’s
program output for a keyword at any position and an "ordered keyword" strategy, that
looks for an ordered set of keywords in the student’s program output.

Students’ solutions also receive marks regarding the code structure, which is calcu-
lated in three parts [BGNM04a]: number of comments, valid declaration of variables and
number of "magic numbers" used in the code.

2.7.2 Setup of New Exercises

To be able to dynamically mark different types of programming assignments, the GAME
system requires the assessors to fill out a marking schema when creating a new assign-
ment [BGNM04b]. The marking schema contains information about assignment files,
assignment marks and marking criteria [BGNM04a].

2.7.3 Solving Exercises

The workflow followed by students for solving an exercise can be defined as follows:

1. Login into the system and read the exercise description which explains the problem
and the marking criteria;

2. Solve and test the exercise locally, in their workplace;

3. Submit their solution for assessment, by uploading the source files to the system;

22

CBA Systems

2.7.4 Feedback System

GAME does not generate feedback to students. The only feedback is available to tutors
and contains, for each submission, a mark for source code structure, a mark for correctness
of the produced output and a list of warnings or compile-time errors (if any) [BGNM04a].

2.7.5 Management of Submissions

Teaching staff can browse the overall results for each student. This is displayed in a
summary format that shows the feedback described in the previous subsection.

2.7.6 Graphical Interface

GAME’s interface was developed with Java Swing and can be accessed with a web
browser. Figure 2.11 presents a sample screenshot [BGNM04a].

Figure 2.11: GAME user interface

2.7.7 Extensibility

GAME was designed with many extensibility issues in mind. As referred in [BGNM04a],
a framework has been set in place to enable easy addition of new marker modules to
extend the system’s functionalities. Although it still only supports marking of Java and
C assignments, it is relatively easy to include further types of languages. Moreover, the
marking system schema will play an important role in the future development of GAME,
since it will eventually enable teaching staff to build marking schemas without under-
standing the schema’s structure [BGNM04b].

23

CBA Systems

2.8 DOMjudge

DOMJudge is a system created at Study Association A-Eskwadraat of the Utrecht Univer-
sity, the Netherlands [EKW09a], for running programming contests like the ACM ICPC
regional and world championship programming contests [EKW10b, EKW10a]. In this
type of programming contests, teams are on-site and have a fixed time period (mostly 5
hours) and one computer to solve a number of problems. Problems are solved by writ-
ing a program in one of the allowed languages and the judging is done by submitting the
solution source code to the jury, where the code is compiled and run against a set of test
cases [EKW10b, EKW10a].

2.8.1 The Automatic Assessment

The flow of the automatic assessment can be described as follows [EKW10b]:

1. Team submits solution. It will either be rejected after basic checks, or accepted and
stored as a submission;

2. The first available judgehost compiles, runs and checks the submission. The out-
come and outputs are stored as a judging of this submission;

3. The result is automatically recorded and the team can view the result and the score-
board is updated. A judge can optionally inspect the submission and the automatic
judging and mark it verified.

The submitted solutions are tested against a set of test cases, defined by input and
output files. To allow for problems that do not fit within the standard scheme of fixed
input and/or output, DOMjudge has the possibility of changing the way submissions are
run and checked for correctness. This can be done by implementing a special compare
script, also called a validator [EKW10a].

The status/classification of a given submission can be one of the following [EKW10b,
EKW09b]: Queued/Pending, Judging, Too-Late, Correct, Compiler-Error,
Timelimit, Run-Error, No-Output, Wrong-Answer and Presentation-Error.

2.8.2 Setup of New Exercises

Configuring DOMjudge to run a contest involves configuring the contest data, setting up
authentication for teams, supplying input and output test data and checking that everything
works [EKW10a]. For each specific exercise, the following data has to be specified:
problem description and id, whether or not submissions are accepted, runtime limit for
the solutions, input and output files with test data and, optionally, a validator for handling
problems that do not fit within the standard scheme of fixed input and/or output.

24

CBA Systems

2.8.3 Solving Exercises

The workflow for solving an exercise can be defined as follows:

1. Login into the system and read the exercise description which explains the problem
and the formats of the expected input and output;

2. Solve and test the exercise in a local workplace;

3. Submit the solution for assessment, either via a command line submit program or via
a web interface. The system shows the classification resultant from the automatic
assessment and updates the scoreboard.

2.8.4 Feedback System

Immediately after a submission has been made and the code has been compiled and tested
by an automatic judge, DOMjudge produces feedback containing the status/classifications
listed in 2.8.1.

2.8.5 Management of Submissions

DOMjudge provides some features related to the management of submissions. For in-
stance, it is possible to consult details of submissions such as its id, source code, author,
submit time, runtime, produced output and diff with test data. It is also possible to rejudge
submissions and to restart pending judgings.

2.8.6 Architecture

DOMjudge has a distributed architecture, based on a client-server framework. It discerns
three different kinds of hosts [EKW10a]:

• Team computer - team workstations where solutions are developed and submitted.
The only part of DOMjudge that may run here is the command line submit client;

• DOMjudge server - host, running on Apache, receives the submissions, runs a
MySQL database for keeping the submissions and serves web pages to teams, jury
and administrators;

• Judgehosts - a number of hosts, at least one, that retrieves submitted solutions from
the DOMjudge server, compile and run them and send the result back to the server.

25

CBA Systems

2.8.7 Graphical Interface

DOMjudge provides web interfaces for teams, juries and administrators. The web inter-
face allows the teams to submit their solutions and to read problems’ descriptions. Juries
and administrators have access to a set of features for monitoring contest data [EKW10a].
Moreover, the interface presents the scoreboard with contests’ results.

2.8.8 Security and Reliability

DOMjudge judging system was developed with security as one of the main concerns
[EKW10a]. There are mechanisms for restricting team access to others and the internet,
for restricting access to the submitted programs on the jury computers, for restricting the
environment were solutions are run, etc [EKW10a].

Since compiling and testing submissions is computationally intensive, it is recom-
mended to use at least a couple of judgehosts. Moreover, for security and performance
reasons it is highly recommended not to use the DOMjudge server as a judgehost [EKW10a].

2.8.9 Extensibility

Although no information was found about the ease of extending DOMjudge functional-
ities, it is important to note that, being an open source project, it can be extended and
customized by any institution.

2.9 Summary of Features

This section contains a summary and comparison of the features available in the differ-
ent CBA systems presented throughout the current chapter. The different features were
grouped in nine categories, each one represented by one subsection.

2.9.1 Support for Assessment Creation

The analysis of the features available in the different systems, and related to the support
for assessment creation, can be divided in two parts: analysis of the different types of
assessment that can be created and analysis of the parameters that can be used to configure
those assessments.

2.9.1.1 Types of Assessment Supported

Table 2.1 shows the type of assessments supported by the CBA systems. The meaning of
each type of assessment is as follows:

26

CBA Systems

• Exams - traditional (programming) exams that have to be solved by all the students
at the same time, within a given time limit;

• Tests - programming tests where students are divided in groups. All the students in
each group have to solve the test at the same time, within a given time limit;

• Exercises - self-learning programming exercises that can be solved by all the stu-
dents, without time limit;

Exams Tests Exercises
CourseMarker Yes Yes Yes

BOSS Yes Yes Yes
xLx Yes Yes Yes

Mooshak Yes Yes Yes
RoboProf Yes Yes Yes
Submit! Yes Yes Yes
GAME Yes Yes Yes

DOMjudge Yes Yes Yes
Table 2.1: Types of assessments supported by CBA systems

As can be seen, none of the analyzed systems presented restrictions in terms of the
types of assessment supported.

2.9.1.2 Parameters for Assessment Configuration

The concept of assessment varies between systems. For instance, in BOSS, an assessment
may be composed by several exercises, while in CourseMarker, Mooshak and xLx it is
composed by one single exercise. The parameters available in the different systems for
configuring an assessment are as follows:

• CourseMarker - start time, deadline, exercise filename, maximum number of sub-
missions and whether the exercise is open or closed to students;

• BOSS - start time, deadline and contribution of each problem/exercise for the global
mark;

• xLx - start time, deadline, level and type;

• Mooshak - start time, deadline and accepted programming languages;

• RoboProf - start time and deadline;

• Submit! - start time, deadline and penalization for late submissions;

• GAME - start time and deadline;

• DOMjudge - start time, deadline and accepted programming languages.

27

CBA Systems

2.9.2 Support for Test-Cases Definition

Similarly to what was done for the assessment creation analysis, the analysis of the fea-
tures related to the definition of test-cases was divided in two parts: analysis of the avail-
able methodologies and analysis of the configuration parameters.

2.9.2.1 Available Methodologies

Table 2.2 presents the methodologies for test case definition supported by the different
CBA systems. Two main methodologies were identified: usage of text files with the
expected input and output and definition of JUnit test cases.

Input and output files JUnit test cases
CourseMarker Yes No

BOSS Yes Yes
xLx No Yes

Mooshak Yes No
RoboProf Yes No
Submit! Yes No
GAME Yes No

DOMjudge Yes No
Table 2.2: Methodologies for test case definition available in CBA systems

Almost all of the systems support the usage of input and output text files, the only
exception being the xLx system. Only BOSS supports both input and output files and the
definition of JUnit test cases.

2.9.2.2 Test-Cases Configuration

The available parameters for test-cases assessing and configuration are as follows:

• CourseMarker - maximum size of solution output, maximum running time, static
analysis of a set of code quality parameters;

• BOSS - contribution of each test case for the global mark, static analysis of a set of
code quality parameters;

• xLx - contribution of each test case for the global mark;

• Mooshak - contribution of each test case for the global mark, maximum running
time, maximum heap and stack memory, maximum code size, maximum size of
solution output;

• RoboProf - possibility of random generation of test data;

28

CBA Systems

• Submit! - contribution of each test case for the global mark, static analysis of a set
of code quality parameters;

• GAME - static analysis of a set of code quality parameters;

• DOMjudge - maximum running time and possibility of defining validators for spe-
cial output correction.

2.9.3 Support for Elaboration and Submission of Solutions

The support for elaboration and submission of solutions can be summarized by analyzing:
if the students can directly use the CBA systems to develop their solutions or if they have
to develop them in their local environment; if the systems allow the teaching staff to define
a skeleton solution for the exercises.

2.9.3.1 Environment for Solutions Development

Table 2.3 shows the environment where the students have to develop their exercise solu-
tions: directly in the CBA system or in their local desktop using the tools of their choice.
As can be easily observed, none of the systems supports the direct elaboration of solu-
tions.

System Environment
CourseMarker Locally

BOSS Locally
xLx Locally

Mooshak Locally
RoboProf Locally
Submit! Locally
GAME Locally

DOMjudge Locally
Table 2.3: Environment for Solutions Development

2.9.3.2 Support for Skeleton Solution Mechanism

Table 2.4 shows whether or not the different CBA systems allow the definition of skele-
ton solutions. This feature proved to be a bit unpopular, being only supported by the
CourseMarker system.

2.9.4 Feedback System

Different CBA systems usually have different mechanisms for handling feedback. The
feedback may be immediate or non-immediate, manual or automatic (or a combination

29

CBA Systems

System Supports?
CourseMarker Yes

BOSS No
xLx No

Mooshak No
RoboProf No
Submit! No
GAME No

DOMjudge No
Table 2.4: Support for Skeleton Solution Mechanism

of both) and its level of detail may vary. The different feedback mechanisms may be
summarized as follows:

• CourseMarker - feedback is fully automatic and immediate. It may include, for in-
stance, comments about the quality of the code and on how to improve the solutions.
The feedback detail can be regulated;

• BOSS - the only immediate feedback comes from a set of test cases made available
before the submission. The final feedback is not immediate and is a combination of
automatic (only about the final grade) and manual feedback which can be added by
human markers;

• xLx - the only immediate feedback comes from a set of public test cases that do not
count for the final grade. The final feedback is not immediate and is a combination
of automatic (only about the final grade) and manual feedback which can be added
by human markers;

• Mooshak - feedback is fully automatic and immediate. Each submission receives
a classification (e.g.: Requires re-evaluation, Time-limit exceeded,
Output too long, Run-time error, Wrong answer, Accepted);

• RoboProf - the feedback is fully automatic and immediate. For each submission,
the system indicates the test data and the expected and obtained outputs;

• Submit! - the feedback is composed by two components: an immediate and auto-
matic one and a manual and non immediate one. The students automatically receive
feedback about the static analysis of the code quality and about the expected and
obtained output. The manual feedback comprises tutor’s comments and the final
grade;

• GAME - the version of GAME described in literature did not have any mecha-
nism for feedback generation. However, newer versions should include this feature
[BGNM04a];

30

CBA Systems

• DOMjudge - whenever human verification of the submissions is not required, feed-
back is fully automatic and immediate. Each submission receives a classification
(e.g.: Queued/Pending, Judging, Too-Late, Correct, Compiler-Error,
Timelimit, Run-Error, No-Output, Wrong-Answer).

2.9.5 Features for Submission Management

The main functionalities available to the course tutors for management and analysis of the
students’ submissions are:

• CourseMarker - consult history of submissions and grades of each student, view
grades statistics, view missing/submitted students and expunge students’ work;

• BOSS - run the automatic tests on the submissions, mark the submissions manu-
ally, provide manual feedback, consult students’ details, penalize late submissions,
submit in behalf of a student and publish marks;

• xLx - consult history of submissions, provide manual feedback;

• Mooshak - consult history of submissions, re-evaluate submissions and consult in-
formation related to the submissions such as: source code, runtime, memory used
and produced output;

• RoboProf - none;

• Submit! - consult history of submissions, provide manual feedback, consult various
statistics and review or re-assess students’ submissions;

• GAME - consult history of submissions and grades of each student;

• DOMjudge - consult history of submissions, rejudge submissions, restart pending
judgings and consult information related to the submissions such as: id, source code,
author, submit time, runtime, produced output and diff with test data.

2.9.6 Extra Features

This section groups that features that, although not essential for the main purposes of a
CBA system, add useful value.

• CourseMarker - plagiarism detection and built-in Q&A mechanism for doubts
clarification;

• BOSS - plagiarism detection;

• xLx - none;

31

CBA Systems

• Mooshak - built-in Q&A meachanism for doubts clarification and submissions
ranking;

• RoboProf - plagiarism detection;

• Submit! - none;

• GAME - plagiarism detection;

• DOMjudge - built-in Q&A meachanism for doubts clarification, submissions rank-
ing and tools for checking mistakes in test data, such has leading trailing whitespace
and non-printable characters.

2.9.7 Programming Languages Supported

Table 2.5 presents the programming languages supported by the CBA systems (some non-
programming languages such as SQL, XSLT and XQuery were also included).

System Languages
CourseMarker C/C++ and Java

BOSS C/C++ and Java (but in theory can be configured for any language)
xLx Java, SQL, XSLT and XQuery

Mooshak Any (e.g: C/C++, Java, Python, Lisp, Prolog, Haskell)
RoboProf Java
Submit! Java
GAME C and Java (but in theory can be configured for any language)

DOMjudge In theory can be configured for any language
Table 2.5: Programming Languages Supported by the CBA systems

2.9.8 Security

The implemented mechanisms for assuring systems’ security are the following:

• CourseMarker - has a password encryption mechanism, a session key security
feature and a sandbox with restricted privileges for running the submissions;

• BOSS - has a sandbox able to limit the amount of available CPU time and memory
and with strictly controlled set of permissions;

• xLx - Java policies are used to define a very restricted policy for running students’
code;

• Mooshak - has a sandbox with restricted privileges and able to limit execution and
compilation time, code size, output size, process data and stack size;

32

CBA Systems

• RoboProf - the automatic assessment is performed on students’ machines, which
keeps the server safe from malicious code;

• Submit! - a Java sandbox with restricted privileges is used to execute students’
programs;

• GAME - no security mechanism was found in literature;

• DOMjudge - has mechanisms for restricting team access to others and the internet,
for restricting access to the submitted programs on the jury computers and has a
sandbox with restricted privileges for running the submissions.

2.9.9 Type of Interface

Table 2.6 presents the type of interfaces implemented in the different CBA systems. Al-
most all of the systems can be accessed via a web browser. The only exception is the
CourseMarker system which was developed has a desktop application which connects to
the web.

System Interface
CourseMarker Java Swing

BOSS Web and Java Swing
xLx Web

Mooshak Web
RoboProf Web
Submit! Web
GAME Web (Java Applet)

DOMjudge Web
Table 2.6: Type of interface of CBA systems

33

CBA Systems

34

Chapter 3

Application of CBA Systems in
e-Learning

This chapter approaches the topic of how the CBA systems are being used to support
the e-Learning process in some academic institutions. Some case studies, related to the
application of five of the systems previously presented, are analyzed. From this analysis
emerged some best-practices of the application of CBA systems in e-Learning.

3.1 Case Studies Analysis

This section presents how CBA systems support the learning process in different Univer-
sities. The list of Universities used as case studies, as well as the system used by each
one, is presented in table 3.1.

Institution CBA System used
University of Nottingham CourseMarker

University of Warwick BOSS
University of Muenster xLx
University of Murcia Mooshak

Dublin City University RoboProf
Table 3.1: CBA systems used in different institutions

In order to contextualize the use of the CBA systems, there is a description of the
programming courses that used them as a support. The comparison of the different ap-
proaches is based on learning components such as the automatic assessment, test case
definition methodologies, feedback, resubmission policy, plagiarism control and security.
Some quantitative and qualitative results about the CBA usage are also presented, as well
as some best-practices that emerged from the different approaches.

35

Application of CBA Systems in e-Learning

3.1.1 Course Content

CourseMarker has been used by the University of Nottingham to support the teaching of
Java to first year students. Since many of the students had never programmed before,
the first two-thirds of the first semester are spent teaching as if Java were a procedural
language. The course is split into several units based on simple programming concepts,
from the very basic use of variables, to methods, strings and file processing. Students are
assessed with a mixture of different types of assignments [HGST05]: weekly exercises,
exercise plus report, a programming exam and multiple-choice questions.

The BOSS system was used in fifteen courses at the University of Warwick. How-
ever, only four of them needed the automatic assessment facilities. Three of the courses
comprise the teaching of Java and the other simple UNIX Shell and Perl [JGB05].

As of the publication of [SVW06], xLx had been only tested in small Java courses at
the University of Muenster. These courses are usually organized in sections comprising
several exercises related to different programming concepts.

The RoboProf system has been also used to teach a Java course. Thought at the Dublin
City University, the course contains nearly 300 students [DH04]. The assessment is com-
prised by exercises and a final examination, corrected by RoboProf, and by three assign-
ments that are manually marked. At total, there are 51 RoboProf exercises of increasing
difficulty and students cannot proceed from one question to the next until a passing grade
has been awarded [DH04].

At the University of Murcia, Mooshak was used to support the replacement, in a com-
puter science course, of a traditional final exam evaluation by a series of programming
activities. These activities involve [GMFA09]: independent problems with varying diffi-
culty; dependent problems that have to be solved in a given order; contest-style activities
where the students have to solve up to 9 problems within 4 to 6 hours; designing activities
where the students have to create new problems in the Mooshak system. These activities
are closely related to the six cognitive levels of Bloom’s taxonomy [GMFA09, Blo56].

3.1.2 Assessment

Student’s solutions are usually assessed with two different types of tests based on well
known methods from the field of software testing: dynamic and static.

With dynamic tests, solutions are run against a set of predefined test cases. In CBA
systems where the feedback is totally automatic, the results of these tests are automat-
ically incorporated in the final mark. This kind of approach is used at the Universities
of Nottingham, Murcia and Dublin. A down point is that it may penalize students that
fail the test cases due to small details (like white spaces) concerning the input and output
specifications. This can be avoided if a multiple submission policy is adopted or if the sys-
tem allows the re-evaluation of submissions. At Warwick and Muenster, instead of being

36

Application of CBA Systems in e-Learning

automatically incorporated in the final mark, the results of the dynamic tests are used to
support the grading by human markers. With this methodology, systems like BOSS allow
the teaching staff to submit in the behalf of the students in order to fix small submission
mistakes [JGB05].

There is a wide range of static tests that can be performed. The most basic one, and the
only used at Muenster, is to check for the syntactic and semantic correctness of the code,
i.e. to compile the code. The Mooshak system performs an additional check to prevent a
denial of service attack by a submission of a too large program [LS03].

Static tests can also be used to evaluate aspects concerning the quality of a program.
BOSS authors identify a set of these aspects [JGB05]: comments in code, code style,
code structure, use of external libraries, choice and efficiency of algorithm. They con-
sider that many of these aspects are subjective and cannot easily be assessed automati-
cally and hence should be assessed manually by a human marker. To support the manual
assessment, BOSS provides a set of program metrics, such as number of comments and
percentage of methods declared abstract. However, since the incorporation of these met-
rics in the system is recent, as of the publication of [JGB05], they were still not being
used in any course at Warwick.

At Nottingham, metrics on the quality of the code are directly and automatically in-
corporated in grading. Some of the tests performed by CourseMarker involve verification
of layout, indentation, choice and length of identifiers and use of comments [HGST05].
CourseMarker contains a type of static test that was not found in any other system: fea-
ture test. At Nottingham, the use of exercises to teach the difference between different
programming constructs (e.g. the difference between "if-then-else" and a "switch-case"
statement) is common. This kind of exercises typically includes feature tests to check if
the different constructs are properly used [HGST05].

3.1.3 Test Case Definition

Two main test case definition methodologies were found throughout literature. The first
one consists in the utilization of input text files with test data and output files with the
expected answers to the input data. The second methodology consists in the definition of
JUnit test cases.

With the text files methodology, the input files are passed to the standard input of the
programs and the results produced by the standard output are compared to the output files.
Although this is a simple mechanism, it is also very powerful and allows the modeling
of the strict input and output requirements that are often present in real-world software
engineering tasks [JGB05]. It is the most popular methodology among the case studies,
being used at the Universities of Nottingham, Warwick, Murcia and Dublin. At the lat-
ter, since an unlimited submission policy was adopted, random generation of test data is

37

Application of CBA Systems in e-Learning

used to prevent students from tricking the system by writing code to print the appropriate
output [DH04]. It is important to note that it should be possible to easily incorporate new
programming languages in a CBA system supporting this methodology (RoboProf is such
an example [DH04]).

The use of JUnit test cases applies only when Java is the language used in the sub-
missions. With this methodology, input and output are specified as Java objects and a test
is constructed by specifying a method to be run, taking the input object as argument and
returning the expected output object. Among the study cases, the only institution using
exclusively JUnit tests was the University of Muenster. At the University of Warwick,
although the BOSS system also supports the usage of JUnit tests, as of the publication of
[JGB05] this functionality has not still been used in any course.

3.1.4 Feedback

As stated in [Cum08], the provision of feedback is arguably the most important aspect of
the educational process. It "... is the life blood of learning" [Row87]. It allows students to
get a commentary about their work and enables them to adjust their mental model in the
light of the communication received. Any learning activity without associated "feedback
is completely unproductive for the learner" [Lau93]. We as human beings learn through
interacting with the external world and getting some sort of feedback from it [Lau93].
Academic knowledge is no exception to this, and so it follows that high quality, timely
feedback is required in order to the learner to be able to learn. The sooner students can get
feedback on what they have done the more effective it will be in causing modifications to
their mental model and thus develop deeper understandings on their work [Cum08]. Dif-
ferent approaches have been used in respect to the nature, level of detail and immediacy
of the feedback given in the automatic assessment of programming assignments.

At the Universities of Nottingham, Dublin and Murcia, feedback is automatically gen-
erated by the marking tools and is given immediately after students submit their solutions
and the automatic assessment process concludes its work. Still, there are significant dif-
ferences in their feedback methodologies.

At Nottingham, experience has shown that ultra-detailed feedback can be detrimental
to the learning experience [HGST05]. Therefore, the CourseMarker system includes the
possibility of regulating the amount of feedback given to students. This is used by exer-
cise developers to adapt the level of feedback to the needs of specific classrooms. It is
possible that futures versions of CourseMarker may include an intelligent mechanism for
deciding how much feedback should be provided to students, based on their past grades
and performances [HGST05, YH03].

Dublin’s students get to know the input data that was used to assess their solutions, as
well as both the expected and generated output [DH04]. Although this information may

38

Application of CBA Systems in e-Learning

be too detailed in some situations, it provides the students with the data needed to debug
their incorrect submissions.

At Murcia, students receive the classifications produced by Mooshak’s static and dy-
namic analyses [LS03]. Even though this information is not as detailed as the one from
RoboProf, it provides useful information about the submission status.

At the Universities of Warwick [JGB05] and Muenster [SVW06] a different approach
was chosen. The final feedback concerning the correctness of the solutions is not immedi-
ately delivered nor fully automatically generated. After the deadline for submissions has
passed, course staff runs the automatic tests on students’ solutions, analyses the source
code and, in the case of Warwick, some automatically generated metrics concerning code
quality. Based on all this information, the staff manually marks and attaches personalized
feedback to the submissions. At Warwick this information is then e-mailed to students.
At Muenster, the feedback is given directly in students’ code by using xLx’s special an-
notation system and hence students have to directly consult the assessment system. It is
also important to add that, before submitting their solutions, students can still obtain some
automatic feedback from the system by testing their code against sample tests provided
by the exercise developer.

3.1.5 Resubmission Policy

Different resubmission policies may be used in a programming course with automatic
assessment. Although a bit restrictive, a single submission policy is used at the University
of Muenster [SVW06]. With this approach, after being submitted, a solution cannot be
changed anymore.

A different approach was adopted in Nottingham, where students are usually given
the chance to perform three submissions per exercise [HGST05]. Since CourseMarker
generates automatic and immediate feedback, students get to know their mark right after
submitting.

At Warwick, Dublin and Murcia there is no limit to the amount of submissions, al-
though they all have to be made within a given deadline. In Dublin and Murcia all the
submissions are automatically marked after being submitted. However, at Warwick, only
the last submission is marked [JGB05].

BOSS authors argue that the fundamental difference between CourseMarker and their
system is the paradigm for interacting with the students [JGB05]. They wanted BOSS
to focus on the process of online submission and measuring the correctness of students’
code, rather than become a tool with a broader support for formative assessment.

39

Application of CBA Systems in e-Learning

3.1.6 Plagiarism Control

Combating plagiarism is a major challenge for many educational establishments [HTS02,
CL01] and this is reflected by the fact that plagiarism control facilities were used in all the
case studies. Even at the University of Murcia an external tool was used to detect plagia-
rism, since Mooshak does not provide such feature [GMFA09]. It is also curious to note
that, at Warwick, the BOSS system was used to detect plagiarism in non-programming
courses [JGB05].

Most of the implemented techniques for detecting plagiarism consist in pair-wise anal-
ysis of text-free data files and reporting of pairs of documents that contain significant sim-
ilarities. Such an example is the "Sherlock" [JL99] software, used in the BOSS system. A
different technique based on an idea by Plauger [Pla94] is used in RoboProf. As described
in [DH04], when a student submits a program to the system, a binary code invisible to
most text editors and comprising the student ID, the assignment ID, the academic year
and a checksum is added to the end of the source code. This code is then used to deter-
mine the extent of plagiarism for each student. The main advantage of this method over
the pair-wise comparison is that plagiarism is detected in the moment of the submission
and the system does not need to run an analysis program to perform explicit pair-wise
comparison.

3.1.7 Security

Security is a very important factor in CBA systems [FHST98]. As stated in [HGST05], a
poorly guarded and insecure system can potentially put at risk the marks, the submissions,
and the course content and be open to malicious practice by dishonest students.

Usually, a CBA system contains two security levels. The first comprises, for instance,
mechanisms to identify the student using the software, to assure the integrity of commu-
nication between server and client and to protect data stored on the system (including the
submissions) from unauthorized access.

Since the systems run code written by students, there is a danger that a student’s
program may perform an unsafe operation, potentially damaging the machine running
the system [JGB05]. Therefore, the second security level usually comes in the form of
a sandbox with restricted privileges. Some of the typical restrictions are: access only
to a temporary directory in the file system, limited CPU time, limited memory, limited
compilation time, limited program size, etc. In systems implemented in Java, like xLx,
the privileges are usually restricted by using the so-called Java policies [SVW06].

40

Application of CBA Systems in e-Learning

3.1.8 Results

The literature of four of the case studies also contained some qualitative and quantitative
results about the use of the CBA systems. These results are now presented.

3.1.8.1 CourseMarker

At Nottingham, CourseMarker’s authors state that data, gathered during six years of us-
age of the system for the Java course, show that students became good programmers and
achieved better marks as a result of the detailed on-demand feedback, coupled with the
possibility of multiple submissions [HGST05]. This success is also attributed to the care-
fully designed exercises and to the improved support available for students. Furthermore,
surveys among students show that this methodology motivates them into putting more ef-
fort to achieve better grades [HGST05]. A test to the efficacy of CourseMarker was also
performed. In 2003, the students of the first semester were divided into two groups. One
of the groups used CourseMarker and the other did the coursework manually and e-mailed
the solutions to the lab assistants, who would then mark them by hand. The authors argue
that comparing the results of both groups shows that CourseMarker marks at least as well
as humans do, provides on-demand impartial feedback and, as a bonus, saves hundreds of
marking hours for the academic staff.

3.1.8.2 BOSS

BOSS authors employed a combination of techniques, such as interviews with staff from
Warwick’s University, in order to evaluate the system’s impact [JGB05]. They argue
that the software is now stable and that remaining issues relate principally to the lesser-
used dialogs within the staff clients. Some interesting conclusions were drawn from the
evaluation [JGB05]:

• Teaching staff suggested that the time necessary to devise and deploy a set of au-
tomatic tests with input and output files is typically 1 or 2 hours and that the time
taken to mark single student’s submission may be as low as a couple of minutes;

• Some students considered the automatic tests unfair against those who have tried
and just failed to reach the required outcome. Others referred that the tests were too
picky with white spaces;

• The fact that the final automatic tests were not provided to students was a source
of complaints. Therefore, BOSS authors consider that it may be desirable to allow
students access to some automatic tests to assist them in their program development.

41

Application of CBA Systems in e-Learning

3.1.8.3 Mooshak

At the University of Murcia, the results of the application of the automatic assessment
with Mooshak were considered very promising [GMFA09]. For instance, the passing rate
increased from 11% to 22% and the dropout rate decreased from 72% to 45%. Also, it
was noted that the programming contest related features available in Mooshak played a
fundamental role in the motivation of students. In one hand, the ranking system encour-
ages the students to solve more problems, faster and more efficiently. On the other hand,
since submissions are public, students do not have to feel frustrated when they receive a
"wrong answer". They can see that their classmates are going through the same troubles,
and that it is a part of learning [GMFA09].

3.1.8.4 RoboProf

At Dublin, RoboProf authors used the results of the final examination, done by 282 stu-
dents and assessed by RoboProf, to analyze the system’s effectiveness for teaching com-
puting and of determining factors influencing programming performance [DH04]. The
analysis was divided in 4 areas:

• Previous qualifications - since the course that used RoboProf is taken by first year
students, the authors were interested in how differing entry qualifications affect sub-
sequent performance. It was observed that many students that entered the university
with low points achieved high grades in the programming examination. However,
the correlation coefficient [DS97] between the entry points and the examination re-
sults pointed out that there is a positive linear trend between the two variables;

• Gender - the authors also analyzed whether there was a difference between females
and males with respect to achieved programming skills. Out of the 282 students
that took the exam, 79 (20%) were female, which is consistent with participation
rates of women in computer science courses at universities worldwide [Cam97].
The analysis results show that males outperformed females. The authors had hoped
that the use of RoboProf might have helped to improve the performance of women
relative to their male counterparts [DH04];

• Usage patterns - authors also determined how the students’ use of the RoboProf
learning tool during the course affected their performance in the programming ex-
amination. Patterns and frequency of usage of the system were monitored and
recorded. These records allowed for the definition of four variables that were used
to investigate which factors impacted on programming ability [DH04];

• Comparison with traditional computing course - a comparison between the per-
formance on the RoboProf course and a subsequent computing course in Java was

42

Application of CBA Systems in e-Learning

also performed. Among other conclusions, it was noted that who got high (low)
marks in the first course are likely to get high (low) marks in the subsequent one.

3.1.9 Best Practices

Based on the presented analysis and results, some best-practices (BP) of the application
of CBA systems in e-Learning may be pointed-out:

• BP1 - Dynamic tests are essential for the automatic assessment process. Static tests,
although not essential, may be useful to help students improving their coding style;

• BP2 - None of the test case definition techniques may be considered to be the silver
bullet. Although the usage of unit tests avoids difficulties related to the usage of
text files like misspellings, control characters and whitespaces, it requires technical
skills to code and are language-specific [JGB05];

• BP3 - When using text files for defining test cases, problems with control charac-
ters and whitespaces may be minimized if a resubmission policy allowing multiple
submissions is adopted and if sample input and output data is provided to students;

• BP4 - Special care should be taken when using text files for defining test cases
for introductory programming courses, where students still do not master input and
output handling;

• BP5 - Giving relevant feedback to students about their submissions is essential. The
following combinations of feedback/resubmission policies have had good results:

– Detailed feedback and limited (but more than one) number of submissions;

– Less detailed feedback and unlimited number of submission within a given
deadline;

• BP6 - Plagiarism control plays a very important role in the University context.
Knowing that plagiarism is controlled is a motivation for students to learn by them-
selves;

• BP7 - Security in a CBA system is essential and should come in two levels: the first
one to assure the authenticity and the integrity of information and the second one
should be in the form of a sandbox for protecting the system from malicious code;

• BP8 - Competition-like assessments may contribute to motivate students.

43

Application of CBA Systems in e-Learning

44

Chapter 4

Analysis of Learning Needs

This chapter presents the study performed to determine the learning needs of the teaching
staff of DEI (Department of Informatics Engineering). In order to collect the opinions and
CBA system feature needs, an online survey was conducted. The information gathered in
the survey was then used to build the system specification.

4.1 Survey Analysis

In order to collect opinions from the teaching staff of DEI, a survey was created. This sur-
vey is written in Portuguese and is available online at http://tinyurl.com/376yb9f
as well as in appendix A.

DEI teaching staff is involved in the courses of the Integrated Masters in Informatics
Engineering and of the Integrated Masters in Electrical and Computers Engineering. The
main goals were to understand staff needs, which features are considered to have more
priority and which courses may use the system in the future. The survey was composed
by 7 sections and the total number of answers was 17. The division in sections follows a
similar pattern to the one used in the summary of the features of the CBA systems (section
2.9). The first 6 sections of the survey included questions related to the features presented
in the first 6 sub sections of the summary of features:

1. Support for assessment creation;

2. Support for test-cases definition;

3. Support for elaboration and submission of solutions;

4. Feedback system;

5. Features for submission management;

6. Extra features.

45

http://tinyurl.com/376yb9f

Analysis of Learning Needs

4.1.1 Responses Overview

The first part of the survey asked for the course taught by the teaching staff and whether
or not a CBA system might be useful for the course. The majority (14 out of 17) of the
answers showed interest in the system. The 3 answers that did not reveal interest in the
CBA system where related to the courses Agents and Distributed Artificial Intelligence
(2 of them) and Formal Methods in Software Engineering. Table 4.1 presents some infor-
mation about the courses indicated in the positive answers: Count represents the number
of answers received for a given course, Year represents the year in which the course is
positioned at the Integrated Masters syllabus and Area identifies the study field.

Course Count Year Area
Algorithms and Data Structures 2 2 Programming

Compilers 1 3 Programming
Computer Graphics 1 2 Interaction and Multimedia
Computing Theory 1 2 Programming Fundaments

Databases 1 3 Information Systems
Graphical Applications Laboratory 1 3 Interaction and Multimedia

Information Systems and Databases (MIEEC) 1 4 Information Systems
Logic Programming 1 3 Programming
Operating Systems 1 2 Operating Systems and Networks

Programming 1 1 Programming
Programming 1 (MIEEC) 1 1 Programming

Programming Fundamentals 2 1 Programming Fundaments
Table 4.1: Course information of positive answers

As can be seen in figure 4.1, almost all of the courses are from the first Integrated
Masters cycle: 3 are from the first year, 4 from the second and 4 from the third. Only the
course Information Systems and Databases is placed in the second cycle, being taught in
the fourth year of MIEEC.

Figure 4.2 summarizes the information related to the study areas of the courses. Not
surprisingly, most of them involve the teaching of programming (5) and its fundaments
(2). However, the CBA system was also considered to be useful for 1 course on operating
systems, 2 courses on information systems involving the teaching of databases and 2
courses on interaction and multimedia involving the teaching of computer graphics.

4.1.2 Assessment Creation

The CBA system can be used to support different types of assessment. Moreover, each
assessment should be configured with a set of parameters. Therefore, the objectives of
the second section of the survey were to understand the types of assessment which the

46

Analysis of Learning Needs

Figure 4.1: Curricular years of the positive answers’ courses

Figure 4.2: Study areas of the positive answers’ courses

teaching staff considers to be more important to be supported by the system and also to
identify the main configuration parameters.

The teaching staff was asked to rate the usefulness, from 1 to 5, of three different
types of assessment: exams, tests and self-learning exercises. As can be seen on table 4.2,
exams received, on average, higher ratings. However, the difference between the three
types of assessment is not significant and the mode is even the same.

The survey also contained an open question for indicating the set of parameters con-
sidered to be more important for configuring a new assessment. The collected parameters
are presented, ordered by popularity, in table 4.3. In this open question it was also sug-
gested, by a Databases teacher, that the system should support the automatic assessment

47

Analysis of Learning Needs

Average σ Mode
Exams 4.3 1.1 5
Tests 4.1 1.2 5

Self-learning exercises 3.9 1.1 5
Table 4.2: Usefulness of the different assessment types

of SQL exercises in addition to the support of traditional programming languages.

Parameter Count
Start time 10
Duration 10

Accepted programming languages 8
Tolerance time (and associated penalization) 8

Maximum number of submissions 3
Duration of each individual question 1

Toggle immediate/non-immediate feedback 1
Template for solutions 1

Table 4.3: Parameters for assessment configuration

4.1.3 Test-Cases Definition and Automatic Assessment

The third part of the survey had the goal of evaluating the test-case definition method-
ologies and test-case assessing parameters that the teaching staff would like to use. The
staff could vote in three suggested methodologies and, optionally, indicate a new one.
The suggestions were: definition of text files with the input and output test data, usage of
regular expressions for automatic generation of inputs and outputs and definition of unit
tests. Table 4.4 presents the number of votes received by each one. As can be seen, the
use of text files and unit tests were the most popular choices, leaving the use of regular
expressions at a considerable distance.

Methodology Votes
Text files 12

Regular expressions 6
Unit tests 13

Table 4.4: Votes on the different test-cases definition methodologies

The survey also requested the staff to rate the importance, from 1 to 5, of 4 test-case
assessing parameters: weight for the final grade, maximum runtime, maximum memory
and automatic static analysis of the quality of the code. The average, standard deviation
and mode of the ratings are presented in table 4.5. Not surprisingly, the possibility of

48

Analysis of Learning Needs

defining the weight of the test-cases received high ratings. It is important to note that the
maximum runtime and memory parameters were only considered relatively significant.

Average σ Mode
Weight 4.6 0.6 5

Max runtime 3.1 1.0 4
Max memory 2.7 1.2 4
Static analysis 3.6 1.2 4

Table 4.5: Importance of different test-case parameters

Besides the poll for the 4 suggested parameters, the respondents could suggest new
assessing parameters. The suggestions included the possibility of:

• Distinguishing student grades based on the time they take to solve each problem.
As an example let’s take an assessment composed by 5 problems. The system can
be used to set that the final grade of students who answer correctly the 5 problems
will be in the range [18, 20]. The definitive placement in the range can be based on
the time spent on solving the problems;

• Ad-hoc definition of new assessment parameters;

• Associating a set of different solutions to a test case, each one contemplating one
common mistake and with a predefined penalization.

It was also suggested, by computer graphics teaching staff, that the system should be
able to automatically generate views to help with the assessment of the graphical look of
solutions for graphical exercises.

4.1.4 Elaboration and Submission of Solutions

In this section, the participants were requested to vote in one of two alternatives regarding
the environment were the students should develop their assessment solutions: directly
in the CBA system by using a built-in editor and compiler or locally, in an editor and
compiler of students’ choice. As can be seen in table 4.6, the latter option is by far the
most popular.

Alternative Votes
Directly in the CBA system 3

Locally 11
Table 4.6: Votes on the solution development alternatives

The survey also requested for the rating on the usefulness, from 1 to 5, of a mecha-
nism for allowing the teaching staff to define and make available skeleton solutions for

49

Analysis of Learning Needs

the assessments. The results are presented in table 4.7. Although this feature was not
considered a top priority, the results point out that it can be relatively useful.

Average σ Mode
Skeleton mechanism 3.6 1.2 4

Table 4.7: Usefulness of a mechanism for definition of skeleton solutions

4.1.5 Feedback System

The provision of useful feedback should be one of the main concerns of the CBA system.
The fifth section of the survey involved two questions regarding the feedback system. In
the first one, the teaching staff was requested to vote in the type of feedback they would
like to be made available by the CBA system. They could vote in at least one of three
levels of feedback:

• Minimalist - the students only receive the grade they obtained in the assessment;

• Moderated - the feedback includes the grade and, for each test case, if whether
or not it was accepted. In the case of a non-accepted test case, error messages
such as Wrong Answer, Time Limit Exceeded or Runtime Error may be
presented;

• Detailed - for each submission the final grade is presented and for each test case
the input and the expected and obtained output are presented. The other assessment
components, like the results of the static analysis of the code, may also be presented.

As shown in table 4.8, the detailed feedback alternative is the most popular one with
12 votes, followed by the moderated with 8 votes. The minimalist option only gathered 3
votes.

Feedback level Votes
Minimalist 3
Moderated 8
Detailed 12

Table 4.8: Votes on the different levels of feedback

The participants were also requested to rate the usefulness, from 1 to 5, of a mecha-
nism for allowing the association of personalized feedback messages to test cases. This
mechanism can be used to associate messages to incorrect answers representing common
mistakes. The results are shown in table 4.9.

The answers were far from being concordant, as can be seen by the relatively high
standard deviation. Moreover, although the average of the results was only 3.6, the mode

50

Analysis of Learning Needs

Average σ Mode
Personalized feedback 3.6 1.5 5

Table 4.9: Usefulness of a mechanism for personalized feedback messages

was 5. This allows to conclude that the personalized feedback mechanism may be useful
on some specific situations.

4.1.6 Submission Management

In the sixth part of the survey, the respondents were asked to rate, from 1 to 5, the useful-
ness of a set of features related to the management of students’ submissions:

• Consulting of the history of submissions and grades of each student;

• Notification (automatic and/or manual) of students who did not submit their solu-
tions;

• Manual alteration of the code submitted by students;

• Manual alteration of the results of the automatic assessment;

• Sending of e-mails to groups of students, based on assessment criteria.

The results are presented in table 4.10 and, as can be seen, the most popular feature is
the fourth one, followed by the first and the second.

Feature Average σ Mode
Student History 3.9 0.8 4

Student Notification 3.9 1.2 4
Alteration of submitted code 3.3 1.4 4

Alteration of assessment results 4.3 0.7 5
Sending of e-mails 3.8 1.1 3

Table 4.10: Usefulness of features related to the management of solutions

The respondents could also suggest some features in a text box. The received sug-
gestions include the following features: exporting of the assessment results to different
formats, direct links to the submissions and/or built-in environment for manual testing of
the submissions.

4.1.7 Extra Features

The last part of the survey had the purpose of evaluating the potential usefulness of a set
of features that, although not essential for the functioning of the system, may add value to
the CBA system. The participants were asked to rate, from 1 to 5, the following features:

51

Analysis of Learning Needs

• Maintenance of a database with all the exercises created throughout all the curricular
years and accessible to new students;

• Ranking of the submissions of all the students, with statistics like runtime and mem-
ory used;

• Mechanism for detecting plagiarism among the submissions of the students;

• Built-in Q&A system for doubts clarification.

The rating results are presented in table 4.11. The participants considered the pla-
giarism detection mechanism to be a quite important feature. The Q&A system and the
exercises database also received high ratings, while the maintenance of a ranking was
only considered relatively important.

Feature Average σ Mode
Exercises database 3.9 1.2 4

Submissions ranking 3.1 1.1 4
Plagiarism detection 4.6 0.6 5

Q&A system 4.1 0.8 4
Table 4.11: Usefulness of some suggested extra features

4.1.8 Final Comments and Observations

At the end of the survey, the participants were asked to make additional comments and
observations. In some of the comments it was referred that a human assessment of the
code is indispensible as a complement to the automatic assessment. The following justi-
fications were given:

• Being a valued and requested process in the labor market, it is important to optimize
the submitted solutions. However, it is hard to create an exam exercise to allow for
the automatic evaluation of the optimization process and hence a human inspection
of the code is needed;

• The true assessment of knowledge implies evaluating the whole reasoning process
and not only the final output and hence assessment of code style and quality should
be handled by manual evaluation.

Some opinions expressed concern about the flexibility and usability of the system. It
was referred that the system should not have too many configuration steps since it may
lead to usability issues and make it unattractive.

52

Analysis of Learning Needs

It was also referred that it should be possible to students to compile and validate their
solutions against some test cases, before submitting their final answers. This will lead to
the reduction of compilation and interpretation problems in the final solutions.

Finally, there was an opinion suggesting that the CBA system should be integrated
with SIGEX, a system which is used at FEUP to support the realization of computer
exams. SIGEX allows controlling the resources that students can access during exams
and manages the distribution of the exam statement and the submission of solutions.

53

Analysis of Learning Needs

54

Chapter 5

Specification of a New CBA System

This chapter contains the specification of the new CBA system, which has the goal of ful-
filling the needs identified in the previous chapter. The first section contains an overview
of the system, consisting of a description of the desired behavior and architecture, as well
as the features that should be implemented. Then, a study that was conducted with the
goal of evaluating the possibility of reusing one of the systems analyzed in chapter 2 is
presented. Then, and because one of the requirements was to integrate the system with
Moodle, there was the need of deciding which type of Moodle plugin to use. Since the
base system could not fulfill all the requirements of the new system, there is a brief dis-
cussion of how and which features should be built on top of it. Finally, the architecture of
the CBA system was detailed.

5.1 New System Proposal

The new CBA system should have a core component, behaving as an independent service,
responsible for the automatic assessment of programming assignments. It can, possibly,
be based on one of the systems analyzed in chapter 2 and should be flexible enough to
communicate with other platforms, responsible for implementing the user interface. The
platforms of interest for DEI teaching staff are:

• Moodle, which is the e-Learning platform used at FEUP. This should be the platform
with higher priority;

• SIGEX, a system used to support the realization of computer exams;

• An eBook system, containing programming exercises;

The system should cover the learning needs identified in the previous chapter. In the
next subsection, these needs are described via use case diagrams, which illustrate the main
features that should be supported, by showing who can do what with the system. Then,
the features are presented in more detail, in a subsection containing prioritized lists.

55

Specification of a New CBA System

5.1.1 Use Cases

This subsection presents the main use cases of the CBA system. As can be seen in figure
5.1, they were grouped in three different packages: Assessments Management, Submis-
sions Management and Assessments Solving. Two actors can be identified: the teaching
staff, involved in the first two packages, and students, involved in the last package.

Figure 5.1: Use cases overview

5.1.1.1 Assessments Management

The package Assessments Management, presented in figure 5.2, contains the use cases
related to the management of assessments. Teaching staff can create, edit and remove
assessments. Associated to the creation and edition of assessments there is the defini-
tion of assessment parameters, feedback detail, personalized feedback messages, skeleton
solutions and test cases.

5.1.1.2 Assessments Solving

The package Assessments Solving, which can be consulted in figure 5.3, includes all the
use cases involving students. When solving an assessment, they can consult its statement,
submit a solution and consult the submission grade and feedback.

56

Specification of a New CBA System

Figure 5.2: Assessments Management use cases

Figure 5.3: Assessments Solving use cases

57

Specification of a New CBA System

5.1.1.3 Submissions Management

The package Submissions Management, shown in figure 5.4, contains the use cases re-
lated to the management of students’ solutions. These use cases are based on the features
discussed in 4.1.6 and include the sending of e-mail based on assessment criteria, the no-
tification of students, the consulting of assignment submissions and student history, and
the manual modification of automatic assessment results and submitted code.

Figure 5.4: Submissions Management use cases

5.1.2 Features to Implement

The identification of the features to implement was based on the analysis made in section
2.9, on the results of the survey performed next to the DEI teaching staff and presented in
section 4.1 and on the use cases presented in section 5.1.1. Each feature has an associated
priority (high, medium or low) and an id.

5.1.2.1 Support for Assessment Creation

As can be observed in table 5.1, the system should support the realization of exams and
tests with an high priority and the realization of self-learning exercises with medium pri-
ority.

58

Specification of a New CBA System

Id Assessment Priority
F1.1 Exams High
F1.2 Tests High
F1.3 Exercises Medium

Table 5.1: Types of supported assessments

Table 5.2 contains the assessment configuration parameters that should be imple-
mented. Five of them were classified with high priority - start time, deadline, list of
accepted programming languages, tolerance time and associated penalization, global du-
ration of the assessment -, one with medium priority - maximum number of allowable
solutions - and another one with low priority - duration of each individual question.

Id Parameter Priority
F2.1 Start time High
F2.2 Deadline High
F2.3 Accepted programming languages High
F2.4 Tolerance time High
F2.5 Duration High
F2.6 Max number of submissions Medium
F2.7 Duration of each individual question Low

Table 5.2: Parameters for assessment configuration

5.1.2.2 Support for Test-Cases Definition

Two of the identified methodologies for test-cases definition were classified as having
high priority: definition of text files with input and output test data and definition of unit
tests. The usage or regular expressions for automatic generation of inputs and outputs was
considered to have low priority.

Id Methodology Priority
F3.1 Text files High
F3.2 Unit tests High
F3.3 Regular expressions Low

Table 5.3: Methodologies for test-cases definition

Table 5.4 contains the test-case assessing parameters that should be implemented. One
was classified with high priority - definition of the weight of each test case in the assess-
ment grade -, three were classified with medium priority - automatic static analysis of
code quality and definition of the maximum running time and maximum allowable mem-
ory - and two were classified has having low priority - distinguishing student grades based
on the time they take to solve each problem and associating a set of different solutions to

59

Specification of a New CBA System

a test case, each one contemplating one common mistake and with a predefined penaliza-
tion.

Id Parameter Priority
F4.1 Weight for assessment grade High
F4.2 Static analysis of code quality Medium
F4.3 Max runtime Medium
F4.4 Max memory Medium
F4.5 Distinguish students grades based on solving time Low
F4.6 Identification and penalization of common mistakes Low

Table 5.4: Parameters for test-case configuration

5.1.2.3 Support for Elaboration and Submission of Solutions

Table 5.5 contains the features related to the elaboration and submission of solutions that
should be made available by the CBA system.

The utilization of a built-in editor and compiler for allowing the students to develop
their assessment solutions directly in the CBA system proved to be an unpopular alterna-
tive. Therefore, a mechanism for allowing the uploading of solutions developed in a local
environment is essential.

The implementation of a mechanism for allowing the teaching staff to define and make
available skeleton solutions for the assessments was classified has having medium prior-
ity.

Id Feature Priority
F5.1 Mechanism for uploading solutions High
F5.2 Skeleton mechanism Medium

Table 5.5: Features for supporting the elaboration and submission of solutions

5.1.2.4 Feedback System

Table 5.6 presents the features related to the provision of feedback to students. The sys-
tem should allow defining, with high priority and for a specific assessment, whether or
not the feedback given to students is immediate. Moreover, and also with high priority, it
should be possible to regulate the level of feedback that is automatically generated. Ide-
ally, there should be three feedback levels: minimalist, moderated and detailed. The third
feature concerning the feedback system is related to the provision of personalized feed-
back messages and has medium priority. The personalized feedback mechanism should
allow associating manual messages to incorrect answers representing common mistakes

60

Specification of a New CBA System

Id Feature Priority
F6.1 Toggle immediate/non-immediate feedback High
F6.2 Regulation of the level of feedback (Minimalist, Moderated, Detailed) High
F6.3 Personalized feedback messages Medium

Table 5.6: Features related to the feedback system

5.1.2.5 Submissions Management

The features related to the management of submissions are shown in table 5.7. Four were
classified has having high priority - consulting of statistics of assessment grades, man-
ual alteration of the code submitted by students, consulting of the history of submissions
and grades of each student and notification of students who did not submit their solu-
tions -, two were classified with medium priority - sending of e-mails to group of students
based on assessment criteria and manual alteration of the code submitted by students -
and another two were classified with low priority - exporting of the assessment results to
different formats and access to a built-in environment for manual testing of the submis-
sions.

Id Feature Priority
F7.1 Consult grades statistics High
F7.2 Manual alteration of assessment results High
F7.3 Student history High
F7.4 Student notification High
F7.5 Sending of e-mails Medium
F7.6 Alteration of submitted code Medium
F7.7 Exporting of assessment results Low
F7.8 Built-in environment for manual testing of submissions Low

Table 5.7: Features related to the management of submissions

5.1.2.6 Extra Features

Table 5.8 presents the features that were identified as being extra, i. e. features that were
not considered essential for the functioning of the system but add value to it. Having
a mechanism for detecting plagiarism among students submissions were classified with
high priority. Having a built-in Q&A mechanism for doubts clarification and a database
with all the exercises created throughout all the curricular years were considered to have
medium priority. The implementation of a ranking with the submissions of all the students
with statistics like runtime and memory used was classified with low priority.

61

Specification of a New CBA System

Id Feature Priority
F8.1 Plagiarism detection High
F8.2 Q&A system Medium
F8.3 Exercise Database Medium
F8.4 Submissions ranking Low

Table 5.8: Extra features

5.2 Reusing an Existing System

Having the list of features to implement and the summary of the features available in
each of the analyzed CBA systems, the next step was to decide whether or not one of the
existing systems could be used as the basis for the desired one. To support the decision,
three tables were created: table 5.9, table 5.10 and table 5.11. They present the features
to implement with, respectively, high, medium and low priority already available in the
existing CBA systems.

CBA System

Feature C
ou

rs
eM

ar
ke

r

B
O

SS

xL
x

M
oo

sh
ak

R
ob

oP
ro

f

Su
bm

it!

G
A

M
E

D
O

M
ju

dg
e

F1.1 Exams Yes Yes Yes Yes Yes Yes Yes Yes
F1.2 Tests Yes Yes Yes Yes Yes Yes Yes Yes

F2.1 Start time Yes Yes Yes Yes Yes Yes Yes Yes
F2.2 Deadline Yes Yes Yes Yes Yes Yes Yes Yes

F2.3 Accepted programming languages No No No Yes No No No Yes
F2.4 Tolerance time No No No No No No No No

F2.5 Duration No No No No No No No No
F3.1 Text files Yes Yes No Yes Yes Yes Yes Yes
F3.2 Unit tests No Yes Yes No No No No No

F4.1 Weight for assessment grade No Yes Yes Yes No Yes No No
F5.1 Mechanism for uploading solutions Yes Yes Yes Yes Yes Yes Yes Yes

F6.1 Toggle immediate/non-immediate feedback No No No No No No No Yes
F6.2 Regulation of the level of feedback Yes No No No No No No No

F7.1 Consult grades statistics Yes No No No No Yes No No
F7.2 Manual alteration of assessment results No Yes No No No Yes No No

F7.3 Student history Yes Yes Yes Yes No Yes Yes Yes
F7.4 Student notification Yes Yes No No No No No No
F8.1 Plagiarism detection Yes Yes No No Yes No Yes No

Total 11 12 8 9 7 10 8 9
Table 5.9: Features with high priority

62

Specification of a New CBA System

CBA System

Feature C
ou

rs
eM

ar
ke

r

B
O

SS

xL
x

M
oo

sh
ak

R
ob

oP
ro

f

Su
bm

it!

G
A

M
E

D
O

M
ju

dg
e

F1.3 Exercises Yes Yes Yes Yes Yes Yes Yes Yes
F2.6 Max number of submissions Yes No No No No No No No

F4.2 Static analysis of code quality Yes Yes No No No Yes Yes No
F4.3 Max runtime Yes No No Yes No No No Yes
F4.4 Max memory No No No Yes No No No No

F5.2 Skeleton mechanism Yes No No No No No No No
F6.3 Personalized feedback messages No No No No No No No No

F7.5 Sending of e-mails No No No No No No No No
F7.6 Alteration of submitted code No Yes No No No No No No

F8.2 Q&A system Yes No No Yes No No No Yes
F8.3 Exercise Database No No No No No No No No

Total 6 3 1 4 1 2 2 3
Table 5.10: Features with medium priority

CBA System

Feature C
ou

rs
eM

ar
ke

r

B
O

SS

xL
x

M
oo

sh
ak

R
ob

oP
ro

f

Su
bm

it!

G
A

M
E

D
O

M
ju

dg
e

F2.7 Duration of each individual question No No No No No No No No
F3.3 Regular expressions No No No No No No No No

F4.5 Distinguish grades based on solving time No No No No No No No No
F4.6 Penalization of common mistakes No No No No No No No No
F7.7 Exporting of assessment results No No No No No No No No

F7.8 Environment for manual testing of subm. No No No No No No No No
F8.4 Submissions ranking No No No Yes No No No Yes

Total 0 0 0 1 0 0 0 1
Table 5.11: Features with low priority

The tables show that the existing systems already implement a significant amount of
high priority features and a few of the medium and low priority ones. Therefore, it was
considered to be advantageous to reuse one system instead of implementing a new system
from scratch.

By inspecting table 5.9 it is possible to conclude that the CourseMarker and BOSS
systems are the ones that have a higher number of already implemented features. How-
ever, CourseMarker was ruled out since it is a paid system and cannot be extended with

63

Specification of a New CBA System

the features that it lacks. The BOSS system was also ruled out as a viable alternative for
the base system, despite being an open-source project. After installing and testing BOSS,
it was noted that the core functionality of the system - the automatic assessment of code -
was not as mature and user-friendly as desired.

Since the maturity of the automatic assessment of code components seemed to be a
problem of the systems developed specifically to be used at Universities, the 2 systems
created for programming contests, Mooshak and DOMjudge, were considered to be the
more viable alternatives.

5.2.1 Mooshak versus DOMjudge

Mooshak and DOMjudge are both open source, already implement 9 out of 18 of the high
priority features and 1 out of 7 of the low priority features. In terms of medium priority
features, Mooshak has one more than DOMjudge. By analysing both systems’ source
code and documentation, the following observations were drawn:

• DOMjudge uses a MySQL database for keeping contest and submission data, while
Mooshak uses the file system;

• DOMjudge has, in its architecture, a clear separation of the components responsible
for running the contest and the components responsible for automatically assessing
the submitted solutions. There are even two different programs that can (and should)
be executed on different machines;

• DOMjudge has more documentation available, including detailed Administrator,
Jury and Team manuals.

Based on this analysis, DOMjudge was chosen over Mooshak as the base system.
Since, for the desired CBA system, the features related to the running of contests are ir-
relevant, the fact that DOMjudge makes a clear distinction between those features and the
automatic assessment of code, allows for a more straightforward creation of an abstraction
layer responsible for the communication with external platforms. This abstract layer can
directly access DOMjudge’s database and be independent of DOMjudge’s source code.
The components responsible for the automatic assessment of code have an autonomous
behavior, use the same database, but execute on different machines.

Besides the robust automatic assessment of code component, DOMjudge has also
proved to be a very safe system, being used with success in some important programming
contests. Furthermore, and as referred in section 2.8.1, it allows for the definition of
validators that may be useful for handling data that do not fit within the standard scheme
of fixed test data.

64

Specification of a New CBA System

5.3 Integration With Moodle

The easiest and most maintainable for adding new functionality to Moodle is by using
one of the many plugin APIs available [Moo10b]. Three of the different types of plugin
available were identified as viable possibilities for making the bridge between the server
responsible for the automatic assessment and Moodle: a new activity module, a new
type of assignment or a new question type. Each of the three alternatives has its up
and down points. This section has the goal of evaluating those ups and downs and of
justifying the type of plugin that was chosen. The decision was made based on 6 factors:
implementation freedom, implementation effort, the number of configuration parameters
already available in each of the alternatives, the existence of a pre-implemented upload
mechanism, vulnerability to future changes in Moodle’s structure and, finally, the way
programming problems can be reused.

5.3.1 Implementation Freedom

The creation of a new activity module allows for much more freedom in the definition of
the functionalities needed on the Moodle side since almost all of the user interface can
be implemented from scratch. The level of freedom decreases for the implementation of
a new assignment type, since one has to follow the restrictions outlined by the structure
of the assignment template. When it comes to the question type, the implementation
level decreases even more: one has to follow the restrictions outlined by the structure of
the question type template and has to cope with the quiz structure already implemented
in Moodle. Therefore, and as can be seen in figure 5.12, the implementation freedom
can be classified as low, medium and high for, respectively, the question type plugin, the
assignment plugin and the activity module plugin.

Question Assignment Module
Implementation freedom Low Medium High

Table 5.12: Implementation freedom of the different plugin alternatives

5.3.2 Implementation Effort

By analyzing the source code of existing question types, assignment types and activity
modules, the implementation effort of the different alternatives was classified as shown
on table 5.13. The implementation of a new activity module requires the definition of a
much higher number of and more complex source files than the implementation of a new
question or assignment.

65

Specification of a New CBA System

Question Assignment Module
Implementation effort Medium Medium High

Table 5.13: Implementation effort of the different plugin alternatives

5.3.3 Configuration Parameters

Opting for a new question type allows for the use of a big set of assessment configuration
parameters already implemented in Moodle’s quizzes. The alternative of the assignment
type also allows for the utilization of a pre-implemented set of configuration parameters.
However, the amount is smaller than the available for quizzes. As expected, there are
no configuration parameters pre-implemented in the case of the activity module, since
everything has to be implemented from scratch. Table 5.14 summarizes these conclusions
about the configuration parameters.

Question Assignment Module
No. configuration parameters High Medium N/A

Table 5.14: Number of pre-implemented configuration parameters for the different plugin alterna-
tives

5.3.4 Existence of an Upload Mechanism

The creation of a new assignment type allows for the use of a pre-implemented mech-
anism for the upload of assignment solutions. To achieve this, one has only to extend
the already available assignment types Advanced uploading of files or Upload
a single file. The implementation of a new question type demands for the imple-
mentation of an upload mechanism. Although this problem can be outlined by mak-
ing use of a text field where the students could paste their code, if multiple source code
files are needed, then the upload mechanism is imperative. As expected, there is no pre-
implemented upload mechanism in the case of the activity module, since everything has to
be implemented from scratch. Table 5.15 summarizes these conclusions about the upload
mechanism.

Question Assignment Module
Upload mechanism No Yes No

Table 5.15: Availability of a pre-implemented mechanism for upload of solutions in the different
plugin alternatives

66

Specification of a New CBA System

5.3.5 Vulnerability to Structural Changes

One of the main factors influencing the final decision about which type of plugin to chose
is the vulnerability to future changes in Moodle’s structure. It is important for the main-
tainability of the CBA system that changes in future versions of Moodle will not affect the
normal behavior of the plugin. Obviously, it is not possible to make accurate previsions
about this vulnerability factor, since it is not possible to predict the structure of future
Moodle versions and also because the way the plugin is implemented, independently of
its type, may also affect forward compatibility. However, some previsions can still be
made.

As can be seen on table 5.16, the vulnerability of the question type, assignment type
and activity module were respectively classified as Medium/High, Medium and Low. The
question type is probably the most vulnerable since it is dependent on the current structure
of quizzes and question types. If one of these two is changed the plugin may be affected.
The assignment type may be vulnerable to future changes in the assignment template,
while the activity module may be vulnerable to future changes in the activity module
templates, which is less likely to happen due to the considerable amount of pre-existing
modules that would have to be changed.

Question Assignment Module
Vulnerability to structural changes Medium/High Medium Low

Table 5.16: Vulnerability to future Moodle structural changes of the different plugin alternatives

5.3.6 Reuse of Problems

It is also important to analyze how the three different alternatives allow for the reuse of
previously created problems. In the situation of the question type, different questions can
be used for different assignments. This feature is already implemented in Moodle. How-
ever, when it comes to the assignment type or the activity module, there is no such feature
already available. This should be implemented in the server side, where the problems
are maintained. Table 5.17 summarizes these conclusions about the means for reusing
problems.

Question Assignment Module
Reuse of problems Moodle Server Server

Table 5.17: Means for reusing problems of the different plugin alternatives

5.3.7 Making a Decision

The conclusions drawn about each of the plugin types can be summarized as follows:

67

Specification of a New CBA System

• Question type - this is the option that requires less implementation effort and that
takes more advantage of features already implemented in Moodle. However, this is
probably the worst choice in terms of maintainability and implementation freedom;

• Assignment - the assignment alternative can be considered to lie somewhere in
between the other two alternatives. It takes advantage of some already implemented
features, but less than the ones available for the question type. The implementation
freedom is higher than the question type but lower than the activity module;

• Activity Module - this alternative is the most viable one in terms of implementation
freedom and maintainability. In spite of requiring more implementation effort, it is
the one less coupled to Moodle’s structure and the one more likely to support future
changes in the CBA system structure;

Based on all the collected information, it was decided to give a higher priority to the
implementation of a new activity module. The implementation freedom and maintain-
ability factors played a very important role in the decision.

The implementation of a new question type was not discarded. However, it was given
a lower priority than the activity module. The new question type has advantages in terms
of configuration parameters and reuse of problem. Moreover, it will allow the creation of
assignments with programming exercises combined with other types of exercises.

The creation of a new assignment type was ruled out because its main advantages are
feature related. The already implemented features, that are of interest for the system, can
also be implemented in the activity module.

5.4 From Programming Contests to University Assignments

Being specifically developed to be used in programming contests, the choice of DOM-
judge to be the base system raises a number of conceptual issues. The entities involved in
a programming context are not exactly the same ones involved in a teaching context and
hence a mapping of entities between the two contexts is needed. For instance, the enti-
ties student and assessment can be represented by the DOMjudge entities team and
problem. This means that there should be a layer responsible for linking and adapting
DOMjudge’s functionalities to be used by the Moodle plugin.

It is also important to note that DOMjudge does not provide all the functionalities
specified for the final system. As presented in section 5.2, it supports 9 out of 18 features
with high priority, 3 out of 11 features with medium priority and 1 out of 7 features with
low priority. Some of the missing features can be exclusively implemented in the Moodle
plugin, while others may be implemented by using additional external tools. For instance,
features F3.2 - Unit tests, F4.2 - Static analysis of code quality

68

Specification of a New CBA System

and F8.1 - Plagiarism detection may be implemented by linking out-of-the-
shelf tools to the Moodle plugin for, respectively, performing unit tests, static analysis of
code and detect plagiarism in source files.

By looking at the set of features not supported by DOMjudge, one can conclude that
it mostly lacks the ones listed in section 5.1.2.5. Those are submission management re-
lated features that are associated to the teaching context and are not used in programming
contests. Another characteristic of programming contests, in which DOMjudge is used,
is that a problem is only considered to be correct if it passes all the test cases. In the
teaching context it is important to accept partially correct programs capable of solving a
part of the test cases, which may have different weights.

The fact that DOMjudge’s automatic assessment of code relies on input and output
processing may pose some issues in introductory programming courses, where students
still do not master the handling of input and output data. However, this can be over-
come with feature F5.2 - Skeleton mechanism. Teaching staff can provide skele-
ton code, responsible for handling the input and output data, allowing students to focus
on writing the code for problem solving. Therefore it is reasonable to change the priority
of this feature from Medium to High.

5.5 Architecture

This subsection introduces the system’s architecture by the means of UML diagrams. The
architecture of the base system, DOMjudge, is presented in first place. Then, the overall
architecture of the system is discussed. The overall architecture was define by linking
Moodle (the platform with higher priority as referred in 5.1) to the automatic assessment
server and by adding some utilitarian external tools.

5.5.1 DOMjudge’s Architecture

DOMjudge’s architecture, briefly introduced in section 2.8.6, can be represented by the
deployment model of figure 5.5.

As can be seen, there are three different kinds of physical nodes:

• Client - represents the machines where the teams compete. Teams can access the
main server, hosted by the Domserver machine, either via a web browser or via a
submit client which is a command line client for submitting solutions;

• Domserver - this node hosts the main server, which runs on Apache, receives sub-
missions, runs a MySQL database for keeping the submissions and serves web pages
to teams, jury and administrators;

69

Specification of a New CBA System

Figure 5.5: DOMjudge’s architecture

• Judgehost Server - each judgehost server runs a script which retrieves submitted
solutions from the database hosted by the Domserver, compiles and tests them and
sends the result back to the main server.

5.5.2 Overall Architecture

The overall architecture of the CBA system, which was devised based on DOMjudge’s
architecture, is presented in the deployment model of figure 5.6.

Following there is a description of each of the nodes included in the model.

• Client - represents the machines used by teaching staff and students to use the CBA
system. These machines need to have a web browser to access the system’s inter-
face, which is generated by a Moodle server;

• Moodle Server - machine that hosts Moodle’s server, running on XAMPP [Fri10].
The CBA system demands for the implementation of a new Moodle plugin that is
also maintained in this machine. The plugin is responsible for the interaction with
the user, regarding the CBA system features, as well as for the communication with
the automatic assessment server;

• Automatic Assessment Server - this node can be seen as an extension of the
Domserver node presented in DOMjudge’s architecture: it hosts DOMjudge’s main

70

Specification of a New CBA System

Figure 5.6: Overall architecture

71

Specification of a New CBA System

server and the database for keeping the submissions, as well as some additional
components. Among the additional components, there is a front end that is needed
for linking the Moodle plugin with DOMjudge’s main server. The other additional
components include an external tool for dealing with plagiarism detection, an ex-
ternal tool for running static code analysis and a module responsible for supporting
the assessment of solutions with unit tests;

• Judgehost Server - represents the same judgehost server presented in DOMjudge’s
architecture.

This architecture configuration is important for assuring the security and reliability
of the whole system. Information regarding grades and course information is kept in the
Moodle server and hence is not affected by potential problems in the automatic assess-
ment server. Furthermore, the main automatic assessment server is kept apart from the
servers responsible for running submitted code and therefore will not be affected by po-
tential crashes caused by submissions containing malicious code (the code is run under
a sandbox with restricted privileges and hence server crashes are unlikely to happen, but
this separation adds extra security).

5.5.2.1 Front End Specification

The Front End is the component responsible for defining the communication protocol be-
tween the Moodle plugin and the DOMjudge’s main server. Moreover, this Front End
should add a new abstraction layer and be flexible enough to make it possible to easily
link other systems such as Moodle2, SIGEX and the eBook system previously mentioned.
The new abstraction layer should be responsible for mapping the entities between DOM-
judge’s programming context and Moodle’s teaching context.

In order to allow the linking of the automatic assessment server to a number of distinct
systems, it is desirable to implement the communication protocol using some well-known
standard. Among the available alternatives, it was decided to use WSDL [Conb] in con-
junction with SOAP [Cona] due to its simplicity and previous experiences of CICA with
implementing this kind of protocol.

72

Chapter 6

Implementation

Using the specification of the previous chapter as guideline, a prototype of the new CBA
system was implemented. In the prototype, the automatic assessment server was inte-
grated with Moodle. Developed in PHP, it implements a subset of the listed features and
consists of an activity module plugin able to communicate with the Front End component
of the automatic assessment server. The new activity module was called Programming
Assessment.

This chapter presents the most relevant implementation details. It includes the de-
scription of:

1. How DOMjudge entities were mapped to the entities used in the activity module;

2. The communication protocol and the interface provided by the Front End module;

3. The methodology used for extending DOMjudge’s features;

4. How the automatic assessment results are gathered from the DOMjudge server to
the Moodle server;

5. The mechanism for configuring test cases with attributes such as personalized feed-
back messages;

6. The skeleton file mechanism, that may be used to simplify the work of students in
introductory programming courses;

7. The feedback system, responsible for the generation of feedback reports about the
performance of students in the assessments.

73

Implementation

6.1 Entity Mapping

This section explains how the entities involved in the DOMjudge domain were associated
to the ones used by the Moodle plugin. Before explaining how the mapping was done, the
entities of both domains are briefly described.

6.1.1 DOMjudge Entities

Figure 6.1 presents the main entities of the DOMjudge domain. Their description, as well
as the meaning of their relationships, is as follows:

• Contest - represents a programming contest. Each DOMjudge server can only run
one contest at a time and a contest can have several different programming prob-
lems;

• Problem - a programming problem can only be used in a single programming con-
test, can only have one test case and may have multiple submissions from multiple
teams;

• TestCase - represents a test case used to test the correctness of programming prob-
lems. In a relational perspective, a programming problem can only have one test
case. However, the input and output files specification may be made in such a way
that it may include several logical test cases;

• Team - a team may be either a team competing in programming contests, an ob-
server or a member of the organization. It may submit several solutions for the
problems of the programming contests;

• Submission - represents a solution made by a team to solve one programming prob-
lem. A submission has one source file of a given programming language and gets a
judging result after being evaluated by a judgehost;

• Judging - represents a judging result for a given submission. To be considered
correct, the submission output has to completely match the solution output file;

• Language - represents a programming language.

74

Implementation

Figure 6.1: DOMjudge main entities

6.1.2 Moodle Plugin Entities

Figure 6.2 presents the main entities of the Moodle plugin domain. Their description, as
well as the meaning of their relationships, is as follows:

• ProgrammingAssessment - a programming assessment is an assignment that may
have several test cases and several submissions from multiple users;

• TestCase - represents a test case used to test the correctness of programming as-
sessments. Each programming assessment may have several test cases, possibly
with different weights;

• User - a user may be either a student, a teacher or an administrator. They may
submit solutions to solve the available programming assessments;

• Submission - represents a solution made by a user to solve one programming as-
sessment. A submission has one source file of a given programming language and
gets a result after being evaluated by the automatic assessment server;

• Result - represents the automatic assessment result of a given submission. It is com-
posed by the results in all the test cases of the associated programming assessment;

• Language - represents a programming language.

75

Implementation

Figure 6.2: Moodle plugin main entities

6.1.3 Mapping

As can be concluded from the two previous sections, 6.1.1 and 6.1.2, there is not a direct
match between all the entities of the two domains. Still, some of the associations were
defined quite straightforwardly:

• Moodle’s Language is mapped to DOMjudge’s Language ;

• Moodle’s User is mapped to DOMjudge’s Team;

• Moodle’s TestCase is mapped to DOMjudge’s TestCase.

The main mapping issues arose when mapping the ProgrammingAssessment en-
tity. Associating it to a Contest would mean that the main server would only be capable
of hosting one assessment at a time. Associating it to a Problem would mean that an
assessment could only have one TestCase. The adopted solution consists in mapping
one ProgrammingAssessment to multiple Problems, one for each TestCase. With
this solution, the main server can host multiple assessments at the same time.

The association between ProgrammingAssessments and multiple Problems in-
fluenced the mapping of Submissions: a Moodle Submission is associated to multi-
ple DOMjudge Submissions, one per TestCase of the ProgrammingAssessment.
Therefore, the Result of a Submission consists of all the associated Judgings.

Having Problems mapped to ProgrammingAssessments, it was decided to keep
one single Contest in DOMjudge’s database. This Contest is used by all the Problems.

76

Implementation

6.2 Front End and Communication Protocol

As specified in section 5.5.2.1, the Front End component was defined using WSDL in con-
junction with SOAP. Its interface was described in a .wsdl file and the implementation
was made with PHP. The Front End adds a new abstraction layer on top of DOMjudge,
by hiding its domain. This is achieved by mapping the DOMjudge entities to the ones
associated to the programming assessments, following the rules described in 6.1.3. With
this new abstraction layer, it becomes easier to link other systems to DOMjudge’s func-
tionalities.

The description of the Front End interface can be found in appendix G and contains
methods to:

• Get information about the programming languages supported by the automatic as-
sessment server;

• Add, remove and update programming assessments;

• Add, remove and update test cases;

• Add users to the system;

• Add submissions and get their judging results;

6.3 Extending DOMjudge’s Features

As referred in section 5.4, DOMjudge did not provide all the functionalities specified for
the final system. When developing the prototype, it was decided to keep DOMjudge’s
source code unchanged and to implement all the non supported features only at the Moo-
dle plugin level. For instance, the implementation of the parameters for assessment con-
figuration listed in section 5.1.2 is completely independent of DOMjudge. This decision
was mainly affected by the mapping of programming assessments to problems, which do
not have temporal configurations (start time, deadline and tolerance time). Other rele-
vant features that were implemented on top of DOMjudge are the test case configuration
system with personalized feedback, described in section 6.5, as well as the skeleton file
mechanism, described in section 6.6.

6.4 Polling of Automatic Assessment Results

After being submitted via the Moodle interface, the solutions for programming assess-
ments are sent to the DOMjudge server. Since the automatic assessment process may last
from a few seconds to a few minutes, depending on the number and complexity of the

77

Implementation

test cases, the communication between Moodle and DOMjudge was implemented in an
asynchronous fashion. This means that the Moodle plugin does not block, waiting for the
judging results, after a submission is made. Instead, the results are polled by using the
Cron mechanism, which is a Unix program that runs predefined tasks on a computer at
regular intervals. It assists some of Moodle’s modules to perform tasks on a scheduled
basis [Moo10a].

In terms of implementation, a cron function, which is executed on a regular basis, was
created for the Programming Assessment activity module. The interval between execu-
tions can be regulated, but its minimum value is restricted to one minute. The algorithm
implemented for the cron function is as follows:

1. Fetch, from Moodle’s database, all the submissions that still do not have a judging
result;

2. For all the fetched submissions, query the DOMjudge server for the judging result;

3. For all the received answers, update Moodle’s database with the results;

4. Update student’s grades based on the new results.

6.5 Test Cases Configuration and Personalized Feedback

In the Moodle plugin, the mechanism for test case definition is based on the mechanism
used in DOMjudge, which relies on the usage of plain input and output files. However,
some modifications were made in order to adapt it to teaching staff needs. The imple-
mented mechanism is able to detect some specific tags that can be used to define test case
attributes.

With the tag system, the input of a test case has to start, mandatorily, with the line
#testcase. Then, four optional attributes can be defined with lines starting with the
symbol #:

• weight - defines the contribution of the test case to the grade of the assessment. If
omitted, the weight is set to 1;

• name - sets the name of the test case (this is useful for identifying the test cases
in the automatic reports containing the results and feedback of the assessment). If
omitted, a number based on the index of the test case is used as name;

• wrong - defines a personalized feedback message that is shown to students when-
ever they fail the test case;

• right - defines a personalized feedback message that is shown to students whenever
they get the test case right;

78

Implementation

The output files do not have tagged attributes, however the start of a test case output
needs to be signaled with the line #testcase.

Since the automatic assessment server uses separate files for the different test cases,
the Moodle plugin strips out the lines with tags. Therefore, the code for handling input
and output will not have to deal with the lines with reserved tags.

Following, there is an example of an input and output file for a hypothetical assessment
with two test cases:

Listing 6.1: Sample input file

t e s t c a s e
w e i gh t 50
#name g c d _ t e s t
#wrong h t t p : / / en . w i k i p e d i a . o rg / w ik i / G r e a t e s t _ c o m m o n _ d i v i s o r
r i g h t c o n g r a t u l a t i o n s
gcd
12 18

t e s t c a s e
w e i gh t 40
#name p r i m e _ t e s t
#wrong h t t p : / / en . w i k i p e d i a . o rg / w ik i / Prime_number
pr ime
2
3
4

Listing 6.2: Sample output file

t e s t c a s e
6

t e s t c a s e
1
1
0

6.6 Skeleton File Mechanism

As explained in section 5.4, the skeleton file mechanism was specified to simplify the
work of students in introductory programming courses. Teaching staff can provide skele-

79

Implementation

ton code, which is not visible to students and is responsible for handling input and output
data. This allows students to focus on writing the code for problem solving.

Following there is an example containing the outline of a possible skeleton file, written
in pseudo code for a hypothetical assessment with two questions:

Listing 6.3: Sample skeleton file

f u n c t i o n q u e s t i o n 1 _ s o l u t i o n (p a r a m e t e r s) {
/ / code f o r s o l v i n g q u e s t i o n 1
r e t u r n answer ;

}

f u n c t i o n q u e s t i o n 2 _ s o l u t i o n (p a r a m e t e r s) {
/ / code f o r s o l v i n g q u e s t i o n 2
r e t u r n answer ;

}

/ / s t u d e n t c o d e

f u n c t i o n r e a d _ q u e s t i o n 1 _ i n p u t () {
/ / code f o r r e a d i n g i n p u t o f q u e s t i o n 1
r e t u r n i n p u t ;

}

f u n c t i o n r e a d _ q u e s t i o n 2 _ i n p u t () {
/ / code f o r r e a d i n g i n p u t o f q u e s t i o n 2
r e t u r n o u t p u t ;

}

f u n c t i o n t e s t _ q u e s t i o n 1 (p a r a m e t e r s) {
w r i t e _ l i n e (q u e s t i o n 1 _ s o l u t i o n (p a r a m e t e r s)

== q u e s t i o n 1 _ s t u d e n t (p a r a m e t e r s)) ;

/ / a l t e r n a t i v e l y , we c o u l d j u s t o u t p u t t h e r e s u l t
/ / o f q u e s t i o n 1 _ s t u d e n t (p a r a m e t e r s)

}

f u n c t i o n t e s t _ q u e s t i o n 2 (p a r a m e t e r s) {
w r i t e _ l i n e (q u e s t i o n 2 _ s o l u t i o n (p a r a m e t e r s)

== q u e s t i o n 2 _ s t u d e n t (p a r a m e t e r s)) ;

80

Implementation

/ / a l t e r n a t i v e l y , we c o u l d j u s t o u t p u t t h e r e s u l t
/ / o f q u e s t i o n 2 _ s t u d e n t (p a r a m e t e r s)

}

f u n c t i o n main () {
q u e s t i o n = r e a d _ l i n e () ;

i f (q u e s t i o n == " q u e s t i o n 1 ") {
p a r a m e t e r s = r e a d _ q u e s t i o n 1 _ i n p u t () ;
t e s t _ q u e s t i o n 1 (p a r a m e t e r s) ;

} e l s e i f (q u e s t i o n == " q u e s t i o n 2 ") {
p a r a m e t e r s = r e a d _ q u e s t i o n 2 _ i n p u t () ;
t e s t _ q u e s t i o n 2 (p a r a m e t e r s) ;

}
}

The main function starts by reading a line from the input file which specifies the
question to test. Then, the parameters for the question in cause are read and the method
responsible for testing the question is invoked. The testing method can follow (at least)
two approaches:

• Output the result of a direct comparison between staff’s solutions and student’s so-
lution;

• Output the result of student’s solution;

The output files will have different configurations, depending on the approach that is
followed. In the case of the first approach, the output files should contain the boolean
true for each answer, while in the second one the output files should contain the results
produced by staff’s solutions.

To finish the description of the skeleton file mechanism, it is necessary to explain
the meaning of the line //studentcode. Whenever a student makes a submission,
the submitted source file is merged with the skeleton code. The //studentcode is
replaced by the submission code and the resulting file is compiled and tested. There-
fore, the submitted code is expected to contain the methods question1_student and
question2_student invoked in the skeleton source.

81

Implementation

6.7 Feedback System

Besides the implementation of personalized messages for test cases, already described in
section 6.5, the implemented feedback system also includes the possibility of toggling be-
tween immediate and non-immediate feedback and the regulation of the level of feedback
given to students.

When the feedback of an assessment is set to be immediate, submissions are sent to the
automatic assessment server right after being uploaded to Moodle. The feedback report is
automatically generated right after the judging result is polled from DOMjudge’s server
and stored in Moodle’s database. When the feedback is set to be non-immediate, submis-
sions are also sent to the automatic assessment server and the result is polled and stored
in Moodle’s database. However, the generation of the feedback reports is not automatic
and needs to be triggered either by a teacher or a course manager.

The feedback system can be configured to have one of three different levels of detail:
minimalist, moderated or detailed. The different feedback levels affect the amount of
information that is generated and presented to the user in the feedback report. All the
feedback information is obtained from the judging results of the automatic assessment
server. The information given for each level is as follows:

• Minimalist - global assessment grade and result in each test case;

• Moderated - minimalist information plus the input used in each test case;

• Detailed - moderated information plus the expected and obtained output in each test
case.

Furthermore, the system presents special feedback information to the user whenever a
submission receives a compile error or runtime error message.

82

Chapter 7

Results

This chapter presents an evaluation of the results achieved by the system specification and
by the implemented prototype, which was installed and configured in a test server running
on three CICA’s (FEUP’s computer centre) virtual machines. Being a test server, a single
machine is used for running both the Moodle server and the main DOMjudge server. The
two other machines run two judgehosts. The prototype results are evaluated by outlining
which features were implemented. Then, the validation of the system is discussed. The
chapter ends with some general considerations about the system’s features, including an
analysis of how it follows the best practices identified in section 3.1.9.

An installation guide is provided in the appendix B, while the instructions for access-
ing the test server are available in appendix D. By default, the DOMjudge server supports
the following programming languages: Bash, C, C++, Haskell, Java, Pascal and Perl.
Scheme, which is used in a MIEIC introductory programming course, was also config-
ured in the test server. In fact, the system allows for an easy incorporation of new pro-
gramming languages, mainly due to DOMjudge’s automatic assessment mechanism. The
steps needed for configuring a new programming language can be consulted in appendix
C.

7.1 Implemented Features

This section details which features are available in the system prototype. The features
were grouped using the same configuration of section 5.1.2.

7.1.1 Support for Assessment Creation

As shown in table 7.1, the system supports the creation of the three types of assessment
identified. The meaning of each type can be recalled from 2.9.1.1:

• Exams - traditional (programming) exams that have to be solved by all the students
at the same time, within a given time limit;

83

Results

• Tests - programming tests where students are divided in groups. All the students in
each group have to solve the test at the same time, within a given time limit;

• Exercises - self-learning programming exercises that can be solved by all the stu-
dents, without time limit;

Different time parameters (start time, deadline and tolerance time) can be used to
configure assessments with the presented characteristics. A guide explaining the creation
of new assessments can be found in appendix D.

Id Assessment Priority Implemented?
F1.1 Exams High Yes
F1.2 Tests High Yes
F1.3 Exercises Medium Yes

Table 7.1: Implementation of the types of supported assessments

Table 7.2 shows the parameters for assessment configuration that are supported by the
prototype. It is important to note that it is possible to associate a specific penalization for
late submissions, in percentage, to the tolerance time.

Id Parameter Priority Implemented?
F2.1 Start time High Yes
F2.2 Deadline High Yes
F2.3 Accepted programming languages High Yes
F2.4 Tolerance time High Yes
F2.5 Duration High Yes
F2.6 Max number of submissions Medium Yes
F2.7 Duration of each individual question Low No
Table 7.2: Implementation of the parameters for assessment configuration

7.1.2 Support for Test-Cases Definition

As seen in table 7.3, the prototype supports one of the identified test-cases definition
methodologies: the use of text files with input and output test data, which is the method-
ology behind DOMjudge’s behavior.

Id Methodology Priority Implemented?
F3.1 Text files High Yes
F3.2 Unit tests High No
F3.3 Regular expressions Low No

Table 7.3: Implementation of the methodologies for test-cases definition

84

Results

From the parameters for test-case configuration presented in table 7.4, only the one
with high priority, the weight for assessment grade, was implemented. It is also possible
to associate personalized feedback messages to test cases, but this feature was included in
the feedback system discussed in section 7.1.4.

Id Parameter Priority Implemented?
F4.1 Weight for assessment grade High Yes
F4.2 Static analysis of code quality Medium No
F4.3 Max runtime Medium No
F4.4 Max memory Medium No
F4.5 Distinguish students grades based on solving time Low No
F4.6 Identification and penalization of common mistakes Low No

Table 7.4: Implementation of the parameters for test-case configuration

7.1.3 Support for Elaboration and Submission of Solutions

The two features, associated to the support and elaboration of submissions, were success-
fully implemented (table 7.5). The solution upload mechanism, which is essential for
the system usage, was one of the first implemented features. A guide on how to submit
solutions can be consulted in the appendix F

Id Feature Priority Implemented?
F5.1 Mechanism for uploading solutions High Yes
F5.2 Skeleton mechanism High Yes

Table 7.5: Implementation of the features for supporting the elaboration and submission of solu-
tions

7.1.4 Feedback System

As shown in table 7.6, the three features related to the feedback system were implemented.
Therefore, it is possible to toggle between immediate and non-immediate feedback, to
choose one of three feedback levels and to associate personalized feedback messages to
test cases.

Id Feature Priority Implemented?
F6.1 Toggle immediate/non-immediate feedback High Yes
F6.2 Regulation of the level of feedback (Minimalist, Moderated, Detailed) High Yes
F6.3 Personalized feedback messages Medium Yes

Table 7.6: Implementation of the features related to the feedback system

85

Results

7.1.5 Submissions Management

As concluded by observing table 7.7, not much effort was put into the implementation of
the features related to submissions management. The prototype only supports the con-
sulting of the history of submissions and grades of students.

Id Feature Priority Implemented?
F7.1 Consult grades statistics High No
F7.2 Manual alteration of assessment results High No
F7.3 Student history High Yes
F7.4 Student notification High No
F7.5 Sending of e-mails Medium No
F7.6 Alteration of submitted code Medium No
F7.7 Exporting of assessment results Low No
F7.8 Built-in environment for manual testing of submissions Low No

Table 7.7: Implementation of the features related to the management of submissions

7.1.6 Extra Features

As shown in table 7.8, none of the features classified as extra is currently supported by
the prototype.

Id Feature Priority Implemented?
F8.1 Plagiarism detection High No
F8.2 Q&A system Medium No
F8.3 Exercise Database Medium No
F8.4 Submissions ranking Low No

Table 7.8: Implementation of the extra features

7.2 Prototype Validation

It is important to refer that the implemented prototype should be validated by DEI teach-
ing staff and students. This can be done, for instance, with pilot tests involving small
groups of students of programming courses. Then, surveys can be used to collect opin-
ions and feedback from staff and students. This validation process has still not been made
due to the limited amount of time available for the project. Moreover, the end of the
implementation phase coincided with the end of the semester, which is a busy academic
period with assignment deadlines and exams preparation.

86

Results

7.3 Summary

The prototype implements 14 out of 19 of the features with high priority, 3 out of 10 of
the features with medium priority and 0 out 7 of the features with low priority. In the
process of linking the Moodle plugin to DOMjudge, some features already supported by
the latter were lost, i. e., the appropriate user interface is not implemented by the plugin.
Those features include two medium priority features, F4.3 - Max runtime and F8.2 -
Q&A system, as well as one low priority feature, F8.4 - Submission ranking.

It is important to underline that the prototype does not simply link DOMjudge’s fea-
tures to Moodle, but also adds new functionalities useful in the academic context. There-
fore it is possible, by using Moodle’s interface, to create ACM-ICPC like exercises as well
as academic programming assessments suitable for introductory programming courses.
Examples of the two types of exercises can be found on the test server. The academic
assessment example was based on the data of a Scheme test given to students of an in-
troductory programming course of MIEIC. The steps followed for adapting the test to the
new system can be consulted in appendix E.

In terms of innovation, the main improvements of the new system in relation to the
already existing CBA systems are the possibility of defining test cases with attributes, such
as personalized feedback messages, and the skeleton file mechanism. This mechanism is
quite useful for introductory programming courses, where students do not master input
and output handling. This mechanism was used in the Scheme assessment example of
appendix E.

Finally, and making a bridge between the new system’s features and the best-practices
of the application of CBA systems in e-Learning presented in section 3.1.9, it is possible
to make the following conclusions in relation to the new CBA system:

• BP1 - It uses dynamic tests in the automatic assessment process. Not considered to
be essential, automatic static tests were not included in the prototype. However, a
component responsible for performing automated static analysis of source code was
considered in the specification of the complete architecture of the system;

• BP2 - Since none of the test case definition techniques was considered to have no-
torious benefits over the others, the three of them were included in the system’s
specification. However, the prototype only supports the use of text files, which is
the methodology used by DOMjudge;

• BP3 and BP4 - The skeleton file mechanism is a good system for avoiding problems
with control characters, as well as for not forcing students of introductory program-
ming courses to have to handle the input and output of test cases;

87

Results

• BP5 - It is able of giving relevant feedback to students, based on DOMjudge’s au-
tomatic assessment results and on personalized feedback messages. The feedback
detail and the number of allowed submissions can be combined to match one of the
configurations that has shown to provide good results;

• BP6 - Being a major concern in the University context, a component for detecting
plagiarism among students was considered while specifying the overall architecture
of the system. However, the prototype does not support plagiarism detection;

• BP7 - System’s security is assured at the authenticity and integrity level by Moodle,
while DOMjudge uses a sandbox for protecting the system from malicious code;

• BP8 - The prototype does not support any kind of competition-like assessments.
However, a submission ranking feature was considered in the specification and fu-
ture versions of the system may take advantage of DOMjudge’s competition-related
features to implement it.

88

Chapter 8

Conclusions and Future Work

8.1 Work Summary

The goals of this dissertation were to specify and develop a prototype of a CBA system
for supporting the programming components of the courses of DEI. The system should be
able to help reducing the amount of work needed for marking and grading programming
assignments, by automating the assessment process. It has a core component, behaving as
an independent service, responsible for the automatic assessment of programming assign-
ments and flexible enough to be integrated with other platforms such as Moodle, SIGEX
and an eBook system. In order to achieve the proposed goals, the following steps were
followed:

• A study of eight state-of-the-art CBA systems was performed, with the goal of un-
derstanding what features are available. The features were grouped in nine different
topics for a better comprehension. The studied systems were firstly presented one
by one and then their features were summarized and directly compared;

• An analysis of five cases studies was then performed to understand how CBA sys-
tems are currently being used to support the e-Learning process in academic insti-
tutions. From this analysis emerged nine best-practices;

• The learning needs of DEI’s teaching staff were analyzed by the means of an online
survey. The survey structure was based on the topics used to group the features of
the state-of-the-art CBA systems;

• Then, a specification for the new CBA system was developed. It has a proposal
containing use case diagrams and a list of the features to implement, with differ-
ent priorities and grouped in topics, using the same division of the state-of-the-art
analysis. The specification also contains a study which led to the decision of using
DOMjudge has the basis for the final system. The type of Moodle plugin to im-
plement was also determined: with high priority, an activity module and, with less

89

Conclusions and Future Work

priority, a new question type. Since DOMjudge could not fulfill all the requirements
of the new system, a brief discussion was conducted to explain how and which fea-
tures would be built on top of it. Finally, the architecture of the CBA system was
defined. The overall architecture was obtained by combining DOMjudge’s architec-
ture with Moodle and some external tools;

• Having the complete system specification, a prototype of the CBA system was de-
veloped. It implements a subset of the specified functionalities and consists of a
Moodle activity module plugin integrated with DOMjudge’s automatic assessment
server. Moodle and DOMjudge communicate using WSDL in conjunction with
SOAP. The prototype was then set up on a test server running on CICA ’s virtual
machines. The server supports programming assessments in DOMjudge’s default
languages (Bash, C, C++, Haskell, Java, Pascal and Perl), as well in Scheme, a func-
tional programming language used in a MIEIC introductory programming course;

• Finally, the results achieved by the project were assessed. A significant amount of
the specified features was implemented: 14 out of 19 with high priority and 3 out
of 10 with medium priority. It was concluded that the prototype does not simply
link DOMjudge’s features to Moodle, but also adds new functionalities, useful in
the academic context. Moreover, the system has two innovative mechanisms not
found in other CBA systems: the possibility of defining test cases with attributes,
such as personalized feedback messages, and a skeleton file mechanism. It was also
concluded that the system allows to follow the previously identified best-practices
of the application of CBA systems in e-Learning.

Some documents, regarding the configuration and usage of the system were created
and included as appendix, at the end of this dissertation report. These documents include:

• Appendix B - a guide with some tips for installing the implemented prototype;

• Appendix C - a step-by-step guide for configuring a new programming language in
the CBA system;

• Appendix D - a guide on how to create and configure a new programming assess-
ment;

• Appendix E - a guide with the steps followed for adapting to the new CBA system
a Scheme test, which was given to students of an introductory programming course
of MIEIC and automatically corrected by the system referred in 1.1;

• Appendix F - a guide explaining the user interface for submitting solutions to pro-
gramming assessments.

90

Conclusions and Future Work

8.2 Future Work

Despite having a complete system specification and a functional prototype that imple-
ments a significant amount of features and that is available on a test server, there are still
further steps that have to be followed in order to obtain a mature system to be used in real
tests and exams:

• The five missing high priority features are of great importance for the system and
hence should be implemented. Four of those features are related to the management
of submissions and will contribute for increasing the control that teaching staff have
over the submitted solutions and over the automatic assessment results. The fifth
missing feature is related to the detection of plagiarism. This can be, in principle,
implemented by integrating one off-the-shelf external tool with the system’s proto-
type;

• It would be interesting to take advantage of some additional DOMjudge features.
For instance, the use of validators can be extremely useful for problems that do not
fit within the standard scheme of fixed input and/or output. Moreover, the program-
ming contests related features, namely the team ranking, can be used to set up some
small competitions to foster students’ motivation;

• Some usability aspects can be improved. For instance, the interface for submitting
solutions and consulting their results can be improved by using more JavaScript and
AJAX;

• Finally, the system needs to be stress-tested and validated by teaching staff and stu-
dents. This can be done, for instance, with pilot tests involving groups of students of
programming courses. Then, surveys can be used to collect opinions and feedback
from staff and students.

91

Conclusions and Future Work

92

References

[AI10] ACM-ICPC. The ACM-ICPC International Collegiate Programming Con-
test Web Site, 2010. http://cm.baylor.edu/welcome.icpc. Last
accessed: June 22, 2010.

[BBFH95] Steve Benford, Edmund Burke, Eric Foxley, Colin Higgins. The Ceilidh
System for the Automatic Grading of Students on Programming Courses.
Proceedings of the 33rd ACM Southeast Conference, Clemson University,
South Carolina, pages 176-182, 17th-19th March 1995.

[BGNM04a] Michael Blumenstein, Steve Green, Ann Nguyen, and Vallipuram
Muthukkumarasamy. GAME: A Generic Automated Marking Environment
for Programming Assessment. itcc, vol. 1, pp.212, International Confer-
ence on Information Technology: Coding and Computing (ITCC’04) Vol-
ume 1, 2004.

[BGNM04b] Michael Blumenstein, Steven Green, Ann Nguyen, and Vallipuram
Muthukkumarasamy. An experimental analysis of GAME: a generic auto-
mated marking environment. Proceedings of the 9th annual SIGCSE confer-
ence on Innovation and technology in computer science education, Leeds,
United Kingdom, June 28-30, 2004.

[Blo56] Benjamin S. Bloom. Taxonomy of Educational Objectives: The Classifi-
cation of Educational Goals, volume Handbook I: Cognitive domain. New
York, 1956.

[Cam97] Tracy Camp. The incredible shrinking pipeline. Commun. ACM,
40(10):103–110, 1997.

[CAMF+03] Janet Carter, Kirsti Ala-Mutka, Ursula Fuller, Martin Dick, John English,
William Fone, and Judy Sheard. How shall we assess this?. Working group
reports from ITiCSE on Innovation and technology in computer science ed-
ucation, p.107-123, Thessaloniki, Greece, 2003.

[CL01] Fintan Culwin and Thomas Lancaster. Plagiarism issues for higher educa-
tion. Inf. Security, 21(2):36 – 41, 2001.

[Cona] World Wide Web Consortium. SOAP Specifications. http://www.w3.
org/TR/soap/. Last accessed: June 22, 2010.

[Conb] World Wide Web Consortium. Web Services Description Language
(WSDL). http://www.w3.org/TR/wsdl. Last accessed: June 22,
2010.

93

http://cm.baylor.edu/welcome.icpc
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl

REFERENCES

[Cum08] Stephen Cummins. Changing Programming Feedback Using Web 2.0 Tech-
nologies. Technical Report TR-TEL-08-05, Durham University, 2008.

[Dal99] Charlie Daly. RoboProf and an introductory computer programming course.
Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on In-
novation and technology in computer science education, p.155-158, Cra-
cow, Poland, June 27-30, 1999.

[DH04] Charlie Daly and Jane M. Horgan. An automated learning system for Java
programming. IEEE Transactions on Education, 47(1):10 – 17, 2004.

[DLO05] Christopher Douce, David Livingstone, and James Orwell. Automatic test-
based assessment of programming: A review. Journal on Educational Re-
sources in Computing (JERIC), v.5 n.3, p.4-es, September 2005.

[DS97] Norman R. Draper and Harry Smith. Applied Regression Analysis. Wiley,
New York, 1997.

[edu10] EduJudge, 2010. http://www.edujudge.eu/. Last accessed: June 22,
2010.

[EKW09a] Jaap Eldering, Thijs Kinkhorst, and Peter van de Werken. DOM-
judge - Programming Contest Jury System, 2009. http://domjudge.
sourceforge.net/. Last accessed: June 22, 2010.

[EKW09b] Jaap Eldering, Thijs Kinkhorst, and Peter van de Werken. DOMjudge team
manual, 2009.

[EKW10a] Jaap Eldering, Thijs Kinkhorst, and Peter van de Werken. DOMjudge Ad-
ministrator’s Manual, 2010.

[EKW10b] Jaap Eldering, Thijs Kinkhorst, and Peter van de Werken. DOMjudge Jury
Manual, 2010.

[FHST98] Eric Foxley, Colin Higgins, Pavlos Symoniedes, and Athanasios Tsintsi-
fas. Security issues under Ceilidh’s WWW interface. Proc ICCE’98, Vol 1
pp235-240, Beijing, China, 14-17 Oct, 1998. Springer, ISBN: 7-04-007336-
6.

[FHST01] Eric Foxley, Colin Higgins, Pavlos Symeonidis, and Athanasios Tsintsi-
fas. The CourseMaster Automated Assessment System – a next generation
Ceilidh. Proceedings of the Workshop on Computer Assisted Assessment to
Support the ICS Disciplines, April 5-6 2001.

[FHTS00] Eric Foxley, Colin Higgins, Athanasios Tsintsifas, and Pavlos Symoniedes.
The Ceilidh-CourseMaster System, An Introduction. Proceedings of the 4th
Java in the Curriculum Conference, South Bank University, UK, January
24, 2000.

[Fri10] Apache Friends. XAMPP, 2010. http://www.apachefriends.org/
en/xampp.html. Last accessed: June 22, 2010.

94

http://www.edujudge.eu/
http://domjudge.sourceforge.net/
http://domjudge.sourceforge.net/
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

REFERENCES

[GMFA09] Ginés Gárcia-Mateos and José Luis Fernández-Alemán. A course on algo-
rithms and data structures using on-line judging. ACM, 45-49, 2009.

[GVN02] Moumita Ghosh, Brijesh Kumar Verma, and Ann Nguyen. An Auto-
matic Assessment Marking and Plagiarism Detection System, Proceedings
of International Conference on Information Technology and Applications,
Charles Sturt University, 2002.

[HGST05] Colin A. Higgins, Geoffrey Gray, Pavlos Symeonidis, and Athanasios
Tsintsifas. Automated assessment and experiences of teaching program-
ming. Journal on Educational Resources in Computing (JERIC), v.5 n.3,
p.5-es, September 2005.

[HHST03] Colin Higgins, Tarek Hegazy, Pavlos Symeonidis, and Athanasios Tsintsi-
fas. The CourseMarker CBA System: Improvements over Ceilidh. Educa-
tion and Information Technologies, v.8 n.3, p.287-304, September 2003.

[HLVW02] Bodo Hüsemann, Jens Lechtenbörger, Gottfried Vossen, and Peter West-
erkamp. XLX - A Platform for Graduate-Level Exercises. Proceedings of
the International Conference on Computers in Education, p.1262, Decem-
ber 03-06, 2002.

[Hol60] Jack Hollingsworth. Automatic graders for programming classes. Commu-
nications of the ACM, v.3 n.10, p.528-529, Oct. 1960.

[HST02] Colin Higgins, Pavlos Symeonidis, and Athanasios Tsintsifas. The marking
system for CourseMaster. Proceedings of the 7th annual conference on In-
novation and technology in computer science education, Aarhus, Denmark,
June 24-28, 2002.

[HTS02] Colin A. Higgins, Athanasios Tsintsifas, and Pavlos Symeonidis. Course-
Master marking programs and diagrams, Proceedings of the Dealing with
Plagiarism in ICS Education Conference, Warwick, April 11-12 2002.

[JGB05] Mike Joy, Nathan Griffiths, and Russell Boyatt. The boss online submission
and assessment system. Journal on Educational Resources in Computing,
5(3):2, 2005.

[JL95] Mike Joy and Michael Luck. On-line submission and testing of program-
ming assignments. Innovations in Computing Teaching, SEDA, 1995.

[JL98] Mike Joy and Michael Luck. Effective electronic marking for on-line as-
sessment. SIGCSE Bull., 30(3):134–138, 1998.

[JL99] M. Joy and M. Luck. Plagiarism in Programming Assignments. IEEE
Transactions on Education, 42(1):129–133, 1999.

[Lau93] Diana Laurillard. Rethinking University Teaching: A Conversational
Framework for the Effective Use of Learning Technologies, 1993.

[Lea09] José Paulo Leal. Mooshak, 26 May 2009 2009. http://mooshak.dcc.
fc.up.pt/. Last accessed: June 22, 2010.

95

http://mooshak.dcc.fc.up.pt/
http://mooshak.dcc.fc.up.pt/

REFERENCES

[LS03] José Paulo Leal and Fernando Silva. Mooshak: a Web-based multi-site pro-
gramming contest system. Software—Practice and Experience, 33(6):567
– 581, 2003.

[MKKN05] Lauri Malmi, Ville Karavirta, Ari Korhonen, and Jussi Nikander. Experi-
ences on automatically assessed algorithm simulation exercises with differ-
ent resubmission policies. Journal on Educational Resources in Computing,
5(3):7, 2005.

[Moo10a] MoodleDocs. Cron, 2010. http://docs.moodle.org/en/Cron. Last
accessed: June 22, 2010.

[Moo10b] MoodleDocs. Moodle developer documentation, 2010. http://docs.
moodle.org/en/Development. Last accessed: June 22, 2010.

[Mue08] Department of Information Systems of the University of Muenster.
xLx - eXtreme e-Learning eXperience, 2008. http://dbis-group.
uni-muenster.de/projects/xlx/. Last accessed: June 22, 2010.

[Pla94] P. J. Plauger. Fingerprints. Embedded Systems Programming, pages 84–87,
1994.

[PRS+03] Yusuf Pisan, Debbie Richards, Anthony Sloane, Helena Koncek, and Simon
Mitchell. Submit! a web-based system for automatic program critiquing,
2003. Proceedings of the fifth Australasian computing education conference
on Computing education, Society, Inc, pages 59-68, Darlinghurst, Aus-
tralia, 2003.

[RML08] Miguel Revilla, Shahriar Manzoor, and Rujia Liu. Competitive Learning in
Informatics: The UVa Online Judge Experience. Olympiads in Informatics,
Vol. 2, pages 131–148, 16-23 August 2008.

[Rob99] Robby Robson. WWW-Based Course-support Systems: The First Gen-
eration. International Journal of Educational Telecommunications, pages
271–282, 1999.

[Row87] Derek Rowntree. Assessing Students: How Shall We Know Them? Nichols
Pub Co., 1987.

[SVW06] Joachim Schwieren, Gottfried Vossen, and Peter Westerkamp. Using Soft-
ware Testing Techniques for Efficient Handling of Programming Exercises
in an E-Learning Platform. Electronic Journal of e-Learning, 4(1):87–94,
2006.

[TLN+04] Djamshid Tavangarian, Markus E. Leypold, Kristin Nölting, Marc Röser,
and Denny Voigt. Is e-Learning the Solution for Individual Learning? Elec-
tronic Journal of e-Learning, 2(2), 2004.

[uva10] UVa Online Judge, 2010. http://uva.onlinejudge.org/. Last ac-
cessed: June 22, 2010.

96

http://docs.moodle.org/en/Cron
http://docs.moodle.org/en/Development
http://docs.moodle.org/en/Development
http://dbis-group.uni-muenster.de/projects/xlx/
http://dbis-group.uni-muenster.de/projects/xlx/
http://uva.onlinejudge.org/

REFERENCES

[VH03] Anne Venables and Liz Haywood. Programming students NEED instant
feedback!. Proceedings of the fifth Australasian conference on Computing
education, p.267-272, Adelaide, Australia, February 1, 2003.

[War09] The University of Warwick. BOSS Online Submission System. 2009. http:
//www.dcs.warwick.ac.uk/boss/. Last accessed: June 22, 2010.

[YH03] Chye-Foong Yong and Colin Higgins. Automatically creating personalised
exercises based on student profiles. SIGCSE Bull., 35(3):236–236, 2003.

97

http://www.dcs.warwick.ac.uk/boss/
http://www.dcs.warwick.ac.uk/boss/

REFERENCES

98

Appendix A

Survey

Survey available online at http://tinyurl.com/376yb9f.

Figure A.1: Survey page 1 - Initial page

99

http://tinyurl.com/376yb9f

Survey

Figure A.2: Survey page 2 - Creation of new assessments

Figure A.3: Survey page 3 - Test case definition and automatic assessment

100

Survey

Figure A.3: Survey page 3 - Test case definition and automatic assessment (cont)

101

Survey

Figure A.4: Survey page 4 - Creation and submission of solutions

Figure A.5: Survey page 5 - Feedback system

102

Survey

Figure A.5: Survey page 5 - Feedback system (cont)

Figure A.6: Survey page 6 - Submissions management

103

Survey

Figure A.6: Survey page 6 - Submissions management (cont)

Figure A.7: Survey page 7 - Extra features

104

Survey

Figure A.7: Survey page 7 - Extra features (cont)

Figure A.8: Survey page 8 - Final page

105

Survey

106

Appendix B

Installation Guide

This appendix contains a guide with some useful tips for installing the implemented pro-
totype. These tips are based on the experience of installing the system on a test server
running on Debian in CICA’s virtual machines.

The appendix is divided in three sections, one for each physical node (excluding the
client) identified in the system’s overall architecture. Therefore, there is one section ex-
plaining the installation of the main automatic assessment server, another one explaining
how to install a judgehost and, finally, a section describing the installation of the Moodle
server.

B.1 Installing the Main Automatic Assessment Server

In order to configure the main automatic assessment server, you need to first install DOM-
judge’s domserver. To do so, it is recommended to follow the instructions of the admin-
istrator’s manual [EKW10a]. In the first place, it is necessary to have all the listed soft-
ware requirements installed. Since the domserver runs on Apache and MySQL, XAMPP
[Fri10] was installed. Then, and assuming you are using XAMPP, the configure script
can be run as:

Listing B.1: Executing the configure script

sudo c o n f i g u r e −−p r e f i x = / o p t / lampp / h t d o c s / domjudge

Then, compile and install the domserver:

Listing B.2: Compile and install the domserver

sudo make domserve r && sudo make i n s t a l l −domserve r

While configuring the test server, there were some problems with the creation of the
file dbpasswords.secret located in the folder etc of the domserver. It had to be
manually created. A possible configuration for this file (with unsafe passwords) may be:

Listing B.3: File dbpasswords.secret

Format : ’< r o l e >: < db_hos t >: < db_name >: < use r >: < password > ’
team : l o c a l h o s t : domjudge : domjudge_team :123

107

Installation Guide

j u r y : l o c a l h o s t : domjudge : domjudge_ ju ry :123
p u b l i c : l o c a l h o s t : domjudge : domjudge_pub l i c : 123
p l u g i n : l o c a l h o s t : domjudge : domjudge_p lug in :123

Then, DOMjudge’s database has to be installed. This is performed, as indicated in the
admin manual, by running the dj-setup-database script located in the folder bin of
domserver:

Listing B.4: DOMjudge database installation

dj−s e t u p−d a t a b a s e [−u <admin_user >] [−p <passw >|− r] i n s t a l l

Having the database correctly installed, the default contests should be removed from
the table contest and a new contest, to be used by the CBA system, needs to be added (see
figure B.1).

Figure B.1: Setting up the contest table

The database installation finishes the domserver installation process. Then, the Front
End component of the automatic assessment server needs to be configured. To do so, two
source files are needed: frontend.php and frontend.wsdl, which can be obtained
from http://paginas.fe.up.pt/~ei05058/frontend.zip. After download-
ing the zip file, copy the frontend folder, containing the two source files, to the fol-
lowing location: /opt/lamp/htdocs/domjudge/.

B.2 Installing a Judgehost

It is also recommended to follow the instructions of DOMjudge’s administrator manual
while configuring a judgehost. In the first place, it is necessary to have all the listed
software requirements installed. Then, the configure script needs to be executed. Since the
judgehosts run submitted code with non-root privileges, the jugehost should be installed
to a folder not needing root privileges.

Listing B.5: Executing the configure script

sudo c o n f i g u r e −−p r e f i x =$HOME/ domjudge

Then, compile and install the judgehost:

Listing B.6: Compile and install the judgehost

sudo make j u d g e h o s t && sudo make i n s t a l l −j u d g e h o s t

Then, a user with minimal privileges needs to be added. This user is used for executing
submitted code. On Debian this can be made with:

108

http://paginas.fe.up.pt/~ei05058/frontend.zip

Installation Guide

Listing B.7: Adding user with minimal privileges

u s e r a d d −d / n o n e x i s t e n t −g nogroup −s / b i n / f a l s e domjudge−run

Having the judgehost installed, a new entry has to be added to the table judgehost
of the database of the main automatic assessment server. Figure B.2 presents the example
of an entry for a judgehost running on a machine named Ubuntu.

Figure B.2: Adding a new judgehost to DOMjudge

To execute the judgehost script, run the judgedaemon file located in the bin folder.
The script can be scheduled to run every time the machine gets started, by using the Linux
crontab mechanism with the @reboot keyword.

B.3 Installing the Moodle Server

Instructions for installing Moodle and Moodle plugins can be found in its official site,
http://moodle.org/.

In the test server, XAMPP was used. Moodle source code was downloaded from
the official site and copied to the htdocs folder of the XAMPP installation. The ac-
tivity module plugin was developed for version 2.0 and it is probable that some fea-
tures do not work on previous version (however, this was not confirmed). The source
code of the Programming Assessment activity module can be downloaded from http:
//paginas.fe.up.pt/~ei05058/progassessment.zip and should be copied
to the mod folder of Moodle.

109

http://moodle.org/
http://paginas.fe.up.pt/~ei05058/progassessment.zip
http://paginas.fe.up.pt/~ei05058/progassessment.zip

Installation Guide

110

Appendix C

Programming Language Configuration
Guide

DOMjudge supports, by default, the following programming languages: Bash, C, C++,
Haskell, Java, Pascal and Perl. As explained in the Administrador’s Manual [EKW10a],
in order to configure a new language, one needs to install a compiler, create a shell-script
named compile_<lang>.sh and place it in the lib/judge folder of the judgehosts.

This appendix contains a step-by-step guide for configuring a new programming lan-
guage, PLT Scheme, which is the language used for introducing MIEIC students to pro-
gramming. This involves not only configuring the language in DOMjudge but also con-
figuring it in the Moodle plugin.

C.1 DOMjudge Configuration

C.1.1 Step 1

The first step is to install an appropriate compiler. This can be done by downloading and
running one of the installers available on http://download.plt-scheme.org/ or,
in Debian/Ubunty by running the command sudo apt-get install plt-scheme.
This will install MzScheme, which can be used to generate executables from scheme
source code.

C.1.2 Step 2

The second step is to create a new entry in the table language of DOMjudge’s database
(figure C.1).

C.1.3 Step 3

The third step consist in editing the configuration file domserver-config.php, lo-
cated in the folder etc of the domserver. The constant LANG_EXTS has to be updated
with the new language data:

Listing C.1: Editing the constant LANG_EXTS

d e f i n e (’LANG_EXTS’ , ’C , c C++ , cpp , cc , c++ Java , j a v a P a s c a l ,
pas , p , H a s k e l l , hs , l h s P e r l , p l Bash , sh Scheme , scm ’) ;

111

http://download.plt-scheme.org/

Programming Language Configuration Guide

Figure C.1: Programming Language Configuration - Step 2

C.1.4 Step 4

The final step consists in the creation of the compilation script. The file compile_scheme.sh
can be defined as follows:

Listing C.2: Scheme compile script

! / b i n / sh

Scheme compi l e wrapper−s c r i p t f o r ’ t e s t _ s o l u t i o n . sh ’ .
See t h a t s c r i p t f o r s y n t a x and more i n f o .

SOURCE=" $1 "
DEST=" $2 "

mzc −−exe $DEST $SOURCE

e x i t 0

C.2 Moodle Configuration

C.2.1 Step 1

To configure the programming language in the Moodle plugin, a single step is enough.
It consists in editing the file languages_config.php by adding the character used to
create comments in the desired language. This information is used to process skeleton
code files:

Listing C.3: Editing the file languages_config.php

<?php

$ p r o g a s s e s s m e n t _ l a n g u a g e s _ c o m m e n t s = a r r a y (
" cpp " => " / / " ,
" c " => " / / " ,

112

Programming Language Configuration Guide

" j a v a " => " / / " ,
" scheme " => " ; "

) ;

d e f i n e (’ STUDENT_CODE_IDENTIFIER ’ , " s t u d e n t c o d e ") ;
?>

113

Programming Language Configuration Guide

114

Appendix D

Assessment Creation Guide

This appendix aims to be a guide on how to create and configure a new programming as-
sessment. It is assumed that the reader has some previous knowledge about using Moodle
and creating activity modules.

The creation/edition form is divided in 8 sections, 7 of which are specific of the pro-
gramming assessment activity module. The last section is related to common module
settings and is not explained in this guide.

The following is a description of how to access a server that was created for testing
purposes. Then, two different guides are presented: one with a programming assessment
with skeleton code and the other without it. For each one there is an explanation on how
to fill each of the programming assessment configuration sections. Some sample data for
a simple C++ assessment is also provided in order to allow the reader to create a sample
assessment of his/her own.

It is important to note that the server responsible for the automatic assessment of code,
DOMjudge, is (as most of the systems that automatically assess code) based on the usage
of input and output files. The programs receive specific input, through standard input, and
have to produce answers to the standard output. These answers are then compared with
the expected output. The result of this comparison determines the correction of the code.

The specification and format of the input and output files is responsibility of the ex-
ercise developer. Therefore, the input and output files presented during the guide are just
mere examples and could have had a completely different format.

D.1 Accessing the Test Server

The test server is available at http://domserver.fe.up.pt/moodle/. This server
already contains some sample assessments (including the ones described in this appendix).
You need to be connected to FEUP’s network (you can use, for instance, a VPN connec-
tion). A teacher account can be used by logging in with username teacher and pass-
word feup2010. Some student accounts are also available, with usernames ranging from
student1 to student20 (with password equal to the username). Using the teacher ac-
count, enter the course Programming, turn editing on and use the Add an activity box to
add a new programming assessment.

115

http://domserver.fe.up.pt/moodle/

Assessment Creation Guide

D.2 Assessment with Skeleton Code

Creating a programming assessment with skeleton code is, probably, going to be the rec-
ommended procedure when creating assignments for introductory programming courses.
The skeleton code can be used for handling input and output data, allowing students to
focus only in writing the code responsible for the problem solving. A complete solution
for the proposed problem can be downloaded from http://domserver.fe.up.pt/
math.cpp.

D.2.1 General Settings

Figure D.1 presents the general settings for the sample programming assessment of this
guide.

Figure D.1: Programming assessment general settings

These settings comprise two mandatory fields: name and description. Optionally, the
description can be provided in a description file, in a format such as a pdf, which can be
downloaded by students. Then, the assessment time settings have to be specified:

116

http://domserver.fe.up.pt/math.cpp
http://domserver.fe.up.pt/math.cpp

Assessment Creation Guide

• Available from - start date of the assessment. In the example it was set for 11h30
of the 8th June 2010;

• Due date - regular due date for the submission of solutions. In the example it was
set for 11h30 of the 28th June 2010;

• Duration - duration of the assessment. After opening the assessment solution, stu-
dents have this amount of time for submitting solutions. In the example it was set
for 2 hours;

• Tolerance date - both this and the next setting can be hidden/show with the button
Hide/Show Advanced. Submissions after the due date and before the tolerance
date are still accepted, but are considered to be late and may be penalized;

• Penalty for late submissions - represents the penalty applied to late submissions.
The penalty is multipliable (e.g. with a penalty of 10%, a late submission graded 90
has a final grade of 90 * 0.9 = 81).

D.2.2 Grading

Figure D.2 presents the grading settings for the sample programming assessment. As can
be seen, 2 setting need to be specified:

• Maximum grade - represents the maximum grade that can be obtained in the as-
sessment. It can range between 1 and 100 or, alternatively, be set to the value No
grade;

• Grading method - this setting can either be Last submission, where the last
submitted solution is the one that counts for the final grade or, as used in the exam-
ple, Best submission, where the solution with the highest grade is the one that
is used.

Figure D.2: Programming assessment grading settings

D.2.3 Uploading of Files

Figure D.3 presents the uploading of files settings for the sample programming assess-
ment. As can be seen, 2 setting need to be specified:

• Maximum size - represents the maximum size of the files that are going to be up-
loaded by students;

117

Assessment Creation Guide

• Maximum number of submissions - represents the maximum number of attempts
that can be performed by the student. It can range between 1 and 10 or, alternatively,
be set to Unlimited;

Figure D.3: Programming assessment uploading of files settings

D.2.4 Programming Languages

Figure D.4 presents the programming languages settings for the sample programming
assessment. This section simply involves the choice of the programming language in
which the assessment has to be solved. The list of available languages is dynamically
loaded from the automatic assessment server.

Figure D.4: Programming assessment programming languages settings

D.2.5 Skeleton Code

The address http://domserver.fe.up.pt/math_skeleton.cpp contains the file
used in this example as skeleton code (figure D.5). This skeleton was obtained from the
code for solving the whole assessment. The functions responsible for solving the assess-
ment were replaced by the comment line //studentcode, while the code responsible
for handling the input and output was kept.

Whenever a submission is made, the code is merged with the skeleton code. The
//studentcode line is replaced by the submission code and the resulting file is com-
piled and tested.

Figure D.5: Programming assessment skeleton code

118

http://domserver.fe.up.pt/math_skeleton.cpp

Assessment Creation Guide

D.2.6 Feedback

Figure D.14 presents the feedback settings for the sample programming assessment.

Figure D.6: Programming assessment feedback settings

As can be seen, 2 setting need to be specified:

• Immediate feedback - this parameter defines whether or not students should receive
the results of their solutions immediately after submitting their source files. When
set to No, the generation of the feedback reports needs to be triggered by a teacher
or a course manager;

• Feedback detail - represents the feedback detail level given to students. The differ-
ent feedback levels affect the amount of information that is generated in the feedback
report. The information given is as follows:

– Minimalist - global assessment grade and result in each test case;
– Moderated - minimalist information plus the input used in each test case;
– Detailed - moderated information plus the expected and obtained output in

each test case.

D.2.7 Test Cases

This section is used for uploading the input and output files for testing students’ solutions
(figure D.7).

Figure D.7: Programming assessment test cases

In the sample assessment, all the test cases are specified in one input and one output
file. However, they could have been split into different files.

119

Assessment Creation Guide

The sample files math_input.txt and math_output.txt can be downloaded,
respectively, from http://domserver.fe.up.pt/math_input.txt and http:
//domserver.fe.up.pt/math_output.txt. Following, there is an explanation
of the format of the input and output files.

D.2.7.1 Input File

The sample input file contains 3 test cases. A test case has to start, mandatorily, with the
line #testcase. Then, four optional attributes can be defined with lines starting with
the symbol #:

• weight - defines the contribution of the test case to the grade of the assessment. If
omitted, the weight is set to 1;

• name - sets the name of the test case (this is useful for identifying the test cases in
the automatic reports with the results and feedback of the assessment). If omitted, a
number based on the index of the test case is used as name;

• wrong - defines a personalized feedback message that is shown to students when-
ever they fail the test case;

• right - defines a personalized feedback message that is shown to students whenever
they get the test case right;

Since the automatic assessment server uses separate files for the different test cases,
the system strips out the lines that define the test cases attributes. Therefore, the skeleton
code for handling input will not have to deal with the lines started with #.

D.2.7.2 Output File

The output file contains the answers for each of the 3 test cases listed in the input file. The
start of a test case output is signaled with the line #testcase. For the same reasons given
for the input file, the system will strip out the #testcase lines and split the different
outputs in separated files.

120

http://domserver.fe.up.pt/math_input.txt
http://domserver.fe.up.pt/math_output.txt
http://domserver.fe.up.pt/math_output.txt

Assessment Creation Guide

D.3 Assessment without Skeleton Code

The creation of an assessment without skeleton code follows the methodology used in
the problems of ACM ICPC programming contests. In such an assessment, the students
will have to handle input and output data. The sample solution for this assessment can be
obtained from http://domserver.fe.up.pt/math2.cpp.

D.3.1 General Settings

With the exception of the description, the general settings for this assessment are the
same ones used in the previous example (section D.2.1). Since the students will now have
to handle input and output data, the input and output specifications were added to the
description. Moreover, students do not need to follow a strict specification, i. e. they
are not required to have functions named gcd and is_prime. Therefore, the reference
to these names was removed and the description became more general, as can be seen in
figure D.8.

Figure D.8: Programming assessment description

In order to complement the input and output specification, it is also recommended
to add some examples of input and output. In this example two sample test cases are
provided, as shown in figure D.9

121

http://domserver.fe.up.pt/math2.cpp

Assessment Creation Guide

Figure D.9: Programming assessment description - sample input and output

D.3.2 Grading

Figure D.10 shows the grading setting used for this example.

Figure D.10: Programming assessment grading settings

D.3.3 Uploading of Files

Figure D.11 shows the uploading of files setting used for this example.

122

Assessment Creation Guide

Figure D.11: Programming assessment uploading of files settings

D.3.4 Programming Languages

The programming language of this assessment is also C++ (figure D.12).

Figure D.12: Programming assessment programming languages settings

D.3.5 Skeleton Code

As expected, the skeleton code was left empty for this assessment (figure D.13).

Figure D.13: Programming assessment skeleton code

D.3.6 Feedback

Figure D.14 presents the feedback settings for this programming assessment.

Figure D.14: Programming assessment feedback settings

123

Assessment Creation Guide

D.3.7 Test Cases

The test cases settings are shown in figure D.15. The used input and output files can be
downloaded from http://domserver.fe.up.pt/math_test_cases.zip.

Figure D.15: Programming assessment test cases

124

http://domserver.fe.up.pt/math_test_cases.zip

Appendix E

A Scheme Assessment

In order to test the implemented prototype and evaluate its adequacy to the teaching of
programming languages, a scheme assessment, based on a test given to students of an
introductory programming course of MIEIC, was created. This test was automatically
corrected by the system referred in 1.1 and its description (in Portuguese) can be down-
loaded from http://paginas.fe.up.pt/~ei05058/pp2.pdf, while the source
code used to correct students’ solutions can be obtained from http://paginas.fe.
up.pt/~ei05058/avaliador_pp2.scm.

As can be seen from the source code, in the old system there was no need to deal with
input and output data. It is also possible to notice a considerable amount of replicated code
throughout the correcting code. A procedure from teaching staff’s solution is replicated
whenever it is needed in a test case. This is useful when a test case depends on procedures
from previous questions. In these situations, teaching staff’s solution is used instead
of student’s solutions, assuring that students are not penalized for incorrect answers in
previous questions.

In spite of mandatorily requiring the manipulation of input and output data, the new
system introduces flexibility in the way the exercises can be assessed. The input and
output data, as well as the correcting code, can be specified in many different ways. Fol-
lowing there is an explanation of two possible approaches. These approaches have input
and output data with different configurations and hence the skeleton code responsible for
handling the data is also different. However, they have similarities:

• The skeleton code starts with the teaching staff solution. The solution procedures are
global in all the test cases and therefore there is no need for code replication. How-
ever, since the solution code is combined with students’ code in a single file which is
then compiled, the solution procedures cannot have the same name as students’ pro-
cedures (in the examples, the solution procedures end with -sol). Teaching staff is
responsible for using the appropriate procedures in the code for handling input and
output and assess solutions;

• The usage of DOMjudge to automatically assess solutions requires the compilation
of the code. This is currently being done with MzScheme. This package requires
the code to be included in a module. To be compatible with DOMjudge, the mod-
ule should be named source and use the language mzscheme. The MzScheme
package is a subset of the PLT Scheme package and therefore some language con-
structions cannot be used. For instance, the usage of else in a cond expression

125

http://paginas.fe.up.pt/~ei05058/pp2.pdf
http://paginas.fe.up.pt/~ei05058/avaliador_pp2.scm
http://paginas.fe.up.pt/~ei05058/avaliador_pp2.scm

A Scheme Assessment

is recognized as unbound identifier. For more information on this, please consult
http://download.plt-scheme.org/doc/4.2.4/pdf/mzscheme.pdf.

Two assignments, one for each approach and called Scheme Assessment v1 and
Scheme Assessment v2, were set up and can be accessed on the test server referred
in D.1.

E.1 Approach 1

The configuration files used in this example can be downloaded from http://paginas.
fe.up.pt/~ei05058/scheme_assessment_v1.zip. The file skeleton.scm
represents the skeleton code, while the file student_code.scm represents a possible
student solution (which is, in this case, equal to the solution used in the skeleton code).
The test cases were split among 7 input and output files, one for each question of the
assessment.

In this approach, the code responsible for handling the input and test solutions was
conceived to be generic, i.e., the same code is used to test a single procedure in differ-
ent test cases. For instance, the code used to correct question 5 is prepared to receive
a player name, a predefined number of cards, a suit name and then test the procedure
naipe-jogador. The usage of generic code implies the need for relatively elaborated
input files, containing the actual data used for the tests.

In order to understand the data flow that occurs when running a test case, let’s take a
look at what happens when the third test of the file pp2_input5.txt is run. The input
data for this test is as follows:

Listing E.1: Input data of the third test of the file pp2_input5.txt

" p e r g u n t a 5 "
" Ana "
2
" as " " o u r o s "
10 " e s p a d a s "
" paus "

The first code to run in the program is the procedure main:

Listing E.2: Procedure main

(d e f i n e main
(lambda ()

(l e t ((s t r (r e a d)))
(cond ((eof−o b j e c t ? s t r) (e x i t 0))

((s t r i n g =? s t r " p e r g u n t a 1 ") (p e r g u n t a 1))
((s t r i n g =? s t r " p e r g u n t a 2 ") (p e r g u n t a 2))
((s t r i n g =? s t r " p e r g u n t a 3 ") (p e r g u n t a 3))
((s t r i n g =? s t r " p e r g u n t a 4 ") (p e r g u n t a 4))
((s t r i n g =? s t r " p e r g u n t a 5 ") (p e r g u n t a 5))
((s t r i n g =? s t r " p e r g u n t a 6 ") (p e r g u n t a 6))
((s t r i n g =? s t r " p e r g u n t a 7 ") (p e r g u n t a 7))))))

126

http://download.plt-scheme.org/doc/4.2.4/pdf/mzscheme.pdf
http://paginas.fe.up.pt/~ei05058/scheme_assessment_v1.zip
http://paginas.fe.up.pt/~ei05058/scheme_assessment_v1.zip

A Scheme Assessment

(main))

The first input line will lead to the invocation of procedure pergunta5:

Listing E.3: Procedure pergunta5

(d e f i n e p e r g u n t a 5
(lambda ()

(l e t ((nome (r e a d))
(n _ c a r t a s (r e a d)))

(p e r g u n t a 5 _ a u x (c r i a −j o g a d o r−s o l nome) 0 n _ c a r t a s))))

(d e f i n e p e r g u n t a 5 _ a u x
(lambda (j o g a d o r c a r t a s _ l i d a s t o t a l _ c a r t a s)

(cond ((= c a r t a s _ l i d a s t o t a l _ c a r t a s)
((l e t ((n a i p e (r e a d)))

(d i s p l a y (na ipe−j o g a d o r j o g a d o r n a i p e))
(n e w l i n e)
(main))))

((l e t ((v a l o r (r e a d))
(n a i p e (r e a d)))

(p e r g u n t a 5 _ a u x
(a d i c i o n a −c a r t a −j o g a d o r−s o l j o g a d o r

(c r i a −c a r t a −s o l v a l o r n a i p e))
(+ c a r t a s _ l i d a s 1)
t o t a l _ c a r t a s))))))

The auxiliary procedure pergunta5_aux reads the 2 cards specified in the input and
then tests the procedure naipe-jogador with the value "paus".

E.2 Approach 2

The configuration files used in this example can be downloaded from http://paginas.
fe.up.pt/~ei05058/scheme_assessment_v2.zip. The filenames are the same
ones used for the first approach.

In opposition to the previous approach, the code responsible for handling the input and
test solutions is not generic. Now, each test case has a procedure responsible for preparing
its data and test students’ solutions. This leads to the simplification of input and output
data, while the size of the skeleton code increases.

In order to understand the data flow that occurs when running a test case, let’s take a
look at what happens when the third test of the file pp2_input5.txt (the same used
for the first approach) is run. The input data for this test is as follows:

Listing E.4: Input data of the third test of the file pp2_input5.txt

" p e r g u n t a 5 "
3

127

http://paginas.fe.up.pt/~ei05058/scheme_assessment_v2.zip
http://paginas.fe.up.pt/~ei05058/scheme_assessment_v2.zip

A Scheme Assessment

This data simply triggers the procedure pergunta5_3, responsible for the third test
case of question 5:

Listing E.5: Procedure pergunta5

(d e f i n e p e r g u n t a 5
(lambda ()

(l e t ((t e s t e (r e a d)))
(cond ((= t e s t e 1) (p e r g u n t a 5 _ 1))

((= t e s t e 2) (p e r g u n t a 5 _ 2))
((= t e s t e 3) (p e r g u n t a 5 _ 3))
((= t e s t e 4) (p e r g u n t a 5 _ 4))))))

(d e f i n e p e r g u n t a 5 _ 3
(lambda ()

(d i s p l a y (e q u a l ? (na ipe−j o g a d o r−s o l
(a d i c i o n a −c a r t a −j o g a d o r−s o l

(a d i c i o n a −c a r t a −j o g a d o r−s o l
(c r i a −j o g a d o r−s o l ’Ana)
(c r i a −c a r t a −s o l ’ a s ’ o u r o s))

(c r i a −c a r t a −s o l 10 ’ e s p a d a s)) ’ paus)
(na ipe−j o g a d o r
(a d i c i o n a −c a r t a −j o g a d o r−s o l

(a d i c i o n a −c a r t a −j o g a d o r−s o l
(c r i a −j o g a d o r−s o l ’Ana)
(c r i a −c a r t a −s o l ’ a s ’ o u r o s))

(c r i a −c a r t a −s o l 10 ’ e s p a d a s)) ’ paus)))
(n e w l i n e)))

Procedure pergunta5_3 is responsible for creating a new player, adding the two
same cards that were added in the previous approach and comparing the results of teaching
staff solution with students’ solutions. This methodology pretty much resembles the usage
of unit tests. However, the comparison results have to be displayed in the standard output.

128

Appendix F

Solution Submission Guide

This appendix contains a guide explaining the user interface for submitting solutions to
programming assessments. The guide uses the Scheme assessment defined in the first
approach of appendix E and available on the test server described in D.1.

The submission interface is divided in multiple sections that can be expanded and col-
lapsed. When accessing the Scheme assessment, a student, who still have not submitted a
solution, is confronted with the information of figure F.1.

Figure F.1: Solution submission general view

129

Solution Submission Guide

The first section of the interface contains general information regarding the assess-
ment. In this example, the description was given in a pdf file which can be downloaded
by students. Having read the assessment description and solved the problem in a local
workspace, the student can then compile the code on the compilation playground section
(see figure F.2). The file used in this example can be obtained in the zip file located at
http://paginas.fe.up.pt/~ei05058/scheme_assessment_v1.zip.

Figure F.2: Compilation playground

As can be seen in figure F.3 the uploaded code compiled successfully. When a com-
piler error occurs, instead of the Compilation was successful message, the com-
piler output is shown. The compilation result does not immediately appear. It may take
from a few seconds to a couple of minutes to show up and the page needs to be manually
refreshed. This should be improved in future versions of the system, by auto refreshing
the compilation section with JavaScript.

Figure F.3: Compilation playground - successful compilation

A successful compilation message does not assure the correction of the solution and
hence it is recommended to test the code locally with some test data. Having tested the
code, a submission can be made in the submit section of the interface (see figure F.4).

130

http://paginas.fe.up.pt/~ei05058/scheme_assessment_v1.zip

Solution Submission Guide

Figure F.4: Solution submission

Similarly to what happens in the compilation process, the submission result does not
immediately appear. It may take from a few seconds to a few minutes, depending on the
number and complexity of test cases used in the assessment.

When the submission results are available, a new section with title Feedback appears
on the interface (figure F.5). Whenever more than one submission has been made, it is
possible to choose what submission to show. The feedback report is composed by the
grade achieved in the assessment, plus the results in the different test cases. The amount
of information presented for each test case depends on the feedback detail. In the example
the feedback was set to be detailed and then, for each test case, it is presented the result
of the automatic assessment, the input and output test data and the obtained output.

Whenever a teacher or a course manager accesses the submission page of a program-
ming assessment, besides all the previously presented sections, he/she is also presented
with a section containing information about the input and output data of the test cases
used to test the submitted solutions. As can be seen in figure F.6, for each test case, the
weight, input and output files are shown.

131

Solution Submission Guide

Figure F.5: Submission feedback

132

Solution Submission Guide

Figure F.6: Input and output data

133

Solution Submission Guide

134

Appendix G

Communication Protocol

Listing G.1: Front End Service Description

< d e f i n i t i o n s name=" ProgAssessmen t "
t a r g e t N a m e s p a c e =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d / f r o n t e n d . wsdl "
x m l n s : t n s =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d / f r o n t e n d . wsdl "
x m l n s : x s d = ’ h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema ’
x m l n s : x s d 1 =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d / f r o n t e n d . wsdl "
x m l n s : s o a p =" h t t p : / / schemas . xmlsoap . o rg / wsdl / soap / "
xmlns=" h t t p : / / schemas . xmlsoap . o rg / wsdl / ">

< xsd :complexType name=" A r r a y O f s t r i n g ">
< x s d : c o m p l e x C o n t e n t >

< x s d : r e s t r i c t i o n base =" s o a p e n c : A r r a y ">
< x s d : a t t r i b u t e r e f =" s o a p e n c : a r r a y T y p e "

w s d l : a r r a y T y p e =" x s d : s t r i n g [] " / >
< / x s d : r e s t r i c t i o n >

< / x s d : c o m p l e x C o n t e n t >
< / xsd :complexType >

< !−− ###### s e t u p P r o g a s s e s s m e n t M o d u l e ####−−>

<message name=" s e t u p P r o g a s s e s s m e n t M o d u l e R e s p o n s e ">
< p a r t name=" r e s u l t " t y p e =" x s d : i n t " / >

< / message>

< !−−####### ge tLanguages ##########−−>

<message name=" ge tLanguagesResponse ">
< p a r t name=" r e s u l t " t y p e =" A r r a y O f s t r i n g " / >

< / message>

135

Communication Protocol

< !−−####### g e t A l l L a n g u a g e s I n f o ###############−−>

<message name=" g e t A l l L a n g u a g e s I n f o R e s p o n s e ">
< p a r t name=" r e s u l t " t y p e =" A r r a y O f s t r i n g " / >

< / message>

< !−−####### addNewAssessment ############−−>

<message name=" addNewAssessmentRequest ">
< p a r t name=" i d " t y p e =" x s d : i n t " / >
< p a r t name=" name " t y p e =" x s d : s t r i n g " / >
< p a r t name=" t i m e L i m i t " t y p e =" x s d : i n t " / >

< / message>

<message name=" addNewAssessmentResponse ">
< p a r t name=" R e s u l t " t y p e =" x s d : i n t " / >

< / message>

< !−−####### removeAsse s smen t ########−−>

<message name=" removeAssessmen tReques t ">
< p a r t name=" i d " t y p e =" x s d : i n t " / >

< / message>

< !−−######## u p d a t e A s s e s s m e n t ###########−−>

<message name=" u p d a t e A s s e s s m e n t R e q u e s t ">
< p a r t name=" i d " t y p e =" x s d : i n t " / >
< p a r t name=" name " t y p e =" x s d : s t r i n g " / >
< p a r t name=" t i m e L i m i t " t y p e =" x s d : i n t " / >
< p a r t name=" n T e s t C a s e s " t y p e =" x s d : i n t " / >

< / message>

< !−−######## addTes tCase #########−−>

<message name=" a d d T e s t C a s e R e q u e s t ">
< p a r t name=" p r o b i d " t y p e =" x s d : s t r i n g " / >
< p a r t name=" i n p u t " t y p e =" x s d : s t r i n g " / >
< p a r t name=" o u t p u t " t y p e =" x s d : s t r i n g " / >
< p a r t name=" i d " t y p e =" x s d : i n t " / >

< / message>

<message name=" addTes tCaseResponse ">
< p a r t name=" i d " t y p e =" x s d : i n t " / >

< / message>

136

Communication Protocol

< !−−########## removeTes tCase #############−−>

<message name=" removeTes tCaseReques t ">
< p a r t name=" i d " t y p e =" x s d : i n t " / >

< / message>

< !−−######## u p d a t e T e s t C a s e ########−−>

<message name=" u p d a t e T e s t C a s e R e q u e s t ">
< p a r t name=" i d " t y p e =" x s d : i n t " / >
< p a r t name=" i n p u t " t y p e =" x s d : s t r i n g " / >
< p a r t name=" o u t p u t " t y p e =" x s d : s t r i n g " / >

< / message>

< !−−####### a d d P a r t i c i p a n t ############−−>

<message name=" a d d P a r t i c i p a n t R e q u e s t ">
< p a r t name=" l o g i n " t y p e =" x s d : s t r i n g " / >
< p a r t name=" name " t y p e =" x s d : s t r i n g " / >

< / message>

< !−−######### p a r t i c i p a n t E x i s t s ########−−>

<message name=" p a r t i c i p a n t E x i s t s R e q u e s t ">
< p a r t name=" l o g i n " t y p e =" x s d : s t r i n g " / >

< / message>

<message name=" p a r t i c i p a n t E x i s t s R e s p o n s e ">
< p a r t name=" r e s u l t " t y p e =" x s d : i n t " / >

< / message>

< !−−######## addSubmis s ion #############−−>

<message name=" a d d S u b m i s s i o n R e q u e s t ">
< p a r t name=" p a r t i c i p a n t L o g i n " t y p e =" x s d : s t r i n g " / >
< p a r t name=" a s s e s s m e n t I d " t y p e =" x s d : i n t " / >
< p a r t name=" t e s t C a s e s I d s " t y p e =" x s d : A r r a y " / >
< p a r t name=" l a n g u a g e " t y p e =" x s d : s t r i n g " / >
< p a r t name=" sourceCode " t y p e =" x s d : s t r i n g " / >

< / message>

<message name=" addSubmiss ionResponse ">
< p a r t name=" i d s " t y p e =" x s d : A r r a y " / >

< / message>

< !−−######### addCompi l eSubmis s ion ########−−>

137

Communication Protocol

<message name=" addCompi l eSubmis s ionReques t ">
< p a r t name=" p a r t i c i p a n t L o g i n " t y p e =" x s d : s t r i n g " / >
< p a r t name=" a s s e s s m e n t I d " t y p e =" x s d : i n t " / >
< p a r t name=" l a n g u a g e " t y p e =" x s d : s t r i n g " / >
< p a r t name=" sourceCode " t y p e =" x s d : s t r i n g " / >

< / message>

<message name=" addCompi leSubmiss ionResponse ">
< p a r t name=" i d " t y p e =" x s d : i n t " / >

< / message>

< !−−########## g e t S u b m i s s i o n R e s u l t #######−−>

<message name=" g e t S u b m i s s i o n R e s u l t R e q u e s t ">
< p a r t name=" i d " t y p e =" x s d : i n t " / >

< / message>

<message name=" g e t S u b m i s s i o n R e s u l t R e s p o n s e ">
< p a r t name=" r e s u l t " t y p e =" A r r a y O f s t r i n g " / >

< / message>

< !−−########## Por t #################−−>

< p o r t T y p e name=" ProgAsse s smen tPo r tType ">

< o p e r a t i o n name=" s e t u p P r o g a s s e s s m e n t M o d u l e ">
< o u t p u t message=" s e t u p P r o g a s s e s s m e n t M o d u l e R e s p o n s e " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" g e t L a n g u a g e s ">
< o u t p u t message=" ge tLanguagesResponse " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" g e t A l l L a n g u a g e s I n f o ">
< o u t p u t message=" g e t A l l L a n g u a g e s I n f o R e s p o n s e " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" addNewAssessment ">
< i n p u t message=" addNewAssessmentRequest " / >
< o u t p u t message=" addNewAssessmentResponse " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" removeAssessment ">
< i n p u t message=" removeAssessmen tReques t " / >

< / o p e r a t i o n >

138

Communication Protocol

< o p e r a t i o n name=" u p d a t e A s s e s s m e n t ">
< i n p u t message=" u p d a t e A s s e s s m e n t R e q u e s t " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" addTes tCase ">
< i n p u t message=" a d d T e s t C a s e R e q u e s t " / >
< o u t p u t message=" addTes tCaseResponse " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" removeTes tCase ">
< i n p u t message=" removeTes tCaseReques t " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" u p d a t e T e s t C a s e ">
< i n p u t message=" u p d a t e T e s t C a s e R e q u e s t " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" a d d P a r t i c i p a n t ">
< i n p u t message=" a d d P a r t i c i p a n t R e q u e s t " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" p a r t i c i p a n t E x i s t s ">
< i n p u t message=" p a r t i c i p a n t E x i s t s R e q u e s t " / >
< o u t p u t message=" p a r t i c i p a n t E x i s t s R e s p o n s e " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" addSubmiss ion ">
< i n p u t message=" a d d S u b m i s s i o n R e q u e s t " / >
< o u t p u t message=" addSubmiss ionResponse " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" addCompi leSubmiss ion ">
< i n p u t message=" addCompi l eSubmis s ionReques t " / >
< o u t p u t message=" addCompi leSubmiss ionResponse " / >

< / o p e r a t i o n >

< o p e r a t i o n name=" g e t S u b m i s s i o n R e s u l t ">
< i n p u t message=" g e t S u b m i s s i o n R e s u l t R e q u e s t " / >
< o u t p u t message=" g e t S u b m i s s i o n R e s u l t R e s p o n s e " / >

< / o p e r a t i o n >
< / p o r t T y p e >

< !−−############ B i n d i n g s ##########−−>

< b i n d i n g name=" P ro g As s e s s m e n t B in d i ng "

139

Communication Protocol

t y p e =" ProgAsses smen tPo r tType ">

< s o a p : b i n d i n g s t y l e = ’ r p c ’
t r a n s p o r t = ’ h t t p : / / schemas . xmlsoap . o rg / soap / h t t p ’ / >

< o p e r a t i o n name=" s e t u p P r o g a s s e s s m e n t M o d u l e ">
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ g e t L a n g u a g e s ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ g e t A l l L a n g u a g e s I n f o ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ addNewAssessment ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ removeAssessment ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ u p d a t e A s s e s s m e n t ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ addTes tCase ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

140

Communication Protocol

< / o p e r a t i o n >

< o p e r a t i o n name= ’ removeTes tCase ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ u p d a t e T e s t C a s e ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ a d d P a r t i c i p a n t ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ p a r t i c i p a n t E x i s t s ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ addSubmiss ion ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ addCompi leSubmiss ion ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

< / o p e r a t i o n >

< o p e r a t i o n name= ’ g e t S u b m i s s i o n R e s u l t ’>
< s o a p : o p e r a t i o n s o a p A c t i o n =

" h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d " / >
< i n p u t > < s o a p : b o d y use =" l i t e r a l " / > < / i n p u t >
< o u t p u t > < s o a p : b o d y use =" l i t e r a l " / > < / o u t p u t >

< / o p e r a t i o n >

141

Communication Protocol

< / b i n d i n g >

< s e r v i c e name= ’ P r o g A s s e s s m e n t S e r v i c e ’>
< p o r t name= ’ P r o g A s s e s s m e n t P o r t ’

b i n d i n g = ’ P r o g As s e s s m e n t B in d i ng ’>
< s o a p : a d d r e s s

l o c a t i o n =
’ h t t p : / / domserve r . f e . up . p t / domjudge / f r o n t e n d / f r o n t e n d . php ’ / >

< / p o r t >
< / s e r v i c e >

< / d e f i n i t i o n s >

142

