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Abstract 

 

Carbon nanostructured composites have gained a lot of interest, since they have unique 

chemical, physical, magnetic and mechanical properties. These materials have potential for a 

wide range of application as energy storage, catalysis, supercapacitors, sensors, drug 

delivery, ion exchange and separation processes. 

The aim of this project was the synthesis of Ni(Co)/C/SiO2 composites  by sol-gel approach 

using cellulose acetate and hydroxypropyl cellulose as a carbon precursors and TEOS as silica 

precursor. These polymers were chosen as carbon precursors because of their renewability 

and low cost. 

Synthesized materials were investigated with low-temperature nitrogen sorption, Scanning 

Electron Microscopy (SEM), X-Ray diffraction (XRD) and Thermal Gravimetric Analysis (TGA). 

Micro-and mesoporous Ni(Co)/C/SiO2 composites were synthesized by carbonization of 

precursor containing xerogels. Presence of metallic Ni and Co was proven with XRD. 

Our study showed that the structure and properties of the nanocomposites synthesized are 

influenced by precursor and type of metal salt used. The use of cellulose acetate and cobalt 

bromide made it possible to prepare silica/carbon materials with surface area values up to 

346 m2 g-1.  results obtained could be explained with complex interactions between Ni(II) or 

Co(II) salt, precursor and silica in formed gels. 

 

Keywords: cellulose acetate; hydroxypropyl cellulose, sol-gel process, carbonization, 

Ni(Co)/C/SiO2 composites. 
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Resumo 

 

Os compósitos nanoestruturados de carbono têm ganho muito interesse porque apresentam 

propriedades químicas, físicas, magnéticas e mecânicas únicas. Estes materiais têm potencial 

para uma larga escala de aplicações, como o armazenamento de energia, catálise, 

supercapacitores, sensores, troca iónica e processos de separação. 

O objectivo deste projeto foi a síntese de compósitos de Ni(Co)/C/SiO2  através do processo 

sol-gel usando acetato de celulose e hidroxipropilcelulose como precursor de carbono e TEOS 

como precursor de sílica. Estes polímeros foram selecionados como precursores de carbono 

porque são renováveis e apresentam baixo custo. 

Os materiais sintetizados foram investigados por adsorção de azoto a baixa temperatura, 

microscopia de varrimento electrónico (SEM), difração de raios X (XRD) e analise térmica 

gravimétrica (TGA).  

Foram sintetizados micro e mesoporos  de  Ni(Co)/C/SiO2 através da carbonização do 

precursor contendo xerogéis. A presença de níquel e cobalto metálico foi provado por analise 

XRD. 

Este estudo mostrou que a estrutura e as propriedades dos nanocompósitos sintetizados são 

influenciados pelo precursor e pelo tipo de metal usado. O uso de acetato de celulose e 

brometo de cobalto tornou possível a preparação de materiais de sílica/carbono com áreas 

superficiais até 346 m2 g-1. Estes resultados recebidos podem ser explicados com formação de 

complexos devido à interação dos metais Ni(II) e Co(II), do precursor de carbono e sílica para 

formação de géis. 

 

 

Palavras chave: acetato de celulose, hidroxipropilcelulose, processo sol-gel, carbonização, 

compósitos de Ni(Co)/C/SiO2. 
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Problem Statement 

1 Problem Statement 

 

Nanotechnology is the way of ingeniously controlling the building of small and large 

structures, with intricate properties; it is the way of the future, with incidentally, 

environmental benignness built in by design 

Professor Hoffmann; Nobel prize in Chemistry; Cornell University 

 

Nanomaterials have profound applications in many fields including microeletronics, 

manufacturing, medicine, clean energy and environment. These materials have tremendous 

potential in enabling process innovations in areas such as, hydrogen storage, alternative solar 

cells, gas to liquid conversion, fuel cells and batteries [2]. One of the biggest challenges is 

finding materials that could store a significant amount of energy.  Nanostructured carbon 

materials are among the most promising energy storage candidates, since they have unique 

features, such as electrochemical capacity, tunable porosity, high surface area, large pore 

volume, facile functionalization and high physicochemical stability. Porous nanostructured 

carbon materials could be prepared in silica templates through sol-gel technique followed by 

carbonization of carbon precursor [3]. 

 

1.1 Description of Project work plan 

 

This master thesis of Chemical Engineering degree was conducted at the department of 

Microtechnology and Nanoscience, at Chalmers. The objectives of this thesis can be 

summarized under the following four items: 

 

1. Review of existing literature on the sol-gel approach for the synthesis of carbon/silica 

nanocomposites; 

2. Synthesis of cellulose derivative/silica gels containing Ni(II) and Co(II) salts by sol-gel 

technique;  

3. Synthesis of porous Ni(Co)/C/SiO2 composites by carbonization of cellulose 

derivative/silica xerogels containing Ni(II) and Co(II) salts; 

4. Analysis of synthesized materials with FTIR, SEM, XRD, TGA and low temperature nitrogen 

sorption; 
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1.2 Overview of thesis 

 

Chapter 1 explains the motivation and the work plan of this master thesis project. 

In chapter 2 the concepts of nanomaterials and the challenges that cellulose nanocomposites 

face are described. This chapter also includes the concept of a carbon nanocomposite 

material containing transition metals, a description of sol-gel process and the literature 

review.  

The aim of this project is described in chapter 3. 

Chapter 4 presents methods and materials used in the synthesis of porous Ni(Co)/C/SiO2 

nanocomposites.  The chapter covers the development of all stages of production required for 

the manufacture of the desired material. Chapter 4 reviews also the testing that the novel 

materials were subjected to for purposes of identifying their structure and physical 

characteristics.  

Chapter 5 reviews the results obtained in this work and their discussion. 
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2 Background of the study 

 

2.1 Porous carbon nanomaterials 

 

Carbon is a very important element for all living things on the Earth, including humans, 

because all organic compounds are composed from carbon networks  

Michio Inagaki, New Carbons: Structure and Texture of Carbon materials, Elsevier Science, p. 1(2000) 

 

 

Carbon nanomaterials represent a revolution in science and many of the current and future 

technological challenges have as a solution the use of carbon nanomaterials because of their 

promissing electrical, mechanical, chemical and optical properties [2]. Carbon nanoporous 

materials with controlled morphology and surface properties are prospective for functional 

applications such as gas storage, catalysis, chromatography, separation, and sensing [2, 3]. 

They are inert, chemically, mechanically and thermally stable [2]. 

 

There are two kinds of pores in carbon materials: closed pores and open pores. Materials with 

closed pores are useful in thermal insulation or as lightweight materials for structural 

applications. Open pores, are connected with material surface and are used for separation, 

catalysis and sensing applications [2]. Porous materials can be classified by size, network 

forming material and degree of order. According to International Union of Pure and Applied 

Chemistry (IUPAC) definition, the material is microporous if the pores are smaller than 2 nm, 

mesoporous if they are up 50 nm and macroporous if the pores are over 50nm [4]. 

 

 

2.1.1 Methods for the synthesis of porous carbon materials 

 

Nanoporous materials can be synthesized by various methods such as template route, liquid 

crystal, self-assembling, supercritical extraction and swelling (Figure 1) [5].  
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Figure 1 Typical methods used for the synthesis of nanoporous materials [5] 

 

Liquid crystal route could lead to large continuous domains of mesoporous structures. This 

method has some disadvantages like price and technical obstacles and the need for new 

templates also involves expensive synthetic procedures [5]. 

 

Self-assembling process involves designing atoms and molecules so that shape-

complementarily causes them to aggregate into desired structures [6]. Self-assembly has a 

number of advantages because this process is a bottom-up approach and does not require 

scaling down the manufacturing tools presently required. This method requires a smaller 

amount of raw materials and produces less waste [5]. 

 

The supercritical extraction process is used to produce well-defined nanostructures for 

potential applications in inorganic catalyst supports [5]. This method is the process of to 

separate the extractant from the matrix using supercritical fluids as the extracting solvent. 

Carbon dioxide is the most used supercritical fluid and this process is very good to control 

solvent variables. The lower viscosity of supercritical fluids allows an easier penetration into 

the porous structure, but there are questions like price and technical barriers that need to be 

overcome [5]. 

 

The swelling process involves the absorption of a solvent with the increase of volume of 

material. The swelling behaviour of polymer cross-linked matrices depends on the degree of 

cross-linking of the blocks. This process allows the control of the internal surface 

characteristics of the nanoporous materials since the presence of double bonds in the 

nanoporous polymer facilitates a controlled introduction of functional groups onto the pore 

walls [5].  
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The template synthesis method can be used to produce materials of carbon with unusual 

properties [3, 7]. This method leaves an ordered framework is a new trend in carbon research 

[7]. It is one of the most important techniques and has been of interest to many researchers 

for the reason that it has proven to be a feasible method for the preparation of well- 

structured porous carbons with pore sizes that span from micropores, mesopores and 

macropores [8]. The template synthesis method also has the unique advantage of being easy, 

inexpensive and can be properly adapted for large-scale production [7]. 

 

According to nanoroadmap [5], sol-gel techniques became much demanded since this route is 

a versatile method allowing producing bulk materials, either crystalline or amorphous of 

controlled porosity, as well as fibers, films and nanoparticles. This process is a good method 

to control the morphology of pores in carbon nanomaterials since this process allows a good 

control of the textural characteristics of the material, and a better dispersion of 

cobalt/nickel salts into the silica matrix [9]. Sol gel assisted way could be good for the 

synthesis of carbon materials as well. 

 

 

2.1.2 Applications of carbon porous materials 

 

Porous carbon materials are important in many areas of modern science and technology, 

including energy storage, water and air purification, gas separation and catalysis [2]. 

 

High surface area of porous nanomaterials can be used in the clean energy production and 

storage.  Future energy supply is dependent on clean energy such as hydrogen energy.  In the 

future, hydrogen can be the dominant fuel to convert electricity in fuel cells [10]. In this 

way, certain nanoporous  materials have already shown to be promising for application in fuel 

cells as an adsorbent and electrodes [2]. For applications in energy storage is necessary to 

have highly porous materials with high specific surface area and incorporation of transition 

metals in the material [11].  

Carbon  mesoporous materials templated with silica exhibit interesting performance as 

supercapacitor and electrode materials for battery applications [12]. Creating a material with 

higher surface area, storage devices can hold more charge. These materials can be used in 

ultracapacitors as electrodes, as it can be seen in Figure 2-3. Ultracapacitors, which charge 

and discharge power quickly, are being considered as a complement to batteries for some 

applications, including electric vehicles [1]. 
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Figure 2 Carbon electrode for battery applications [1] 

 

Figure 3 ‘On the molecular origin of supercapacitance in nanoporous carbon electrodes’[13] 

 

Lithium ion batteries are among the best-perfoming batteries because of their combination of 

relatively high power and energy density. These batteries (Figure 4) use a lithium-based oxide 

cathode, which can store a large quantity of lithium but is not conductive. In order to 

improve the conductivity of carbon to the cathode reduces resistance and increases the 

power capability of the cell [1]. The graphite anode will be replaced with high surface area 

carbons and lithium-alloying elements such as silicon, aluminium which will enable doubling 

or tripling energy and power density. This could result in longer-lived batteries with more 

power and energy for all kinds of applications, including consumer electronics such as laptops 

and cell phones, as well as hybrid or plug-in vehicles [1, 14]. 

 

 

Figure 4 Diffusion path of lithium ions (Li+) through nanopores of a nanoporous active material [14]. 

 

Collector 

Carbon electrode 

Separator material 

Electrolyte 
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Carbon nanoporous materials offer possibilities for catalysis because of their controlled large 

and accessible surface area. The impregnation of transition metal import wide range of 

physical, chemical and optical properties that can have impact on chemical production, 

environmental protection , processing of consumer products and advanced materials [2]. As 

nanoscale catalysts becomes mainstream and moves into more established industries low-cost 

nanostructured carbon to be a key support material for improving the efficiency of the 

reactions ranging from pharmacy and food to bulk chemicals energy [1]. 

 

Carbon nanoporous materials can be used for sensors materials since these materials possess 

large specific surface area and high sensitivity to slight changes in temperature, humidity and 

light [2]. 

 

2.2 Silica is promising template for the synthesis of carbon porous 

nanomaterials 

Silica is the most available compound in the world [15]. Amorphous silica is largely used in 

industrial applications, mainly in the amorphous form because of its properties like high 

hardness, thermal and chemical stability. An important characteristic of amorphous silica is 

the possibility to be arranged in various complex structures such as monoliths, nanoscale 

particles and porous silica [16].  

 

SiO2/carbon xerogels can be prepared by sol-gel polycondensation of TEOS and carbon 

precursor, followed by drying and carbonization [17]. Carbon increases the surface area and 

hydrophobicity of the carbon-silica gel composites [18]. The pore structure of xerogels 

composites is formed mainly by carbon. The SiO2/carbon xerogels could be synthesized with 

excellent characteristics, such as high surface area, high porosity, controlled pore size, high 

density and high conductivity and may be prepared in monolith form [3, 18]. 

 

One of the most characteristic features of sol-gel derived silica xerogel is an amorphous  pore 

structure. The reactivity of the matrix, due to free hydroxyl groups, is the other typical 

property of silica xerogel [15, 16]. 

The porous texture and chemical structure of the SiO2/carbon xerogels can be customized at 

the specific needs of the process that will be used. The porous texture of these carbon 

xerogels depends on the variables of synthesis:  the type of precursor, the pH of the sol-gel 

process, process of gel drying and carbonization. In low pH situations, the silica particles can 
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collide and aggregate into chains and then form gel networks because these particles bear 

very little ionic charge [3, 18].  When the gel is dried, xerogels are obtained. Evaporation 

may be carried out in ambient conditions or at elevated temperatures, in natural or forced 

convection. During the drying process, the material has a tendency to shrink due to the 

capillary forces and material obtained after the carbonization is sometimes non-porous. 

However, by controlling synthesis variables, materials with well developed porous structure 

can be produced [16]. 

 

2.3 Sol gel process 

The nanostructured C/SiO2 composites can be obtained from the carbonization of silica 

composites containing organic precursor. Sol-gel technology is often used in the synthesis of 

nanoporous materials and in this technique the gel is formed from hydrolysis and 

condensation of a precursor of structure forming agents. Amorphous materials in various 

forms, including coatings, powders, fibers, films, monoliths and porous membranes could be 

produced by this process [19]. The sol-gel process involves the formation of a colloidal 

suspension (sol) and the gelation of the sol resulting in the formation of tridimensional 

network-gel, which after drying forms a xerogel [16]. 

 

      
Metal alkoxide solution 

 

 

 

 

 

 

 

Colloidal sol                                  Wet gel                                Xerogel 

 

Figure 5 Steps of the sol gel process 
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Main steps of the process are hydrolysis and condensation reactions followed of gelation, 

ageing and drying (Figure 5) [19]. 

 

2.3.1 Formation of silica sol by hydrolysis of TEOS 

 

The sol gel process begins with the preparation of an initial solution containing the precursor, 

dispersion medium, water, in the presence of acid or basic catalyst. Tetraethoxysilane (TEOS) 

is the most widely used alkoxide precursor for a sol-gel reaction. This precursor is immiscible 

in water (Figure 6) and then is necessary to use an alcoholic solvent, which acts as a 

homogenizing agent [16]. 

 

 

Figure 6 TEOS, H2O and alcohol ternary phase diagram. For pure ethanol the miscibility line is shifted slightly 

to the right [16]. 

 

The first step in sol-gel process is hydrolysis of TEOS resulting in formation of silanol groups 

(Si-OH) and ethanol as shown in Equation 1. The reaction occurs by the nucleophilic attack of 

oxygen on the silicon atom and can occur in presence of a base or an acid [16, 19]. 

The kinetics of the hydrolysis reaction is slow and occurs simultaneously with the 

condensation processes [16].  

 

Equation 1 Hydrolysis of TEOS molecules (alkoxide precursor) in an acid catalyzed sol-gel reaction. 
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During condensation reactions between silanol groups siloxane bonds (Si-O-Si) are formed 

(Equation 2-3). 

Condensation       

 
Equation 2 Condensation of TEOS molecules in an acid catalyzed sol-gel reaction. 

 

The condensation reactions release water and ethanol (Equation 2-3) into the solution as the 

SiO2 matrix forms (Figure 7). Condensation and polymerization leads to the growth of 

particles that depends on various conditions such as pH [16].  

 

 

Equation 3 Condensation of TEOS molecules in an acid catalyzed sol-gel reaction. 

 

Figure 7 Silica matrix 

 

Process of the gel formation consists of two steps. In the first step, with increasing the 

concentration of polymerizable species formed during the hydrolysis and condensation, the 

probability of forming a polymer network leading to gelation also increases [15]. At the 

second step when the number of connections between these species is sufficient for the 

formation of a three-dimensional structure, a sol-gel transition (gel point) occurs [16]. 
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2.3.2 Gelation 

 

During gelation, a tri-dimensional network that binds the whole remaining solution is formed. 

In this step the gel has a high viscosity and the chemical composition of the mixture could be 

affected [19, 20]. 

	
  

2.3.3 Ageing 

During ageing, additional cross-links form. Covalent links replace nonbonded contacts. 

Shrinkage of gel occurs during this step, the ripening and structural evolution of pore sizes 

and pore wall strengthening occurs [20].	
  	
  

	
  

2.3.4 Drying 

 

Drying the gel is the loss of the dispersion medium by evaporation. It results in a porous 

xerogel. Structure of xerogels is affected by drying conditions. Drying by evaporation under 

normal conditions gives rise to capillary pressure that causes shrinkage of the gel network 

resulting in xerogels [16, 20].  During this drying process the material has a tendency to shrink 

due to the capillary forces that are established in the pores. 

 

2.3.5 Factors affecting the sol-gel process 

By controlling the hydrolysis and gelation conditions, is it possible to produce materials with 

well developed porosity. 

 

i) Effect of Water-to-alkoxide molar ratio 

The water/alkoxide molar ratio has considerable effect on the silica xerogel microstructure 

[16]. The formation of more microporous materials occurs when the water/alkoxide molar 

ratio is low, since condensation reactions are dominating and gelation time is longer. Gels 

made from higher water content sol (water/alkoxide molar ratio up 4) have shown less 

microstructure than gels made from lower water content sols [21]. The gels synthesized from 

lower water content have more unreacted alkoxy ligands than those from higher water 

content sol and therefore form more linear chain-like structures and more split polymers are 

formed [16]. 
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ii) pH effect 

The effect of pH on the pore structure of the xerogels and morphology has been extensively 

studied [16]. The kinetics and growth mechanisms of the reaction depend on the pH value of 

solution. The relative rates of hydrolysis and condensation effectively determine the 

morphology of the final xerogel [15]. The gelation times reach a maximum around pH ~2, 

which coincides with the point-of-zero- charge (PZC) of silica (Figure 8).  

 

Figure 8 Point-of-zero-charge (PZC) of silica [15]. 

 

At moderate pH, condensation is fast relative to hydrolysis, which results in the formation of 

highly branched silica species. They form loosely packed, cluster-like structures that coalesce 

leaving mesoporous regions between them. As the pH decreases and approaches the PZC (pH 

~2) condensation becomes rate limiting (the condensation rate is the slowest) [16]. 

In the region of very low pH (<1), below the PZC, the trend in gelation time dramatically 

reverses and sols form gel quite rapidly. This is attributed to an increased rate of 

condensation due to the protonation of silanols to produce SiOH2
+ groups that readily 

condense [15, 16]. Based on these kinetic arguments, it would be anticipated that the 

decreasing gelation times at very low pH would be accompanied by an increase in porosity 

[16, 20].  
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2.4 Cellulose: fascinating biopolymer  

 

Cellulose is the world’s most abundant natural, renewable and biodegradable polymer  

Azizi Samir, M.A.S.; Alloin, F.; Dufresne, Biomacromolecules, 6, 612–626 (2005). 

	
  
The depletion of petroleum resources and more rigorous environmental issues led to 

considerable research efforts on development of biopolymeric materials. The advantage of 

using cellulose derivate materials is that, unlike fossil fuels, they cannot become exhaust 

because they can be cultivated in required quantity as and when needed [22].  

 

The synthesis of environmentally friendly materials is a challenging task and can be 

developed by modifying inexpensive natural renewable resources.  

The combination of cellulose and sol-gel science could be of high interest. Cellulose/silica 

composites are of especial interest because improved thermal and mechanical stability of the 

parent polymer matrix [23, 24]. Cellulose/silica materials could be highly porous and light 

weighted, yet mechanically stable, and could possess complex pore structure. 

 

The drawback of cellulose is that it is insoluble in most solvents, which significantly decreases 

its potential for preparation of functional materials. Cellulose derivatives are soluble in a 

wide range of solvents, which makes them to be prospective for production of various 

composites [22]. 

 

2.4.1 Cellulose acetate 

Cellulose acetate is a thermoplastic polymer produced primarily from cellulose, a renewable 

feedstock (Figure 9) [25]. Cellulose acetate has applications in many areas such as supports 

for fibers, plastics, photographic film, and coatings for pharmaceuticals. Some limitations can 

be identified, including poor resistance to mechanical creep, and limited resistance to 

organic solvents. This cellulose derivative is soluble in acetone or water/acetone mixture 

[26]. 

 

Figure 9 Chemical structure of cellulose acetate 
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2.4.2 Hydroxypropyl cellulose 

 Hydroxypropyl cellulose (HPC) is a biopolymer obtained from the chemical modification of 

cellulose (Figure 10). Although it is hydrophobically modified, it has quite high solubility in 

water. HPC undergoes phase separation upon heating, and it is able to form liquid crystals 

[27].  This polymer has been used in the consolidation of waterlogged woods and it was 

revealed very efficient even if optimization of the impregnation process was necessary 

[24]. HPC ensures the stabilization and the homogeneity of the dispersion of inorganic salts, 

and therefore, is used in the preparation of organic-inorganic nanocomposites [28]. 

 

Figure 10 chemical structure of hydroxypropyl cellulose 

 

There are a few studies about the preparation of hybrid materials based on cellulose 

derivatives, particularly hydroxypropyl cellulose [24, 28] and cellulose acetate [25, 26]. In 

1994 Schoirchiro Yano prepared materials about hydroxypropyl cellulose (HPC)/silica although 

sol-gel method, from TEOS. They used 5 wt% ethyl alchohol solution of HPC, which is 

concentrated enough to form liquid crystal [24]. 

Shojaie et al. (1995) prepared and characterized a series of hybrids films with cellulose 

acetate and silica through sol-gel method using TEOS as chemical precursor [25].  

In 2002, Zoppi and Goncalves studied the formation of membranes with cellulose acetate 

[26]. 

 

2.4.3 Carbonization of cellulose 

The objective of the carbonization step is to obtain thermally stable materials, mostly 

composed of carbon atoms. These carbon nanostructured materials are usually obtained by 

carbonization of the organic precursor. Usually, gels are carbonized by heating the samples in 

a furnace under inert atmosphere (N2, Ar or He) for a specific period of time [29].  The 

temperatures may vary depending on the nature of the precursor. It is well known that 

cellulose is very cheap and user friendly during pyrolysis due to production of nontoxic 

products [22, 30]. During the carbonization process, cellulose is decomposed into carbon 

substance. Cellulose is unique among biopolymers in that when it is charred below 400ºC and 

above its decomposition temperature of 280 ºC it produces an aromatic structure in which 
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domains of aromatic hydrocarbon. This process involves the loss of water up to about 120ºC, 

and after that the dehydration process takes place up to 300ºC resulting in dehydrocellulose. 

At the same time depolymerisation occurs at 250ºC forming levoglucosan [30].  The products 

of this process include highly volatile gases, as can be seen in the picture below (Figure 11). 

 

 

Figure 11 Scheme of cellulose decomposition during carbonization 

 

2.5 Modification of properties of carbon materials with transitional 

metals 

The presence of a transitional metal in the structure of carbon nanomaterial can improve the 

electrical conductivity of the xerogel, and gives the xerogel some catalytic properties 

characteristic to the metal [29]. These metals salts are used in order to enhance hidrogen 

adsorption on carbon nanomaterials since the incorporation of these metals into the porous 

carbon framework is due to the fact that these metals should modify the electrical properties 

of carbon materials. Such materials with metal salts can be easily prepared by adding a 

soluble metal salt to the initial mixture. The morphology and pore texture of the xerogel can 

be affected by the addition of these metals since the metals can catalyze the polymerization 

or gelation process to a varying degree. During gelation, the metal salt is trapped within the 

structure of the gel, and during carbonization the metal is distributed through the porosity of 
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the carbon [31, 32]. The nanoporous carbons with incorporated transitional metals have high 

electroconductivity and high surface areas. They are promising for a large range of potential 

applications, such as hydrogen storage [33], electronic devices and catalysts.  

 

2.5.1 Cobalt  

Co is a well-known ferromagnetic material, which is commonly used as an alloying element in 

permanent magnets. It exists in two forms: hcp (hexagonal close-packed) and fcc (face-

centered cubic). Hcp is the stable phase at room temperature, whereas fcc is stable at 

temperatures above 450 °C [34]. 

In nanosize, Co particles display a wide range of interesting size-dependent structural, 

electrical, magnetic, and catalytic properties [35]. In particular, because of their large 

surface area, Co nanoparticles showed high chemical reactivity, which makes them suitable 

for catalysis [36]. 

 

2.5.2 Nickel 

Natural nickel corresponds to a mixture of stable isotopes and its main ferromagnetic 

behavior is enhanced above 358ºC and reacts slowly with strong acids [37]. Nickel is 

crystallized in two forms: hexagonal and cubic. Nickel forms a large amount of complex 

compounds in which it shows various oxidation states. The oxidation state +2 is the most 

common. 

Soo-Jin Park et al. investigated the hydrogen-storage capacity of mesoporous MCM-41 

containing nickel (Ni) oxides. This work shows that the hydrogen storage capacity was greatly 

influenced by the amount of nickel oxide creating hydrogen favorable sites that enhance the 

hydrogen-storage capacity by a spillover effect [38]. 
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3 Aim of the work  

The aim of this research project was the synthesis of Ni(Co)/C/SiO2 composites  by the sol-gel 

approach from cellulose derivatives and TEOS in the presence of Ni(II) and Co(II) salts. These 

polymers were chosen as carbon precursors because of their renewability and low cost.  

Ni(Co)/C/SiO2 composites  synthesized in this work were investigated with low temperature 

nitrogen sorption, powder X-ray diffraction, scanning electron microscopy and thermal 

gravimetric analysis . 
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4 Materials and Methods 

 

4.1 Synthesis of silica xerogels 

4.1.1 Materials 

Tetraehylorthosilicate (TEOS, 98%, Aldrich), Cellulose acetate (CA, Mn~30.000, Aldrich), 

hydroxypropyl cellulose (HPC, Aldrich), acetone (99.9%, Solveco), ethanol (95% Solveco), 

cobalt chloride hexahydrate (ACS grade, Alfa Aesar), cobalt bromide anhydrous (ACS grade, 

Alfa Aesar), cobalt nitrate tetrahydrate (ACS grade, Alfa Aesar ), nickel chloride hexahydrate 

(ACS grade, Alfa Aesar), and hydrochloric acid (HCl, 99%, Solveco) were used as purchased 

without any purification. 

 

4.1.2 Preparation of cellulose solutions 

 

CA solution (C=3g/100mL) was prepared in volumetric flask at room temperature. HPC 

solution (3g/100mL) was prepared from 3g of HPC and 100 mL of ethanol at room 

temperature. Prepared solution was kept in tightly closed flasks in shaker overnight prior to 

use. 

 

4.1.3 Preparation of metal salts solutions 

0.42M solutions of CoCl2, NiCl2, Co(NO3)2, CoBr2 in water were prepared from CoCl2.6H2O, 

NiCl2.6H2O, Co(NO3)2.4H2O, CoBr2 anhydrous. 

 

After preparation, the solutions were kept in tightly closed flasks in dark place for 24h prior 

to use. 

 

4.1.4 Sol-Gel Process 

 

i) Sol-gel Reactions 

 

The synthesis of the silica nanostructures through sol-gel approach consisted in the addition 

to the solution of carbon precursor (cellulose acetate or hydroxypropyl cellulose), silica 
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source – TEOS, and Ni(II) or Co(II) salt solution. A catalyst, hydrochloric acid was added in 

order to activate the sol-gel process and to accelerate hydrolysis and condensation reaction 

of TEOS. The resulting mixture was heat at 50°C for a 1 or 5 hours with vigorous stirring. 

Control samples were also prepared under similar conditions using deionized water instead of 

Ni(II) or Co(II) salt solution.  

Composition of prepared samples is presented in Appendix (Table A1). 

ii) Ageing 

The prepared precursor/SiO2 solutions were transferred into plastic containers and put to 

ageing at 45°C in oven for 5 and 90 days. 

iii) Drying 

Gels were dried at room temperature under fume hood. In case of syneresis excess of liquid 

was removed from gel by syringe prior to drying.  

 

4.2 Synthesis of carbon nanocomposites 

Carbonization was performed at 800ºC with 5ºC/min of heating ramp, under an inert 

atmosphere of nitrogen with flow of gas around 1L/min. Samples were placed into the tube 

furnace (Figure 12a) in alumina crucibles (Figure 12b). After 2 hours of keeping samples at 

800 ºC, the heating was stopped and samples were left in oven until the temperature inside 

reached room temperature. 

 

Figure 12 a) The furnace in cleanroom b) powder samples in alumina crucibles after carbonization 
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4.3 Characterization techniques 

This section describes the characterization techniques and the evaluation procedures used to 

analyze the synthesized nanomaterials. These characterization methods of the synthesized 

materials include: N2 adsorption, Scanning Electron Microscopy (SEM), Thermo Gravimetric 

Analysis (TGA), X-ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). 

More details about the methods applied for the characterization performed in each sample 

can be found in Appendix (Table A5). 

 

4.3.1 Specific surface area 

The specific surface area can be estimated on the basis of the N2 volume adsorbed on the 

material’s surface [39] at an isothermal temperature of 77 K as a function of the N2 elative  

pressure (P/P0). In this work, the classical model to determine the specific surface area from 

the nitrogen volume adsorbed on the material’s surface developed by Brunauer, Emmett and 

Teller [40] has been used. 

 

The determination of specific surface by means if the BET theory is based on the phenomenon 

of physical adsorption of gases on the external and internal surfaces of a porous material. 

This material absorbs physically a certain amount of gas that surround it a certain 

temperature, T and relative vapour pressure p/p0. The relationship between relative vapour 

pressure and amount of adsorbed gas at a constant temperature is called an adsorption 

isotherm. The amount of gas adsorbed depends of the size of the pores within the sample and 

on the partial pressure of the gas relative to its saturation pressure. By measuring the volume 

of gas adsorbed at a particular partial pressure, the BET equation gives the specific surface 

area of the material. The Kelvin equation gives the pore size distribution of the sample in 

hysteresis at high partial pressures from adsorption/desorption curves [39].  

Nitrogen sorption isotherms were recorded with Tristar 3000 (Micromeritics) at -196⁰C. 

From low temperature N2 adsorption desorption isotherms one can receive information about 

the morphology of porous material, as specific surface area, micropore volume and diameter 

of mesopores.  

4.3.2 Termo gravimetric analysis (TGA) 

The thermo-gravimetric analysis determines the loss of organic matter with temperature.  

These analyses were performed on a Pyris TGA 7 (Perkin Elmer) equipment. The range of 
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temperatures measured was until 800ºC at heating rate to 5ºC/min under nitrogen 

atmosphere. 

Thermal analysis provides an explanation of behavior of the carbonization process. In results 

from TGA is possible to see the weight loss in percentage with temperature increase, which 

represent the decomposition of organic groups of the xerogel. 

 

4.3.3 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy is an indispensable tool for the investigation of porous 

materials. This microscopy method is a type of electron microscope that images are produced 

out of interaction of the electrons with the atoms on the sample surface. In this project 

samples were studied with Zeiss Leo Ultra 55 FEG SEM. 

 

4.3.4 X-ray Diffraction (XRD) 

X-ray diffraction is one of the corner stones of twentieth century science [41].
 
It has been 

widely used to characterize sol-gel nanoporous materials. Crystalline structure of the 

synthesized material was examined by XRD method (Philips X’Pert Materials Research 

Diffractometer (MRD)). Radiation was generated with an X-Ray tube with a Cu anode (Kα 

radiation, λ=1.54184 Å) at 45 kV and 40 mA. An X-ray lens with Ni filter was used as incident 

optics; a thin film collimator was used as diffracted optics. The 2θ range was 20-80°, and the 

resolution was 0.05° with 30s averaging time per step. Phase analysis was executed with 

X’Pert HighScore 3.0 (PANalytical BV) using ICDD databases (release 2008/2009). 

 

4.3.5 Fourier transform infrared spectroscopy (FTIR) 

FTIR spectra of precursor-containing xerogels were recorded with a Perkin Elmer System 2000 

FT-IR spectrometer in the 4000-370 cm-1 range with 4 cm-1 resolution (transmission mode) and 

20 number of scans. Spectra were obtained by making pellets of 100 mg weight with ratio 

KBr/sample = 200/1. 
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5 Results and discussion 

 

5.1 Formation of precursor containing gels 

After preparation, all precursor/SiO2 sols were transparent. No precipitation of components 

(even for sols with Co(II) and Ni(II) sols) was noticed. Solutions that were not aged at 45°C did 

not form gels even after 3 months. Samples aged during 5-20 days usually formed gels directly in 

the oven.  

5.1.1 Gels prepared in the presence of HPC 

Solutions prepared in the presence of HPC formed gels during 6-7 days in oven. More details can 

be found in Appendix (Table A2). All gels were transparent and did not demonstrate syneresis 

(Figure 13). Xerogels remain transparent despite considerable shrinkage. 

 

Figure 13 Gels formed in the presence of HPC - a: cobalt chloride, b: nickel chloride; c: without salt 

 

i) Fourier transform infrared spectroscopy of carbon samples synthesized from HPC 

containing gels 

 

HPC contains hydroxyl groups and then was expect it to have hydrogen bonding with the 

silica networks. The FTIR spectrum of HPC (Figure 14) shows a broad peak at 3440 cm-1 and at 

1300-1400 assigned to the O-H stretching vibration. The bands detected at 2960 cm-1 and 2870 

cm-1 are assigned to C-H asymmetric stretching vibration of the methyl group characteristic for 

the hydroxypropyl group [42]. While the band at 1650 cm-1 was ascribed to adsorbed water. 

a) b) c) 
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Figure 14 FTIR spectra for pure HPC 

 
FTIR spectrum of HPC/SiO2 (Figure 15) composite displays peaks bands assigned to OH (3440 cm-

1). Intensity of bounds assigned to the presence of HPC/SiO2 is decreased comparing to spectrum 

of pure HPC most probably due to low concentration of HPC in composites. FTIR spectrum of 

CA/SiO2 composite exhibits absorption bands at 1100 cm-1 from asymmetric vibration of Si–O, 

asymmetric vibration of Si–OH (930 cm–1), and symmetric vibration of Si–O (810 cm–1) [43].  

 
Figure 15 FTIR spectra for HPC/SiO2 composite (green) 

 

FTIR spectra of composites containing cobalt chloride (Figure 16) and nickel chloride (Figure 17) 

are very similar to HPC/SiO2 sample. They contain bands assigned to HPC and SiO2. No shifts in 

bond position were observed. 
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Figure 16 FTIR spectra for CoCl2/HPC/SiO2 (blue) composite before carbonization. 

 

Figure 17 FTIR spectra for NiCl2/HPC/SiO2 (dark blue) composite before carbonization 

 

5.1.2 Gels prepared in the presence of CA 

 

Solutions prepared in the presence of CA formed gels during 5-26 days in oven. More details can 

be found in Appendix (Table A3). Gels are opaque in contrast to the transparent gels obtained 

from HPC solutions, as is possible to see in Figure 18. The using of cobalt bromide made it 

possible to prepare silica gels in five days. It is known that hydrolysis and condensation reactions 

affect the morphology of the gels obtained, and changing the composition of the initial solution 

is a good method for controlling the porosity [16]. 
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Figure 18 Gels formed in the presence of CA - a: cobalt bromide, b: cobalt bromide, c: nickel chloride.  

For some samples with cobalt bromide and cobalt nitrate, the syneresis was observed after aging 

step (Figure 18 a), b)). Syneresis is the phenomenon of shrinkage of the gel network, which 

results in expulsion of liquid from the pores [19] as shown in Figure 20. Usually syneresis occurs 

because the formation of new bonds results from the polycondensation reaction or hydrogen 

bonding. It is an irreversible process in most systems of inorganic gels [16]. 

 

i) Fourier transform infrared spectroscopy of carbon samples synthesized from CA 

containing gels 

The IR spectrum of cellulose acetate is dominated (Figure 19) by strong absorption band from 

ester group at 1760 cm-1(C=O), at 1375 cm-1 (C-CH3) for groups of the acetate substituent, 1260 

cm-1 (C-O-C), and band at 3540 cm-1(OH) for hydroxyl group [44, 45].  

 Spectrum of CA samples shows also weak bands at approximately 910 and 600 cm-1, these bands 

are assigned to OH stretching, rocking and wagging vibrations, respectively [44].   

 

Figure 19 FTIR spectra for pure CA 
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FTIR spectrum of CA/SiO2 (Figure 20) composite displays in addition to peaks assigned to the 

presence of CA a broadening of bands assigned to OH groups and of water  (around 3500 cm-1 and 

at 1650 cm-1) due to presence of silica [46] . This spectrum shows absorption bands at 1050 cm-1 

from asymmetric vibration of Si–O, asymmetric vibration of Si–OH (950 cm–1), and symmetric 

vibration of Si–O (800 cm–1). There are absorption bands between 800 and 1260 cm–1, which could 

point to various SiO2 peaks, Si–OH bonding and peaks due to residual organic groups [43]. 

 

Figure 20 FTIR spectra for CA/SiO2 composite (green) 

 

FTIR spectra of composites containing Co(Ni) salts are characterized by further broadening of 

bands around 3500 cm-1 and 1650 cm-1 because of hygroscopicity of Co(Ni) salts and presence of 

coordinated water molecule [44, 47]. 

It is difficult to resolve bands from ester and acetate groups (1750 cm-1 1375 cm-1 and 1240 cm-1) 

in samples most probably because of their overlapping with the bands from hydroxyl groups 

(band at 1760 overlaps with band at 1650 cm-1) and low overall concentration of CA in 

composite. 

 FTIR spectra of composites containing cobalt chloride (Figure 21) show a shift of 10 cm-1 toward 

higher frequency for the adsorption band of ester groups (1770cm-1) comparing to the FTIR 

spectrum of pure CA and CA/SIO2.  

 

 

300	
  800	
  1300	
  1800	
  2300	
  2800	
  3300	
  3800	
  

Tr
an
sm

it
ta
nc
e,
	
  %
	
  

Wave	
  number,	
  cm-­‐1	
  

CA/SiO2	
  

470	
  
3540	
   1760	
   1650	
  

1100	
  

810	
  



Synthesis of nanostructured Ni(Co)/C/SiO2 composites from cellulose derivatives through sol-gel approach 

 

27 

 

 

Figure 21 FTIR spectra for CoCl2/CA/SiO2 composite before carbonization. 

 

FTIR spectra of composites containing cobalt bromide (Figure 22) and cobalt nitrate (Figure 23) 

show a shift toward lower frequency for the adsorption band of ester groups (1760cm-1) 

comparing to the FTIR spectrum of pure CA and CA/SIO2. The IR spectrum of samples cobalt 

nitrate show that the adsorption band at 1385 cm-i is shifted toward higher frequency compared 

to the spectrum of pure CA and CA/SIO2 composite. These shifts registered for samples with 

cobalt bromide and cobalt nitrate could point to complex formation between cobalt salts and 

cellulose acetate [47].  

Formation of different complexes by Co(NO3)2 and CoBr2 could explain differences in  specific 

surface area and morphology of carbonized composites comparing to samples containing CoCl2. 

 

Figure 22 FTIR spectra for CoBr2/CA/SiO2 composite before carbonization. 
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Figure 23 FTIR spectra for Co(NO3)2/CA/SiO2 composite before carbonization. 

 

5.2 Carbonization of precursor containing xerogels 

Xerogel samples (regardless to polymeric precursor) carbonized at 800 °C have uniform black 

colour which points to uniform distribution of precursor within the volume of gel. 

 

5.2.1 Carbonization of HPC containing composites. 

Surface of samples carbonized without preliminary grinding despite loss of transparency remain 

glossy as in precursor xerogels. Color of samples carbonized after grinding to powder was slightly 

lighter than that of monolithic samples. Results of TGA showed that powder samples are 

characterized by greater weight loss than monolithic samples (Figure 24), which is consistent 

with difference in color of samples. The TGA curve shows that cellulose degraded in three steps, 

which were suggested by Chatterjee as representing the thermal degradation of the cellulosic 

materials [30]. The first step represents the evolution of the volatile matter or dehydration that 

ends at ~350ºC. The second step represents the main thermal degradation of cellulose. The third 

step represents the carbonization of the products, which starts around 500ºC. 
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Figure 24 TGA of SG4 samples carbonized in powder and monolith condition. 

 

i) Low temperature nitrogen sorption isotherms of carbon composite samples synthesized 

from HPC containing gels. 

Results from measurements of low-temperature nitrogen sorption are presented in Figure 25-26 

and Table 1.  

 

Figure 25 Low temperature nitrogen sorption isotherms of carbon composite sample SG1 and SG2 

 

Figure 26 Low temperature nitrogen sorption isotherms of carbon composite sample SG3 and SG4 
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These isotherms exhibit type II, typical to multilayer and physical adsorption that can occur in 

non-porous solids. Type II isotherms are characterized by two inflections, a relative pressure 

values lower than 0.1 and higher than 0.9. The first inflection is considered as indicating the fill 

of the first adsorbed layer. 

The specific surface area and micropore volume calculated from the Low-temperature nitrogen 

sorption isotherms is presented at Table 1. 

Table 1 Textural characteristics of C/SiO2 samples synthesized from HPC containing xerogels . 

Sample Salt Appearance Metal/HPC 
weight ratio 

HPC/SiO2 
weight 
ratio 

BET 

Surface Area 
(m2 g-1) 

Microcopore 
volume  

(cm3 g-1) 

SG1 NiCl2 
Powder 

0.3 0.3 
0 - 

Monolith 1 - 

SG2 NiCl2 Powder 0.2 0.15 1 - 

SG3 CoCl2 Powder 0.2 0.15 1 - 

SG4 - 
Powder 

- 0.15 
1 - 

Monolith 2 - 

 

These results show that the materials are nonporous. Therefore, the external surface of the 

particles is mainly where the adsorption occurs. The difference between specific surface area 

values in monolithic and powder form can be neglected. In HPC samples containing composites 

the value for specific surface area is low which could be caused by collapse of porous structure 

during gel drying. 

As it could be seen samples with HPC are characterized by small amount of macro and 

mesopores (Figure 27-28). 

 

 

Figure 27 Pore size distribution of carbon composite sample SG1 (left) and SG3 (right) 
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Figure 28 Pore size distribution of carbon composite sample SG4 

 

ii) SEM of carbon samples synthesized from HPC containing gels. 

 

 The SEM investigation of sample SG1 showed that this sample does have neither macropores nor 

mesopores (Figure 29), which is consistent with the results of low temperature nitrogen sorption 

these images can also demonstrate the presence of crystals with size of 50-300nm on the sample 

surface which means that a uniform coating was not obtained.   

  
Figure 29 SEM images of the SG1 sample (HPC with nickel) 

 

The SEM investigation of sample SG4 showed that these samples do not have macropores or 

mesopores (Figure 30), which is consistent with the results of low temperature nitrogen sorption 
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Figure 30 SEM images of the SG4 sample (HPC without salt) 

 

 

iii) X-Ray Diffraction of carbon composite samples synthesized from HPC containing gels. 

 

XRD analysis for sample SG1 (Figure 31) showed the presence of metallic nickel. Thus crystals 

present on the surface of the samples are most probably consisting of Ni.  

 

Figure 31 The X-ray diffraction patterns of carbon composite with HPC/NiCl2 
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5.2.2 Carbonization of CA containing composites. 

 

The presence of cellulose acetate contributed considerably to the increase of specific surface 

area in carbonized samples comparing with HPC derived samples. Consequently, it is possible to 

relate that the transparent gels obtained by HPC do not show large specific surface area, in 

contrast to opaque gels. 

 

i) Low temperature nitrogen sorption isotherms of carbon composite samples 

synthesized from CA containing gels. 

 

The isotherms exhibit typical shape of type IV isotherm (Figure 32-37). Type IV isotherms have a 

high lever at higher pressure which could point to the presence of mesoporous. 

These samples exhibit steep capillary condensation (hysteresis loop) indicating that these 

samples have mesopores of a larger size. 

 

Figure 32 Low temperature nitrogen sorption isotherms of carbon sample SG5 (left) and SG8 (right) 

 

Figure 33 Low temperature nitrogen sorption isotherms of carbon sample SG9 (orange) and SG10 (black) 
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Figure 34 Low temperature nitrogen sorption isotherms of carbon sample SG11 and SG12  

 

In some samples is observed low pressure hysteresis. The capillary condensation hysteresis loops 

are more pronounced, and close at a lower relative pressure. 

 

Figure 35 Low temperature nitrogen sorption isotherms of carbon sample SG13 (left) and SG14 (right) 

  

Figure 36 Low temperature nitrogen sorption isotherms of carbon sample SG15 (left) and SG16 (right) 
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Figure 37 Low temperature nitrogen sorption isotherms of carbon sample SG17and SG18  

In general, the isotherms were very similar for the different concentrations.  

The simultaneous addition of cobalt bromide, acetate cellulose and acetone as solvent made 

possible to prepare amorphous carbon materials with surface area value up to 346.5 m2 g-1, 

taking a gelation time of five days. One possible reason for this result can be the specific 

interaction between the cobalt bromide and the cellulose acetate that can result in complexes 

formation. These complexes can improve the porous structures of the material. 

Table 2 Textural characteristics of carbonized CA containing xerogels.	
  

Sample  Salt Metal/C
A weight 

ratio 

CA/SiO2 
ratio 

BET 

Surface Area 
(m2 g-1)  

Microcopore 
volume 

 (cm3 g-1)  

SG5 CoBr2 Powder 0.1 0.3 17 - 

SG6 CoBr2 Powder 0.1 0.3 16 - 

SG7 CoBr2 Powder 0.1 0.4 111 0.03 

SG8 CoBr2 
Powder 0.2 0.15 153 0.05 

Monolith 0.2 0.15 1 - 

SG9 CoBr2 Powder 0.2 0.3 196 0.06 

SG10 CoBr2 Powder 0.2 0.3 122 0.03 

SG11 CoBr2 Powder 0.2 0.3 336 0.1 

SG12 CoBr2 Powder 0.2 0.3 347 0.1 

SG13 CoBr2 Powder 0.3 0.4 249 0.09 

SG14 CoBr2 Powder 0.4 0.15 76 0.02 

SG15 Co(NO3)2 Powder 0.2 0.3 97 0.03 
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SG16 Co(NO3)2 
Powder 0.2 0.15 206 0.08 

Monolith 0.2 0.15 3 - 

SG17 CoCl2 Powder 0.2 0.3 30 0.006 

SG18 CoCl2 Powder 0.2 0.3 51 0.02 

SG19 CoCl2 Powder 0.2 0.15 4 - 

 

From Table 2 could be seen that the sample SG12 demonstrates almost the same value for 

surface area as SG11. Sample SG12 differs from sample 11 by the heating time and mixing 

solution. One could conclude that 1 hour of stirring is sufficient for preparation of sol. 

Decreasing the amount of precursor in the sample (sample 18 comparing to samples 11 and 12) 

leads to decreasing of the surface area. Sample SG5 show smaller value of specific surface area 

comparing with samples SG11 and SG12 that have more volume of metal. On the one hand in 

case of material formed from cobalt bromide, less quantity of metal significantly affected the 

value of specific surface area. On the other hand, the influence of twice less volume of carbon 

precursor changed the value of the specific surface area for almost twice less value. 

Decreasing of the amount of water in the sample (sample SG11 comparing with sample SG9) 

leads to increasing of the surface area and micropore volume as was expected [16].  

In case of materials formed from cobalt chloride SG17 showed similar value of specific surface 

area comparing with SG18 and this sample was prepared with 5hours of reaction. 

These results showed that samples carbonized in powder form present higher value of specific 

surface area than samples carbonized in monolith form (Table 2). The possible reason for this 

effect could be that the powder form of the sample leads to easier removal of volatile 

components during carbonization, which leads to opening of porosity and increasing of surface 

area. 

 

Figure 38 Pore size distribution of carbon composite sample SG17 and SG18 
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As can be seen (Figure 38) samples SG17 and SG18 show the presence of both mesopores and 

macropores. 

 

Figure 39 Pore size distribution of carbon composite sample SG11, SG12 and SG8 

The distributions of pore size for SG11 SG12 and SG8 can be seen in Figure 39 and are very 

similar. This distributions show homogenous distribution of mesopore. 

 

 

ii) SEM images of carbon composite samples synthesized from CA containing gels. 

 

    

Figure 40 SEM images of the sample SG11 (left) and SG12 (right). 

Secondary electron detectors were used for the topography investigation. As it can be seen 

Figure 40, the SEM micrographs for sample SG11 and SG12 are very similar and the distribution of 

pores is homogeneous. These pictures show that they are mesoporous materials, which is 

consistent with isotherm type IV and presence of hysteresis (Table 2, Figure 34). 
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Figure 41 SEM images of the SG11 (left) and SG12 (right) 

The method of separating and detecting the backscattered electrons is called: Energy selective 

Backscattered detection (ESB). ESB detector was used for topography investigation in order to 

see compositional contrast on the surface of samples. The results are present in Figure 41 and as 

it can be seen, there are no crystals in the top layer, which could point to homogeneous 

distribution of cobalt in material. 

    

Figure 42 SEM images of the sample SG16 monolith and SG16 powder 

 

According to SEM analysis sample SG16 carbonized without preliminary grinding (Figure 42) has 

macropores with diameter of 2-7 µm while sample SG16 carbonized in the powder form does not 

show any macro or mesoporosity, which is consistent with results of low-temperature nitrogen 

sorption according to which carbon material synthesized by carbonization of SG16 powder is 

mainly microporous material (Table 2, Figure 36). Presence of macropores in carbon material 

synthesized from monolithic SG16 could be the most probably caused by fast formation of NO2 

and O2 during thermal decomposition (Equation 4). Pressure created by evolved gases most 
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probably caused "microexplosions" and formation of cavities in the material. When using 

powdered precursor, particles of sample are small and quantity of cobalt nitrate is not enough 

to destroy structure of material. Simultaneously powder form of sample leads to easier removing 

of volatile components during carbonization which leads to opening of porosity and increasing of 

surface area. 

The thermal decomposition of Co(NO3)2 is a characteristic heterogeneous reaction of the type: 

solid à solid + gas  

Co(NO3)2.nH2O = Co3O4 + (N2, NO2, NO, O2, H2O)   [48]          

Equation 4 The thermal decomposition of Co(NO3)2 

Is it generally assumed that the decomposition of Co(NO3)2 hydrates involves a dehydration 

stage, followed by decomposition of anhydrous Co(NO3)2 proceeds in stages. 

 

Secondary electron detectors were used for the topography investigation for sample SG17 and 

SG18 as can be seen in Figure 43-44. 

  

Figure 43 SEM images of the of sample SG17 
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Figure 44 SEM images of the of sample SG18 

As it can be seen, there is a lot of large crystals in the top layer (Figure 43 (left)), which means 

that an nonuniform coating of cobalt was obtained. 

Moreover, using a SEM with a higher magnification, it was possible to detect more clearly the 

geometry of the crystals, as can be seen in Figure 43 (right). 

 

iii) X-Ray Diffraction of carbon composite samples synthesized from CA containing gels. 

 

The XRD patterns for samples synthesized by carbonization of CA in the presence of CoBr2 

(Figure 45) and CA/CoCL2 (Figure 46) are very similar and display four peaks at 2θ=44.9, 52.4, 

77.4 and 91⁰. These peaks show the presence of metallic cobalt in composites. In thermal 

decomposition of CoBr2 and CoCl2 oxide cobalt can be form as was expected with Equation 4. 

However, in this case it worth noting that cobalt oxide is not observed since during 

carbonization volatile compounds must diffuse out of the system. 

 

Figure 45 X-ray diffraction patterns of carbon material: CA/CoBr2 samples 
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Figure 46 X-ray diffraction patterns of carbon material: CA/CoCl2 sample 

XRD patterns of carbonized samples SG15 and SG16 (Co(NO3)2 was used as pre-catalyst) are 

characterized by weak and broad peaks (Figure 47) that could be assigned to highly dispersed 

metallic Co.  

 

Figure 47 X-ray diffraction patterns of carbon material: CA/Co(NO3)2 samples 
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5.3 Discussion 

The objectives proposed for this work were achieved and the timeline for this project can be 

found in Appendix (Table A6). 

Salt of 3d metals affect process of gelation. HPC containing silica xerogels without salts was 

prepared in 7 - 90 days while HPC containing silica xerogel switch salts were prepared in 6 days 

in oven and in 60 days without ageing.  CoBr2 displayed the highest influence on the rate of 

gelation of CA containing silica gels since gelation occurs in 5-15 days. 

Ni/Co/SiO2 composites were prepared by carbonization of HPC/CA containing silica xerogel and 

the carbonization of HPC containing xerogel resulted in nonporous materials. However, 

carbonization of CA containing xerogels resulted in porous materials with specific surface areas 

between 30-346 m2 g-1 (Table 2). Results obtained could be explained by different interaction 

between different cellulose derivatives and Ni(II) and Co(II) salts resulting in the formation of 

complexes with different morphology which led consequently to different morphology of gels 

and xerogels. 

The most probable anion in salt is also very important for the gel formation. Formation of 

different complexes by Co(NO3)2 and CoBr2 could explain differences in  specific surface area and 

morphology of carbonized composites comparing to samples containing CoCl2 (Table 2) 

Ni/Co/SiO2 composites that were synthesized by carbonization of CA could be prospective for the 

synthesis of hydrogen storage and supercapacitors materials. 

Nonporous HPC containing xerogels obtained in our work could be prospective for the 

preparation organic/inorganic hybrid film, for different applications. These materials can be 

used to increase the mechanical and thermal properties and for the preparation of unique 

composites [25]. 
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6 Conclusions 

HPC and CA containing silica gels in presence of Co(II) and Ni(II) salts were prepared through 

sol-gel approach using TEOS as silica precursor. 

It was revealed that Co(II) and Ni(II) salts affect process of gelation. Precursor containing 

silica xerogels without salts were prepared in 7 - 90 days while HPC containing silica xerogels 

with salts were prepared in 6 days in oven and in 60 days without ageing. CoBr2 displayed the 

highest influence on the rate of gelation of CA containing silica gels: gelation occurs in 5-15 

days. 

Ni/Co/SiO2 composites were prepared by carbonization of HPC(CA) containing silica xerogels. 

Carbonization of HPC containing xerogels resulted in non porous materials. Carbonization of 

CA containing xerogels resulted in porous structure material with specific surface area values 

between 30-346 m2 g-1 

Concentration of components has nonlinear influence in values of specific surface area of 

Ni/Co/SiO2 composites;  

Ni/Co/SiO2 composites that were synthesized by carbonization of CA/HPC could be 

prospective for the synthesis of hydrogen storage and supercapacitors. 

 

6.1 Other work performed 

This project was a challenge with several critical questions and issues in order to adjust the 

theory and practical situations about synthesis of nanostructured composites with high 

surface area and metal salts incorporated.  

Before the final protocol for the synthesis of precursor containing gels was established, some 

parameters known to affect the pore size and surface area were adjusted.  They are pH of 

the initial mixture and drying conditions. Both basic and acid catalysis were considered to be 

use in our work (table A4), basic catalyst was chosen to be ammonia hydroxide. The 

experiments made with basic catalyst did not work, because the Co(II) and Ni(II) salts form 

non soluble precipitates most probably because of formation of  amino complexes. Thus all 

samples were prepared only in the presence of HCl as catalyst (see section 4 and 5). 
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Freeze drying technique was tested for drying process. Since freeze-drying could be effective 

to prevent the porous structure from shrinking because the solvent in the pores is removed by 

sublimation under vacuum and consequently the capillary force does not exert on the porous 

structure [49, 50]. Since gels samples prepared in our work contained large amount of ethanol 

or acetone, freeze-drying led to boiling of dispersion medium (because freezing point of 

ethanol is below the operating temperature -50⁰C) and collapse of porous structure. 

 

6.2 Future work 

1. Optimization of the sol-gel parameters in order to improve the final structure of the 

material and to increase the specific surface area.  

2. A further study of the influence of concentration of reagents, conditions of aging and 

gelation on the porous structure of the final Ni(Co)/C/SiO2 composites . 

3. Investigation of the structure of samples with TEM. 

4. Investigation of hydrogen storage capacity of synthesized materials 

 

6.3 Final appreciation 

In the beginning of this Erasmus experience I had a few rough days since I left my friends, my 

family and comfort in Portugal.  But then being in a different environment, I found myself 

taking on challenges I would never have done at home. 

This experience taught me to act independently and was very positive since it contributed so 

much for my autonomy. In five months I was exclusively dedicated to this project, putting all 

my dedication in this work. I remember the places that I visited but, to be honest, I spent 

most of my time in the lab, and I really enjoyed my research.  

During this time, I was in several meetings with my group work where I presented my results a 

lot of times. At the end, I completed my project and presented my results during the defense 

of my thesis and I got very positive feedback from people. 
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8 Appendix 

 

Table A1 composition of precursor/SiO2 samples 

 

Sample 

 

Precursor 
Co(Ni) 

Salt 

Precursor/SiO2 

weight ratio 

metal / 

precursor 

weight ratio 

H2O/TEOS 

(mol) 

W(SiO2)% 

wt/vol 

SG1 HPC NiCl2 
0.3 0.2 0.3 6.6 

SG2 HPC NiCl2 0.15 0.2 4 9.4 

SG3 HPC CoCl2 0.15 0.2 4 9.4 

SG4 HPC - 0.15 - 7.7 9.4 

SG5 CA CoBr2 0.3 0.1 0.2 5.3 

SG6 CA CoBr2 0.3 0.1 4 4.9 

SG7 CA CoBr2 0.4 0.1 5.5 5.1 

SG8 CA CoBr2 0.15 0.2 3.9 5.7 

SG9 CA CoBr2 0.3 0.2 8 4.4 

SG10 CA CoBr2 0.3 0.2 0.1 6.6 

SG11 CA CoBr2 0.3 0.2 0.1 5 

SG12 CA CoBr2 0.3 0.2 0.1 4.5 

SG13 CA CoBr2 0.4 0.2 0.2 5.1 

SG14 CA CoBr2 0.15 0.4 6.6 5.2 

SG15 CA Co(NO3)2 0.3 0.2 0.3 4.5 

SG16 CA Co(NO3)2 0.15 0.2 3.9 5.7 

SG17 CA CoCl2 0.3 0.2 0.3 4.5 

SG18 CA CoCl2 0.3 0.2 0.4 5 

SG19 CA CoCl2 0.15 0.2 4 5.7 
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Table A2 Time required to form gels in the presence of HPC 

Sample Salt metal /HPC 

weight ratio 

Time of gelation Appearance of gels 

SG1 NiCl2 0.2 48h in oven + 60 days Transparent,monolith 

SG2 NiCl2 0.2 6 days in oven Transparent,monolith 

SG3 CoCl2 0.2 6 days in oven Transparent,monolith 

SG4 - - 7 days in oven Transparent,monolith 

 

Table A3 Characteristics of gels prepared in the presence of CA 

 

 

Sample Salt metal/CA 
weight ratio 

Time of gelation Appearance of gels 

SG5 CoBr2 0.1 15 days in oven Opaque syneresis 

SG6 CoBr2 0.1 15 days in oven Opaque 

SG7 CoBr2 0.1 23 days in oven Opaque, syneresis 

SG8 CoBr2 0.2 5 days in oven Opaque, syneresis 

SG9 CoBr2 0.2 8 days in oven Opaque, syneresis 

SG10 CoBr2 0.2 20 days in oven Opaque, syneresis 

SG11 CoBr2 0.2 15 days in oven Opaque, syneresis 

SG12 CoBr2 0.2 5 days in oven Opaque, syneresis 

SG13 CoBr2 0.2 14 days in oven Opaque, syneresis 

SG14 CoBr2 0.4 7 days in oven Opaque, syneresis 

SG15 Co(NO3)2 0.2 60 days + 10 days in oven Opaque, syneresis 

SG16 Co(NO3)2 0.2 26 days in oven Opaque 

SG17 CoCl2 0.2 60 days + 10 days in oven Opaque 

SG18 CoCl2 0.2 60 days Opaque 

SG19 CoCl2 0.2 60 days Opaque 
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           Table A4 Comparison of acid and basic catalyst protocol 

 

 

 

 

 

 

 

 

 

 

 

Calculation	
  of	
  quantity	
  of	
  NH4OH	
  

1	
  mol	
  [Ni(H2O)6]Cl2	
  à	
  1NiCl2	
  

NH4OH	
  à	
  NH3	
  +	
  H2O	
  

NH4OH	
  =	
  0.91	
  g/cm3	
  (25	
  %	
  wt)	
  

For	
  2.5	
  mL	
  of	
  NiCl2	
  

 

 

 

 

 

 HCl 

protocol 

NH4OH 

protocol  

Precursor/SiO2 

weight ratio 
0.3 0.3 

metal / 

precursor 

weight ratio 

0.2 0.2 

HCl (mL) 0.3 0 

NH4OH (mL) 0 0.97  
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Figure A1 Timeline 
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Table A5 Characterization methods performed in each sample  
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