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Resumo

No presente trabalho são analisadas vigas encastradas em rotação usando o método dos elementos finitos.
São apresentados métodos de modelação para a análise das vibrações de flexão flapwise e chordwise
usando as teorias de vigas de Euler-Bernoulli e Timoshenko. Estes métodos de modelação são baseados
num novo conjunto de variáveis de deformação híbridas. As equações diferenciais lineares de movimento
são obtidas usando o princípio de Hamilton, obtendo-se a partir destas as respectivas formas fracas.
Parâmetros adimensionais são introduzidos e os seus efeitos são estudados. Efeitos de ressonância e
instabilidade são também analisados.

Após a análise de vigas simples, um método de modelação para uma viga multicamada pré-torcida é
introduzido utilizando a teoria layerwise. Os resultados são comparados com sucesso com aqueles obtidos
para uma viga simples sem pré-torção. Os resultados para uma viga multicamada pré-torcida apenas
puderam ser validados sob a condição de pequenos ângulos de torção.

Usando o modelo layerwise, os efeitos de amortecimento por tratamento viscoelástico são analisados
para os dois movimentos de flexão usando a função de resposta em frequência. Finalmente, são efectudas
alterações ao modelo layerwise para o caso de uma viga compósita laminada, onde os efeitos dos ângulos
das fibras nos modos naturais são analisados.





Abstract

In the present work rotating cantilever beams are analyzed using the finite element method. Modeling
methods for the analysis of flapwise and chordwise bending vibrations are presented using the Euler-
Bernoulli and Timoshenko beam theories and also for a pre-twisted beam using Timoshenko theory.
These modeling methods are based on a new set of hybrid deformation variables. The linear differential
equations of motion are derived using Hamilton’s principle from which the weak forms are derived.
Dimensionless parameters are introduced and its effects on the natural frequencies are studied. Resonance
and instability effects are also analyzed.

After the analysis of simple beams, a modeling method for a multilayer pre-twisted beam is introduced
using the layerwise theory, its results are successfully compared with those obtained for a simple beam
with no pre-twist. Results for the pre-twisted multilayer beam could only be validated under the condition
of small pre-twist angle.

Using the layerwise model the effects of viscoelastic damping treatment are determined for both
bending motions using the frequency response function. Finally, modifications of the layerwise model
are made for the the case of a laminated composite beam, where the effects of the fiber angles over the
natural modes are analyzed.
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Chapter 1

Introduction

1.1 Motivation
Over the past years there has been a growing interest over the analysis of free vibrations characteristics
of rotating structures that operate at a constant angular speed. Such interest comes from the obvious
fact that numerous structural devices operate under such conditions, and the need of understanding
and predicting the dynamic behaviour and characteristics of the same. Some pratical engineer examples
of rotating structures are turbine, compressor and helicopter blades, robot manipulators and satellite
antennas.

Ω

r

Hub

Deformed pre-twisted beam

Figure 1.1: Scheme of a rotating cantilever beam

Since there are significant variations of the dynamic characteristics due to the rotational motion,
in order to obtain an economical and reliable design as well as control of the system, the dynamic
characteristics need to be determined in a accurate and efficient way, reason why this subject has been
studied for many years.

1.2 Review of the Literature
According to Yoo et al. [1] the first modeling approach for rotating was introduced in the 1970s and it
is somewhat referred to as classical linear Cartesian (CLC) modeling approach which is based on the
classical linear elastic modeling, where both geometric as well as material linearity is assumed. The main
advantage of this modeling approach is the ease of formulation as well as implementation. However it
can only go so far as it produces erroneous results in numeric simulations when the structures undergo
large overall motions as it is usually the case of a rotating beam.

To solve this problem other non-linear methods were introduced based on non-linear relations between
the strains and displacements, as the defective results were attributed to the geometric linearity assump-
tion. These methods indeed solved the lack of accuracy problem, but on the other hand the non-linearity
created other problems like the large amount of computational effort needed to perform a dynamic anal-
ysis. With this in mind another modeling approach was developed using a set of hybrid coordinates (two
Cartesian and one non-Cartesian), which will be better described later on.
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1. Introduction

This modeling method using hybrid deformation variable has been widely used by many authors since
it showed itself efficient at resolving the lack of accuracy of the CLC method and also the inefficiency
of the non-linear methods. Yoo et al. [1] used this modeling method to derive the linear equations of
motion and compared results with the CLC approach establishing a limit of validity for this method.
Yoo and Shin [2] derived the equations of motion approximating the hybrid set of variables using the
Rayleigh-Ritz assumed mode method and analyzed the gyroscopic coupling effect between the stretch
and bending motion and to what extent can it be neglected. Rao and Gupta [3] used the finite element
method to determine the bending natural frequencies of a rotating twisted and double tapered beam,
deriving the mass and stiffness matrices that included the effects of shear deformation, rotary inertia and
centrifugal induced stiffness, although stretch deformation was not included. Chung and Yoo [4] also
used the same hybrid modeling approach to derive the full non-linear equations of motion, which were
then linearized and their respective weak forms were derived for application in the finite element method.
Ozgumus and Kaya [5] studied the flapwise bending vibration and analyzed the effects of taper ratios of
a double-tapered Timoshenko beam using a mathematical technique known as the differential transform
method (DTM) to solve the governing differential equations of motion. Zhu [6] analyzed the chordwise
and flapwise bending vibrations for a pre-twisted Timoshenko beam but gyroscopic effect was neglected,
Yoo et al. [7] analyzed the same bending vibrations using an Euler-Bernoulli beam theory and in Yoo
et al. [8] the effect of a concentrated mass was included. Yoo et al. [9] also analyzed the flapwise bending
vibration for a multi-layered composite beam.

1.3 Objectives
The main objectives aimed by the present work are the following:

• Analyse and characterize the dynamic behaviour of rotating beams;

• Development and implementation of finite element models considering the effects that come from
the rotating movement of the beam (centrifugal stiffening, gyroscopic effect);

• Modify the finite element models for multilayer beams so that the effects of superficial viscoelastic
treatments can be analyzed as well as the effects of using composite materials.

• To contribute, through the development of modeling tools and parametric analysis, to the dynamic
project of rotating beams.

1.4 Structure of the dissertation
This dissertation is organized in eight chapters each one regarding a different subject even though always
related to the main issue which is the vibration of rotating beams.

In the present chapter 1 a literature review of the problem of rotating cantilever beams is made and
the main objectives for this dissertation are presented.

In chapter 2 the displacement and velocity fields are carefully analyzed and a new hybrid coordinate,
related the usual classic Cartesian deformation variables, is introduced and thoroughly derived. Using
this new hybrid deformation variable, the linear differential equations of motion are derived utilizing
Hamilton’s principle.

From the differential equations the variational forms are obtained in chapter 3 and the global matrices
that define the spatial model for the rotating beam problem are defined.

In chapter 4 using the global system of equations numeric results are obtained for the natural fre-
quencies and mode shapes of the the rotating beam and the effects of the beam’s geometry are analyzed.

In chapter 5 it is proposed a modeling method using a layerwise theory for a rotating pre-twisted
beam composed of several layers (multilayer element).

Chapter 6 introduces a constitutive model for the behaviour of the viscoelastic material and imple-
mentation in the finite element method, it is then analyzed if the viscoelastic damping produces some
control over the bending vibrations of the rotating beam.
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1.4. Structure of the dissertation

In chapter 7 a modeling method for rotating laminated composite beams is introduced using the
layerwise theory and the effects of the fibers’ angles over the natural frequencies are determined.

In the last chapter some conclusions are drawn from the overall results obtained throughout this
dissertation and some suggestions are left for further development of the present work.
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Chapter 2

Equations of motion

2.1 Hamilton’s principle: review

The extended Hamilton’s principle will be used to derive the differential equations of motion. According
to Meirovitch [10] the extended Hamilton’s principle can be mathematically stated as

δ

∫ tf

ti

(L + W) dt = 0 (2.1.1)

where L is known as the Lagrangian density function or Lagrangian functional, and W represents the
work done on the system by non-conservative forces.

The Lagrangian functional L is related to both kinetic and potential energy, T and Π respectively,
and it is given by the following equation

L = T −Π (2.1.2)

Replacing equation (2.1.2) in equation (2.1.1) and also taking into account that the variational and
integration operators are interchangeable, Hamilton’s principle can also be stated as∫ tf

ti

(δT − δΠ + δW) dt = 0 (2.1.3)

To determine the kinetic energy of a given mechanical system, one needs to know the velocity field
of the system, which implies knowing the velocity of any generic point through a set of generalized
coordinates. Let vP be the velocity vector of any generic point P of the mechanical system, the kinetic
energy can then be determined as follows

T =
1

2

∫
V

ρvTP · vP dV (2.1.4)

with ρ as the material density.

As for the potential energy, it can easily be calculated knowing the strain and stress fields of the
system. With ε as the strain field and σ as the stress field, the potential energy is then determined by
the following relation

Π =
1

2

∫
V

εT · σ dV (2.1.5)

The strain field is derived from the displacement field using Green’s tensor whereas the stress field is
calculated using the strains and the well known elastic constants from the generalized Hook’s law.
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2. Equations of motion

2.2 Cartesian system of coordinates

In this section the displacement and the velocity fields of a rotating cantilever beam are derived with a
Cartesian set of generalized coordinates.

X

Y

Z

x

y

z

X x

r

θ

ψ

Figure 2.1: Axes system and rotation of the cross section

In the derivation of the displacement and velocity vectors two sets of axes will be used and they
are represented in figure 2.1. Note that two sets of axes aren’t actually coincident, while one (XY Z)
is fixed, the other one (xyz) is attached to the rotating beam and moves with it. Thus we have one
fixed referential, Rf , consisting in the XY Z axes and one movable referential, Rm, that accompanies the
beam in its rotating movement consisting in the xyz axes. In the following equations every vectors are
represented in the Rm referential.

2.2.1 Displacement and velocity fields

z

y

x

P0
ux uy

uz

sP
A

r

X

Y

Z

Figure 2.2: Displacement field of a generic point P

According to figure 2.2, the position vector of any point of the undeformed beam is

−→
AP 0 =

r + x
y
z

 (2.2.1)

and after deformation of the beam, the position vector of the same point is
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2.2. Cartesian system of coordinates

−→
AP =

r + x+ ux
y + uy
z + uz

 (2.2.2)

Having these two vectors the displacement field can now easily be determined as follows

u =
−→
AP −−→AP 0 =

uxuy
uz

 (2.2.3)

To obtain the velocity vector one needs differentiate with respect to time the position vector
−→
AP ,

but since we pretend the absolute velocity of any generic point and the position vector is represented
in the referential Rm, a simple differentiation with respect to time will not suffice as it would lead us
only to a relative velocity. Thus one needs to differentiate the position vector represented in the movable
referential Rm with respect to the fixed referential Rf in order to obtain an absolute velocity vector that
is still represented in the referential Rm, this is also known as the Theorem of Relative Derivatives.

Using said theorem, the absolute velocity vector vP is determined as follows

vP

∣∣∣∣∣
Rm

=
−̇→
AP

∣∣∣∣
Rf

∣∣∣∣∣
Rm

=
−̇→
AP

∣∣∣∣
Rm

∣∣∣∣∣
Rm

+−→ωmf

∣∣∣∣∣
Rm

×−→AP
∣∣∣∣∣
Rm

(2.2.4)

where

−→ωmf

∣∣∣∣∣
Rm

=

0
0
Ω

 (2.2.5)

represents the angular velocity vector of the rotating referential. Finally, the absolute velocity vector is
given by

vP

∣∣∣∣∣
Rm

=

u̇xu̇y
u̇z

+

 −Ω(y + uy)
Ω(r + x+ ux)

0

 (2.2.6)

z

y

Figure 2.3: Cross section of a simple beam

Now, for a simple rotating beam, with the cross section presented in figure 2.3 and according to figure
2.1, the displacements ux, uy and uz can be described through a set of generalized coordinates and the
displacement vector u can be written as

u =

uxuy
uz

 =

u(x, t) + zθ(x, t)− yψ(x, t)
v(x, t)
w(x, t)

 (2.2.7)

where u, v and w are the displacements of any point at the neutral axis of the beam along the x, y and
z axis respectively, θ and ψ represent the angular rotation of any cross section of the beam about the y
and z axis respectively. Note that with this displacement field the generalized coordinates are assumed
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2. Equations of motion

constant for any point along a given cross section of the beam, since they depend only on the spatial
variable x and the time variable t.

Replacing the displacement field (2.2.7) into the velocity field (2.2.6), the velocity field vector for a
simple rotating beam becomes

vP =

 u̇+ zθ̇ − yψ̇ − Ω(y + v)
v̇ + Ω(r + x+ u+ zθ − yψ)

ẇ

 (2.2.8)

2.2.2 Strain field
According to Reddy [11], Green’s strain tensor (also known as Green-Lagrange strain tensor) which was
first introduced by Green and St. Venant is given by the following equation

Ljk =
1

2

(
∂uj
∂Xk

+
∂uk
∂Xj

+
∂ui
∂Xj

∂ui
∂Xk

)
(2.2.9)

or in terms of mechanical strains

εjk = Ljk, if j = k (2.2.10a)
γjk = 2Ljk, if j 6= k (2.2.10b)

With u1, u2, u3 = ux, uy, uz and X1, X2, X3 = x, y, z respectively, one gets the strain tensor as

εxx =
1

2

[
2
∂ux
∂x

+

(
∂ux
∂x

)2

+

(
∂uy
∂x

)2

+

(
∂uz
∂x

)2
]

(2.2.11a)

εyy =
1

2

[
2
∂uy
∂y

+

(
∂ux
∂y

)2

+

(
∂uy
∂y

)2

+

(
∂uz
∂y

)2
]

(2.2.11b)

εzz =
1

2

[
2
∂uz
∂z

+

(
∂ux
∂z

)2

+

(
∂uy
∂z

)2

+

(
∂uz
∂z

)2
]

(2.2.11c)

γxy =
∂ux
∂y

+
∂uy
∂x

+
∂ux
∂x

∂ux
∂y

+
∂uy
∂x

∂uy
∂y

+
∂uz
∂x

∂uz
∂y

(2.2.11d)

γyz =
∂uy
∂z

+
∂uz
∂y

+
∂ux
∂y

∂ux
∂z

+
∂uy
∂y

∂uy
∂z

+
∂uz
∂y

∂uz
∂z

(2.2.11e)

γzx =
∂uz
∂x

+
∂ux
∂z

+
∂ux
∂z

∂ux
∂x

+
∂uy
∂z

∂uy
∂x

+
∂uz
∂z

∂uz
∂x

(2.2.11f)

Keeping in mind that the generalized coordinates depend only on the spatial variable x and under the
assumption of small displacements along the x direction comparatively to those along y and z directions
or, in other words, ux < uy and ux < uz, it follows that the strain equations (2.2.11) can be simplified
by neglecting the terms involving the product of the derivative of ux and other derivatives, and thus we
have the following simplified strain field for a simple rotating beam

εxx =
∂u

∂x
+ z

∂θ

∂x
+ y

∂ψ

∂x
+

1

2

(
∂v

∂x

)2

+
1

2

(
∂w

∂x

)2

(2.2.12a)

γxy =

(
∂v

∂x
− ψ

)
(2.2.12b)

γzx =

(
∂w

∂x
+ θ

)
(2.2.12c)

εyy = εzz = γyz = 0 (2.2.12d)

Note that the last two terms in equation 2.2.12a can not be neglected since geometric linearity is not
valid when large overall motions are prescribed, as opposed to what is done in the CLC method.
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2.3. Hybrid coordinate system

2.2.3 Stress field

Using the appropriate elasticity relations between the stress and the strain fields, the first can be derived
from the second, needing only to multiply the strains by the respective elastic constants that are derived
from the generalized Hook’s law, which results in the following constitutive law

σ =
E

(1− 2ν)(1 + ν)


(1− ν) ν ν 0 0 0
ν (1− ν) ν 0 0 0
ν ν (1− ν) 0 0 0
0 0 0 (1− 2ν) 0 0
0 0 0 0 (1− 2ν) 0
0 0 0 0 0 (1− 2ν)

 ε (2.2.13)

which is only valid for materials with isotropic behaviour.

Since that for a beam the stresses σyy, σzz and τyz are assumed negligible, one gets the following
stress fields for a simple rotating beam

σxx = Eεxx (2.2.14a)
τxy = Gγxy (2.2.14b)
τzx = Gγzx (2.2.14c)

with

G =
E

2(1 + ν)
(2.2.15)

2.3 Hybrid coordinate system
As it was said in the introduction, a new set of generalized coordinates will be used in the derivation
of the differential equations of movement. In this section a relation between the coordinates u and s is
derived in order to apply it to both the strain and velocity fields and thus obtain the proper potential
and kinetic expressions for the derivation of the equations of motion.

2.3.1 Relation between u and s

From figure 2.4 and considering Pitagoras’ theorem the differential arc length of the neutral axis of the
deformed beam can be given by the following expression

dS =
√

(dη)2 + (dv)2 + (dw)2 (2.3.1)

z

y

x

dη
v
w

dS

w + dw

v + dv
x+ u

Figure 2.4: Differential arc of the neutral axis of the beam
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2. Equations of motion

with η being a variable that varies from 0 to x + u. Integration of equation (2.3.1) with respect to η
between 0 and x+ u would lead us to the total arc length of the neutral axis of the deformed beam

S =

∫ x+u

0

√
(dη)2 + (dv)2 + (dw)2 (2.3.2)

However, this integration variable isn’t the more appropriate one as it has analytical difficulties asso-
ciated with it. In fact seeing that the integration limits depend explicitly on u, this actually complicates
the main point of this procedure which is to find a simple relation between the displacements u and s.
In order to surpass such difficulties another variable related to η is introduced as follows

ϕ = η − u (2.3.3)

and after differentiating equation (2.3.3)

dϕ = dη − du (2.3.4)

which can be replaced back in equation (2.3.1) giving us

dS =
√

(dϕ+ du)2 + (dv)2 + (dw)2 (2.3.5)

which is equivalent to

dS =

[(
dϕ+

∂u

∂ϕ
dϕ

)2

+

(
∂v

∂ϕ
dϕ

)2

+

(
∂w

∂ϕ
dϕ

)2
] 1

2

(2.3.6)

The total arc length can now be given by the integral of equation (2.3.6), but since integration is now
taken with respect to ϕ one needs to change the integration limits. For η = 0 we have that u = 0, since
the beam is fixed at the hub, and thus ϕ = 0. For η = x + u it follows that ϕ = x. Having the new
integration limits for the new variable ϕ, one can determine the total arc length as

S =

∫ x

0

dS =

∫ x

0

[(
1 +

∂u

∂ϕ

)2

+

(
∂v

∂ϕ

)2

+

(
∂w

∂ϕ

)2
] 1

2

dϕ (2.3.7)

Considering only the first two terms of Taylor’s expansion series of the first square term1 in equation
(2.3.7) yields (

1 +
∂u

∂ϕ

)2

≈ 1 + 2
∂u

∂ϕ
(2.3.8)

and introducing this approximation in equation (2.3.7) one gets

S ≈
∫ x

0

[
1 +

{
2
∂u

∂ϕ
+

(
∂v

∂ϕ

)2

+

(
∂w

∂ϕ

)2
}] 1

2

dϕ (2.3.9)

Approximating the integrand function by the first two terms of its Taylor expansion series2 it follows that

S ≈
∫ x

0

{
1 +

1

2

[
2
∂u

∂ϕ
+

(
∂v

∂ϕ

)2

+

(
∂w

∂ϕ

)2
]}

dϕ (2.3.10)

Now note that the total arc length of the neutral axis after deformation of the beam can be decomposed
into the original length x before deformation and an additional stretch length s caused by deformation of
the beam or, in other words, S = x+ s. Replacing this relation in equation (2.3.10) and after integrating
the first two terms of the right hand side of that same equation one gets

1(1 + x)2 ≈ (1 + 0)2 + 2(1 + 0)(x− 0) = 1 + 2x
2(1 + x)

1
2 ≈ (1 + 0)

1
2 + 1

2
(1 + 0)−

1
2 (x− 0) = 1 + 1

2
x
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2.4. Euler-Bernoulli beam theory

x+ s ≈ x+ u+
1

2

∫ x

0

(
∂v

∂ϕ

)2

dϕ︸ ︷︷ ︸
hv

+
1

2

∫ x

0

(
∂w

∂ϕ

)2

dϕ︸ ︷︷ ︸
hw

(2.3.11)

and thus obtains an approximate relation between the displacements u and s as follows

u = s− hv − hw (2.3.12)

Differentiation of equation (2.3.12) with respect to time lead us to

∂u

∂t
=

∂s

∂t︸︷︷︸
ṡ

−
∫ x

0

∂v

∂ϕ

∂

∂t

(
∂v

∂ϕ

)
dϕ︸ ︷︷ ︸

ḣv

−
∫ x

0

∂w

∂ϕ

∂

∂t

(
∂w

∂ϕ

)
dϕ︸ ︷︷ ︸

ḣw

(2.3.13)

and differentiating equation (2.3.12) with respect to x and taking into account the Fundamental Theorem
of Calculus it follows that

∂u

∂x
=
∂s

∂x
− 1

2

(
∂v

∂x

)2

− 1

2

(
∂w

∂x

)2

(2.3.14)

As it will be seen ahead, using the three conventional Cartesian variables the exact potential energy
can only be expressed in a non-quadratic form leading to non-linear active forces in the equations of
motion [1], which is how some non-linear modeling methods express the potential energy. The use of the
stretch deformation facilitates the potential energy as it can be expressed in a quadratic form. However,
the use of s complicates the formulation for the kinetic energy although, through linearization the final
equations of motion can be obtained.

In the following sections the linear differential equations of motion will be derived for the Euler-
Bernoulli , Timoshenko and pre-twisted Timoshenko beams. The material of the beam is assumed
homogeneous and isotropic, the neutral and centroidal axes in the cross section are assumed coincident
so that neither eccentricity nor torsion needs to be considered. Moreover, the hub where the beam is
attached to is assumed undeformable and the beam is considered to rotate at constant speed so that no
angular acceleration needs to be accounted for.

2.4 Euler-Bernoulli beam theory
In the Euler-Bernoulli beam theory (or slender beam theory) the shear strains and stresses are assumed
negligible. To do so the strains γxy and γzx must vanish and the rotations of the cross section of the
beam in each plane are expressed in terms of the displacements in the respective normal planes. In other
words we have the rotation θ in the xz plane expressed in terms of the displacement w in the xy plane,
and the rotation ψ in the xy plane expressed in terms of the displacement v in the xz plane as follows

θ = −∂w
∂x

and ψ =
∂v

∂x
(2.4.1)

With the rotations of the cross section defined as such, it is equivalent as assuming that the cross
sections of the beam remain normal to the neutral axis. In this beam theory another basic assumption
is the negligible rotary inertia, which has effect on the kinetic energy of the beam.

2.4.1 Kinetic energy

Replacing the relation between u̇ and ṡ, derived in equation (2.3.13), in the velocity field (2.2.6) we get

vP =

 ṡ− (ḣv + ḣw) + zθ̇ − yψ̇ − Ω(y + v)
v̇ + Ω(r + x+ s+ zθ − yψ)− Ω(hv + hw)

ẇ

 (2.4.2)
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2. Equations of motion

which is the velocity field expressed in terms of the new generalized coordinate s rather than u. Having
the velocity field defined the kinetic energy can be expressed as

T =
1

2

∫
V

ρ

{[
ṡ− Ω(y + v) + zθ̇ − yψ̇

]2
+ yΩ(ḣv + ḣw)

+
[
v̇ + Ω(r + x+ s+ zθ − yψ)

]2
− Ω2(r + x)(hv + hw) + ẇ2

} (2.4.3)

and after integration over the cross sectional area of the beam and neglecting the rotary inertia, the
kinetic energy can also be expressed as

T =
1

2

∫ L

0

ρA

{(
∂s

∂t
− Ωv

)2

+

(
∂v

∂t
+ Ω(r + x+ s)

)2

− Ω2(r + x)(hv + hw) +

(
∂w

∂t

)2
}
dx

(2.4.4)

Now note that some terms involving hv and hw were already neglected. In fact, hv and hw are assumed
to be small quantities since they are already square terms, and as such any product of these terms and any
other generalized displacement is neglected. Were these terms included in the formulation and one would
obtain the full set of non-linear differential equations as it was done by Chung and Yoo [4]. However since
the main point is to obtain linear differential equations for implementation in the finite element method,
these terms can be neglected at this point of the formulation.

Applying the variational to the kinetic energy yields

∫ tf

ti

δT dt =

∫ L

0

ρA

∫ tf

ti

{(
∂s

∂t
− Ωv

)
∂

∂t
δs+

(
∂s

∂t
− Ωv

)
δ

(
− Ωv

)
+

(
∂v

∂t
+ Ω(r + x+ s)

)
∂

∂t
δv +

(
∂v

∂t
+ Ω(r + x+ s)

)
δ

(
Ω(r + x+ s)

)
− Ω2(r + x)δ(hv + hw) +

∂w

∂t

∂

∂t
δw

}
dt dx

(2.4.5)

According to Chung and Yoo [4] the penultimate term, after integration by parts is taken, can be
given as

∫ tf

ti

∫ L

0

−Ω2(r + x)δ(hv + hw) dt dx =

∫ tf

ti

∫ L

0

∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
δv

+
∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
δw dt dx

(2.4.6)

Finally, after integrating the variational of the kinetic energy by parts with respect to time and
knowing that by definition the displacements are null at the initial and final times ti and tf respectively
it follows that
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2.4. Euler-Bernoulli beam theory

∫ tf

ti

δT dt =

∫ L

0

∫ tf

ti

{
ρA

[
−
(
∂2s

∂t2
− Ω

∂v

∂t

)
δs−

(
Ω
∂s

∂t
− Ω2v

)
δv −

(
∂2v

∂t2
+ Ω

∂s

∂t

)
δv

+

(
Ω
∂v

∂t
+ Ω2s

)
δs+ Ω2(r + x)δs− ∂2w

∂t2
δw

]

+
∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
δv

+
∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
δw

}
dt dx

(2.4.7)

2.4.2 Potential energy

As it was already said, shear strains and stresses are assumed negligible in the Euler-Bernoulli beam
theory and likewise, the potential energy is simply given as∫

V

Eε2xx dV =

∫
V

E

[
∂u

∂x
+

1

2

(
∂v

∂x

)2

+
1

2

(
∂w

∂x

)2

+ z
∂θ

∂x
+ y

∂ψ

∂x

]
dV (2.4.8)

Now note that the first three terms represent the actual stretch deformation as it was defined in
equation (2.3.14) allowing the simplification of the expression for the potential energy. Replacing the
relations for the cross section rotation and integrating over the cross sectional area of the beam, the
potential energy can be expressed as

Π =
1

2

∫ L

0

E

[
A

(
∂s

∂x

)2

+ Iz

(
∂2v

∂x2

)2

+ Iy

(
∂2w

∂x2

)2
]
dx (2.4.9)

In the CLC modeling method the expression for the potential energy would simply be

Π =
1

2

∫ L

0

E

[
A

(
∂u

∂x

)2

+ Iz

(
∂2v

∂x2

)2

+ Iy

(
∂2w

∂x2

)2
]
dx (2.4.10)

which now can be seen that it is obviously approximated since there are two terms in equation (2.4.8)
that are neglected because of the assumption of geometric linearity, which is clearly not valid when large
overall motions are prescribed.

Applying the variational to the potential energy and integrating from ti to tf one gets∫ tf

ti

δΠ dt =

∫ tf

ti

∫ L

0

E

[
A
∂s

∂x

∂

∂x
δs+ Iz

∂2v

∂x2
∂2

∂x2
δv + Iy

∂2w

∂x2
∂2

∂x2
δw

]
dx dt (2.4.11)

and after integrating twice by parts with respect to the spatial variable x

∫ tf

ti

δΠ dt =

∫ tf

ti

{
EA

∂s

∂x
δs

∣∣∣∣∣
L

0

+ EIz
∂2v

∂x2
∂

∂x
δv

∣∣∣∣∣
L

0

+ EIy
∂2w

∂x2
∂

∂x
δw

∣∣∣∣∣
L

0

− ∂

∂x

(
EIz

∂2v

∂x2

)
δv

∣∣∣∣∣
L

0

− ∂

∂x

(
EIy

∂2w

∂x2

)
δw

∣∣∣∣∣
L

0

+

∫ L

0

− ∂

∂x

(
EA

∂s

∂x

)
δs+

∂2

∂x2

(
EIz

∂2v

∂x2

)
δv +

∂2

∂x2

(
EIy

∂2w

∂x2

)
δw dx

}
dt

(2.4.12)

Finally considering the boundary conditions of the system
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2. Equations of motion

∫ tf

ti

δΠ dt =

∫ tf

ti

∫ L

0

− ∂

∂x

(
EA

∂s

∂x

)
δs+

∂2

∂x2

(
EIz

∂2v

∂x2

)
δv +

∂2

∂x2

(
EIy

∂2w

∂x2

)
δw dx dt (2.4.13)

and the boundary conditions are

s = v = w =
∂w

∂x
=
∂v

∂x
= 0, at x = 0 (2.4.14a)

EA
∂s

∂x
= EIz

∂2v

∂x2
= EIy

∂2w

∂x2
=

∂

∂x

(
EIy

∂2w

∂x2

)
=

∂

∂x

(
EIz

∂2v

∂x2

)
= 0, at x = L (2.4.14b)

2.4.3 Work of non-conservative forces
The work done by external distributed forces can expressed as

W = fs(x, t)s+ fv(x, t)v + fw(x, t)w (2.4.15)

and the virtual work becomes

δW = fsδs+ fvδv + fwδw (2.4.16)

2.4.4 Differential equations of movement
Introducing in the Hamilton principle (2.1.3) the variational of the kinetic energy as defined in equation
(2.4.7) as well as the variational of the potential energy as defined in equation (2.4.13) and the virtual
work done by external forces (2.4.16), yields the final linear partial differential equations of motion for
the Euler-Bernoulli beam

ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s

)
− ∂

∂x

(
EA

∂s

∂x

)
= ρAΩ2(r + x) + fs (2.4.17)

ρA

(
∂2v

∂t2
+ 2Ω

∂s

∂t
− Ω2v

)
+

∂2

∂x2

(
EIz

∂2v

∂x2

)
− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
= fv

(2.4.18)

ρA
∂2w

∂t2
+

∂2

∂x2

(
EIy

∂2w

∂x2

)
− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
= fw

(2.4.19)

Now note that equations (2.4.17) and (2.4.18) are coupled through gyroscopic coupling and both
equations define what will be called from now on the chordwise motion; on the other hand equation
(2.4.19) which is uncoupled from the other two, defines what will be called the flapwise motion.

s

wv

(a) Chordwise motion (b) Flapwise motion

x x

y z

Figure 2.5: Comparison between the chordwise and flapwise motions
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2.5. Timoshenko beam theory

As it can be seen from figure 2.5, while the chordwise motion is defined by a bending deformation in the
xy plane and a stretch deformation of the neutral axis of the beam, the flapwise motion is characterized
by a bending deformations in the xz plane.

2.5 Timoshenko beam theory
In this section the partial differential equations of movement for the Timoshenko beam theory will be
derived. The main differences comparatively to the Euler-Bernoulli theory lie in the fact that the rotations
of the cross section are independent degrees of freedom which allows for the consideration of the shear
strains and stresses, having an effect on the potential energy of the beam. Also in the Timoshenko beam
theory the rotary inertia of the cross section of the beam is usually considered, which has an effect on
the kinetic energy of the beam.

2.5.1 Kinetic energy
The velocity vector is in every way identical to that defined for the Euler-Bernoulli theory. Replacing the
relation between the displacements s and u and velocity vector becomes

vP =

 ṡ− (ḣv + ḣw) + zθ̇ − yψ̇ − Ω(y + v)
v̇ + Ω(r + x+ s+ zθ − yψ)− Ω(hv + hw)

ẇ

 (2.5.1)

and under the same assumptions of small quantities for the hv and hw functions and neglecting any
product of these terms and other generalized displacements the kinetic energy can be simplified into

T =
1

2

∫
V

ρ

{[
ṡ− Ωv − Ωy + zθ̇ − yψ̇

]2
+ Ωy(ḣv + ḣw)

+
[
v̇ + Ω(r + x+ s+ zθ − yψ)

]2
− Ω2(r + x)(hv + hw) + ẇ2

}
dV

(2.5.2)

Integrating over the cross section of the beam and considering the rotary inertia, the kinetic energy
for the rotating Timoshenko beam is given as follows

T =
1

2

∫ L

0

ρ

{
A

[(
∂s

∂t
− Ωv

)2

+

(
∂v

∂t
+ Ω(r + x+ s)

)2

− Ω2(r + x)(hv + hw) +

(
∂w

∂t

)2]

+ Iy

(
∂θ

∂t

)2

+ Iz

(
∂ψ

∂t

)2

+ Ω2(Iyθ
2 + Izψ

2 + Iz) + 2ΩIz
∂ψ

∂t

}
dx

(2.5.3)

Applying the variational to the knetic energy

∫ tf

ti

δT dt =

∫ L

0

ρ

∫ tf

ti

{
A

[(
∂s

∂t
− Ωv

)
∂

∂t
δs+

(
∂s

∂t
− Ωv

)
δ

(
− Ωv

)
+

(
∂v

∂t
+ Ω(r + x+ s)

)
∂

∂t
δv +

(
∂v

∂t
+ Ω(r + x+ s)

)
δ

(
Ω(r + x+ s)

)
− Ω2(r + x)δ(hv + hw) +

∂w

∂t

∂

∂t
δw

]
Iy
∂θ

∂t

∂

∂t
δθ + Iz

∂ψ

∂t

∂

∂t
δψ + Ω2(Iyθδθ + Izψδψ) + ΩIz

∂

∂t
δψ

}
dt dx

(2.5.4)

and after taking integration by parts and knowing that the displacements are by definition null at times
ti and tf , the variational form for the kinetic energy becomes
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2. Equations of motion

∫ tf

ti

δT dt =

∫ L

0

ρ

∫ tf

ti

{
A

[
−
(
∂2s

∂t2
− Ω

∂v

∂t

)
δs−

(
Ω
∂s

∂t
− Ω2v

)
δv −

(
∂2v

∂t2
+ Ω

∂s

∂t

)
δv

+

(
Ω
∂v

∂t
+ Ω2s

)
δs+ Ω2(r + x)δs− ∂2w

∂t2
δw

]

+
∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
δv

+
∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
δw

− Iy
∂2θ

∂t2
δθ − Iz

∂2ψ

∂t2
δψ + Ω2(Iyθδθ + Izψδψ)

}
dt dx

(2.5.5)

2.5.2 Potential energy
Since that in the Timoshenko beam theory the shear strains and stresses are considered, the potential
energy is given by the following expression

Π =
1

2

∫
V

(Eε2xx +Gγ2xy +Gγ2zx) dV (2.5.6)

which after replacement of the stretch deformation defined in (2.3.14) and integration over the area of
the cross section results in

Π =
1

2

∫ L

0

{
E

[
A

(
∂s

∂x

)2

+ Iy

(
∂θ

∂x

)2

+ Iz

(
∂ψ

∂x

)2]

+G

[
A∗y

(
∂v

∂x
− ψ

)2

+A∗z

(
∂w

∂x
+ θ

)2]}
dx

(2.5.7)

where A∗y and A∗z represent the reduced shear areas in both directions and are given by A∗y = κyA and
A∗z = κzA, with κy and κz as the shear correction factors.

Applying the variational to the potential energy and integrating it from ti to tf

∫ tf

ti

δΠ dt =

∫ tf

ti

∫ L

0

{
E

[
A
∂s

∂x

∂

∂x
δs+ Iy

∂θ

∂x

∂

∂x
δθ + Iz

∂ψ

∂x

∂

∂x
δψ

]

+G

[
A∗y

(
∂v

∂x
− ψ

)(
∂

∂x
δv − δψ

)
+A∗z

(
∂w

∂x
+ θ

)(
∂

∂x
δw + δθ

)]}
dx dt

(2.5.8)

and after integrating once by parts with respect to the spatial variable x

∫ tf

ti

δΠ dt =

∫ tf

ti

{
E

[
A
∂s

∂x
δs+ Iy

∂θ

∂x
δθ + Iz

∂ψ

∂x
δψ

]L
0

+G

[
A∗z

(
∂w

∂x
+ θ

)
δw +A∗y

(
∂v

∂x
− ψ

)
δv

]L
0

+

∫ L

0

− ∂

∂x

(
EA

∂s

∂x

)
δs− ∂

∂x

(
EIy

∂θ

∂x

)
δθ − ∂

∂x

(
EIz

∂ψ

∂x

)
δψ

− ∂

∂x

[
GA∗z

(
∂w

∂x
+ θ

)]
δw − ∂

∂x

[
GA∗y

(
∂v

∂x
− ψ

)]
δv

+GA∗z

(
∂w

∂x
+ θ

)
δθ −GA∗y

(
∂v

∂x
− ψ

)
δψ dx

}
dt

(2.5.9)
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2.5. Timoshenko beam theory

taking into account the boundary conditions and grouping the terms by displacements, the variational
form of the potential energy for the Timoshenko beam can finally be given by

∫ tf

ti

δΠ dt =

∫ tf

ti

∫ L

0

{
− ∂

∂x

(
EA

∂s

∂x

)
δs− ∂

∂x

[
GA∗y

(
∂v

∂x
− ψ

)]
δv − ∂

∂x

[
GA∗z

(
∂w

∂x
+ θ

)]
δw

+

[
GA∗z

(
∂w

∂x
+ θ

)
− ∂

∂x

(
EIy

∂θ

∂x

)]
δθ

+

[
−GA∗y

(
∂v

∂x
− ψ

)
− ∂

∂x

(
EIz

∂ψ

∂x

)]
δψ

}
dx dt

(2.5.10)

and the boundary conditions for the rotating Timoshenko beam are

s = v = w = θ = ψ = 0 at x = 0 (2.5.11a)

EA
∂s

∂x
= EIy

∂θ

∂x
= EIz

∂ψ

∂x
= GA∗z

(
∂w

∂x
+ θ

)
= GA∗y

(
∂v

∂x
− ψ

)
= 0 at x = L (2.5.11b)

2.5.3 Work of non-conservative forces
The work of non-conservative forces for the Timoshenko beam can expressed as

W = fs(x, t)s+ fv(x, t)v + fw(x, t)w + fθ(x, t)θ + fψ(x, t)ψ (2.5.12)

and the virtual work of the same forces becomes

δW = fsδs+ fvδv + fwδw + fθδθ + fψδψ (2.5.13)

2.5.4 Differential equations of movement
The differential equations of movement obtained for the Timoshenko rotating beam are fairly similar to
those derived for the Euler-Bernoulli beam, only now since the rotations of the cross section are indepen-
dent degrees of freedom, two more differential equations appear resulting in five differential equations of
movement.

ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s

)
− ∂

∂x

(
EA

∂s

∂x

)
= ρAΩ2(r + x) + fs (2.5.14)

ρA

(
∂2v

∂t2
+ 2Ω

∂s

∂t
− Ω2v

)
− ∂

∂x

[
GA∗y

(
∂v

∂x
− ψ

)]
− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
= fv

(2.5.15)

ρIz

(
∂2ψ

∂t2
− Ω2ψ

)
−GA∗y

(
∂v

∂x
− ψ

)
− ∂

∂x

(
EIz

∂ψ

∂x

)
= fψ (2.5.16)

ρA
∂2w

∂t2
− ∂

∂x

[
GA∗z

(
∂w

∂x
+ θ

)]
− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
= fw

(2.5.17)

ρIy

(
∂2θ

∂t2
− Ω2θ

)
+GA∗z

(
∂w

∂x
+ θ

)
− ∂

∂x

(
EIy

∂θ

∂x

)
= fθ (2.5.18)
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2. Equations of motion

One can observe how the five differential equations relate to each other. While equations (2.5.14),
(2.5.15) and (2.5.16) are coupled with each other defining the chordwise motion for the Timoshenko
rotating beam, equations (2.5.17) and (2.5.18) are coupled between them and define the flapwise motion
for the Timoshenko rotating beam.

2.6 Pre-twisted Timoshenko beam

In this section the partial differential equations of movement for a pre-twisted Timoshenko beam will
be derived. The process is quite similar to that in the previous section, being the main difference now
the fact that, since the cross sections of the beam are pre-twisted, there is no longer a line of symmetry
(as it can be seen in figure 2.6) and as such

∫
A
xy dA 6= 0, as a result the product of inertia need to be

accounted for in both the kinetic and potential energies.

Even though in this work the pre-twisted beam analysis is done solely using the Timoshenko beam
theory, the equations of motion could easily be derived using the Euler-Bernoulli beam theory as well
(Yoo et al. [7]).

z

y

y′

z′

βx

Figure 2.6: Pre-twisted cross section of the beam

As it can be seen in figure 2.6 the generic cross section of the pre-twisted beam can be defined by an
angle βx which can be determined as follows

βx =
x

L
βL (2.6.1)

where βL is the angle of the beam at the free-end. With the angle βx defined as such, it is assumed that
it has a linear variation from x = 0 until x = L. Furthermore the moments of inertia and the product of
inertia need to be determined for each cross section as

Iy = Iz′ sin2 βx + Iy′ cos2 βx (2.6.2a)

Iz = Iz′ cos2 βx + Iy′ sin2 βx (2.6.2b)
Iyz = (Iz′ − Iy′) sinβx cosβx (2.6.2c)

2.6.1 Kinetic energy

The velocity vector is identical to that defined in the previous section and as such the kinetic energy is very
similar to that defined for the Timoshenko beam needing only to introduce the product of inertia when
integrating over the cross section of the beam. Thus, the kinetic energy for the Timoshenko pre-twisted
beam is given by the following expression
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2.6. Pre-twisted Timoshenko beam

T =
1

2

∫ L

0

ρ

{
A

[(
∂s

∂t
− Ωv

)2

+

(
∂v

∂t
+ Ω(r + x+ s)

)2

− Ω2(r + x)(hv + hw) +

(
∂w

∂t

)2]
+ Iy

(
∂θ

∂t

)2

+ Iz

(
∂ψ

∂t

)2

+ Ω2(Iyθ
2 + Izψ

2 − 2Iyzθψ + Iz)− 2Iyz
∂θ

∂t

∂ψ

∂t
+ 2Ω(Iz

∂ψ

∂t
− Iyz

∂θ

∂t
)

}
dx

(2.6.3)

After applying the variational to the kinetic energy and taking integration by parts it becomes

∫ tf

ti

δT dt =

∫ L

0

ρ

∫ tf

ti

{
A

[
−
(
∂2s

∂t2
− Ω

∂v

∂t

)
δs−

(
Ω
∂s

∂t
− Ω2v

)
δv −

(
∂2v

∂t2
+ Ω

∂s

∂t

)
δv

+

(
Ω
∂v

∂t
+ Ω2s

)
δs+ Ω2(r + x)δs− ∂2w

∂t2
δw

]

+
∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
δv

+
∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
δw

+

(
− Iy

∂2θ

∂t2
+ Iyz

∂2ψ

∂t2

)
δθ +

(
− Iz

∂2ψ

∂t2
+ Iyz

∂2θ

∂t2

)
δψ

+ Ω2[Iyθδθ + Izψδψ − Iyz(ψδθ + θδψ)]

}
dt dx

(2.6.4)

2.6.2 Potential energy

The basic form of the potential energy for the pre-twisted beam is also identical to that defined for the
Timoshenko beam and after integration over the cross sectional area of the pre-twisted beam the potential
energy is defined as

Π =
1

2

∫ L

0

{
E

[
A

(
∂s

∂x

)2

+ Iy

(
∂θ

∂x

)2

+ Iz

(
∂ψ

∂x

)2

− 2Iyz
∂θ

∂x

∂ψ

∂x

]

+GA∗
[(

∂v

∂x
− ψ

)2

+

(
∂w

∂x
+ θ

)2]}
dx

(2.6.5)

After applying the variational, integrating by parts and considering the boundary conditions the final
variationl form for the pre-twisted Timoshenko rotating beam becomes

∫ tf

ti

δΠ dt =

∫ tf

ti

∫ L

0

{
− ∂

∂x

(
EA

∂s

∂x

)
δs− ∂

∂x

[
GA∗y

(
∂v

∂x
− ψ

)]
δv − ∂

∂x

[
GA∗z

(
∂w

∂x
+ θ

)]
δw

+

[
GA∗z

(
∂w

∂x
+ θ

)
− ∂

∂x

(
EIy

∂θ

∂x

)
+

∂

∂x

(
EIyz

∂ψ

∂x

)]
δθ

+

[
−GA∗y

(
∂v

∂x
− ψ

)
− ∂

∂x

(
EIz

∂ψ

∂x

)
+

∂

∂x

(
EIyz

∂θ

∂x

)]
δψ

}
dx dt

(2.6.6)
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2. Equations of motion

with the boundary conditions as follows

s = v = w = θ = ψ = 0 at x = 0 (2.6.7a)

EA
∂s

∂x
= EIy

∂θ

∂x
= EIz

∂ψ

∂x
= EIyz

∂θ

∂x
= EIyz

∂ψ

∂x

= GA∗y

(
∂v

∂x
− ψ

)
= GA∗z

(
∂w

∂x
+ θ

)
= 0 at x = L

(2.6.7b)

2.6.3 Differential equations of movement
Introducing the variational forms of the kinetic and potential energy, (2.6.4) and (2.6.6) respectively, and
also the virtual work done by external forces in Hamilton principle (2.1.1) leads to partial differential
equations for the pre-twisted Timoshenko beam as follows

ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s

)
− ∂

∂x

(
EA

∂s

∂x

)
= ρAΩ2(r + x) + fs (2.6.8)

ρA

(
∂2v

∂t2
+ 2Ω

∂s

∂t
− Ω2v

)
− ∂

∂x

[
GA∗y

(
∂v

∂x
− ψ

)]
− ∂

∂x

[
ρAΩ2

(
r(L− x) +

1

2
(L2 − x2)

)
∂v

∂x

]
= fv

(2.6.9)

ρIz

(
∂2ψ

∂t2
− Ω2ψ

)
− ρIyz

(
∂2θ

∂t2
− Ω2θ

)
− ∂

∂x

(
EIz

∂ψ

∂x

)
+

∂

∂x

(
EIyz

∂θ

∂x

)
−GA∗y

(
∂v

∂x
− ψ

)
= fψ

(2.6.10)

ρA
∂2w

∂t2
− ∂

∂x

[
GA∗z

(
∂w

∂x
+ θ

)]
− ∂

∂x

[
ρAΩ2

(
r(L− x) +

1

2
(L2 − x2)

)
∂w

∂x

]
= fw

(2.6.11)

ρIy

(
∂2θ

∂t2
− Ω2θ

)
− ρIyz

(
∂2ψ

∂t2
− Ω2ψ

)
− ∂

∂x

(
EIy

∂θ

∂x

)
+

∂

∂x

(
EIyz

∂ψ

∂x

)
+GA∗z

(
∂w

∂x
+ θ

)
= fθ

(2.6.12)

Note that now, unlike the differential equations defined in the previous sections, all the partial differential
equations of movement are coupled due to the product of inertia introduced by the pre-twist angle of the
beam, which means that both flapwise and chordwise movements are also coupled.
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Chapter 3

Finite element analysis

In this chapter the weak forms (also known as variational forms) are derived for application in the finite
element method. The weak forms are derived from the strong forms (defined by the system of partial
differential equations of movement and respective boundary conditions) using the weighted-residuals
method.

3.1 Beam finite element
In order to solve the system of differential equations using the finite element method, the beam needs to
be discretized into several elements as in figure 3.1.

Ω

1 2 e

x1 x2 x3 xe xe+1 xN xN+1

N

x

Figure 3.1: Discretization of the beam in finite elements

It is usually convenient to define the domain of the beam element in terms of a natural coordinate
ξ, rather than a system global coordinate x, so that its domain is always the same for any element of
the beam which facilitates numerical integration of the element matrices using the Gauss quadrature.
The natural coordinate system has its origin at the center of the element and the element domain is
−1 < ξ < +1 as it is shown in figure 3.2.

xe xe+1

e

ξ = −1 ξ = 1

ℓe

Figure 3.2: Natural coordinate

The global coordinate x can then be determined from the natural coordinate ξ as follows
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3. Finite element analysis

x(ξ) = N1xe +N2xe+1 =
[
N1 N2

] [ xe
xe+1

]
= Nxe (3.1.1)

where N1 and N2 are shape functions defined in the natural coordinate system that interpolate the
geometry of the beam and are given by

N1 =
1− ξ

2
(3.1.2a)

N2 =
1 + ξ

2
(3.1.2b)

To obtain the derivative of a shape function defined in the natural coordinate system with respect to the
global spatial variable x one can do as follows

dN

dξ
=
dN

dx

dx

dξ︸︷︷︸
J

(3.1.3)

dN

dx
=
dN

dξ
J−1 (3.1.4)

with J as the Jacobian transformation defined for the beam element as

J =
d

dξ

([
N1 N2

] [ xe
xe+1

])
=

[
dN1

dξ

dN2

dξ

] [
xe
xe+1

]
(3.1.5)

To derive the weak forms in the following sections, the differential equations of motion are multiplied
by the weighting functions and integrated from x = 0 to x = L and then integrated by parts. It is seen
that the natural boundary conditions are already satisfied by the weak forms and as such the weighting
functions need only to meet the requirements set by the essential boundary conditions. For the simple
beam case (either Euler-Bernoulli or Timoshenko beam), two weak forms are derived since there are two
main types of motion. As for the pre-twisted beam, only one weak form is derived since both motion
types are coupled.

3.2 Euler-Bernoulli element
The shape functions used to interpolate the element bending displacements, w and v, in the Euler-
Bernoulli beam theory are known as the Hermite cubic interpolation functions and are given by (see for
instance [12] and [13]).

H1 =
1

4
(2− 3ξ + ξ3) (3.2.1a)

H2 =
`e
8

(1− ξ − ξ2 + ξ3) (3.2.1b)

H3 =
1

4
(2 + 3ξ − ξ3) (3.2.1c)

H4 =
`e
8

(−1− ξ + ξ2 + ξ3) (3.2.1d)

The reason for the shape functions to be cubic is because the polynomial function from which they
are derived, which is used to approximate the displacements v and w, has to be cubic so that there
are four parameters in the polynomial in order to satisfy all four essential boundary conditions. Also,
from the Euler-Bernoulli potential energy one can see that the bending displacements need to be twice
differentiable so that the bending potential energy isn’t null; on the other hand bending displacements
need to cubic to yield nonzero shear forces.

As for the shape functions that interpolate the displacement s, since they only need to be differentiable
once and there is only two essential boundary conditions the polynomial used to approximate s is linear
yielding two linear shape functions which are the same used to interpolate the coordinates of the beam.

22



3.2. Euler-Bernoulli element

3.2.1 Chordwise motion
To derive the weak form for the chordwise motion of the Euler-Bernoulli beam, equations (2.4.17) and
(2.4.18) are multiplied by the weighting functions s̄ and v̄ respectively, summed and integrated over the
length L as follows

∫ L

0

{
ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s

)
− ∂

∂x

(
EA

∂s

∂x

)
− ρAΩ2(r + x)− fs

}
s̄

+

{
ρA

(
∂2v

∂t2
+ 2Ω

∂s

∂t
− Ω2v

)
+

∂2

∂x2

(
EIz

∂2v

∂x2

)

− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
− fv

}
v̄ dx = 0

(3.2.2)

after integrating by parts, considering the natural boundary conditions and knowing that the weighting
functions satisfy the essential boundary conditions it follows that

∫ L

0

{
ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s

)
s̄+ ρA

(
∂2v

∂t2
+ 2Ω

∂s

∂t
− Ω2v

)
v̄

+EA
∂s

∂x

∂s̄

∂x
+ EIz

∂2v

∂x2
∂2v̄

∂x2
+ Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

∂v̄

∂x

}
dx

=

∫ L

0

(ρAΩ2(r + x) + fs)s̄+ fv v̄ dx

(3.2.3)

and after rewriting it

∫ L

0

{
ρA

(
s̄
∂2s

∂t2
+ v̄

∂2v

∂t2

)
+ 2ΩρA

(
v̄
∂s

∂t
− s̄ ∂v

∂t

)
− Ω2ρA(s̄s+ v̄v)

+EA
∂s̄

∂x

∂s

∂x
+ EIz

∂2v̄

∂x2
∂2v

∂x2
+ Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v̄
∂x

∂v

∂x

}
dx

=

∫ L

0

s̄(ρAΩ2(r + x) + fs) + v̄fv dx

(3.2.4)

The displacements and weighting functions are now approximated by the shape functions as

s̄ = (d̄ce)
TNT

s ; s = Nsd
c
e (3.2.5a)

v̄ = (d̄ce)
TNT

v ; v = Nvd
c
e (3.2.5b)

where dce is the element displacement vector defined as

dce =
{
s1 v1 ψ1 s2 v2 ψ2

}T (3.2.6)

and d̄ce is an arbitrary vector with the same dimensions of dce and the matrix shape functions are

Ns =
[
N1 0 0 N2 0 0

]
(3.2.7a)

Nv =
[
0 H1 H2 0 H3 H4

]
(3.2.7b)

Introducing now these approximations from equations (3.2.5) in the weak form presented in equation
(3.2.4), the weak form can also be written in a matricial form, yielding the discretized equation for the
chordwise motion as
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3. Finite element analysis

N∑
e=1

(d̄ce)
T {mc

ed̈
c
e + 2Ωgceḋ

c
e + [kce + Ω2(sce −mc

e)]d
c
e} =

N∑
e=1

(d̄ce)
T f ce (3.2.8)

with the element matrices defined as

mc
e =

∫ +1

−1
ρA(NT

s Ns + NT
v Nv) det(J) dξ (3.2.9a)

gce =

∫ +1

−1
ρA(NT

v Ns −NT
s Nv) det(J) dξ (3.2.9b)

sce =

∫ +1

−1
ρA
(
r(L− x) +

1

2
(L2 − x2)

)
N′

T
v N′v det(J) dξ (3.2.9c)

kce =

∫ +1

−1
(EAN′

T
s N′s + EIzN

′′T
v N′′v) det(J) dξ (3.2.9d)

f ce =

∫ +1

−1
(NT

s (Ω2ρA(r + x) + fs) + NT
v fv) det(J) dξ (3.2.9e)

where mc
e, gce, sce and kce are the mass, gyroscopic, centrifugal stiffness and stiffness element matrices

respectively for the chordwise motion, and f ce is the element load vector.

Finally, since d̄ce is an arbitrary vector, after assembling the element matrices and vectors equation
(3.2.8) can be transformed into the global system of ordinary differential equations of motion defined as

Mcd̈c + 2ΩGc︸ ︷︷ ︸
Geq

ḋc + [Kc + Ω2(Sc −Mc)]︸ ︷︷ ︸
Keq

dc = fc (3.2.10)

3.2.2 Flapwise motion
Following the same procedure done for the chordwise motion, the weak form for the flapwise motion is
derived as

∫ L

0

{
ρA

∂2w

∂t2
+
∂2w

∂x2

(
EIy

∂2w

∂x2

)

− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
− fw

}
w̄ dx = 0

(3.2.11)

∫ L

0

{
ρA

∂2w

∂t2
w̄ + EIy

∂2w

∂x2
∂2w̄

∂x2

+ Ω2ρA
(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

∂w̄

∂x

}
dx =

∫ L

0

fww̄ dx

(3.2.12)

Introducing the element displacement vector as

dfe =
{
w1 θ1 w2 θ2

}
(3.2.13)

and the flapwise matrix shape function as

Nw =
[
H1 H2 H3 H4

]
(3.2.14)

approximations for the flapwise displacement and weighting functions through the shape functions are as
follows
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3.3. Timoshenko element

w̄ = (d̄fe )TNT
w; w = Nwdfe (3.2.15)

Introducing the previous interpolations in the weak form, the discretized equation for the flapwise
motion is given by

N∑
e=1

(d̄fe )T {mf
e d̈

f
e + [kfe + Ω2sfe ]dfe} =

N∑
e=1

(d̄fe )T ffe (3.2.16)

with the element matrices defined as

mf
e =

∫ +1

−1
ρANT

wNw det(J) dξ (3.2.17a)

sfe =

∫ +1

−1
ρA
(
r(L− x) +

1

2
(L2 − x2)

)
N′

T
wN′w det(J) dξ (3.2.17b)

kfe =

∫ +1

−1
EIyN

′′T
wN′′w det(J) dξ (3.2.17c)

ffe =

∫ +1

−1
NT
wfw det(J) dξ (3.2.17d)

where mf
e , sce and kfe are the mass, centrifugal stiffness and stiffness element matrices respectively for the

flapwise motion, and ffe is the element load vector.

By assembling the element matrices and vectors and since d̄fe is arbitrary, the global system of semi-
discrete equations of motion is defined for the flapwise case as

Mf d̈f + [Kf + Ω2Sf ]︸ ︷︷ ︸
Keq

df = ff (3.2.18)

3.3 Timoshenko element
In the Timoshenko beam theory, the cross sections rotations (θ and ψ) and bending deformations (w and
v) are considered independent degrees of freedom resulting in only two essential boundary conditions for
each deformation and rotation. As such the polynomial used to derive the shape functions needs only to
be linear, which makes the shape functions used to interpolate the displacements also linear. The shape
functions used are all the same for any degree of freedom and equal to those presented at the beginning
of the chapter to interpolate the element geometry

3.3.1 Chordwise motion
Multiplying equations (2.5.14), (2.5.15) and (2.5.16) by the weighting functions s̄, v̄ and ψ̄ respectively,
summing an then integrating over the length of the beam leads to the following integral form

∫ L

0

{
ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s

)
− ∂

∂x

(
EA

∂s

∂x

)
− ρAΩ2(r + x)− fs

}
s̄

+

{
ρA

(
∂2v

∂t2
+ 2Ω

∂s

∂t
− Ω2v

)
− ∂

∂x

[
GA∗y

(
∂v

∂x
− ψ

)]

− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
− fv

}
v̄{

ρIz

(
∂2ψ

∂t2
− Ω2ψ

)
−GA∗y

(
∂v

∂x
− ψ

)
− ∂

∂x

(
EIz

∂ψ

∂x

)
− fψ

}
ψ̄ = 0

(3.3.1)
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3. Finite element analysis

and after integration by parts and considering the boundary conditions the weak form can be presented
as

∫ L

0

{
ρ

(
As̄

∂2s

∂t2
+Av̄

∂2v

∂t2
+ Izψ̄

∂2ψ

∂t2

)
+ 2ΩρA

(
v̄
∂s

∂t
− s̄ ∂v

∂t

)
− Ω2ρ(As̄s+Av̄v + Izψ̄ψ)

+ EA
∂s

∂x

∂s̄

∂x
+ EIz

∂ψ

∂x

∂ψ̄

∂x
+GA∗y

(
∂v̄

∂x
− ψ̄

)(
∂v

∂x
− ψ

)
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

∂v̄

∂x

}
dx

=

∫ L

0

(ρAΩ2(r + x) + fs)s̄+ fv v̄ + fψψ̄ dx

(3.3.2)

The weighting functions and displacements are interpolated from the element displacement vector as
follows

s̄ = (d̄ce)
TNT

s ; s = Nsd
c
e (3.3.3a)

v̄ = (d̄ce)
TNT

v ; v = Nvd
c
e (3.3.3b)

ψ̄ = (d̄ce)
TNT

ψ ; ψ = Nψdce (3.3.3c)

where the displacement vector for the Timoshenko chordwise motion is identical to that defined for the
Euler-Bernoulli element and it is given by

dce =
{
s1 v1 ψ1 s2 v2 ψ2

}T (3.3.4)

and the shape functions matrices are now written as

Ns =
[
N1 0 0 N2 0 0

]
(3.3.5a)

Nv =
[
0 N1 0 0 N2 0

]
(3.3.5b)

Nψ =
[
0 0 N1 0 0 N2

]
(3.3.5c)

Introducing now the approximations made in equations (3.3.3) in the variational form (3.3.2), the dis-
cretized equation for the Timoshenko chordwise motion is

N∑
e=1

(d̄ce)
T {mc

ed̈
c
e + 2Ωgceḋ

c
e + [kce + Ω2(sce −mc

e)]d
c
e} =

N∑
e=1

(d̄ce)
T f ce (3.3.6)

which is quite identical to the one obtained for Euler-Bernoulli beam, although the element matrices and
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3.3. Timoshenko element

vectors are defined differently as follows

mc
e =

∫ +1

−1

{
ρA(NT

s Ns + NT
v Nv) + ρIz(N

T
ψNψ)

}
det(J)dξ

=

m∑
i=1

wi

{
ρA(NT

s Ns + NT
v Nv) + ρIz(N

T
ψNψ)

}
det(J)

(3.3.7a)

gce =

∫ +1

−1

{
ρA(NT

v Ns −NT
s Nv)

}
det(J)dξ

=

m∑
i=1

wi

{
ρA(NT

v Ns −NT
s Nv)

}
det(J)

(3.3.7b)

kce =

∫ +1

−1

{
EA(N′

T
s N′s) + EIz(N

′T
ψN′ψ) +GA∗y[(N′v −Nψ)T (N′v −Nψ)]

}
det(J)dξ

=

m∑
i=1

wi

{
EA(N′

T
s N′s) + EIz(N

′T
ψN′ψ) +GA∗y[(N′v −Nψ)T (N′v −Nψ)]

}
det(J)

(3.3.7c)

sce =

∫ +1

−1

{
ρA
(
r(L− x) +

1

2
(L2 − x2)

)
(N′

T
v N′v)

}
det(J)dξ

=

m∑
i=1

wi

{
ρA
(
r(L− x) +

1

2
(L2 − x2)

)
(N′

T
v N′v)

}
det(J)

(3.3.7d)

f ce =

∫ +1

−1

{(
ρAΩ2(r + x) + fs

)
NT
s + fvN

T
v + fψNT

ψ

}
det(J)dξ

=

m∑
i=1

wi

{(
ρAΩ2(r + x)NT

s + fs

)
NT
s + fvN

T
v + fψNT

ψ

}
det(J)

(3.3.7e)

where m is the number of Gauss points used for numeric integration.

By assembling the element matrices and vectors, the global matrices and vectors that define the spatial
model are derived and the global system of equations for the chordwise motion is

Mcd̈c + 2ΩGc︸ ︷︷ ︸
Geq

ḋc + [Kc + Ω2(Sc −Mc)]︸ ︷︷ ︸
Keq

dc = fc (3.3.8)

3.3.2 Flapwise motion

The derivation of the flapwise variational form for the Timoshenko beam can be derived as

∫ L

0

{
ρA

∂2w

∂t2
− ∂

∂x

[
GA∗

(
∂w

∂x
+ θ

)]
− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
− fw

}
w̄{

ρIy

(
∂2θ

∂t2
− Ω2θ

)
+GA∗z

(
∂w

∂x
+ θ

)
− ∂

∂x

(
EIy

∂θ

∂x

)
− fθ

}
θ̄ = 0

(3.3.9)

∫ L

0

{
ρAw̄

∂2w

∂t2
+ ρIy θ̄

∂2θ

∂t2
− Ω2ρIy θ̄θ + EIy

∂θ̄

∂x

∂θ

∂x
+GA∗z

(
∂w

∂x
+ θ

)(
∂w̄

∂x
+ θ̄

)

Ω2ρA
(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

∂w̄

∂x

}
dx =

∫ L

0

w̄fw + θ̄fθ dx

(3.3.10)

Introducing the beam displacement vector as well as the shape functions matrices
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3. Finite element analysis

dfe =
{
w1 θ1 w2 θ2

}
(3.3.11)

Nw =
[
N1 0 N2 0

]
(3.3.12a)

Nθ =
[
0 N1 0 N2

]
(3.3.12b)

the weighting and displacement functions are approximated as follows

w̄ = d̄feN
T
w; w = Nwdfe (3.3.13a)

θ̄ = d̄feN
T
θ ; θ = Nθd

f
e (3.3.13b)

Introducing these approximations in the weak form yields the discretized equation for the flapwise motion
using the Timoshenko finite element

N∑
e=1

(d̄fe )T {mf
e d̈

f
e + [kfe + Ω2(sfe − θfe )]dfe} =

N∑
e=1

(d̄fe )T ffe (3.3.14)

Note that now there is a difference in the expression due to taking into account the rotary inertia of the
beam originating the θfe element matrix. Element matrices of the previous equation are defined as

mf
e =

∫ +1

−1

{
ρANT

wNw + ρIyN
T
θ Nθ

}
det(J)dξ

=

m∑
i=1

wi

{
ρANT

wNw + ρIyN
T
θ Nθ

}
det(J)

(3.3.15a)

kfe =

∫ +1

−1

{
EIyN

′T
θ N′θ +GA∗z(N

′
w + Nθ)

T (N′w + Nθ)
}
det(J)dξ

=

m∑
i=1

wi

{
EIyN

′T
θ N′θ +GA∗z(N

′
w + Nθ)

T (N′w + Nθ)
}
det(J)

(3.3.15b)

sfe =

∫ +1

−1

{
ρA
(
r(L− x) +

1

2
(L2 − x2)

)
N′

T
wN′w

}
det(J)dξ

=

m∑
i=1

wi

{
ρA
(
r(L− x) +

1

2
(L2 − x2)

)
N′

T
wN′w

}
det(J)

(3.3.15c)

θfe =

∫ +1

−1

{
ρIyN

T
θ Nθ

}
det(J)dξ

=

m∑
i=1

wi

{
ρIyN

T
θ Nθ

}
det(J)

(3.3.15d)

ffe =

∫ +1

−1

{
fwNw + fθNθ

}
det(J)dξ

=

m∑
i=1

wi

{
fwNw + fθNθ

}
det(J)

(3.3.15e)

with m as the number of Gauss points.
After assembling the element matrices and vectors and since d̄fe is arbitrary, the global system of equations
for the flapwise motion becomes

Mf d̈f + [Kf + Ω2(Sf −Θf )]︸ ︷︷ ︸
Keq

df = ff (3.3.16)
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3.4. Pre-twisted Timoshenko element

3.4 Pre-twisted Timoshenko element
Following the same procedure presented in the previous sections the integral form for the pre-twisted
Timoshenko rotating beam can be presented as

∫ L

0

{
ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s

)
− ∂

∂x

(
EA

∂s

∂x

)
− ρAΩ2(r + x)− fs

}
s̄

+

{
ρA

(
∂2v

∂t2
+ 2Ω

∂s

∂t
− Ω2v

)
− ∂

∂x

[
GA∗y

(
∂v

∂x
− ψ

)]

− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂v
∂x

]
− fv

}
v̄

+

{
ρIz

(
∂2ψ

∂t2
− Ω2ψ

)
− ρIyz

(
∂2θ

∂t2
− Ω2θ

)

−GA∗y
(
∂v

∂x
− ψ

)
− ∂

∂x

(
EIz

∂ψ

∂x

)
+

∂

∂x

(
EIyz

∂θ

∂x

)
− fψ

}
ψ̄

+

{
ρA

∂2w

∂t2
− ∂

∂x

[
GA∗z

(
∂w

∂x
+ θ

)]
− ∂

∂x

[
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)∂w
∂x

]
− fw

}
w̄

+

{
ρIy

(
∂2θ

∂t2
− Ω2θ

)
− ρIyz

(
∂2ψ

∂t2
− Ω2ψ

)

+GA∗z

(
∂w

∂x
+ θ

)
− ∂

∂x

(
EIy

∂θ

∂x

)
+

∂

∂x

(
EIyz

∂ψ

∂x

)
− fθ

}
θ̄ dx = 0

(3.4.1)

and after integrating the previous equation by parts, considering the natural boundary conditions and
keeping in mind that the weighting functions meet the geometric boundary conditions, the weak form for
the pre-twisted beam can be derived as

∫ L

0

{
ρ

(
As̄

∂2s

∂t2
+Av̄

∂2v

∂t2
+Aw̄

∂2w

∂t2
+ Iy θ̄

∂2θ

∂t2
+ Izψ̄

∂2ψ

∂t2
− Iyzψ̄

∂2θ

∂t2
− Iyz θ̄

∂2ψ

∂t2

)
+ 2ΩρA

(
v̄
∂s

∂t
− s̄ ∂v

∂t

)
− Ω2ρ(As̄s+Av̄v + Izψ̄ψ + Iy θ̄θ + Iyzψ̄θ + Iyz θ̄ψ)

+ EA
∂s

∂x

∂s̄

∂x
+ EIy

∂θ̄

∂x

∂θ

∂x
+ EIz

∂ψ

∂x

∂ψ̄

∂x
+ EIyz

∂ψ̄

∂x

∂θ

∂x
+ EIyz

∂θ̄

∂x

∂ψ

∂x

+GA∗y

(
∂v̄

∂x
− ψ̄

)(
∂v

∂x
− ψ

)
+GA∗z

(
∂w

∂x
+ θ

)(
∂w̄

∂x
+ θ̄

)
Ω2ρA

(
r(L− x) +

1

2
(L2 − x2)

)(∂v̄
∂x

∂v

∂x
+
∂w̄

∂x

∂w

∂x

)}
dx

=

∫ L

0

(ρAΩ2(r + x) + fs)s̄+ fv v̄ + w̄fw + θ̄fθ + fψψ̄ dx

(3.4.2)

Since the flapwise and chordwise motions are coupled the element displacement vector is now given by

de =
{
s1 v1 w1 θ1 ψ1 s2 v2 w2 θ2 ψ2

}T (3.4.3)

It is worth to mention that the shape functions and the approximations of the displacements and weighting
functions are still the same as those defined for the Timoshenko simple beam, only now the shape functions
matrices need to have a number of columns equal to the size of vector de and each shape function N1 and
N2 placed at the adequate location. Introducing these approximations into the variational form yields
the finite element discretized equation
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3. Finite element analysis

N∑
e=1

(d̄e)
T {med̈e + 2Ωgeḋe + [ke + Ω2(kse −mse)]de} =

N∑
e=1

(d̄e)
T fe (3.4.4)

and the element matrices are computed using the Gauss integration technique using m Gauss points for
the numeric integration as

me =

m∑
i=1

wi


Ns

Nv

Nw

Nθ

Nψ


T

ρ


A 0 0 0 0
0 A 0 0 0
0 0 A 0 0
0 0 0 Iy −Iyz
0 0 0 −Iyz Iz




Ns

Nv

Nw

Nθ

Nψ

 det(J) (3.4.5)

ge =

m∑
i=1

wi

[
Ns

Nv

]T
ρA

[
0 −1
1 0

] [
Ns

Nv

]
det(J) (3.4.6)

ke =

m∑
i=1

wi


Ns

Nθ

Nψ

T E
A 0 0

0 Iy −Iyz
0 −Iyz Iz

Ns

Nθ

Nψ


+

[
N′v −Nψ

N′w + Nθ

]T
G

[
A∗y 0
0 A∗z

] [
N′v −Nψ

N′w + Nθ

]}
det(J)

(3.4.7)

kse =

m∑
i=1

wi

[
N′v
N′w

]T
ρA

[
r(L− x) +

1

2
(L2 − x2)

] [
1 0
0 1

] [
N′v
N′w

]
det(J) (3.4.8)

mse =

m∑
i=1

wi


Ns

Nv

Nθ

Nψ

 ρ

A 0 0 0
0 A 0 0
0 0 Iy −Iyz
0 0 −Iyz Iz




Ns

Nv

Nθ

Nψ

 det(J) (3.4.9)

The global spatial model for the pre-twisted beam is then defined by assembling the element matrices
and vectors as

Md̈ + 2ΩG︸ ︷︷ ︸
Geq

ḋ + [K + Ω2(Ks−Ms)]︸ ︷︷ ︸
Keq

d = f (3.4.10)

3.5 Natural frequencies: Eigenvalue problem
From the semi-discrete global equations of motion, the eigenvalue problems are derived from which the
natural frequencies can be computed, by neglecting the external forces and assuming the steady state
solution as

d = Xejωt, ḋ = jωXejωt, d̈ = −ω2Xejωt (3.5.1)

where j =
√
−1, ω is the natural frequency and X is the amplitude of vibration.

3.5.1 Flapwise motion
Introducing the steady state solution in equations (3.2.18) and (3.3.16), leads to1

{Keq − ω2Meq}Xejωt = 0 (3.5.2)

and since ejωt 6= 0 it yields the linear generalized eigenvalue problem as follows
1Meq refers to any generic global mass matrix defined for any of the beam types analyzed in previous sections (Mf ,Mc

and M)
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3.5. Natural frequencies: Eigenvalue problem

KeqX = ω2MeqX (3.5.3)

whose real eigenvalues are the squares of the natural frequencies and the real eigenvectors represent the
flapwise mode shapes for the rotating beam.

3.5.2 Chordwise motion
Introducing now the steady state solutions in equations (3.2.10), (3.3.8) and (3.4.10) on the other hand,
leads to a quadratic eigenvalue problem as follows

{Keq + jωGeq − ω2Meq}Xejωt = 0 (3.5.4)

To solve this quadratic eigenvalue problem, one needs to linearize it which can be done by introducing
the state vector z

z =

{
d

ḋ

}
=

{
1
jω

}
Xejωt, ż =

{
ḋ

d̈

}
= jω

{
1
jω

}
Xejωt (3.5.5)

and an identity defined as

Keqḋ−Keqḋ = 0 (3.5.6)

It’s important to note that the matrix involved in the identity has to be positive-definite, and since the
beam is fixed at the hub the stiffness matrix can and will be used.

The state vector (3.5.5) and its time derivative can be introduced in equation (3.5.4) and in the
identity (3.5.6) yielding

[
Keq 0

]
ż +

[
0 −Keq

]
z = 0 (3.5.7a)[

0 Meq

]
ż +

[
Keq Geq

]
z = 0 (3.5.7b)

and after grouping both equations one gets{[
0 −Keq

Keq Geq

]
︸ ︷︷ ︸

Kss

+jω

[
Keq 0
0 Meq

]
︸ ︷︷ ︸

Mss

}{
1
jω

}
Xejωt = 0 (3.5.8)

Again since ejωt 6= 0 it follows that[
0 −Keq

Keq Geq

]
︸ ︷︷ ︸

Kss

{
1
jω

}
X = −jω

[
Keq 0
0 Meq

]
︸ ︷︷ ︸

Mss

{
1
jω

}
X (3.5.9)

which is now a linearized complex eigenvalue problem whose imaginary parts of the purely imaginary
complex conjugate eigenvalues are the natural frequencies. Were the gyroscopic matrix any other damp-
ing matrix, the resultant eigenvalues would be complex numbers. The gyroscopic matrix is actually a
particular damping matrix because the system is still conservative, hence the purely imaginary eigenval-
ues.

Note that other linearizations could easily be obtained following the same process, needing only to
change the matrix involved in the identity introduced, which must still be definite positive, and/or
changing the state vector. The linearization obtained here was chosen because it was the one that proved
more stable and provided better results in a numerical implementation.
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Chapter 4

Numerical results

In this chapter numerical results will be obtained from the finite element models derived in the previuos
chapter. For convenience of discussion and for the sake of comparison with results from the literature,
the following dimensionless quantities will be introduced

ξ =
x

L
, δ =

r

L
, α =

√
AL2

Iz
, ϑ =

Iy
Iz

(4.0.1a)

T =

√
ρAL4

EIz
, γ = TΩ, ω̄ = Tω, µ =

κG

E
(4.0.1b)

where γ, ω̄, δ, ϑ, µ and α represent the angular speed ratio, the natural frequency ratio, the hub radius
ratio, the principal moment of inertia ratio, the effective shear to tensile stiffness ratio and the slenderness
ratio. Note that the shear correction factors κy and κz are different for shear in the xy and xz planes
and they may not be constant along the length of the beam [6], although in this study it is assumed that
the shear correction factors are constant and equal for both shear planes. Also, the following results are
obtained assuming that E/G ≈ 2.66, or in other words, that ν ≈ 0.33, in order to obtain closer results
with those found in the literature. Furthermore, unless stated otherwise, the results obtained using the
Timoshenko element are obtained using selective integration which means that the terms in the stiffness
matrix regarding shear stiffness are computed with one less Gauss point than what it would need for
complete integration in order to prevent shear locking phenomena. All other matrices are determined
using full integration and the number of elements used is 100.

4.1 Simple rotating beam

4.1.1 Chordwise motion

In table 4.1 one can see how the first six natural frequencies for a stationary beam using Timoshenko and
Euler-Bernoulli elements converge as the number of elements increase. It is clear that the use of selective
integration (T. s.i.) provides better results which is more noticeable when the number of elements is
low. As the number of elements increase the difference between Timoshenko results using complete or
selective integration is not very high. Considering a rotating beam, as it is shown in table 4.2, one can
see that the natural frequencies also converge as the number of elements increase. In figure 4.1 are shown
the first eight mode shapes, bending and stretching, for the chordwise motion of a stationary beam. This
figure serves only to show that the first two stretching modes correspond to the fourth and eighth modes
of the chordwise motion and since the first stretch mode is far separated from the first bending modes it
is sometimes neglected in the literature.

Comparing the results obtained in tables 4.1 and 4.2 and also considering figure 4.2, it is noticeable
that the differences between the Euler-Bernoulli and Timoshenko theories are small. This is because the
slenderness ratio α is high enough so that the Euler-Bernoulli beam theory is valid. Also, from these
same results one can conclude that even if the beam is slender the Timoshenko theory provides accurate
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4. Numerical results

Table 4.1: Convergence of the first six chordwise natural frequencies for a non-rotating beam (γ = 0,
α = 70, ϑ = 1, κ = 5/6)

No. of
elements

Element
type

1 2 3 4 5 6

5 E.B. 3.5161 22.0455 61.9188 110.4085 122.3197 203.0202
T. 8.6524 55.9227 110.4085 167.0225 342.1695 349.4495
T. s.i. 3.5254 23.9357 78.7906 110.4085 199.5564 342.1695

10 E.B. 3.5160 22.0352 61.7129 110.0688 121.0171 200.3633
T. 5.2938 33.1683 93.5296 110.0688 185.7555 312.5871
T. s.i. 3.5133 22.2664 63.9636 110.0688 130.5429 227.6545

20 E.B. 3.5160 22.0345 61.6982 109.9840 120.9095 199.8934
T. 4.0306 25.0387 69.2999 109.9840 133.7980 217.4676
T. s.i. 3.5101 21.8670 60.7831 109.9840 118.0444 193.1981

40 E.B. 3.5160 22.0345 61.6973 109.9628 120.9024 199.8617
T. 3.6465 22.6032 62.2544 109.9628 119.2780 191.9331
T. s.i. 3.5093 21.7683 60.0184 109.9628 115.1561 185.6018

60 E.B. 3.5160 22.0345 61.6972 109.9589 120.9020 199.8600
T. 3.5708 22.1251 60.8819 109.9589 116.4804 187.0756
T. s.i. 3.5092 21.7501 59.8781 109.9589 114.6312 184.2371

80 E.B. 3.5160 22.0345 61.6972 109.9575 120.9019 199.8597
T. 3.5439 21.9555 60.3957 109.9575 115.4919 185.3641
T. s.i. 3.5091 21.7437 59.8291 109.9575 114.4482 183.7625

100 E.B. 3.5160 22.0345 61.6972 109.9569 120.9019 199.8596
T. 3.5314 21.8765 60.1697 109.9569 115.0326 184.5699
T. s.i. 3.5091 21.7408 59.8064 109.9569 114.3636 183.5433

Table 4.2: Convergence of the first six chordwise natural frequencies for a rotating beam (γ = 50, α = 90,
δ = 0.2, ϑ = 1, κ = 5/6)

Element
type

No. of
elements

1st 2nd 3rd 4th 5th 6th

10 E.B. 23.3841 127.7347 167.8763 225.7464 336.5344 438.3731
T. 22.9044 127.8050 167.7918 229.0700 349.6593 438.4626

40 E.B. 23.2641 127.5142 167.7394 225.3023 335.7715 434.8271
T. 22.8983 126.7553 167.6423 222.9776 330.6099 434.7228

70 E.B. 23.2627 127.5096 167.7341 225.2931 335.7566 434.6684
T. 22.8980 126.7072 167.6356 222.6909 329.7105 434.5376

100 E.B. 23.2624 127.5086 167.7328 225.2913 335.7536 434.6291
T. 22.8980 126.6953 167.6339 222.6198 329.4872 434.4908
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4.1. Simple rotating beam
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Figure 4.1: First eight Chordwise stretching (left) and bending (right) mode shapes for a non-rotating
Timoshenko finite element beam (ϑ = 1, α = 70)
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4. Numerical results
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(a) Euler-Bernoulli finite element beam
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(b) Timoshenko finite element beam (κ = 5/6)

Figure 4.2: Variation of the first six dimensionless chordwise natural frequencies (δ = 0.1, α = 70, ϑ = 1)
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4.1. Simple rotating beam

results differing only more significantly for higher modes. On the other hand considering figure 4.3, when
the slenderness ratio becomes lower and the beam is thick, results from the Euler-Bernoulli theory differ
from those obtained using Timoshenko theory because the assumption of negligible shear stresses and
strains is no longer valid, although judging from the figure results are only with significant difference
after the first two natural frequencies.

Also interesting is the variation of the natural frequencies with the rotating speed. One can see the
presence of the gyroscopic coupling effect between bending and stretching modes caused by rotating
motion, which results in the veering phenomena of the natural frequencies. For instance, at around
γ ≈ 22 the third and fourth natural frequencies veer together while the fifth and sixth natural frequencies
veer at around γ ≈ 58.

Another discernible fact is the presence of instability as well as tuned angular speed. As it can be seen
from figures 4.2 there is a point at which the first chordwise natural frequency becomes null. The critical
rotating speed (or buckling speed) at which the beam turns unstable depends only on the slenderness
ratio as it will be shown. As for the tuned angular speed, it can also be seen from figures 4.2 that there is
certain rotating speed at which the line representing ω̄ = γ intersects the first natural frequency leading
to resonance.

Analyzing figures 4.5, it is clear the effects that the slenderness ratio has on the beam. As the beam
becomes more slender (bigger values of α) the buckling speed occurs at higher values of the rotating speed
and likewise so do the veering regions. As the beam becomes thicker the veering regions occur earlier on
at lower rotating speeds and the beam becomes unstable also for lower rotating speeds. All this might
sound contradictory as one would think that since the beam becomes more fragile as it becomes slender,
the opposite should happen. However, the centrifugal inertia force (mass matrix Mc in the equivalent
stiffness matrix Keq) which has an important contribution to buckle the beam, also decreases when the
beam becomes more slender. Even though it is not so evident, the slenderness ratio also has an effect on
the tuned angular speed. As it can be seen in figures 4.4 as the slenderness ratio increases so does the
tuned angular speed, although for the same change in the slenderness ratio the effect is greater if the hub
radius ratio is higher.

Analyzing the results from tables 4.3 and 4.4 it can be seen that the assumption of negligible gyroscopic
coupling can or not be reasonable depending on the value of the hub radius and greatly on the value of
the slenderness ratio. It is noted that the natural frequencies obtained by including or neglecting the
gyroscopic effect deviate from each other as the rotating speed increases aggravating with the increase of
the hub radius. It can also be seen that for thick beams (lower values of α) the maximum rotating speed,
after which the gyroscopic effect is no longer negligible, is low (γ < 10). On the contrary, as the beam
becomes more slender it is noted that even for higher rotating speeds the results obtained neglecting the
gyroscopic coupling are fairly approximated. This effect is also shown in figure 4.6 where it can be seen
that for α = 70 the results differ allot for higher rotating speeds whereas for α = 220 the results are very
close with or without the gyroscopic matrix. It is also interesting to note that whether the gyroscopic
effect is included or neglected the beam buckles at exactly the same speed. In the case of neglecting the
gyroscopic effect however, it’s the fourth natural frequency at γ = 0 (first stretching mode) that drops
until it’s nil intersecting every other natural frequency, while in the case of including the gyroscopic effect
its the first natural frequency (first bending mode).

Considering now figure 4.7, it can be seen how the hub radius ratio influences the changing in the
natural frequencies. As the hub radius ratio increase the natural frequencies also increase and the veering
regions not only increase in number but also become more prominent as well. Since the increase in the hub
radius ratio has the effect of increasing the natural frequencies, by increasing the first natural frequency
it pushes the tuned angular speed forward and so, has the hub radius increase relatively to the beam the
tuned angular speed occurs at higher rotating speeds. Also interesting in the effect of this ratio is the
fact that the buckling speed has nothing to do with it, as it can be seen from figures 4.7 no matter what
value δ has all the plots have the buckling speed occuring at the same dimensionless rotating speed.

As it was noted in Yoo and Shin [2] the natural mode shapes undergo an abrupt change as the angular
speed increases around the veering region. This is shown in figures 4.8 and 4.9. Since the hub radius ratio,
the slenderness ratio as well as using the Euler-Bernoulli or the Timoshenko beam theory can change the
rotating speeds at which the veering regions occur, these effects can automatically change in an abrupt
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4. Numerical results
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Figure 4.3: Comparison of the first six chordwise natural frequencies for the Euler-Bernoulli(-) and
Timoshenko(- -) beams (δ = 0.5, α = 40, ϑ = 1, κ = 5/6)
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Figure 4.4: Effect of α and δ on the first tuned dimensionless natural frequency for a Timoshenko finite
element beam (κ = 5/6, ϑ = 1)
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4.1. Simple rotating beam
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Figure 4.5: Effect of α on the first four chordwise dimensionless natural frequencies for a Timoshenko
finite element beam (δ = 0.5, κ = 5/6, ϑ = 1)
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4. Numerical results
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Figure 4.6: Effect of the gyroscopic coupling matrix (-with, - -without) for different values of α (Euler-
Bernoulli finite element beam, ϑ = 1, δ = 0.1)

way the natural mode shapes or, in the case of using the Euler-Bernoulli theory if the slenderness ratio is
somewhat low, then the mode shapes can be wrongly predicted. These effects are shown in figures 4.10.
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4.1. Simple rotating beam

Table 4.3: Comparison of the first bending natural frequency for the chordwise motion (α = 70, κ = 5/6,
ϑ = 1)

Gyroscopic coupling included Gyroscopic coupling neglected

δ γ T. E.B. Ref.[4] Ref.[2] T. E.B. Ref.[2]

0 2 3.6113 3.6196 3.6196 3.62 3.6135 3.6218 3.62
10 4.9151 4.9700 4.9700 4.97 4.9932 5.0490 5.05
50 6.2358 7.3337 7.3337 7.55 8.8817 10.4474 10.5

1 2 4.3894 4.3978 4.3978 4.40 4.3921 4.4005 4.40
10 12.9948 13.0482 13.0482 13.1 13.2037 13.2579 13.3
50 40.9263 41.2275 41.2275 41.4 61.1016 61.5899 61.6

5 2 6.6322 6.6430 6.6430 6.64 6.6363 6.6471 6.65
10 27.1565 27.2658 27.2660 27.3 27.6152 27.7262 27.7
50 73.8532 74.0094 74.0031 74.2 134.9205 135.4485 136

Table 4.4: Effect of α on the first two bending natural frequencies and on the gyroscopic coupling
(Timoshenko finite element, ϑ = 1, δ = 0.5)

α Gyroscopic coupling γ

2 10 50 100

First mode
50 Including 4.0092 9.6467 21.6470 -

Neglecting 4.0141 9.9512 43.5596 86.1723

100 Including 4.0250 9.9406 36.2660 43.0103
Neglecting 4.0262 10.0181 43.9365 86.5490

200 Including 4.0290 10.0166 42.0447 71.7268
Neglecting 4.0293 10.0361 44.1621 86.9020

Second mode
50 Including 22.3366 37.2859 117.9094 164.9836

Neglecting 22.3415 37.4622 150.2987 296.5021

100 Including 22.7634 37.9060 147.0811 235.8916
Neglecting 22.7646 37.9483 151.9041 299.2665

200 Including 22.8744 38.0680 151.5709 291.1570
Neglecting 22.8747 38.0785 152.5293 300.3405
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4. Numerical results
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(b) δ = 1
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Figure 4.7: Effect of δ on the first six chordwise dimensionless natural frequencies for a Timoshenko beam
element (α = 60, κ = 5/6, ϑ = 1)
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Figure 4.8: Mode shape variations along the abrupt veering region (Timoshenko beam, δ = 0.1, α = 70, ϑ = 1, κ = 5/6)
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Figure 4.9: Mode shape variations along the abrupt veering region (Timoshenko beam, δ = 0.1, α = 70, ϑ = 1, κ = 5/6)
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4. Numerical results

4.1.2 Flapwise motion
In table 4.5 it is shown the convergence of the first six flapwise natural frequencies for a stationary beam,
and in tables 4.6 and 4.7 it is shown the convergence of the first three flapwise natural frequencies for a
rotating Euler-Bernoulli and Timoshenko beams respectively, where it can be seen that results converge.
Note that for a non-rotating beam the first four flapwise natural frequencies are equal to the first three
and fifth chordwise natural frequencies, which makes sense seeing that for a non-rotating beam chordwise
bending and stretching motions are uncoupled and also that the inertia moments of the cross section are
considered the equal for both axes. Once again one sees that the use of selective integration provides
better results especially when the number of elements is low, preventing shear locking. Also, even for
slender beams the Timoshenko element provided close results to those from the Euler-Bernoulli element,
diverging more significantly only for higher natural frequencies (fifth and sixth modes).

In tables 4.8 and 4.9 results from the present method are compared with those found in the literature,
obtaining similar results. In table 4.8 it can be seen that as the angular speed increases the natural
frequencies also increase due to centrifugal stiffening of the beam. This can also be observed from
figure 4.11 noting that the natural frequencies for the flapwise motion monotonically increase with the
angular speed, opposed to what happened for the chordwise motion. From table 4.9 one can see that
as the slenderness ratio increases, the flap wise natural frequencies also increase using the Timoshenko
beam theory. On the other hand, using the Euler-Bernoulli beam theory the slenderness ratio makes no
difference whatsoever as it is demonstrated in table 4.10, proving the lack of accuracy that the Euler-
Bernoulli beam has for non-slender beams.

In figure 4.12b it is analyzed the effect of the hub radius ratio on the first three flapwise natural
frequencies. The main effect is that with the increase in the hub radius ratio there is an increase in the
flapwise natural frequencies of the beam which makes sense since the centrifugal stiffness matrix increase
with δ and thus it stiffens the beam.

Considering figure 4.12a it can be seen that no tuned angular speed occurs, whether the beam is slender
or thick . It is observable that the effect of α only makes a difference after the first natural frequency,
and since δ only pushes the natural frequencies away from the line ω̄ = γ, one can conclude that no tuned
angular speed can occur for the flapwise motion, opposed to what happens for the chordwise motion.

From figure 4.12c one can see that for a non-slender beam the Euler-Bernoulli and Timoshenko theories
differ from each other , although the first natural frequency remains roughly the same for both theories
even for a thick beam.

Finally the mode shapes are analyzed in figures 4.13, 4.14 and 4.15. It can be observed that main
effect of the rotation speed is that it pushes the vibration nodes forward, whereas for the hub radius ratio
δ, as it increases the effect is identical. In figure 4.15 one can see that as the beam becomes thicker, the
nodes are also pushed forward, although only the third and fourth mode shapes are plotted since the
effect for the first two was almost negligible.
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4.1. Simple rotating beam

Table 4.5: Convergence of the first six flapwise natural frequencies (γ = 0, δ = 0, ϑ = 1, κ = 5/6, α = 70)

No. of
elements

Element
type

1st 2nd 3rd 4th 5th 6th

5 E.B. 3.5161 22.0455 61.9188 122.3197 203.0202 337.2727
T. 8.6524 55.9227 167.0225 349.4495 567.9314 2751.2059
T. s.i. 3.5254 23.9357 78.7906 199.5564 461.0860 1408.8197

10 E.B. 3.5160 22.0352 61.7129 121.0171 200.3633 300.1671
T. 5.2938 33.1683 93.5296 185.7555 312.5871 475.9287
T. s.i. 3.5133 22.2664 63.9636 130.5429 227.6545 362.3362

20 E.B. 3.5160 22.0345 61.6982 120.9095 199.8934 298.6674
T. 4.0306 25.0387 69.2999 133.7980 217.4676 319.0138
T. s.i. 3.5101 21.8670 60.7831 118.0444 193.1981 285.5989

40 E.B. 3.5160 22.0345 61.6973 120.9024 199.8617 298.5627
T. 3.6465 22.6032 62.2544 119.2780 191.9331 278.1668
T. s.i. 3.5093 21.7683 60.0184 115.1561 185.6018 269.4609

60 E.B. 3.5160 22.0345 61.6972 120.9020 199.8600 298.5570
T. 3.5708 22.1251 60.8819 116.4804 187.0756 270.4994
T. s.i. 3.5092 21.7501 59.8781 114.6312 184.2371 266.5982

80 E.B. 3.5160 22.0345 61.6972 120.9019 199.8597 298.5560
T. 3.5439 21.9555 60.3957 115.4919 185.3641 267.8062
T. s.i. 3.5091 21.7437 59.8291 114.4482 183.7625 265.6054

100 E.B. 3.5160 22.0345 61.6972 120.9019 199.8596 298.5557
T. 3.5314 21.8765 60.1697 115.0326 184.5699 266.5579
T. s.i. 3.5091 21.7408 59.8064 114.3636 183.5433 265.1474

Table 4.6: Convergence of the first three dimensionless natural frequencies using the Euler-Bernoulli
beam element (γ = 100, δ = 0, α = 70, ϑ = 1)

No. of
elements

1st 2nd 3rd

10 101.3464 248.7626 400.7600
40 101.0753 248.1707 399.7508
70 101.0704 248.1600 399.7326
100 101.0699 248.1589 399.7306

Ref[2] 101.17 248.38 400.15

Table 4.7: Convergence of the first three dimensionless natural frequencies using the Timoshenko beam
element (γ = 8, α = 50, δ = 0, ϑ = 1, µ = 0.25)

No. of
elements

1st 2nd 3rd

10 9.2087 29.7521 69.8057
40 9.2095 29.3482 66.4885
70 9.2096 29.3302 66.3445
100 9.2096 29.3257 66.3089

Ref.[6] 9.2132 29.3501 66.4010
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4. Numerical results

Table 4.8: Comparison of the first two flapwise natural frequencies for a Timoshenko and a Euler-Bernoulli
rotating beam (δ = 0, α = 70, κ = 5/6, ϑ = 1)

First natural frequency Second natural frequency

γ T. E.B. Ref[4] Ref[2] T. E.B. Ref[4] Ref[2]

0 3.5091 3.5160 3.5160 3.5160 21.7408 22.0345 22.0345 22.035
1 3.6745 3.6816 3.6816 3.6816 21.8876 22.1810 22.1810 22.181
2 4.1296 4.1373 4.1373 4.1373 22.3222 22.6149 22.6149 22.615
3 4.7885 4.7973 4.7973 4.7973 23.0284 23.3203 23.3203 23.320
4 5.5746 5.5850 5.5850 5.5850 23.9819 24.2733 24.2733 24.273
5 6.4371 6.4495 6.4495 6.4495 25.1542 25.4461 25.4461 25.446
6 7.3455 7.3604 7.3604 7.3604 26.5156 26.8091 26.8091 26.809
7 8.2819 8.2996 8.2996 8.2996 28.0374 28.3341 28.3341 28.334
8 9.2359 9.2568 9.2568 9.2568 29.6938 29.9954 29.9954 29.995
9 10.2011 10.2257 10.2257 10.226 31.4623 31.7705 31.7705 31.771
10 11.1739 11.2023 11.2023 11.202 33.3237 33.6404 33.6404 33.640
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Table 4.9: Comparison of the first four flapwise natural frequencies for a Timoshenko rotating beam and analysis of the slenderness ratio (δ = 0, ϑ = 1,
µ = 0.25)

γ

0 4 8 10

α T. Ref.[6] Ref.[5] T. Ref.[6] Ref.[5] T. Ref.[6] Ref.[5] T. Ref.[6] Ref.[5]

1000 3.5160 3.5059 3.5160 5.5849 5.5850 5.5850 9.2567 9.2568 9.2568 11.2021 13.1704 13.1702
22.0381 22.0296 22.0345 24.2767 24.2726 24.2733 29.9982 29.9950 29.9954 33.6430 37.6037 37.6031
61.7288 61.8502 61.6971 63.9975 63.9627 63.9666 70.3220 70.2896 70.2929 74.6775 79.6136 79.6144
121.0304 120.2983 120.9010 123.3886 123.2354 123.2610 130.1725 130.0251 130.0490 135.0055 140.5155 140.5340

50 3.4998 3.5000 3.4998 5.5616 5.5623 5.5616 9.2096 9.2132 9.2096 11.1383 13.0972 13.0870
21.3597 21.3692 21.3547 23.6108 23.6240 23.6061 29.3257 29.3501 29.3215 32.9461 36.9140 36.8659
57.5071 57.5636 57.4705 59.8475 59.9130 59.8117 66.3089 66.4010 66.2748 70.7149 75.8382 75.6698
107.0554 107.2812 106.9260 109.5866 109.8286 9.4590 116.7893 117.0778 116.6650 121.8577 128.0863 127.6040

25 3.4527 3.4534 3.4527 5.4951 5.4980 5.4951 9.0854 9.0975 9.0854 10.9794 12.9229 12.8934
19.6538 19.6965 19.6497 21.9596 22.0126 21.9557 27.7118 27.7933 27.7082 31.3092 35.3077 35.1811
48.9145 49.1256 48.8891 51.5069 51.7372 51.4822 58.4746 58.7562 58.4507 63.1043 68.6107 68.2339
84.1906 84.8053 84.1133 87.2602 87.9002 87.1836 95.7181 96.4247 95.6423 101.4698 108.7570 107.8870

12.5 3.2837 3.2863 3.2837 5.2749 5.2840 5.2749 8.7455 8.7746 8.7456 10.5872 12.5134 12.4581
15.4908 15.5873 15.4883 18.0651 18.1781 18.0628 24.0502 24.1961 24.0479 27.5939 31.4634 31.2846
34.3128 34.6138 34.3005 37.7439 38.0639 37.7317 45.9810 46.3420 45.9683 50.9045 56.3909 55.9744
53.6846 54.2503 53.6516 57.9819 58.5494 57.9491 67.8523 68.3629 67.8215 72.9827 77.4992 77.1047

10 3.1738 3.1774 3.1738 5.1448 5.1570 5.1448 8.5735 8.6077 8.5735 10.3963 12.3066 12.2467
13.6625 13.7694 13.6607 16.3964 16.5184 16.3946 22.3524 22.4979 22.3506 25.6606 29.0691 28.9100
29.3707 29.6487 29.3614 33.1886 33.4810 33.1793 41.4726 41.7829 41.4632 45.8120 49.9746 49.6484
43.9311 44.3234 43.9102 47.8275 48.1460 47.8101 53.2924 53.5041 53.2833 55.0746 56.9137 56.6750
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4. Numerical results

Table 4.10: Analysis of the effect of the slenderness ratio on the first four flapwise natural frequencies for
an Euler-Bernoulli rotating beam element (δ = 0, ϑ = 1)

γ

α 0 4 8 10

1000 3.5160 5.5850 9.2568 11.2023
22.0345 24.2733 29.9954 33.6404
61.6972 63.9668 70.2930 74.6493
120.9019 123.2615 130.0490 134.8841

10 3.5160 5.5850 9.2568 11.2023
22.0345 24.2733 29.9954 33.6404
61.6972 63.9668 70.2930 74.6493
120.9019 123.2615 130.0490 134.8841
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Figure 4.11: Variation of the first six flapwise dimensionless natural frequencies (δ = 0.1, α = 70, ϑ = 1)
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4.1. Simple rotating beam
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Figure 4.12: Effect of α, δ and beam element theories on the first three flapwise dimensionless natural
frequencies
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4. Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ξ

φ
1

 

 

γ=0
γ=50
γ=100

(a) First mode shape

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ξ

φ
2

 

 

γ=0
γ=50
γ=100

(b) Second mode shape

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ξ

φ
3

 

 

γ=0
γ=50
γ=100

(c) Third mode shape

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ξ

φ
4

 

 

γ=0
γ=50
γ=100

(d) Fourth mode shape

Figure 4.13: First four flapwise mode shapes for a rotating Timoshenko beam (κ = 5/6, α = 70, ϑ = 1,
δ = 0.1)
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4.1. Simple rotating beam
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Figure 4.14: Effect of δ on the first four flapwise mode shapes for a rotating Timoshenko beam (κ = 5/6,
α = 70, ϑ = 1, γ = 50)

53



4. Numerical results
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Figure 4.15: Effect of α on the third and fourth flapwise mode shapes for a rotating Timoshenko beam
(κ = 5/6, δ = 0.5, ϑ = 1, γ = 50)
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4.2. Pre-twisted rotating beam

4.2 Pre-twisted rotating beam
In the present section it is analyzed the pre-twisted Timoshenko element. Mostly, the interest will fall
over the effect of the pre-twist angle, as the other effects are similar to those analyzed in the previous
section. Note that ideally the pre-twist angle would be determined continuously for each cross section
but, the element matrices need to be determined for each element and as such the pre-twist angle is
approximated as

βxe ≈
(xe+1 + xe)/2

L
βL (4.2.1)

The natural frequencies from the present method are compared to those found in the literature in
tables 4.11 and 4.12 and results obtained are similar. In a general way the effect that the pre-twist angle
introduces in the natural frequencies is small as it can be seen in tables 4.12 and 4.13, and comparing both
tables it can also be observed that whether the slenderness ratio is high or low the effect of the pre-twist
angle over the natural frequencies still remains quite small. It is also noticeable that the differences in
the natural frequencies introduced by the pre-twist angle become even smaller as the rotating speed of
the beam increases.

It is interesting that for a stationary beam, as the pre-twist angle increases the natural frequencies
obtained for the first and third modes also increase, but on the other hand the natural frequencies obtained
for the second and fourth modes decrease. This is also shown in figure 4.16b, but around the veering
regions the effect is the opposite and as the pre-twist angle increases the veering region becomes more
gradual, separating the natural frequencies. Comparing figures 4.16 one sees that the natural frequencies
for a rotating pre-twisted beam are composed of flapwise and chordwise natural frequencies. Note that
the first two (bending) natural frequencies aren’t equal because ϑ = 0.25 and hence Iy < Iz which
makes the first flapwise frequency lower than the first chordwise frequency, intersecting with each other
afterwards. When the pre-twist angle is introduced, the intersections between chordwise and flapwise
natural frequencies become veering regions and as the pre-twist angle approaches zero degrees the more
abrupt the veering regions become. Note that the third flapwise natural frequency does not intervene in
the first four pre-twisted natural frequencies. The first natural frequency is composed of flapwise natural
frequencies for low rotating speeds and around the veering becomes composed of chordwise natural
frequencies, and the opposite can be said for the second natural frequency. A similar explanation can
describe the third natural frequency. However, the fourth natural frequency has initially the contribution
of the first chordwise frequencies then it changes to the second flapwise frequencies (γ ≈ 11) and finally
it is composed of the third chordwise frequencies. These effects are also shown in figures 4.17 where it
can be seen that the introduction of a pre-twist angle pushes the intersections/veering regions forward
specially for higher values of δ. The pre-twist angle also showed to have effect on the value of the tuned
rotating speed although the influence is very small.

In figure 4.18 the effect that the centrifugal mass matrix has over the natural frequencies is analyzed
by determining the frequencies with and without this matrix. It can be seen as it would be expected,
that the Ms matrix lowers the natural frequencies since it lowers the overall stiffness (Keq) of the beam.
It is also quite noticeable how much of a contribution this matrix has to the buckling of the beam and
that without it the limit of instability would not exist. However this matrix has negligible effect over the
flapwise bending frequencies and has a very important effect on the chordwise frequencies. This fact can
be explained by noting in the element formulation that the centrifugal mass matrix doesn’t involve the
flapwise bending deformation w and the only flapwise degree of freedom is the rotation θ which involves
the rotary inertia of the beam which in turn doesn’t have much effect over the natural frequencies. As
the slenderness ratio increases the effect of the centrifugal mass matrix also becomes negligible for higher
chordwise modes.
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4. Numerical results

Table 4.11: Comparison of the first two natural frequencies for a pre-twisted rotating beam (δ = 2,
βL = 30◦, α = 1000, ϑ = 1/400, κ = 5/6)

First natural frequency Second natural frequency

γ Present Ref.[7] Present Ref.[7]

0.0000 0.1764 0.1763 0.9826 0.9825
0.0882 0.2290 0.2200 1.0292 1.0203
0.1763 0.3401 0.3157 1.1569 1.1254
0.2645 0.4685 0.4288 1.3402 1.2796

Table 4.12: Comparison of the first four dimensionless natural frequencies for a non-rotating pre-twisted
Timoshenko beam and effect of the pre-twist angle for a slender beam (α = 1000, δ = 0.1, ϑ = 0.25,
µ = 0.25)

γ

0 5 10 50 100
βL(◦) Present Ref.[7] Ref.[6]

First
30 1.7623 1.7623 1.7622 4.2860 5.7442 17.1613 30.7434
60 1.7748 1.7748 1.7748 4.2369 5.7319 17.1608 30.7434
90 1.7950 1.7950 1.7950 4.1651 5.7126 17.1601 30.7433

Second
30 3.4793 3.4793 3.4793 5.7723 10.9078 52.3499 104.1798
60 3.3799 3.3799 3.3798 5.7854 10.9099 52.3500 104.1798
90 3.2426 3.2425 3.2426 5.8032 10.9131 52.3501 104.1797

Third
30 11.1718 11.1693 11.1690 17.2066 28.2712 120.1755 235.3134
60 11.6071 11.6046 11.6040 17.4188 28.2151 119.7515 235.0759
90 12.2673 12.2649 12.2644 17.7572 28.1675 119.3585 234.8542

Fourth
30 21.4530 21.4489 21.4470 24.8062 32.6470 128.1613 254.2857
60 20.1591 20.1545 20.1531 23.9274 32.3188 128.5290 254.4976
90 18.7351 18.7307 18.7301 22.8911 31.9158 128.8638 254.6948
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4.2. Pre-twisted rotating beam

Table 4.13: Effect of the pre-twist angle on the first four dimensionless for a thick beam (α = 50, δ = 0.1,
ϑ = 0.25, µ = 0.25)

γ

βL 0 5 10 50 100

First
30 1.7602 4.2164 5.4559 8.1020 -
60 1.7725 4.1702 5.4470 8.1100 -
90 1.7923 4.1012 5.4310 8.1176 -

Second
30 3.4638 5.7629 10.8807 52.1048 103.7987
60 3.3662 5.7742 10.8804 52.0949 103.7788
90 3.2309 5.7903 10.8812 52.0852 103.7592

Third
30 11.0772 17.1052 28.1042 103.8946 144.2324
60 11.4932 17.2908 27.9778 103.8697 144.3031
90 12.1230 17.5875 27.8393 103.7907 144.3457

Fourth
30 20.8449 24.1603 31.8425 121.0578 195.6655
60 19.6761 23.3991 31.6508 121.0222 195.6704
90 18.3590 22.4827 31.4063 120.9775 195.6772
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(a) βL = 0◦ (-chordwise, - -flapwise)
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Figure 4.16: Effect of βL on the first six dimensionless natural frequencies of a rotating pre-twisted Timoshenko beam (α = 20, ϑ = 0.25, δ = 0.1, κ = 5/6
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4.2. Pre-twisted rotating beam
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(a) δ = 0.1, α = 80, βL = 0◦
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(b) δ = 0.1, α = 80, βL = 90◦
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(c) δ = 2, α = 80, βL = 0◦
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(d) δ = 2, α = 80, βL = 90◦

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

250

300

γ

ω̄
c

 

 
ω̄1
ω̄2
ω̄3
ω̄4
ω̄ = γ

(e) δ = 2, α = 30, βL = 0◦
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(f) δ = 2, α = 30, βL = 90◦

Figure 4.17: Comparison of the first six dimensionless frequencies between a pre-twisted and a simple
(-chordwise, - -flapwise) Timoshenko beam (ϑ = 0.25, κ = 5/6)
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4. Numerical results
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Figure 4.18: Effect of the centrifugal mass matrix Ms (-with, - -without) on the first four dimensionless
natural frequencies (ϑ = 1, βL = 0◦, δ = 0.1, κ = 5/6)
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Chapter 5

Pre-Twisted layerwise model

In the present chapter, a finite element model for a pre-twisted beam composed of several layers will be
developed using a layerwise theory and Hamilton’s principle. In figure 5.1a it’s presented a generic cross
section for a pre-twisted multi-layered beam and in figure 5.1b it’s presented a detail of the axes for a
generic layer. The displacements will be determined for each layer considering the axial displacement u
of the first base layer and the rotations θj of the cross section of each layer about an horizontal axis that
passes through the middle of length hk. One can see that with these displacements the first moment
of area (static moments) for any generic layer are no longer null since the rotations are about two axes
that do not pass through the center of the cross-section of the layer, and likewise also the moments of
inertia need to be determined for each layer taking into account these horizontal and vertical distances
(Dh and Dv, respectively) using the parallel axis theorem otherwise known as Steiner’s theorem. These
area moments are derived with detail in appendix A.

y

z

z′

y′
h′
k

hk

(a) Scheme of a layerwise pre-twisted beam

Dh

Dv

y

z

y′′

z′′

y′

z′

h′
k

β

(b) Axes detail for a generic layer

Figure 5.1: Generic cross section of a pre-twisted multilayer beam

In the following sections the process of derivation of the weak form for the pre-twisted layerwise beam
will be presented using Hamilton’s principle and under the following assumptions: flapwise and chordwise
bending displacements w and v are assumed equal for all the layers as well as the rotation about the z
axis.

5.1 Displacement and velocity fields

For a generic layer k of the beam the displacement field can be described by the following vector
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5. Pre-Twisted layerwise model

u =


ukx

uky

ukz

 =


u+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk + zkθk − yψ

v

w

 (5.1.1)

and hence by using (2.2.6) the velocity field can be given by

−→v P =


u̇kx

u̇ky

u̇kz

+


−Ωuky

Ω(r + x+ ukx)

0

 (5.1.2)

5.2 Kinetic energy
Replacing 5.1.1 in 5.1.2 and also replacing the relation between u and s it follows that the velocity field
vector can be given as

vP =


ṡ− (ḣv + ḣw) +

h1
2
θ̇1 +

k−1∑
j=2

hj θ̇j +
hk
2
θ̇k + zkθ̇k − yψ̇ − Ωv

v̇ + Ω[(r + x) + s− (hv + hw) +
h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk + zkθk − yψ]

ẇ


(5.2.1)

and the kinetic energy for a generic layer k becomes

Tk =
1

2

∫
V

ρk

{[
ṡ+

h1
2
θ̇1 +

k−1∑
j=2

hj θ̇j +
hk
2
θ̇k − Ωv + zkθ̇k − yψ̇

]2

+

[
v̇ + Ω

(
(r + x) + s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk + zkθk − yψ

)]2

−2Ω2(r + x)(hv + hw) + ẇ2

}
dV

(5.2.2)

As it was already said in the introduction of this chapter, for any generic layer not only the pre-twist
angle but also the distances to the center of the beam’s section need to be accounted for. As such, when
integrating over the cross sectional area of the layer the kinetic energy is written as follows

Tk =
1

2

∫ L

0

ρk

{
Ak

[
ṡ+

h1
2
θ̇1 +

k−1∑
j=2

hj θ̇j +
hk
2
θ̇k − Ωv

]2
+ Iky θ̇

2
k − 2Ikyz θ̇kψ̇ + Ikz ψ̇

2

+2

(
ṡ+

h1
2
θ̇1 +

k−1∑
j=2

hj θ̇j +
hk
2
θ̇k − Ωv

)(
Sky θ̇k − Skz ψ̇

)

+Ak

[
v̇ + Ω

(
r + x+ s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk

)]2

+2Ω

(
Sky θk − Skzψ

)[
v̇ + Ω

(
(r + x) + s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk

)]

+Ω2(Iky θ
2
k − 2Ikyzθkψ + Ikzψ

2)− 2Ω2Ak(r + x)(hv + hw) +Akẇ
2

}
dx

(5.2.3)
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5.2. Kinetic energy

Applying the variational to the kinetic energy 5.2.3, integrating it by parts and taking into account that
by definition the displacements are null at ti and tf , the following result arrives

∫ tf

ti

δTk dt =

=

∫ L

0

∫ tf

ti

ρk

{
Ak

[
Ω2v − Ω

(
ṡ+

h1
2
θ̇1 +

k−1∑
j=2

hj θ̇j +
hk
2
θ̇k

)]
δv

−Ak
(
s̈+

h1
2
θ̈1 +

k−1∑
j=2

hj θ̈j +
hk
2
θ̈k − Ωv̇

)
δ

(
s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk

)

−
(
s̈+

h1
2
θ̈1 +

k−1∑
j=2

hj θ̈j +
hk
2
θ̈k − Ωv̇

)
δ

(
Sky θk − Skzψ

)

−
(
Sky θ̈k − Skz ψ̈

)
δ

(
s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk

)
−Ω(Sky θ̇k − Skz ψ̇)δv − ρk(Iky θ̈kδθk − Ikyzψ̈δθk − Ikyz θ̈kδψ + Ikz ψ̈δψ)

−Ak
[
v̈ + Ω

(
ṡ+

h1
2
θ̇1 +

k−1∑
j=2

hj θ̇j +
hk
2
θ̇k

)]
δv

+Ak

[
Ωv̇ + Ω2

(
(r + x) + s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk

)]

δ

(
s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk

)

+

[
Ωv̇ + Ω2

(
(r + x) + s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk

)]
δ

(
Sky θk − Skzψ

)

+Ω2

(
Sky θk − Skzψ

)
δ

(
s+

h1
2
θ1 +

k−1∑
j=2

hjθj +
hk
2
θk

)

−Ω

(
Sky θ̇k − Skz ψ̇

)
δv + Ω2ρ(Iky θkδθk − Ikyzψδθk − Ikyzθkδψ + Ikzψδψ)

−Ω2Ak

(
r(L− x) +

1

2
(L2 − x2)

)
v′δv′

−Ω2Ak

(
r(L− x) +

1

2
(L2 − x2)

)
w′δw′ −Akẅδw

}
dx

(5.2.4)

By introducing the following displacement vector

∆ =
{
s v w ψ θ1 · · · θj · · · θk θk+1 · · · θn

}T (5.2.5)

the variation of the kinetic energy can be written in a compact matricial form as

∫ tf

ti

δT dt =

∫ tf

ti

∫ L

0

−δ∆T {J∆̈ + 2ΩJg∆̇− Ω2Js∆} − Ω2{(Lsδ∆)TDsLs∆ + Ω2δ∆T fs} dx dt (5.2.6)

and the matrices and vector present in the previous equation are defined as
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5. Pre-Twisted layerwise model

Jk = ρk



Ak 0 0 −Skz Ak
h1
2

· · · Akhj · · · Sy +Ak
hk
2

0 · · · 0

Ak 0 0 0 · · · 0 · · · 0 0 · · · 0
Ak 0 0 · · · 0 · · · 0 0 · · · 0

Ikz −Sz
h1
2
· · · −Skzhj · · · −Ikyz − Skz

hk
2

0 · · · 0

Ak
h21
4

· · · Ak
h1hj

2
· · · Sky

h1
2

+Ak
h1hk

4
0 · · · 0

. . .
...

. . .
...

...
. . .

...

Akh
2
j · · · Skyhj +Ak

hjhk
2

0 · · · 0

. . .
...

...
. . .

...

Iky + Skyhk +Ak
h2k
4

0 · · · 0

0 · · · 0
. . .

...
sym. 0


(5.2.7)

Jkg = ρk



0 −Ak 0 0 0 · · · 0 · · · 0 0 · · · 0

0 0 −Skz Ak
h1
2

. . . Akhj . . . Sky +Ak
hk
2

0 · · · 0

0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 · · · 0 0 · · · 0

0 · · · 0 · · · 0 0 · · · 0
. . .

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0
. . .

...
...

. . .
...

0 0 · · · 0
0 · · · 0

. . .
...

skew-sym. 0



(5.2.8)

Jks = ρk



Ak 0 0 −Skz Ak
h1
2

· · · Akhj · · · Sky +Ak
hk
2

0 · · · 0

Ak 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 0 · · · 0 · · · 0 0 · · · 0

Ikz −Skz
h1
2
· · · −Skzhj · · · −Ikyz − Skz

hk
2

0 · · · 0

Ak
h21
4

· · · Ak
h1hj

2
· · · Sky

h1
2

+Ak
h1hk

4
0 · · · 0

. . .
...

. . .
...

...
. . .

...

Akh
2
j · · · Skyhj +Ak

hjhk
2

0 · · · 0

. . .
...

...
. . .

...

Iky + Skyhk +Ak
h2k
4

0 · · · 0

0 · · · 0
. . .

...
sym. 0



(5.2.9)
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5.3. Potential energy

Dk
s = ρkAk

(
r(L− x) +

1

2
(L2 − x2)

)



0 0 0 0 0 · · · 0 · · · 0 0 · · · 0
1 0 0 0 · · · 0 · · · 0 0 · · · 0

1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 · · · 0 0 · · · 0

0 · · · 0 · · · 0 0 · · · 0
. . .

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0
. . .

...
...

. . .
...

0 0 · · · 0
0 · · · 0

. . .
...

sym. 0



(5.2.10)

Ls = diag
[
1

∂

∂x

∂

∂x
1 1 · · · 1 · · · 1 1 · · · 1

]
(5.2.11)

fks = (r + x)ρkAk

[
1 0 0 −Sz

h1
2
· · · hj · · · hk

2
+ Sy 0 · · · 0

]T
(5.2.12)

5.3 Potential energy

From the displacement field for a generic layer k and taking into account the stretch strain defined in
equation (2.3.14), the strain field can be expressed for a generic layer k as

εkxx = s′ +
h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k + zkθ

′
k − yψ′ (5.3.1a)

γkxy = v′ − ψ (5.3.1b)

γkzx = w′ + θ (5.3.1c)

and using the elasticity relations for an isotropic material the stress field can be defined as

σkxx = Ekε
k
xx (5.3.2a)

τkxy = Gkγ
k
xy (5.3.2b)

τkzx = Gkγ
k
zx (5.3.2c)

Having the strain and stress fields defined the potential energy for a generic layer k can be written as

Πk =
1

2

∫
V

{
Ek

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k + zkθ

′
k − yψ′

)2

+Gk[(v′ − ψ)2 + (w′ + θ)2]

}
dV

(5.3.3)

which after integrating over the cross section of the layer and considering the distances to the centroid
of the cross section becomes
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5. Pre-Twisted layerwise model

Πk =
1

2

∫ L

0

{
EkAk

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)2

+2Ek

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)(
Sky θ

′
k − Skzψ′

)
+Ek

(
Iky θ
′
k
2 − 2Ikyzθ

′
kψ
′ + Ikzψ

′2
)

+GkA
∗
k[(v′ − ψ)2 + (w′ + θ)2]

}
dx

(5.3.4)

Applying the variational to the potential energy leads to the following result

∫ tf

ti

δΠk dt =

∫ tf

ti

∫ L

0

{
EkAk

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)

δ

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)

+Ek

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)
δ

(
Sky θ

′
k − Skzψ′

)

+Ek

(
Sky θ

′
k − Skzψ′

)
δ

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)
+Ek(Iky θ

′
kδθ
′
k − Ikyzψ′δθ′k − Ikyzθ′kδψ′ + Ikzψ

′δψ′)

+GkA
∗
k[(v′ − ψ)δv′ − (v′ − ψ)δψ]

+GkA
∗
k[(w′ + θk)δw′ + (w′ + θk)δθk]

}
dx dt

(5.3.5)

After introducing the displacement vector ∆ defined in section 5.2 the previous equation can be written
in the following compact matricial form

∫ tf

ti

δΠk dt =

∫ tf

ti

∫ L

0

(Lεδ∆)TDεLε∆ + (Lγδ∆)TDγLγ∆ dx dt (5.3.6)

with the matrices defined as
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5.4. Layerwise Weak Form

Dk
ε = Ek



Ak 0 0 −Skz Ak
h1
2

· · · Akhj · · · Sky +Ak
hk
2

0 · · · 0

0 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 0 · · · 0 · · · 0 0 · · · 0

Ikz −Skz
h1
2
· · · −Skzhj · · · −Ikyz − Skz

hk
2

0 · · · 0

Ak
h21
4

· · · Ak
h1hj

2
· · · Sy

h1
2

+Ak
h1hk

4
0 · · · 0

. . .
...

. . .
...

...
. . .

...

Akh
2
j · · · Skyhj +Ak

hjhk
2

0 · · · 0

. . .
...

...
. . .

...

Iky + Skyhk +Ak
h2k
4

0 · · · 0

0 · · · 0
. . .

...
sym. 0



(5.3.7)

Lε = diag
[
∂

∂x
1 1

∂

∂x

∂

∂x
· · · ∂

∂x
· · · ∂

∂x
1 · · · 1

]
(5.3.8)

Dk
γ = GkA

∗
k



0 0 0 0 0 · · · 0 · · · 0 0 · · · 0
1 0 −1 0 · · · 0 · · · 0 0 · · · 0

1 0 0 · · · 0 · · · 1 0 · · · 0
1 0 · · · 0 · · · 0 0 · · · 0

0 · · · 0 · · · 0 0 · · · 0
. . .

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0
. . .

...
...

. . .
...

1 0 · · · 0
0 · · · 0

. . .
...

sym. 0



(5.3.9)

Lγ = diag
[
1

∂

∂x

∂

∂x
1 1 · · · 1 · · · 1 1 · · · 1

]
(5.3.10)

5.4 Layerwise Weak Form
Note that up until now we have been dealing with only one generic layer of the multilayer beam. To
consider all of the layers in the kinetic and potential energies of the beam, one needs only to sum the
kinetic and potential energies of each layer and so it follows that

Π =

n∑
k=1

Πk and T =

n∑
k=1

Tk (5.4.1)

which after applying the variational and knowing that the variational and sum are interchangeable be-
comes

δΠ =

n∑
k=1

δΠk and δT =

n∑
k=1

δTk (5.4.2)

By introducing equations (5.2.6) and (5.3.6) into equations (5.4.2) an then introducing these in Hamilton’s
principle one gets
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5. Pre-Twisted layerwise model

n∑
k=1

∫ L

0

δ∆TJk∆̈ + 2Ωδ∆TJkg∆̇ + Ω2(Lsδ∆)TDk
sLs∆− Ω2δ∆TJks∆

+ (Lεδ∆)TDk
ε(Lε∆) + (Lγδ∆)TDk

γ(Lγ∆) dx =

n∑
k=1

∫ L

0

Ω2δ∆T fks dx

(5.4.3)

The displacement vector ∆ can now be interpolated from the element displacement vector, that can be
written as

de = {{d}1{d}2}T (5.4.4)
and by using the shape functions matrix defined as

N =


. . . . . .

N1 N2

. . . . . .

 (5.4.5)

d1 and d2 represent the node displacements of the element at the first and second nodes respectively and
are defined as

di =
{
s v w ψ θ1 · · · θj · · · θk θk+1 · · · θn

}
i

(5.4.6)
The displacement vector ∆ can then be approximated through the element displacements using the shape
functions matrix as

∆ = Nde (5.4.7)
By introducing the previous equation into equation (5.4.3) the same can be written in a discretized form
as follows

N∑
e=1

δdTe {med̈e + 2Ωgeḋe + [Ω2(kse −mse) + ke]de} dx =

N∑
e=1

Ω2∆T fs (5.4.8)

with the previous element matrices defined as

me =

n∑
k=1

∫ +1

−1
NTJkNdet(J) dξ =

n∑
k=1

m∑
i=1

wi{NTJkN}det(J) (5.4.9a)

ge =

n∑
k=1

∫ +1

−1
NTJkgNdet(J) dξ =

n∑
k=1

m∑
i=1

wi{NTJkgN}det(J) (5.4.9b)

mse =

n∑
k=1

∫ +1

−1
NTJksNdet(J) dξ =

n∑
k=1

m∑
i=1

wi{NTJksN}det(J) (5.4.9c)

kse =

n∑
k=1

∫ +1

−1
BT
s Dk

sBsdet(J) dξ =

n∑
k=1

m∑
i=1

wi{BT
s Dk

sBs}det(J) (5.4.9d)

ke =

n∑
k=1

∫ +1

−1
(BT

ε Dk
εBε + BT

γDk
γBγ)det(J) dξ =

n∑
k=1

m∑
i=1

wi{BT
ε Dk

εBε + BT
γDk

γBγ}det(J) (5.4.9e)

where m represents the number of Gauss points used. The previous deformation matrices are defined as

Bs = LsN; Bε = LεN; Bγ = LγN (5.4.10)
By assembling the multilayer element matrices and vectors and since δde are arbitrary, the global system
of equations is written as

Md̈ + Gḋ + [K + Ω2(Ks−Ms)]d = f (5.4.11)
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5.5 Numerical results
The results are obtained here using the same dimensionless quantities as used in chapter 4. From the
dimensionless quantities α and ϑ both height and width of the cross section of the beam can be obtained
and from the number of layers the height of each layer can be determined, assuming that all of the layers
have the same height.

In table 5.1 it is shown the results obtained for the first four natural frequencies of a rotating beam
and they are compared with the results obtained for a simple beam. The results obtained for a simple
beam are presented between parenthesis. It can be seen that the layerwise model developed provides
accurate results, close to those obtained for a simple beam. Also it can be seen that as the number of
layers increase the natural frequencies converge.

On the other hand results obtained for the pre-twisted multilayer beam could not be validated. The
effect of the distances Dv and Dh creates a stiffening of beam leading to natural frequencies higher than
what it would be expected, specially when the number of layers increase. As it can be observed from
table 5.2, including the effects of the distances, the natural frequencies obtained are quite different from
those determined from the simple beam. Although, under the assumption of small pre-twist angles, the
distances Dv and Dh can become quite small and as such negligible. So, by neglecting the effect of the
distances it can be seen from table 5.2 that results obtained are closer to those obtained from a simple
pre-twisted beam. In figure 5.2 a comparison of the first five dimensionless natural frequencies is made
between a simple beam and a multilayered model with five layers. It can be seen that the development
of the frequencies with the rotating speed is similar in both cases although some differences are noted
specially for higher rotating speeds like the increase in the second natural frequency and the decrease in
the fifth that occurs from the simple beam to the multilayer beam.

Other effects from other parameters such as the hub radius ratio δ and the slenderness ratio α were
found out to have similar effects as those seen in chapter 4 as it would be expected.
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5. Pre-Twisted layerwise model

Table 5.1: Comparison of the first four dimensionless natural frequencies for a multi-layered rotating
beam without pre-twist (δ = 0, βL = 0◦, α = 50, ϑ = 1)

No. of
layers

γ

0 10 50 100

First (3.5025) (4.7921) (4.1651) (-)
2 3.5025 4.7921 4.1651 -
3 3.5015 4.7921 4.1651 -
5 3.5008 4.7921 4.1651 -
10 3.5005 4.7921 4.1651 -

Second (3.5025) (11.1477) (50.6067) (100.2752)
2 3.5025 11.1477 50.6067 100.2752
3 3.5025 11.1446 50.5947 100.2662
5 3.5025 11.1425 50.5864 100.2600
10 3.5025 11.1415 50.5817 100.2564

Third (21.4654) (31.3589) (101.0709) (140.8544)
2 21.4654 31.3589 101.0709 140.8544
3 21.4256 31.3589 101.0709 140.8544
5 21.4002 31.3589 101.0709 140.8544
10 21.3883 31.3589 101.0709 140.8544

Fourth (21.4654) (33.0329) (119.7703) (193.2080)
2 21.4654 33.0329 119.7703 193.2080
3 21.4654 33.0021 119.7703 193.2080
5 21.4654 32.9822 119.7703 193.2080
10 21.4654 32.9726 119.7703 193.2080

Table 5.2: Comparison of the first three natural frequencies for a rotating beam with pre-twist and effects
of the distances Dh and Dv (δ = 0.2, α = 50, ϑ = 0.5, βL = 30◦)

γ 0 10

No. of layers Including Neglecting Including Neglecting

First mode (2.4826) (5.9341)
2 2.1501 2.4791 7.0022 6.9813
3 2.6091 2.4758 7.0131 6.9811
5 3.2446 2.4738 7.0202 6.9809
10 3.4788 2.4728 6.3777 6.9809

Second mode (3.4835) (11.4314)
2 3.7307 3.4787 12.0769 12.0633
3 4.0231 3.4779 12.1186 12.0600
5 4.6250 3.4775 12.3219 12.0579
10 5.1046 3.4773 13.3535 12.0568

Third mode (15.3440) (30.6097)
2 27.9339 15.2526 40.0725 31.6123
3 33.5035 15.1685 41.6646 31.5259
5 36.8146 15.1180 42.1186 31.4787
10 37.7870 15.0952 40.4713 31.4579
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(c) (ϑ = 0.25, βL = 30◦)
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Figure 5.2: Comparison of the first five dimensionless natural frequencies for the simple and multilayer
beam (α = 60, δ = 0.2, ϑ = 1)
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Chapter 6

Viscoelastic damping

To determine the effect that a viscoelastic damping treatment has over a rotating cantilever beam the
frequency response function (FRF) will be used which will be obtained by the direct frequency analysis
procedure.

For a rotating multi-layered cantilever beam the global system of equations of motion system was
already defined as

Md̈ + 2ΩGḋ + {K + Ω2[Ks −Ms]}d = f (6.0.1)

In deriving equation (6.0.1) it was assumed in the finite element model that all of the layers have an
elastic behaviour, but should it occur that one or more of the layers of the beam possesses viscoelastic
behaviour, and the stiffness matrix needs to be divided into two different stiffness matrices, one regarding
the elastic layers (Ke), and another one (Kv(jω)) regarding the viscoelastic ones.

Rewriting the global system of equations including the effect of viscoelastic layers one gets

Md̈ + 2ΩGḋ + {[Ke + Kv(jω)] + Ω2[Ks −Ms]}d = f (6.0.2)

Assuming now an harmonic excitation of the system as

f = Fejωt, (6.0.3)

and also a steady state response as

d = Xejωt, ḋ = jωXejωt, d̈ = −ω2Xejωt, (6.0.4)

equations (6.0.3) and (6.0.4) can now be replaced back in equation (6.0.2) yielding

{[Ke + Kv(jω)] + Ω2[Ks −Ms]︸ ︷︷ ︸
Keq

+2jωΩG− ω2M}X(jω)ejωt = Fejωt (6.0.5)

where ω is the frequency of excitation and consequently the frequency of the response, and F and X are
vectors possessing the amplitudes at each degree of freedom (DOF) of the excitation and the response
respectively.

By definition the receptance FRF Hrq represents the displacement of the rth DOF due to an unitary
load applied in the qth DOF and as such, F has all of its components null except for that that corresponds
to the qth DOF. The FRF in a certain frequency range can then be obtained by solving the system of
equations (6.0.5) repeatedly for various values of frequency and collecting the component in X that
corresponds to the rth DOF.

Since the viscoelastic stiffness matrix is frequency dependent, it implies that the use of equation
(6.0.2) is done in the frequency domain based on the Complex Modulus Approach, and that the material
properties for the viscoelastic matrix need to be determined at each frequency defined in the frequency
range. To do so, while computing and assembling the element matrices of each viscoelastic layer a unitary
Young’s modulus is assumed, then when the global matrices are defined, at each frequency defined between
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6. Viscoelastic damping

the frequency range the complex modulus is determined, the viscoelastic stiffness matrix is updated with
the complex extensional modulus E∗(jω) and the FRF is determined.The procedure is known as direct
frequency analysis (DFA) and it is shown schematically in figure 6.1.

This method is a very straightforward one, having as a main disadvantage the heavy computational
cost and the time it takes to perform a full analysis, since it needs to solve a linear and complex system
of equations (with the dimension of the spatial model) for each frequency.

Kv(jω) = E∗(jωp)K
v

ω = ωp

{Keq + 2jωΩG− ω2M} = Fq

Hqr(ωp)

Figure 6.1: Diagram of the direct frequency analysis algorithm

As for the complex extensional modulus, it is determined for oscillatory forcing conditions as

E∗(jω) = 2(1 + ν(jω))G∗(jω) (6.0.6)

Note that for simplicity’s sake the Poisson’s ratio for the viscoelastic material is actually assumed real and
frequency independent and with the following value ν = 0.49. G∗(jω) is the complex shear modulus and
can be determined using a four-parameter constitutive model which is defined, according to Kergourlay
[14] and Pritz [15], as

G∗(jω) =
G0 +G∞(jωτ)α

1 + (jωτ)α
(6.0.7)

where G0 is the dynamic modulus at null frequency or, in other terms, the static modulus of elasticity,
G∞ represents the high frequency limit value of the dynamic modulus also known as relaxed modulus,
τ represents the relaxation time and α is a constant that varies from zero to one (0<α<1) [15]. The
parameters are determined for an ISD112 at 27◦ by using an available laboratory fitting procedure and
the data from the respective manufacturer nomogram [16], and their values are approximately found out
to be

G0 = 3.504× 105 Pa, G∞ = 3.062× 109 Pa

τ = 8.230× 10−9 s, α = 0.675

The complex modulus G∗(jω) can also be expressed in terms of the shear storage modulus G′(ω) and
the loss factor η(ω) as follows

G∗(jω) = G′(ω)[1 + jη(ω)], (6.0.8)

where the loss factor is defined as

η(ω) =
G′′(ω)

G′(ω)
(6.0.9)

with G′′ as the shear loss modulus. The shear storage and loss modulus are determined as

G′ = Re(G∗), G′′ = Im(G∗) (6.0.10)

74



6.1. Frequency response function analysis

6.1 Frequency response function analysis
To determine the effect of the viscoelastic treatment on the beam five treatments will be tested and the
respective FRFs are compared with the FRF of the beam with no treatment (NT). The treatments are
presented in table 6.1, where the thicknesses are in millimeters and the ’e’ is for an elastic layer and ’v’
is for a viscoelastic layer. The elastic layers are made out of aluminum (ρ = 2700 kg/m3, E = 70 GPa,
ν = 0.33), the width of the beam is 8 mm and the length is 500 mm. Note that the last three treatments
are exaggerated, as usually the thickness of the viscoelastic layer can only go as high as the thickness
presented in treatment B. Moreover, the FRFs obtained are direct and the excitation force will be applied
at the free end of the beam in the directions of y (chordwise FRF) and z (flapwise FRF) axes with the
responses obtained in the same directions.

Table 6.1: Viscoelastic treatments analyzed

A B C D E

h2 0.254 e 0.508 e 1 e - 1 e
h1 0.127 v 0.254 v 2 v 2 v 2 v
base 3 e 3 e 3 e 3 e 3 e
h−1 - - - 2 v 2 v
h−2 - - - - 1 e
Thicknesses in millimeters; e=elastic; v=viscoelastic

6.1.1 Results
It can be seen from figures 6.2 and 6.3 that the first two treatments A and B do not make much effect on
the amplitudes of vibration when the exciting force is on the plane of rotation. This is because the beam
is thick in that direction and as such the shear strain, which makes the viscoelastic effective, caused by
that exciting force might not be to high. In addition, when modeling the multilayer finite element the
horizontal displacement in the y direction was assumed constant for all of the layers which contributes for
lowering the shear strain that the viscoelastic layer is subjected to. On the other hand, when considering
a pre-twisted beam with a pre-twist of 30◦ and making the assumption of small angles, it can be seen that
for the same FRF type the viscoelastic treatment makes effect and amplitudes drop. It is also noticeable
comparing both figures, that the effect of the viscoelastic damping treatment decreases as the rotating
speed of the beam increases. Even when applying the treatments C, D and E with the exaggerated
viscoelastic layers, it is visible that the damping treatment doesn’t make effect.

As for the FRF with the exciting force perpendicular to the plane of rotation, one can see from figure
6.4 that even for the first two damping treatments the amplitudes of vibration decrease which may lead
one to conclude that the exciting force in the direction of the z axis causes significant shear strain. Also
in this FRF type it can be seen from figure 6.5 that as the rotation speed of the beam increases the effect
of the viscoelastic damping treatment decreases for the same frequency range. Possibly this is because for
the same frequency band, the increase in the loss factor is always the same, and since the beam is stiffened
due to the rotation the viscoelastic treatment doesn’t make much effect, although further investigation
of these results would be required to better understand this lack of damping from the treatment for a
rotating beam. For a pre-twisted beam with a 30◦ angle of pre-twist and also assuming small angles,
it is shown that the viscoelastic layer also produces effect on the amplitudes of vibration although it’s
reduced once again when the beam is rotating.

In figures 6.6 is presented the flapwise FRF using treatment A with different materials

• Steel (S), E=206 GPa, ν = 0.29

• Aluminum (A), E=70 GPa, ν = 0.33

It is quite clear the effect of using materials with different stiffnesses. As the base layer becomes more
rigid comparatively to the constraining layer the viscoelastic suffers less shear stress and has less effect
than when the beam is made of aluminum and the constraining layer of steel, configuration that increases
the shear strain of the viscoelastic layer and thus increases the effectiveness of the damping treatment.
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Figure 6.2: FRF for the chordwise bending vibration (Ω = 0 rpm)
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Figure 6.3: FRF for the chordwise bending vibration (Ω = 15000 rpm, δ = 0)
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Figure 6.4: FRFs for the flapwise bending vibration (Ω = 0 rpm)
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Figure 6.5: FRFs for the flapwise bending vibration (Ω = 15000 rpm, δ = 0)
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Figure 6.6: Effect of the materials on the effectiveness of the viscoelastic damping for the flapwise bending
vibration
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Chapter 7

Laminated composite beams

In this chapter a multilayer element for a laminated composite beam is formulated using the layerwise
displacement theory. The main point of the analysis is to understand the effect of the fiber angles in the
natural frequencies of the composite cantilever rotating beam.

7.1 Beam constitutive matrix

According to Reddy [17], for an orthotropic material such as laminated composite the compliance matrix
in the local material coordinate system can be defined as

S =



1

E1
−ν21
E2

ν31
E3

0 0 0

−ν12
E1

1

E2
−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1

E3
0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1

G12


(7.1.1)

with Eij , Gij and νij as the engineering constants for the composite material in the material local
coordinates.

Since the orientation of the fibers relatively to the global set of axes or the problem set of axes can be
arbitrary one needs to determine the elasticity constants in the problem coordinates through the constants
in the material coordinate system. To do so the following transformation matrix, from the material to
the problem coordinate system, is introduced and defined as [17]

T =


cos2 Γ sin2 Γ 0 0 0 − sin 2Γ
sin2 Γ cos2 Γ 0 0 0 sin 2Γ

0 0 1 0 0 0
0 0 0 cos Γ sin Γ 0
0 0 0 − sin Γ cos Γ 0

sin Γ cos Γ − sin Γ cos Γ 0 0 0 cos2 Γ− sin2 Γ

 (7.1.2)
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y
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x1Γ

x3 ≡ z

Figure 7.1: Material and problem axes

where Γ represents the rotation angle of the material set of axes relatively to the problem set of axes as
illustrated in figure 7.1 Using the transformation matrix T from the material coordinte system to the
problem coordinate system, the constitutive matrix C can now easily be obtained through the compliance
matrix S in the material coordinate system as follows

C = TS−1TT (7.1.3)

Using equation (7.1.3) one obtains a constitutive matrix that relates the full strain tensor ε with the full
stress tensor σ. Since we are considering the problem of a rotating cantilever beam, only the εxx, εxz,
εxy strains and the σxx, σxz, σxy stresses are to be considered and thus we get


σkxx

τkxz

τkxy

 =


Ck11 0 Ck16

0 Ck55 0

Ck16 0 Ck66




εkxx

γkxz
2
γkxy
2


(7.1.4)

In table 7.1 are presented some composite material properties.

Table 7.1: Engineering constants for some composite materials

Material E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

Gr.-Ep (AS) 137.9 8.96 8.96 7.10 7.10 6.21 0.30 0.30 0.49 1450
Gr.-Ep (T) 131.0 10.34 10.34 6.89 6.21 6.21 0.22 0.22 0.49 1450
Gl.-Ep (1) 53.8 17.93 17.93 8.96 8.96 3.45 0.25 0.25 0.34 1900
Gl.-Ep (2) 38.6 8.27 8.96 4.14 4.14 3.45 0.26 0.26 0.34 1900
Br.-Ep 206.8 20.68 20.68 6.89 6.89 4.14 0.30 0.25 0.25 1950
From Reddy [17] Gr.-Ep (AS) = Graphite-epoxy (AS/3501); Gr.-Ep (T) = Graphite-epoxy (T);
Gl.-Ep (1)=Glass-Epoxy; Br.-Ep = Boron-epoxy. (units of E and G in GPa, ρ in kg/m3)

7.2 Element formulation

The formulation of the layerwise element for a composite laminated beam is quite similar to that defined
in chapter 5. However, the transformation matrix T in equation (7.1.2) is defined for the particular case
of a rotation of the fibers about the vertical axis z that is coincident with the material vertical axis 3 and
so the pre-twist analysis for the layerwise model of a rotating beam can no longer be made. As such the
first area moments (static moments) as well as the product of inertia are null and thus don’t take part in
the respective equations. As for the second area moments they are determined for the case of a simple
rectangular cross section as follows

Iky =
bh3

12
, Ikz =

b3h

12

82



7.2. Element formulation

Seeing that the mass per unit volume of a composite material has nothing to do with the fiber angle of
the ply, the kinetic energy for a generic layer composite beam is quite similar to that defined in subsection
5.2, hence all the matrices defined in equation (5.2.6) are still valid for the present problem.

As for the potential energy, considering the relation between the stresses and strain defined in equation
(7.1.4), it can be expressed as

Π =
1

2

∫
V

(Ck11ε
2
xx + Ck55γ

2
xz + Ck66γ

2
xy + 2Ck16εxxγxy) dV (7.2.1)

where the strains in the previous equation are the same as those defined in equations (5.3.1). The
potential energy is then given by

Π =
1

2

∫
V

{
Ck11

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k + zkθ

′
k − yψ′

)2

+ Ck55(w′ + θk)2 + Ck66(v′ − ψ)2

+ 2Ck16

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k + zkθ

′
k − yψ′

)
(v′ − ψ)

}
dV

(7.2.2)

and applying the variational to it yields

∫ tf

ti

δΠ dt =

∫ tf

ti

∫ L

0

{
Ck11

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)
δ

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)
+ Ck11(Iky θ

′
kδθ
′
k + Ikzψ

′δψ′)

+ Ck55(w′ + θk)δ(w′ + θk) + Ck66(v′ − ψ)δ(v′ − ψ)

+ Ck16

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)
δ(v′ − ψ)

+ Ck16(v′ − ψ)δ

(
s′ +

h1
2
θ′1 +

k−1∑
j=2

hjθ
′
j +

hk
2
θ′k

)}
dx dt

(7.2.3)

By following the same procedure done in section 5.4, the weak form for the laminated composite beam
can easily be derived as

n∑
k=1

∫ L

0

δ∆TJ∆̈ + 2Ωδ∆TJg∆̇ + Ω2(Lsδ∆)TDsLs∆− Ω2δ∆TJs∆

+ (Lεδ∆)TDε(Lε∆) + (Lγδ∆)TDγ(Lγ∆) + (Lεγδ∆)TDεγ(Lεγ∆) dx

=

n∑
k=1

∫ L

0

δ∆T fs dx

(7.2.4)

It is visible that the extensional and shear matrices defined in equation (5.3.6) are still applicable. In
matrix (5.3.7) only E needs to be replaced by Ck11, while in matrix (5.3.9) G needs to be replaced by Ck55
and Ck66 in their respective positions as
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Dγ = A∗



0 0 0 0 0 · · · 0 · · · 0 0 · · · 0
Ck66 0 −Ck66 0 · · · 0 · · · 0 0 · · · 0

Ck55 0 0 · · · 0 · · · Ck55 0 · · · 0
Ck66 0 · · · 0 · · · 0 0 · · · 0

0 · · · 0 · · · 0 0 · · · 0
. . .

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0
. . .

...
...

. . .
...

Ck55 0 · · · 0
0 · · · 0

. . .
...

sym. 0



(7.2.5)

The main difference present in the laminated composite beam is the coupling effect introduced between
εxx and γxy, resulting in the following coupling matrix

Dk
εγ = Ck16



0 1 0 −1 0 · · · 0 · · · 0 0 · · · 0

0 0 0
h1
2

· · · hj · · · hk
2

0 · · · 0

0 0 0 · · · 0 · · · 0 0 · · · 0

0 −h1
2
· · · −hj · · · −hk

2
0 · · · 0

0 · · · 0 · · · 0 0 · · · 0
. . .

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0
. . .

...
...

. . .
...

0 0 · · · 0
0 · · · 0

. . .
...

sym. 0



(7.2.6)

Lεγ = diag
[
∂

∂x

∂

∂x
1 1

∂

∂x
· · · ∂

∂x
· · · ∂

∂x
1 1

]
(7.2.7)

After the introduction of the element displacements equation (7.2.4) can be written in a discretized way,
yielding

N∑
e=1

δdTe {med̈e + 2Ωgeḋe + [Ω2(kse −mse) + ke]de} dx =

N∑
e=1

Ω2∆T fs (7.2.8)

where all the element matrices in the previous equation are the same as the ones defined in equation
(5.4.9) except for the stiffness matrix that now has to account for the coupling effect, becoming

ke =

n∑
k=1

∫ +1

−1
BT
ε Dk

εBε + BT
γDk

γBγ + BT
εγD

k
εγBεγdet(J) dξ

=

n∑
k=1

m∑
i=1

wi{BT
ε Dk

εBε + BT
γDk

γBγ + BT
εγD

k
εγBεγ}det(J)

(7.2.9)

7.3 Composite results
To obtain the results for the composite laminated beam the dimensionless quantities defined in chapter 4
and the layers for the composite beam are all assumed to have equal height. In this case the dimensionless
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quantity T is defined as

T =

√
ρAL4

E1Iz

Furthermore, the following results are all obtained for ϑ = 1 and using Br.-Ep for all of the layers. Other
results for other materials or combination of materials could be obtained although, since the main interest
is to evaluate the effect of the fibers’ angle on the natural frequencies, the use of only one material is
more appropriate so that other effects are not introduced.

In table 7.2 it is shown that the first four dimensionless natural frequencies for a rotating laminated
composite beam converge as the number of elements increase. Analyzing table 7.3, it is quite noticeable
that whether the beam possesses a symmetric or unsymmetric laminae, the natural frequencies are very
similar. Considering figures 7.2a and 7.2b where two different laminae schemes are presented, it is
observable the effect of the ply angle on the evolution of the natural frequencies. It is noted that as the
angle of the ply increases the critical buckling speed decreases. The natural frequencies drop faster in
the (Γ/ − Γ)3 scheme than in the (0/Γ)s, mainly because in the former the angle changes for all of the
layers reducing the bending stiffness while in the later the outer layers remain at zero degrees angle. Also
as a general effect, the increase of the fibers’ angle towards 90◦ tend to lower the natural frequencies
although, it is interesting that the first flapwise bending natural frequency (second natural frequency for
low rotating speeds) does not suffer any visible alteration whatsoever. It is also evident that the drop of
the frequencies is faster when the angle approaches 45◦ than afterwards. In table 7.4, it is shown that the
fibers’ angle does alter the second natural frequency but this change is quite small. In fact, for the first
symmetric scheme the effect of the angle is always negligible which makes sense since the outer layers are
always with zero degrees angle and as such the change in middle layers doesn’t affect significantly the
flapwise bending stiffness. As for the unsymmetric scheme, the change in the angle of the fibers provides
greater change in the natural frequencies but only for low rotating speeds, probably because for higher
rotating speeds the centrifugal stiffening of the beam is dominant making the angle’s effect negligible
compared to it. Also important to these results is the centrifugal mass matrix Ms which is responsible
for the buckling of the beam, has nothing to do with the angle of the fibers and more importantly, has
negligible effects over the flapwise bending vibrations and very important influence on the chordwise
bending vibrations (see section 4.2). As such, when the angle of the fibers is zero the stiffness matrix and
the centrifugal stiffness matrix can compensate longer the centrifugal mass matrix before buckling occurs.
On the opposite, when the angle approaches 90◦ the stiffness matrix can no longer compensate and the
chordwise natural frequencies start to drop for low rotating speeds. Knowing that the centrifugal mass
matrix has very little effect on the flapwise motion the centrifugal stiffness matrix can always compensate
the loss of stiffness due to the fibers’ angle.

Table 7.2: Convergence of the first four dimensionless natural frequencies for a laminated composite beam
(δ = 0.1, α = 70, (−10/45/− 45/10))

γ No. of
elements

First Second Third Fourth

0 10 2.8253 3.1796 16.8933 17.5880
40 2.8221 3.1761 16.6051 17.2058
70 2.8219 3.1759 16.5922 17.1888
100 2.8219 3.1759 16.5890 17.1846

10 10 5.6010 11.4354 30.3806 31.4936
40 5.6027 11.4356 30.0488 31.2193
70 5.6028 11.4356 30.0339 31.2069
100 5.6028 11.4356 30.0302 31.2038

50 10 11.9150 53.7579 110.7718 128.2164
40 11.9038 53.7577 109.9506 127.9670
70 11.9033 53.7576 109.9126 127.9559
100 11.9032 53.7576 109.9032 127.9532
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Table 7.3: Comparison for the first four dimensionless natural frequencies for symmetric and asymmetric
schemes (δ = 0.1, α = 60)

γ

Scheme 0 2 10 50 100

First
(−45/45)s 1.9911 2.3283 4.9087 4.2252 -
(−45/45)2 1.9443 2.3280 4.9091 4.2270 -

(−30/30/− 30)s 2.6704 2.9834 5.4820 9.4319 -
(−30/30)3 2.6370 2.9833 5.4916 9.6447 -

Second
(−45/45)s 2.0306 3.0289 11.0904 53.6553 96.8911
(−45/45)2 2.0324 3.0000 11.0809 53.6538 96.8919

(−30/30/− 30)s 2.7550 3.5091 11.2577 53.6974 107.1890
(−30/30)3 2.7582 3.4868 11.2505 53.6963 107.1884

Third
(−45/45)s 11.1248 12.3317 27.4479 91.9395 107.1629
(−45/45)2 10.9074 12.1364 27.4463 91.9412 107.1620

(−30/30/− 30)s 14.0592 15.0309 29.6865 103.7131 137.8786
(−30/30)3 13.9277 14.9082 29.6764 104.2107 139.8444

Fourth
(−45/45)s 12.5340 13.4872 28.5391 108.4442 187.0866
(−45/45)2 12.5343 13.4881 28.4575 108.4498 187.0888

(−30/30/− 30)s 16.7345 17.4557 29.8630 119.2192 195.1500
(−30/30)3 16.7496 17.4710 29.8304 119.8530 195.7576

As for the viscoelastic treatment, it shown in figures 7.3 the effect of the angle of the fibers with the
configuration of treatment A in table 6.1 and the angles as shown in the legend (the first refers to the base
layer and the second refers to constraining layer). It is seen that as the angle of the fibers for the base
layer approximate 90◦ and as the angles approximate zero degrees for the constraining layer, the damping
treatment becomes more effective since. Like it was shown in figures 6.6, as the constraining layer becomes
more rigid comparatively to the base layer, the viscoelastic layer suffers more shear deformation making
the damping treatment more effective. Even though it is not showed, the viscoelastic treatment still
showed no effect on chordwise bending vibration.

Table 7.4: Effect of the fibers’ angles on the second natural frequency (δ = 0.3, α = 60)

γ

Scheme 0 2 10 50

(0/0)s 3.3921 4.2109 12.6675 60.2184
(0/45)s 3.2194 4.0869 12.6093 60.2030
(0/90)s 3.1372 4.0176 12.5631 60.1906

(10/− 10)3 3.3829 4.1279 12.6366 60.2112
(30/− 30)3 2.7582 3.6567 12.4780 60.1734
(50/− 50)3 1.7998 3.0817 12.2862 60.1262
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Figure 7.2: Effect of the fibers’ angle on the first four dimensionless natural frequencies (δ = 0.3, α = 60)
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Figure 7.3: Effect of the fibers’ angles on the effectiveness of the viscoelastic damping for the flapwise
bending vibration (δ = 0.1)
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Chapter 8

Conclusion

8.1 Conclusions
This dissertation work presents a vibration analysis of a rotating cantilever beam considering the rotation
induced dynamical effects, different deformation theories and different configurations using the finite
element method, with a two node rotating beam finite element.

In chapter 2 the displacement and velocity fields, as well as the strain and stress fields are determined
based upon the classic Cartesian system of coordinates. A new system of hybrid coordinates is introduced
and derived based on the stretch of the neutral axis of the beam. Using this new set of hybrid deformation
variables, the linear partial differential equations of motion are derived using the Euler-Bernoulli and
Timoshenko beam theories where it is found out that there are two main motion types: the chordwise
motion and the flapwise.

• Whether it is used the Euler-Bernoulli or the Timoshenko beam theory, it is found out that the
governing equations that refer to the chordwise motion are uncoupled from those regarding the
flapwise motion;

• Contrary to this fact, when developing the differential equations for the pre-twisted beam it is found
out that both motion types are now coupled due to the inclusion of the product of inertia of the
cross section of the beam which is an effect caused by the pre-twist angle.

In chapter 3 the weak forms are derived from the strong forms defined by the differential equations of
motion and boundary conditions, using the weighted residuals method. From the weak forms the element
matrices for discretized solution are defined and from the element matrices the global system of equations
is determined. From the global matrices the eigenvalue problem is derived and it is found out that:

• while for the flapwise motion the global system of equations results in a generalized eigenvalue
problem;

• the system of equations for the chordwise motions results in a non-linear complex eigenvalue problem
due to the presence of the gyroscopic coupling matrix which needs to be linearized by adopting an
identity equation and a state-space approach.

Chapter 4 provides numerical results from the finite element models. The following results were
determined:

• Chordwise motion:

– Natural frequencies don’t increase monotonically due to gyroscopic coupling;

– Existence of a tuned angular speed;

– Presence of buckling speed and instability limit;

– Slenderness and hub radius have great effect on the tuned rotating speed;
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– Buckling speed depends greatly on the slenderness bu not on the hub radius;
– Gyroscopic coupling can be neglected provided that the angular speed is not high and/or that

the beam is slender enough.

• Flapwise motion:

– The natural frequencies increase monotonically with the increase of the rotating speed;
– No tuned angular speed occurs;
– The increase in the hub radius ratio increases the natural frequencies;
– Slenderness has negligible effect on the first natural frequency but lowers the frequencies after

the first mode.

• Pre-Twisted beam:

– The previous effects are still valid;
– The angle of the pre-twisted has a small effect over the natural frequencies;
– The intersections of the flapwise and chordwise natural frequency become veering regions due

to pre-twist angle.

In chapter 5 a multilayer finite element model using a layerwise theory is derived for a rotating pre-
twisted beam composed of several layers. Results obtained are compared with those obtained for a simple
beam.

• For the case of a non-pretwisted beam the layerwise model provides accurate results, in accordance
with those obtained for a simple beam;

• However for a pre-twisted layerwise beam the results could not be properly validated as the results
were very different from those determined for a simple pre-twisted beam. Under some assumptions
for small angles of pre-twist the results were improved.

In chapter 6 it was demonstrated using the frequency response function that the viscoelastic damping
treatment:

• has an effect over the flapwise bending vibration amplitudes;

• has negligible effects on the chordwise bending vibration amplitudes even with exaggerated treat-
ments;

• produces effect even on the chordwise bending amplitudes if a pre-twist angle is introduced;

• loses effectiveness for elevated angular speeds of the beam;

• it’s more effective with a constraining layer stiffer than the beam.

Finally, in chapter 7 a finite element model for composite laminated rotating beams was derived from
the layerwise model introduced in chapter 5, making all the needed proper adjustments. The main point
of this chapter was to analyze the effect of the fiber angles, and it was found out that:

• as the fibers approximate 90◦ angle, the natural frequencies start to drop;

• moreover, the beam becomes more unstable since it was noted that the buckling speed decreases;

• it was also found out that whether the laminated beam is symmetric or unsymmetric, the natural
frequencies are similar.

It is hoped that this work provides a contribution to the literature regarding the study of rotating
beams, mainly considering the most important subjects of the dissertation which are the development
of a pre-twisted multi-layered element using a layerwise displacement theory, introduction of the passive
vibration control over the vibration amplitudes using viscoelastic treatment and the analysis of laminated
composite beams. These subjects are still on an earlier stage of development as, to author’s knowledge,
little information on the matter or even none is available in the literature and as such these subjects still
need further study and development hoping that this work provides a starting point.
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8.2. Development Suggestions

8.2 Development Suggestions
Several other studies can be made from the present one and as such, some suggestions are made for
further development of the present work:

• Better study of the effect of the viscoelastic damping for a rotating beam with higher rotating
speeds;

• Implementation of an iterative model for modal analysis of a rotating beam with viscoelastic damp-
ing;

• Further analysis of the pre-twisted multilayer element model for higher pre-twist angles;

• Development of a finite element layerwise model considering different chordwise bending displace-
ments for each layer

• Proper validation of the laminated composite rotating beam, possibly with a commercial program;

• Experimental analysis and validation of the results presented;

• Introduction of the active vibration control using piezoelectric damping layers;

• Expansion of the present work to rotating cantilever plates and disks.

91





References

[1] H. H. Yoo, R. R. Ryan, and R. A. Scott. Dynamics of flexible beams undergoing overall motions.
Journal of Sound and Vibration, 181(2):261–278, 1995.

[2] H. H. Yoo and S. H. Shin. Vibration analysis of rotating cantilever beams. Journal of Sound and
Vibration, 212(5):807–828, 1998.

[3] S. S. Rao and R. S. Gupta. Finite element vibration analysis of rotating Timoshenko beams. Journal
of Sound and Vibration, 242(1):103–124, 2001.

[4] J. Chung and H. H. Yoo. Dynamic analysis of a rotating cantilever beam by using the finite element
method. Journal of Sound and Vibration, 249(1):147–164, 2002.

[5] O. Ozdemir Ozgumus and M. O. Kaya. Flapwise bending vibration analysis of a rotating double-
tapered Timoshenko beam. Archive of Applied Mechanics, 78(5):379–392, 2008.

[6] T.-L. Zhu. The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh-Ritz method.
Comput. Mech., 47(4):395–408, 2011.

[7] Hong Hee Yoo, Jung Hun Park, and Janghyun Park. Vibration analysis of rotating pre-twisted
blades. Computers and Structures, 79(19):1811–1819, 2001.

[8] H. H. Yoo, J. Y. Kwak, and J. Chung. Vibration analysis of rotating pre-twisted blades with a
concentrated mass. Journal of Sound and Vibration, 240(5):891–908, 2001.

[9] Hong Hee Yoo, Seung Hyun Lee, and Sang Ha Shin. Flapwise bending vibration analysis of rotating
multi-layered composite beams. Journal of Sound and Vibration, 286(4?5):745–761, 2005.

[10] Leonard Meirovitch. Fundamentals of Vibrations. McGraw-Hill, New York, 2001.

[11] J. N. Reddy. Applied Functional analysis and Variational methods in engineering. McGraw-Hill,
New York, 1986.

[12] J. N. Reddy. Energy principles and variational methods in applied mechanics. John Wiley & Sons,
Inc., New York, 2002.

[13] G. R. Liu and S. S. Quek. The Finite Element Method A Practical Course. Butterworth-Heinemann,
Oxford; Boston, 2003.

[14] Gérald Kergourlay. Mesure et prédiction vibroacoustique de structures viscoélastiques: Application à
une enceinte acoustique. PhD thesis, Ecole Centrale Paris, 2004.

[15] T. Pritz. Analysis of four-parameter fractional derivative model of real solid materials. Journal of
Sound and Vibration, 195(1):103–115, 1996.

[16] 3M (1993). Scotchdamp Vibration Control Systems: Product Information and Perfomance Data.
Technical report, 3M Industrial Tape and Specialties Division, St. Paul, Minnesota, US.

[17] J. N. Reddy. Mechanics of laminated composite plates and shells: theory and analysis. CRC Press,
Boca Raton, 2004.

93





Appendix A

Area moments

Dh

Dv

y

z

y′′

z′′

y′

z′

h′
k

β

Sy′′ =

∫
A

z′′ dA = 0 (A.0.1a)

Sz′′ =

∫
A

y′′ dA = 0 (A.0.1b)

Iy′′z′′ =

∫
A

y′′z′′ dA = 0 (A.0.1c)

Iy′′ =

∫
A

z′′2 dA =
bh3

12
(A.0.1d)

Iz′′ =

∫
A

y′′2 dA =
b3h

12
(A.0.1e)

y′ = y′′ cosβ − z′′ sinβ (A.0.2a)
z′ = y′′ sinβ + z′′ cosβ (A.0.2b)

Sy′ =

∫
A

z′ dA =

∫
A

y′′ sinβ + z′′ cosβ dA = 0 (A.0.3a)

Sz′ =

∫
A

y′ dA =

∫
A

y′′ cosβ − z′′ sinβ dA = 0 (A.0.3b)

95



A. Area moments

Iy′z′ =

∫
A

y′z′ dA

=

∫
A

y′′2 cosβ sinβ + y′′z′′ cos2 β − y′′z′′ sin2 β − z′′2 sinβ cosβ) dA

=(Iz′′ − Iy′′) sinβ cosβ

(A.0.4)

Iy′ =

∫
A

z′2 dA

=

∫
A

y′′2 sin2 β + z′′2 cos2 β + 2y′′z′′ sinβ cosβ dA

=Iz′′ sin2 β + Iy′′ cos2 β

(A.0.5)

Iz′ =

∫
A

y′2

=

∫
A

y′′ cos2 β + z′′2 sin2 β − 2y′′z′′ cosβ sinβ dA

=Iz′′ cos2 β + Iy′′ sin2 β

(A.0.6)

y = y′ −Dh (A.0.7a)
z = z′ −Dv (A.0.7b)

Sy =

∫
A

z dA =

∫
A

z′ −Dv dA = −DvA (A.0.8a)

Sz =

∫
A

y dA =

∫
A

y′ −Dh dA = −DhA (A.0.8b)

Iyz =

∫
A

yz dA = y′z′ − y′Dv − z′Dh +DhDv = Iy′z′ +DhDv (A.0.9)

Iy =

∫
A

z2 dA =

∫
A

z′2 +D2
v − 2z′Dv dA = Iy′ +AD2

v (A.0.10)

Iz =

∫
A

y2 dA =

∫
A

y′2 +D2
h − 2y′Dh dA = Iz′ +AD2

h (A.0.11)

Dh =

(
h′1
2

+

k−1∑
j=2

h′j +
h′k
2

)
sinβ (A.0.12a)

Dv = Dh tanβ (A.0.12b)
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