

Faculdade de Engenharia da Universidade do Porto

Wireless Mesh Networks for Smart-grids

Ivo Tiago da Silva Leitão

Mestrado Integrado em Engenharia Electrotécnica e de Computadores
Major Telecomunicações

Orientador: Prof. Manuel Ricardo
Co-orientador: Eng. Mohammad Abdellatif

Outubro 2012

ii

© Ivo Leitão, 2012

iii

Resumo

Wireless Sensor Networks é considerada uma das áreas com maior potencial dentro da

chamada “Internet das Coisas”, providenciando várias aplicações para as mais variadas áreas,

tais como monitoração industrial ou ambiental, cuidados de saúde pessoais, automação de

casas e edifícios ou aplicações de medição inteligente. Contudo, sendo estas tecnologias

ainda algo recentes, vários desafios são ainda encontrados. Nos últimos anos tem-se vindo a

assistir a um aumento do esforço em providenciar standards de forma a unificar as várias

soluções então existentes, bem como aumentar a interoperabilidade com outras redes. O

objetivo desta dissertação consiste em avaliar a performance de duas implementações

diferentes de Wireless Sensor Networks, usando protocolos como IEEE 802.15.4, 6LoWPAN,

RPL, software baseado no Sistema Operativo Contiki e um ambiente de comunicação em

multi-hop.

iv

v

Abstract

Wireless sensor networks is considered one of the areas with more potential in the

“Internet of Things”, providing several applications for the most varied areas, such as

industrial and environment monitoring, personal health care, home and building automation

or smart-metering. However, since these are still recent technologies, several issues are still

being found. In the last years there’s been a greater effort to provide standards to unify the

several different solutions available, and increase the interoperability with other networks.

The objective of this Dissertation is to evaluate the performance of two different Wireless

Sensors Networks implementations, using protocols such as IEEE 802.15.4, 6LoWPAN, RPL,

software based on the Contiki Operating System and a multi-hop communication environment.

vi

vii

Acknowledgements

I would like to thank my coordinators Prof. Manuel Ricardo and Eng. Mohammad Abdellatif

for all the time and help offered in the writing of this document.

viii

ix

Index

Resumo .. iii

Abstract ... v

Acknowledgements .. vii

Index ... ix

List of figures ... xi

List of tables .. xv

Acronyms .. xvii

Chapter 1 ... 1

Introduction ... 1

Chapter 2 ... 3

State of the Art .. 3
2.1 Solutions Research ... 3
2.1.1 Contiki+6LoWPAN+RPL .. 3
2.1.2 TinyOS+6LoWPAN+RPL .. 4
2.1.3 Contiki and TinyOS comparison ... 5
2.1.4 Low-power WiFi WSN’s .. 7
2.1.5 ZigBee device: Bytesnap ZMM-01 ... 9
2.2 Technologies research .. 11
2.2.1 IEEE 802.15.4-2006 .. 11
2.2.2 6LoWPAN .. 14
2.2.3 RPL 16
2.2.4 IEEE 802.11 .. 19
2.2.5 ZigBee .. 21
2.2.6 Advanticsys MTM-CM5000-MSP sensor mote ... 23

Chapter 3 .. 25

Self-PVP Project .. 25
3.1 System Description .. 25
3.2 Methodology .. 27
3.2.1 Technique 1 ... 28
3.2.2 Technique 2 ... 29

x

3.2.3 Technique 3 ... 30
3.3 Results and discussion .. 31
3.3.1 Technique 1 ... 34
3.3.2 Technique 3 ... 36
3.3.3 Technique 2 ... 38

Chapter 4 .. 41

Smart Electric Counters Project .. 41
4.1 System Description .. 41
4.2 Methodology .. 45
4.3 Results and discussion .. 52
4.3.1 Preliminary Results .. 52
4.3.2 Cooja simulations results ... 54
4.3.3 Cooja simulations with 2 simultaneous processes results 56

Chapter 5 .. 59

Conclusions ... 59

References .. 61

xi

List of figures

Figure 1 - The Contiki Architecture... 4

Figure 2 - The TinyOS 6LoWPAN/RPL Stack ... 5

Figure 3 - Results of tests performed on three 6LoWPAN implementations. At the left, the
time to send an UDP message, at the right, the energy required to send the same
messages. ... 6

Figure 4 - Average packet reception ratios for Tiny RPL (left) and Contiki RPL (right) 7

Figure 5 - GS1011 Hardware description ... 8

Figure 6 - Redpine Signals SenSiFi hardware architecture ... 9

Figure 7 - Bytesnap ZMM-01 Device ... 10

Figure 8 - Basic topologies for 802.15.4 ... 11

Figure 9 - Cluster tree topology for 802.15.4 ... 12

Figure 10 - Communication in a beacon enabled PAN ... 13

Figure 11 - 6LoWPAN Architecture .. 14

Figure 12 - RFC6282 Header compression example .. 15

Figure 13 - Typical Neighbor Discovery message exchange .. 16

Figure 14 - RPL Architecture ... 17

Figure 15 - RPL Node Rank ... 18

Figure 16 - IEEE 802.11 Operation modes ... 19

Figure 17 - The hidden node problem .. 21

Figure 18 - Zigbee Stack Architecture ... 21

Figure 19 - Block diagram for TelosB general architecture .. 23

Figure 20 - System Topology ... 26

Figure 21 - Network topology .. 27

xii

Figure 22 - Technique 1 .. 28

Figure 23 - Technique 1 initialization .. 29

Figure 24 - Technique 2 .. 30

Figure 25 - Technique 3 .. 30

Figure 26 - Incorrect routing table ... 31

Figure 27 - Motes position used to perform the tests in this chapter. 32

Figure 28 - Average packet loss for Technique 1 ... 34

Figure 29 - Throughput for Technique 1 ... 35

Figure 30 - Average packet loss for Technique 3 ... 36

Figure 31 - Average throughput for Technique 3 ... 37

Figure 32 - Preliminary packet loss for Technique 2 .. 38

Figure 33 - Preliminary throughput for Technique 2 .. 39

Figure 34 - Throughput for Technique 2 ... 40

Figure 35 - Application scenario .. 42

Figure 36 - RPL-Border Router webpage ... 43

Figure 37 - Sensor mote homepage ... 43

Figure 38 - Screenshot of the sensing data charts available at each sensor mote 44

Figure 39 - Network map. The IPv6 Addresses are tunslip6/Cooja generated 45

Figure 40 - tunslip6 initialization ... 46

Figure 41 - Algorithm for script to run HTTP and ping6 requests 47

Figure 42 - wget HTTP delay measurement process ... 48

Figure 43 - Effective delay for HTTP requests calculation technique 49

Figure 44 - An example from a wget log file .. 50

Figure 45 - Differences from script 1 to script 2 ... 51

Figure 46 - Screenshot from shell window running the script 51

Figure 47 - HTTP request delay and average number of connection attempts for each
node, using a Contiki 2.5 based configuration ... 52

Figure 48 - Average number of connection attempts using a contiki 2.5 based
configuration but with a maximum 1 TCP connection allowed per node 53

Figure 49 - Plot for the HTTP requests delay simulated in Cooja with Contiki 2.6 54

Figure 50- Plot for the PING6 requests delay simulated in Cooja with Contiki 2.6 55

xiii

Figure 51 - Delay for HTTP requests with 2 simultaneous scripts 57

Figure 52 - Average number of connection attempts per node 57

Figure 53 - Packet loss for ping6 requests ... 58

xiv

xv

List of tables

Table 1 - Comparison of 6LoWPAN implementations .. 6

Table 2 - Comparison of classic and low-power Wi-Fi performance values 8

Table 3 - PHY modes for 802.15.4-2006 ... 12

Table 4 - IEEE 802.11 protocols comparison .. 20

Table 5 - Advanticsys MTM-CM5000-MSP general characteristics 24

Table 6 - Packet loss and Throughput results for Technique 1 34

Table 7 - Average test time for Technique 1 ... 35

Table 8 - Packet loss and Throughput results for Technique 3 36

Table 9 - Average test time for Technique 3 ... 37

Table 10 - Preliminary Results for Technique 2 .. 38

Table 11 - Packet loss and throughput results for Technique 2 39

Table 12 - Average test times for Technique 2 ... 40

Table 13 - Obtained values for the HTTP requests in the Cooja simulation tests running on
Contiki 2.6 .. 54

Table 14 - Obtained values for the ping6 messages in the Cooja simulation tests running
on Contiki 2.6 .. 55

Table 15 - Obtained values for the HTTP requests in the Cooja simulation tests running on
Contiki 2.6 with 2 simultaneous processes ... 56

Table 16 - Results for ping6 requests with 2 simultaneous processes 58

xvi

xvii

Acronyms

List of acronyms (ordered alphabetically)

6LoWPAN – IPv6 over Low Power Wireless Personal Network

AES – Advanced Encryption Standard

AODV – Ad-hoc On-Demand Distance Vector Routing

CAP – Contention Access Period

CFP – Contention Free Period

CSMA/CA – Carrier Sense Multiple Access with Collision Avoidance

CTS – Clear to Send

DCF - Distributed Coordination Function

DODAG - Destination-Oriented Directed Acyclic Graph

DSSS – Direct Sequence Spread Spectrum

DYMO – Dynamic MANET On-Demand

FFD – Full Function Device

FHSS – Frequency Hopping Spread Spectrum

GTS – Guaranteed Time Slot

HTTP – Hypertext Transfer Protocol

ICMP - Internet Control Message Protocol

IEEE – Institute of Electrical and Electronics Engineers

IETF – Internet Engineering Task Force

IFS - Inter-Frame Space

INESC – Instituto de Engenharia de Sistemas e Computadores

IP – Internet Protocol

LLN – Low Power, Lossy Network

MAC – Medium Access Control

MIMU – Multiple-Input, Multiple-Output

MTU – Maximum Transfer Unit

OFDM – Orthogonal Frequency Division Multiplexing

PAN – Personal Area Network

xviii

PCF - Point Coordination Function

PHY – Physical Layer

RFD – Reduced Function Device

RPL - Routing Protocol for Low Power Lossy Networks

RTS – Request to Send

SICS - Swedish Institute of Computer Science

SELF-PVP - Self-organizing power management for photo-voltaic power plants

SLIP - Serial Line Internet Protocol

TCP – Transmission Control Protocol

UDP – User Datagram Protocol

USB – Universal Serial Bus

Chapter 1

Introduction

Communication networks have been experiencing a great development over the past few

years. One of such areas is the area of “The Internet of Things”, where embedded “smart

objects” devices are becoming an important part of the Internet. Wireless Sensor Networks

(WSNs) is one area with an immense potential in future applications. Industrial “machine

health” monitoring and automation, environmental monitoring of areas such as volcanos and

forests, personal healthcare devices, tracking devices for objects and people and smart

energy metering applications are examples of areas where the “Internet of Things” and WSNs

can be applied.

Wireless Sensor Networks consist of several small and highly power-efficient (often

battery powered) wireless devices capable of communicating sensor data using low-power

and low-bandwidth links often in an autonomous fashion, through a root or a sink node. Since

the 1990s until early 2000s several proprietary wireless and low-power networking

technologies have surfaced, but it was only in 2003 that the Institute of Electrical and

Electronic Engineers (IEEE) released the first low-power wireless personal area network

(WPAN) standard: IEEE 802.15.4, defining the Physical and Medium Access Control layers from

the OSI model. Based on that standard, ZigBee Alliance developed its own specification for

the higher layers, providing commercial wireless embedded networking solutions for various

areas. Other specifications based on IEEE 802.15.4 have surfaced as well, such as ISA100.11a

and WirelessHART. However these proprietary solutions still have problems regarding the

scalability and Internet Integration. IP is the de-facto Internet layer protocol widely used in

the Internet today, and most of the WSN solutions didn’t provide IP support, often using

special designed gateways to provide interoperability across WSNs and outside networks. With

the appearance of IPv6 and the 3.4×1038 different addresses it supports, the addressing space

to support billions of embedded devices is now available. However, the complexity of

providing IPv6 for highly memory and processing constrained devices has become a

formidable challenge. IETF has assigned two different task groups to integrate IPv6 on WSN

devices: 6LoWPAN is the adaptation layer for IPv6 packets on IEEE 802.15.4 MAC messages,

while RPL provides power-efficient routing mechanisms.

2 Introduction

2

Beside closed-group commercial solutions, there are other “open source” solutions

regarding WSNs. Operating systems for embedded devices such as TinyOS and Contiki are

open-source and provide implementations of the IEEE 802.15.4, IETF 6LoWPAN and RPL

routing for several different memory and power constrained devices. These approaches offer

more freedom in developing solutions for specific network requirements.

Recently there’s been an adaptation of IEEE 802.11 protocols towards WSNs. While Wi-Fi

devices are targeted for non-power restricted and high data-rate, reliable networks,

traditional Wi-Fi devices were not an efficient solution to deploy WSNs. However, several

manufacturers have started to produce highly efficient 802.11 compliant devices, with

power-consumptions close to the IEEE 802.15.4 counterparts, with the higher data-rates and

the mature interoperability of IEEE 802.11 devices. Although this “low-power WiFi” is still a

very recent technology and not fully tested, it is an interesting alternative that will be more

described in the next chapters.

This Dissertation will cover two different analyses. The first is a confirmation of

simulation results by Mohammad Abdellatif covered by his paper, while the second problem

addressed relies on the Contiki Operating system communication stack and how its

parameters affect the communication performance for TCP through HTTP requests and ICMP

messages. Chapter 2 is dedicated to the state of the art research, being divided on two

different sections. The first section describes some solutions found that are able to tackle the

Dissertation’s problems, while the second section describes the technologies that are behind

those solutions. Chapter 3 and Chapter 4 cover the Dissertation different projects. Chapter 3

is related to Mohammad Abdellatif’s Ph.D work on the Self-PVP Project, in which three data

collection techniques are analyzed, while Chapter 4 covers the Smart Electric Counters

Project. Both chapters are divided in three different sections, one for the system description,

another for the methodology followed for proceeding with the tests, and the final section

providing the results and discussion. Finally, Chapter 5 concludes and suggests future work.

Chapter 2

State of the Art

2.1 Solutions Research

In this chapter, some commercial solutions to address the Dissertation objective will be

listed and detailed. On the first part, solutions using open source Operating Systems on motes

operating in IEEE 802.15.4 standard will be addressed, such as Contiki and TinyOS. The

second part will compare the 6LoWPAN and RPL implementations of the former sensor nodes

operating systems. The third part will detail some commercial solutions found using low

power WiFi architectures. Finally, the last part in this chapter will briefly mention other

solutions available using other technologies such as ZigBee.

2.1.1 Contiki+6LoWPAN+RPL

Contiki is an open source operating system designed for memory-constrained devices,

from embedded microcontroller systems to wireless sensor network motes. Its development

was started by Adam Dunkels of the Networked Embedded Systems Group at the Swedish

Institute of Computer Science (SICS), and since then several other developers worked on the

OS to provide it several new features.

The Contiki OS general features are as follows:

 Full IPv4 and IPv6 support for IP communication, using the uIPv6 Stack.

 It has a multitasking kernel, with support for multithreading programming using

pre-emptive multithreading and protothreads.

 Power efficient radio and network mechanisms, 6lowpan header compression, RPL

routing and CoAP application layer protocol.

 Included applications such as an HTTP server and Telnet client

4 State of the Art

4

 Supports several simulators such as Cooja, to aid in the software development

and debugging process.

 A proprietary file system for data storage

Figure 1 - The Contiki Architecture

The 6LoWPAN implementation for Contiki OS is called SICSlowPAN, being based on

RFC4944, as well as draft-hui-6lowpan-interop-00 “Interoperability Test for 6LoWPAN”, and

draft-hui-6lowpan-hc-01 “Compression format for IPv6 datagrams in 6lowpan Networks”.

SICSlowPAN is an adaptation layer mechanism[1]. When a Contiki device receives an IPv6

packet, the MAC layer (which is implemented via the RIME protocol) calls SICSlowPAN to

adapt the packets to be used by the IPv6 layer (being implemented by the uIPv6 stack) and

when uIPv6 needs to send an IPv6 packet also calls SICSlowPAN to adapt it for the IEEE

802.15.4 standard MAC frames.

The Contiki version of 6LoWPAN does not provide mesh under mechanisms or route over,

as other 6LoWPAN implementations do, such as B6lowPAN for TinyOS, however SICSlowPAN

provides TCP support (which is not yet defined by the IETF 6lowpan workgroup).[2, 3]

The route over mechanism for Contiki is handled by the RPL implementation called

ContikiRPL. Contiki RPL is based on version 18 of the IETF specification, and implements two

different objective functions: the standard Objective Function 0 which optimizes the hop

count, and the Minimum Rank Objective Function with Hysteresis. ContikiRPL leaves the

actual forwarding of packets to the uIPv6 stack, while providing route tables based on the

different objective functions selected.[4]

2.1.2 TinyOS+6LoWPAN+RPL

TinyOS is another free and open-source operating system developed for embedded

systems with memory-constrained devices, such as IEEE 802.15.4 network motes. Unlike

Contiki, TinyOS has no multi-threading capabilities, being an event-driven architecture.

TinyOS is implemented in NesC, a different programming language based in C, which limits

the portability of the operating system.

Solutions research 5

5

Figure 2 - The TinyOS 6LoWPAN/RPL Stack

The first implementation of 6LoWPAN for Tiny OS was called 6lowpancli, featuring the

HC1 and HC2 header compression, addressing and fragmentation, IPv6 Stateless configuration

and ICMPv6 support. Later Berkeley, from University of California released their

implementation of 6LoWPAN - b6lowpan, usually called blip. Blip is more than a 6lowpan

implementation, it is an IPv6 stack including Neighbor Discovery, support for TCP, UDP,

DHCPv6, has a point-to-point daemon to communicate with Unix machines and is the basis for

the TinyRPL and CoAP implementations. The 6LoWPAN implementation is based on the draft-

ietf-6lowpan-hc-06 “Compression Format for IPv6 Datagrams in 6LoWPAN Networks”, and

also includes both mesh under and route over mechanisms.

TinyRPL is the RPL implementation for TinyOS. Like its Contiki counterpart it is also based

on version 18 of the IETF RPL draft, with the packet forwarding being done by the IPv6 stack,

blip. The routing mechanisms are also performed using the same two Objective functions of

ContikiRPL, the Objective Function 0 and the Minimum Rank Objective Function. Limitations

in the TinyRPL implementation include the non-support for the non-storing mode routing

mechanisms and security options.

2.1.3 Contiki and TinyOS comparison

In this section the Contiki and TinyOS implementations of 6LoWPAN and RPL will be

compared. The following table resumes the main characteristics for the three 6LoWPAN

implementations addressed in the previous section: [2, 3]

Item 6lowpancli B6LoWPAN SICSlowPAN

Operating System TinyOS-2.x TinyOS-2.x Contiki

TCP No Yes Yes

ICMPv6 Yes Yes Yes

Neighbor Discovery No Yes Yes

Mesh Under No Yes No

6 State of the Art

6

Route Over No Yes No (Contiki RPL)

Table 1 - Comparison of 6LoWPAN implementations

 Ricardo Silva et al.[3] realized a study comparing the performance and efficiency for the

three implementations of 6LoWPAN addressed. The experiment consisted in sending UDP

packets with variable length (from 0 to 1024 bytes) on a TelosB mote. The parameters tested

were the time required to send the message, the energy consumed to send the message and

the evolution of ROM and RAM usage. The results of the time and energy spent can be

confirmed on the figure below.

Figure 3 - Results of tests performed on three 6LoWPAN implementations. At the left, the

time to send an UDP message, at the right, the energy required to send the same
messages.

6lowpancli showed the worst performance, especially since the 128byte UDP packet size,

where the 6LoWPAN implementations started to fragment the packets in order to fit on IEEE

802.15.4 MAC messages. On the other hand, both BLIP and SICSloWPAN performed much

better, with SICSloWPAN for Contiki OS having the best results. Regarding the RAM and ROM

usage, the results achieved showed that the ROM usage kept constant at the various UDP data

lengths. 6lowpancli and blip required between 22Kb and 25Kb respectively, while the

SICSlowPAN implementation required the bigger amount of ROM: 40Kb. For RAM usage the

results remained the same along the increase of the UDP message data length for the

6lowpancli and SICSLoWPAN, with the first requiring 3Kb of RAM and the former about 3.2Kb.

However blip required 4.5Kb of RAM initially and the value kept increasing until 5.5Kb of RAM

for the 1024 bytes UDP messages, being a less scalable implementation in RAM usage. These

tests were also useful to prove that the Contiki/TinyOS applications should avoid sending

packets larger than the MTU defined for IEEE 802.15.4.

JeongGil Ko et al. tested the Contiki and TinyOS implementations of the IETF RPL

protocol[4]. The test was performed using the Cooja simulator, using three different path loss

configurations - no path loss, 50% loss and 100% loss at the edge of the reach transmission

range. In the first phase the performance for Contiki-only and TinyOS-only networks was

tested, on a 40 nodes network (with one sink node). The parameter tested was the packet

reception rate at the sink node, while varying the inter-packet interval of non-sink nodes

transmissions. The RPL objective function used was the standard Objective Function 0. The

results showed that both implementations have similar performance, as can be confirmed in

the figure below:

Solutions research 7

7

Figure 4 - Average packet reception ratios for Tiny RPL (left) and Contiki RPL (right)

In a second phase, the interoperability between Contiki RPL and Tiny RPL was tested.

Several network configurations were considered, always varying the number of nodes of each

operating system - from networks with all TinyOS to networks with all Contiki nodes. The

initial results, using the standard MAC-layer parameter configurations for both operative

systems showed a degradation of the performance in mixed networks, especially when the

path loss was high. However, changing those values to a common value resulted in a

performance improvement.

2.1.4 Low-power WiFi WSN’s

In this section, several commercial solutions using low-power Wi-Fi devices will be

considered. However, since scientific studies regarding those implementations were not

found, the references for this part were all taken from each vendor’s data and white papers.

Although the IEEE802.11 was not intended to operate on LLNs, and is aimed at high data

throughput and power consumption devices, it is a well-established protocol, a mature and

proven technology widely supported, with several enhancements in areas such as Quality of

Service and security, and provides native support for the standard of networking today –

TCP/IP[5]. Many IEEE 802.15.4 network implementations typically do not provide IP routing

and special gateways to translate messages between IP and IEEE 802.15.4 networks are

needed. Techniques such as 6LoWPAN and RPL routing protocol are aiming to cover these

issues, but those are still in development, with current implementations still not fully tested.

With the appearance of very power efficient hardware with full IEEE 802.11 support and

being capable of running in battery powered devices, the so called “low-power WiFi” is also

becoming an interesting alternative for wireless sensor networks.

GainSpan – GS1011 – Ultra Low Power Wireless Single Chip

Gainspan has several products regarding IEEE 802.11 ultra-low-power implementations.

GS1011 is a System on a Chip which implements a low-power variant of the IEEE 802.11b

specification, supporting data-rates up to 11Mbps and being compatible with IEEE

802.11b/g/n networks.[6]

8 State of the Art

8

Figure 5 - GS1011 Hardware description

The device has two 32-bit ARM7 CPUs, one for controlling the IEEE 802.11 radio, another

for network applications. To operate with external sensors or other devices, this model has

several different I/O ports, including UART, PWM and I2C ports. The firmware has support for

several network protocols, including TCP/IP, UDP, SNMP, DHCP, DNS, among others.

Regarding security this solution supports several wireless networks security protocols,

including WEP, WPA/WPA2 Personal and Enterprise, as well as RC4 and AES encryption.

The hardware is designed for power-efficiency, staying most of the time in sleep mode,

consuming very low energy during those times, and flexible enough to switch rapidly between

stand-by and fully operational modes[7].

Parameter Conventional Wi-Fi Low-Power Wi-Fi Units

Power

consumption

Standby ---- <4 µW

Processor + clock

sleep

13 0.2 mW

Data Processing 115 56 mW

Receive sensitivity at 1Mbps -91 -91 dBm

Time to wake from standby ---- 10 ms

Time to wake from processor + clock

sleep

75 5 ms

Table 2 - Comparison of classic and low-power Wi-Fi performance values

Gainspan solutions use a modified version of IEEE 802.11b. Besides being less complex and

cheaper to manufacture, IEEE 802.11b has better power-saving performance. Data sent at the

minimum data rate in IEEE 802.11b (1Mbps) has a greater range and sensitivity than the

minimum data rates of IEEE 802.11g and n[8]. This characteristic can be used to extend the

batteries lifetime: in order to achieve the same range as IEEE 802.11g/n, the messages may

be transmitted with less power. Although this solution supports data rates up to 11Mbps, in

wireless sensor networks such data-rates are not needed. The modification of the IEEE

802.11b standard used by Gainspan relies in the size of the inter-frame space interval used in

CSMA/CA mechanisms. In Gainspan solutions, the slot interval is reduced from 20µs to 9µs,

the same value used in IEEE 802.11g networks. The reason behind this modification relies on

how the mixed IEEE 802.11b and g networks perform. In the presence of IEEE 802.11b

Solutions research 9

9

devices, IEEE 802.11g devices use IEEE 802.11b slot intervals to communicate with 11b

devices. Using 11g slot times, the maximum throughput in a mixed b and g network can be

maximized.

Redpine Signals – SenSiFi 802.11n Sensor Network Module

Redpine Signals has several products with low-power WiFi technology. The SenSiFi module

(referenced as RS9110-N-11-31) is a sensor node compatible with IEEE 802.11b/g/n

specifications, while only operates on a single stream for IEEE 802.11n with a maximum data

rate of 65Mbps. The SenSiFi module also implements IEEE 802.11i specifications for Wireless

security, such as AES encryption, WEP, TKIP, WPA and WPA2[9].

Figure 6 - Redpine Signals SenSiFi hardware architecture

The module includes several I/O ports to connect to external sensor interfaces, such as

I2C, DAC and SPI ports.

Its own microcontroller implements an embedded Real Time Operating System for

application development, as well as networking protocols support. It natively supports TCP,

UDP, IPv6 and ARP, and can be configured via wireless or through the UART port. Redpine

Signals states that the SenSiFi module has a battery performance of over 3 years, while

uploading IPv6 data every 2 minutes. Redpine Signals use IEEE 802.11n specification as the

standard for sensor networks due to the specification higher PHY and MAC layer efficiency, as

well as the longer range IEEE 802.11n provides. The enhancements brought by IEEE 802.11n

reduce the time taken to transfer a given amount of information, increasing the battery life-

time[10].

2.1.5 ZigBee device: Bytesnap ZMM-01

ZigBee is a low power, low cost networking standard designed to operate on LLNs, being

based on IEEE 802.15.4 PHY and MAC layer specifications. ZigBee is maintained by ZigBee

Alliance, a group of companies which published several application profiles regarding many

10 State of the Art

10

different areas, from Home and Building Automation, Health Care to Smart Energy control

and metering. One of the many companies releasing ZigBee Certified Products is Bytesnap.

The ZMM-01 device is a ZigBee Smart Energy module, designed to act as metering electric

device and controller for several different application scenarios[11].

Figure 7 - Bytesnap ZMM-01 Device

 ZMM-01 features an ARM Cortex-M3 32bit processor with 12KB of RAM and 192KB of flash

memory, several ports for external communication with other devices (UART, I2C, SPI), low

power consumption and is capable of sensing several different parameters: Voltage and

Current Measurement, Active, Reactive and Apparent Power, Phase compensation,

temperature, among others. Regarding communication capabilities, ZMM-01 supports the full

ZigBee 2.4GHz band, with a maximum of 250kbps data rate, as well as being IEEE 802.15.4

2003 compliant, featuring hardware AES-128 encryption.

Technologies research 11

11

2.2 Technologies research

In this chapter the technologies behind the solutions addressed in the previous chapter

will be described in more detail. IEEE 802.15.4, 6LoWPAN and RPL Routing Protocol are

technologies relevant to the Contiki solution, while IEEE 802.11 refers to the low-power WiFi

solutions. Other technologies such as ZigBee will also be described, although with less detail.

2.2.1 IEEE 802.15.4-2006

IEEE 802.15.4 is a standard defined by IEEE especially designed to operate on Low Rate

Wireless Personal Area Networks. It focuses on providing low cost, short-range, low power

and low speed communication for a ubiquitous sensor network. IEEE 802.15.4 defines both

the PHY and MAC layers according to the OSI model, while the upper layers are out of scope

for this standard, being defined by other architectures such as ZigBee, ISA100.11a,

WirelessHART or MiWi.

The standard defines two different types of nodes: a full-function device (FFD) and a

reduced-function device (RFD)[12]. RFDs are very basic nodes with little processing and

memory resources, therefore only act as end-systems in the network. RFDs don't implement

many of the standard functionalities, being able to communicate only to FFDs. FFDs are

devices with more capabilities and are able to fully implement the standard. FFDs can

communicate with both FFDs and RFDs and can act as coordinators (PAN or full network

coordinators).

IEEE 802.15.4 also defines two different topologies to be used: star topology and peer-to-

peer topology. In the star topology, all the devices connect to a single central FFD, which

serves as a PAN coordinator. A PAN coordinator must always be a FFD which can control the

network topology, coordinate node traffic and store routing information. Each PAN must have

its own identifier. Each device on each PAN must also have their own 64bit identifier,

however in some restricted PANs shorter 16-bit addresses may be used[13].

Figure 8 - Basic topologies for 802.15.4

In the peer-to-peer topology a more complex approach is considered. In this case, each

node can communicate with each other within their radio range (except for RFDs, which act

as leafs of an FFD). These peer-to-peer networks can also be ad-hoc, self-organizing and self-

healing. From p2p topologies more complex topologies can be implemented. The standard

mentions cluster tree topologies, where the nodes associated with each coordinator are

12 State of the Art

12

arranged in a tree by establishing parent-child relationships[12]. The coordinators then

connect to other coordinators forming a more complex topology. In these cluster trees a full

network coordinator is required, and usually is the device with more computational

resources.

Figure 9 - Cluster tree topology for 802.15.4

Concerning the physical layer (PHY), IEEE 802.15.4 operates on one of the three possible

frequency bands:

 868.0-868.6 MHz (Europe)

 902-928 MHz (North America)

 2400-2483.5 MHz (Worldwide)

The 2006 standard specifies four different PHY operating modes which are listed in the

following table[12]:

Table 3 - PHY modes for 802.15.4-2006

Optional PHYs were introduced in the 2006 edition of the standard, providing higher data

rates, with the tradeoff of adding more complexity to the hardware. The devices start

operating in a specific PHY mode. When operating in the 868/915 MHz bands using one of the

optional PHYs, the devices must be able to switch dynamically between the optional and

Technologies research 13

13

regular operating modes. Furthermore, standard revisions 4a, 4c and 4d were released with

several additional PHY operating modes and frequencies [14-16].

The MAC sublayer provides both MAC Data and MAC Management services, with features

such as channel access, association and dissociation of the nodes in the PAN, beacon and

Guaranteed Time Slot (GTS) management, frame validation and acknowledgment. The MAC

sublayer also provides the upper layers with tools to provide security mechanisms, such as

AES-128.

The standard supports two operation modes, namely the beacon-enabled mode and the

non-beacon enabled mode. The first uses the superframe structure, which can have both

active and inactive portions. The superframe is bounded by beacons, sent by the PAN

coordinator in order to synchronize the network nodes and define the superframe structure.

The active portion of the superframe may be divided in Contention Access Period (CAP) and

Contention Free Period (CFP). In the CAP the devices use a slotted CSMA/CA algorithm to gain

access to the channel, while in the CFP there are GTS for the devices to use. CFP is used by

devices with specific bandwidth and latency requirements. The inactive portion of the

superframe is a measure to enable the nodes to enter a coordinated power-saving mode. The

non-beacon enabled mode is entirely based on contention access, using unslotted CSMA/CA

algorithms to gain channel access[12, 17].

The communication between nodes is made by using four different frame types: beacon

frames (for beacon enabled PANs only), MAC commands, MAC data and the optional

acknowledgement frame. Figure 11 illustrates the typical sequence of message exchanges for

the case of a node requesting data from a coordinator:

Figure 10 - Communication in a beacon enabled PAN

The case where a node wants to send data to the coordinator is simpler, where the node

simply sends a Data frame after running its contention based or free algorithm, and the

coordinator may send an acknowledgement frame afterwards. In the case of peer-to-peer

topologies, the nodes may use unslotted CSMA/CA to communicate with each other, or other

synchronization mechanisms, which were not defined by IEEE 802.15.4.

14 State of the Art

14

2.2.2 6LoWPAN

6LoWPAN is a standard defined by IETF which infers to IPv6 over Low power Wireless

Personal Area Networks. It was developed to adapt IPv6 communication on top of IEEE

802.15.4 networks. The IPv6 protocol is the successor of the older IPv4 protocol and while it

was primarily developed to solve the inevitable IPv4 address exhaustion (IPv6 has a 128bit

address range as opposed to IPv4’s 32bit), it introduced several new features and redesigns.

IPv6 was developed in the context of high powered devices and capable networks. However,

the IEEE 802.15.4 is the total opposite, operating on LLNs with very low powered and

constrained devices. Integrating all the IPv6 features on such constrained networks

represents a formidable challenge that is still currently being addressed by the IETF

workgroup 6lowpan. 6lowpan already released three RFCs defining the 6LoWPAN protocol,

and 4 more drafts are being developed to extend the 6LoWPAN capabilities, such as

implementing adapting IPv6 Neighbor Discovery mechanisms, or even adapting 6LoWPAN to

Bluetooth networks.

6LoWPAN networks are stub networks, usually operating on the edge of the network, with

the communication with normal IP routers for outside networks being done by one or more

edge 6LoWPAN routers using common backbone links. The simplest case of a 6LoWPAN

network is the ad-hoc network. With no connectivity to outside networks there is no need of

an edge router. Edge routers may implement several transition mechanisms to connect

6LoWPAN networks to other IPv4 networks [18, 19]. 6LoWPAN hosts only "talk" to 6LoWPAN

routers, like in a standard IEEE 802.15.4 architecture, where RFDs only talk to FFDs.

Figure 11 - 6LoWPAN Architecture

RFC4944 defines the transmission of IPv6 packets over IEEE 802.15.4 networks, describing

several mechanisms such as IPv6 header compression and packet fragmentation. Since the

minimum required Maximum Transfer Unit (MTU) size in IPV6 networks is 1280 bytes and the

maximum size for a IEEE 802.15.4 packet is just 127 bytes (which reduces to 81 bytes if not

counting overheads), techniques for header compression and message fragmentation must be

used to adapt IPv6 communication to and from 802.15.4 devices. Fragmentation is achieved

Technologies research 15

15

with the inclusion of a fragmentation subheader in the messages, including fields such as

Datagram Tag and Datagram offset, which are used to identify the set of unfragmented

payload the fragments belong, or the offset of the fragmented packet within the

unfragmented payload, respectively. Even if 6LoWPAN has message fragmentation

mechanisms, the applications should not allow the transmission of big packets that require

fragmentation, due to performance issues. Since the target environment of operation are

lossy networks, the loss of a fragment means the retransmission of the full packet[19].

The addresses in IPv6 consist of a 64 bit prefix, which is common to all the devices in the

network, and a 64 bit Interface ID. RFC4994 introduced the concept of IPv6 header

compression (HC1) and UDP header compression (HC2). Regarding the address compression,

the prefix is known to all the devices and therefore is elided, and the IDs are also elided for

link-local communication. A standard UDP/IPv6 header is 48 bytes long, using both HC1 and

HC2 mechanisms the header is compressed to only ~7 bytes, considering the simplest case

where a datagram is sent inside the PAN, using the 16-bit addresses. However, outside of the

unicast link-local scope the HC1 and HC2 mechanisms do not efficiently compress the

headers. In a link-local multicast IPv6 header the full destination address must be included,

bringing down a ~23 bytes long header in the best case. When communicating with an outside

node, the header must include the source prefix and the full destination address, resulting in

a ~31 bytes long header[20].

To address this problem, RFC6282 introduced new header compression mechanisms,

called IPHC (IP Header compression) and NHC (Next Header Compression). IPHC is used to

efficiently compress fields in the IPv6 header such as Traffic Class, Flow Label, Hop Limit and

uses shared context information to elide the prefix from IPv6 addresses. NHC uses a similar

mechanism to compress UDP headers, however it allows future definitions of arbitrary next

header compressions. Using RFC6282 mechanisms, the UDP/IPv6 headers can be compressed

down to 6 bytes in the link-local scope, 7 bytes to known multicast addresses and 10 bytes

with global addresses[20].

Figure 12 - RFC6282 Header compression example

16 State of the Art

16

Another of the 6LoWPAN features is the network autoconfiguration using neighbor

discovery, which is currently being defined at the draft-ietf-6lowpan-nd [21].

Like in normal IPv6 networks, Router Advertisement messages are sent to automatically

propagate router information across the 6LoWPAN network. Hosts may also send Router

Solicitation messages to requests RA's. Hosts then can send Neighbor Solicitation messages

with Address Registration Option to register their addresses to routers. 6LoWPAN routers may

also send a special type of NS messages to edge routers to perform Duplicate Address

Detection, with the use of the ICMP messages DAR and DAC [22].

Neighbor Solicitation and its response Neighbor Advertisement can also be used to obtain

the address of a neighbor or verify its availability.

Figure 13 - Typical Neighbor Discovery message exchange

Regarding routing and packet forwarding functions, there are two alternatives to be

considered: Mesh Under and Route Over. Mesh under methods do not perform any IP routing

inside the LoWPAN, instead using layer 2 functions such as IEEE 802.15.4 to perform the

multi-hop forwarding [23]. It emulates a single broadcast domain, abstracting the multi-hop

network where all devices are just one IP hop away from each other, but several link-layer

hops may be needed to interconnect the devices. However, IETF didn’t develop any mesh

under routing protocols. In the route-over mechanisms, the routing functions are performed

on the network layer, with each node acting as an IP router, and each link-layer hop as a

single IP hop. 6LoWPAN supports several route-over routing protocols, such as mobile ad-hoc

network protocols like AODV and DYMO. However, these protocols are not optimized to

operate on LLNs, therefore the IETF created the workgroup ROLL (Routing Over Low Power

and Lossy Links) to address that issue, with the RPL protocol as a solution.

2.2.3 RPL

Routing Protocol for Low Power Lossy Networks (RPL) is a routing protocol specification

being designed by the IETF workgroup ROLL, with the purpose of implementing an IPv6

routing protocol optimized to work on LLNs, across several link layer specifications, including

Technologies research 17

17

IEEE 802.15.4 with 6LoWPAN [24]. Its main focus is the many-to-one traffic, where nodes

periodically send information to a couple of data sinks or border routers to connect to outside

networks, which is this Dissertation network topology. RPL is a distance-vector based routing

protocol, building a Destination-Oriented Directed Acyclic Graph (DODAG) at the border

router. The DODAG uses a set of metrics and constraints with an objective function in order

to build the best path, such as latency or power-consumption optimization routes. RPL has a

default objective function “Objective Function 0” which optimizes hop count. The devices

may use different DODAGs for different types of traffic, therefore providing some QoS over

the network [25].

Figure 14 - RPL Architecture

The DODAG building process is done using some ICMPv6 control messages, such as DIO

(DODAG Information Object), DIS (DODAG Information Solicitation) and DAO (DODAG

Advertisement Object). On a multipoint-to-point configuration, the route building process

starts as a root node (usually a Border Router) which delivers DIO messages with the DODAG

parameters to its neighbor nodes. Each node then processes the DIO message and decides to

join the parent using those parameters described in the DIO message or not. If the device is

configured to serve as a router, it then calculates its own rank among the path and sends an

updated DIO message to its neighbors [25, 26]. The rank is used to locate the device on the

hierarchic position on the tree topology – the greater the rank, the deeper in the tree. If the

node is a leaf node it simply joins the DODAG route and doesn’t send any DIO message. These

procedures are repeated with each node selecting its parents, and updating that information

with a new DIO message. With this algorithm, each node has a route to its parent and the

traffic can be sent to the data sink or border router in a hop-by-hop approach. To avoid the

formation of loops, the nodes cannot choose a parent which has a greater rank (lower in the

network), neither attempting to move deeper in the tree in order to increase the number of

parents.

18 State of the Art

18

Figure 15 - RPL Node Rank

RPL also supports other types of topologies, including point-to-point and point-to-

multipoint communication. Regarding the point-to-multipoint communication, RPL provides

two different techniques, one which the nodes store a routing table and another mode where

no routing tables are stored by the nodes. However, those modes of operation cannot be

mixed inside the same DODAG. The storing mode is accomplished by the use of DAO messages

sent by the nodes to their parents during the DODAG build phase. The DAO messages include

parameters such as the reachability toward the lower nodes, in order to compute a routing

table to support the downlink traffic. Since the LLN nodes may be devices with severe

memory constrains, those nodes do not support the maintenance of large routing tables. To

address this issue RPL also supports a non-storing mode. In this mode the nodes send DAO

messages to their parents up until the root. The root then computes and maintains a routing

table to each node in the DODAG. When the root wants to deliver a packet to a node, it

includes its route in the source routing header and sends it to the next child node. Each child

node examines that field to know the next hop until the packet reaches the destination.

While this mode of operation is better for memory restrained devices, it has the tradeoff of

having a larger overhead.

Point-to-point traffic is still being optimized by the workgroup, at the draft [27]. The

standard communication is performed in the following way: when a node needs to

communicate with another node in the tree, the packets first travel upward in the topology

tree trough the node’s parents, until a common “ancestor” is found. Then the packets travel

downward the tree until the destination. This is not an efficient way to route packets and

may cause congestion near the parent nodes. The solution found by ROLL group was to

develop a new temporary DODAG topology for point-to-point communications. The DODAG is

started by the sender node via DIO messages including information such as the destination

address and if the communication must be bi-directional. The neighbor nodes then replicate

the DIO messages as in a standard RPL route discovery until it reaches the target. The target

then analyses the parameters and constraints of the route and if it accepts the route sends

back a Discovery Reply Object message (DRO) to the origin of the route for each route found.

The applications then decide on the best route to use.

Regarding topology repair, RPL implemented two mechanisms: local and global repair.

When a node detects that one of its neighbors has failed and the node has no route “up in the

Technologies research 19

19

tree”, a local repair is executed on that node to find an alternate route, with no implications

to the global topology. However, successive local repairs may lead to a non-efficient tree

topology, and the root may perform a global repair, reshaping the entire tree [25].

2.2.4 IEEE 802.11

IEEE 802.11 is a standard for wireless local area networks, firstly released in 1997 with

several revisions being released throughout the years. It is the main wireless technology being

supported today. 802.11 networks may operate on two different architectures: infrastructure

and ad-hoc. In the infrastructure architecture, the devices are connected to a common

Access Point device which is connected to a wired network, while in the ad-hoc mode the

stations communicate directly without the need of an intermediate coordinator.[28]

Figure 16 - IEEE 802.11 Operation modes

Regarding the PHY layer, the initial version of the IEEE 802.11 protocol specified three

different PHY modes, using Direct Sequence Spread Spectrum, Frequency Hopping Spread

Spectrum, and Infrared Techniques, with data rates of 1 and 2 Mbps and operating in the

frequency band of 2.4GHz. With the release of IEEE 802.11a and IEEE 802.11b, new PHY

modes were specified. IEEE 802.11b still operates in the 2.4GHz band, using a variant of DSSS

with Complementary Clock Keying, with a maximum data rate of 11Mbps. IEEE 802.11a uses

Orthogonal Frequency Division Multiplex modulation, at the frequency band of 5GHz,

resulting in a maximum data rate of 54mbps [17, 29]. Both implementations had advantages

and draw-backs: IEEE 802.11a had higher data rates due to a better modulation technique

20 State of the Art

20

and operating on a higher frequency band, however IEEE 802.11b had higher transmission

ranges. IEEE 802.11g was the next specification, which also works in the 2.4GHz band and is

able to use the modulation techniques of IEEE 802.11a, having a maximum data rate of

54Mbps, besides being compatible with the older IEEE 802.11b devices. While the theoretical

maximum data rate is the same of IEEE 802.11a, IEEE 802.11b and g devices suffer from

interference from other devices operating in the same 2.4 GHz band, such as Bluetooth and

IEEE 802.15.4 devices, cordless phones or even microwave ovens, which degrades the

performance [30]. Another disadvantage is that in the 2.4GHz band there are 3 non

overlapping channels of 20/22MHz to be used (IEEE 802.11g/b), while in the 5GHz band there

are 13 non overlapping channels of 16.6MHz wide. IEEE 802.11n was specified in 2009 and

addresses some of these issues, introducing the support for Multi Input, Multiple Output

(MIMO) Antennas. While in other IEEE 802.11 specifications only the best signal received by

the antennas was processed and sent to the MAC layer, MIMO algorithms enable the

simultaneous processing of multiple received signals. This also enabled the use of spatial

multiplexing, where multiple data streams can be transmitted at the same time using the

same channel, being recombined by the receiver’s MIMO antennas. This enables IEEE 802.11n

to have a maximum theoretical data rate of up to 600Mbps. IEEE 802.11n operates either at

the 2.4GHz or 5GHz band and does channel bonding, combining two adjacent channels and

increasing the bandwidth. 11n also has shorter guarding intervals (interval between

transmitted symbols), half of the 800ns used in the previous specifications [31]. These shorter

intervals increase throughput, however may also increase the inter symbolic interference.

IEEE 802.11 Protocol Operation Frequency Modulations used Maximum data rate

802.11 legacy 2.4GHz DSSS, FHSS 2Mbps

802.11a 5GHz OFDM 54Mbps

802.11b 2.4GHz DSSS 11Mbps

802.11g 2.4GHz OFDM, DSSS 54Mbps

802.11n 2.4GHz / 5GHz OFDM 600Mbps

Table 4 - IEEE 802.11 protocols comparison

Regarding the MAC Layer, IEEE 802.11 defined several Medium Access Control algorithms.

MAC-DCF (Distributed Coordination Function) using CSMA/CA is the mandatory access method,

while the optional variation with RTS and CTS commands may be used to address the hidden

node problem. There is also the option to use a MAC-PCF (Point Coordination Function)

mechanism, where the traffic is polled by the Access Point, useful for time-bounded data

service, but rarely used.

In a CSMA/CA environment, each device must sense if the network is not being used.

After waiting an Inter-Frame Space (IFS) interval, if the medium is still free, the device sends

the data. However, if the medium got busy while the station was waiting, the waiting timer is

suspended. The station must wait for the medium to become free, plus the IFS interval and a

random contention period, used to ensure an equal access to the medium for all devices [17,

29].

Technologies research 21

21

Figure 17 - The hidden node problem

To address the problem of the hidden node, a MAC-DCF variation using RTS and CTS

messages was introduced. Here the nodes send a RTS message to request the medium for a

given time (after waiting an IFS time), the Access Point then replies with a CTS message

granting the access to the medium for a given time interval. All the nodes in the

infrastructure network receive this CTS message and become aware of the time the medium

will be busy, even if they’re hidden to the transmitter node.

2.2.5 ZigBee

ZigBee is a wireless communication standard proposed and maintained by ZigBee Alliance,

with the purpose to satisfy the need of the creation of low cost and low power machine to

machine networks. ZigBee is based on the IEEE Standard 802.15.4 (2003 version), using both

PHY and MAC layers, along with proprietary upper layer architectures [32]. ZigBee Alliance

introduced several different products on the areas of home and building automation, medical

monitoring, energy metering, along with several others still in development. All those

solutions use a standard architecture which will be described in this section.

Figure 18 - Zigbee Stack Architecture

22 State of the Art

22

A ZigBee system may be comprised by three different devices: ZigBee Coordinator (an

analogy to the IEEE 802.15.4 PAN Coordinator), ZigBee Router (IEEE 802.15.4 FFD

Coordinator) and ZigBee End Device (IEEE 802.15.4 RFD). There must be only one ZigBee

coordinator which is the device responsible for forming and managing the entire ZigBee PAN,

as well as serving as bridge or gateway for other networks. The ZigBee Coordinator may also

serve as a ZigBee Router after the network is formed. The ZigBee routers are intermediate

routers which can discover and associate with other ZigBee Routers, or the Coordinator and

participate in the multi-hop routing of messages. The ZigBee Routers are also responsible to

manage their child ZigBee End Devices. The End Devices have reduced capabilities, being only

able to associate with a single parent ZigBee Router or Coordinator, not participating in

routing. This allows them to operate on very low power and spending the majority of the

time idle, maximizing the battery life-time. ZigBee supports star, mesh and cluster tree

network topologies, as defined by IEEE 802.15.4 [33].

The process of network initiation is started by the ZigBee Coordinator, which first scans

the medium for other wireless networks, then for other IEEE 802.15.4 networks. After this

step, a channel selection is made based on noise level and other PANs, and an unused PAN id

is selected. The coordinators store a stack profile describing the network parameters. Other

ZigBee routers discover the PAN via an active scan and may join the network based on the

stack profile. ZigBee Routers and End Devices select the highest acceptable router with

better link quality, and an address in the network is allocated. In a cluster tree topology, the

address is based in the tree level location. ZigBee Routers maintain a table of reachable

devices in the neighborhood. When a ZigBee Router needs to communicate with another

node, it may send the message directly to the destination, if it is a reachable neighbor.

Otherwise, it must resort to Tree Routing, forcing the messages to go up in the tree until a

common parent is found, and then going down the tree until the destination. In mesh

topologies, a simplified version of AODV protocol is used to build the topology and find routes

to the nodes [34].

In 2007 a specification revision was released called ZigBee Pro. Along with this revision

several enhancements were introduced. Since mesh routing algorithms may require large

routing tables, which may be infeasible for low power devices, the concept of Many-to-One

and Source Routing were introduced. The concept of Many-to-One is useful when the nodes

need to send data to a single concentrator in the network, although multiple concentrators

may exist. The implementation of this technique enables the nodes to send data to a

concentrator via a single routing table in every device. Source routing is the opposite, where

concentrators can reply back Many-to-One data without additional routing table entries [33].

Regarding security, standard ZigBee implementations support security either at the

network and application layers, using AES-128 symmetric key encryption and authentication,

in addition with optional hierarchic keys. ZigBee Pro refined the authentication and

encryption mechanisms, introducing peer-to-peer encryption at the link-layer. ZigBee is

developing a 2.0 version of the ZigBee Smart Energy specification, which will enable IP

communications within the network. Standard ZigBee implementations must use a special

gateway in order to communicate with IP networks.

Technologies research 23

23

2.2.6 Advanticsys MTM-CM5000-MSP sensor mote

The Crossbow TelosB is an open-source platform developed by University of California,

Berkeley [35]. It provided a very power efficient sensor mote, equipped with the Texas

Instruments MSP430 micro-processor, the IEEE 802.15.4 compliant Texas Instruments CC2420

RF chip, 8 ADC channels for sensing data, sensors for temperature, light and humidity, as well

as several interface ports. USB support is also provided, for an easier programming

environment or communication with a PC. The TelosB is an architecture that is widely

supported for both TinyOS and Contiki OS applications, as well as the Cooja simulator.

Figure 19 - Block diagram for TelosB general architecture

Advanticsys MTM-CM5000-MSP is one of the TelosB architecture produts available on the

market, being the platform chosen to carry on the tests on this Dissertation. The following

table resumes the technical specifications of the product [36]:

Processor Texas Instruments MSP430F1611

Memory 48KB ROM

10KB Data RAM

1MB External flash memory

ADC 8 channels with 12bit resolution

Interfaces USB, UART, SPI, I2C

RF Chip Texas Instruments CC2420

24 State of the Art

24

Frequency

Band

2.4GHz ~ 2.485GHz

Sensitivity -95dBm

Transfer Rate 250Kbps

RF Power -25dBm ~ 0dBm

Range ~120m(outdoor), 20~30m(indoor)

RF Chip Current

Draw

RX: 18.8mA TX: 17.4mA Sleep

mode: 1uA

Included

Sensors

Hamamatsu S1087 Light Sensor

Sensirion SHT11 Temperature and

Humidity sensor

Dimensions 81.90mm x 32.50mm x 6.55mm

Weight 17.7g (without batteries)

Table 5 - Advanticsys MTM-CM5000-MSP general characteristics

 Although it doesn’t provide any electric current or voltage sensor required for the scope

of this Dissertation, it provides several serial interfaces to connect to a separate hardware

part designed for that task. There are also several ADC programmable channels available to

be used, which could also convert analog electrical-sensing data to digital values for data

collection.

System description 25

25

Chapter 3

Self-PVP Project

3.1 System Description

As mentioned before, one of the main objectives regarding this dissertation is to validate

the simulation results from Mohammad Abdellatif’s et al SELF-PVP paper [37]. SELF-PVP,

which relates to “Self organizing power management for photo-voltaic power plants”, is a

project concerning the implementation of a large photovoltaic power station, equipped with

smart photovoltaic panels, capable of sensing local variables and communicating among each

other to optimize the general performance of the solar panels arrangement. Mohammad

Abdellatif’s work scope relies in the implementation of a scalable and self-organizing

communication solution for such a large wireless sensor network.

The main system architecture is comprised of a grid network with approximately 200000

solar panels, scattered across an area of 2.5km2, in which each solar panel acts as a node in a

wireless sensor network, having attached a IEEE 802.15.4 compliant sensor for sensing and

communication purposes.

Figure 20 shows how the topology is considered for this SELF-PVP scenario. The nodes are

displayed in a matrix, in which column operates at a different frequency to avoid

interference. Each node has a given transmission range in order to have only 2 neighbours

directly connected to it, and all nodes must send their sensor data to their respective column

root. Alongside each column sub-network, there is a central line sub-network, operating at a

different frequency than any of the columns, which connects all column roots to a central

core network root. The information is sent across the nodes via UDP messages, operating in

an IPv6 environment, using protocols such as 6LoWPAN and RPL routing.

26 Self-PVP Project

26

Figure 20 - System Topology

Three different techniques were presented in Mohammad Abdellatif’s paper to implement

the data collection, with each one being tested 10 times in the Cooja simulator, using

different parameters such as number of nodes in the column and offered load.

Technique 1 consists in having all the nodes in the network to send sensing information

towards the sink node at a constant rate. In Technique 2, the column root nodes send a

broadcast poll to their neighbours, requesting the data. In this case the nodes send the data

towards the root before forwarding the poll to their further neighbour. Technique 3 sends

two different polls for each side of the network, waiting for all the data to be collected from

one side of the network before sending the poll to the other side.

In this dissertation, a small network was initially planned to be deployed in the INESC-

Porto building in order to perform similar tests to validate Mohammad Abdellatif’s

simulations results [37], which will be addressed in the next sections.

Methodology 27

27

3.2 Methodology

The sensors used in the experiments were the Advanticsys MTM-CM5000-MSP motes,

described in the section 2.2.6. The motes are based on the Tmote Sky configuration, and the

Contiki OS 2.5 release was used. The PHY layer used was IEEE 802.15.4, among the nullRDC

MAC layer implementation. This MAC layer implementation enables the nodes to be “awake”

at all time, in order to reduce packet loss and delay in the data transmission process. As in

Mohammad Abdellatif’s SELF-PVP paper, the CSMA-CA mechanism with no acknowledgment

messages was also used in order to avoid unnecessary traffic [37].

Sink node

Sensor 3

Sensor 4

Sensor 1

Sensor 2

bbbb::212:7400:13b7:6e7e

bbbb::212:7400:13b7:6437

bbbb::212:7400:13b7:7bf2

bbbb::212:7400:13b7:7c91

bbbb::212:7400:13b7:6426

Figure 21 - Network topology

For all Techniques, a network composing of a sink node connected to a linux PC and

several sensor nodes was initially planned to be deployed in INESC-Porto. Mohammad

Abdellatif’s original code was modified in order to be adapted for real-life implementations.

This was necessary because in a Cooja simulation environment all the data regarding each

node in the network can easily be obtained. In a real-life implementation, only the data

“printed” by the sink node can be obtained, or else each other node should also be

connected to a linux PC. The changes in the code will be further explained in the different

Technique sections. As in its original paper, the tests for each Technique were performed 10

times, varying the offered load from 1 packet per second, 2 packets per second and 4 packets

per second. The transport layer protocol used for all Techniques is UDP, due to its

connectionless properties. Figure 21 illustrates the network studied in this chapter.

The parameters evaluated on these tests were the average packet loss and average

throughput for each mote sending sensing data. Delay calculations were possible in a Cooja

simulation environment due to all the information being able to be printed and time stamped

in a Cooja log file. In a real-life scenario, such timestamp information is not possible to

obtain since the motes are not synchronized.

In order to get the information from the sink node, the sink node was programmed with

both the Mohammad Abdellatif’s Techniques source code, but as well as the Serial SHELL

application, which enabled to login to the sink node via an Universal Serial BUS (USB) cable.

With this setup, it is possible to see the information at the sink node being printed in a shell

window. For all the tests in this chapter, the tests were performed using this command:

28 Self-PVP Project

28

make login TARGET=sky | tee logx.txt

The login parameter enables the user to access the information being printed in the shell

by the sink node. The TARGET parameter is just an indication to the makefile in order to set

it to a telosB/sky device, such as the one that is being used in this Dissertation. The tee

parameter is used to save everything that is being printed in the shell window to a given log

file. The x value is changed every test.

3.2.1 Technique 1

For Technique 1, all the sensor nodes send the sensing data towards the root node at an

approximately constant bit-rate. In Mohammad Abdellatif’s code, each sensor used a Poisson

distribution in order to randomize the sending of data, but with an expected value close to

the requested offered load. In a multi-hop environment, the intermediate nodes also need to

forward their neighbours data towards the root, as it is illustrated in the figure below.

Figure 22 - Technique 1

For this scenario, due to the randomness in the data delivery by the nodes, several

modifications to Mohammad Abdellatif’s code needed to be done. In order to know if there

were any packet losses, a message counter for each sensor was implemented at the root,

incrementing every time a given message from a sensor was reached. Each node also had a

counter for the number of packages it sent, which was sent alongside the sensor data towards

the root as a sequence number. In the end, comparing the sequence number received for

each node to the counter of packages received stored at the root, the number of packet

losses is easily calculated. But some special attention is needed in this calculation because

when the system is subjected to some stress, the nodes may delay the forwarding of some

packets, causing the sequence numbers to be received out of order. So there must be some

parsing at the end-log in order to find the highest received sequence number for each packet,

instead of using the last sequence number received.

In the simulations, all the sensors were started at the same time, each having a start-up

timer to wait until the network is correctly formed before sending the sensing data. In a real

life implementation, the nodes need to be activated one at a time, which would cause an

increasing delay for each node in the network to start the communication. For this testing

Methodology 29

29

scenario, in order to have the sensors to start sending the sensing data at the same time, it

was implemented a special multicast poll in order to trigger that process. Every time the user

button available on the sink node is pressed, the network map is displayed, with the direct

neighbours identified and all the routes to the sensors in the network, the destination node

and the next hop. If the expected number of nodes is already mapped in the routing table,

then the trigger poll is broadcasted. Otherwise, pressing the button wouldn’t trigger this poll,

printing only the routing table information. The poll is broadcasted to all the neighbours, and

each neighbour starts sending their sensing data towards the root before forwarding the poll

to the next hop.

Figure 23 - Technique 1 initialization

Figure 23 illustrates the Technique 1 initialization. Information of the network is printed

such as the sink node IPv6 address, the routing table with a list of the available sensors IPv6

addresses and the next hop, as well as the direct 1 hop neighbours.

To measure the total throughput, a time window must be considered. Figure 23 shows a

timestamp printed immediately after the sink received the first data packet from one the

nodes. When the sink receives the maximum number of required packets, it prints another

timestamp. The timestamps are given in seconds.

3.2.2 Technique 2

In Technique 2 the sink node sends a broadcast poll to its neighbours to trigger the nodes

sending of the sensing data. Just like Technique’s 1 start poll, the nodes first send their

sensing data towards the root before forwarding the poll to the next hop, in order to avoid

packet collisions. Figure 24 illustrates the scenario.

30 Self-PVP Project

30

Figure 24 - Technique 2

The polls are sent at a constant rate, in order to induce the offered load in the network.

In this case few modifications to the original code needed to be performed. A counter of

received messages per node at the sink needed to be made, as well as sequence number in

the sensor’s data packets, in order to calculate the packet loss per sensor. For the

throughput calculations, the changes performed in Technique 1 code were also applied for

this scenario, with timestamps being printed when the first data packet was received and

when the required number of received packets was met.

3.2.3 Technique 3

Technique 3 differs from Technique 2 in order that a partial poll is sent to each “side” of

the network. The sink node first sends the poll to one neighbor which, in the same process

described in Technique 2, will send the sensing data towards the root before propagating the

poll to the next-hop. The sink then waits until all the information is collected from that side

of the network before sending another poll for the other side, as it is illustrated in the figure

below.

Figure 25 - Technique 3

When porting the original code for real-life experimentations, the same considerations for

Technique 2 apply for this one as well.

Results and discussion 31

31

3.3 Results and discussion

In order to replicate the simulation conditions used by the SELF-PVP paper, the test-bed was

initially planned to be implemented in an open field scenario, with the sensors equally distanced

among each other, and with a limited range in order to force multi-hop communication.

However, due to some bugs in Contiki, it was proven to be very difficult to adjust the

transmitting power and distance among the nodes in order to correctly force the multi-hop

communication. The routing table in the sink node was being incorrectly mapped, especially

with one side of the network, in which the second hop was being incorrectly mapped as a direct

hop towards the sink node, producing wrong and very inefficient results.

Figure 26 - Incorrect routing table

Figure 26 illustrates this case. The second hop on the left, which has an IPv6 address of

aaaa::212:7400:13b7:6426 is incorrectly listed as a direct hop, which shouldn’t be. The code in

the motes was configured for each mote to have only two direct neighbors, in order to force the

multi hop communication. Although the neighbors in the figure 26 are listed correctly, the

“6426” node is listed as a direct hop, thus being a direct neighbor to the sink, instead of being a

neighbor to the “79c1” node. The nodes in the network were equally distributed in a straight

line, and increasing the distance among the nodes caused the second hop on the right (the

“7bf2” node) to become out of reach and the “6426” to be very unstable. Therefore, in order to

prevent this to happen, the transmitting power was reduced to a minimal value which is

approximately -30dBm and the sensors scattered linearly around in a table, distanced among

themselves by approximately 7cm, as can be observed in the picture below.

32 Self-PVP Project

32

Figure 27 - Motes position used to perform the tests in this chapter.

However, even with this special care, the routing table was sometimes being incorrectly

listed just like presented in the figure 26. Even by replacing the sensors, the second hop on the

left always presented the same problem. This is a very serious issue that prevented to have good

results, as can be observed in the next subsections for this chapter. It is a very odd behavior,

since the motes are equipped with a dipolar antenna, which should provide a symmetric

transmission range. Since the motes are all equally distanced among each other, its behavior was

expected to be similar at each side of the network.

There were a considerable number of different approaches, placing the motes in several

different positions, but none solved this issue within the required timeframe available to write

this Dissertation. The problem can also be due to unknown bugs in Contiki itself, instead of being

an hardware problem.

When the number of nodes increases in the network, this problem persists and is even more

difficult to solve. Although with several more sensor positioning attempts, eventually the right

side of the network is able to be correctly configured, but the left side of the network always

had this problem. Due to this problem, the initially planned tests with a 9 node network (a sink

and two lines of four sensors each) had to be cancelled due to time constraints. The results in

the following subsections were results that initially showed a correctly formed network by the

sink node. However, it is possible that the routes change throughout the experiments, which

could be a reason for the unusual results.

The packet loss per node was measured as the number of transmitted packets per sensor

minus the number of received packets at the sink node, and then divided by the number of

transmitted packets by each node. In order to be represented as a percentage, the results are

multiplied by 100.

The average value of the packet loss per node was then calculated by adding all the packet

loss per node calculated at each of the tests, then dividing by the number of tests, which is ten.

Results and discussion 33

33

The throughput per node is calculated by dividing the number of packets received per node

by the test time. The test time was possible to obtain by changing the original sink source codes

to print on the screen a timestamp of when the first data packet from any other mote in the

network arrived, and then another timestamp when the number of received data packets has

reached 4000.

34 Self-PVP Project

34

3.3.1 Technique 1

The tests were performed 10 times, using a network as illustrated by figure 27. The table

below resumes the results obtained for Technique 1, from a data rate of 1 packet per second, 2

packets per second and 4 packets per second.

 2nd Hop 1st Hop 1st Hop 2nd Hop

Avg. Packet Loss

(1 packet/s)

4,063% 2,440% 2,584% 2,505%

Avg. Throughput

(1 packet/s)

1,033621173 1,050744538 1,048661179 1,051007912

Avg. Packet Loss

(2 packet/s)

4,777% 4,598% 4,652% 6,143%

Avg. Throughput

(2 packet/s)

2,008473807 2,011744222 2,009171773 1,981582707

Avg. Packet Loss

(4 packet/s)

8,209% 4,806% 6,551% 9,635%

Avg. Throughput

(4 packet/s)

3,803861702 3,939003341 3,858915685 3,743069824

Table 6 - Packet loss and Throughput results for Technique 1

The table 6 shows that, regarding the average packet loss, despite having some

inconsistencies in the values for all the nodes, the average packet loss increases with the

increase of the packet rate. The figure below illustrates the obtained results for Technique 1.

Figure 28 - Average packet loss for Technique 1

For the packet loss plots regarding Techniques 1, 2 and 3, a middle point with a zero value

was inserted in order to mirror the results from each side of the network. The plot shows that in

some cases there are some inconsistencies such as the second hop on the left having close

Results and discussion 35

35

results for 1 packet per second or 2 packets per second data rates. However expected the

behavior pattern of the packet loss increasing with the hop count and with the data rate is met.

Figure 29 - Throughput for Technique 1

Figure 29 illustrates the obtained throughput for Technique 1. As can be observed, the

throughput measured provided similar results for all the nodes. For the data rates of 1 packet

per second and 2 packets per second, it was observed that the throughput for all the nodes is

very close to the offered load. Regarding the data rate of 4 packets per second, it was expected

that the throughput would be lower, especially towards the further nodes. In this case it is still

close to the offered load.

 1 packet per second 2 packets per second 4 packets per second

Avg. Test time (s) 953,3 499,4 260,7

Table 7 - Average test time for Technique 1

Table 7 lists the average test times in seconds obtained for Technique 1. The values are very

close to the expected. On a data rate of 1 packet per second, it was expected that each node

sent 1000 packets (thus obtaining the required 4000 packets) on 1000 seconds. Since the nodes

send packets via an exponential poisson distribution, it was expected some “randomness” in the

sending of data, which could also contribute for the test times to be longer or shorter.

36 Self-PVP Project

36

3.3.2 Technique 3

Regarding Technique 3, the table below resumes the obtained results for the average packet

loss and throughput.

 2nd Hop 1st Hop 1st Hop 2nd Hop

Avg. Packet Loss

(1 packet/s)

0,089% 0,129% 1,380% 1,498%

Avg. Throughput

(1 packet/s)

0,99593849 0,999108388 0,986132953 0,984946771

Avg. Packet Loss

(2 packet/s)

1,185% 1,124% 2,961% 2,951%

Avg. Throughput

(2 packet/s)

1,95025885 1,967139248 1,937757814 1,936840885

Avg. Packet Loss

(4 packet/s)

0,526% 0,566% 1,148% 1,478%

Avg. Throughput

(4 packet/s)

3,80486106 3,952572025 3,951129093 3,936810673

Table 8 - Packet loss and Throughput results for Technique 3

In Technique 3 several inconsistencies were found after performing the tests. A notorious

pattern can be observed, in which the nodes on the left have better performances than the

nodes in the right. This is very likely to be due to the routing problems that were described

earlier, in which the second hop on the left was being mapped incorrectly as a direct hop. All

the data used provided from tests with a correct routing table shown at the shell window.

However, it is possible that during the tests the sink node changed the routes, thus leading to

inconsistent results. The sensors were placed symmetrically, so it’s very odd to observe this

behavior.

Figure 30 - Average packet loss for Technique 3

Another strange behaviour is the network to perform better when having an offered load of 4

packets per second. Since the tests were performed on different days or different times of day,

Results and discussion 37

37

it is also possible the system to have suffered more interference from other IEEE 802.11 devices,

which operate on the same frequency band of IEEE 802.15.4.

Figure 31 - Average throughput for Technique 3

Figure 31 shows the average throughput obtained for Technique 3. The obtained results

follow a more expected pattern in which the nodes have a throughput close to the offered

lowad. Again, similarly from Technique 1, in the 4 packets per second scenario the throughput is

expected to perform lower especially on the further nodes, since the network is subjected to

more stress.

 1 packet per second 2 packets per second 4 packets per second

Avg. Test time (s) 1008,6 513,7 255,7

Table 9 - Average test time for Technique 3

The average test times obtained for the Technique 3 scenario follow the expected results.

Since the nodes only send packets after receiving a poll from the sink, if there’s a low packet

loss in the network, it is expected that somewhere after 1000 polls the sink receives all the

required 4000 packets from all the nodes. Since there’s an increased delay in obtaining the data

due to the sink sending one poll to one side of the network, and only after a given time interval

sends another poll to the other side of the network, the obtained results are slightly above the

results obtained for Technique 1.

38 Self-PVP Project

38

3.3.3 Technique 2

Technique 2 was left for last because it had a very problematic implementation. Preliminary

results for an offered load of 1 packet per second are resumed in the table below.

 2nd Hop 1st Hop 1st Hop 2nd Hop

Avg. Packet Loss

(1 packet/s)

55,571% 47,717% 52,090% 30,629%

Avg. Throughput

(1 packet/s)

0,43389394 0,501727851 0,47719818 0,693960088

Table 10 - Preliminary Results for Technique 2

These preliminary results have a very high packet loss. This is due to a very high number of

packet collisions at the sink. Contiki 2.5 CSMA mechanism does not have CTS and RTS messages,

and since CSMA with no acknowledgments was used to avoid unnecessary traffic, the first hop

nodes from each side of the network are considered hidden from each other. Since the polls are

sent to a multicast address containing all the nodes in the network, the first hops receive the

poll at approximately the same time, transmitting their sensing data simultaneously to the sink,

thus colliding the packets. Figure 32 shows the plotted data for the average packet loss in this

scenario.

Figure 32 - Preliminary packet loss for Technique 2

Several experiments were performed during these preliminary tests. By offering more

interference to one side of the network, for example to introduce a large object at one side of

the network, then the other side of the network responded well, due to the low collisions at the

sink. The throughput also suffered from the packet collisions at the sink. Figure 33 illustrates the

preliminary throughput measures for an offered load of 1 packet per second.

Results and discussion 39

39

Figure 33 - Preliminary throughput for Technique 2

In both plots, there’s an odd behaviour regarding the second hops in the network. This is also

believed to be due to the routing problems addressed previously.

In order to try to fix this issue, a new set of tests were performed, this time by activating the

Acknowledgment packets in Contiki’s 2.5 CSMA mechanism. The packet loss was reduced greatly,

as can be observed in the table below.

 2nd Hop 1st Hop 1st Hop 2nd Hop

Avg. Packet Loss

(1 packet/s)

0,564% 0,019% 0,080% 0,020%

Avg. Throughput

(1 packet/s)

0,99378489 0,999429551 0,98835927 0,987959088

Avg. Packet Loss

(2 packet/s)

1,185% 1,124% 2,961% 2,951%

Avg. Throughput

(2 packet/s)

1,98119116 1,987690815 1,97040635 1,962560439

Avg. Packet Loss

(4 packet/s)

0,118% 0,060% 0,170% 0,758%

Avg. Throughput

(4 packet/s)

3,87573617 3,883885617 3,8232621 3,781676976

Table 11 - Packet loss and throughput results for Technique 2

Regarding the packet loss, the results are once again inconsistent. It would be expected that

the nodes performed worse for greater offered loads, and the curves to be approximately

symmetrical. Once again, this issue is likely to be because of the routing problems described

previously, which induced the network to behave differently than it should. Even so, the average

packet loss for all the tests was greatly reduced from the preliminary tests, which indicates that

these changes in the Contiki CSMA mechanism may be considered for future work.

Regarding the throughput, figure 34 shows a plot of the obtained data.

40 Self-PVP Project

40

Figure 34 - Throughput for Technique 2

The obtained throughput for this scenario was much better than the preliminary results. It

follows the same pattern observed in the previous plots, where the throughput for all the nodes

is approximate to the offered load. For a data rate of 4 packets per second, the throughput is

slightly lower than the offered load, due to the system being subjected to more stress.

 1 packet per second 2 packets per second 4 packets per second

Avg. Test time (s) 1008 506,4 260,4

Table 12 - Average test times for Technique 2

The average test times for Technique 2 also follows the previous results for the other

techniques, with the simulations taking approximately half of the time every time the offered

load doubles.

The results with the CSMA acknowledgments set to 1 provided much better results for the

overall performance of technique 2. It is also possible that the results from other techniques

could be improved by using this parameter however, due to the lack of time, such tests were not

possible to perform.

System Description 41

41

Chapter 4

Smart Electric Counters Project

4.1 System Description

In this chapter, a second project is addressed. Here is proposed the implementation of a

wireless mesh network comprised of smart electric counters for home deployment. The electric

power line network have been evolving to scenarios where the end-users may also produce (and

sell) their own electric energy, therefore there is a need for a reliable communication infra-

structure to support this scenario. The electric counters must also work as routers, forwarding

packets from other counters until they reach the electric company communication infra-

structure (a sink node). The network is expected to have about 500 nodes. Figure 35 illustrates

the application scenario.

The figure depicts two different networks. The yellow nodes are representing WSNs, which

forward the residence’s electric counter packets to a sink node located nearby. This sink node is

a gateway to a wireless high-speed and high-range core network, which sends the gathered

information by the WSN’s to the electric company “Posto de Transformação”. However, the

implementation of the core network is out of the scope for this dissertation.

42 Smart Electric Counters Project

42

Figure 35 - Application scenario

The needed Wireless Sensor Network may be implemented by several ways: buying

commercial solutions based on ZigBee protocols or similar IEEE 802.15.4 based architectures,

buying several network motes and developing TinyOS or Contiki applications to implement the

solution needed, or buying solutions using “low-power Wi-Fi” technology. Most of ZigBee and

several other IEEE 802.15.4 based solutions don’t offer IP support, which limits its scalability.

IETF has been developing 6LoWPAN to adapt IPv6 traffic for IEEE 802.15.4 networks and RPL, an

optimized routing protocol for Low Power, Lossy Networks (LLNs). Contiki and TinyOS developed

implementations of those protocols, however both implementations are still incomplete, and

even some IETF drafts are still in development for those techniques. Therefore, performance

issues are expected.

The technologies chosen for this study were the same for the previous chapter: An IPv6

network comprised of several “Tmote Sky” based motes running Contiki OS with 6LoWPAN and

RPL protocols. As it will be described in the next sections, initially a Contiki 2.5 based version

was planned to be used, but later in the testing process, the choice was shifted to the then

recent Contiki 2.6 version, which improved several points, including the RPL implementation.

The Techniques for data collection studied in the previous chapter are also valid in this

application scenario, however a different approach was proposed for study. As it will be further

detailed in the next section, the sensors used in this scenario also include a small HTTP server,

which can be accessed by any node in an external network via a RPL Border Router which also

serves as a gateway between both networks. The sensors webserver store a very simple page

displaying their current values for the sensing data, being an alternative for data collection

instead of the common data sink collection addressed in the previous chapter.

System Description 43

43

The RPL-Border Router stores a simple webpage listing link-local addresses for the direct 1-

hop distanced neighbors, and a list of the routes to all the nodes in the network. The routes are

listed with their IPv6 addresses, being URLs to their respective homepages, as well as the

network mask and the link-local IPv6 address of the next-hop. Figure 36 illustrates a screenshot

of the RPL-Border Router running with the test bed network.

Figure 36 - RPL-Border Router webpage

The sensor nodes store a very simple homepage providing their sensing data. In this case, it

provides two values just for reference. The luminosity provided by the Hamamatsu S1087 photo

diode and the battery voltage information. Figure 37 shows a screenshot of one sensor’s

homepage. The battery voltage is expected to be around 3.0V since the sensors are powered by

two 1.5V batteries. Besides the homepage, the sensor motes can also provide another webpage

showing a plot of their sensing variables.

Figure 37 - Sensor mote homepage

Figure 38 shows this webpage that provides graphical information of the sensing data for the

past time. Since in this case the sensing data shown is the battery voltage, it is expected to

follow a constant curve. This was also the page to be requested during the tests, since it is the

page that has a larger html file.

44 Smart Electric Counters Project

44

Figure 38 - Screenshot of the sensing data charts available at each sensor mote

Being TCP a much more complex transport protocol than UDP due to all of its inherent

mechanisms such as congestion control and the reliable end-to-end data transmission, it is of

great interest to evaluate the performance of such communication flow over an IEEE 802.15.4

multi-hop environment network. As a side note, the performance of ICMP6 protocol regarding

the PING6 messages was also analyzed.

Methodology 45

45

4.2 Methodology

For this application scenario, several tests were performed. On a first phase, all the tests

were performed using the Cooja simulator, and then were replicated in a real-life scenario. A

network comprising of a RPL Border Router and 6 different sensors was considered for both

cases. The real-life implementation was initially planned to be deployed in the INESC-Porto

building stairs, with a sensor placed in each floor, and the Border router in the center, but due

to the same routing problems described in the previous chapter, and the lack of required time

for this dissertation, those tests had to be cancelled. The figure below then illustrates the

network considered for these chapter’s tests.

RPL - Border
Router

Sky-Websense

Sky-Websense

Sky-Websense

Sky-Websense

Sky-Websense

Sky-Websense

Linux PC with tunslip6
aaaa:1

aaaa::212:7401:1:101

aaaa::212:7405:5:505

aaaa::212:7406:6:606

aaaa::212:7407:7:707

aaaa::212:7402:2:202

aaaa::212:7403:3:303

aaaa::212:7404:4:404

Figure 39 - Network map. The IPv6 Addresses are tunslip6/Cooja generated

Cooja [38, 39] is a network simulator that is fully supported by Contiki applications

accurately emulates several mote architectures, including the open source TelosB/Sky

architecture which this Dissertation uses. For these simulation tests, a similar network as

displayed by figure 39 was deployed. The sensors were displayed linearly with a simulated

distance of 60m, considering that the sensors RF transceiver had no transmitting power

limitations, which forced communication to follow a multi-hop pattern.

46 Smart Electric Counters Project

46

The border router in Cooja is directly connected to a PC virtual interface running linux. A

Serial Line Internet Protocol (SLIP) tunnel connection between the linux PC and the Border

router is created using the tunslip6 application. This enables a bridge between the linux PC and

the sensor’s IEEE 802.15.4 network, through a Universal Serial Bus (USB) connection to the RPL-

Border-Router. This is performed in order to being able to access the sensor’s webserver through

a browser. The figure below shows a shell window after starting up a tunslip6 session. It can be

observed that tunslip6 creates a tun0 interface at the localhost, then registering the network

addresses aaaa::1/64 and link-local network address fe80::0:0:0:1/64. On a further step, it

creates a RPL DAG at the Border Router, with the IPv6 address aaaa::212:7401:1:101 and link-

local address fe80::212:7401:1:101.

Figure 40 - tunslip6 initialization

The code used for both testing scenarios is based on the “RPL-Border Router” and “Sky-

Websense” example applications, available with Contiki. Some modifications were made, such as

the ability for the sensors to read the voltage from their batteries and store it for later display,

as well as the Border Router webpage having direct links to access all nodes in the network.

Technique 3 from the previous chapter was also included in order for the sensors also being able

to send their sensing data to the Border-Router every time it is requested by a poll, but this

feature was not studied for this chapter.

In order to automate the tests, a bash script to run in the linux PC was created. Figure 41

describes the algorithm implemented in the script. The script after some variables initializations

starts by analyzing the Border Router, sending 20 consecutive HTTP requests. After the tests for

the RPL-Border Router / Root are performed, the same procedure is repeated for each other

sensor in the network, starting from the first hop on the right side of the network, until the third

Methodology 47

47

hop on the same side and then doing the tests in the same order for the left side of the network.

After the HTTP request tests are finished, the script will perform tests for PING6 messages in a

similar way. The next paragraphs will describe in more detail what is performed in each phase.

Filename and
IPv6 address
initialization

i< number of
sensors?

Starts TCPDump
capture for

current mote
True j<20?

wget requests
sensor webpage

j++

True

Closes TCPDump
capture

i++

False

i=0 False

i< number of
sensors?

Starts TCPDump
capture for

current sensor

True

20 Ping6 requests
for current sensor

Closes TCPDump
capture

i++

Exit script False

i=0

Figure 41 - Algorithm for script to run HTTP and ping6 requests

For the real life scenario, the script was slightly changed to include the real IPv6 addresses

defined by the Contiki’s RPL implementation, while the Cooja IPv6 addresses are linearly

generated.

 For each sensor in the network, in this case seven, the script opens a TCPDump [40] session

for traffic capturing, saving each session log in a different file. TCPDump was chosen due to

being a shell application, which is more efficient to boot and shutdown than a full graphical

application such as Wireshark [41]. TCPDump was called with the following parameters:

nohup tcpdump -i tun0 -w logfilex &> /dev/null

With nohup, the application started silently, with its output being written to /dev/null. The –

i parameter defines the interface to be analyzed, in this case the tun0, which connects the linux

PC to the RPL-Border Router through a tunslip6 connection. The –w simply states that the

captured traffic to be saved on a logfile previously defined by the script.

48 Smart Electric Counters Project

48

After the TCPDump session is created, Wget application is used to request the HTTP pages for

each sensor. A total of 20 HTTP requests are performed per sensor in the network. After the

HTTP requests are processed, the same procedure is started for ping6 messages. The saved logs

are then able to be analyzed using Wireshark. Wget is a free, command line based software to

download the html code of any webpage [42]. The process of fetching the data is similar to

other browsers, but this software was chosen in order to be more efficient to be called by a shell

script. The command used in the script to call wget was as follows:

wget -O html -a wget_logfilex --waitretry=1 HTTP://ipv6address/b

The –O outputs all the downloaded html code to a single file simply called “html”, which

won’t be necessary for the data analysis. The –a parameter was included to save each wget

session to each respective sensor’s log. The –waitretry parameter was set to 1. This means that

if the connection establishment fails, wget will wait 1 second before attempting to connect

again. This parameter will make a difference as it will be explained in the next part. Finally the

HTTP field simply marks the html webpage wget must request.

t2=wget[i]
returns

Linux PC Sky-Websense

SYN

SYN ACK

ACK

FIN

t1=wget[i]

Data flow

ACK

ACK

FIN ACK

di=t2-t1

Figure 42 - wget HTTP delay measurement process

Figure 42 illustrates the technique used to measure the delay in requesting an HTTP page

from one of the sensors by wget. In the first place, a system call to get the clock time was

introduced in the script, being requested immediately before starting each wget session, storing

that value as a timestamp in a variable called “t1”. After wget being called, it immediately

attempts to start a TCP connection with the destination node, with both nodes exchanging data

afterwards. When all the data is received, wget closes the connection and returns to the script.

When it returns, another system call is made to the system clock to get a second timestamp

Methodology 49

49

stored in the variable “t2”. The difference between t2 and t1 is the delay for fetching a HTTP

webpage. However, sometimes connection errors may occur. If wget was called without the “–-

waitretry” parameter being set to 1, it would wait a random interval of time before attempting

the TCP connection again. In this case, it will wait 1 second every time a connection error

occurs. Figure 43 illustrates a situation in which there is a failed connection attempt by wget.

t2=wget[i]
returns

Linux PC Sky-Websense

SYN

SYN ACK

ACK

FIN

t1=wget[i]

Data flow

ACK

ACK

FIN ACK

di=t2-t1-x+1

X

SYN

SYN ACK

timeout

1s

Figure 43 - Effective delay for HTTP requests calculation technique

After wget sends the first SYN packet, if there’s no response from the destination after a

timeout has been achieved, or if the destination sends a connection reset packet (RST), wget

will wait 1 second before attempting to retry. Since “t2” timestamp includes all the one second

stop times for each failed connection attempt, these 1 second intervals are time in which there

is no communication at all, therefore shouldn’t be included in the delay value. Thus, the

effective delay was calculated as follows:

In which “x” is the number of connection attempts (both successful and unsuccessful). The

value “1” being added is due to the fact that the successful connection attempt didn’t have a 1

50 Smart Electric Counters Project

50

second waiting interval. The number of connection attempts can be observed in the log files

generated by wget for each HTTP request. Figure 44 illustrates a case where two connection

attempts were observed. In this case the node replied back with a connection reset RST TCP

packet, forcing the connection to be reset by wget. Then there’s a second attempt which is

successful. The number of connection attempts were all checked manually from the wget

generated log files, in order to process the data. Also to be noted is that wget stores a data

transfer time, in the figure’s case it was 2.0s. However, this time does not include connection

setup and termination times, therefore the system calls to the clock time were used in the

script.

Figure 44 - An example from a wget log file

After reaching 20 HTTP requests at a given node, the script forces the TCPDump capture to

close, saving the captured data in a log for future Wireshark analysis if needed. After performing

all HTTP request tests, the tests for the PING6 requests were performed in the same order as the

previous. Before attempting to start the PING6 requests at each node, a new TCPDump session is

created in the same way to capture the traffic. The PING6 requests were performed with the

following command:

ping6 ipv6address –c 20 > ping6_logfilex 1

The “-c” parameter defines to only send 20 ping6 requests, and quit after reaching that

value. The next parameters indicate to store the ping6 information on a given log file. The

PING6 application already provides useful information when quitted, such as the packet loss

percentage, minimum, average and maximum observed round trip time and its standard

deviation.

On a next phase, the system was subjected to a stress test. Two slightly modified versions of

the script were run at the same time on the same machine, in order to double the offered load.

The differences in the script were simply to wait for user input in order to start the tests for

each mote. This was needed to ensure the HTTP requests for each sensor started at the same

time. As before, this test was repeated in a real-life scenario with a 7 sensor network. Figure 45

illustrates the algorithm used to perform both HTTP and PING6 requests.

Methodology 51

51

Perform requests
for sensor i

Perform requests
for sensor i

Start TCPDump
session for sensor i?

Start tests?
Close TCPDump

session for current
sensor?

i++

Start tests? i++

Yes Yes Yes

Yes

Script 1

Script 2

Figure 45 - Differences from script 1 to script 2

All the scripts for the tests in this chapter were called with the following command:

bash script.sh 7 | tee logx.txt

The parameter “7” is the number of nodes in the network. The “tee” command was used to

save all information displayed in the console window by the scripts processes in a given log file.

The x value is changed for each run. The figure below illustrates a shell screenshot of the script

running:

Figure 46 - Screenshot from shell window running the script

From the log files obtained in the tests, the values for the time it took to successfully

perform an HTTP request and the number of connection attempts for each request for each

sensor were stored in a large table, as well as the ping6 information, for later process.

From those values, it was calculated the average delay per node using the following

equation, in which all the 20 values obtained per node in each of the 10 tests were added and

divided by the total of 200 values.

52 Smart Electric Counters Project

52

4.3 Results and discussion

4.3.1 Preliminary Results

On a first phase the tests were performed on a updated version of Contiki 2.5. However, the

results achieved were below the expected. Considering a Cooja simulations running on a Contiki

2.5 based configuration, the initial results were as illustrated on the figures below.

Figure 47 - HTTP request delay and average number of connection attempts for each node,

using a Contiki 2.5 based configuration

These preliminary results showed a very odd curve that was not to be expected. On the right

side of the network, the first hop has a worse performance than the second hop, which shouldn’t

be expected. The number of connection retries performed by wget is also taken into account,

which contributes to the delay itself. In these preliminary results, the first hop on the right had

a higher average number of connection attempts, therefore resulting in a larger average delay.

These preliminary results were repeated some times, always resulting in curves with a similar

pattern. Since these results were obtained in a Cooja simulation environment, in which the

Results and Discussion 53

53

nodes were equally distanced among themselves, had the exact same software running, the

HTTP requests were performed in the exact same way for all sensors and there was no induced

interference in the Cooja simulator at any node, this is a very strange behavior than can be

occurring due to bugs either in the Cooja build, or within Contiki communication stack itself.

Still, the number of connection retries was something to be concerned about. What triggered

the connection retries are RST messages sent by the sensors after the SYN message in order to

establish a TCP connection. This happens due to the number of active TCP connections in the

sensor. When the number of connections is full, the sensor sends RST messages to all incoming

TCP SYN requests until one of the connection times out. Therefore, the number of maximum TCP

connections allowed was changed to only one, which reduced the number of connection retries

as can be confirmed in the figure below.

Figure 48 - Average number of connection attempts using a contiki 2.5 based configuration

but with a maximum 1 TCP connection allowed per node

As of 17th of July 2012, the 2.6 version of Contiki was released. This version improved the

implementation of the RPL protocol and the HTTP server code used in the applications

considered for this scenario, the Cooja simulator and several other points. The preliminary tests

were repeated using Contiki 2.6 and the updated Cooja, leading to much better results. The

average delay was lower, and no connection retries were triggered. At this point, it was decided

to use the plain Contiki 2.6 for the remaining of the tests on this scenario. The number of

allowed TCP connections was still kept to one, as it had provided better results previously.

54 Smart Electric Counters Project

54

4.3.2 Cooja simulations results

The first batch of tests as described in the previous section was performed using the Cooja

simulator running on a Contiki 2.6 configuration. The network topology was the same as

described in figure x. The tunslip6 application was used in order to provide a tunnel between the

Linux PC Ethernet interface and the simulated network deployed in Cooja. The IPv6 addresses

are generated by Cooja and tunslip6, being sequential. Tunslip6 provided the IPv6 domain (in

this case “aaaa”), being the rest of the addresses generated by Cooja.

In this first test, no connection errors of any sort occurred, therefore there was no need to

correct the delay for HTTP requests obtained in the script’s log files. The table below shows the

data obtained.

 3rd hop 2nd hop 1st hop root 1st hop 2nd hop 3rd hop

Average

delay (s)

4,02288053 3,182246666 1,89596479 1,444819134 1,938307179 3,221237792 3,93338031

Standard

deviation

0,915282957 0,42222481 0,332815844 0,149895056 0,463662941 0,499924816 0,873555307

Table 13 - Obtained values for the HTTP requests in the Cooja simulation tests running on
Contiki 2.6

As can be seen in the plot below, the results are improved from the previous preliminary

tests performed on older versions of Contiki. The delay observed in processing HTTP requests is

much lower compared to the previous results, and follows a more expected curve, in which the

biggest the hop-count, the biggest delay. The standard deviation values are low, which is

expected, considering that Cooja simulations operate on a perfect environment, with no

interference or physical obstacles providing shadowing or other signal losses.

Figure 49 - Plot for the HTTP requests delay simulated in Cooja with Contiki 2.6

Results and Discussion 55

55

Tests for the ping6 performance were also carried out, since the ping6 application easily

provides information regarding the delay and the packet loss. The obtained results can be

observed in Table 14 and Figure 50. In this scenario there were no lost packets, and the delay

for the ping6 messages resulted in an expected linear curve, growing with the hop-count and

distance.

 3rd hop 2nd hop 1st hop root 1st hop 2nd hop 3rd hop

Average

RTT (ms)

484,521 333,650 178,336 32,576 193,075 347,817 496,291

Packet

loss (%)

0,000 0,000 0,000 0,000 0,000 0,000 0,000

Table 14 - Obtained values for the ping6 messages in the Cooja simulation tests running on
Contiki 2.6

Figure 50- Plot for the PING6 requests delay simulated in Cooja with Contiki 2.6

Considering that the Cooja simulations were performed in a perfect environment, without

interference from other devices and no obstacles causing shadowing or multiple paths, the

obtained results follow the expected behaviour, and since the tests were performed in the same

conditions as the preliminary tests, the more logical curves obtained suggest that the bugs that

caused the odd behaviour in Contiki 2.5 were solved.

56 Smart Electric Counters Project

56

4.3.3 Cooja simulations with 2 simultaneous processes results

The next step was to run two slightly modified versions of the previous script at the same

time. The network and parameters used were the same for the previous tests. In this scenario,

once the simulation started two processes were launched at the same time, each running in a

different shell. Modifications to the scripts were needed in order for the tests for each sensor

started at the same time, forcing the offered load to the double. The only modifications

performed on the first script was to wait for the user input every time a test was about to start

on a sensor. As the figure 45 in the previous section describes, firstly it waits for the user input

to start a TCPDump session, and then waits for the input to start the HTTP requests. After the

HTTP requests are done for that sensor, the script asks again for user input to stop the TCPDump

session, repeating the same cycle for the following nodes. The second script didn’t need to start

a TCPDump session, since all the traffic generated by both scripts crossed the same tun0

interface created by tunslip6. In this case, the second script only requested the user input in

order to start the HTTP requests for each sensor. Regarding the ping6 tests, the modifications on

the scripts were performed with the same principles.

 3rd hop 2nd hop 1st hop root 1st hop 2nd hop 3rd hop

Average

delay (s)

8,157207899

8,77542888

8,916697596

10,59778623

4,053415874

4,661407945

1,526292032

1,639480906

6,114162696

6,288694638

9,152652024

10,20805295

9,015703564

9,504709697

Standard

deviation

10,65303767

13,12506122

16,91447317

20,4299933

5,419439404

7,692331795

0,290048616

1,163238623

6,394781337

7,120797026

20,29825243

18,57801254

10,84918346

11,18245007

Average

connection

attempts

1,02

1,06

1,395

1,585

1,165

1,185

1

1

1,39

1,35

1,325

1,445

1,05

1,04

Standard

deviation

0,14035132

0,25832861

1,287346615

1,728500381

0,64017507

0,67308261

0

0

0,76867046

0,85507648

1,160218

1,328836

0,240393

0,220552

Table 15 - Obtained values for the HTTP requests in the Cooja simulation tests running on
Contiki 2.6 with 2 simultaneous processes

Table 15 lists the obtained results from the test. Each row has two lines of values, being the

top line referring to the process from script 1, and the bottom line has the values obtained from

the second script. The first row named “Standard deviation” refers to the standard deviation

calculated values from the HTTP request delay measured by the scripts. The other similarly

named row refers to the standard deviation values for the average connection attempts. The

standard deviation for the HTTP requests is higher due to an increase of the variation of the

obtained results. During the tests, it was common to happen that one of the script’s connection

Results and Discussion 57

57

attempts to be on hold, while the other script performed several consecutive successful

connections. Only then the first script connection was finally accepted and the second script

connections were put on hold by the sensor mote. This behavior was expected to happen since

the maximum allowed TCP connections for each sensor were previously set to one.

Figure 51 - Delay for HTTP requests with 2 simultaneous scripts

Figure 51 shows the curve of the delay for the HTTP requests. It’s noted that the second hop

on each side of the network was subjected with more stress, and it’s also noted that the delay

for the Process 2 is slightly higher. This is explained in the way that the second script requests

were started tenths of a second after the requests for the first script. The user input is required

in order to start the requests at each script, hence that slightly difference in the starting time.

With one sensor busy already serving a TCP connection for the first process, the connection

establishment for the second sensor is delayed until it is free. What happened some times, and

especially after the first hop, was that the connection for one of the scripts (usually the second

script) was left in standby for long periods of time, therefore resulting in some larger values for

the delay.

Figure 52 - Average number of connection attempts per node

Figure 52 shows the plotted data of the average number of connection attempts. This figure

further proves that the second hops on each side of the network performed worse.

58 Smart Electric Counters Project

58

The ping6 tests also performed worse comparing to the previous results. Table 16 lists the

results obtained for these tests. On each row there are again two lines of values. The top line

values refer to the first script, while the bottom ones refer the second script. The delay

measured isn’t much different compared with the previous results, but the packet loss

percentage is very high for the third hop in each side of the network.

 3rd hop 2nd hop 1st hop root 1st hop 2nd hop 3rd hop

Average

RTT (ms)

577,558

563,061

363,441

380,901

190,257

184,483

33,168

32,758

189,860

185,140

352,609

356,110

547,997

578,563

Packet

loss (%)

0,650

0,730

0,120

0,150

0,025

0,035

0,000

0,000

0,000

0,000

0,000

0,000

0,520

0,575

Table 16 - Results for ping6 requests with 2 simultaneous processes

Figure 53 shows the plot for the packet loss percentage for the ping6 tests with two

simultaneous scripts. It’s noted that the left side of the network behaves worse than the right

side, which is illogical since all the sensor nodes in Cooja are equally distanced among

themselves, are running the exact same software with the same preset parameters. These odd

results could be due to bugs either in Contiki or Cooja implementations, or simply due to

processing issues on the linux PC. Since the tests were all performed on a virtual machine

running linux and Cooja, and the right side of the network is always tested before the left side,

it’s possible that there were processing issues after some time running the tests.

Figure 53 - Packet loss for ping6 requests

Chapter 5

Conclusions

In this Dissertation, it was studied two different approaches of a WSN Data Collection in a

multi-hop environment scenario, using IPv6 networks with the RPL routing protocol. In a first

phase, there was a research of the state-of-the-art for commercial solutions on sensor

networks, and the technologies behind those products.

Mohammad Abdellatif’s SELF-PVP project research introduced three different data

collecting techniques which were previously tested with the Cooja simulator. In this

Dissertation, an attempt to replicate the Cooja simulations on a real-life scenario was

performed. However, several difficulties were found in order to correctly force the multi-hop

communication. It was proven to be very difficult to balance the transmitted power by the

sensors and adjust their distance between each other, and even with the sensors being

symmetrically placed, problems with route allocation were found that led to inconsistent

results.

A second data collection scenario considered consisted of a smart electric counters

network to be installed for domestic use. In this scenario a different data collection approach

was considered. An HTTP server was included with the sensors in order for their data to be

accessed through a Web browser, being the network bridged through a SLIP tunnel from a

linux PC to a RPL Border Router. The tests were performed with the more recent Contiki 2.6

version, using an also more recent version of the Cooja simulator. The performance of the

simulated results followed an expected pattern, with the performance decreasing with the

hop count and distance. Due to the same routing problems observed in the previous tests, a

real-life test bed scenario was initially planned but due to time constraints had to be

cancelled. This difference in behavior from Cooja simulations to implementations in real life

scenarios indicates that multi-hop communication architectures are hard to perform in real

life, leading to inconsistent results.

60 Conclusions

60

But since technologies such as 6LoWPAN and RPL are still very recent, and their ports for

Contiki Operating System are yet not complete, performance issues were still expected to be

found.

Even so, with erratic results, and without necessarily resorting to multi-hop

communication, the nodes can communicate with each other, even if there’s a low

performance. Also to be taken in consideration is the offered load in the network. In most of

WSNs it is not required that the sensors transmit their information at rates higher than one

packet per second. Most of the time the sensors are in sleep mode, only sending their sensing

data once in a while. Since the sensors are equipped with very low processing power and

available RAM, it’s expected the network to perform worse when in more stressful

environments.

As future work, more tests should be done using different transmitting powers and

placement of the sensors in order to find an optimal sensor distribution to correctly perform

multi-hop communication. There should also be some debugging at the RPL and MAC level in

order to find and fix the routing issues.

Testing the performance of the network without resorting to a forced multi-hop

communication should also be considered. A more realistic test bed such as an inner staircase

of a building for the smart electric counters should be considered, placing the sensors at one

floor each, without limitations in the transmitted power or in the number of neighbors per

each node.

References

[1] Contiki. (2008). 6LoWPAN implementation. Available:
http://www.sics.se/~adam/contiki/docs-uipv6/a01109.html

[2] Y. Chen, H. Kun-Mean, Z. Haiying, S. Hong-ling, L. Xing, D. Xunxing, D. Hao, L. Jian-
Jin, and C. de Vaulx, "6LoWPAN Stacks: A Survey," in Wireless Communications,
Networking and Mobile Computing (WiCOM), 2011 7th International Conference on,
2011, pp. 1-4.

[3] R. Silva, JS Silva, and Fernando Boavida, "Evaluating 6lowPAN implementations in
WSNs," in Proceedings of 9th Conferncia sobre Redes de Computadores, Oeiras
Portugal, 2009, pp. 1-5.

[4] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, A. Terzis, A. Dunkels, and D.
Culler. (2011, ContikiRPL and TinyRPL: Happy Together. Available:
http://www.sics.se/~adam/ko11contikirpl.pdf

[5] L. Adams. (2007, Capitalizing on 802.11 For Sensor Networks. Available:
http://www.gainspan.com/docs2/GS_80211_networks-WP.pdf

[6] G. Corporation. (2011, GS1011 Ultra Low-Power Wireless System on Chip (SoC)
Available: http://www.gainspan.com/docs2/GS1011-PB.pdf

[7] D. M. Dobkin and B. Aboussouan. (2009, Low Power Wi-Fi™ (IEEE 802.11) For IP
Smart Objects. Available: http://www.gainspan.com/docs2/Low_Power_Wi-
Fi_for_Smart_IP_Objects_WP_cmp.pdf

[8] G. Corporation. 11b is better. Available:
http://www.gainspan.com/docs2/11b_is_Better_v1_0.pdf

[9] R. Signals. (2008, SenSiFi Product Brief. Available:
http://www.redpinesignals.com/pdfs/RS9110-N-11-31.pdf

[10] R. Signals. (2010). Why 11n? Available: http://www.redpinesignals.com/Solutions/Wi-
Fi_Design_Center/why11n.html

[11] B. D. Ltd. ZMM-01 ZigBee Smart Energy Module. Available:
http://www.bytesnap.co.uk/assets/Uploads/Documents/ZMM01/Module-Brief-v2-0-
Sept2011-FINAL.pdf

[12] "IEEE Standard for Information Technology- Telecommunications and Information
Exchange Between Systems- Local and Metropolitan Area Networks- Specific
Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)," IEEE Std
802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), pp. 0_1-305, 2006.

[13] N. Salman, I. Rasool, and A. H. Kemp, "Overview of the IEEE 802.15.4 standards
family for Low Rate Wireless Personal Area Networks," in Wireless Communication
Systems (ISWCS), 2010 7th International Symposium on, 2010, pp. 701-705.

[14] "IEEE Standard for Information Technology - Telecommunications and Information
Exchange Between Systems - Local and Metropolitan Area Networks - Specific
Requirement Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)," IEEE Std
802.15.4a-2007 (Amendment to IEEE Std 802.15.4-2006), pp. 1-203, 2007.

[15] "IEEE Standard for Information technology-Telecommunications and information
exchange between systems-Local and metropolitan area networks-Specific

http://www.sics.se/~adam/contiki/docs-uipv6/a01109.html
http://www.sics.se/~adam/ko11contikirpl.pdf
http://www.gainspan.com/docs2/GS_80211_networks-WP.pdf
http://www.gainspan.com/docs2/GS1011-PB.pdf
http://www.gainspan.com/docs2/Low_Power_Wi-Fi_for_Smart_IP_Objects_WP_cmp.pdf
http://www.gainspan.com/docs2/Low_Power_Wi-Fi_for_Smart_IP_Objects_WP_cmp.pdf
http://www.gainspan.com/docs2/11b_is_Better_v1_0.pdf
http://www.redpinesignals.com/pdfs/RS9110-N-11-31.pdf
http://www.redpinesignals.com/Solutions/Wi-Fi_Design_Center/why11n.html
http://www.redpinesignals.com/Solutions/Wi-Fi_Design_Center/why11n.html
http://www.bytesnap.co.uk/assets/Uploads/Documents/ZMM01/Module-Brief-v2-0-Sept2011-FINAL.pdf
http://www.bytesnap.co.uk/assets/Uploads/Documents/ZMM01/Module-Brief-v2-0-Sept2011-FINAL.pdf

62

requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)
Amendment 3: Alternative Physical Layer Extension to support the Japanese 950 MHz
bands," IEEE Std 802.15.4d-2009 (Amendment to IEEE Std 802.15.4-2006), pp. c1-27,
2009.

[16] "IEEE Standard for Information technology-Telecommunications and information
exchange between systems-Local and metropolitan area networks-Specific
requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)
Amendment 2: Alternative Physical Layer Extension to support one or more of the
Chinese 314-316 MHz, 430-434 MHz, and 779-787 MHz bands," IEEE Std 802.15.4c-2009
(Amendment to IEEE Std 802.15.4-2006), pp. c1-21, 2009.

[17] M. Ricardo, "Wireless Local Area Networks
Wireless Personal Area Networks," in Acetatos de Comunicações Móveis, ed. FEUP, 2009/10.
[18] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, "Transmission of IPv6 Packets

over IEEE 802.15.4 Networks," ed. IETF RFC4994, 2007.
[19] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet. Wiley

Publishing, 2010.
[20] J. Hui and D. Culler, "6LoWPAN: Incorporating IEEE 802.15.4 into the IP architecture,"

ed. Internet Protocol for Smart Objects (IPSO) Alliance, White paper # 3, 2009.
[21] Z. Shelby, S. Chakrabarti, and E. Nordmark, "Neighbor Discovery Optimization for Low

Power and Lossy Networks," ed. draft-ietf-6lowpan-nd-18: work in progress, IETF,
2011.

[22] C. Bormann. (2011, Getting Started with IPv6 in Low-P ower Wireless “Personal
Area” Networks (6LoWPAN). Available: http://6lowpan.net/wp-
content/uploads/2011/03/6lowpan-tutorial-ietf80-7-sanitized.pdf

[23] A. H. Chowdhury, M. Ikram, H.-S. Cha, H. Redwan, S. M. S. Shams, K.-H. Kim, and S.-
W. Yoo, "Route-over vs mesh-under routing in 6LoWPAN," presented at the
Proceedings of the 2009 International Conference on Wireless Communications and
Mobile Computing: Connecting the World Wirelessly, Leipzig, Germany, 2009.

[24] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J.
Vasseur, and R. Alexander, "RPL: IPv6 Routing Protocol for Low power and Lossy
Networks," ed. RFC6550: IETF.

[25] J. Vasseur, N. Agarwal, J. Hui, Z. Shelby, P. Bertrand, and C. Chauvenet, "RPL: The IP
routing protocol designed for low power and lossy networks," Internet Protocol for
Smart Objects (IPSO) Alliance, 2011.

[26] J. Hui, "RPL: IPv6 Routing Protocol for Low Power and Lossy Networks, ROLL WG
Meeting, 76th IETF Meeting, Hiroshima, Japan," ed, 2009.

[27] M. Goyal, E. Baccelli, M. Philipp, A. Brandt, and J. Martocci, "Reactive Discovery of
Point-to-Point Routes in Low Power and Lossy Networks," draft-ietf-roll-p2p-rpl-07,
work in progress, IETF, 2012.

[28] I. S. Association. (Fevereiro 7). IEEE 802.11™: WIRELESS LOCAL AREA NETWORKS
(LANs). Available: http://standards.ieee.org/about/get/802/802.11.html

[29] J. Ruela, "Wireless LANs - IEEE 802.11 e 802.11e," in Acetatos de Redes de Banda
Larga, ed. FEUP, 2009/10.

[30] J. M. Tjensvold. (2007, IEEE Standard for Comparison of the IEEE 802.11, 802.15.1,
802.15.4 and 802.15.6 wireless standards. Available:
http://janmagnet.files.wordpress.com/2008/07/comparison-ieee-802-standards.pdf

[31] E. Perahia, "IEEE 802.11n Development: History, Process, and Technology,"
Communications Magazine, IEEE, vol. 46, pp. 48-55, 2008.

[32] W. C. Craig, "ZigBee: "Wireless Control that Simply Works"," 2004.
[33] S. Ashton, "ZigBee Technology Overview," 2009.
[34] I. Mardsen, "ZigBee Alliance - Network Layer Overview," Embedded Systems Show,

Birmingham, 2006.
[35] Crossbow. TelosB Mote Platform. Available:

http://www.willow.co.uk/TelosB_Datasheet.pdf
[36] Advanticsys, "MTM-CM5000-MSP Features."
[37] J. O. Mohammad Abdellatif, Manuel Ricardo, Peter Steenkiste, "Impact of Data

Collecting Techniques on the Performance of a Wireless Sensor Network," presented

http://6lowpan.net/wp-content/uploads/2011/03/6lowpan-tutorial-ietf80-7-sanitized.pdf
http://6lowpan.net/wp-content/uploads/2011/03/6lowpan-tutorial-ietf80-7-sanitized.pdf
http://standards.ieee.org/about/get/802/802.11.html
http://janmagnet.files.wordpress.com/2008/07/comparison-ieee-802-standards.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf

References 63

63

at the Proceedings of the ISWCS 2012, the Ninth International Symposium on Wireless
Communication Systems, Paris, France, August 28-31, 2012.

[38] COOJA. Available: http://wiki.contiki-os.org/doku.php?id=an_introduction_to_cooja
[39] F. Österlind, "A Sensor Network Simulator for the Contiki OS," SICS2006.
[40] TCPDump. TCPDump software. Available: http://www.tcpdump.org/
[41] Wireshark. Wireshark software. Available: http://www.wireshark.org/
[42] Wget. Wget software. Available: http://www.gnu.org/software/wget/

http://wiki.contiki-os.org/doku.php?id=an_introduction_to_cooja
http://www.tcpdump.org/
http://www.wireshark.org/
http://www.gnu.org/software/wget/

