

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Activity recognition from smartphone
sensing data

Alexandre de Oliveira Lopes

Mestrado Integrado em Engenharia Informática e Computação

Orientador: Doutor João Pedro Carvalho Leal Mendes Moreira, Prof. Auxiliar da FEUP

Co-orientador: Doutor João Manuel Portela da Gama, Prof. Associado com Agregação, FEP,

UP

July of 2012

© Autor, 2012

Activity recognition from smartphone sensing data

Alexandre de Oliveira Lopes

Mestrado Integrado em Engenharia Informática e Computação

Aprovado em provas públicas pelo Júri:

Presidente de Júri: Doutor Henrique Daniel de Avelar Lopes Cardoso, Prof. Auxiliar da

FEUP

Vogal Externo: Doutor Paulo Jorge Freitas Oliveira Novais, Prof. Auxiliar da

Universidade do Minho

Orientador: Doutor João Pedro Carvalho Leal Mendes Moreira, Prof. Auxiliar da FEUP

__

12th of July 2012

Resumo

Reconhecer atividades humanas com sensores junto ao corpo tem-se tornado bastante

importante ao longo dos anos, com o objetivo de criar/melhorar sistemas de apoio à 3ª idade,

fitness e saúde e ajudar aqueles com deficiências cognitivas. Esta tarefa de reconhecimento de

atividades que ocorrem num determinado momento com um indivíduo tem o nome de Activity

Recognition.

Com o desenvolvimento de novas tecnologias, como os smartphones, foi possível

ultrapassar a barreira do utilizador ter de usar vários sensores junto ao corpo e passar a usar

apenas um, no bolso da frente das calças. Ser possível dar uma nova solução para este problema

é motivante, além disso, trabalhar com Android que é a tecnologia líder no mercado e ajudar a

melhorar a experiência do utilizador com o telefone dão um grande alento para a conclusão

deste projeto.

 Tendo os smartphones um acelerómetro tri-axial embutido é possível criar aplicações

que são capazes de prever as atividades do utilizador com grande exatidão. Esta tese vai de

encontro a uma nova solução, que é criar uma aplicação Android para o problema de reconhecer

atividades tratando-o como um problema de classificação. Para chegar à solução foi necessário

o estudo de trabalhos realizados previamente. O objetivo foi perceber quais as atividades

humanas consideradas comuns e que abordagens podiam ser feitas ao problema de classificação,

como supervised ou semi-supervised learning, e quais os classificadores mais usados e os

melhores métodos para os comparar.

Com este estudo decidiu-se avançar para uma aplicação Android que explorasse as

abordagens com supervised e semi-supervised learning com one-step classification (classificar

os dados em Standing Idle, Sitting, Running e Walking) e hierarchical classification (tendo esta

abordagem duas classificações, primeiro em Dynamic e Static activities e depois dentro

deDynamic em Running e Walking e dentro de Static em Standing Idle e Sitting).

Usa-se uma abordagem supervised e semi-supervised learning, em que no primeiro caso

se cria um modelo que se mantém estático ao longo do tempo e no segundo caso alguns dos

dados classificados pelo modelo são adicionados ao ficheiro de treino do classificador com o

intuito de criar um novo modelo e ter um ficheiro actual e que reflecte o comportamento do

utilizador. Os principais componentes da aplicação e a sua interação e a sua arquitetura básica

são explicadas para uma melhor compreensão de todo o sistema. Para comparar as abordagens e

a performance dos classificadores a sua exatidão na classificação foi escolhida. Curvas

precision/recall também foram criadas para perceber e avaliar os sistemas de recolha de

informação dos modelos. Como se trabalhou numa aplicação móvel o uso de memória e bateria

por parte da aplicação e tempo gasto na classificação foram tidos em conta. Para testar a

viabilidade da aplicação estas questões foram monitorizadas. Os classificadores escolhidos

foram Naive Bayes e Hoeffding trees.

As principais conclusões deste estudo são: 1) classificação hierárquica tem uma melhor

performance que a classificação one-step; 2) o melhor par que se pode criar na classificação

hierárquica é o uso de Naive Bayes na primeira classificação e Hoeffding trees na segunda; 3)

Semi-supervised learning é no global melhor que supervised classification; 4) Naive Bayes

consome menos bateria que Hoeffding trees.

Abstract

Recognizing human activities with sensors next to the body has become more important

over the years, aiming to create or improve systems in elder care support, health/fitness

monitoring, and assisting those with cognitive disorders. This task of recognizing activities

taking place at a certain moment when considering only one individual user is called Activity

Recognition.

With the development of new technologies, like smartphones, it was possible to overcome

the barrier of the person having to use multiple body worn sensors and passing to use only one,

in his trousers’ front pocket. Being able to give a new solution for this problem is a huge

motivation, besides having the pleasure of working with Android technology that is leading the

market and helping the user experience with is phone.

Having the smartphones a triaxial accelerometer built in it is possible to create applications

that are capable of recognizing the activities of the user with great accuracy.

This thesis aims to meet this new solution, creating an Android application, for the

problem of recognizing the activities performed by the user and treating it as a classification

problem. To embark into a path that leads to the solution it was necessary to study previous

works in order to trace this path. The main objective was to understand what were considered

the common human activities and what approaches could be taken when dealing with this

classification problem, like supervised or semi-supervised learning. What were the most usual

classifiers, what their differences were and how could we compare them.

With this study we decided to built an Android application that explore supervised and

semi-supervised learning with both one-step classification (classifying the data in Standing Idle,

Sitting, Running and Walking) and hierarchical classification (having this approach two

classifications, first in Dynamic and Static activities and then inside Dynamic into Running and

Walking and inside Static into Standing Idle and Sitting). On supervised learning a model is

created and it stays static along the time. On semi-supervised learning some instances labeled by

the model are added to the training file in order to create a new model and have a training file

up to date and with activities from the current user. The main components of the application,

how they interact its basic architecture are presented. In order to compare the classifiers’

performance their accuracy was chosen. Curves of precision/recall were also created to

understand and evaluate the models’ information retrieval system. Since we were working on a

mobile application the memory and battery usage and time spent on the classification were also

an issue. To check the feasibility of the application these issues had to be monitored. The

classifiers used in the experiments were Naive Bayes and Hoeffding trees.

The main conclusions from this study are: 1) hierarchical classification has better

performance than one-step classification; 2) the best mix for the hierarchical classification is

using Naive Bayes in the first classification and Hoeffding trees in the second one; 3) Semi-

supervised learning is globally better than supervised classification; 4) Naive Bayes consumes

less battery than Hoeffding trees.

Acknowledgements

Writing the acknowledgments means that our work is pratically done and that we are proud

of it.

It has been a long journey that I could not finish without the help of my supervisors. I

thank them, João Moreira and João Gama, for the patiente and share of knowledge.

Thanks to my family, especially to my parents and grandparents for all the support and

motivation that they gave me in order to do a good work.

Thanks to my friends for keeping me in a good mood and motivating me.

Thanks to the support of the project Knowledge Discovery from Ubiquitous Data Streams

(PTDC/EIA/098355/2008)

Alexandre Lopes

Contents

1- Introduction ... 1

1.1 Problem ... 2

1.2 Project ... 4

1.3 Motivation ... 5

1.4 Dissertation Structure .. 5

2- Related Work .. 7

2.1 Single sensor ... 7

2.2 Data Mining .. 8

2.3 Supervised and Semi-supervised learning 9

2.4 Classifiers .. 10

2.4.1 Markov .. 10

2.4.2 Base-level e meta-level classifiers .. 12

2.4.3 Naïve Bayes .. 14

2.4.4 Decision tree – J48 .. 16

2.4.5 Hoeffding Tree .. 19

2.5 Hierarchical classification ... 22

2.5.1 SVM .. 24

2.6 Battery ... 28

2.7 Data Extraction .. 29

2.8 Sliding Windows ... 30

2.9 Duty cycles .. 31

2.10 Existing prototypes .. 31

3- Software ... 33

3.1 Moa - Massive Online Analysis .. 33

3.2 Android ... 34

3.3 Power Tutor ... 35

4- Prototype .. 36

4.1 Techniques used .. 36

4.2 Experimental setup .. 36

4.3 Architecture ... 37

4.4 Experiments and Results ... 41

5- Conclusions and Future Work ... 50

References .. 52

Appendix A .. 55

Precision/Recall graphs .. 55

xiii

List of Figures

Figure 1 Axes of motion relative to user 3

Figure 2 Location of the sensors on the user's body 7

Figure 3 Acceleration signals from five biaxial accelerometers for walking, running,

and tooth brushing

8

Figure 4 Summary of classifier results (mean ± standard deviation) using user-

specific training and leave-one-subject-out training where both training data sets are

equivalent to five laboratory data sessions

8

Figure 5 Overall precision/recall for the static and HMM classifiers trained/tested on

all locations and on a single location

11

Figure 6 Accuracy of classifiers for four different settings 13

Figure 7 Performance correlation for IDD and non-IDD data 14

Figure 8 Bayes distribution 15

Figure 9 Decisions at each node to get a final classification 16

Figure 10 Accuracies of activity recognition 17

Figure 11 Acceleration plots for Walking and Jogging 18

Figure 12 Confusion matrix for J48 Model (Stairs Combined) 18

Figure 13 Accuracy as a function of the number of training examples 21

Figure 14 Tree size as a function of the number of training examples 21

Figure 15 Accuracy as a function of the noise level 22

Figure 16 Classification framework, which is a structured as binary tree 23

Figure 17 Detection falls. Tests in each node with no ambiguity 23

Figure 18 Flowchart describing the classification process 24

Figure 19 Acceleration signal with period of inactivity 25

Figure 20 Distinguishing short time motion and noise of gentle motion 25

Figure 21 Classification results using only one classifier 26

Figure 22 3D-accleleration signals measured above 6 activities 26

Figure 23 Classification results using two SVM classifiers 27

Figure 24 Motionless confusion matrix using 3MotionlessM 27

Figure 25 Motion confusion matrix using 3MotionM 27

xiv

Figure 26 Sensor duty cycles, device computation time and sensor energy cost per

sample

28

Figure 27 Power usage of sensors 28

Figure 28 X-axis readings for different activities 29

Figure 29 Sensor duty cycles, device computation time and sensor energy cost per

sample

31

Figure 30 DiaTrace application 32

Figure 31 Workflow in MOA 33

Figure 32 Android components' 33

Figure 33 Application components 37

Figure 34 Main functions on prototype behavior also one-step classification with

supervised learning

39

Figure 35 Main functions on prototype behavior also one-step classification with

supervised learning

40

Figure 36 Accuracy of one step classification using both supervised and semi-

supervised learning

42

Figure 37 Final classifiers' accuracy using hierarchical supervised classification 43

Figure 38 Classifiers’ accuracy on final step of hierarchical classification with a

semi-supervised learning approach

43

Figure 39 Final classifiers' accuracy using hierarchical supervised classification with

different classifiers for each step

44

Figure 40 Final classifiers' accuracy using hierarchical semi-supervised classification

with different classifiers for each step

45

Figure 41 Precision/recall graph of Naïve Bayes used in one-step classification.

Semi-supervised learning (left), supervised learning (right)

46

Figure 42 Precision/recall graph of Hoeffding Tree used in second classification

(Hoeffding Tree also used in first classification) of the hierarchical approach

(Running and Walking). Semi-supervised learning (left), supervised learning (right)

46

Figure 43 Precision/recall graph of Naïve Bayes used in second classification (Naïve

Bayes also used in first classification) of the hierarchical approach (Running and

Walking). Semi-supervised learning (left), supervised learning (right)

47

Figure 44 Power used by Hierarchical approach 48

Figure 45 Power used by One step approach 48

xv

Listo f Tables

Table 1: Classifiers’ accuracy ………………………………………………………….………41

Table 2: accuracy in the first level of the hierarchical approach…………………………….…41

Table 3: Classifiers’ accuracy in the second classification of the hierarchical approach……....41

Table 4: Classifiers’ Accuracy for the walking activity using as test set data from a person

without data on the training sets………………………………………………………………...42

xvii

Abbreviations

MOA Massive Online Analysis

Chapter 1

Introduction

Studying and understanding the human body have always been an area of great interest.

With the creation of sensors a new opportunity for further studying the body was created. The

sensors could provide new data about the movements that could be used to recognize physical

activities.

Since the 80’s this field of recognizing activities from data collected from body worn

sensors has been capturing the attention of more and more people of the computer science

community due to its interdisciplinary with areas like medicine, human computer interaction or,

even, sociology. Moreover it gives the possibility to create systems that can adapt to the users

enabling the possibility of creating or improving systems in elder care support, health/fitness

monitoring, and assisting those with cognitive disorders

The appearing of smartphones was a big breakthrough in this area because they had

computation power to process in real time the data gathered by their sensors and they were not a

strange object to the users, which was one of the major setbacks of the first systems that were

multi-sensor.

The smartphone is more advanced than a normal mobile phone. The first smartphones

were a hybrid of PDA and normal mobile. Now they combine multiple functions of several

devices like GPS, media playback device, digital cameras. They also give to the user the

possibility to be always connected to the internet.

This permits that data can be processed in real time or stored and then processed on the

computer or simply being sent over the internet or bluetooth without bothering the user.

In physics, movement is the variation of the spatial position of an object over time.

The accelerometer operates in a simple way. It obeys to Newton’s second law (the

acceleration of an object as produced by a net force is directly proportional to the magnitude of

Introduction

 2

the net force, in the same direction as the net force, and inversely proportional to the mass of the

object).

A simpler explanation in order to visualize the accelerometer behavior is to imagine it like

a glass of water half full. If the glass is on a flat surface and it is pushed the water moves. The

stronger we push the glass the more the water oscillates. What the accelerometer does is to

measure these movements. It does it measuring the angle between the water when the glass is

being pushed and when the glass was still, with this angle it can return the acceleration that was

applied on the glass.

The research in accelerometer data is so important because it can be used for classifying

activities that will help to develop programs that aim to aid in health care support or even to be

used in a recreational way practicing sports, some of the objectives outlined in the beginning of

the research in this field.

1.1 Problem

The introduction sets three main ideas: (1) the relevance of doing research form sensors'

data for the improvement of humans' life; (2) the contribution given by smartphones for the

reseach described in (1); and (3) the how and why this data is important for activity recognition.

Having these main ideas we can advance to understanding the problem and how these

three things are connected.

Like it was stated studying the human body with sensors is not a new problem. The first

works in this field used multiple sensors the collect as much data as possible. However the need

to use several sensors and because of their size and the need of using cables to transfer the data

to the computers was not attractive to the user.

This was a major setback because, due to these limitations, the tests made didn’t reflect the

normal behavior of the user. With these unappealing systems an effort had to be done in this

field to make it viable. This can be done by using only the sensors available in smartphones.

Like the accelerometer, for instance.

 The smartphones had a big contribution for this problem of recognizing activities because

of its computational power and sensors. In order to better understanding why the smartphones

were such a good aid it is unavoidable to give a better explanation of the problem that we are

dealing with.

This problem of trying to predict activities from accelerometer data has been treated as a

classification problem. Like it will be shown almost every author had approach. The main

difference between the existing approaches is the classification algorithm used.

Recognizing activities has the objective of recognizing actions of one or several agents by

observing their actions and environmental conditions. With previous recorded data system

creates a model that tries to infer from what activity new unlabelled data comes from,

classifying it.

Introduction

 3

The classification problem can, also, be explained as a mathematical problem. A set of N

training examples of the form (x; y) is given, where y is a discrete class label and x is a vector

of d attributes, each of which may be symbolic or numeric. The goal is to produce from these

examples a model =f(x) that will predict the classes y of future examples x with high accuracy.

[1]

One of the biggest problems in the beginning, like it was mentioned, was the necessity of

the user wearing several sensors on different parts of the body, which conditioned him and

influenced the data collected making the results of the tests obsolete.

The smartphone tries to solve these problems of having a strange device next to the

body and the need to have multiple sensors, in this case only one sensor that is built-in the

smartphone is used. Like it will be stated later a single motion sensor placed in a determinate

position on the body, given its good accuracy results, will be sufficient to give good results

regarding the acceleration on the body. So using others sensors would just give marginal gains.

Being the smartphone a device that the user usually carries the data collected by the

accelerometer will reflect how the user normally acts. So, no longer we have to work with data

that does not reflect the normal behavior of the person being tested, tests will give truthful

results.

 The accelerometer measures the acceleration in three different dimensions (x, y, z) -

Figure 1.

The accelerometer was built-in the smartphones to enhance gameplay and to rotate the

screen according the phone position, but soon everybody saw the advantages of this sensor and

which new applications could be created using it. In the case of this problem it made it possible

to predict activities using the phone.

To treat this as a classification problem, a knowledge discovery system needs to be built.

Knowledge discovery systems are constrained by three main limited resources: time, memory

Figure 1 Axes of motion relative to user [2]

Introduction

 4

and sample size. In traditional applications of machine learning and statistics, sample size tends

to be the dominant limitation.

Since the work was developed on a smartphone, the memory space was limited, and the

sample size had to be decided testing the accuracy of the system with different sizes, like it will

be explained later.

Another specificity of the problem which is closely linked with the sample size was the

need to work with data streams that have the problem of rate of the arrival of examples. When

new examples arrive at a higher rate than they can be mined, the quantity of unused data grows

without bounds as time progresses.

The problem becomes more complex when besides the speed the data has to be processed

to do the classification in real-time without consuming too much memory. Additionally, the

battery lifetimehas to be taken into account. The application created cannot have much impact

on the user’s smartphone performance and, at the same time, it has to collect and classify the

data accurately.

Now it is possible to understand the link between the three main ideas of the introduction.

The user is used to the smart phone, so he will act normally and carry the phone every day. The

smartphone containing the accelerometer and the data collected by it can be used in the

classification problem in order to recognize the activities of the user. The data collected will

help studying the human body.

1.2 Project

The main objective of this prject is to give an answer to the problem described above by

creating an Android application that can classify the user activities taking into account all the

specific restrictions aforementioned.

Before explaining the decisions of which classifiers were used, how the data was recorded

among other specificities of the system, it is important to understand what we wanted before

building the application. So, in the end, we could judge if the main objective was reached.

Like it was said since the beginning we wanted an application that treated this problem as a

classification problem. It had to work in real time and classify the four main human activities,

sitting, standing idle, walking and running. The main idea was to have the accelerometer

gathering unlabeled data and sending it to the application that was also, always, running.

The application would have a model to classify the data. All the new labeled data could be

saved or just presented on the screen to ensure the application’s good performance. The model

could also be generated on the phone.

Introduction

 5

We wanted to do a semi-supervised learning so we decided new labels predicted with a given

certainty woul be added to the training set. This approach is compared against supervised

methods.

1.3 Motivation

The use of sensors has become mainstream, everybody carries at least one sensor on

everyday life without realizing. Being the smartphones a device where the innovation in sensors

is present, it is thrilling to learn how to work with these devices and try to create an application

that can have a good impact on the life of the users.

The researchers and the mobile phone producers seek how to create mobile phones and

applications that look like they were designed on purpose for the each user. This project gives

that opportunity like we will see later. It tries to adapt the application to the user in order to

achieve better results.

By the conclusion of this project we expect to make the labeled data ready for use by other

applications. This will be of the most importance to make an application that can be used in the

future.

1.4 Dissertation Structure

The introduction, where this subchapter is contained, is the first chapter of this thesis and it

has the objective of presenting the problem that we are dealing starting by explaining how it

emerged and its importance. Also in the 1- Introduction chapter we can find a detailed

explanation of the problem and the final objective of this work. Before starting on a more

theoretical explanation of all the process and to finish this first chapter makes sense that we

show what motivates us into doing this work and the challenges that rise by this approach to the

problem.

Understanding the problem is the first step to solve it. With this in mind we move towards

the solution and explore what other authors have done in order to solve it. The 2- Related

Work chapter is the chapter with more subchapters. The objective of this chapter is to provide

an overview of the work done in this area to deal with this specific problem. In it concepts like

data mining, supervised and semi-supervised learning are explained as well as possible

approaches like one-step classification and hierarchical classification and what are the common

activities that humans perform on everyday life that worth classifying. Several classifiers are

presented and compared by other authors being possible to take some conclusions about each of

them and which can be helpful for my own solution. The characteristics of the data that enable

to differentiate the instances are studied as well as the prototypes already built.

Introduction

 6

Following this second chapter we have 3- Software that presents the programs used to

build and test the prototype. Open source software was chosen to use in the programming part

of the prototype, to test the application we chose to use open source software and free Android

applications.

4- Prototype is the next chapter. Here we present what techniques we decided to use with

a brief explanation of the choice. After the experimental setup subchapter is set to inform the

reader how the experiments were set in order to get a better evaluation when reading the

experiments and results subchapter. But, before, the explanation of the basic architecture of the

application can be found. This explanation aims to give to the reader a basic notion of all the

components used by the application and how MOA is embed on the application with Android

and what a critical role it plays. Realizing this we hope the tests make more sense to the reader.

Here all the experiments are presented as well as the results that lead to the final subchapter,

conclusions and future work.

Taking into account all the previous chapters an overview of what was accomplished with

this new solution is written. Conclusions are taken from the results of the experiments and ideas

are for improving the prototype and/or the research in this field are presented. An evaluation of

the initial expectation is, also, made.

Related Work

 7

Capítulo 2

Related Work

To understand what is possible to make in order to innovate we need to know what have

been done until now.

 That is why in this chapter we analyze the state of art in recognizing activities wearing

sensors.

To a better understanding we try to present the works like the application was being built,

first understanding the concepts and advancing to the algorithms and techniques.

The starting point is the work that was a breakthrough in this field and we move towards

the recent works that contributed for this thesis. During this approach some notes about their

conclusions are taken, besides the conclusions the techniques used are briefly explained to

understand how they fit in this thesis.

2.1 Single sensor

Activity recognition is not a new thing. Bao & Intille [3] created a system capable of

recognizing twenty activities with bi-axial accelerometers positioned in five different locations

of the user’s person {hip, wrist, arm, thigh, and ankle} – Figure 2.

.
Figure 2 Location of the sensors on the user's body [3]

Related Work

 8

This work led to an important discovery, which was possible to get accurate results

recognizing activities just using acceleration values gathered by a sensor placed on the thigh or

dominant wrist – Figure 3.

Besides these conclusions they treated this problem as a classification problem and

compared four classifiers decision table, instance-based learning (IBL or nearest neighbor),

C4.5 decision tree, and naive Bayes. Having the decision tree good results – Figure 4 – shows a

starting point when begin testing classifiers.

2.2 Data Mining

Like we saw Bao & Intille treated this problem as a classification problem. But to

understand what a classification problem is, first we need to understand what data mining is.

Figure 3 Acceleration signals from five biaxial accelerometers for walking, running,

and tooth brushing [3]

Figure 4 Summary of classifier results (mean ± standard deviation) using user-specific training and

leave-one-subject-out training where both training data sets are equivalent to five laboratory data sessions.

Related Work

 9

Data mining is the process that results in the discovery of new patterns in large data sets. It

utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and

database systems. The overall goal of the data mining process is to extract knowledge from an

existing data set and transform it into a human-understandable structure for further use.

In this thesis case we have to deal with data streams and our interest lies on four main

fields:

 Accuracy

 Memory space needed

 Necessary time for learning from a training set in order to be able to predict

activities

 Power consumption

In matters of accuracy we have just seen how careful Bao & Intille when comparing the

classifiers were. But we will see, on next sections, how this is a matter of high consideration in

all the works.

In data mining applications, the bottleneck is time and memory [1].

Before presenting other works and techniques some considerations have to be taken into

account.

An algorithm can give faster results if a small amount of information is processed,

however the results can be less accurate. When working with data streams the amount of data

processed has to be carefully considered because in a mobile phone we have limited memory

space, we want to give results in real time so the processor of the mobile has to be taken into

account, but nevertheless, we want accurate results.

Later I present some algorithms and techniques used on several experiments to test the four

main fields and to address the aforementioned issues.

2.3 Supervised and Semi-supervised learning

Gu et al [4] tried to solve the activity recognition problem with techniques of semi-

supervised learning.

Both Masud et al. and Guan et al. use ensemble methods to increase accuracy in partially

labeled data (semi-supervised problems).

Traditional classifiers use only labeled data (feature / label pairs) to train. Labeled

instances however are often difficult, expensive, or time consuming to obtain, as they require

the efforts of experienced human annotators. Meanwhile unlabeled data may be relatively easy

to collect, but there has been few ways to use them.

Related Work

 10

Supervised learning has the problem of just using labeled data, which makes it impossible

to improve classifiers because they cannot use new labeled data to create a more accurate

model. With supervised learning it is impossible to create an application for everybody that

tends to adapt to the users in order to get better results.

Semi-supervised learning addresses this problem by using large amount of unlabeled data,

together with the labeled data, to build better classifiers. Because semi-supervised learning

requires less human effort and gives higher accuracy, it is of great interest both in theory and in

practice [5].

The first model created with the training data will be improved /replaced as more and more

recent labeled data is used as training data. The objective of this is to have a model that adapts

to the user that provides unlabeled data and the classification becomes more accurate.

An example of semi-supervised learning is co-training and en-co-training [6].

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that features can be split

into two sets; each sub-feature set is sufficient to train a good classifier; the two sets are

conditionally independent given the class. Initially two separate classifiers are trained with the

labeled data, on the two sub-feature sets respectively. Each classifier then classfies the

unlabeled data, and ‘teaches’ the other classifier with the few unlabeled examples (and the

predicted labels) they feel most confident. Each classifier is retrained with the additional

training examples given by the other classifier, and the process repeats [5].

The difference between en-co-training and co-training is that it uses three classifiers

instead of two, which are trained used all the labeled data. All the classifiers are different and

they label data after the majority of their predictions.

2.4 Classifiers

The concept of classifier has just been addressed in the explanation of some semi-

supervised learning techniques, now we explain it.

2.4.1 Markov

Lester et al. [7] believe that the more common human activities are sitting, walking,

walking up/down stairs, riding elevator down/up and brushing teeth. In order to create a model

that could predict with great accuracy these activities they compared a static classifier with a

HMM (hidden Markov model) classifier. Their training was made using a single stream of

sensor data from three locations on the body (shoulder, waist and wrist). To discover the best

place to carry the sensor the classification algorithm used joins static classifiers with the

objective of gather the more important features, the ones that can be used to distinguish

Related Work

 11

activities. Each classifier works with a feature making the system flexible. The number of

features that we want to work with only depends on the number of classifiers used. A second

layer of HMM combines all the classifiers’ outputs and estimates the most probable activity

while it gives temporal smoothing.

Their objective was to be able to pre-train a set of classifiers so the device would work

well for most users right away.

The data is separated in training and test data. All the data is gathered randomly in folds

with the same number of segments. Three or four folds are used to train the static and HMM

classifiers, the remaining folds are used to run tests.

The system chooses the most important features, other features are chosen on an

incremental way, while the HMM allow a continuous tracking of the activities.

 This brings advantages because it’s possible to make a historic of information that leads

to misclassification in the static classification. With this information it is possible to smooth the

errors and understand what happens between different activities.

 This leads to the conclusion that is possible to train a general classifier and have other

classifiers ready to be used depending the situation, the more data from different people we use

the more accurate the model is, it is possible to recognize a range of physical activities with a

light-weight and unobtrusive wearable device like is possible to see in Figure 5.

This approach gives lower accuracy results than other solutions like we will see ahead.

HMMs didn’t appear to be particularly useful to reach the objective of the thesis that is

recognizing activities. HMMs are useful in recognizing a sequence of activities to model human

behavior [8].

Figure 5 Overall precision/recall for the static and HMM classifiers

trained/tested on all locations and on a single location [7]

Related Work

 12

2.4.2 Base-level e meta-level classifiers

The study of classifiers is important to understand there are alternatives to HMMs. With

that in mind a performance evaluation was made on some base-level classifiers [8], like

Decision trees, C4.5, K-nearest neighbours, SVM and Naïve Bayes.

Although the overall performance of meta-level classifiers is known to be better than base-

level classifiers, base-level classifiers are known to outperform meta-level classifiers on several

data sets and that was what the authors [8] were trying to discover.

Meta-level classifiers are used in ensemble learning that is the usage of several prediction

models. The combination of these models will lead to the final prediction.

Meta-level classifiers can be into three frameworks: voting (used in bagging and boosting),

stacking (Wolpert 1992; Dzeroski & Zenko 2004) and cascading (Gama & Brazdil 2000). In

voting, each base-level classifier gives a vote for its prediction. The class receiving the most

votes is the final prediction.

In stacking, a learning algorithm is used to learn how to combine the predictions of the

base-level classifiers. The induced meta-level classifier is then used to obtain the final

prediction from the predictions of the base-level classifiers. The state-of-the-art methods in

stacking are stacking with class probability distributions using Meta Decision Trees (MDTs)

(Todorovski & Dzeroski 2003), stacking with class probability distributions using Ordinary

Decision Trees (ODTs) (Todorovski & Dzeroski 2003) and stacking using multi-response linear

regression (Seewald 2002). Cascading is an iterative process of combining classifiers: at each

iteration, the training data set is extended with the predictions obtained in the previous iteration.

Cascading in general gives sub-optimal results compared to the other two schemes.

A set of classifiers was chosen by the authors and they tested their accuracy. The

classifiers were:

 Boosting (Robert E. Schapire (1990)) is used to improve the classification accuracy of

any given base-level classifier. It applies a single learning algorithm repeatedly and

combines the hypothesis learned each time (using voting). Assigns a certain weight to

each example in the training set, and then modifies the weight after each iteration

depending on whether the example was correctly or incorrectly classified.

 Bagging (Breiman 1996) is another simple meta-level classifier that uses just one

base-level classifier at a time. It works by training each classifier on a random

redistribution of the training set.

 Plurality Voting selects the class that has been predicted by a majority of the base-

level classifiers as the final predicted class.

Related Work

 13

 Stacking with ODTs (Todorovski & Dzeroski 2003) is a meta-level classifier that

uses the results of the base-level classifiers to predict which class the given instance

belongs to. The input to the ODTs are the outputs of the base-level classifiers.

 Stacking with MDTs (Todorovski & Dzeroski 2003) learns a meta-level decision tree

whose leaves consist of each of the base level classifiers. Thus, instead of specifying

which class the given test instance belongs to, as in a stacked ODT, an MDT specifies

which classifier should be used to optimally classify the instance.

To test their accuracy, data collected from a single subject and from multiple subjects were

used. For comparison they runned classifiers on data that were independently and identically

distributed (IDD) and not (non-IDD).

Figure 6 Accuracy of classifiers for four different settings [8]

Related Work

 14

On the Figures 6 and 7 is possible to see one of the conclusions of the authors, that

plurality voting has the best performance correlation.

Another conclusion important for this thesis is that we can achieve high accuracy using a

single triaxial accelerometer, like the one inside the mobile phone.

Although plurality voting, a meta-level classifier, has a better performance than the others,

we think it wouldn’t be a good idea to put it in the Android application because it needs more

memory space than a base-level classifier, it takes more time to be processed which leads to

more CPU usage and, therefore, more battery usage.

The higher precision of at most 4% (according to the tests shown) does not make up for all

the disadvantages in the mobile performance.

2.4.3 Naïve Bayes

Naïve Bayes is a base-level classifier, commonly used in the data mining universe like

in the aforementioned experiment.

Figure 7 Performance correlations for IDD and non-IDD data [8]

Related Work

 15

This classifier technique is based on the Bayesian theorem and is particularly suited when

the dimensionality of the inputs is high. Despite its simplicity, Naïve Bayes can often

outperform more sophisticated classification methods.

The Naive Bayes algorithm is based on conditional probabilities. It calculates a probability

by counting the frequency of values and combinations of values in the historical data. Bayes'

Theorem finds the probability of an event occurring given the probability of another event that

has already occurred.

The presence or absence of an attribute is not related with the presence or absence of

another.

To apply Bayes’ theorem as a classifier we need [9]:

 To know the probabilities a priori p(decisioni)

 Calculate conditional probabilities p(x|decisãoi) – this is simplified by assuming the

independence of the attributes

No other classifier can get better results than this one with the same information.

The classifier’s error is a theoretical minimum to the generalization capacity of other else

classifier. The optimal Bayes’ error – Figure 8

 Is proportional to the black area

 Can generate data sets where the error is minimum

In practice all this probabilities are unknown.

To get reliable probabilities from a data set we need endless data.

Figure 8 Bayes distribution [9]

Related Work

 16

 O(kp) being p the number of variables and k the number of values from the variables.

Naive Bayes summarizes the variability of a data set in tables of conditional probabilities.

The dimension of the model is independent of the number of examples. It is stable to

disturbances of the training set, is string to a noise and irrelevant attributes.

All the needed quantities can be calculated passing only once the training set. With this we

can conclude that this classifier can be trained on an efficient way, gathering the probabilities of

each attribute, respecting its class from the training set. The probability of the unlabeled data

can be computed.

Another convenience of this classifier is that it can be trained with a small amount of data

so it can predict with good accuracy. This is a great quality when we are dealing with an

application in mobile environment, where the memory space is limited as well the processor

power.

2.4.4 Decision tree – J48

J48 is the decision tree contained in the WEKA package. Before analyzing experiments

results – Figure 9 - it is necessary to understand how a decision tree works, so we can

understand the conclusions.

Decision tree uses the strategy divide and conquer, a complex problem is split in smaller

simpler problems. This strategy is recursively applied to each problem [10].

It has internal nodes that are a test on an attribute, the branches represent an outcome of the

test, the leaf nodes stand for class label or class label distribution and at each node one attribute

is chosen to split training examples into distinct classes as much as possible [11]. By its

composition it is easy to understand that the discrimination capacity comes from the division of

the space into sub-spaces that have a class attached.

To classify new case a matching path is followed until a leaf node [10] – Figure 9.

Figure 9 Decisions at each node to get a final

classification [10]

Related Work

 17

At each node available attributes are evaluated on the basis of separating the classes of the

training examples – training set has only labeled data. In order to do it goodness (purity)

function is used. There are several goodness functions but the one used in C4.5 is the

information gain – difference between the information before split and after split [11].

The construction of the tree is driven by the aim of have the minimum entropy, meaning

the randomness of the variable.

Then entropy is a function that satisfies three conditions:

 When a node is pure the purity measure should be zero

 When the impurity is maximal (i.e. all classes equally likely), purity measure should be

maximal

 Purity measure should obey multistage property (i.e. decisions can be made in several

stages)

Having always in mind the creation of a universal model more tests, using classification

techniques from WEKA (decision trees (J48), logistic regression and multilayer neural

networks), were taken [2].

 Regression is usually used when a real-valued output is desired otherwise classification

is a natural choice [8].

The use of a straw man [2] serves as control because it, always, indicates the activity that

we are trying to predict. Like it was done in other works some activities were chosen because

the authors [2] believe that are the more common in everyday life – Figure 10.

Figure 10 Accuracies of activity recognition [2]

Related Work

 18

The identification of activities with sudden movements it’s easier like it can be seen by the

accuracy of over 90% in jogging. Jogging seems easier to indentify than walking because it

involves more extreme changes in acceleration – Figure 11.

But if ascending and descending are joined in just a class named stairs we can observe a

better accuracy when the model created using J48 – Figure 12.

With this model we can predict almost every activity with accuracy over than 90%.

This is a good algorithm for continuous or discrete attributes, it can handle training data

with missing values and does pruning (goes back in the tree and tries to remove branches that

don’t help in the classification and replace them by leaves).

Figure 11 Acceleration plots for Walking and Jogging [2]

Figure 12 Confusion matrix for J48 Model (Stairs Combined) [2]

Related Work

 19

The biggest problem of decision trees is that they assume that all training examples can be

stored simultaneously in main memory, and are thus severely limited in the number of examples

they can learn from [1].

2.4.5 Hoeffding Tree

Hoeffding trees work by collecting sufficient statistics in the leaves of the tree of the

training instances that reach them. Periodically, these leaves are checked to compare the relative

merits of each candidate attribute for splitting. The Hoeffding bound or similar metric is used to

decide when to be confident that the best candidate is better than the others. At this point the

leaf is split on the best attribute, allowing the tree to grow.

Typically, information gain is used to rank the merits of the split candidates, although

other metrics could be substituted. In the case of discrete attributes, it is sufficient to collect

counts of attribute labels relative to class labels to compute the information gain afforded by a

split. [12]

There are incremental learning methods that are reasonably efficient, but do not guarantee

that the model learned will be similar to the one obtained by learning on the same data in batch

mode. They are highly sensitive to example ordering, potentially never recovering from an

unfavorable set of early examples. Others produce the same model as the batch version, but at a

high cost in efficiency, often to the point of being slower than the batch algorithm [1].

Advantages of Hoeffding Trees:

 Can be learned in constant time per example

 Do not store any examples (or parts thereof) in main memory, requiring only space

proportional to the size of the tree and associated sufficient statistics

It can learn by seeing each example only once and therefore does not require examples

from an online stream to ever be stored.

Catlett [13] and others noticed that, in order to find the best attribute to test at a given

node, it may be sufficient to consider only a small subset of the training examples that pass

through that node.

A statistical result known as the Hoeffding bound is used to decide how many examples

are necessary at each node in order to find the best attribute to test. The attribute chosen using n

examples (where n is as small as possible) is the same that would be chosen using infinite

examples.

Related Work

 20

The incremental nature of the Hoeffding tree algorithm does not significantly affect the

quality of the trees it produces that are asymptotically arbitrarily close to the ones produced by a

batch learner.

VFDT allows the use of either information gain or the Gini index as the attribute

evaluation measure. It includes a number of refinements to the normal Hoeffding tree algorithm:

 It can solve ties splitting on the current best attribute if ∆ < < , where is a user-

specified threshold.

 Recomputing G is the most significant part of the time cost per example. VFDT

allows the user to specify a minimum number of new examples nmin that must be

accumulated at a leaf before G is recomputed. This effectively reduces the global time

spent on G computations.

 VFDT processes examples faster than they arrive, which will be the case in all but the

most demanding applications, the sole obstacle to learning arbitrarily complex models

will be the finite RAM available. To solve this memory issue VFDT deactivates the

least promising leaves in order to make room for new ones. Memory usage is also

minimized by dropping early on attributes that do not look promising.

 VFDT can be initialized with the tree produced by a conventional RAM-based learner

on a small subset of the data. This can give VFDT a head start" that will allow it to

reach the same accuracies at smaller numbers of examples throughout the learning

curve.

 VFDT can rescan previously-seen examples. This means that VFDT need never grow

a smaller (and potentially less accurate) tree than other algorithms because of using

each example only once.

Like in other works to verify the better performance of one classifier it was compared with

others, in this work VFDT was compared with C4.5.

Regarding the accuracy as a function of number of training examples C4.5 has an early

advantage that comes from the fact it reuses examples to make decisions on multiple levels of

the tree it is inducing, while VFDT uses each example only once. – Figure 13.

Related Work

 21

The average number of nodes in the trees induced by each of the learners can be seen on

Figure 14 and we can notice that VFDT and VFDT-boot induce trees with similar numbers of

nodes.

VFDT can substantially increase the comprehensibility of the trees induced relative to

C4.5. It also suggests that VFDT is less prone than C4.5 to overfitting noisy data.

Figure 14 Tree size as a function of the number of training examples. [1]

Also dealing with noise VFDT can get more accurate results, what can be important since

we are dealig with a mobile phone- Figure 15.

Figure 13 Accuracy as a function of the number of training examples. [1]

Related Work

 22

Hoeffding trees allow learning in very small constant time per example, and have strong

guarantees of high asymptotic similarity to the corresponding batch trees.

VFDT is a high-performance data mining system based on Hoeffding trees. Empirical

studies show its effectiveness in taking advantage of massive numbers of examples. VFDT's

application to a high-speed stream of Web log data is under way.

2.5 Hierarchical classification

All the experiments presented until now the authors aim to classify the data only in one

step, but it is important to be aware that the classification can be made in multiple steps using

hierarchical classification. On hierarchical classification a binary tree is created, meaning that in

each node only two classes are possible. In this case, activity prediction, the classification of

movements can be made first in motion or motionless as we shall see below. The accuracy is

higher the higher up in the tree because first is done a general division, i.e. a bag full of balls

and cubes of different colors the first classification will be if it is ball or cube.

The classes on same level on the tree should be independent [14] so there is no possible

uncertainty when choosing the path. The use of binary trees gives a flexible structure to the

classifier, classes can be added without affect the rest of the tree.

In this thesis, like it was said before, the tree should reflect an approach from a general to a

specific activity. The way this is done is of great importance to the processing efficiency. All

possibilities of classification must appear on the tree – Figure 16.

Figure 15 Accuracy as a function of the noise level. [1]

Related Work

 23

The hierarchical approach gives the opportunity to choose a classification algorithm for

each node. This opportunity is a great benefit because we can choose the algorithm that gives

better results for each specific situation, aiming to have the highest accuracy possible.

To choose the better algorithm, in each node, they have to be tested with the same training

set. The algorithm has to do predictions where there is no ambiguity. On the Figure 17 an

example of a tree can be observed where the tests done on each node get rid of all the

ambiguity.

Figure 16 Classification framework, which is a structured as binary tree [14]

Figure 17 Detection falls. Tests in each node with no ambiguity [14]

Related Work

 24

2.5.1 SVM

As mentioned, above, this investigation can be very useful in the health care area. With

this objective some authors [15] performed some experiments on the movement classification

using the hierarchical approach, trying to get more accurate results than doing the classification

in one step like the experiments demonstrated until now.

Samples with a frequency of 1Hz were used in a try to classify movements considered

common in everyday life like sitting, standing up, lying down, walking, posture transition and

gentle motion.

The authors have chosen to implement a two level hierarchical classification.

On the first level the separation between motion and motionless activities was done, as we

can see this test takes out all the ambiguity like it was supposed to do. After this first

classification has been done SVM classifiers were used to recognize the specific activity inside

the two general groups – Figure 18.

Support vector machines (SVM) are a group of supervised learning methods that can be

applied to classification or regression. Support vector machines represent an extension to

nonlinear models of the generalized portrait algorithm developed by Vladimir Vapnik. The

SVM algorithm is based on the statistical learning theory and the Vapnik-Chervonenkis (VC)

dimension introduced by Vladimir Vapnik and Alexey Chervonenkis [16].

A simple way to understand this model is to imagine the examples as points in space,

positioned so that a space between the two groups is perceptible, being this space the biggest

possible. The data in the test set will be placed as dots in these two spaces.

Rules were defined so this classification moved without problems and ambiguity, an

example is the 10s that has to be without movement so an activity can be considered motionless

– Figure 19.

Figure 18 Flowchart describing the classification process [15]

Related Work

 25

To be motionless cannot be considered absence of any movement because there is always

noise present on the data. This noise had to be taken into account when defining the rules so

noise could be perceived in relation with little movements, so the first level classification

(motion/motionless) could be more accurate- Figure 20.

Using only one classifier having a training set with all the data as the input, motion and

motionless activities from a person, the classifier can only get accurate results when analyzing

data from the same person- Figure 21 – not being able to fulfill the main objective that was the

creation of an universal model.

Figure 19 Acceleration signal with period of inactivity [15]

Figure 20 Distinguishing short time motion and noise of gentle motion [15]

Related Work

 26

The average precision was only 63.8% when trying to predict the activities from multiple

individuals. The good accuracy results recognizing the activities from subject 1 prove that the

model was over fitted to his movements because the classifier had only his data when it was

trained.

Using one classifier and data only from one subject leaded to a classification not accurate

at all. However using data only from one subject is easy to, in a hierarchical approach, to draw a

line between motion and motionless activities as can be seen in Figure 22.

With this conclusion in mind the authors used two SVM classifiers, the first one to

differentiate between motion and motionless activities - Figure 23 – and the second one to

classify the activities between each group, like it was previously mentioned - Figure 24 and 25.

Figure 21 Classification results using only one classifier [15]

Figure 22 3D-accleleration signals measured above 6 activities [15]

Related Work

 27

The lustiness of this method can be further increased using majority voting to reach a

prediction. This means that the more voted classification will be the final decision, this way data

with noise or misclassified can be avoided.

However, like in other experiments using other approaches, still very hard to differentiate

activities with similar acceleration values.

Another conclusion of this work is that using rule-based reasoning and multiclass SVM

algorithms the classification can be improved.

Figure 23 Classification results using two SVM classifiers [15]

Figure 24 Motionless confusion matrix using 3MotionlessM [15]

Figure 25 Motion confusion matrix using 3MotionM [15]

Related Work

 28

The great accuracy achieved in these experiments was highly considered when doing the

Android application, although the tests done using decision trees (C4.5) had higher accuracy.

However a direct comparison cannot be done because the data used was different.

2.6 Battery

During the conception of this project not only the important results of the classifiers tests

were taken into account. The application needs to be appealing to the customer, and for that it

has to give good results and have the smallest impact on the phone performance.

With this objective in mind a way to save battery and, at the same time, gather enough data

had to be found.

A random use of the accelerometer, turning it on and off, is not an option because the

samples need to have the same duration and in order to conduct robust experiments a periodicity

needs to be found when retrieving data.

Experiments conducted by Yi Wang et al [17] leaded to the conclusion that what could be

done to save battery was the creation of duty-cycles (this concept will be explained later) –

Figure 26.

The accelerometer is the sensor that spends less energy – Figure 27.

We continue to believe that creating the model is the most expensive action in terms of

power consumption.

Figure 26 Sensor duty cycles, device computation time and sensor energy cost per sample [17]

Figure 27 Power usage of sensors [17]

Related Work

 29

2.7 Data Extraction

Until now we have been talking about gathering data, testing data but nothing have been

said about what is the data, what information can we infer from it.

Ravi et al. [8] showed that several features could be extract from the data:

 Mean

 Standard Deviation

 Energy

 Correlation

The usefulness of these features has been demonstrated in prior work (Bao & Intille 2004).

Standard deviation was used to capture the fact that the range of possible acceleration

values differ for different activities.

The periodicity in the data is reflected in the frequency domain. The energy feature is

calculated in order to capture data periodicity.

Correlation is calculated between each pair of axes as the ratio of the covariance and the

product of the standard deviations. Correlation is especially useful for differentiating among

activities that involve translation in just one dimension – Figure 28.

Figure 28 X-axis readings for different activities [17]

Related Work

 30

For activities like climbing stairs that involve translation in two dimensions cannot be used

to distinguish climbing up or down stairs.

2.8 Sliding Windows

The robustness of the classification depends how the data is fetched. A certain order must

be maintained so processing data can indicate an activity in a determinate moment.

The objective is to take into account only recent data when making decision. This saves

computing power which is very import when working in a mobile platform.

Sliding windows model is useful for sensors network where only the recent events are

important. It reduces the memory usage because only saves the window with the data [18].

There are two types of sliding windows [19]:

 Sequence-based windows

 Timestamp-based windows

An algorithm that can be used with a sequence-based window is to maintain a reservoir

sample for the first n data elements in the stream, and thereafter to stop maintaining the sample

except that when the arrival of a new data element causes an element present in the sample to

expire, the expired element is replaced with the newly-arrived element.

It requires only memory for storing the predetermined number of data elements.

There are several algorithms that differ in the storage of the data. For example a possible

algorithm is to add new elements to a “backing sample” and generate the sample of size k by

down-sampling from that sample, when an element expire it is removed from the backing

sample. However another algorithm that needs less memory was created. Chain-sample

generates a sample of size l, to produce a sample of size k, maintain k independent chain-

samples. An element only is chosen to be part of the sample if it has a determinate probability

and it will replace another element that expires.

In timestamp-based sliding windows there is an algorithm called “priority sample”.

As each data element arrives a priority is assigned randomly between 0 and 1. The element

with higher priority and non-expired is included in the sample. In memory only stores elements

that can’t be replaced with other ones with a later timestamp and higher priority since only these

elements can be used in the sample.

Weighing the two types of slideing windows an approach using sequence-based windows

seemed more appropriate because defining an interval is not viable because the application can

be turned off and not gathering new data. Taking this into account a simpler sequence-based

window seemed like a better solution. A number of instances is defined and when the limit is

Related Work

 31

reached the old element in the file will be replaced by the new one, keeping the file updated and

always with the same size.

2.9 Duty cycles

During this thesis the importance of saving battery has been being mentioned. The

embedded sensors in the mobile devices are major power consumption [17]. Since it is

mandatory the use of the accelerometer to retrieve data so the application can classify it, a way

of saving battery was needed.

The accelerometer is a low cost sensor however battery can be saved. Because movements

can be changing constantly the accelerometer needs to be sampled periodically. It cannot be

turned off and on without criteria since that would mix the data and would be impossible to

classify accurately. What can be done is to implement duty cycles. Duty cycles define the

interval that the accelerometer is on and off. This ensures that the samples have the same time

length which won’t be a problem to the sequence-based to the sliding window because we can

always know which is the recent data in case we need to replace the old data in the file.

With some experiments authors [17] came to the conclusion that 6s with the accelerometer

working enough data could be gathered to indicate an activity and then it could be turned off for

10s – Figure 29.

This approach gives enough time for our program to classify the instances gathered and

don’t waste battery with the accelerometer having it turned on when it is not needed.

2.10 Existing prototypes

Although the market for applications that focus on enhancing the physical activity by

classifying the activities is not yet being fully availed there are some prototypes.

To build an application like DiaTrace research was needed [20].

A healthy human being takes, in average, 220msec for an optical response. However a

reflex is a direct reaction without processing in the brain which takes approximately 0.06s that

is 16 Hertz. According to Shannon theorem a double sampling rate is needed, which gives 32

cycles per second. The sampling rate is relevant for body movements because if the sampling

rate of the accelerometer was less than 32 cycles the sample distribution would be abnormal.

Figure 29 Sensor duty cycles, device computation time and sensor energy cost per sample [17]

Related Work

 32

DiaTrace uses a reconstruction of the true course of acceleration by interpolation of the

scanned acceleration value of each axis. This preprocessing compensates the varying sampling

rate as well as the rough quantization. This leads to a new input signal for the pattern

recognition. By using relevant features, a long term assessment of daily activities is possible by

DiaTrace – Figure 30.

The program measures all daily activities and warns the users of what extra activities they

need to do. This application takes into account the huge importance of social networks enabling

the users to share their results in order to make the app more appealing and to instill

competitiveness in its users.

The authors [20] ensure that wearing the mobile phone on the trousers front pocket they

achieve an accuracy of 95% in recognizing activities. For that they claim using techniques of

data mining and pre-processing the acceleration of the data.

This experiment has a downside: it lacks explanation in which is the algorithm used, how

the data is treated, what amount of data is taken into account and how the classification is done.

However it shows how this niche market is not explored yet and the business opportunity it can

be.

Figure 30 DiaTrace application [20]

Software

 33

Capítulo 3

Software

3.1 Moa - Massive Online Analysis

Until now we have seen that multiple authors chose Weka and worked with its classifiers.

Since we were working with data streams we choose MOA.

MOA (Massive On-line Analysis) is a framework for data stream mining. It includes tools

for evaluation and a collection of machine learning algorithms. Related to the WEKA project, it

is also written in Java, while scaling to more demanding problems.

The goal of MOA is a benchmark framework for running experiments in the data stream

mining context by proving:

 storable settings for data streams (real and synthetic) for repeatable experiments;

 a set of existing algorithms and measures from the literature for comparison; and

 an easily extendable framework for new streams, algorithms and evaluation methods.

The workflow in MOA follows the simple schema depicted below (Figure 31): firstly a

data stream (feed, generator) is chosen and configured, secondly an algorithm (e.g. a classifier)

is chosen and its paramters are set, third the evaluation method or measure is chosen and thirdly

the results are obtained after running the task [21].

Software

 34

MOA includes Hoeffding Trees that aren’t present in Weka and are of most importance

when dealing with data streams. This work flow will be explained later integrated with the work

developed. It will enable us to understand how the classification is done.

3.2 Android

Android [22] is a software stack for mobile devices that includes an operating system,

middleware and key applications. The Android SDK provides the tools and APIs necessary to

begin developing applications on the Android platform using the Java programming language.

The following diagram – Figure 32 - shows the major components of the Android operating

system.

Figure 31 Workflow in MOA [21].

Figure 32 Android components' [22]

Software

 35

By providing an open development platform, Android offers developers the ability to build

extremely rich and innovative applications. Developers are free to take advantage of the device

hardware, access location information, run background services, set alarms, add notifications to

the status bar, and much, much more.

Developers have full access to the same framework APIs used by the core applications.

Using Android and Moa the Java programming language it becomes easier its joint

implementation.

3.3 Power Tutor

An application was needed to measure the battery usage.

PowerTutor is an application for Google phones that displays the power consumed by

major system components such as CPU, network interface, display, and GPS receiver and

different applications. The application allows software developers to see the impact of design

changes on power efficiency. Application users can also use it to determine how their actions

are impacting battery life. PowerTutor uses a power consumption model built by direct

measurements during careful control of device power management states. This model generally

provides power consumption estimates within 5% of actual values. A configurable display for

power consumption history is provided. It also provides users with a text-file based output

containing detailed results. You can use PowerTutor to monitor the power consumption of any

application. [23]

Prototype

 36

Capítulo 4

Prototype

4.1 Techniques used

After an intensive study of previous work done, we decided to use Naïve Bayes and

Hoeffding trees that were explained before.

Naïve Bayes was chosen because it treats the attributes as unrelated and it proved to give

good results in all the experiments despite its simplicity. In the case of Hoeffding Tree, it was

selected because of its advantages (learning in constant time per example and not storing any

examples in main memory) and good performance dealing with streams.

These two classifiers seemed adequate for our application that has limited memory space

and uses data from a stream. To find the best technique we decided to follow what was done on

other works, comparing the accuracy of the classifiers.

4.2 Experimental setup

Before testing the application some decisions had to be made in order to have a controlled

environment. This approach allows us to know the expected results for each test beforehand.

The placement of the mobile was an important issue. Without having the option of placing

sensors in different parts of the human body we have chosen the trousers’ front pocket [24] to

conduct all experiments.

To create the models, data from two persons was used. This data contained the average of

the values recorded by an accelerometer for several hours doing activities of walking, running,

standing idle and sitting. In the total approximately 27 thousand instances were used.

Prototype

 37

The unlabeled data (files from approximately 16 thousand to 30 thousand instances) was

not used to create the model. It belongs to the two people that contributed with data to create the

model. There is, also, data from a third person that was not used for learning the models.

The programmer had to choose between timestamp and sequence-based sliding windows

depending if window is defined according to a predefined interval or a predefined amount of

data. The sequence-based sliding windows were used as well as the 6s long duty cycles.

A value of 70% probability is used to proceed with semi-supervised learning as explained

in the next section. This allows creating new models by appending to previous data the recent

labeled data with at least 70% of certainty.

4.3 Architecture

We have just seen the conditions on which the prototype will be tested. However before

showing the results it is important to understand how it works.

First we present the architecture of the all system to provide a better view of all the

components that interact inside the smartphone to make this application work.

The four main components of the application are the accelerometer, SD card and Android

with MOA embed – Figure 33. These four components are always connected being the SD card

the least used. It is only used to access the files with the training set for creating the models and

to save labeled files between classification steps (in hierarchical between 1
st
 and 2

nd

classification).

Smartphone

Android

MOA

SD card

Accelerometer

Figure 33 Application components

Prototype

 38

The accelerometer provides data that is gathered using Android functions and passed to

functions that use MOA in order to be classified. Which are these functions and how do they

work will be explained next. The usage of MOA is the main aspect of this application. It is this

program that handles all the operations with classifiers, models, labeled and unlabeled data;

Android just supports thys program and interconnects it with all the other components.

In interface terms is Android straightforward, what really matters is what the user cannot

see. The program is divided in some main functions that use MOA aided by Android (Figure

34):

1. Train the model: firstly we need to load a labeled file from the SD card and turn it into

a data stream. A classifier is chosen and it tries to classify the next instance of the

stream and then learn from it. This attempt to classify an already labeled instance has

the porpoise of getting the model’s accuracy by counting how many instances would

the model label correctly in total.

2. Load unlabeled data: this function actually is not supposed to be used during the

normal usage of the application. What it makes is simply to get a file from SD card

with unlabeled instances in order to procced to their classification. It will be a very

useful function during the tests to create stress situations where not only one instance

has to be classified. It is also easier to evaluate the classification results because

although the data is unlabeled we know how it should be labeled.

3. Classify unlabeled data: this is the last function related with MOA and it is the one that

will give the results that the user will be able to see. It uses the model created by

function 1 and it can use the unlabeled data from function 2 or, in normal operation of

the application, use the only unlabeled instance that comes from the accelerometer.

This function can also save the recent labeled data on a file or just output it to the

screen. To get to the labeled instances the function contains a cycle that basically using

the model get the probabilities of the instance belonging to each of the possible

classes, being the class chosen the one with higher probability, of course.

All these functions can have additional features depending whether we are dealing with a

semi-supervised or a supervised learning approach. We defined that an instance classified with

70% or more of certainty (function 3) is added to the training set in the semi-supervised

approach.

 The hierarchical approach has two functions of each (1,2,3) because first we need to create

the model to classify the instances in Dynamic or Static movement. When this classification

Prototype

 39

occurs two files are created where unlabeled data is written, one file only with Dynamic

unlabeled data and other with Static unlabeled data. Because of these two files a flag was

created whether if both files had data. If that was true (what only happens in stress conditions

for the tests) the second part of the hierarchical approach takes turns. First it creates a model for

the Dynamic (Running, Walking) or Static (Standing Idle, Sitting), then loads the files created

by the first classification, it loads the Dynamic unlabeled file whether we are doing the

Dynamic classification or loads the Static unlabeled file whether we are doing the Static

classification. In the end we have the instance labeled by function 3. If we are using semi-

supervised learning and doing this hierarchical approach the 70% can be found on both

classifications (1
st
 classification and 2

nd
 classification in Dynamic and Static).

The one-step classification is pretty straightforward just implementing function 1,2 and 3

being the only difference between the semi-supervised and the supervised approaches are the

adding of unlabeled instances, in the sormer approach, to training set when the classification has

a certainty of 70%, at least.

1-Creation of the model by

loading the training set from

SD card. (Walking, Running,

Standing Idle, Sitting)

2-Load unlabeled data file

or data collected by the

accelerometer

3-Classify unlabeled data from

2 with model from 1.

Figure 34 Main functions on prototype behavior using one-step supervised
classification.

Prototype

 40

The numbers on second classification (Figure 35) are the same because the aforementioned

reason: the hierarchical approach takes turns doing the second classification.

This is the basic architecture of the prototype. These are the main parts the use MOA and

handle all the data.

1-Creation of the

model by loading the

training set from SD card.

(Dynamic, Static)

2-Load unlabeled

data file or data collected

by the accelerometer

3-Classify unlabeled data from

2 with model from 1.

Classification in Dynamic or

Static

4-Creation of the model

Dynamic by loading the

training set from SD card.

(Walking, Running)

5-Load unlabeled data file

of Dynamic created by 3.

4-Creation of the

model Static by loading

the training set from SD

card. (Standing Idle,

Sitting)

5-Load unlabeled data file

of Static created by 3.

7-Classify unlabeled data

from 6 with model from 4.

Classification in Walking

and Running.

7-Classify unlabeled data

from 6 with model from 4.

Classification in Standing

Idle and Sitting.

1st classification

2nd classification

Figure 35 Main functions on prototype behavior using supervised hierarchical
classification.

Prototype

 41

4.4 Experiments and Results

Previously, labeled data from three different persons was recorded. The data contained

four activities: walking, running, sitting and standing idle.

Using MOA, two different approaches were taken:

Firstly, models were induced using both Naïve Bayes and Hoeffding Tree. The classifiers

were tested on unlabeled data from one person (Table 1).

Table 1: Classifiers’ accuracy

 Naïve
Bayes

Hoeffding Tree

Accuracy

92.00%

94.78%

Secondly, a hierarchical approach with two levels was also carried out using the same

classifiers. In the first level the classification was made between Dynamic and Static activities –

table 2. Then, in the second classification, a model was built on each category so we could

proceed the classification on Walking and Running on the Dynamic category, and Sitting and

Standing Idle on the Static one (Table 3).

 Table 2: accuracy in the first level of the hierarchical approach.

Dynamic vs. Static Naïve
Bayes

Hoeffding Tree

Accuracy

82.11 %

99.85%

Table 3: Classifiers’ accuracy in the second classification of the hierarchical approach.

 Naïve
Bayes

Hoeffding Tree

Running, walking

76.25%

99.05%

Sitting, standing

idle

99.83%

99.93%

Prototype

 42

To test the effectiveness of the classification, unlabeled data of a person, which was not

used for training the classifier, was used. Here are the results for the walking activity – table 4.

Table 4: Classifiers’ Accuracy for the walking activity using as test set data from a person

without data on the training sets

 One-step

classification

Hierarchical 1st

classification

Hierarchical 2nd

classification

Naïve Bayes

86,37% 90,17% 84,27%

Hoeffding Tree 67,65% 94,04%

88,09%

These results only show that Hoeffding Tree is better than Naïve Bayes for the walking

activity on a hierarchical approach. However, Naïve Bayes gives better results on the one-step

approach (Table 4). Further tests were needed for the remaining activities. Additionally, a semi-

supervised approach was also used, besides the supervised one described above, in order to

evaluate the usefulness of using unlabeled data from the user that is being tested.

In order to adapt the model to the normal user of the cell phone a threshold of 70% was

created. This meant that data labeled with at least 70% of certainty would be recorded on the

training file of the classifier, so a new model, more suitable to the user, could be generated. This

approach is compared against de supervised approach (Figure 36).

Figure 36 Accuracy of one step classification using both supervised and

semi-supervised learning.

Prototype

 43

It is easier to check the better accuracy when using a semi-supervised approach.

The accuracy using Naïve Bayes in a hierarchical approach on Static classification

decreases when we use new labeled data (i.e. the semi-supervised approach) for training the

model.

The hierarchical approach has two classifications, first in Dynamic and Static if the

activities involve motion or not. Secondly in Dynamic we have walking and running and in

Static standing idle and sitting.

Figure 37 Final classifiers' accuracy using hierarchical supervised classification

Figure 38 Classifiers’ accuracy on final step of hierarchical classification with a

semi-supervised learning approach.

Prototype

 44

After doing the hierarchical classification (Figure 37 and 38) the labeled data was checked

by visual inspection and it was easy to observe that Hoeffding Tree tend to label data on the first

classification as Dynamic (probably because the dataset is unbalanced and the dynamic class is

the majority one). Naïve Bayes seems more balanced when labeling new data in the first

classification of the hierarchical approach.

At last we tested how using the two classifiers together would affect the classification

(Figure 39).

 Figure 39 Final classifiers' accuracy using hierarchical supervised

classification with different classifiers for each step.

Prototype

 45

Figure 40 Final classifiers' accuracy using hierarchical semi-supervised classification

with different classifiers for each step

The balance characteristic of Naïve Bayes mentioned before can be verified on Figure 40,

giving better results when used in the first classification. The tendency of Hoeffding Trees to

classify, in the first step, the data as a Dynamic movement has influence on the second

classification where Naïve Bayes has difficulties to label data because it gets lots of Static

labeled data as Dynamic data from the first step. Overall better accuracy is achieved when using

the Naïve Bayes classifier on the first classification (Dynamic or Static movement) and

Hoeffding Tree on the second classification.

The accuracy is not the only indicator of the classifiers’ performance. The precision and

recall are also important.

Precision: This is the percentage of retrieved documents that are in fact relevant to the

query.

Recall: This is the percentage of documents that are relevant to the query and were in fact,

retrieved.

It is common to plot a graph of precisions at many different levels of recall; a higher curve

represents a better-quality information retrieval system [25].

Prototype

 46

Figure 41 Precision/recall graph of Naïve Bayes used in one-step classification. Semi-

supervised learning (left), supervised learning (right)

In this case it is possible to see that with the semi-supervised learning approach the

precision tends to drop when the recall goes to a maximum, what means that during the process

of training the model we are getting a small amount of relevant information but the majority of

that information is being useful (Figure 41).

This also happens in other cases but in others to have a semi-supervised or a supervised

learning is almost the same, like in Figure 42.

Figure 42 Precision/recall graph of Hoeffding Tree used in second classification (Hoeffding Tree

also used in first classification) of the hierarchical approach (Running and Walking). Semi-

supervised learning (left), supervised learning (right)

Prototype

 47

This shows that in both cases the model tends to have a small variation.

The different graphs prove that although a technique presents more accuracy that does

not mean that the information retrieval system is better.

Another thing that we noticed is that the information retrieval system of Hoeffding

Trees is better than Naïve Bayes maybe because it does not treat the data as unrelated. That can

be seen by the higher curve that these methods present (Figure 42 and 43)

Only some precision/recall graphs are here to show what did happen during the

experiments and to make it easier to explain. The rest of the graphs are on the attachments.

The application had, also, concerns about the battery usage and memory.

In order to test the battery usage we created a stress situation where the app did both the

hierarchical classification and the one step classification. In order to do it two models were

created using the data of about 43.000 lines of labeled data, and doing the classification of ten

unlabeled instances (in reality it only does one instance every 16s).

This experiment told us that the usage of battery needs a maximum of 600.0mW for the

CPU and between 500mW and 600mW for the LCD, which gives a total between 1100 and

1200mW on hierarchical classification – Figure 44.

Figure 43 Precision/recall graph of Naïve Bayes used in second classification (Naïve Bayes

also used in first classification) of the hierarchical approach (Running and Walking). Semi-

supervised learning (left), supervised learning (right)

Prototype

 48

The one step classification only creates one model. The battery usage needs a maximum of

526mW for the CPU, the LCD needs the same power as the hierarchical approach, of course.

Running the application five times, in a row, we got an energy usage of 120.8J for the CPU in

hierarchical classification. However in one step classification we get a total of 110.3J – Figure

45.

Figure 45 Power used by One step approach with Naïve Bayes

Creating models and classifying multiple instances takes almost 60s.

Figure 44 Power used by Hierarchical approach with

Naïve Bayes

Prototype

 49

And it is easier to check the difference of the CPU usage from hierarchical classification to

one step classification.

Creating models and classifying multiple instances takes almost 60s.

In terms of memory, the prototype is about 3Mb, and the files used for training the model

having about 43000 lines are 1.466kB each. These files will grow until the limit defined by the

sequenc-based window is reached because new labeled data from the user will be added (like

aforementioned if the certainty of the classification is bigger than 70%) in order to have a semi-

supervised learning approach. When the limit is reached the old data will be replaced by the

recent one. We will have three files for training (hierarchical approach).

Conclusions and Future Work

 50

Capítulo 5

Conclusions and Future Work

The encouraging results of the experiments lead us to affirm that a step forward has been

taken in the study of activity classification and that the project objective stated in the beginning

has been achieved with success.

To achieve good results, the techniques do not need to be too complex, like it was shown

using Naïve Bayes. A fair conclusion after analyzing the Figures 41 and 42 is that hierarchical

approach gives better results with Naïve Bayes doing the first classification and Hoeffding Tree

dealing with the final one.

With less complex techniques less power of the mobile is needed, leading to a minor

impact on the performance of the mobile. So, if Naïve Bayes does not decrease the accuracy it is

better to use it in order to save memory and battery.

The battery usage confirms that the app can be used non-stop.

It would be thrilling and of greater convenience to create a way that could swap

classification techniques when the battery was low so it could be saved and the application did

not have to stop. Changing from a hierarchical classification to one step would have not a big

impact on the final results as we have seen on the Figures 41 and 42 where the accuracy

dropped maximum of 2%, where Hoeffding tree provided the better results.

The model used only has to be created when the application starts working. It is used for

classifying until the app is shut down. It has only to classify one instance every 16s which is

enough to do it, so the duty cycles work perfectly.

Taking into account that the better results are achieved with the hierarchical approach with

semi-supervised learning and that the model is trained every time we start the application it

would be important to have a variable that had the total of instances labeled with a certainty

equal or superior to the 70% defined by us and added to the training file. A limited of instances

Conclusions and Future Work

 51

could be created and when the variable with the total of new instances was equal to the limit a

new model would be created. Another thing that can improve the application is when the

majority of the instances is being classified with a certainty above the threshold defined it can

be changed to a higher value in order to try to improve the model and therefore the accuracy of

it. A process to control the addition of the new labeled data to the training file should be

considered, because it is important to keep the data balanced. As we have seen in the tests above

unbalanced data can induce the model into tending to classify unlabeled data with a determinate

class leading to errors that can only be spotted on a manual revision of the data.

This would not have memory implication because regarding the memory usage a limit on

the training files can be created, when this limit is reached the older data can be erased and new

data added. This allows the adaptation of the application to new users as long as the application

is being used by these new users.

The application can be improved by making possible to wear the mobile on other location,

for example on women purses and testing other classifiers and how to process data, in order to

run faster. Even with the existing power of the processors on the smartphones like quad core it

is possible to conduct new experiments like if we were working on a computer.

New tests can be made using data from people with mobility constraints. Improving the

application so it can adapt to this kind of people can be important if an accurate prediction can

be made. Studies of patients with diseases that tend to degrade the ability to move can be

accomplished to prevent, for example, falls or just to study how the movements change. This

prevention can also be applied to elder people.

A better understanding of different movements can be acquainted.

With this knowledge, people who practice sports can also benefit. For example,

understanding how their body posture can be corrected in order to achieve better results is like

training with a personal trainer that is always helping to prevent injuries. Also measuring the

actual time that an activity was being performed can be used in endurance training for example.

Knowing that we spent 45 minutes it is different than going for a run of one hour actually just

running 30 minutes and spend the other 30 minutes walking on a fast pace.

This is just the beginning of an application that can be expanded in order to provide a

better intimate experience between users and mobile phones.

References

 52

References

[1] P. Domingos & G. Hulten, (2000). Mining high-speed data streams. Proceedings of

the sixth ACM SIGKDD international conference on Knowledge discovery and

data mining - KDD ’00, 71-80. New York, New York, USA: ACM Press.

doi:10.1145/347090.347107

 [2] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity Recognition using Cell

Phone Accelerometers,” SIGKDD Explorations, vol. 12, no. 2, pp. 74-82, 2010.

[3] L. Bao & S. S. Intille (2004). “Activity Recognition from User-Annotated

Acceleration Data, “1-17.

[4] T. Gu, Z. Wu, X. Tao, H. K. Pung, and J. Lu. epSICAR: An Emerging Patterns

based Approach to Sequential, Interleaved and Concurrent Activity Recognition. In

Proc. of the 7th Annual IEEE International Conference on Pervasive Computing

and Communications (Percom '09), Galveston, Texas, March 9–13, 2009.

[5] X. Zhu (2005). Semi-supervised learning literature survey. Technical Report 1530,

Computer Sciences, University of Wisconsin-Madison

[6] D. Guan, W. Yuan, Y.-K. Lee, A. Gavrilov, and S. Lee, “Activity Recognition

Based on Semi-supervised Learning,” 13th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), no.

1, pp. 469-475, Aug. 2007.

[7] J. Lester and T. Choudhury, “A practical approach to recognizing physical

activities,” Pervasive Computing, pp. 1-16, 2006.

[8] N. Ravi, N. Dandekar, P. Mysore, ML Littman (2005) "Activity recognition from

accelerometer data". In: Proc. of the seventeenth conf. on innovative applications

of artificial intelligence (IAAI). AAAI, Menlo Park, pp 1541-1546.

[9] J. Gama, “Aprendizagem Bayesiana Introdução.” pp. 1-22, Universidade do Porto

[10] J.Gama," Knowledge Discovery from Data Strems", CRC Press, 2010

[11] P. L. Lanzi, “Decision Trees “, Politêcnico di Milano.

[12] G. Holmes,& K. Richard (2005). “Tie-breaking in Hoeffding trees”

References

 53

[13] J. Catlett. Megainduction: Machine Learning on Very Large Databases. PhD thesis,

Basser department of Computer Science, University of Sydney, Sydney, Australia,

1991.

[14] A. C. F. Coster, “Classification of basic daily movements using a triaxial

accelerometer,” Medical & Biological Engineering, pp. 679-687, 2000.

[15] M. Schneider, M. Velten, and J. Haupert, “The ObjectRules Framework -

Providing Ad Hoc Context-Dependent Assistance in Dynamic Environments,”

2010 Sixth International Conference on Intelligent Environments, pp. 122-127, Jul.

2010.

[16] Ovidiu Ivanciuc. (2005). SVM - Support Vector Machines. http://www.support-

vector-machines.org/

[17] N. S. Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B.

Krishnamachari, “A Framework of Energy Efficient Mobile Sensing for automatic

user state recognition.pdf,” pp. 179-191, 2009.

[18] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques, Second.

Morgan Kaufmann, 2011.

[19] B. Babcock and M. Datar, “Sampling from a moving window over streaming data,”

of the thirteenth annual ACM-SIAM, 2002.

[20] G. Bieber, J. Voskamp, and B. Urban, “Activity Recognition for Everyday Life on

Mobile Phones,” Universal Access in HCI, Part II, HCII 2009, LNCS 5615, pp.

289-296, 2009.

[21] MOA Team. (2012). MOA Massive Online Analysis. http://moa.cs.waikato.ac.nz/

[22] Google. Android developers. http://developer.android.com/index.html

[23] University of Michigan. Power tutor.

http://ziyang.eecs.umich.edu/projects/powertutor/

References

 54

[24] S. Sprager and D. Zazula, “A cumulant-based method for gait identification using

accelerometer data with principal component analysis and support vector
machine,” WSEAS Transactions on Signal Processing, vol. 5, no. 11, pp. 369–378,
2009

[25] H. Jiawei (2001). Data mining: concepts and techniques. San Francisco, CA, itd:

Morgan Kaufmann. Morgan Kaufmann

Precision/Recall graphs

 55

Appendix A

Precision/Recall graphs

Att. Figure 1 Precision/recall graph of Naïve Bayes used in second classification of the

hierarchical approach (Static). Semi-supervised learning (left), supervised learning (right)

Precision/Recall graphs

 56

Att. Figure 2 Precision/recall graph of Hoeffding Trees used in first classification of

the hierarchical approach (Dynamic and Static). Semi-supervised learning (left),

supervised learning (right)

Att. Figure 3 Precision/recall graph of Naïve Bayes used in first classification of the

hierarchical approach (Dynamic and Static). Semi-supervised learning (left), supervised

learning (right)

Precision/Recall graphs

 57

Att. Figure 4 Precision/recall graph of Hoeffding Trees used in one-step classification.

Semi-supervised learning (left), supervised learning (right)

