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Resumo 

Reconhecer atividades humanas com sensores junto ao corpo tem-se tornado bastante 

importante ao longo dos anos, com o objetivo de criar/melhorar sistemas de apoio à 3ª idade, 

fitness e saúde e ajudar aqueles com deficiências cognitivas. Esta tarefa de reconhecimento de 

atividades que ocorrem num determinado momento com um indivíduo tem o nome de Activity 

Recognition.  

Com o desenvolvimento de novas tecnologias, como os smartphones, foi possível 

ultrapassar a barreira do utilizador ter de usar vários sensores junto ao corpo e passar a usar 

apenas um, no bolso da frente das calças. Ser possível dar uma nova solução para este problema 

é motivante, além disso, trabalhar com Android que é a tecnologia líder no mercado e ajudar a 

melhorar a experiência do utilizador com o telefone dão um grande alento para a conclusão 

deste projeto. 

 Tendo os smartphones um acelerómetro tri-axial embutido é possível criar aplicações 

que são capazes de prever as atividades do utilizador com grande exatidão. Esta tese vai de 

encontro a uma nova solução, que é criar uma aplicação Android para o problema de reconhecer 

atividades tratando-o como um problema de classificação. Para chegar à solução foi necessário 

o estudo de trabalhos realizados previamente. O objetivo foi perceber quais as atividades 

humanas consideradas comuns e que abordagens podiam ser feitas ao problema de classificação, 

como supervised ou semi-supervised learning, e quais os classificadores mais usados e os 

melhores métodos para os comparar.  

Com este estudo decidiu-se avançar para uma aplicação Android que explorasse as 

abordagens com supervised e semi-supervised learning com one-step classification (classificar 

os dados em Standing Idle, Sitting, Running e Walking) e hierarchical classification (tendo esta 

abordagem duas classificações, primeiro em Dynamic e Static activities e depois dentro 

deDynamic em Running e Walking e dentro de Static em Standing Idle e Sitting).  

Usa-se uma abordagem supervised e semi-supervised learning, em que no primeiro caso 

se cria um modelo que se mantém estático ao longo do tempo e no segundo caso alguns dos 

dados classificados pelo modelo são adicionados ao ficheiro de treino do classificador com o 

intuito de criar um novo modelo e ter um ficheiro actual e que reflecte o comportamento do 

utilizador. Os principais componentes da aplicação e a sua interação e a sua arquitetura básica 

são explicadas para uma melhor compreensão de todo o sistema. Para comparar as abordagens e 



 

 

a performance dos classificadores a sua exatidão na classificação foi escolhida. Curvas 

precision/recall também foram criadas para perceber e avaliar os sistemas de recolha de 

informação dos modelos. Como se trabalhou numa aplicação móvel o uso de memória e bateria 

por parte da aplicação e tempo gasto na classificação foram tidos em conta. Para testar a 

viabilidade da aplicação estas questões foram monitorizadas. Os classificadores escolhidos 

foram Naive Bayes e Hoeffding trees. 

As principais conclusões deste estudo são: 1) classificação hierárquica tem uma melhor 

performance que a classificação one-step; 2) o melhor par que se pode criar na classificação 

hierárquica é o uso de Naive Bayes na primeira classificação e Hoeffding trees na segunda; 3) 

Semi-supervised learning é no global melhor que supervised classification; 4) Naive Bayes 

consome menos bateria que Hoeffding trees. 

 



 

 

Abstract 

Recognizing human activities with sensors next to the body has become more important 

over the years, aiming to create or improve systems in elder care support, health/fitness 

monitoring, and assisting those with cognitive disorders. This task of recognizing activities 

taking place at a certain moment when considering only one individual user is called Activity 

Recognition. 

With the development of new technologies, like smartphones, it was possible to overcome 

the barrier of the person having to use multiple body worn sensors and passing to use only one, 

in his trousers’ front pocket. Being able to give a new solution for this problem is a huge 

motivation, besides having the pleasure of working with Android technology that is leading the 

market and helping the user experience with is phone. 

Having the smartphones a triaxial accelerometer built in it is possible to create applications 

that are capable of recognizing the activities of the user with great accuracy. 

This thesis aims to meet this new solution, creating an Android application, for the 

problem of recognizing the activities performed by the user and treating it as a classification 

problem. To embark into a path that leads to the solution it was necessary to study previous 

works in order to trace this path. The main objective was to understand what were considered 

the common human activities and what approaches could be taken when dealing with this 

classification problem, like supervised or semi-supervised learning. What were the most usual 

classifiers, what their differences were and how could we compare them. 

With this study we decided to built an Android application that explore supervised and 

semi-supervised learning with both one-step classification (classifying the data in Standing Idle, 

Sitting, Running and Walking) and hierarchical classification (having this approach two 

classifications, first in Dynamic and Static activities and then inside Dynamic into Running and 

Walking and inside Static into Standing Idle and Sitting). On supervised learning a model is 

created and it stays static along the time. On semi-supervised learning some instances labeled by 

the model are added to the training file in order to create a new model and have a training file 

up to date and with activities from the current user. The main components of the application, 

how they interact its basic architecture are presented. In order to compare the classifiers’ 

performance their accuracy was chosen. Curves of precision/recall were also created to 

understand and evaluate the models’ information retrieval system. Since we were working on a 



 

 

mobile application the memory and battery usage and time spent on the classification were also 

an issue. To check the feasibility of the application these issues had to be monitored. The 

classifiers used in the experiments were Naive Bayes and Hoeffding trees. 

The main conclusions from this study are: 1) hierarchical classification has better 

performance than one-step classification; 2) the best mix for the hierarchical classification is 

using Naive Bayes in the first classification and Hoeffding trees in the second one; 3) Semi-

supervised learning is globally better than supervised classification; 4) Naive Bayes consumes 

less battery than Hoeffding trees. 
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Chapter 1 

Introduction 

Studying and understanding the human body have always been an area of great interest. 

With the creation of sensors a new opportunity for further studying the body was created. The 

sensors could provide new data about the movements that could be used to recognize physical 

activities.  

Since the 80’s this field of recognizing activities from data collected from body worn 

sensors has been capturing the attention of more and more people of the computer science 

community due to its interdisciplinary with areas like medicine, human computer interaction or, 

even, sociology. Moreover it gives the possibility to create systems that can adapt to the users 

enabling the possibility of creating or improving systems in elder care support, health/fitness 

monitoring, and assisting those with cognitive disorders 

The appearing of smartphones was a big breakthrough in this area because they had 

computation power to process in real time the data gathered by their sensors and they were not a 

strange object to the users, which was one of the major setbacks of the first systems that were 

multi-sensor. 

The smartphone is more advanced than a normal mobile phone. The first smartphones 

were a hybrid of PDA and normal mobile. Now they combine multiple functions of several 

devices like GPS, media playback device, digital cameras. They also give to the user the 

possibility to be always connected to the internet. 

This permits that data can be processed in real time or stored and then processed on the 

computer or simply being sent over the internet or bluetooth without bothering the user.  

 

In physics, movement is the variation of the spatial position of an object over time. 

The accelerometer operates in a simple way. It obeys to Newton’s second law (the 

acceleration of an object as produced by a net force is directly proportional to the magnitude of 
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the net force, in the same direction as the net force, and inversely proportional to the mass of the 

object).  

A simpler explanation in order to visualize the accelerometer behavior is to imagine it like 

a glass of water half full. If the glass is on a flat surface and it is pushed the water moves. The 

stronger we push the glass the more the water oscillates. What the accelerometer does is to 

measure these movements. It does it measuring the angle between the water when the glass is 

being pushed and when the glass was still, with this angle it can return the acceleration that was 

applied on the glass. 

The research in accelerometer data is so important because it can be used for classifying 

activities that will help to develop programs that aim to aid in health care support or even to be 

used in a recreational way practicing sports, some of the objectives outlined in the beginning of 

the research in this field. 

1.1 Problem 

The introduction sets three main ideas: (1) the relevance of doing research form sensors' 

data for the improvement of humans' life; (2) the contribution given by smartphones for the 

reseach described in (1); and (3) the how and why this data is important for activity recognition.  

Having these main ideas we can advance to understanding the problem and how these 

three things are connected. 

Like it was stated studying the human body with sensors is not a new problem. The first 

works in this field used multiple sensors the collect as much data as possible. However the need 

to use several sensors and because of their size and the need of using cables to transfer the data 

to the computers was not attractive to the user. 

This was a major setback because, due to these limitations, the tests made didn’t reflect the 

normal behavior of the user. With these unappealing systems an effort had to be done in this 

field to make it viable. This can be done by using only the sensors available in smartphones. 

Like the accelerometer, for instance. 

 The smartphones had a big contribution for this problem of recognizing activities because 

of its computational power and sensors. In order to better understanding why the smartphones 

were such a good aid it is unavoidable to give a better explanation of the problem that we are 

dealing with. 

This problem of trying to predict activities from accelerometer data has been treated as a 

classification problem. Like it will be shown almost every author had approach. The main 

difference between the existing approaches is the classification algorithm used. 

Recognizing activities has the objective of recognizing actions of one or several agents by 

observing their actions and environmental conditions. With previous recorded data system 

creates a model that tries to infer from what activity new unlabelled data comes from, 

classifying it. 



Introduction 

 3 

The classification problem can, also, be explained as a mathematical problem. A set of N 

training examples of the form (x; y) is given, where y is a discrete class label and x is a vector 

of d attributes, each of which may be symbolic or numeric. The goal is to produce from these 

examples a model   =f(x) that will predict the classes y of future examples x with high accuracy. 

[1] 

 

One of the biggest problems in the beginning, like it was mentioned, was the necessity of 

the user wearing several sensors on different parts of the body, which conditioned him and 

influenced the data collected making the results of the tests obsolete. 

The smartphone tries to solve these problems of having a strange device next to the 

body and the need to have multiple sensors, in this case only one sensor that is built-in the 

smartphone is used.  Like it will be stated later a single motion sensor placed in a determinate 

position on the body, given its good accuracy results, will be sufficient to give good results 

regarding the acceleration on the body. So using others sensors would just give marginal gains. 

Being the smartphone a device that the user usually carries the data collected by the 

accelerometer will reflect how the user normally acts. So, no longer we have to work with data 

that does not reflect the normal behavior of the person being tested, tests will give truthful 

results. 

  The accelerometer measures the acceleration in three different dimensions (x, y, z) - 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

The accelerometer was built-in the smartphones to enhance gameplay and to rotate the 

screen according the phone position, but soon everybody saw the advantages of this sensor and 

which new applications could be created using it. In the case of this problem it made it possible 

to predict activities using the phone.  

To treat this as a classification problem, a knowledge discovery system needs to be built. 

Knowledge discovery systems are constrained by three main limited resources: time, memory 

Figure 1 Axes of motion relative to user [2] 
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and sample size. In traditional applications of machine learning and statistics, sample size tends 

to be the dominant limitation. 

Since the work was developed on a smartphone, the memory space was limited, and the 

sample size had to be decided testing the accuracy of the system with different sizes, like it will 

be explained later. 

 

Another specificity of the problem which is closely linked with the sample size was the 

need to work with data streams that have the problem of rate of the arrival of examples. When 

new examples arrive at a higher rate than they can be mined, the quantity of unused data grows 

without bounds as time progresses. 

The problem becomes more complex when besides the speed the data has to be processed 

to do the classification in real-time without consuming too much memory. Additionally, the 

battery lifetimehas to be taken into account. The application created cannot have much impact 

on the user’s smartphone performance and, at the same time, it has to collect and classify the 

data accurately. 

Now it is possible to understand the link between the three main ideas of the introduction. 

The user is used to the smart phone, so he will act normally and carry the phone every day. The 

smartphone containing the accelerometer and the data collected by it can be used in the 

classification problem in order to recognize the activities of the user. The data collected will 

help studying the human body. 

 

1.2 Project 

The main objective of this prject is to give an answer to the problem described above by 

creating an Android application that can classify the user activities taking into account all the 

specific restrictions aforementioned. 

Before explaining the decisions of which classifiers were used, how the data was recorded 

among other specificities of the system, it is important to understand what we wanted before 

building the application. So, in the end, we could judge if the main objective was reached. 

Like it was said since the beginning we wanted an application that treated this problem as a 

classification problem. It had to work in real time and classify the four main human activities, 

sitting, standing idle, walking and running. The main idea was to have the accelerometer 

gathering unlabeled data and sending it to the application that was also, always, running.  

The application would have a model to classify the data. All the new labeled data could be 

saved or just presented on the screen to ensure the application’s good performance. The model 

could also be generated on the phone. 
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We wanted to do a semi-supervised learning so we decided new labels predicted with a given 

certainty woul be added to the training set. This approach is compared against supervised 

methods. 

 

1.3 Motivation 

The use of sensors has become mainstream, everybody carries at least one sensor on 

everyday life without realizing. Being the smartphones a device where the innovation in sensors 

is present, it is thrilling to learn how to work with these devices and try to create an application 

that can have a good impact on the life of the users. 

The researchers and the mobile phone producers seek how to create mobile phones and 

applications that look like they were designed on purpose for the each user. This project gives 

that opportunity like we will see later. It tries to adapt the application to the user in order to 

achieve better results. 

By the conclusion of this project we expect to make the labeled data ready for use by other 

applications. This will be of the most importance to make an application that can be used in the 

future. 

1.4 Dissertation Structure 

The introduction, where this subchapter is contained, is the first chapter of this thesis and it 

has the objective of presenting the problem that we are dealing starting by explaining how it 

emerged and its importance. Also in the 1- Introduction chapter we can find a detailed 

explanation of the problem and the final objective of this work.  Before starting on a more 

theoretical explanation of all the process and to finish this first chapter makes sense that we 

show what motivates us into doing this work and the challenges that rise by this approach to the 

problem. 

Understanding the problem is the first step to solve it. With this in mind we move towards 

the solution and explore what other authors have done in order to solve it. The 2- Related 

Work chapter is the chapter with more subchapters. The objective of this chapter is to provide 

an overview of the work done in this area to deal with this specific problem. In it concepts like 

data mining, supervised and semi-supervised learning are explained as well as possible 

approaches like one-step classification and hierarchical classification and what are the common 

activities that humans perform on everyday life that worth classifying. Several classifiers are 

presented and compared by other authors being possible to take some conclusions about each of 

them and which can be helpful for my own solution.  The characteristics of the data that enable 

to differentiate the instances are studied as well as the prototypes already built. 
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Following this second chapter we have 3- Software that presents the programs used to 

build and test the prototype. Open source software was chosen to use in the programming part 

of the prototype, to test the application we chose to use open source software and free Android 

applications.  

4- Prototype is the next chapter. Here we present what techniques we decided to use with 

a brief explanation of the choice. After the experimental setup subchapter is set to inform the 

reader how the experiments were set in order to get a better evaluation when reading the 

experiments and results subchapter. But, before, the explanation of the basic architecture of the 

application can be found. This explanation aims to give to the reader a basic notion of all the 

components used by the application and how MOA is embed on the application with Android 

and what a critical role it plays. Realizing this we hope the tests make more sense to the reader. 

Here all the experiments are presented as well as the results that lead to the final subchapter, 

conclusions and future work. 

Taking into account all the previous chapters an overview of what was accomplished with 

this new solution is written. Conclusions are taken from the results of the experiments and ideas 

are for improving the prototype and/or the research in this field are presented. An evaluation of 

the initial expectation is, also, made. 
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Capítulo 2 

Related Work 

To understand what is possible to make in order to innovate we need to know what have 

been done until now. 

 That is why in this chapter we analyze the state of art in recognizing activities wearing 

sensors. 

To a better understanding we try to present the works like the application was being built, 

first understanding the concepts and advancing to the algorithms and techniques.  

The starting point is the work that was a breakthrough in this field and we move towards 

the recent works that contributed for this thesis. During this approach some notes about their 

conclusions are taken, besides the conclusions the techniques used are briefly explained to 

understand how they fit in this thesis. 

2.1 Single sensor 

Activity recognition is not a new thing. Bao & Intille [3] created a system capable of 

recognizing twenty activities with bi-axial accelerometers positioned in five different locations 

of the user’s person {hip, wrist, arm, thigh, and ankle} – Figure 2. 

 

 

 

 

 

 

 

.  
Figure 2 Location of the sensors on the user's body [3] 
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This work led to an important discovery, which was possible to get accurate results 

recognizing activities just using acceleration values gathered by a sensor placed on the thigh or 

dominant wrist – Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides these conclusions they treated this problem as a classification problem and 

compared four classifiers decision table, instance-based learning (IBL or nearest neighbor), 

C4.5 decision tree, and naive Bayes. Having the decision tree good results – Figure 4 – shows a 

starting point when begin testing classifiers. 

 

 

 

 

 

 

2.2 Data Mining 

Like we saw Bao & Intille treated this problem as a classification problem. But to 

understand what a classification problem is, first we need to understand what data mining is. 

Figure 3 Acceleration signals from five biaxial accelerometers for walking, running, 

and tooth brushing [3] 

Figure 4 Summary of classifier results (mean ± standard deviation) using user-specific training and 

leave-one-subject-out training where both training data sets are equivalent to five laboratory data sessions. 
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Data mining is the process that results in the discovery of new patterns in large data sets. It 

utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and 

database systems. The overall goal of the data mining process is to extract knowledge from an 

existing data set and transform it into a human-understandable structure for further use. 

In this thesis case we have to deal with data streams and our interest lies on four main 

fields: 

 Accuracy 

 Memory space needed 

 Necessary time for learning from a training set in order to be able to predict 

activities 

 Power consumption 

In matters of accuracy we have just seen how careful Bao & Intille when comparing the 

classifiers were. But we will see, on next sections, how this is a matter of high consideration in 

all the works. 

In data mining applications, the bottleneck is time and memory [1]. 

 

Before presenting other works and techniques some considerations have to be taken into 

account.  

An algorithm can give faster results if a small amount of information is processed, 

however the results can be less accurate. When working with data streams the amount of data 

processed has to be carefully considered because in a mobile phone we have limited memory 

space, we want to give results in real time so the processor of the mobile has to be taken into 

account, but nevertheless, we want accurate results. 

Later I present some algorithms and techniques used on several experiments to test the four 

main fields and to address the aforementioned issues. 

 

2.3 Supervised and Semi-supervised learning 

Gu et al [4] tried to solve the activity recognition problem with techniques of semi-

supervised learning. 

Both Masud et al. and Guan et al. use ensemble methods to increase accuracy in partially 

labeled data (semi-supervised problems). 

Traditional classifiers use only labeled data (feature / label pairs) to train. Labeled 

instances however are often difficult, expensive, or time consuming to obtain, as they require 

the efforts of experienced human annotators. Meanwhile unlabeled data may be relatively easy 

to collect, but there has been few ways to use them.  
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Supervised learning has the problem of just using labeled data, which makes it impossible 

to improve classifiers because they cannot use new labeled data to create a more accurate 

model. With supervised learning it is impossible to create an application for everybody that 

tends to adapt to the users in order to get better results. 

Semi-supervised learning addresses this problem by using large amount of unlabeled data, 

together with the labeled data, to build better classifiers. Because semi-supervised learning 

requires less human effort and gives higher accuracy, it is of great interest both in theory and in 

practice [5]. 

The first model created with the training data will be improved /replaced as more and more 

recent labeled data is used as training data. The objective of this is to have a model that adapts 

to the user that provides unlabeled data and the classification becomes more accurate. 

An example of semi-supervised learning is co-training and en-co-training [6]. 

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that features can be split 

into two sets; each sub-feature set is sufficient to train a good classifier; the two sets are 

conditionally independent given the class. Initially two separate classifiers are trained with the 

labeled data, on the two sub-feature sets respectively. Each classifier then classfies the 

unlabeled data, and ‘teaches’ the other classifier with the few unlabeled examples (and the 

predicted labels) they feel most confident. Each classifier is retrained with the additional 

training examples given by the other classifier, and the process repeats [5]. 

The difference between en-co-training and co-training is that it uses three classifiers 

instead of two, which are trained used all the labeled data. All the classifiers are different and 

they label data after the majority of their predictions. 

 

2.4 Classifiers 

The concept of classifier has just been addressed in the explanation of some semi-

supervised learning techniques, now we explain it. 

2.4.1 Markov 

Lester et al. [7] believe that the more common human activities are sitting, walking, 

walking up/down stairs, riding elevator down/up and brushing teeth. In order to create a model 

that could predict with great accuracy these activities they compared a static classifier with a 

HMM (hidden Markov model) classifier. Their training was made using a single stream of 

sensor data from three locations on the body (shoulder, waist and wrist). To discover the best 

place to carry the sensor the classification algorithm used joins static classifiers with the 

objective of gather the more important features, the ones that can be used to distinguish 
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activities. Each classifier works with a feature making the system flexible.  The number of 

features that we want to work with only depends on the number of classifiers used. A second 

layer of HMM combines all the classifiers’ outputs and estimates the most probable activity 

while it gives temporal smoothing. 

Their objective was to be able to pre-train a set of classifiers so the device would work 

well for most users right away. 

The data is separated in training and test data. All the data is gathered randomly in folds 

with the same number of segments. Three or four folds are used to train the static and HMM 

classifiers, the remaining folds are used to run tests. 

The system chooses the most important features, other features are chosen on an 

incremental way, while the HMM allow a continuous tracking of the activities. 

 This brings advantages because it’s possible to make a historic of information that leads 

to misclassification in the static classification. With this information it is possible to smooth the 

errors and understand what happens between different activities. 

 This leads to the conclusion that is possible to train a general classifier and have other 

classifiers ready to be used depending the situation, the more data from different people we use 

the more accurate the model is, it is possible to recognize a range of physical activities with a 

light-weight and unobtrusive wearable device like is possible to see in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This approach gives lower accuracy results than other solutions like we will see ahead. 

HMMs didn’t appear to be particularly useful to reach the objective of the thesis that is 

recognizing activities. HMMs are useful in recognizing a sequence of activities to model human 

behavior [8]. 

Figure 5 Overall precision/recall for the static and HMM classifiers 

trained/tested on all locations and on a single location [7] 
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2.4.2 Base-level e meta-level classifiers 

The study of classifiers is important to understand there are alternatives to HMMs. With 

that in mind a performance evaluation was made on some base-level classifiers [8], like 

Decision trees, C4.5, K-nearest neighbours, SVM and Naïve Bayes. 

Although the overall performance of meta-level classifiers is known to be better than base-

level classifiers, base-level classifiers are known to outperform meta-level classifiers on several 

data sets and that was what the authors [8] were trying to discover. 

Meta-level classifiers are used in ensemble learning that is the usage of several prediction 

models.  The combination of these models will lead to the final prediction. 

Meta-level classifiers can be into three frameworks: voting (used in bagging and boosting), 

stacking (Wolpert 1992; Dzeroski & Zenko 2004) and cascading (Gama & Brazdil 2000). In 

voting, each base-level classifier gives a vote for its prediction. The class receiving the most 

votes is the final prediction.  

In stacking, a learning algorithm is used to learn how to combine the predictions of the 

base-level classifiers. The induced meta-level classifier is then used to obtain the final 

prediction from the predictions of the base-level classifiers. The state-of-the-art methods in 

stacking are stacking with class probability distributions using Meta Decision Trees (MDTs) 

(Todorovski & Dzeroski 2003), stacking with class probability distributions using Ordinary 

Decision Trees (ODTs) (Todorovski & Dzeroski 2003) and stacking using multi-response linear 

regression (Seewald 2002). Cascading is an iterative process of combining classifiers: at each 

iteration, the training data set is extended with the predictions obtained in the previous iteration. 

Cascading in general gives sub-optimal results compared to the other two schemes. 

A set of classifiers was chosen by the authors and they tested their accuracy. The 

classifiers were: 

 Boosting (Robert E. Schapire (1990)) is used to improve the classification accuracy of 

any given base-level classifier. It applies a single learning algorithm repeatedly and 

combines the hypothesis learned each time (using voting). Assigns a certain weight to 

each example in the training set, and then modifies the weight after each iteration 

depending on whether the example was correctly or incorrectly classified. 

  

 Bagging (Breiman 1996) is another simple meta-level classifier that uses just one 

base-level classifier at a time. It works by training each classifier on a random 

redistribution of the training set. 

 

 Plurality Voting selects the class that has been predicted by a majority of the base-

level classifiers as the final predicted class. 
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 Stacking with ODTs (Todorovski & Dzeroski 2003) is a meta-level classifier that 

uses the results of the base-level classifiers to predict which class the given instance 

belongs to. The input to the ODTs are the outputs of the base-level classifiers. 

 Stacking with MDTs (Todorovski & Dzeroski 2003) learns a meta-level decision tree 

whose leaves consist of each of the base level classifiers. Thus, instead of specifying 

which class the given test instance belongs to, as in a stacked ODT, an MDT specifies 

which classifier should be used to optimally classify the instance. 

 

To test their accuracy, data collected from a single subject and from multiple subjects were 

used. For comparison they runned classifiers on data that were independently and identically 

distributed (IDD) and not (non-IDD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Accuracy of classifiers for four different settings [8] 
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On the Figures 6 and 7 is possible to see one of the conclusions of the authors, that 

plurality voting has the best performance correlation. 

 

Another conclusion important for this thesis is that we can achieve high accuracy using a 

single triaxial accelerometer, like the one inside the mobile phone. 

 

Although plurality voting, a meta-level classifier, has a better performance than the others, 

we think it wouldn’t be a good idea to put it in the Android application because it needs more 

memory space than a base-level classifier, it takes more time to be processed which leads to 

more CPU usage and, therefore, more battery usage.  

The higher precision of at most 4% (according to the tests shown) does not make up for all 

the disadvantages in the mobile performance. 

 

 

2.4.3 Naïve Bayes 

Naïve Bayes is a base-level classifier, commonly used in the data mining universe like 

in the aforementioned experiment. 

Figure 7 Performance correlations for IDD and non-IDD data [8] 
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This classifier technique is based on the Bayesian theorem and is particularly suited when 

the dimensionality of the inputs is high. Despite its simplicity, Naïve Bayes can often 

outperform more sophisticated classification methods. 

The Naive Bayes algorithm is based on conditional probabilities. It calculates a probability 

by counting the frequency of values and combinations of values in the historical data. Bayes' 

Theorem finds the probability of an event occurring given the probability of another event that 

has already occurred. 

The presence or absence of an attribute is not related with the presence or absence of 

another. 

To apply Bayes’ theorem as a classifier we need [9]: 

 To know the probabilities a priori p(decisioni) 

 Calculate conditional probabilities p(x|decisãoi) – this is simplified by assuming the 

independence of the attributes 

 

No other classifier can get better results than this one with the same information. 

The classifier’s error is a theoretical minimum to the generalization capacity of other else 

classifier. The optimal Bayes’ error – Figure 8 

 Is proportional to the black area 

 Can generate data sets where the error is minimum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In practice all this probabilities are unknown. 

To get reliable probabilities from a data set we need endless data. 

Figure 8 Bayes distribution [9] 
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 O(kp) being p the number of variables and k the number of values from the variables. 

 

Naive Bayes summarizes the variability of a data set in tables of conditional probabilities. 

The dimension of the model is independent of the number of examples. It is stable to 

disturbances of the training set, is string to a noise and irrelevant attributes. 

All the needed quantities can be calculated passing only once the training set. With this we 

can conclude that this classifier can be trained on an efficient way, gathering the probabilities of 

each attribute, respecting its class from the training set. The probability of the unlabeled data 

can be computed. 

Another convenience of this classifier is that it can be trained with a small amount of data 

so it can predict with good accuracy. This is a great quality when we are dealing with an 

application in mobile environment, where the memory space is limited as well the processor 

power. 

 

2.4.4 Decision tree – J48 

J48 is the decision tree contained in the WEKA package. Before analyzing experiments 

results – Figure 9 - it is necessary to understand how a decision tree works, so we can 

understand the conclusions. 

Decision tree uses the strategy divide and conquer, a complex problem is split in smaller 

simpler problems. This strategy is recursively applied to each problem [10].  

It has internal nodes that are a test on an attribute, the branches represent an outcome of the 

test, the leaf nodes stand for class label or class label distribution and at each node one attribute 

is chosen to split training examples into distinct classes as much as possible [11].  By its 

composition it is easy to understand that the discrimination capacity comes from the division of 

the space into sub-spaces that have a class attached. 

To classify new case a matching path is followed until a leaf node [10] – Figure 9. 

 

 

 

 

 

 

 

 

 
Figure 9 Decisions at each node to get a final 

classification [10] 
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At each node available attributes are evaluated on the basis of separating the classes of the 

training examples – training set has only labeled data. In order to do it goodness (purity) 

function is used. There are several goodness functions but the one used in C4.5 is the 

information gain – difference between the information before split and after split [11]. 

The construction of the tree is driven by the aim of have the minimum entropy, meaning 

the randomness of the variable. 

Then entropy is a function that satisfies three conditions: 

 When a node is pure the purity measure should be zero 

 When the impurity is maximal (i.e. all classes equally likely), purity measure should be 

maximal 

 Purity measure should obey multistage property (i.e. decisions can be made in several 

stages) 

 

Having always in mind the creation of a universal model more tests, using classification 

techniques from WEKA (decision trees (J48), logistic regression and multilayer neural 

networks), were taken [2]. 

 Regression is usually used when a real-valued output is desired otherwise classification 

is a natural choice [8]. 

The use of a straw man [2] serves as control because it, always, indicates the activity that 

we are trying to predict. Like it was done in other works some activities were chosen because 

the authors [2] believe that are the more common in everyday life – Figure 10. 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 Accuracies of activity recognition [2] 
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The identification of activities with sudden movements it’s easier like it can be seen by the 

accuracy of over 90% in jogging. Jogging seems easier to indentify than walking because it 

involves more extreme changes in acceleration – Figure 11. 

 

 

 

 

 

 

But if ascending and descending are joined in just a class named stairs we can observe a 

better accuracy when the model created using J48 – Figure 12. 

 

 

 

 

 

 

 

 

 

 

With this model we can predict almost every activity with accuracy over than 90%. 

This is a good algorithm for continuous or discrete attributes, it can handle training data 

with missing values and does pruning (goes back in the tree and tries to remove branches that 

don’t help in the classification and replace them by leaves). 

 

Figure 11 Acceleration plots for Walking and Jogging [2] 

Figure 12 Confusion matrix for J48 Model (Stairs Combined) [2] 



Related Work 

 

 19 

The biggest problem of decision trees is that they assume that all training examples can be 

stored simultaneously in main memory, and are thus severely limited in the number of examples 

they can learn from [1]. 

 

2.4.5 Hoeffding Tree 

Hoeffding trees work by collecting sufficient statistics in the leaves of the tree of the 

training instances that reach them. Periodically, these leaves are checked to compare the relative 

merits of each candidate attribute for splitting. The Hoeffding bound or similar metric is used to 

decide when to be confident that the best candidate is better than the others. At this point the 

leaf is split on the best attribute, allowing the tree to grow. 

Typically, information gain is used to rank the merits of the split candidates, although 

other metrics could be substituted. In the case of discrete attributes, it is sufficient to collect 

counts of attribute labels relative to class labels to compute the information gain afforded by a 

split. [12] 

There are incremental learning methods that are reasonably efficient, but do not guarantee 

that the model learned will be similar to the one obtained by learning on the same data in batch 

mode. They are highly sensitive to example ordering, potentially never recovering from an 

unfavorable set of early examples. Others produce the same model as the batch version, but at a 

high cost in efficiency, often to the point of being slower than the batch algorithm [1]. 

Advantages of Hoeffding Trees: 

 Can be learned in constant time per example 

 Do not store any examples (or parts thereof) in main memory, requiring only space 

proportional to the size of the tree and associated sufficient statistics 

 

It can learn by seeing each example only once and therefore does not require examples 

from an online stream to ever be stored. 

Catlett [13] and others noticed that, in order to find the best attribute to test at a given 

node, it may be sufficient to consider only a small subset of the training examples that pass 

through that node. 

A statistical result known as the Hoeffding bound is used to decide how many examples 

are necessary at each node in order to find the best attribute to test. The attribute chosen using n 

examples (where n is as small as possible) is the same that would be chosen using infinite 

examples. 



Related Work 

 

 20 

The incremental nature of the Hoeffding tree algorithm does not significantly affect the 

quality of the trees it produces that are asymptotically arbitrarily close to the ones produced by a 

batch learner. 

VFDT allows the use of either information gain or the Gini index as the attribute 

evaluation measure. It includes a number of refinements to the normal Hoeffding tree algorithm: 

 

 It can solve ties splitting on the current best attribute if ∆   <  <    , where   is a user-

specified threshold. 

 Recomputing G is  the most significant part of the time cost per example. VFDT 

allows the user to specify a minimum number of new examples nmin that must be 

accumulated at a leaf before G is recomputed. This effectively reduces the global time 

spent on G computations. 

 VFDT processes examples faster than they arrive, which will be the case in all but the 

most demanding applications, the sole obstacle to learning arbitrarily complex models 

will be the finite RAM available. To solve this memory issue VFDT deactivates the 

least promising leaves in order to make room for new ones. Memory usage is also 

minimized by dropping early on attributes that do not look promising. 

 VFDT can be initialized with the tree produced by a conventional RAM-based learner 

on a small subset of the data. This can give VFDT a head start" that will allow it to 

reach the same accuracies at smaller numbers of examples throughout the learning 

curve. 

 VFDT can rescan previously-seen examples. This means that VFDT need never grow 

a smaller (and potentially less accurate) tree than other algorithms because of using 

each example only once. 

 

Like in other works to verify the better performance of one classifier it was compared with 

others, in this work VFDT was compared with C4.5. 

Regarding the accuracy as a function of number of training examples C4.5 has an early 

advantage that comes from the fact it reuses examples to make decisions on multiple levels of 

the tree it is inducing, while VFDT uses each example only once. – Figure 13. 
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The average number of nodes in the trees induced by each of the learners can be seen on 

Figure 14 and we can notice that VFDT and VFDT-boot induce trees with similar numbers of 

nodes. 

VFDT can substantially increase the comprehensibility of the trees induced relative to 

C4.5. It also suggests that VFDT is less prone than C4.5 to overfitting noisy data. 

 

 

Figure 14 Tree size as a function of the number of training examples. [1] 

Also dealing with noise VFDT can get more accurate results, what can be important since 

we are dealig with a mobile phone- Figure 15. 

 

Figure 13 Accuracy as a function of the number of training examples. [1] 
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Hoeffding trees allow learning in very small constant time per example, and have strong 

guarantees of high asymptotic similarity to the corresponding batch trees. 

VFDT is a high-performance data mining system based on Hoeffding trees. Empirical 

studies show its effectiveness in taking advantage of massive numbers of examples. VFDT's 

application to a high-speed stream of Web log data is under way. 

 

2.5 Hierarchical classification 

All the experiments presented until now the authors aim to classify the data only in one 

step, but it is important to be aware that the classification can be made in multiple steps using 

hierarchical classification. On hierarchical classification a binary tree is created, meaning that in 

each node only two classes are possible. In this case, activity prediction, the classification of 

movements can be made first in motion or motionless as we shall see below. The accuracy is 

higher the higher up in the tree because first is done a general division, i.e. a bag full of balls 

and cubes of different colors the first classification will be if it is ball or cube. 

The classes on same level on the tree should be independent [14] so there is no possible 

uncertainty when choosing the path. The use of binary trees gives a flexible structure to the 

classifier, classes can be added without affect the rest of the tree. 

In this thesis, like it was said before, the tree should reflect an approach from a general to a 

specific activity. The way this is done is of great importance to the processing efficiency. All 

possibilities of classification must appear on the tree – Figure 16. 

 

Figure 15 Accuracy as a function of the noise level. [1] 
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The hierarchical approach gives the opportunity to choose a classification algorithm for 

each node. This opportunity is a great benefit because we can choose the algorithm that gives 

better results for each specific situation, aiming to have the highest accuracy possible. 

To choose the better algorithm, in each node, they have to be tested with the same training 

set. The algorithm has to do predictions where there is no ambiguity.  On the Figure 17 an 

example of a tree can be observed where the tests done on each node get rid of all the 

ambiguity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Classification framework, which is a structured as binary tree [14] 

Figure 17 Detection falls. Tests in each node with no ambiguity [14] 
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2.5.1 SVM 

As mentioned, above, this investigation can be very useful in the health care area. With 

this objective some authors [15] performed some experiments on the movement classification 

using the hierarchical approach, trying to get more accurate results than doing the classification 

in one step like the experiments demonstrated until now. 

Samples with a frequency of 1Hz were used in a try to classify movements considered 

common in everyday life like sitting, standing up, lying down, walking, posture transition and 

gentle motion. 

The authors have chosen to implement a two level hierarchical classification. 

On the first level the separation between motion and motionless activities was done, as we 

can see this test takes out all the ambiguity like it was supposed to do. After this first 

classification has been done SVM classifiers were used to recognize the specific activity inside 

the two general groups – Figure 18. 

 

 

 

 

 

 

 

 

Support vector machines (SVM) are a group of supervised learning methods that can be 

applied to classification or regression. Support vector machines represent an extension to 

nonlinear models of the generalized portrait algorithm developed by Vladimir Vapnik. The 

SVM algorithm is based on the statistical learning theory and the Vapnik-Chervonenkis (VC) 

dimension introduced by Vladimir Vapnik and Alexey Chervonenkis [16]. 

A simple way to understand this model is to imagine the examples as points in space, 

positioned so that a space between the two groups is perceptible, being this space the biggest 

possible. The data in the test set will be placed as dots in these two spaces. 

Rules were defined so this classification moved without problems and ambiguity, an 

example is the 10s that has to be without movement so an activity can be considered motionless 

– Figure 19. 

 

Figure 18 Flowchart describing the classification process [15] 
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To be motionless cannot be considered absence of any movement because there is always 

noise present on the data. This noise had to be taken into account when defining the rules so 

noise could be perceived in relation with little movements, so the first level classification 

(motion/motionless) could be more accurate- Figure 20. 

 

 

 

 

 

 

 

 

 

 

 

Using only one classifier having a training set with all the data as the input, motion and 

motionless activities from a person, the classifier can only get accurate results when analyzing 

data from the same person- Figure 21 – not being able to fulfill the main objective that was the 

creation of an universal model. 

 

 

 

 

 

 

 

Figure 19 Acceleration signal with period of inactivity [15] 

Figure 20 Distinguishing short time motion and noise of gentle motion [15] 
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The average precision was only 63.8% when trying to predict the activities from multiple 

individuals. The good accuracy results recognizing the activities from subject 1 prove that the 

model was over fitted to his movements because the classifier had only his data when it was 

trained. 

Using one classifier and data only from one subject leaded to a classification not accurate 

at all. However using data only from one subject is easy to, in a hierarchical approach, to draw a 

line between motion and motionless activities as can be seen in Figure 22.  

 

 

 

 

 

 

 

 

 

With this conclusion in mind the authors used two SVM classifiers, the first one to 

differentiate between motion and motionless activities - Figure 23 – and the second one to 

classify the activities between each group, like it was previously mentioned - Figure 24 and 25. 

 

 

 

 

 

 

Figure 21 Classification results using only one classifier [15] 

Figure 22 3D-accleleration signals measured above 6 activities [15] 
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The lustiness of this method can be further increased using majority voting to reach a 

prediction. This means that the more voted classification will be the final decision, this way data 

with noise or misclassified can be avoided. 

However, like in other experiments using other approaches, still very hard to differentiate 

activities with similar acceleration values. 

Another conclusion of this work is that using rule-based reasoning and multiclass SVM 

algorithms the classification can be improved. 

Figure 23 Classification results using two SVM classifiers [15] 

Figure 24 Motionless confusion matrix using 3MotionlessM [15] 

Figure 25 Motion confusion matrix using 3MotionM [15] 
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The great accuracy achieved in these experiments was highly considered when doing the 

Android application, although the tests done using decision trees (C4.5) had higher accuracy.  

However a direct comparison cannot be done because the data used was different.  

2.6 Battery 

During the conception of this project not only the important results of the classifiers tests 

were taken into account. The application needs to be appealing to the customer, and for that it 

has to give good results and have the smallest impact on the phone performance. 

With this objective in mind a way to save battery and, at the same time, gather enough data 

had to be found. 

A random use of the accelerometer, turning it on and off, is not an option because the 

samples need to have the same duration and in order to conduct robust experiments a periodicity 

needs to be found when retrieving data. 

Experiments conducted by Yi Wang et al [17] leaded to the conclusion that what could be 

done to save battery was the creation of duty-cycles (this concept will be explained later)  – 

Figure 26. 

 

 

 

 

 

The accelerometer is the sensor that spends less energy – Figure 27.  

 

 

 

 

 

 

 

 

 

 

 

 

 

We continue to believe that creating the model is the most expensive action in terms of 

power consumption.  

Figure 26 Sensor duty cycles, device computation time and sensor energy cost per sample [17] 

Figure 27 Power usage of sensors [17] 
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2.7 Data Extraction 

Until now we have been talking about gathering data, testing data but nothing have been 

said about what is the data, what information can we infer from it. 

Ravi et al. [8] showed that several features could be extract from the data: 

 Mean 

 Standard Deviation 

 Energy 

 Correlation 

 

 

The usefulness of these features has been demonstrated in prior work (Bao & Intille 2004). 

Standard deviation was used to capture the fact that the range of possible acceleration 

values differ for different activities.  

The periodicity in the data is reflected in the frequency domain. The energy feature is 

calculated in order to capture data periodicity. 

Correlation is calculated between each pair of axes as the ratio of the covariance and the 

product of the standard deviations. Correlation is especially useful for differentiating among 

activities that involve translation in just one dimension – Figure 28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 X-axis readings for different activities [17] 
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For activities like climbing stairs that involve translation in two dimensions cannot be used 

to distinguish climbing up or down stairs. 

2.8 Sliding Windows 

The robustness of the classification depends how the data is fetched. A certain order must 

be maintained so processing data can indicate an activity in a determinate moment. 

The objective is to take into account only recent data when making decision. This saves 

computing power which is very import when working in a mobile platform. 

Sliding windows model is useful for sensors network where only the recent events are 

important. It reduces the memory usage because only saves the window with the data [18]. 

There are two types of sliding windows [19]: 

 Sequence-based windows 

 Timestamp-based windows 

 

An algorithm that can be used with a sequence-based window is to maintain a reservoir 

sample for the first n data elements in the stream, and thereafter to stop maintaining the sample 

except that when the arrival of a new data element causes an element present in the sample to 

expire, the expired element is replaced with the newly-arrived element.  

It requires only memory for storing the predetermined number of data elements. 

There are several algorithms that differ in the storage of the data. For example a possible 

algorithm is to add new elements to a “backing sample” and generate the sample of size k by 

down-sampling from that sample, when an element expire it is removed from the backing 

sample. However another algorithm that needs less memory was created. Chain-sample 

generates a sample of size l, to produce a sample of size k, maintain k independent chain-

samples. An element only is chosen to be part of the sample if it has a determinate probability 

and it will replace another element that expires. 

In timestamp-based sliding windows there is an algorithm called “priority sample”. 

As each data element arrives a priority is assigned randomly between 0 and 1. The element 

with higher priority and non-expired is included in the sample. In memory only stores elements 

that can’t be replaced with other ones with a later timestamp and higher priority since only these 

elements can be used in the sample. 

Weighing the two types of slideing windows an approach using sequence-based windows 

seemed more appropriate because defining an interval is not viable because the application can 

be turned off and not gathering new data. Taking this into account a simpler sequence-based 

window seemed like a better solution. A number of instances is defined and when the limit is 
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reached the old element in the file will be replaced by the new one, keeping the file updated and 

always with the same size. 

2.9 Duty cycles  

During this thesis the importance of saving battery has been being mentioned. The 

embedded sensors in the mobile devices are major power consumption [17]. Since it is 

mandatory the use of the accelerometer to retrieve data so the application can classify it, a way 

of saving battery was needed.  

The accelerometer is a low cost sensor however battery can be saved. Because movements 

can be changing constantly the accelerometer needs to be sampled periodically. It cannot be 

turned off and on without criteria since that would mix the data and would be impossible to 

classify accurately. What can be done is to implement duty cycles. Duty cycles define the 

interval that the accelerometer is on and off. This ensures that the samples have the same time 

length which won’t be a problem to the sequence-based to the sliding window because we can 

always know which is the recent data in case we need to replace the old data in the file. 

With some experiments authors [17] came to the conclusion that 6s with the accelerometer 

working enough data could be gathered to indicate an activity and then it could be turned off for 

10s – Figure 29.  

 

 

 

 

 

This approach gives enough time for our program to classify the instances gathered and 

don’t waste battery with the accelerometer having it turned on when it is not needed. 

2.10 Existing prototypes 

Although the market for applications that focus on enhancing the physical activity by 

classifying the activities is not yet being fully availed there are some prototypes. 

To build an application like DiaTrace research was needed [20]. 

A healthy human being takes, in average, 220msec for an optical response. However a 

reflex is a direct reaction without processing in the brain which takes approximately 0.06s that 

is 16 Hertz. According to Shannon theorem a double sampling rate is needed, which gives 32 

cycles per second. The sampling rate is relevant for body movements because if the sampling 

rate of the accelerometer was less than 32 cycles the sample distribution would be abnormal. 

Figure 29 Sensor duty cycles, device computation time and sensor energy cost per sample [17] 
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DiaTrace uses a reconstruction of the true course of acceleration by interpolation of the 

scanned acceleration value of each axis. This preprocessing compensates the varying sampling 

rate as well as the rough quantization. This leads to a new input signal for the pattern 

recognition. By using relevant features, a long term assessment of daily activities is possible by 

DiaTrace – Figure 30. 

The program measures all daily activities and warns the users of what extra activities they 

need to do. This application takes into account the huge importance of social networks enabling 

the users to share their results in order to make the app more appealing and to instill 

competitiveness in its users. 

The authors [20] ensure that wearing the mobile phone on the trousers front pocket they 

achieve an accuracy of 95% in recognizing activities. For that they claim using techniques of 

data mining and pre-processing the acceleration of the data. 

This experiment has a downside: it lacks explanation in which is the algorithm used, how 

the data is treated, what amount of data is taken into account and how the classification is done. 

However it shows how this niche market is not explored yet and the business opportunity it can 

be. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 DiaTrace application [20] 
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Capítulo 3  

Software 

3.1 Moa - Massive Online Analysis 

Until now we have seen that multiple authors chose Weka and worked with its classifiers. 

Since we were working with data streams we choose MOA. 

MOA (Massive On-line Analysis) is a framework for data stream mining. It includes tools 

for evaluation and a collection of machine learning algorithms. Related to the WEKA project, it 

is also written in Java, while scaling to more demanding problems.  

The goal of MOA is a benchmark framework for running experiments in the data stream 

mining context by proving: 

 

 storable settings for data streams (real and synthetic) for repeatable experiments; 

 a set of existing algorithms and measures from the literature for comparison; and 

 an easily extendable framework for new streams, algorithms and evaluation methods. 

The workflow in MOA follows the simple schema depicted below (Figure 31): firstly a 

data stream (feed, generator) is chosen and configured, secondly an algorithm (e.g. a classifier) 

is chosen and its paramters are set, third the evaluation method or measure is chosen and thirdly 

the results are obtained after running the task [21]. 
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MOA includes Hoeffding Trees that aren’t present in Weka and are of most importance 

when dealing with data streams. This work flow will be explained later integrated with the work 

developed. It will enable us to understand how the classification is done. 

 

3.2 Android 

Android [22] is a software stack for mobile devices that includes an operating system, 

middleware and key applications. The Android SDK provides the tools and APIs necessary to 

begin developing applications on the Android platform using the Java programming language. 

The following diagram – Figure 32 - shows the major components of the Android operating 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Workflow in MOA [21]. 

Figure 32 Android components' [22]   
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By providing an open development platform, Android offers developers the ability to build 

extremely rich and innovative applications. Developers are free to take advantage of the device 

hardware, access location information, run background services, set alarms, add notifications to 

the status bar, and much, much more. 

Developers have full access to the same framework APIs used by the core applications. 

Using Android and Moa the Java programming language it becomes easier its joint 

implementation. 

 

3.3 Power Tutor 

An application was needed to measure the battery usage. 

PowerTutor is an application for Google phones that displays the power consumed by 

major system components such as CPU, network interface, display, and GPS receiver and 

different applications. The application allows software developers to see the impact of design 

changes on power efficiency. Application users can also use it to determine how their actions 

are impacting battery life. PowerTutor uses a power consumption model built by direct 

measurements during careful control of device power management states. This model generally 

provides power consumption estimates within 5% of actual values. A configurable display for 

power consumption history is provided. It also provides users with a text-file based output 

containing detailed results. You can use PowerTutor to monitor the power consumption of any 

application. [23] 
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Capítulo 4 

Prototype 

4.1 Techniques used 

After an intensive study of previous work done, we decided to use Naïve Bayes and 

Hoeffding trees that were explained before. 

Naïve Bayes was chosen because it treats the attributes as unrelated and it proved to give 

good results in all the experiments despite its simplicity. In the case of Hoeffding Tree, it was 

selected because of its advantages (learning in constant time per example and not storing any 

examples in main memory) and good performance dealing with streams.  

These two classifiers seemed adequate for our application that has limited memory space 

and uses data from a stream. To find the best technique we decided to follow what was done on 

other works, comparing the accuracy of the classifiers. 

4.2 Experimental setup 

Before testing the application some decisions had to be made in order to have a controlled 

environment. This approach allows us to know the expected results for each test beforehand. 

The placement of the mobile was an important issue. Without having the option of placing 

sensors in different parts of the human body we have chosen the trousers’ front pocket [24] to 

conduct all experiments. 

To create the models, data from two persons was used. This data contained the average of 

the values recorded by an accelerometer for several hours doing activities of walking, running, 

standing idle and sitting. In the total approximately 27 thousand instances were used. 
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The unlabeled data (files from approximately 16 thousand to 30 thousand instances) was 

not used to create the model. It belongs to the two people that contributed with data to create the 

model. There is, also, data from a third person that was not used for learning the models. 

The programmer had to choose between timestamp and sequence-based sliding windows 

depending if window is defined according to a predefined interval or a predefined amount of 

data. The sequence-based sliding windows were used as well as the 6s long duty cycles. 

A value of 70% probability is used to proceed with semi-supervised learning as explained 

in the next section. This allows creating new models by appending to previous data the recent 

labeled data with at least 70% of certainty. 

 

4.3 Architecture 

We have just seen the conditions on which the prototype will be tested. However before 

showing the results it is important to understand how it works. 

First we present the architecture of the all system to provide a better view of all the 

components that interact inside the smartphone to make this application work.  

The four main components of the application are the accelerometer, SD card and Android 

with MOA embed – Figure 33. These four components are always connected being the SD card 

the least used. It is only used to access the files with the training set for creating the models and 

to save labeled files between classification steps (in hierarchical between 1
st
 and 2

nd
 

classification). 

 

 
 

 

 

 

 

 

 

 

 

 

 

Smartphone 

Android 

MOA 

SD card 

Accelerometer 

Figure 33 Application components   
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The accelerometer provides data that is gathered using Android functions and passed to 

functions that use MOA in order to be classified. Which are these functions and how do they 

work will be explained next. The usage of MOA is the main aspect of this application. It is this 

program that handles all the operations with classifiers, models, labeled and unlabeled data; 

Android just supports thys program and interconnects it with all the other components. 

In interface terms is Android straightforward, what really matters is what the user cannot 

see. The program is divided in some main functions that use MOA aided by Android (Figure 

34):  

1. Train the model: firstly we need to load a labeled file from the SD card and turn it into 

a data stream. A classifier is chosen and it tries to classify the next instance of the 

stream and then learn from it. This attempt to classify an already labeled instance has 

the porpoise of getting the model’s accuracy by counting how many instances would 

the model label correctly in total. 

2. Load unlabeled data: this function actually is not supposed to be used during the 

normal usage of the application. What it makes is simply to get a file from SD card 

with unlabeled instances in order to procced to their classification. It will be a very 

useful function during the tests to create stress situations where not only one instance 

has to be classified. It is also easier to evaluate the classification results because 

although the data is unlabeled we know how it should be labeled. 

3. Classify unlabeled data: this is the last function related with MOA and it is the one that 

will give the results that the user will be able to see. It uses the model created by 

function 1 and it can use the unlabeled data from function 2 or, in normal operation of 

the application, use the only unlabeled instance that comes from the accelerometer. 

This function can also save the recent labeled data on a file or just output it to the 

screen. To get to the labeled instances the function contains a cycle that basically using 

the model get the probabilities of the instance belonging to each of the possible 

classes, being the class chosen the one with higher probability, of course. 

 

 

All these functions can have additional features depending whether we are dealing with a 

semi-supervised or a supervised learning approach. We defined that an instance classified with 

70% or more of certainty (function 3) is added to the training set in the semi-supervised 

approach. 

 The hierarchical approach has two functions of each (1,2,3) because first we need to create 

the model to classify the instances in Dynamic or Static movement. When this classification 
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occurs two files are created where unlabeled data is written, one file only with Dynamic 

unlabeled data and other with Static unlabeled data. Because of these two files a flag was 

created whether if both files had data. If that was true (what only happens in stress conditions 

for the tests) the second part of the hierarchical approach takes turns. First it creates a model for 

the Dynamic (Running, Walking) or Static (Standing Idle, Sitting), then loads the files created 

by the first classification, it loads the Dynamic unlabeled file whether we are doing the 

Dynamic classification or loads the Static unlabeled file whether we are doing the Static 

classification. In the end we have the instance labeled by function 3. If we are using semi-

supervised learning and doing this hierarchical approach the 70% can be found on both 

classifications (1
st
 classification and 2

nd
 classification in Dynamic and Static). 

The one-step classification is pretty straightforward just implementing function 1,2 and 3 

being the only difference between the semi-supervised and the supervised approaches are the 

adding of unlabeled instances, in the sormer approach, to training set when the classification has 

a certainty of 70%, at least. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-Creation of the model by 

loading the training set from 

SD card. (Walking, Running, 

Standing Idle, Sitting) 

2-Load unlabeled data file 

or data collected by the 

accelerometer 

3-Classify unlabeled data from 

2 with model from 1. 

 

Figure 34 Main functions on prototype behavior using one-step supervised 
classification. 
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The numbers on second classification (Figure 35) are the same because the aforementioned 

reason: the hierarchical approach takes turns doing the second classification. 

This is the basic architecture of the prototype. These are the main parts the use MOA and 

handle all the data.  

1-Creation of the 

model by loading the 

training set from SD card. 

(Dynamic, Static) 

2-Load unlabeled 

data file or data collected 

by the accelerometer 

3-Classify unlabeled data from 

2 with model from 1. 

Classification in Dynamic or 

Static 

 

4-Creation of the model 

Dynamic by loading the 

training set from SD card. 

(Walking, Running) 

5-Load unlabeled data file 

of Dynamic created by 3. 

4-Creation of the 

model Static by loading 

the training set from SD 

card. (Standing Idle, 

Sitting) 

5-Load unlabeled data file 

of Static created by 3. 

7-Classify unlabeled data 

from 6 with model from 4. 

Classification in Walking 

and Running. 

7-Classify unlabeled data 

from 6 with model from 4. 

Classification in Standing 

Idle and Sitting. 

1st classification 

2nd classification 

Figure 35 Main functions on prototype behavior using supervised hierarchical 
classification. 
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4.4 Experiments and Results 

Previously, labeled data from three different persons was recorded. The data contained 

four activities: walking, running, sitting and standing idle. 

Using MOA, two different approaches were taken: 

Firstly, models were induced using both Naïve Bayes and Hoeffding Tree. The classifiers 

were tested on unlabeled data from one person (Table 1).  

 

Table 1: Classifiers’ accuracy 

 Naïve 
Bayes 

Hoeffding Tree 

Accuracy 
 

92.00% 
 

94.78% 

 

Secondly, a hierarchical approach with two levels was also carried out using the same 

classifiers. In the first level the classification was made between Dynamic and Static activities – 

table 2. Then, in the second classification, a model was built on each category so we could 

proceed the classification on Walking and Running on the Dynamic category, and Sitting and 

Standing Idle on the Static one (Table 3). 

 Table 2: accuracy in the first level of the hierarchical approach.  

Dynamic vs. Static Naïve 
Bayes 

Hoeffding Tree 

Accuracy 
 

82.11 % 
 

99.85% 

 

 
 

Table 3: Classifiers’ accuracy in the second classification of the hierarchical approach. 

 

 

 

 

 

 Naïve 
Bayes 

Hoeffding Tree 

 
Running, walking 

 
76.25% 

 
99.05% 

Sitting, standing 

idle 

 
99.83% 

 
99.93% 
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To test the effectiveness of the classification, unlabeled data of a person, which was not 

used for training the classifier, was used. Here are the results for the walking activity – table 4.  

 

 
Table 4: Classifiers’ Accuracy for the walking activity using as test set data from a person 

without data on the training sets 
 

 One-step 

classification 

Hierarchical 1st 

classification 

Hierarchical 2nd 

classification 

Naïve Bayes 

 

86,37% 90,17%  84,27% 

Hoeffding Tree 67,65% 94,04% 

 

88,09% 

 

These results only show that Hoeffding Tree is better than Naïve Bayes for the walking 

activity on a hierarchical approach. However, Naïve Bayes gives better results on the one-step 

approach (Table 4). Further tests were needed for the remaining activities. Additionally, a semi-

supervised approach was also used, besides the supervised one described above, in order to 

evaluate the usefulness of using unlabeled data from the user that is being tested. 

In order to adapt the model to the normal user of the cell phone a threshold of 70% was 

created. This meant that data labeled with at least 70% of certainty would be recorded on the 

training file of the classifier, so a new model, more suitable to the user, could be generated. This 

approach is compared against de supervised approach (Figure 36). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 36 Accuracy of one step classification using both supervised and 

semi-supervised learning. 
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It is easier to check the better accuracy when using a semi-supervised approach.  

The accuracy using Naïve Bayes in a hierarchical approach on Static classification 

decreases when we use new labeled data (i.e. the semi-supervised approach) for training the 

model.  

The hierarchical approach has two classifications, first in Dynamic and Static if the 

activities involve motion or not. Secondly in Dynamic we have walking and running and in 

Static standing idle and sitting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37 Final classifiers' accuracy using hierarchical supervised classification 

Figure 38 Classifiers’ accuracy on final step of hierarchical classification with a 

semi-supervised learning approach. 
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After doing the hierarchical classification (Figure 37 and 38) the labeled data was checked 

by visual inspection and it was easy to observe that Hoeffding Tree tend to label data on the first 

classification as Dynamic (probably because the dataset is unbalanced and the dynamic class is 

the majority one). Naïve Bayes seems more balanced when labeling new data in the first 

classification of the hierarchical approach. 

At last we tested how using the two classifiers together would affect the classification 

(Figure 39). 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 39 Final classifiers' accuracy using hierarchical supervised 

classification with different classifiers for each step. 
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Figure 40 Final classifiers' accuracy using hierarchical semi-supervised classification 

with different classifiers for each step 

The balance characteristic of Naïve Bayes mentioned before can be verified on Figure 40, 

giving better results when used in the first classification. The tendency of Hoeffding Trees to 

classify, in the first step, the data as a Dynamic movement has influence on the second 

classification where Naïve Bayes has difficulties to label data because it gets lots of Static 

labeled data as Dynamic data from the first step. Overall better accuracy is achieved when using 

the Naïve Bayes classifier on the first classification (Dynamic or Static movement) and 

Hoeffding Tree on the second classification.  

The accuracy is not the only indicator of the classifiers’ performance. The precision and 

recall are also important. 

Precision: This is the percentage of retrieved documents that are in fact relevant to the 

query. 

Recall: This is the percentage of documents that are relevant to the query and were in fact, 

retrieved. 

It is common to plot a graph of precisions at many different levels of recall; a higher curve 

represents a better-quality information retrieval system [25]. 
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Figure 41 Precision/recall graph of Naïve Bayes used in one-step classification. Semi-

supervised learning (left), supervised learning (right) 

 

In this case it is possible to see that with the semi-supervised learning approach the 

precision tends to drop when the recall goes to a maximum, what means that during the process 

of training the model we are getting a small amount of relevant information but the majority of 

that information is being useful (Figure 41). 

This also happens in other cases but in others to have a semi-supervised or a supervised 

learning is almost the same, like in Figure 42. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 Precision/recall graph of Hoeffding Tree used in second classification (Hoeffding Tree 

also used in first classification) of the hierarchical approach (Running and Walking). Semi-

supervised learning (left), supervised learning (right) 
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This shows that in both cases the model tends to have a small variation.  

The different graphs prove that although a technique presents more accuracy that does 

not mean that the information retrieval system is better. 

 

Another thing that we noticed is that the information retrieval system of Hoeffding 

Trees is better than Naïve Bayes maybe because it does not treat the data as unrelated.  That can 

be seen by the higher curve that these methods present (Figure 42 and 43) 

Only some precision/recall graphs are here to show what did happen during the 

experiments and to make it easier to explain. The rest of the graphs are on the attachments. 

 

The application had, also, concerns about the battery usage and memory.  

In order to test the battery usage we created a stress situation where the app did both the 

hierarchical classification and the one step classification. In order to do it two models were 

created using the data of about 43.000 lines of labeled data, and doing the classification of ten 

unlabeled instances (in reality it only does one instance every 16s). 

This experiment told us that the usage of battery needs a maximum of 600.0mW for the 

CPU and between 500mW and 600mW for the LCD, which gives a total between 1100 and 

1200mW on hierarchical classification – Figure 44. 

 

 

 

 

 

Figure 43 Precision/recall graph of Naïve Bayes used in second classification (Naïve Bayes 

also used in first classification) of the hierarchical approach (Running and Walking). Semi-

supervised learning (left), supervised learning (right) 
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The one step classification only creates one model. The battery usage needs a maximum of 

526mW for the CPU, the LCD needs the same power as the hierarchical approach, of course.  

Running the application five times, in a row, we got an energy usage of 120.8J for the CPU in 

hierarchical classification. However in one step classification we get a total of 110.3J – Figure 

45. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 Power used by One step approach with Naïve Bayes 

 

Creating models and classifying multiple instances takes almost 60s.  

Figure 44 Power used by Hierarchical approach with 

Naïve Bayes 
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And it is easier to check the difference of the CPU usage from hierarchical classification to 

one step classification. 

Creating models and classifying multiple instances takes almost 60s.  

In terms of memory, the prototype is about 3Mb, and the files used for training the model 

having about 43000 lines are 1.466kB each. These files will grow until the limit defined by the 

sequenc-based window is reached because new labeled data from the user will be added (like 

aforementioned if the certainty of the classification is bigger than 70%) in order to have a semi-

supervised learning approach. When the limit is reached the old data will be replaced by the 

recent one. We will have three files for training (hierarchical approach). 
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Capítulo 5 

Conclusions and Future Work 

The encouraging results of the experiments lead us to affirm that a step forward has been 

taken in the study of activity classification and that the project objective stated in the beginning 

has been achieved with success. 

To achieve good results, the techniques do not need to be too complex, like it was shown 

using Naïve Bayes. A fair conclusion after analyzing the Figures 41 and 42 is that hierarchical 

approach gives better results with Naïve Bayes doing the first classification and Hoeffding Tree 

dealing with the final one.  

With less complex techniques less power of the mobile is needed, leading to a minor 

impact on the performance of the mobile. So, if Naïve Bayes does not decrease the accuracy it is 

better to use it in order to save memory and battery. 

The battery usage confirms that the app can be used non-stop.  

It would be thrilling and of greater convenience to create a way that could swap 

classification techniques when the battery was low so it could be saved and the application did 

not have to stop. Changing from a hierarchical classification to one step would have not a big 

impact on the final results as we have seen on the Figures 41 and 42 where the accuracy 

dropped maximum of 2%, where Hoeffding tree provided the better results. 

The model used only has to be created when the application starts working. It is used for 

classifying until the app is shut down. It has only to classify one instance every 16s which is 

enough to do it, so the duty cycles work perfectly. 

Taking into account that the better results are achieved with the hierarchical approach with 

semi-supervised learning and that the model is trained every time we start the application it 

would be important to have a variable that had the total of instances labeled with a certainty 

equal or superior to the 70% defined by us and added to the training file. A limited of instances 
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could be created and when the variable with the total of new instances was equal to the limit a 

new model would be created. Another thing that can improve the application is when the 

majority of the instances is being classified with a certainty above the threshold defined it can 

be changed to a higher value in order to try to improve the model and therefore the accuracy of 

it. A process to control the addition of the new labeled data to the training file should be 

considered, because it is important to keep the data balanced. As we have seen in the tests above 

unbalanced data can induce the model into tending to classify unlabeled data with a determinate 

class leading to errors that can only be spotted on a manual revision of the data.  

This would not have memory implication because regarding the memory usage a limit on 

the training files can be created, when this limit is reached the older data can be erased and new 

data added. This allows the adaptation of the application to new users as long as the application 

is being used by these new users. 

The application can be improved by making possible to wear the mobile on other location, 

for example on women purses and testing other classifiers and how to process data, in order to 

run faster. Even with the existing power of the processors on the smartphones like quad core it 

is possible to conduct new experiments like if we were working on a computer. 

New tests can be made using data from people with mobility constraints. Improving the 

application so it can adapt to this kind of people can be important if an accurate prediction can 

be made. Studies of patients with diseases that tend to degrade the ability to move can be 

accomplished to prevent, for example, falls or just to study how the movements change. This 

prevention can also be applied to elder people. 

A better understanding of different movements can be acquainted. 

With this knowledge, people who practice sports can also benefit. For example, 

understanding how their body posture can be corrected in order to achieve better results is like 

training with a personal trainer that is always helping to prevent injuries. Also measuring the 

actual time that an activity was being performed can be used in endurance training for example. 

Knowing that we spent 45 minutes it is different than going for a run of one hour actually just 

running 30 minutes and spend the other 30 minutes walking on a fast pace.  

This is just the beginning of an application that can be expanded in order to provide a 

better intimate experience between users and mobile phones.  
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Appendix A 

Precision/Recall graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Att. Figure 1 Precision/recall graph of Naïve Bayes used in second classification of the 

hierarchical approach (Static). Semi-supervised learning (left), supervised learning (right) 
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Att. Figure 2 Precision/recall graph of Hoeffding Trees used in first classification of 

the hierarchical approach (Dynamic and Static). Semi-supervised learning (left), 

supervised learning (right) 

Att. Figure 3 Precision/recall graph of Naïve Bayes used in first classification of the 

hierarchical approach (Dynamic and Static). Semi-supervised learning (left), supervised 

learning (right) 
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Att. Figure 4 Precision/recall graph of Hoeffding Trees used in one-step classification. 

Semi-supervised learning (left), supervised learning (right) 


