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Abstract 

The purpose of this thesis is to study the adaptive filters theory for the noise cancellation 

problem. Firstly the paper presents the theory behind the adaptive filters. Secondly it 

describes three most commonly adaptive filters which were also used in computer 

experiments, the LMS, NLMS and RLS algorithms. Furthermore, the study explains some of the 

applications of adaptive filters, the system identification and prediction problems. It also 

describes some computer experiments conducted by the author within a general problem, 

providing its solution by using the LMS, NLMS and the RLS algorithms and comparing the 

results. Moreover, the work focuses on one of the classes of application of the adaptive 

filters: the active noise cancellation problem, presenting a general problem, the three 

different algorithm solutions and a comparison between them. The study continues giving a 

simulation of a specific problem of noise cancellation in speech signal, using Simulink 

platform in two different environments. The first one uses a white Gaussian as the noise 

signal and the second uses a colored noise signal. To solve this problem, both LMS and RLS 

algorithms were used and results of their applications are being presented in further part of 

this work. The investigation ends with choosing the best solution to this specific problem and 

discussing possibilities for future research. 
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Resumo 

Este trabalho foi elaborado com o intuito de estudar a teoria dos filtros adaptativos 

aplicados ao problema de cancelamento de ruído. Primeiramente o trabalho revê a teoria dos 

filtros adaptativos. Em seguida, descrevem-se três algoritmos muito utilizados: LMS (least-

mean square), NLMS (normalized least-mean square) e RLS (recursive least square). Mais 

adiante, esse estudo explica algumas das aplicações dos filtros adaptativos, a identificação de 

sistemas e a predição, incluindo alguns experimentos computacionais desenvolvidos pelo 

autor para alguns problemas genéricos dessas aplicações. Foram fornecidas soluções usando 

os algoritmos LMS, NLMS e RLS e foram comparados os resultados. O estudo perseguiu com o 

enfoque em uma das classes de aplicação dos filtros adaptativos: o cancelamento de 

interferência. Foi apresentado um problema genérico e três diferentes algoritmos para 

solucionar esse problema, tendo sido comparados os respectivos resultados. A pesquisa 

continua apresentando simulações de um problema mais específico, o cancelamento de ruído 

em um sinal de áudio, usando o programa Simulink em dois ambientes distintos. O primeiro 

usa um ruído branco Gaussiano como sinal de ruído e o segundo usa um sinal de ruído 

colorido. Para resolver esse problema, foram usados os algoritmos LMS e RLS e os resultados 

dessas simulações foram apresentados e discutidos. A dissertação termina escolhendo a 

melhor solução verificada para o problema específico e propondo pesquisas futuras.  
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1. Introduction 

The objective of this study is to understanding the adaptive filter (AF) theory. This work 

will show the theory behind the adaptive filters and it will give examples of some 

applications. The idea of the study is that after consolidating the knowledge of this high level 

control technique (the adaptive filters) the researcher will have a huge range of application 

in most diverse areas. There will be presented possible algorithm‟s solutions and their 

performance results for some applications. Moreover, the work focuses on one class of 

application which is the main goal of the research. It is the interference cancelling (IC) also 

known as noise cancelling (NC).   

This chapter begins with a succinct overview of adaptive filters. Furthermore, it 

introduces the final objective of the research: the adaptive noise cancellation (ANC) problem.  

It also presents the web page built in order to maintain the records of this research. The 

chapter concludes giving the structure of the thesis, in the „Approach and Thesis Outline‟ 

section. The material presented below can be found, for example, in [2]. 

1.1. Adaptive Filters 

As their own name suggests, adaptive filters are filters with the ability of adaptation to an 

unknown environment. This family of filters has been widely applied because of its versatility 

(capable of operating in an unknown system) and low cost (hardware cost of implementation, 

compared with the non-adaptive filters, acting in the same system).  

The ability of operating in an unknown environment added to the capability of tracking 

time variations of input statistics makes the adaptive filter a powerful device for signal-

processing and control applications [1]. Indeed, adaptive filters can be used in numerous 

applications and they have been successfully utilized over the years. 

As it was before mentioned, the applications of adaptive filters are numerous. For that 

reason, applications are separated in four basic classes: identification, inverse modelling, 

prediction and interference cancelling. These classes will be detailed in the next chapter.   

All the applications above mentioned, have a common characteristic: an input signal is 

received for the adaptive filter and compared with a desired response, generating an error. 

That error is then used to modify the adjustable coefficients of the filter, generally called 

weight, in order to minimize the error and, in some optimal sense, to make that error being 

optimized, in some cases tending to zero, and in another tending to a desired signal. 
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1.2. Active Noise Cancelling 

The active noise cancelling (ANC), also called adaptive noise cancelling or active noise 

canceller belongs to the interference cancelling class. The aim of this algorithm, as the aim 

of any adaptive filter, is to minimise the noise interference or, in an optimum situation, 

cancel that perturbation [1-2, 4-5]. The approach adopted in the ANC algorithm, is to try to 

imitate the original signal s(n). 

In this study, the final objective is to use an ANC algorithm to cancel speech noise 

interference, but this algorithm can be employed to deal with any other type of corrupted 

signal, as it will be presented in the section 4. A scheme of the ANC can be viewed in figure 

1.1, depicted below. 

 

 

Figure 1.1 - Active Noise Canceller 

In the ACN, as explained before, the aim is to minimise the noise interference1 that 

corrupts the original input signal. In the figure above, the desired signal d(n) is composed by 

an unknown signal, that we call s(n) corrupted for an additional noise n2(n), generated for the 

interference. The adaptive filter is then installed in a place that the only input is the 

interference signal n1(n). The signals n1(n) and n2(n) are correlated. The output of the filter 

y(n) is compared with the desired signal d(n), generating an error e(n). That error, which is 

the system output, is used to adjust the variable weights of the adaptive filter in order to 

minimise the noise interference. In an optimal situation, the output of the system e(n) is 

composed by the signal s(n), free of the noise interference n2(n).  

1.3. Motivation 

When working with signal processing, this signal is susceptible to the noise interference 

that can arise from a wide variety of sources. With the high level of technology development 

nowadays, the real-time processes became more and more necessary and popular. Those 

types of processes are the most vulnerable to the action of noise interference. The noise is 

the most important environmental factor, which determines the reliability of the system 

operation in practice. 

                                                
1 We consider in this study, the addictive white Gaussian noise as the interference noise 
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Taking into consideration the factors referred before, added to the fact that most real-

time processes are unknown or are not worthy being identified, in the last case, mainly 

because of money matters. A filter device to work in that situation would be very expansive 

to implement (hardware cost and software complexity). In that circumstances the adaptive 

filters were developed.  

Adaptive filters had experienced a very fast growth over the years, partly because of their 

low cost of hardware and relatively low implementation complexity, and partly because of 

their characteristic of working in an unknown environment and a very good tracking property, 

being capable of detecting time variations of the system variables. 

The acoustic noise, which is the subject of study in this project, has disadvantages since 

corruption of a system working. It causes physics and psychic problems in humans which are 

susceptible to the noise action.  

The active noise canceller was invented to cancel or, at least, reduce the noise action. 

Such device has a very important function in everyday life, preventing diseases in humans and 

disturbances in processes. For reasons such as reduction of expenses, achievement of comfort 

and many others, the ANC has been subject of research all around the world over the years 

[6-11, 26-39].         

1.4. Thesis web page 

For keeping a good record of this research, a thesis web page has been developed. This 

page is presented in figure 1.2. The home page is composed by the researcher and the theme 

in the up bottom, followed by the menu containing the sub-pages and a brief abstract of the 

research, containing an illustration of the problem, an introduction, the aims and the strategy 

used in this work. 
 

 

Figure 1.2 - Website 
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In the „Plan‟ sub-page, it can be found the Gantt chart used for the tasks schedule. That 

Gantt chart is a good tool for helping the researcher with his time management. The 

performed tasks are presented in the „Weekly Tasks‟ page. This page contains all the tasks 

performed during each week. There will be provided weekly reports which confirm the 

information presented in this page. The „MT – File Management‟ page is used to maintain a 

record of all the relevant documents produced in this research, such as all the reports, 

algorithm codes, and thesis versions. In the „Bibliography/Tools‟ page, it can be found in a 

fast way, all the references used to perform this research and all the software use. Finally, in 

the „Team/Contact‟ page, it is presented the information about all the members of this 

investigation and the author‟s contact.   

1.5. Approach and Thesis Outline 

This work is focussed on a practical development of an active noise canceller to cancel 

noise in speech. In order to achieve the understanding of the proposed solution, it will be 

presented some examples of applications of adaptive filters in the other classes of 

application. The approach chosen in this work, is to start with the AF theory and the most 

common algorithms, then give examples of these algorithms being used in computer 

experiments in the diverse areas, and finish with the main theme, the ANC and a practical 

application, simulation and implication for future research. The strategy is then distributed in 

the way shown below. 

In chapter 2, a review of filters and adaptive filters is given, and some applications are 

presented along with current development of active noise control. 

In chapter 3, there are presented some computer experiments for the following adaptive 

filter applications: system identification and prediction. There are given the algorithm‟s 

equations and the results of the experiments obtained by using three different algorithms 

(LMS, NLMS and RLS) are being shown and compared.     

Chapter 4 presents computer experiments for a general active noise cancellation 

problem. This part of the work also presents and compares the results of the experiments 

using the LMS, NLMS and RLS algorithms. 

Chapter 5 describes a simulation of the ANC problem using Simulink platform. There are 

presented the results of the simulation using the LMS and RLS algorithms and white Gaussian 

and colored noise. 

Chapter 6, contains the conclusions of this study and implications for future research. 

The next chapter, starts by giving an overview of the digital filter theory, which is 

necessary before we introduce the adaptive filter theory.  
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2. Review of Adaptive Filtering 

 

2.1. Digital Filters 

The present section has the purpose of describing the digital filters (DF) and their types. 

Moreover, it gives an overview of the approaches needed in this research. 

2.1.1. Introduction to Digital Filters 

A filter is a device which changes the original signal‟s wave-shape, amplitude-frequency 

and/or phase-frequency characteristics to achieve desired objectives [12]. Those objectives 

are commonly concerned with improving the quality of the signal, reducing/removing the 

noise, for example, or to extract some relevant information or even to split signals previously 

combined. 

Because of the digital filter‟s characteristic and the fact that the digital devices are 

increasing the possibility of applications of the digital algorithms, the digital filters have very 

important roles in digital signal processing (DSP).    

In figure 2.1 is depicted a simplified block diagram of a digital filter application. 

 

 

Figure 2.1 - Real-time digital filter with analogue input and output 

where ADC is the analogue-to-digital converter and DAC is the digital-to-analogue converter. 

2.1.2. Finite Impulse Response Filter 

The finite impulse response (FIR) filter, as its own name suggests, has a finite impulse 

response. This filter is characterized by the following equations: 
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 ( )  ∑  ( ) (   )

   

   

 ( 2.1 ) 

 

 ( )  ∑  ( )   

   

   

 ( 2.2 ) 

 

where h(k),k=0,1,…,N-1, are the impulse response coefficients of the filter, H(z) is the 

transfer function of the filter and N is the number of filter coefficients, called length. The 

equation (2.1) is the FIR filter difference equation. It describes the filter in its nonrecursive 

form: the output y(n), do not depend on the past values of the output y(n). When 

implemented in this nonrecursive form, the filters are always stable. The equation (2.2) is the 

transfer function of the filter. This equation allows the analysis of the filter. 

FIR filters can have a linear phase response and they are very simple to implement.      

The FIR filter realization used is this study is: Transversal (direct) and Lattice. They both 

are described in figures 2.2 and 2.3, respectively. 

 

 

Figure 2.2 - FIR transversal filter 

 

 

Figure 2.3 - FIR lattice filter 
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2.1.3. Infinite Impulse Response Filter 

In contrast to the FIR filter, the infinite impulse response (IIR) filter, as its own name 

suggests has infinite impulse response. The IIR equations are: 
  

 ( )  ∑  ( ) (   )  ∑    (   )  ∑    (   )

 

   

 

   

 

 

   

 ( 2.3 ) 

 

where h(k) is the impulse response (theoretically infinite), ak and bk are the coefficients of 

the filter, and x(n) and y(n) are the input and output to the filter respectively. The IIR‟s 

transfer function is given by: 
 

 ( )  
      

          

               
 

∑    
   

   

  ∑    
   

   

 ( 2.4 ) 

 

In equation (2.4) the output sample, y(n), depends on past outputs samples, y(n-k), as 

well as resent and past inputs samples, x(n-k), that is known as the IIR filter‟s feedback. The 

strength of the IIR filters comes from that feedback procedure, but the disadvantage of it is 

that the IIR filter becomes unstable or poor in performance if it is not well designed. 

The IIR filter realization dealt in this study is the Lattice one. That design is illustrated in 

Figure 2.4, depicted below. 

 

 

Figure 2.4 - IIF lattice filter 

2.1.4. Wiener Filter 

In order to understand the Wiener filter, we will use several concepts, pictures and 

equations that can be found in Diniz [4].  
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Figure 2.5 – General Adaptive Filter 

The figure 2.5 depicts a general adaptive filtering problem, having a system connected to 

an adaptive filter. The objective is that the AF reaches the value of the desired response 

d(n), for that, the desired response is compared with the filter output y(n), generating an 

error e(n).  

The objective function most used in adaptive filtering is the mean-squared error (MSE), 

described as follows: 

 

 , ( )-   ( )   ,  ( )-   ,  ( )    ( ) ( )    ( )- ( 2.5 ) 

  

where  ( ) is the cost function and E[ * ] represents the expectation of *. 

In many applications, the input signal is resulted by the delayed version of the same 

signal. In those cases, the output of the system can be found by applying a FIR filter to the 

input signal. 

The figure 2.6 illustrates the adaptive FIR filter. The output signal y(n), can be 

represented as: 
 

 ( )  ∑*  ( ) (   )+    ( ) ( )

 

   

 ( 2.6 ) 

 

where x(n) =[x(n) x(n-1) … x(n-N)]T is the system input vector and w(n)=[w0(n) w1(n) … wN(n)]T 

is the tap-weight vector. 

Substituting the value of y(n) in equation (2.6) into equation (2.5), we have that: 
 

 ,  ( )-   ( )   ,  ( )    ( )  ( ) ( )    ( ) ( )  ( ) ( )-
  ,  ( )-    , ( )  ( ) ( )-   ,  ( ) ( )  ( ) ( )- 

( 2.7 ) 
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Figure 2.6 - FIR Filter 

The MSE function, for the FIR filter, having fixed coefficients, can be rewritten as: 

 

 ,  ( )-   ( )   ,  ( )-     ( ) , ( ) ( )-    ( ) ,  ( ) ( )- ( ) ( 2.8 ) 

  

if we define the N x 1 cross-correlation vector between d(n) and x(n) as: 

 

   , ( ) ( )-  ,             -
 

 ( 2.9 ) 

 

and a N x N autocorrelation matrix R as: 
 

   ,  ( ) ( )-  

[
 
 
 
 

                                

                                

                               

                                       
            

               ]
 
 
 
 
 

 ( 2.10 ) 

   

From that equation, it can be noted that the minimum squared error, that is the MSE 

subject function, can be found by manipulating the tap-weight w(n), supposing that the 

vector p and the matrix R are known. 
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The gradient vector of the MSE function   related to the filter tap-weight coefficients, is 

found differentiating the MSE equation with respect to the coefficients w(n), as shown below. 
 

   
  

  
 [

  

   

  

   
 

  

   
]
 

         ( 2.11 ) 

 

Equating the gradient vector to zero and taking R as a nonsingular matrix, the optimal 

values for the tap-weight coefficients w that minimises the object function, we get the 

Wiener solution, described as: 

 

        ( 2.12 ) 

 

If we substitute the equation (2.12) into the equation (2.8), we can calculate the 

minimum value of the objective function provided by the Wiener solution, given by: 

 

 

      ,  ( )-     
     

        ,  ( )-    
   ( 2.13 ) 

2.1.5. Summary 

In this section, it was given an overview of the digital filter theory. This introduction was 

necessary before explaining the adaptive filter theory, because the adaptive filter, as its own 

name suggests is a kind of digital filter. 

The next section presents the adaptive filters‟ applications, showing the general 

applications, followed by the ANC problem, which is the aim of this research. The section 

ends with the presentation of some technologies that uses the ANC algorithms.   

2.2. Applications of Adaptive Filters 

In order to give to the reader a general idea of the range of applications of the AF, 

general applications will be presented in this section. Moreover, the active noise cancelling 

problem will be introduced as well as the current development in this area. 

2.2.1. General Applications 

Because of the adaptive filters versatility, their applications were divided into four 

classes. Those four basic classes of applications of adaptive filters are listed below: 
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Figure 2.7 - System Identification 

1. Identification or Modelling: figure 2.7 depicts the identification problem. In 

that application, the adaptive filter receives the same input x(n) as the 

system. The output of the adaptive filter y(n) is then compared with the 

desired response and output of the system d(n) generating an error. That 

error e(n) is used to adjust the weight w(n) in order to minimise the error, 

identifying the system. 

 

 

Figure 2.8 - Inverse Modelling 

2. Inverse Modelling: depicted in figure 2.8, the inverse modelling, also known 

as deconvolution, has the aim of discovering and tracking the inverse transfer 

function of the system. This application consists of receiving one input x(n) 

for the system with its output u(n) connected to the adaptive filter. Then the 

comparison is made between the filter output y(n) and the desired response 

d(n) that consists of the delayed version of the input x(n). The error e(n), 

result of that comparison is then used to adjust the filter weights. 
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Figure 2.9 - Prediction 

3. Prediction: the figure 2.9 describes the logic of the predictor adaptive filter. 

Having the aim to give the best prediction of a random signal, the adaptive 

predictor filter relies on applying the past values of the random signal x(n), 

obtained by applying a delay to that signal provided to the adaptive filter 

input and comparing its output y(n), with the desired response d(n), that is 

nothing but, the actual random signal x(n). When the filter output is used to 

adjust the filter weights, the adaptive filter is called a predictor filter; when 

the result of the comparison between y(n) and d(n), called e(n), is used to 

adjust the weights of the filter, it operates as a prediction error filter.  
 

 

Figure 2.10 - Interference Cancelling 

4. Interference Cancelling: the interference cancelling problem, which will be 

used in the application chosen for this study, noise cancelling, is depicted in 

the figure 2.10. The idea in this case is following: a desired response d(n), 

which is nothing but, a primary noisy signal  (corrupted by a noise 

n2(n)),primary signal = s(n) + n2(n). It is compared with the output of the 

adaptive filter y(n), that has as input a reference signal n1(n) which is the 

noise source that creates the noise which corrupts the primary signal (noise 

n2(n)). The system output e(n) in this case, is the difference between the 

filter output y(n) and the desired response d(n). In an optimum situation, this 

e(n) will be equal to the original signal without the interference (s(n)). 
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2.2.2. Active Noise Canceller 

The scheme of the active noise canceller can be seen in figure 2.11, conveniently copied 

from the section 1.2, in order to give a better visualisation of the active noise problem. 
 

 

Figure 2.11 - Active Noise Canceller 

The interference signal is a noise that is captured for the reference sensor and applied in 

the system as a reference signal. The desired signal is detected by the primary sensor. This 

signal is corrupted for the same noise signal. The adaptive filter generates an initial response, 

which is compared to the desired signal. That operation generates an error, which is used as 

the filter feedback, adjusting the filter weight and the system response. In an optimal sense, 

the response is composed for the originally desired signal.   

Different approaches can be used in order to compute the best active noise canceler 

algorithm to a desired application [26-39], with different responses for a variety of 

algorithms. It means that every algorithm has its advantages and disadvantages, depending on 

the application.  

2.2.3. Current Development of the ANC 

In the last few years, the adaptive or active noise canceller has been widely applied in 

the industry. The aims could be to increase user comfort, eliminating inconvenient noise to 

improve the fuel economy of a vehicle.  

The last application is the case of the GMC Terrain active noise cancellation. That system 

is depicted in the figure 2.12. General Motors explains that in the Terrain's „Eco‟ mode, the 

torque converter clutch engages at lower engine speeds to save fuel [3]. This situation has 

the disadvantage of creating an internal noise. That problem is solved by the active noise 

canceller system, which captures the noise with the ANC microphones for posterior 

cancellation using the car front speakers. 
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Figure 2.12 - ANC GMC - Copyright of General Motors [14] 

The other applications intend to reduce the noise interference of specific sources in order 

to improve the comfort of the customers. This is the case of the headphones QuietComfort® 

15, from the brand Bose, shown in figure 2.13. The headphone is supposed to cancel the 

surrounding noise interference and deliver the pure sound of the music device. 

 

 

Figure 2.13 - Quiet Comfort 15 from Bose – Copyright of Bose [22] 

There were presented so far some common applications of adaptive filters, followed by a 

presentation of the main aim of this research, the ANC problem, and examples of technology 

which uses an ANC algorithm.  

The next section presents some of the most used AF algorithms and the computational 

complexity cost of each of them.  
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2.3. Adaptive Filtering Algorithms 

In this section it will be presented some of the many existing adaptive filtering 

algorithms. In order to achieve the understanding of the algorithms, it will be shown a table 

with a possible summary to each algorithm.  

2.3.1. Steepest Descent 

The steepest descent (SD) is a recursive and deterministic feedback system algorithm. It 

means firstly that starting from some initial value for the tap-weight vector it improves with 

the increased number of iterations [1]. Secondly, a deterministic feedback system has the 

characteristic of finding the minimum point in the ensemble-averaged error-surface without 

knowing that surface.  
 

 

Figure 2.14 - Transversal Filter 

Taking into consideration the transversal filter in the figure 2.14 depicted above and 

having the filter‟s input x(n), its desired output d(n), the filter tap weights w0, w1, ..., wN-1 as 

real-valued sequences, the filter input and the tap-weight vector, are defined by: 
 

  ,             -
  ( 2.14 ) 

 
and 
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 ( )  , ( )  (   )   (     )-  ( 2.15 ) 

 

The filter output is: 
 

 ( )     ( ) ( 2.16 ) 

 

From the equations present in the subsection 2.1.4, we have that: 

 

 ( )   ,  ( )-    ,  ( )-     ( ) , ( ) ( )-     ,  ( ) ( )-  ( 2.17 ) 

 

where  ( ) is the performance function (MSE), E[ * ] is the expectation of *, e(n)=d(n)-y(n) is 

the estimation error of the Wiener filter, R=E[x(n) xT(n)] is the auto-correlation matrix of the 

filter inputs, p(n) =E[x(n) d(n)] is the cross-correlation vector between the filter input and 

the desired output.   

The single global minimum of the  ( ) is given by  

 

        ( 2.18 ) 

 

where wo is the optimum tap-weight vector. 

The steepest descent algorithm follows the procedure below, in order to find its optimum 

solution. 

 

1. Initialize the algorithm within an initial guess of the parameters whose should be 

optimized in order to compute the minimum MSE. 

2. Find the actual gradient function with respect to the parameters. 

3. Update the parameters by stepping in the opposite direction of the gradient vector 

previously found.  

4. Repeat the steps 2 and 3 until the variation in the parameters is no more significant. 

 

In order to implement the procedure described above, it will be necessary to recall the 

following equation from subsection 2.1.4: 

  
 

  
  

  
 [

  

   

  

   
 

  

   
]
 

         ( 2.19 ) 

 

where   is the gradient vector. 

Following the logic of the procedure, we compute the w(n) as being: 

 
 

 (   )   ( )      ( 2.20 ) 

 

where µ is the positive scalar step-size parameter and    is the gradient vector   at the point 

w=w(n).  

Substituting equation (2.19) into (2.20), we have: 
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 (   )   ( )   ,       ( )-   ( )    ,  ( )   - ( 2.21 ) 

  

In order to prove that the recursive update w(n) converges towards wo, we need to 

rearrange the equation (2.21) as the following: 

 

 (   )  ,     - ( )      ( 2.22 ) 

 

where I is the N x N identity matrix.  

Substituting p from equation 2.18 into equation 2.22 and subtracting wo from both sides 

of the equation, we find that: 
 

 (   )     ,     - ( )           ,     -, ( )   - ( 2.23 ) 

 

Defining a vector v(n), which is a vector of the difference between the tap-weight w(n) 

and the optimum tap-weight wo, as: 

 

 ( )   ( )     ( 2.24 ) 

  

and substituting in equation 2.23, we find: 

 

 (   )  ,     - ( ) ( 2.25 ) 

 

In order to compute the recursive scalar equations, we use the fact that: 

 

        ( 2.26 ) 

  

where   is the diagonal matrix that contains the eigenvalues λ0, λ1 ,..., λN-1 of R and the 

columns of the matrix Q, contains the orthonormal eigenvectors. Substituting the equation 

(2.26) into the equation (2.25), we found that:   

 

 (   )  ,          - ( )   ,     -   ( ) ( 2.27 ) 

 

Defining a new support variable as follows:  

 

  ( )     ( ) ( 2.28 ) 

 

and rearranging the equation (2.27), we have: 

 

  (   )  ,     -  ( ) ( 2.29 ) 

 

Having in mind the interval i=0,1,..., N-1, the equivalent recursive scalar equations are 

given by: 
 

  
 (   )  (      )  

 ( )  (      )
   

 ( ) ( 2.30 ) 

 

From the equation (2.24), it is detected that the w(n) converges to wo, only if   ( ) is a 

vector of zeros. This fact added to the fact that from equation (2.30) the step-size parameter 

µ must be selected so that: 

 

|      |    ( 2.31 ) 

 

It implies that: 
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            ( 2.32 ) 

 

or 

 
 

    
 

  
 ( 2.33 ) 

 

and finally, the condition necessary to guarantee the convergence of the steepest-descent 

algorithm is that the step-size parameter µ is:  

 

    
 

    
 ( 2.34 ) 

 

where      is the maximum of the eigenvalues             . 

2.3.2. Least-Mean-Square Algorithm 

The least-mean-square (LMS) algorithm belongs to the family of the linear stochastic 

gradient algorithms. It serves at least two purposes. First, it avoids the need to know the 

exact signal statistics (e.g., covariance and cross-covariance), which are nevertheless rarely 

available in practice. Second, these methods possess a tracking mechanism that enables them 

to track variations in the signal statistics [5]. 

Its simplicity and operational stability are important features of the LMS algorithm, which 

does not require measurement of the pertinent correlation functions or a matrix inversion. It 

makes the LMS algorithm the standard linear adaptive algorithms in terms of applicability [1]. 

The LMS algorithm is composed by two basic processes: 
 

1. A filtering process, which consists of the computation of a transversal filter 

output produced by the tap inputs, and later on, compare that output with a 

desired response, generating an error estimation 

2. An adaptive process, which consists of an automatic adjustment of the tap 

weights using the estimate error   

 

The cost function of this algorithm is the mean-squared error, given by: 

 

 ( )   |  ( )| ( 2.35 ) 

 

where J is the cost function, |  | is the Euclidean norm and e(n) is the error between the 

desired response and the filter output. 

The estimation error is as follows: 

 

 ( )   ( )   ( ) ( 2.36 ) 
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were d(n) is the desired response and y(n) is the filter output, 

The filter output is computed using the equation below: 
 

 ( )    ( ) ( ) ( 2.37 ) 

 

where x(n) is the vector composed by the input x(n) and having the same size as the tap-

weight vector w(n).  

Taking into consideration the Wiener filter equations, we find that: 
 

 (   )   ( )    ( )   ( )    [ ̂( )   ̂( ) ( )] ( 2.38 ) 

 

for n = 0, 1, 2, …, where   is the estimation of the gradient vector of the objective function, 

 ̂ is the estimate of the cross-correlation vector between the desired response and the input 

signal,  ̂ is the correlation matrix of the input signal and µ is the step-size parameters which 

decides the speed of convergence to the minimum error. The size of the constant µ decides 

the convergence speed of the algorithm. A small value of the step-size increases the 

convergence time while a large value increases the excess mean-square error (EMSE) [16].The 

µ parameter must satisfy the following requisites: 

 

      
 

               
 ( 2.39 ) 

 

where the tap-input power is given by 

 

∑  ,| (   )| -

   

   

 ( 2.40 ) 

 

The result of the estimate gradient is given by 
 

 ̂( )     ( ) ( )     ( )  ( ) ( )     ( ), ( )    ( ) ( )-
     ( ) ( ) 

( 2.41 ) 

 

Updating the equation (2.38), we have: 

 

 (   )   ( )     ( ) ( ) ( 2.42 ) 

 

The summary of the LMS algorithm and the computational complexity cost are described 

in the tables 2.1 and 2.2, respectively. 
 

Table 2.1 - Summary LMS algorithm 

Inputs: 
Tap-weight vector w(n), Input vector x(n), and desired output 
d(n) 

Outputs: Filter output y(n), Tap-weight vector update w(n+1) 

Parameters: 

M = number of taps 
µ = step-size parameter 
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Where tap-input power = ∑  ,| (   )| -  
    

Initialization: 
Having prior knowledge, use it to compute the w(0), otherwise 
set w(0) = 0 

Step 1: Filtering: 
 

 ( )    ( ) ( ) 
 

Step 2: Error Estimation: 
 

 ( )     ( )    ( ) 
 
Step 3: Tap-weight vector adaptation: 
 

 (     )     ( )        ( ) ( ) 
 

 

Table 2.2 - Computer complexity of the LMS algorithm 

Step Equations * + or - / 

 Initialization: w(0) = 0 - - - 

 for n=1, 2, 3, … - - - 

1  ( )    ( ) ( ) L L – 1 - 

2  ( )    ( )   ( ) - 1 - 

3  (     )     ( )        ( ) ( ) L + 2 L - 

 Total 2L + 2 2L - 

2.3.3. Normalised Least-Mean-Square Algorithm 

In the LMS algorithm studied in the last section, the tap-weight input has a correction 

    ( ) ( ) which is directly proportional to the size of x(n). 

When the size of the x(n) is large, the LMS algorithm experiences a gradient noise 

amplification problem. In order to solve this problem, the normalized least-mean-square 

(NLMS) algorithm was developed.  

The increase of the input x(n) makes very difficult (if not impossible) to choose a µ that 

guarantees the algorithm‟s stability. Therefore, the NLMS has variable step-size parameter 

given by: 

 

  
 ̅

  || ( )|| 
 ( 2.43 ) 
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where δ is a small constant,  ̅ is the step size parameter of the NLMS    ̅    and || * || is 

the Euclidean norm. 

The tap-weight w(n) is now presented as: 

 

 (     )   ( )      ( ) ( )   ( )     
 ̅

  || ( )||
  ( ) ( ) ( 2.44 ) 

   

In table 2.3, it is presented a summary of the NLMS algorithm. 

 

Table 2.3 - Summary of the NLMS algorithm 

Inputs: 
Tap-weight vector w(n), Input vector x(n), and desired output 
d(n) 

Outputs: Filter output y(n), Tap-weight vector update w(n+1) 

Parameters: 

M = number of taps 
δ = small constant 
 ̅ = step-size parameter of the NLMS algorithm 

    ̅    

Initialization: 
Having prior knowledge, use it to compute the w(0), otherwise 
set w(0) = 0 

Step 1: Filtering: 
 

 ( )    ( ) ( ) 
 

Step 2: Error Estimation: 
 

 ( )     ( )    ( ) 
 
Step 3: Tap-weight vector adaptation: 
 

 (     )     ( )     
 ̅

  || ( )||
  ( ) ( ) 

 

 
 The table 2.4 depicts the computational complexity cost of the NLMS algorithm. 
 

Table 2.4 - Computer complexity of the NLMS algorithm 

Step Equations * + or - / 

 Initialization: w(0) = 0 - - - 

 for n=1, 2, 3, … - - - 

1  ( )    ( ) ( ) L L - 1 - 

2  ( )    ( )   ( ) - 1 - 
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3  (     )     ( )     
 ̅

  || ( )||
  ( ) ( ) 2L + 2 2L  1 

 Total 3L + 2 3L 1 

2.3.4. Recursive Least-Squares Algorithm 

Contrary to the LMS algorithm, whose aim is to reduce the mean square error, the 

recursive least-squares algorithm‟s (RLS) objective is to find, recursively, the filter 

coefficients that minimize the least square cost function. The RLS algorithm has as an 

advantage a fast convergence, but on the other hand, it has the problem of a high 

computational complexity.  

The cost function of this algorithm is the weighted least-squares (WLS), given by: 
 

 ( )  ∑    

 

   

  ( ) ( 2.45 ) 

 

where       is called “forgetting factor”, which gives exponentially less weight to older 

error samples and e(n) is the error, defined by the difference between the desired response 

d(n) and the output y(n) produced by a transversal filter whose tap inputs at time n is equal 

x(n),x(n-1),…,x(n-M+1). The e(n) is defined by: 
 

              ( )    ( )   ( )   ( )    (   ) ( ) ( 2.46 ) 

 

where x(n) is the tap-input vector, defined by: 
 

 ( )  , ( )  (   )    (     )-  ( 2.47 ) 

 

w(n) is the tap-weight vector, defined by: 
 

 ( )  ,  ( )   ( )       ( )-  ( 2.48 ) 

 

The minimum value of the cost function J(n), reached when the tap-weights have they 

optimum value is defined by the normal equations written in matrix form: 
 

 ( ) ̂( )   ( ) ( 2.49 ) 

 

The M-by-M correlation matrix Φ(n), is defined by: 
 

 ( )  ∑     ( )  ( )

 

   

 ( 2.50 ) 

 

The M-by-1 cross-correlation vector z(n) between the tap inputs of the transversal filters 

and the desired response is defined by: 

 

 ( )  ∑     ( )  ( )

 

   

 ( 2.51 ) 
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where * denotes de complex conjugation. 

To compute the RLS we need to apply the matrix inversion Lemma. After applying this 

method, we have: 
 

  
  ( )       

  (   )      ( )  ( )  
  (   ) ( 2.52 ) 

 

where   
  ( ) is the inverse correlation matrix, λ-1 is the inverse forgetting factor and k(n) is 

the gain. 

The M-by-1 gain vector k(n) is defined by: 
 

 ( )  
     

  (   ) ( )

       ( )  
  (   ) ( )

 ( 2.53 ) 

 

The tap-weight vector w(n) is then calculated using the following expression: 

 

 ( )   (   )   ( )  ( ) ( 2.54 ) 

  

where the * represents the complex conjugation. 

In order to achieve the implementation of a RLS algorithm, a summary is presented in 

table 2.5, shown below. 

 

Table 2.5 - Summary of the RLS algorithm 

Inputs: 
Tap-weight vector,  ̂(   ), Input vector, x(n), desired 

output, d(n), and the correlation matrix   
  (   ) 

Outputs: 
Filter output,     ( ), tap-weight vector update,  ( ), and the 

update of the correlation matrix   
  ( ) 

Parameters: 

M = number of taps 
λ = forgetting factor 
δ = Small positive constant 
Where,                          

Initialization: 

Having prior knowledge, use it to compute the w(0) and the   
  

  ( ), otherwise set w(0) = 0 and    
  ( )       

Where δ is a small positive constant mentioned before and I is 
an identity matrix 

Step 1: Computing the gain vector: 
 

 ( )  
     

  (   ) ( )

       ( )  
  (   ) ( )

 

 
Step 2: Filtering: 
 

 ( )    ( ) ( ) 
 
Step 3: Error Estimation: 
 

 ( )    ( )   ( ) 
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Step 4: Tap-weight vector adaptation: 
 

 ( )   (   )   ( )  ( ) 
 

Step 5:   
  ( ) update: 

 

  
  ( )       

  (   )      ( )  ( )  
  (   ) 

 

 

The computational complexity cost for implementing the RLS algorithm is shown in table 

2.6, presented below. 

 

Table 2.6 - Computer complexity of the RLS algorithm 

Step Equations * + or - / 

 Initialization: w(0) = 0 and   
  ( )       - - - 

 for n=1, 2, 3, … - - - 

1  ( )  
     

  (   ) ( )

       ( )  
  (   ) ( )

 2L2 + L 
2L2 – 2L + 

1 
1 

2  ( )    ( ) ( ) L L – 1 - 

3  ( )    ( )   ( ) - 1 - 

4  ( )   (   )   ( )  ( ) L L - 

5 
  

  ( )       
  (   )

     ( )  ( )  
  (   ) 

L2 + L 2L – 1 1 

 Total 3L2 + 4L 2L2 + 2L 1 

2.3.5. Summary 

This section has presented some of the most commonly used adaptive filter algorithms 

and its equations. Moreover, it was presented a summary of those algorithms that can be used 

for implementing the AF in a real problem. It was also given to the reader, the computational 

complexity cost of the application of those algorithms. It was shown in order to help the 

reader when choosing between those algorithms. 

The next chapter presents some general computer experiments using the AF algorithms 

presented in this section. It is also given the result of each algorithm applied for these 

experiments and a comparison between those results.   
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3. Computer experiments with Adaptive 
Filters 

 

This section presents computer experiments for different applications of the adaptive 

filters. It begins with a purpose of using the adaptive filters in those applications, followed by 

an algorithm and its result. Chapter 4 explains the active noise canceller and considers the 

results obtained by applying the algorithm.    

3.1. System Identification 

System identification is the experimental approach to the modelling of a process or plant 

(Goodwin and Payne, 1977; Ljung and Soderstrom, 1983; Ljung, 1987; Soderstrom and Stoica, 

1988; Astrom and Wittenmark, 1990; Haykin,1996). The adaptive system identification is an 

important tool that is widely used in the fields of communications, control systems and signal 

processing [13]. The characteristic of good tracking of time variations is a powerful 

instrument to the identification of unknown time-varying systems. That characteristic has 

made the Adaptive filters one of the most popular methods in the system identification 

problem. 

3.1.1. The problem 

The system identification problem is illustrated in Figure 3.1. This figure has been 

conveniently copied from Subsection 2.2.1.  In this problem, we have an input signal x(n) 

common to both the system and the adaptive filter. The filter generates a response y(n) 

which is compared with the system output d(n) also known as the desired response. The 

desired response d(n) for the system identification scenario, has added to its value, a noise 

signal n(n). This comparison generates the error e(n) which is used to recalibrate the tap-

weights w(n) of the filter. 

 For this simulation, the following information is available: 

 

 A random system wo to be identified, with dimensions (7,1); 
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 The desired response d(n) is accompanied with a white Gaussian noise n(n), with 

zero mean and variance equal to 0.01, which could be generated by external 

interference or even by the transmission means; 

 

 

Figure 3.1 – System Identification 

For system identification problem, the error signal e(n) should converge to the value of 
the noise n(n) added to the system output.  

3.1.2. The LMS Solution 

The least-mean-square algorithm is an example of an algorithm which can be successfully 

employed in the identification problem [13, 15-18]. The LMS is led by the mean-squared error 

cost function. This cost function is calculated by the equation described below. 

 

 ( )   |  ( )| ( 3.1 ) 

 

Using the summary presented in subsection 2.3.2 and doing the alterations needed in 

order to solve the system identification problem, we obtain the following new equation: 
 

 ( )    
  ( )   ( ) ( 3.2 ) 

 

where d(n) is the desired response of the filter. wo is a vector which represents the system to 

be identified. In this particular case, with dimensions (7,1). x(n) is a vector composed by the 

input x(n) with same dimensions as the vector wo and n(n) is the noise. 

The step-size parameter µ was chosen to be 0.02.   

The figure 3.2 shows the result of the adaptive system identification using the LMS 

algorithm. 

 



 

27 

 

L = 7, SNR = 40dB, µ = 0.02 

 

Figure 3.2 – Desired signal, filter output and error of the LMS algorithm for the given system 
identification‟s problem 

This picture shows the value of the desired response d(n), the filter output y(n) and the 

estimation error e(n) varying according to the number of iterations. From the plot the track 

characteristics of the adaptive filter can be verified. It starts trying to identify the system, 

and after about 130 iterations over time, the error starts with a large disturbance until the 

filter reaches a good tracking of the system and the error starts to be near to its optimum 

value (zero).  

The mean-squared error of the algorithm can be seen in the figure 3.3. The cost function 

of the LMS algorithm has as aim to minimize the MSE. From this figure it can be detected that 

after about 150 iterations of the filter, the MSE converges to the noise variance 0.01 or – 40 

dB. 
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 L = 7, SNR = 40dB, µ = 0.02 

 

Figure 3.3 - Mean-squared error of the LMS algorithm 

3.1.3. The NLMS Solution 

The normalized least-mean-square algorithm is normally applied when the size of the 

input x(n) is too large. The implementation of this algorithm to the same problem has 

resulted in a faster convergence, keeping the advantages of the LMS solution. The equations 

below are an adaptation of the equations found in subsection 2.3.3. Here it has been 

modified in order to reach the system identification problem, which is the actual aim. The 

new equations are presented below. 

 

 ( )    
  ( )   ( ) ( 3.3 ) 

 

where d(n) is the desired response, wo is the vector which represents the system to be 

identified, having dimensions (7,1). x(n) is the input vector, composed by the x(n) inputs and 

having the same dimensions as wo and n(n) is the noise.   

After some experiments, the constant δ and µ was chosen to be 0.9 and 0.25, 

respectively. 

The results of application of the NLMS algorithm, explained before, to solve the system 

identification problem are described in the figures 3.4 and 3.5. Figure 3.4 shows the desired 

signal d(n) been tracked by the adaptive filter‟s output y(n), and the resultant error of 

difference between the signals e(n).  
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L = 7, SNR = 40dB, δ = 0.9, µ = 0.25 

 

Figure 3.4 - Desired signal, filter output and the error of the LMS algorithm for the system identification 
given problem 

From the figure 3.4 it can be seen that approximately 80-100 iterations are necessary, so 

that the algorithm reaches a prediction error near to its optimum value, bringing the error 

near to zero. 

Figure 3.5 depicts the evolution of the mean-squared error by the number of the 

iterations. It can be noticed that after approximately the same number of iterations (100 

iterations), the MSE converges to the noise variance, 0.01 or – 40dB. 
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L = 7, SNR = 40dB, δ = 0.9, µ = 0.25 

 

Figure 3.5 - Mean-squared-error of the NLMS algorithm 

3.1.4. The RLS Solution 

The recursive least-square algorithm is a very popular adaptive filter algorithm and 

therefore it is successfully used for system identification [15, 17-18, 20-21]. Leaded by the 

cost function of the least-squares, this algorithm presents a fast convergence with a good 

stability. The cost function of the RLS algorithm is described as follows: 

 

 ( )  ∑    

 

   

  ( ) ( 3.4 ) 

 

where       is the “forgetting factor”, a constant value that serves to give exponentially 

less weight to older error samples and e(n) is the estimation error. 

Using the equations presented in Table 2.5, and performing the alterations necessary to 

achieve the result aiming the system identification problem, we get the following new 

equations:  

 

 ( )    
  ( )   ( ) ( 3.5 ) 

  



 

31 

 

where d(n) is the desired response;  wo is the vector which represents the system, having 

dimension (7,1) in this example; x(n) is the input vector, composed by the input x(n) and 

having dimension identical to wo; e(n) is the error and y(n) is the filter‟s output. 

The figure 3.6 shows the result of applying a RLS algorithm to the system identification 

problem. The RLS was initialized with   
  ( )    . The result of simulations pointed       

as the best value for this constant which is multiplied to the Identity matrix I. The forgetting 

factor λ was set to be 0.9. 

 

L = 7, SNR = 40dB, λ = 0.9 

 

Figure 3.6 - Desired signal, filter output and the error of the RLS algorithm for the given system 
identification‟s problem 

Analysing the figure 3.6, by looking to the red line, which represents the error, it can be 

observed that the RLS algorithm reaches a tracking behaviour near to its optimum, after 

approximately 50 iterations of the program, within the error tending to zero. 

The figure 3.7 depicts the behaviour of the RLS‟s cost function, the weighted least-

squares. After 50 or 60 iterations, the least-squares become close to the value of the variance 

of the noise, which is 0.01 or – 40dB.   
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L = 7, SNR = 40dB, λ = 0.9 

 

Figure 3.7 – Weighted least-squares of the RLS algorithm 

3.1.5. Comparisons of Results 

In real-time applications, it is very important to analyse all the important details before 

we choose an adaptive algorithm. A small difference could result in elevated cost of 

implementation, or in a weak system, which is not stable in all variable changes, or even the 

solution is impossible to be implemented. The choice between using one algorithm instead of 

another, to the system identification problem, depends mainly on the following factors: 

 

 Rate of Convergence: number of iterations required by the algorithm, to converge to 

a value close to the optimum Wiener solution in the mean-square sense. If the 

algorithm has a fast rate of convergence, it means that the algorithm adapts rapidly 

to a stationary unknown environment.  

 Computational cost: when we talk about computational cost, it includes 

implementation cost, amount necessary to implement the algorithm in a computer 

and the number of arithmetic operations. The order of the operations is also 

important as well as the memory allocation, which is the space necessary to store the 

data and the program.  

 Tracking:  capacity of the algorithm to track statistical variations in a stationary 

unknown environment. 
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In this particular application, those three factors have has been analysed. The tracking 

factor has been analysed in two stages, one after a few hundred of iterations and the other 

after a few thousand iterations. 

The tables 2.2, 2.4 and 2.6, presented in the subsections 2.3.1, 2.3.2 and 2.3.3 

respectively, show the computational cost of each algorithm. By analysing those tables, we 

can detect that the RLS algorithm has a maximum complexity of L2 against L to the LMS and 

NLMS. It means that the RLS algorithm requires a higher processing power than the other two. 

It implies higher cost of hardware.  

The figure 3.8 shows a comparison between the rates of convergence of the three 

proposed algorithms. Investigating the results shown in figure 3.8, it can be detect that the 

rate of convergence of the RLS algorithm is faster than the other two. Indeed, it can be twice 

faster than the NLMS and three times faster than the LMS algorithm. 
 

L = 7, SNR = 40dB, µ = 0.02(LMS), δ = 0.9, µ = 0.25(NLMS), λ = 0.9 

 

Figure 3.8 - Comparison between the algorithms cost function 

The next analysis is about the value of the prediction error e(n). The figure 3.9 depicts a 

comparison between the error of the three algorithms during the consecutives iterations of 

the algorithms. By examining the result, it can be noticed that the RLS algorithm has an error 

close enough to its optimum Wiener solution in a small number of iterations, about 50 

iterations. The RLS presents another good characteristic, which is why it converges to the 

optimum value of the error prediction, stabilizing nearby this value without big variations 

since the 50th iteration and during all the period shown in the illustration. The LMS error 
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prediction starts to converge about 80 iterations, but the disturbance is too big until about 

110 iterations, when it starts to show some stability, but still having small disturbances during 

all the period shown. The NLMS algorithm shows a better response than the LMS, but still 

slower than the RLS algorithm.  
 

L = 7, SNR = 40dB, µ = 0.02(LMS), δ = 0.9, µ = 0.25(NLMS), λ = 0.9 

 

Figure 3.9 - Comparison between the error signals of the algorithms until a few hundred iterations 

Exploring Figure 3.9, it can be said that if you want a faster convergence when you are 

identifying a system, the RLS is the best possible solution, but it is not the only reason why it 

should be studied. Figure 3.10 shows a comparison between the errors from the three 

algorithms, after more than a thousand iterations. It can be noticed that the error variations 

start to be bigger for the RLS than for the LMS algorithm. It is the opposite of what was 

happening after a few hundred iterations. It is reasonable because the LMS based algorithms 

are model independent, when the RLS algorithm is model dependent. It means that unless the 

standard RLS algorithm matches with the underlying model of the environment in which it 

operates, we would expect a degradation of the performance of the RLS algorithm, due to 

the mismatch [18]. This problem explains why the LMS based algorithms exhibits a better 

tracking behaviour. 
 



 

35 

 

L = 7, SNR = 40dB, µ = 0.02(LMS), δ = 0.9, µ = 0.25(NLMS), λ = 0.9 

 

Figure 3.10 - Comparison between the error signals of the algorithms after a thousand iterations 

3.2. Linear Prediction 

In the linear prediction problem [40-45], the aim is to predict the value of an unknown 

signal without having any prior knowledge. The linear prediction can be used to predict 

measurement error of noise sensors, trajectory of objects in video image and many other 

applications. This section presents a solution for a given problem of prediction, using the 

adaptive filter algorithms covered in this study. 

3.2.1. The problem 

Figure 3.11 depicts an adaptive filter for the prediction problem. As it can be observed, 

the scheme consists of a random signal, represented by a sinusoid. The filter‟s desired 

response x(n), a delayed version of the random signal u(n) is the adaptive filter‟s input, the 

filter generates an output y(n) which is one of the outputs, the error e(n) is a result of the 

difference between the desired response d(n) added to the white Gaussian noise n(n) with 

zero mean and variance 0.01 and the filter output y(n) (e(n)=d(n)+n(n)–y(n)). The error e(n) is 

the second system output.      
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Figure 3.11 - Adaptive filter for linear prediction 

3.2.2. The LMS Solution 

In order to apply the LMS to the prediction problem, some alterations in the summary 

presented in Section 2.3 will be introduced. After doing the necessary changes, we get the 

following equations: 

 

 ( )   ( ) ( 3.6 ) 

  

 ( )    ( )  ( ) ( 3.7 ) 

 

 ( )   ( )   ( )   ( ) ( 3.8 ) 

 

 (   )   ( )     ( )  ( ) ( 3.9 ) 

 

where x(n) is the random input signal; u(n) is the delayed version of x(n); d(n) is the desired 

adaptive filter‟s response; w(n) is the tap-weight vector with variable length (chosen to be 7 

in this program); u’(n) is the vector composed by the delayed version u(n) of the input signal; 

y(n) is the filter‟s output; the prediction error e(n) is given by the desired response d(n) plus 

the noise n(n) minus the filter output y(n) and µ is the step-size parameter. 

The figure 3.12 illustrate the desired response d(n) (blue line) being tracked for the filter 

output y(n) (green line) and the error e(n) (red line), resultant of this comparison. It can be 

noticed that the algorithm presents a small error, near to its optimum value, about 2000 

iterations after the initialization. The step-size µ was chosen to be equal to 0.01 after tests 

analysing the mean-squared error.  
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L = 7, SNR = 40dB, µ = 0.01 

 

Figure 3.12 - Desired signal, filter output and error of the LMS algorithm for the prediction given 
problem 
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L = 7, SNR = 40dB, µ = 0.01 

 

Figure 3.13 - Mean-squared-error of the LMS algorithm 

The figure 3.13 depicts the mean-squared error of the algorithm. By studying this figure, 

it can be detected that the algorithm converges after about the 2000th iteration, converging 

to the variance of the noise n(n) 0.01 or – 40dB. 

3.2.3. The NLMS Solution 

For applying the NLMS algorithm to the given prediction problem, the equations displayed 

in the table 2.3 will be adapted from the summary of the NLMS algorithm. Performing the 

necessary modification, we end with the following equations:  

 

 ( )   ( ) ( 3.10 ) 

  

 ( )    ( )  ( ) ( 3.11 ) 

 

 ( )   ( )   ( )   ( ) ( 3.12 ) 

 

  
 ̅

  || ( )|| 
      ̅    ( 3.13 ) 

 

 (   )   ( )     ( )  ( )   ( )   
 ̅

  || ( )|| 
 ( )  ( ) ( 3.14 ) 
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where x(n) is the random input signal; u(n) is the delayed version of x(n); d(n) is the desired 

adaptive filter‟s response; w(n) is the tap-weight vector with variable length (chosen to be 7 

in this program); u’(n) is the vector composed by the delayed version u(n) of the input signal; 

y(n) is the filter‟s output; the prediction error e(n) is given by the desired response d(n) plus 

the noise n(n) minus the filter output y(n); µ is the LMS step-size parameter;  ̅ is the NLMS 

step-size parameter and δ is a small positive constant. 

The figure 3.14, presented below, illustrate the results obtained after the application of 

the NLMS algorithm to the given prediction problem. It can be verified that after about 300 

iterations, the algorithm presents a reasonable error, having its value tending to the optimum 

solution (in some sense). The step-size  ̅ and the constant δ was chosen to be equal to 0.1 

and 0.3 respectively, after tests analysing the mean-squared error.  

 

 

L = 7, SNR = 40dB, δ = 0.3,  ̅ = 0.1 

 

Figure 3.14 - Desired signal, filter output and error of the NLMS algorithm for the system identification 
given problem 

The NLMS cost function, the mean-squared error, is depicted in figure 3.15. The objective 

of this cost function is to reduce the error until it tends to the optimum solution. It can be 

understood, after the analysis of this figure, that the error starts converging after about 250, 

300 iterations, with the MSE reaching a value near to 0.01 or – 40dB, which is the same value 

of the noise variance.    
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L = 7, SNR = 40dB, δ = 0.3,  ̅ = 0.1 

 

Figure 3.15 - Mean-squared-error of the NLMS algorithm 

3.2.4. The RLS Solution 

The computation of the RLS solution for the given prediction problem is done using the 

summary present in table 2.5. Some alterations will be needed in order to fit this algorithm 

to the given problem. The results of the alterations in the RLS equations are: 

 

 ( )   ( ) ( 3.15 ) 

 

 ( )  
     

  (   )  ( )

        ( )  
  (   )  ( ) 

 ( 3.16 ) 

 

 ( )    ( )  ( ) ( 3.17 ) 

 

 ( )   ( )   ( )   ( ) ( 3.18 ) 

 

 (   )   ( )   ( )  ( ) ( 3.19 ) 

 

  
  ( )       

  (   )      ( )   ( )  
  (   ) ( 3.20 ) 

 



 

41 

 

where x(n) is the random input signal; u(n) is the delayed version of x(n); d(n) is the desired 

adaptive filter‟s response; k(n) is the gain vector; λ is the forgetting factor; w(n) is the tap-

weight vector with variable length (chosen to be 7 in this program); u’(n) is the vector 

composed by the delayed version u(n) of the input signal; y(n) is the filter‟s output; the 

prediction error e(n) is given by the desired response d(n) plus the noise n(n) minus the filter 

output y(n); A* is the complex conjugate of A and   
   is the cross-correlation matrix. The 

forgetting factor was chosen to be equal to 1 after tests analysing the algorithm‟s cost 

function. 
 

L = 7, SNR = 40dB, λ = 1 

 

Figure 3.16 - Desired signal, filter output and error of the RLS algorithm for the system identification 
given problem 

The figure 3.16 shows the output filter predicting the desired signal, it can be observed 

that after about 30-50 iterations the algorithm starts to present an error near to its optimum 

value.   

The cost function, least-squares, is depicted in figure 3.17. Analysing that picture, it can 

be noticed that after the same number of iterations, about 30-50, the error converges to the 

– 40dB, the value of the noise variance 0.01. After the conversion, the algorithm does not 

suffer important variations, having good predicting behaviour. 
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L = 7, SNR = 40dB, λ = 1 

 

Figure 3.17 – Least-squares of the RLS algorithm 

3.2.5. Comparisons of results 

The analysis of the three algorithms will be performed according to the factors presented 

in Subsection 3.1.5, which are: the rate of convergence, the computational cost and the 

tracking characteristics. The computational cost is a fixed factor where the RLS algorithm has 

the disadvantage of having a higher computational cost, because of its necessary calculation.   

A comparison between the algorithms cost function until 2500 iterations is shown in figure 

3.18.  It can be easily noticed that the LMS algorithm has a very slow rate of convergence 

comparing to the other two algorithms. Indeed, the rate of convergence of the LMS algorithm 

was noted to be 8 times smaller than the NLMS algorithm and 40 times smaller than the rate 

of convergence of the RLS algorithm. The last one presents the fastest rate of convergence, 

which makes it ideal for application were a fast convergence is necessary. 
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L = 7, SNR = 40dB, µ = 0.01(LMS), δ = 0.3,  ̅ = 0.1(NLMS), λ = 1 

 

Figure 3.18 - Comparison between the algorithms cost function 

Figure 3.19 illustrates a comparison of the prediction error between the three algorithms. 

The prediction error is inversely proportional to the tracking capability in this case. It 

confirms that the RLS algorithm has the best tracking characteristic, maintaining a small error 

after its conversion in a period of time smaller than the two others. The figure 3.20 depicts 

the same problem, but after 25000 iterations, in order to verify the tracking behaviour of the 

algorithms in stationary state. The analysis of this figure implies that there is no big 

difference between the tracking behaviour of the algorithms, with only a small advantage of 

the LMS algorithm above the other two.    
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L = 7, SNR = 40dB, µ = 0.01(LMS), δ = 0.3,  ̅ = 0.1(NLMS), λ = 1 

 

Figure 3.19 - Comparison between the error predictions of the three algorithms in a few thousand 
iterations 
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L = 7, SNR = 40dB, µ = 0.01(LMS), δ = 0.3,  ̅ = 0.1(NLMS), λ = 1 

 

Figure 3.20 - Comparison between the error predictions of the three algorithms after a few hundred 
thousand iterations 

Analysing the results presented in this section it can be assumed that the RLS algorithm, 

even having a higher computational cost, presents a faster response for prediction 

applications in real time, maintaining a good tracking ability.  

The next chapter presents computer experiments for the ANC problem. It presents 

solutions using the three (LMS, NLMS, RLS) discussed algorithms and their results. There will 

be also presented a comparison between the results and the relevant characteristics of each 

algorithm solution. 
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4. General ANC computer experiments  

 

After consolidating the understanding of the adaptive filter theory during the last sections 

and presenting possible solutions for some applications of the AF, now it is the time to work 

on a solution for the chosen application, which is the adaptive noise cancellation problem [6-

11, 26-39]. 

In Section 4.1, a generic problem of noise interference will be explained. Moreover, 

solutions for the three adaptive algorithms discussed previously in this work will be 

presented. 

After the theory presented about the ANC and the simulations for a generic noise 

interference problem, it will be given, in the chapter 5, a solution in Simulink environment 

for a more specific problem, which will be the Active Noise Canceller for Speech 

interference. 

Here it is presented a generic problem of noise interference and solutions provided by 

using the three algorithms used in this work: LMS, NLMS and RLS. Moreover, a comparison 

between them is presented, in order to give the reader a sufficient knowledge to choose the 

best solution between them, depending on the application. 

4.1. The Problem 

For the purpose of testing the theory of active noise cancellers presented along this 

thesis, a generic problem and a viable solution are being discussed. Firstly it is necessary to 

understand the difference between the interference cancelling and the three other classes. 

The figure 4.1 helps to understand the ANC‟s logic. In the other applications presented in 

this work, the algorithm always had access to the desired response. The desired response was 

later on corrupted for a noise and the filter needed to identify and imitate the desired 

response in the best possible fit (in some sense). 

For the ANC case, this desired response comes already corrupted for a noise. It makes the 

problem impossible to be solved using the logic shown until now.  
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Figure 4.1 – The active noise canceller problem 

Analysing the figure 4.1, it can be seen that the noise n2(n) which corrupts the desired 
signal s(n) is represented by the same initial characters as the input signal n1(n) . This noise is 
conveniently represented as shown, to make easier to understand that the noise n1(n) and 
n2(n) have some similarities. Indeed, the noise n1(n) is the noise source and the noise n2(n) is 
a secondary noise which is correlated with n1(n). Both of noises are also uncorrelated with the 
signal s(n), which implies in the following conditions: 

 

 ( )   ( )    ( ) ( 4.1 ) 

 

 , ( )  ( )-                          ( 4.2 ) 

 

 , ( )  ( )-                         ( 4.3 ) 

 

 ,  ( )  ( )-   ( )                     ( 4.4 ) 

 

where d(n) is the desired signal, E[ * ] is the expectation and p(n) is an unknown correlation 

between n1(n) and n2(n). 

Those necessary conditions can be obtained, for example, if it is installed a sensor 

sensor1 in a place where only the noise source n1(n) is detected by the sensor. The sensor 

sensor2 will detect the desired signal d(n), and the noise n2(n) could be correlated with n1(n) 

because of the delay between them, for example, or by applying a filter. 

The error signal e(n), which is also the system output should contain the original 

signal s(n) in an optimum sense. 

The aim of this algorithm is to make the output y(n), which is equal to the filter‟s 

tap-weight transposed   ( ) times x’(n) (vector formed by the reference noise 

signal n1(n) having the same size as w(n)), or  ( )    ( )  ( ), be equal to the 

noise n2(n) ( ( )  ( )). Having this equivalence, it is easy to deduce that the error 

is equal to the desired signal s(n) ( ( )   ( )   ( )   ( )    ( )    ( )   ( )). 

To guarantee that n1(n) and n2(n) are correlated, it was created a noise v(n) 

uncorrelated with the desired signal having variance 0.8. This signal was filtered in 

order to create the both n1(n) and n2(n) noise signals.  
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4.2. The LMS solution 

Here is presented a LMS solution for the presented noise cancellation [28-29, 31-33, 35-

39] problem. Keeping in mind the figure 4.1, the summary presented in table 2.1 for the LMS 

and doing the necessary alterations to reach the interference cancelling problem, we found 

that: 

 

 ( )   ( )    ( ) ( 4.5 ) 

 

 ( )   ( ) ( 4.6 ) 

  

 ( )    ( )  ( ) ( 4.7 ) 

 

 ( )   ( )   ( )  ( 4.8 ) 

 

 (   )   ( )     ( )  ( ) ( 4.9 ) 

 

where x(n) is a signal composed by the original signal s(n) added to the noise signal n1(n); d(n) 

is the desired system output; y(n) is the ANC‟s output; w(n)is the tap-weight vector; x’(n) is 

the vector formed by the reference noise signal n1(n) having the same size like w(n); e(n) is 

the error signal and µ is the step-size parameter. 

The figure 4.2 and 4.3 depicts the results obtained by applying the LMS algorithm for the 

given problem, containing the input signal s(n), the desired signal x(n)=s(n) + n2(n) and the 

error signal, which should be equal to the input signal s(n). The step-size parameter was 

chosen to be equal to 0.0002 and the adaptive filter has length 5. It can be seen in blue, the 

signal s(n), the input signal. In green color it is presented the input signal after the noise 

corruption s(n) + n2(n), and in red, the error signal e(n).  
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L = 5, µ = 0.0002 

 

Figure 4.2 - Results of application of the LMS algorithm to the given problem 

Analysing those figures, specially Figure 4.3 (zoom of part of the figure 4.2), it can be 

seen that the LMS algorithm has not a very good performance, having the error signal e(n) 

tending to the original signal s(n), free of the noise interference n1(n). 
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L = 5, µ = 0.0002 

 

Figure 4.3 - Zoom of results shown in figure 4.2 
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L = 5, µ = 0.0002 

 
Figure 4.4 - Mean-squared error of the ANC using the LMS algorithm 

Figure 4.4 shows the mean-squared error for the LMS algorithm applied to the ANC 

problem. This error is not the error signal e(n) but the difference between this signal and the 

input signal s(n). As it can be detected, even until 30000 iterations, the algorithm does not 

present a convergence. In practice, it means that the algorithm should have a good quantity 

of iterations (a few seconds) until the error reaches a value near to its optimum in the mean-

square sense. 

4.3. The NLMS solution 

The goal now is to apply the NLMS algorithm to the presented noise cancellation problem 

[33-34, 36]. In order to do that, some manipulations will be made in the equations presented 

in the NLMS summary in table 2.3 to solve the interference cancelling problem. Doing the 

necessary modification, we will end with the following equations: 

 

   ( )   ( )    ( ) ( 4.10 ) 

 

 ( )   ( ) ( 4.11 ) 
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 ( )    ( )  ( ) ( 4.12 ) 

 

 ( )   ( )   ( ) ( 4.13 ) 

 

 (   )   ( )     ( )  ( ) ( 4.14 ) 

 

  
 ̅

  || ( )|| 
 ( 4.15 ) 

 

where x(n) is a signal composed by the original signal s(n) added to the noise signal n2(n); d(n) 

is the desired system output; y(n) is the ANC‟s output; w(n)is the tap-weight vector; x’(n) is 

the vector formed by the reference noise signal n1(n) having the same size like w(n); e(n) is 

the error signal and µ is the LMS step-size parameter which is replaced by a new value, 

containing the NLMS step-size parameter  ̅, a small positive constant δ and having || * || 

representing the Euclidean norm of *. 

The application of the algorithm described above, having the small positive constant δ 

equal to 3.2 and the NLMS step-size parameter  ̅ equal to 0.005, has resulted in the 

following: 
 

L = 5, δ = 3.2, µ = 0.005 

 

Figure 4.5 - Results of application of the NLMS algorithm to the given problem 
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L = 5, δ = 3.2, µ = 0.005 

 

Figure 4.6 - Zoom of results shown in figure 4.5 

Figures 4.5 and 4.6 depict the results of the application of the ANC using the NLMS 

algorithm. The input signal s(n), represented by the blue color is corrupted by the noise signal 

n1(n) resulting in the corrupted signal x(n)=s(n)+n2(n), represented by the green color. The 

error signal e(n), which is supposed to imitate the input signal s(n) is represented by the red 

color. 

By analysing the figures above, especially the figure 4.6, it can be noticed that the 

algorithm has a good response, cancelling the additional white noise which was corrupting the 

original signal.  

 The figure 4.7, depicts the MSE of the difference between the error signal e(n) and the 

input signal s(n). It can be observed that the algorithm presents a conversion after about 

10000 iterations. After this time, the algorithm presents some variance but the conversion is 

not compromised.  
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L = 5, δ = 3.2, µ = 0.005 

 

Figure 4.7 - Mean-squared error of the ANC using the NLMS algorithm 

4.4. The RLS solution 

In this section, it will be presented an ANC for noise cancelling [27, 30, 34]. Observing the 

figure 4.1, necessary alterations can be made in the summary for the RLS algorithm presented 

in subsection 2.3.4 in order to reach the ANC problem presented in Section 4.1. Doing the 

needed alterations, the resultant RLS algorithm for noise cancellation can be written as: 

 

 ( )   ( )    ( ) ( 4.16 ) 

 

 ( )   ( ) ( 4.17 ) 

 

 ( )  
     

  (   )  ( )

        ( )  
  (   )  ( )

 ( 4.18 ) 
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 (   )   ( )   ( )  ( ) ( 4.21 ) 
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  ( )       

  (   )      ( )   ( )  
  (   ) ( 4.22 ) 

 

where x(n) is a signal composed by the original signal s(n) added to the noise signal n2(n); d(n) 

is the desired system output; k(n) is the gain vector; λ is the forgetting factor; w(n)is the tap-

weight vector; x’(n) is the vector formed by the reference noise signal n1(n) having the same 

size like w(n); y(n) is the ANC‟s output; e(n) is the error signal; A* is the complex conjugate 

of A and   
   is the cross-correlation matrix. 

The algorithm is initialized with λ equal to 1 and the cross-correlation matrix    
  ( )  

     , having δ equal to 20 and I been an identity matrix with the same size as   
  . 

Figures 4.8 and 4.9 depict the results of the application of the RLS algorithm explained 

before in the noise cancelling problem. It can be noted that the algorithm has a good 

performance while working as an ANC. The blue line represents the original input signal s(n), 

the green line represents the same signal after the noise corruption x(n)=s(n)+n2(n) and the 

red line represents the error signal, which should be, and indeed it is, close to the original 

input signal s(n).  
 

L = 5, λ = 1 

 

Figure 4.8 - Results of application of the RLS algorithm to the given problem 
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L = 5, λ = 1 

 

Figure 4.9 - Zoom of results shown in figure 4.8 
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L = 5, λ = 1 

 

Figure 4.10 - Least-squares error of the ANC using the RLS algorithm 

Figure 4.10 shows the cost function of the error between the original input signal s(n) and 

the error signal e(n). By analysing the figure above, it can be detected that the algorithm has 

its convergence after the first few thousand iterations. 

4.5. Results comparison 

Keeping in mind the factors described in subsection 3.1.5 and the complexity of 

computational cost presented in tables 2.2, 2.4 and 2.6, the following deductions about the 

algorithms presented in this chapter for the ANC problem can be made. 

The RLS algorithm has a fixed computational cost, derived from its way of calculation, 

higher than the two other algorithms. Figure 4.11 depicts the comparison between the three 

algorithms‟ cost function. Analysing this figure, it can be noticed that the LMS algorithm has a 

very slow convergence, compared to the convergence of the NLMS and RLS algorithms, the 

LMS also converge to a higher error value, approximately 30dB against 20dB for the other 

two. In this case, if it is needed an algorithm which the convergence speed is important, the 

LMS is not a good choice. The RLS algorithm presents a convergence three times faster than 

the NLMS algorithm, being the fastest algorithm for the ANC problem and having a good 

efficiency. 
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L = 5, µ = 0.0002(LMS), δ = 0.9, µ = 0.0083(NLMS), λ = 1 

 

Figure 4.11 - Comparison between the algorithms cost function 

The next chapter presents computer simulations of the ANC problem using Matlab 

Simulink platform. Those simulations intend to show the algorithm working in a most practical 

application. The components used in those simulations can be replaced by a physical 

component without big changes in the results.  
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5. Computer simulation with ANC 

 

This section presents examples of the active noise canceller being used in different 

situations. The first subsection presents a solution using the LMS algorithm, in the second 

section the RLS algorithm will be used for the same situations.  

5.1. The program 

In order to present the performance of the program in both ideally theoretical and a 

practical environment, the program will be used for cancel a white Gaussian noise and a 

colored noise.  The figure 4.12 illustrates the proposed problem for the ANC using both 

algorithms. Moreover, this image is detailed using the legend presented below. 

 

 

Figure 5.1 - Proposed problem for the active noise canceller 

1 – Input signal s(n), represented by an .avi file containing a speech within sampling 

frequency 22050 Hz. This signal is the 1st input of the scope. 

2 – Source noise signal n1(n). White Gaussian with zero mean and variance equals to 0.1 

(20dB) used as filter input. 

3 – Direct-form FIR Lowpass filter from the 10th order. Used to create a second noise 

n2(n), correlated with the source noise n1(n). 
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4 – Sum. Used to add the Input signal s(n) to the noise signal n2(n) generation the desired 

signal d(n)=s(n)+n2(n). The desired signal d(n) is the 2nd input of the scope. 

5 – Constant. It stores the value of the constant µ for the LMS algorithm or constant λ for 

the RLS algorithm. 

6 – On-off switch. It turns on or of the adapt port of the filter. The adapt port is 

responsible for turn on/off the tap-weight filter w(n) adaptation. 

7 – Adaptive filter. LMS or RLS adaptive filter blocks containing all necessary inputs and 

outputs. 

8 – Squared error. The sum is responsible for calculate de error between the input signal 

s(n) and the error signal e(n). This resultant signal is then squared using the product block. 

This signal is the 4th input of the scope.  

9 – Terminator. It is used to terminate unconnected output port. 

10 – Scope. It is necessary to present all the inputs in real-time in a graphic window. 

11 – To audio device. It transfer the error signal e(n), output of the adaptive filter, to the 

speakers device.  

For the case of the colored noise, the Noise block is replaced by the input audio device 

and the signal n1(n) is going to be a random signal received throughout the microphone. 

For computational reasons, after tests, the length of the LMS algorithms was chosen to be 

32 and the length of the RLS algorithms is equal to 12. 

5.2. Simulation using the LMS algorithm 

This section presents the simulations and results of the LMS algorithm for the case of the 

white Gaussian noise and the colored noise corruption the input signal. 

5.2.1. Input signal corrupted by a white Gaussian noise 

The active noise canceller program, using the LMS solution for a signal corrupted by a 

white Gaussian noise is illustrated in figure 4.13. For this simulation, the filter length was 

chosen to be equal to 32. 
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Figure 5.2 - LMS active noise canceller using a white Gaussian noise 

The filter has length 32 and the noise has variance 0.1. The step-size parameter µ was 

chosen to be 0.0008. This value was selected after tests and analysing the similarity between 

the input signal and the error signal. 

The figure 5.3 presents the signals: Original signal s(n) – input signal without noise; Signal 

+ Noise – input signal s(n) added to the noise n2(n), used as the desired response d(n); Error 

signal e(n) – Signal resultant of the subtraction of the desired response d(n) by the filter 

output y(n); Squared error – difference between the original input signal s(n) and the filter‟s 

error signal e(n). Studying this figure, it can be observed that the algorithm takes about 1 

second to present an acceptable conversion characteristic, having the squared error tending 

to zero. 
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Figure 5.3 - Relevant signals and algorithm‟s convergence 

Figure 5.4 illustrates the behaviour of the algorithm after 10 seconds of work. After this 

time, the algorithm presents an error near to its optimum value, with average error from the 

order of 2x10–4, without having big variations.   
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Figure 5.4 - Relevant signal and squared error after 10 seconds 

5.2.2. Input signal corrupted by a colored noise 

The filter length was chosen to be 32. The input signal is now corrupted by a colored 

noise. This colored noise is random and detected by the microphone input. The figure 5.5 

illustrates the LMS program using a colored noise to corrupt the input signal. 

 

 

Figure 5.5 - LMS active noise canceller using colored noise 
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Figure 5.6 - Relevant signals and algorithm convergence 

In the figure 5.6 are presented the following signals: Original signal s(n) – input signal 

without noise; Signal + Noise – input signal s(n) added to the noise n2(n), used as the desired 

response d(n); Error signal e(n) – Signal resultant of the subtraction of the desired response 

d(n) by the filter output y(n); Squared error – difference between the original input signal s(n) 

and the filter‟s error signal e(n). Analysing this figure, it can be noticed that the algorithm 

takes about 0.3 second to present an acceptable conversion characteristic, having the 

squared error tending to zero. In the case of the colored noise, the convergence time is not a 

fix value and it will vary depending on the power of the interference at that time. 

The figure 5.7 depicts the algorithm behaviour after its convergence. The analysis of the 

figure 5.7 can deduce that the algorithm has a bigger squared error (having values from the 

order of 0.02 to the colored noise against 2x10–4 for the white noise) when dealing with a 

colored noise than when it was dealing with a white Gaussian noise. Indeed, the error is even 

possible to be heard because of its high value. It happens because every time that the noise 

present a suddenly variation, the algorithm needs to work as in the beginning to converge 

again, and for the case of the LMS algorithm it usually takes some time.  
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Figure 5.7 - Relevant signal and squared error after the algorithm has converged 

5.3. Simulation using the RLS algorithm 

This section presents the application of a RLS program to the ANC problem, having both 

white Gaussian noise and colored noise as interference to the original signal. For this 

simulation, the filter length was chosen to be equal to 12. 

5.3.1. Input signal corrupted by a white Gaussian noise 

The figure 5.8 contains the ANC program built to work with a signal being corrupted by a 

white Gaussian noise. The filter has length 12 and the noise has variance 0.1. The forgetting-

factor λ was chosen to be equal to 1, after hearing tests. 
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Figure 5.8 - RLS active noise canceller using a white Gaussian noise 

Figure 5.9 depicts the following relevant signals: Original signal s(n) – input signal without 

noise; Signal + Noise – input signal s(n) added to the noise n2(n), used as the desired response 

d(n); Error signal e(n) – Signal resultant of the subtraction of the desired response d(n) by the 

filter output y(n); Squared error – difference between the original input signal s(n) and the 

filter‟s error signal e(n). This figure is a good method to show the algorithm convergence. It 

can be seen that between the seconds 3.42 and 3.43 the algorithm is turned on and it 

converges. The convergence takes a little time, less than 0.01 seconds. 

 

 

Figure 5.9 - Relevant signals and algorithm‟s convergence 
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Figure 5.10 presents the algorithm behaviour of the algorithm a few seconds after its 

convergence. It can be noticed that the algorithm presents a very good performance, with the 

squared error having values near to 1x105 and small variation in the squared error.  

 

 

Figure 5.10 - Relevant signal and squared error a few seconds after the convergence 

5.3.2. Input signal corrupted by colored noise 

The ANC using the RLS algorithm for cancelling a colored noise is illustrated in figure 5.11. 

The filter length is equal to 12. The forgetting factor λ had the best response in the realized 

tests. 
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Figure 5.11 - RLS active noise canceller using colored noise 

Figure 5.12 depicts the following signals: Original signal s(n) – input signal without noise; 

Signal + Noise – input signal s(n) added to the noise n2(n), used as the desired response d(n); 

Error signal e(n) – Signal resultant of the subtraction of the desired response d(n) by the filter 

output y(n); Squared error – difference between the original input signal s(n) and the filter‟s 

error signal e(n). As it can be seen in this figure, the rate of convergence is so high, that we 

cannot see de error convergence curve. This algorithm has indeed a rate of convergence of 

the order of 1000 iterations. The sampling frequency of the audio file is 22050Hz witch gives 

us a convergence in about 0.22 seconds.  
 

 

Figure 5.12 - Relevant signals and algorithm convergence 
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Figure 5.13 presents the signal values after the algorithm‟s convergence. It can be seen 

that the algorithm maintains its efficiency even with the noise sudden variations. 
 

 

Figure 5.13 - Relevant signal and squared error after the algorithm has converged 
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6. Conclusion and Future work 

 

The study presented in this work describes the adaptive filter theory and presents 

solutions for the four basic classes of applications. It goes deeper in the active noise 

cancellation problem, presenting solutions with the three most popular algorithms for a 

general ANC problem. Furthermore, it focuses on a specific situation, which is the 

interference cancelling in speech signal. It explores a typical noise cancelling problem in 

speech signal situation in Simulink platform, having both white Gaussian and colored noise as 

interference source. The simulation is being performed for both a LMS algorithm and a RLS 

algorithm. 

 The study proves that the RLS algorithm is more robust than the LMS algorithm, 

having a smaller error and a faster convergence for the case of the white Gaussian noise 

interference. For the colored noise interference problem, the RLS has presented a part from 

the previous advantages, a powerful stability, being capable of keeping its cancellation 

quality even with non-white variation in the noise source. It is the opposite to the LMS 

algorithm, which has proved its inefficiency in such environment, having big variations in the 

noise cancellation error when the colored noise presented a strong signal. Those error 

variations are big enough to be listened in the error output signal. 

The RLS algorithm has a bigger complexity and computational cost, but depending on the 

quality required for the ANC device, it is the best solution to be adopted. 

The proposed continuation of this work is to build a prototype of the ANC using the RLS 

algorithm. The program would be converted to C programming language or any other 

programming language compatible with the controller. The prototype will be composed of a 

first microphone (microphone 1) positioned in a place that captures only the noise signal; a 

second microphone (microphone 2) which captures the corrupted signal and a speaker to 

propagate an inverse noise signal in order to cancel the noise interference. The prototype and 

expected theoretical result are presented in the figures 6.1 and 6.2, respectively. 
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Figure 6.1 - ANC prototype scheme 

 

 

Figure 6.2 - Theoretical result of the noise cancellation 
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APRENDIX I – System identification 
problem 

 

LMS algorithm 

% System identification - LMS algorithm 

%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal x 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise n 

%       mi          -   step-size parameter 

%       M           -   misadjustment 

%       ind         -   sample index 

%       MSE         -   Mean-squared error 

%       MSEmin      -   Minimum Mean-squared error 

%       D           -   Auxiliar vector to the desired response 

%       E           -   Auxiliar vector to the error 

%       Y           -   Auxiliar vector to the filter output 

  

clear all 

close all 

R = 10;  

I = 500;  

% parameters 

    sigmax = 1;      

    sigman = 0.01; 

    mi = 0.02;  

    MSE=zeros(I,1); 

    MSEmin=zeros(I,1); 

    Y=zeros(I,1); 

    D=zeros(I,1); 

    E=zeros(I,1); 

    Wo = randn(7,1); 
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    % length of the plant/system 

    L=length(Wo); 

    % order of the plant/system 

    N=L-1; 

for r=1:R, 

    X=zeros(L,1);     

    W=zeros(L,1); 

    % input signal 

    x=randn(I,1)*sigmax; 

    % noise signal 

    n=randn(I,1)*sigman; 

    for i=1:I, 

        X=[x(i) 

         X(1:N)]; 

        % desired signal  

        d=(Wo'*X); 

        D(i)=(D(i)+d); 

        % output estimate  

        y=(W'*X); 

        Y(i)=(Y(i)+y); 

        % error signal 

        e=(d+n(i)-y);    

        E(i)=E(i)+e; 

        % new/updated filter 

        W=(W+(2*mi*e*X)); 

        % accummulation of MSE 

        MSE(i)=norm(MSE(i)+(e^2)); 

        % accummulation of MSE 

        MSEmin(i)=norm(MSEmin(i)+((n(i))^2)); 

    end 

end 

% sample index 

ind=0:(I-1); 

MSE = MSE/R; 

MSEmin = MSEmin/R; 

% Misadjustment computation  

M=MSE./MSEmin-1; 

% print the results 

figure(); 

plot(ind,D, ind,Y,ind,E); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('System Identification using the LMS Algorithm'); 

legend('Desired','Output','Error'); 

figure(); 

plot(10*log10(MSE)); 
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ylabel('Mean-Squared Error (dB)'); 

xlabel('Iterations'); 

title('System Identification using the LMS Algorithm'); 

NLMS algorithm 

% System identification - NLMS algorithm 

%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal x 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise n 

%       mi          -   step-size parameter 

%       M           -   misadjustment 

%       ind         -   sample index 

%       MSE         -   Mean-squared error 

%       MSEmin      -   Minimum Mean-squared error 

%       D           -   Auxiliar vector to the desired response 

%       E           -   Auxiliar vector to the error 

%       Y           -   Auxiliar vector to the filter output 

  

clear all 

close all 

% number of iteractions 

R = 10;  

% number of iteractions  

I = 500;  

% parameters 

    sigmax = 1;      

    sigman = 0.01; 

    mi = 0.25; 

    MSE=zeros(I,1); 

    MSEmin=zeros(I,1); 

    Y=zeros(I,1); 

    D=zeros(I,1); 

    E=zeros(I,1); 

    Wo = randn(7,1); 

    % length of the plant/system 

    L=length(Wo); 

    % order of the plant/system 

    N=L-1; 

for r=1:R, 

    X=zeros(L,1);     

    W=zeros(L,1); 

    % input signal 
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    x=randn(I,1)*sigmax; 

    % noise signal 

    n=randn(I,1)*sigman; 

    for i=1:I, 

        X=[x(i) 

         X(1:N)]; 

        % desired signal  

        d=(Wo'*X); 

        D(i)=D(i)+d; 

        % output estimate  

        y=(W'*X); 

        Y(i)=Y(i)+y; 

        % error signal 

        e=(d+n(i)-y); 

        E(i)=E(i)+e; 

        % new/updated filter 

        W=(W+(2*(mi/(0.9+(norm(X)^2)))*conj(e)*X)); 

        % accummulation of MSE 

        MSE(i)=norm(MSE(i)+(e^2)); 

        % accummulation of MSE 

        MSEmin(i)=norm(MSEmin(i)+((n(i))^2)); 

    end 

end 

% sample index 

ind=0:(I-1); 

MSE = MSE/R; 

MSEmin = MSEmin/R; 

% Misadjustment computation  

M=MSE./MSEmin-1;  

% print the results 

figure(); 

plot(ind,D, ind,Y,ind,E); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('System Identification using the NLMS Algorithm'); 

legend('Desired','Output','Error'); 

figure(); 

plot(10*log10(MSE)); 

ylabel('Mean-Squared Error (dB)'); 

xlabel('Iterations'); 

title('System Identification using the NLMS Algorithm'); 

RLS algorithm 

%%% System identification - RLS algorithm 
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%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise 

%       ind         -   sample index 

%       W           -   Tap-weight of RLS algorithm 

%       K           -   gain 

%       lambda      -   Fortgetting factor   1 < lambda < 0 

%       LS          -   Weighted least-squares of the rls 

%       CC          -   Cross-correlation matrix 

%       delta       -   small positive constant 

%       D           -   Auxiliar vector to the desired response 

%       E           -   Auxiliar vector to the error 

%       Y           -   Auxiliar vector to the filter output 

  

clear all 

close all 

R = 10;  

I = 500;  

% parameters 

    sigmax = 1;      

    sigman = 0.01; 

    Wo = randn(7,1); 

    % length of the plant/system 

    L=length(Wo); 

    % order of the plant/system 

    N=L-1; 

%%% RLS parameters 

    lambda = 0.9; 

    delta = 0.4; 

    LS=zeros(I,1); 

    D=zeros(I,1); 

    Y=zeros(I,1); 

    E=zeros(I,1); 

for r=1:R, 

    U=zeros(L,1);     

    % input 

    u=randn(I,1)*sigmax; 

    % noise 

    n=randn(I,1)*0.01; 

%%%Initial Conditions RLS 

    W=zeros(L,1); 

    CC=((1/delta)*eye(L,L)); 

    for i=1:I, 

        U=[u(i) 
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         U(1:N)]; 

        % desired signal  

        d=(Wo'*U); 

        D(i)=D(i)+d;                                

        %Step 1: Calculation the gain G 

        k=(((1/lambda)*CC*U)/(1+((1/lambda)*U'*CC*U))); 

        %Step 2: Filtering 

        %output estimate for the rls 

        y=(W'*U); 

        Y(i)=Y(i)+y; 

        %Step 3: Error estimation 

        %error of the rls 

        e=(d+n(i)-y); 

        E(i)=E(i)+e; 

        %Step 4: Tap-weight vector adaptation 

        W=W+k*conj(e); 

        %Step 5: Correlation Update 

        %calculating the CC of the rls algorithm 

        CC =(((1/(lambda))*CC)-((1/lambda)*k*U'*CC)); 

        % accummulation of LS 

        LS(i)=(LS(i)+(lambda*e^2)); 

    end 

end 

% sample index 

ind=0:(I-1); 

LS = LS/R;  

% print the results 

figure(); 

plot(ind,D, ind,Y,ind,E); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('System Identification using the RLS Algorithm'); 

legend('Desired','Output','Error'); 

figure(); 

plot(10*log10(LS)); 

ylabel('Least-squares (dB)'); 

xlabel('Iterations'); 

title('System Identification using the RLS Algorithm'); 
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APRENDIX II – Prediction problem 

 

LMS algorithm 

% Prediction        -   LMS algorithm 

%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise 

%       mi          -   step size 

%       M           -   misadjustment 

%       ind         -   sample index 

%       MSE         -   Mean-squared error 

%       MSEmin         -   Minimum Mean-squared error 

%       D           -   Auxiliar vector to the desired response 

%       E           -   Auxiliar vector to the error 

%       Y           -   Auxiliar vector to the filter output 

  

clear all 

close all 

R = 10;  

I = 5000;  

% parameters 

    sigmax = 1;     

    sigman = 0.01; 

    mi = 0.01; 

    MSE=zeros(I,1); 

    Y=zeros(I,1); 

    D=zeros(I,1); 

    E=zeros(I,1); 

    MSEmin=zeros(I,1); 

    Wo = randn(7,1); 

    % length of the plant/system 

    L=length(Wo); 
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    % order of the plant/system 

    N=L-1; 

for r=1:R, 

    X=zeros(L,1);     

    W=zeros(L,1); 

    % input 

    n = (1:I)'; 

    x = sin(0.0295*pi*n); 

    % delayed version of the input 

    delay=zeros(20,1); 

    xd=[delay 

        x(1:(I-20))]; 

    % noise 

    n=randn(I,1)*sigman; 

    %awgn(n,); 

    for i=1:I, 

        X=[xd(i) 

         X(1:N)]; 

        % desired signal  

        d=x(i); 

        D(i)=(D(i)+d); 

        % output estimate         

        y=(W'*X); 

        Y(i)=(Y(i)+y); 

        % error signal 

        e=(d+n(i)-y);        

        E(i)=E(i)+e; 

        % new/updated filter 

        W=(W+(2*mi*e*X)); 

        % accummulation of MSE 

        MSE(i)=norm(MSE(i)+(e^2)); 

        % accummulation of MSE 

        MSEmin(i)=norm(MSEmin(i)+((n(i))^2)); 

    end 

end 

% sample index 

ind=0:(I-1); 

MSE = MSE/R; 

MSEmin = MSEmin/R; 

% Misadjustment computation  

M=MSE./MSEmin-1;  

% print the results 

figure(); 

plot(ind,D, ind,Y,ind,E); 

xlabel('Iterations'); 

ylabel('Signal Value'); 
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title('Signal prediction using the LMS Algorithm'); 

legend('Desired','Output','Error'); 

figure(); 

plot(10*log10(MSE)); 

ylabel('Mean-Squared Error (dB)'); 

xlabel('Iterations'); 

title('Signal prediction using the LMS Algorithm'); 

NLMS algorithm 

% Prediction        -   NLMS algorithm 

%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise 

%       mi          -   step size 

%       M           -   misadjustment 

%       ind         -   sample index 

%       MSE         -   Mean-squared error 

%       MSEmin         -   Minimum Mean-squared error 

%       D           -   Auxiliar vector to the desired response 

%       E           -   Auxiliar vector to the error 

%       Y           -   Auxiliar vector to the filter output 

  

clear all 

close all 

R = 10;  

I = 5000;  

% parameters 

    sigmax = 1;     

    sigman = 0.01; 

    mi = 0.1;  

    MSE=zeros(I,1); 

    Y=zeros(I,1); 

    D=zeros(I,1); 

    E=zeros(I,1); 

    MSEmin=zeros(I,1); 

    % system 

    Wo = randn(7,1); 

    % length of the plant/system 

    L=length(Wo); 

    % order of the plant/system 

    N=L-1; 

for r=1:R, 
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    X=zeros(L,1);     

    W=zeros(L,1); 

    % input 

    n = (1:I)'; 

    x = sin(0.0295*pi*n); 

    % delayed version of the input 

    delay=zeros(20,1); 

    xd=[delay 

        x(1:(I-20))]; 

    % noise 

    n=randn(I,1)*sigman; 

    for i=1:I, 

        X=[xd(i) 

         X(1:N)]; 

        % desired signal  

        d=x(i); 

        D(i)=(D(i)+d); 

        % output estimate  

        S=(Wo*x(i)); 

        y=(W'*X); 

        Y(i)=(Y(i)+y); 

        % error signal 

        e=(d+n(i)-y);     

        E(i)=E(i)+e; 

        % new/updated filter 

        W=(W+(2*(mi/(0.3+(norm(X)^2)))*conj(e)*X)); 

        % accummulation of MSE 

        MSE(i)=norm(MSE(i)+(e^2)); 

        % accummulation of MSE 

        MSEmin(i)=norm(MSEmin(i)+((n(i))^2)); 

    end 

end 

% sample index 

ind=0:(I-1); 

n = (0:I-1)'; 

MSE = MSE/R; 

MSEmin = MSEmin/R; 

M=MSE./MSEmin-1;  

% print the results 

figure(); 

plot(n(1:500),[D(1:500), Y(1:500),E(1:500)]); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('Signal prediction using the NLMS Algorithm'); 

legend('Desired','Output','Error'); 

figure(); 
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plot(10*log10(MSE)); 

ylabel('Mean-Squared Error (dB)'); 

xlabel('Iterations'); 

title('Signal prediction using the NLMS Algorithm'); 

RLS algorithm 

%%% Prediction      -   RLS algorithm 

%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise 

%       ind         -   sample index 

%       W           -   Tap-weight of RLS algorithm 

%       K           -   gain 

%       lambda      -   Fortgetting factor   1 < lambda < 0 

%       LS          -   Weighted least-squares of the rls 

%       CC          -   Cross-correlation matrix 

%       delta       -   small positive constant 

%       D           -   Auxiliar vector to the desired response 

%       E           -   Auxiliar vector to the error 

%       Y           -   Auxiliar vector to the filter output 

  

clear all 

close all 

R = 10;  

I = 1000;  

% parameters 

    sigmax = 1;      

    sigman = 0.01; 

    mi = 0.02; 

    lambda = 1; 

    delta = 0.01; 

    LS=zeros(I,1); 

    Y=zeros(I,1); 

    D=zeros(I,1); 

    E=zeros(I,1); 

    MSEmin=zeros(I,1); 

    Wo = randn(7,1); 

    % length of the plant/system 

    L=length(Wo); 

    % order of the plant/system 

    N=L-1; 

for r=1:R, 
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    X=zeros(L,1);     

    W=zeros(L,1); 

    % input 

    n = (1:I)'; 

    x = sin(0.0295*pi*n); 

    % delayed version of the input 

    delay=zeros(20,1); 

    xd=[delay 

        x(1:(I-20))]; 

    % noise 

    n=randn(I,1)*sigman; 

    %Cross-correlation matrix fi 

    CC=((1/delta)*eye(L,L)); 

    for i=1:I, 

        X=[xd(i) 

         X(1:N)]; 

        % desired signal  

        d=x(i); 

        D(i)=(D(i)+d);      

        %Step 1: Calculation the gain G 

        k=(((1/lambda)*CC*X)/(1+((1/lambda)*X'*CC*X))); 

        %Step 2: Filtering 

        %output estimate for the rls 

        y=(W'*X); 

        Y(i)=(Y(i)+y); 

        %Step 3: Error estimation 

        %error of the rls 

        e=((d-n(i))-y); 

        E(i)=E(i)+e; 

        %Step 4: Tap-weight vector adaptation 

        W=W+k*conj(e); 

        %Step 5: Correlation Update 

        %calculating the CC of the rls algorithm 

        CC =(((1/(lambda))*CC)-((1/lambda)*k*X'*CC)); 

        % accummulation of LS 

        LS(i)=(LS(i)+(lambda*e^2)); 

    end 

end 

% sample index 

ind=0:(I-1); 

n = (0:I-1)'; 

LS = LS/R; 

MSEmin = MSEmin/R; 

M=LS./MSEmin-1; 

% print the results 

figure(); 
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plot(n(1:500),[D(1:500), Y(1:500),E(1:500)]); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('Signal prediction using the RLS Algorithm'); 

legend('Desired','Output','Error'); 

figure(); 

plot(10*log10(LS)); 

ylabel('Mean-Squared Error (dB)'); 

xlabel('Iterations'); 

title('Signal prediction using the RLS Algorithm'); 
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APRENDIX III – Interference 
cancellation problem 

 

LMS algorithm 

%       ANC         -   LMS algorithm 

%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal x 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise n 

%       mi          -   step-size parameter 

%       M           -   misadjustment 

%       ind         -   sample index 

%       MSE         -   Mean-squared error 

%       MSEmin      -   Minimum Mean-squared error 

%       K           -   Auxiliar vector to store the error btween the 

%       orignal signal and the error signal. 

%       E           -   Auxiliar vector to the error 

  

clear all; 

close all; 

R=10; 

I=50000; 

%Length of the adaptive filter 

L=5; 

N=L-1; 

mi= 0.0002; 

MSE=zeros(I,1); 

E=zeros(I,1); 

K=zeros(I,1); 

for r=1:R 

    %input signal 

    n = (1:I)'; 
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    s = sin(0.075*pi*n); 

    %noise source signal 

    v = 0.8*randn(I,1);  

    %noise signal 1 

    ar = [1,1/2];         

    v1 = filter(1,ar,v); 

    %input signal + noise 1 

    x = s + v1; 

    %noise signal 2 

    ma = [1, -0.8, 0.4 , -0.2]; 

    v2 = filter(ma,1,v); 

    %create the signals 

    %tap-weight and input vector 

    W=zeros(L,1); 

    U=zeros(L,1); 

    for i=1:I 

        U=[v2(i) 

         U(1:N)]; 

        % desired signal        

        d=x(i);  

        % output estimate  

        y=(W'*U); 

        % error signal 

        e=(d-y);  

        E(i)=E(i)+e; 

        K(i)=(s(i)-e); 

        % new/updated filter 

        W=(W+(2*mi*e*U)); 

        % accummulation of MSE 

        MSE(i)=norm(MSE(i)+ (K(i)^2)); 

        % accummulation of MSE 

    end 

end 

E=E/R; 

MSE=MSE/R; 

ind=0:(I-1); 

% print the results 

figure() 

plot(n(9900:10000), [s(9900:10000), x(9900:10000), E(9900:10000)]); 

legend('Input signal s(n)', 'signal + noise x(n)','Error = clean signal s(n)'); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('Active noise cancellation using the LMS Algorithm'); 

figure() 

plot(10*log10(MSE)); 

ylabel('Mean-Squared Error (dB)'); 
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xlabel('Iterations'); 

title('Active noise cancellation using the LMS Algorithm'); 

NLMS algorithm 

%       ANC         -   NLMS algorithm 

%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal x 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise n 

%       mi          -   step-size parameter 

%       M           -   misadjustment 

%       ind         -   sample index 

%       MSE         -   Mean-squared error 

%       MSEmin      -   Minimum Mean-squared error 

%       K           -   Auxiliar vector to store the error btween the 

%       orignal signal and the error signal. 

%       E           -   Auxiliar vector to the error 

  

clear all; 

close all; 

R=10; 

I=10000; 

%Length of the adaptive filter 

L=5; 

N=L-1; 

mi= 0.005; 

MSE=zeros(I,1); 

E=zeros(I,1); 

K=zeros(I,1); 

for r=1:R 

    %input signal 

    n = (1:I)'; 

    s = sin(0.075*pi*n); 

    %noise source signal 

    v = 0.8*randn(I,1);  

    %noise signal 1 

    ar = [1,1/2];         

    v1 = filter(1,ar,v); 

    %input signal + noise 1 

    x = s + v1; 

    %noise signal 2 

    ma = [1, -0.8, 0.4 , -0.2]; 

    v2 = filter(ma,1,v); 
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    %create the signals 

    %tap-weight and input vector 

    W=zeros(L,1); 

    U=zeros(L,1); 

    for i=1:I 

        U=[v2(i) 

         U(1:N)]; 

        % desired signal  

        d=x(i);   

        % output estimate  

        y=(W'*U); 

        % error signal 

        e=(d-y);  

        E(i)=E(i)+e; 

        K(i)=(s(i)-e); 

        % new/updated filter 

        W=(W+(2*(mi/(3.2+(norm(U)^2)))*conj(e)*U)); 

        % accummulation of MSE 

        MSE(i)=norm(MSE(i)+(K(i)^2)); 

        % accummulation of MSE 

    end 

end 

E=E/R; 

MSE=MSE/R; 

ind=0:(I-1); 

figure() 

plot(n(9900:end), [s(9900:end), x(9900:end), E(9900:end)]); 

legend('Input signal s(n)', 'signal + noise x(n)','Error = clean signal s(n)'); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('Active noise cancellation using the NLMS Algorithm'); 

% print the results 

figure() 

plot(10*log10(MSE)); 

ylabel('Mean-Squared Error (dB)'); 

xlabel('Iterations'); 

title('Active noise cancellation using the NLMS Algorithm'); 

figure() 

plot(n(10:10000), [s(10:10000), E(10:10000), K(10:10000)]); 

legend('Input signal s(n)', 'signal + noise x(n)','Error = clean signal s(n)'); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('Active noise cancellation using the LMS Algorithm'); 
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RLS algorithm 

%%%     ANC         -   RLS algorithm 

%       R           -   number of repetitions 

%       I           -   iterations 

%       sigmax      -   standard deviation of the input signal 

%       Wo          -   plant/system to be identified 

%       sigman      -   standard deviation of the noise 

%       ind         -   sample index 

%       W           -   Tap-weight of RLS algorithm 

%       K           -   gain 

%       lambda      -   Fortgetting factor   1 < lambda < 0 

%       LS          -   Weighted least-squares of the rls 

%       CC          -   Cross-correlation matrix 

%       delta       -   small positive constant 

%       K           -   Auxiliar vector to store the error btween the 

%       orignal signal and the error signal. 

%       E           -   Auxiliar vector to the error 

  

clear all; 

close all; 

R=10; 

I=10000; 

%Length of the adaptive filter 

L=5; 

N=L-1; 

lambda = 1; 

delta = 20; 

LS=zeros(I,1); 

E=zeros(I,1); 

K=zeros(I,1); 

  

for r=1:R 

    %input signal 

    n = (1:I)'; 

    s = sin(0.075*pi*n); 

    %noise source signal 

    v = 0.8*randn(I,1);  

    %noise signal 1 

    ar = [1,1/2];         

    v1 = filter(1,ar,v); 

    %input signal + noise 1 

    x = s + v1; 

    %noise signal 2 

    ma = [1, -0.8, 0.4 , -0.2]; 

    v2 = filter(ma,1,v); 
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    %create the signals 

    %tap-weight and input vector 

    W=zeros(L,1); 

    U=zeros(L,1); 

    %Cross-correlation matrix fi 

    CC=((1/delta)*eye(L,L)); 

    for i=1:I 

        U=[v2(i) 

         U(1:N)]; 

        % desired signal   

        d=x(i);                        

        %Step 1: Calculation the gain G 

        k=(((1/lambda)*CC*U)/(1+((1/lambda)*U'*CC*U))); 

        %Step 2: Filtering 

        %output estimate for the rls 

        y=(W'*U); 

        %Step 3: Error estimation 

        %error of the rls 

        e=(d-y); 

        E(i)=E(i)+e; 

        K(i)=(s(i)-e); 

        %Step 4: Tap-weight vector adaptation 

        W=W+k*conj(e); 

        %Step 5: Correlation Update 

        %calculating the CC of the rls algorithm 

        CC =(((1/(lambda))*CC)-((1/lambda)*k*U'*CC)); 

        % accummulation of LS 

        LS(i)=(LS(i)+(lambda*K(i)^2)); 

    end 

end 

E=E/R; 

LS=LS/R; 

ind=0:(I-1); 

% print the results 

figure() 

plot(n(9900:end), [s(9900:end), x(9900:end), E(9900:end)]); 

legend('Input signal s(n)', 'signal + noise x(n)','Error = clean signal s(n)'); 

xlabel('Iterations'); 

ylabel('Signal Value'); 

title('Active noise cancellation using the RLS Algorithm'); 

figure() 

plot(10*log10(LS)); 

ylabel('Least-squares (dB)'); 

xlabel('Iterations'); 

title('Active noise cancellation using the RLS Algorithm'); 

 


