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ABSTRACT 

Aesthetic principles are inerent to the human being. However, it is difficult to 

imagine a machine which can simulate human intuition and opinions. In this 

project, I address the problem of automatic distinction between high quality 

professional photographs and low quality amateur snapshots. Although quality 

may be interpreted in different ways, there are some data patterns which can be 

explored in order to achieve a correct classification. My system uses a set of 

features to teach a machine learning algorithm how to differentiate between the 

two considered classes of photographs. Grid search technique is used to 

explore possible classifiers' parameters combinations and forward/backward 

selection is performed for feature selection. The system is tested on a large and 

widely used dataset, so it is possible to compare the results with other works. 

The reported precision and recall values are much higher than the ones 

previously observed. 
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1 INTRODUCTION 

The introduction of consumer digital cameras in 1988 [1] had a huge impact on 

the way people face photography. Although having several limitations, the first 

models captured people’s attention by allowing users to store images in the 

internal memory and seeing them without the necessity of using any other 

physical device. Moreover, personal computers were having a great success 

and the Internet was experiencing an unbelievable growth. The WWW was the 

engine behind the evolution of digital contents. Millions of people could now 

share contents in a matter of seconds from their homes. Industry started 

developing more and more complex digital cameras. They quickly became the 

standard on photography. 

Nowadays, digital images are so proliferated which became important to 

automatically distinguish pictures by defined characteristics. Search engines, for 

example, crawl the web collecting results from a given query and presenting the 

information according to certain rules, like the dominant colour, often decided by 

the user. However, there are some concepts which are not trivial to evaluate but 

could reveal relevant on the user perspective. 

In this project I address the problem of distinguishing images by their 

aesthetical appeal. Automatically assessing the quality of photos has become 

important on several applications. As mentioned before, search engines are 

always trying to improve the presented results. A high quality picture is usually 

preferable to a low quality one. Thus, the more efficient the detection of 

aesthetic value is, the more meaningful results will be reported to the user. This 

kind of algorithms can also be used to automatically select pictures from a 

personal data base or, in a more extreme way, allow a digital camera to pick the 

best photos from a photographic session. Another possible use of the automatic 

picture quality detection is on computer-aided photo editing [2] [3], where the 

software changes the characteristics of the images in order to improve their 

perceived appeal. In some recent research [4], robots with the ability of 

photographing scenes using some aesthetical principles were developed. There 
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are several areas which can take advantage of the developing of efficient 

solutions to the described problem. 

Since aesthetics is not an absolute concept, it cannot be dealt in the same way 

as writing a mathematical formula. In fact, the introduction of subjectivity 

increases the complexity of this problem. It is not possible to clearly define an 

image as aesthetically appealing as it is impossible to quantify a person’s 

beauty. Different people have different opinions. However, humans tend to 

share the same basic principles, making room for a possible solution to the 

problem. 

In this project I will try to develop a set of features which correlate with the way 

humans perceive the quality of a photo. Although using elements from existing 

works, I will try to introduce some novel measurements in order to expand the 

knowledge acquired by the research taken by the scientific community. The 

values of the extracted features will be then applied to machine learning 

algorithms, so the model can learn data patterns and classify new examples 

without previous knowledge of their classes. Similarly to the features part, I 

propose a mix of previously developed solutions with novel techniques. The 

researchers usually choose the same machine learning algorithms. This project 

will incorporate some different ones, so it is possible to test the effectiveness of 

novel techniques. A comparison of the different methods will be performed in 

order to select the techniques which suit the best to the facing problem. It will be 

tested the possibility of combining some of them expecting that the “whole is 

more than the sum of its parts” as Aristotle once suggested. Furthermore, I will 

try to create a robust method of results comparison, since there are no standard 

practices used by the scientific community. 
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2 LITERATURE REVIEW 

In this chapter I am going to describe some of the work developed so far by the 

scientific community in the domain of image aesthetics evaluation. 

The problem of classifying images based on aesthetic properties is a relatively 

recent research subject. It was first attempted by Tong et al. [5], in 2004, and 

was inspired in the previous works of Serrano et al. [6], who addressed the 

challenge of classifying indoor/outdoor scenes, Oliveira et al. [7], who 

developed a system able to distinguish photographs from graphics, and Vailaya 

et al. [8], who created an algorithm to differentiate city and landscape pictures. 

In [5], the authors mentioned the reasons why they were facing a much more 

complex problem: 1) although it is trivial for someone to tell the difference 

between professional photos and snapshots, it is not completely known what 

kind of high-level factors make them different; 2) even if we know those high-

level factors, it is difficult to express them as appropriate low-level features. To 

address these issues they took a black-box approach, by developing and 

combining a huge 846-dimensional low-level feature set with different types of 

learning algorithms for classification. 

The most important used features were connected with blurring, by applying the 

wavelet transform technique described in [9], contrast, colourfulness and 

saliency, by calculating the first three order moments of a fairly simple saliency 

map of the image [10]. 

In terms of classification, the authors of this work decided to use different forms 

of boosting (AdaBoost and Real-AdaBoost), SVM and Bayesian classifier. In 

order to evaluate the performance of the algorithm, a data set of 29540 images 

was assembled. The professional photo examples were formed by images from 

COREL and Microsoft Office Online, while the snapshots were collected from 

private collections of the authors’ working staff. 

The best results were achieved with the Bayesian classifier, with a testing error 

of 4.9%. However, the used data set is fairly homogeneous and therefore it is 

easy to separate the two classes. This work was the first step towards a series 
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of different approaches. Although showing a possible direction to take, it offers 

little insight into how to design and choose better features. The big number of 

collected features were simply exhaustively combined and tested in order to 

achieve the maximum possible score. The results cannot be compared with this 

work, since it is used a completely different dataset. 

 

(a) (b) 

Figure 2-1. Simplicity property. In (a) the subject is much clearer than in (b). 

In 2006, Ke et al. [11] tried to address the described limitations by implementing 

a principled approach. Instead of implementing a big number of different low-

level features, they decided to first determine the perceptual factors that 

distinguish between professional photos and snapshots. They studied the 

criteria people use to judge a photo by interviewing professional and amateur 

photographers and non-photographers. In addition, they researched books [12] 

[13] to learn what techniques photographers often use to improve the quality of 

their work. 

A top-down approach to create high-level features was then presented. The 

authors found three distinguishing factors: simplicity, realism, and basic 

photographic techniques. Pictures are simple when it is obvious what one 

should be looking at. Figure 2-1 shows the importance of such characteristic. In 

(a), the subject is very clear while in (b) it is almost indistinguishable from the 

background. The other mentioned characteristic, realism, was considered 

equally important. Snapshots usually capture what the eye sees. On the other 

hand, professional photographers use a wide range of conditions, like lighting, 
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to make photos look surreal. The last identified factors were two basic 

photographic techniques: blurriness and contrast. In the end, just six features 

were used: spatial distribution of edges, colour distribution, count of hues, blur 

calculation, width of 98% of the mass in the brightness histogram and the 

average brightness. 

The authors’ primary aim was not on the learning method, so they simply used 

the one which achieved the best results in the Tong et al. [5] paper, the naïve 

Bayes classifier. For the first time, it was given a fairly big importance to the 

creation of a publicly available data set. By crawling a photo contest website, 

DPChallenge.com, it was possible to select the top and bottom rated pictures 

labelling them as professional photos and snapshots, respectively. From an 

initial set of 60000 photos, 12000 were chosen, 6000 for each category. For 

each set, half of the photos were used for training and the other half for testing. 

This was a huge contribution for future papers, since authors could finally have 

a fairly good comparison of results with previous work. 

The developed algorithm achieved an error rate of 27.8%. In order to have a 

basis of comparison the Tong et al. [5] algorithm was tested on the same data 

set, getting almost the same result, 27.7%, with much more used features. 

Thus, The Ke et al. [11] paper, showed the importance of a thorough feature 

selection. This reported result assumes a great importance and will be used as 

a benchmark for my work, since the same dataset is employed.  

In a similar way, Datta et al. [14] computed a set of 56 features based on rules 

of thumb in photography, common intuition and observed trends in ratings. They 

introduced some novel measurements, like the aspect ratio of the picture and 

the rule of thirds, where the main elements of the image are close to the points 

which divide the image in three parts, both vertically and horizontally. 

The initial number of features was reduced to 15, by combining filter-based and 

wrapper-based methods. This approach introduces an interesting way of 

reducing the problem complexity and getting the most effective feature set. 
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Figure 2-2. The rule of thirds. 

In this work, a new data set was also created. From the Photo.net website, 

another online photo sharing community, 20278 pictures were downloaded and 

splitted into two categories depending on the classification given by the users. 

Using a SVM (Support Vector Machine) with a RBF (Radial Basis Function) 

kernel and 5-CV, it was achieved an accuracy of 70.12%. This result is merely 

illustrative, since the used dataset is too different from the one used in my work. 

All the algorithms described so far compute features from the whole image. As 

Ke et al. [11] mentioned, one of the key points of a good picture is a clear 

distinction between the subject and the background. Thus, it would make sense 

identifying and treating these two areas differently. 

Luo et al. [15] introduced a new approach: by first differentiating the subject 

from the background, they were able to calculate more effective features taking 

into account different characteristics for both areas. An example of the subject 

extraction result is shown in Figure 2-3. From the original image (b), a binary 

map was created (a), where the white pixels correspond to the subject area. 

Luo et al. used a technique exclusively based on blur, proposed in [16], to 

perform this extraction. The idea was blurring the image with different kernels 

and determining which areas had large variations on their derivatives. For that, 

a probabilistic model was created, indicating which blurring kernel had a higher 

likelihood of being the present one at each pixel location. After ending up with 

an image similar to the one shown in Figure 2-3 (b), a box with 90% of the 

energy would define the final subject area. 
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(a) (b) 

Figure 2-3. Subject mask extraction. 

The subject/foreground differentiation was evaluated based on four identified 

characteristics for photo quality assessment: focus controlling, lighting, colour, 

and composition. Professional photographers usually keep the subject in focus 

and make the background out of focus. The first extracted feature used the blur 

feature from Ke et al. [11], independently applied to each of the detected 

regions. The ratio between both areas reported the blurring relation. 

Professional photos usually have their subject enhanced by lighting. By 

calculating the ratio between subject and foreground average brightness values, 

Luo et al. introduced a way to compare the lighting component on both areas. 

Other technique used by photographers to reduce the distraction from the 

subject is keeping the background simple. Thus, the number of relevant colours 

from the background was calculated. In order to determine the colour harmony, 

Luo et al. computed a histogram which reports the average occurrence of each 

pair of colours in the training dataset. In terms of composition, the authors 

decided to implement the already described rule of thirds, by using the subject 

position. 

The performance of the system was measured by using three different learning 

algorithms: Bayesian classifier, SVM and Gentle AdaBoost. The system was 

tested on the same dataset used by Ke et al. The results were higher than any 

other experiment tried so far. Gentle AdaBoost was reported to achieve an error 

rate of 6%. However, no details on the selection of parameters were given. This 

is other important work which will be compared with my solution, since the same 
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database is used. This was the first work considering the subject/background 

separation. After that, a large number of researchers decided to use the same 

approach. 

The subject extraction performed by Luo et al. just considered one 

characteristic which influences human attention, the blurring. However, there 

are many other aspects which play an important role on this process. The 

calculation of salient regions within an image is a whole independent research 

area. 

From the end of the 90’s, there has been the effort to develop models which are 

able to accurately predict the contribution of each pixel of an image to the 

attention of the observers. The work of Itti et al [17] was the first one to achieve 

a massive recognition from the scientific community. In its conception is the 

idea of combining information relative to colours, intensity and local orientation. 

The collected features provide bottom-up input to the saliency map, modelled 

as a dynamical neural network. 

Harel et al. [18] took advantage of the computational power, topographical 

structure, and parallel nature of graph algorithms to achieve natural and efficient 

saliency computations. The graphs are interpreted as Markov chains. Besides 

the improved speed, the Harel et al. algorithm was able to get better saliency 

maps in terms of resolution. An example of the resulting saliency map of this 

algorithm is presented in Figure 4-1 (b). Although reporting the most salient 

locations of an image, the algorithms analysed so far have the disadvantage of 

considering each pixel independently. However, images are usually perceived 

as a set of regions. 

Cheng et al. [19] addressed the identified problem and presented a new 

approach based on colour features and image segmentation. The image is first 

segmented using the algorithm purposed by Felzenszwalb et al. [20]. Each 

region takes the average value of the pixels that compose it. After converting 

the values to the CIE L*a*b* colour space, the saliency map is calculated using 

the linear colour distances between regions. A region which has a very 

distinctive colour has certainly a higher saliency value than another one which is 
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similar to most existing patches. The spatial distance between regions is also 

taken into consideration, by using the Euclidian distance between centroids. If 

two regions are far from each other, they will have a low mutual contribution to 

their saliency levels. An example of a saliency map created by the region based 

contrast algorithm proposed by Cheng et al. is presented in Figure 4-1 (c). 

Several approaches tried to take advantage of the parallel studies on the 

saliency field. Wong et al. [21]  used Itti’s visual saliency model [17], choosing 

the three most salient locations as seeds to the subject mask determination. As 

mentioned before, Itti’s algorithm does not provide a region-based saliency. In 

order to extract all the possible subject areas, the authors performed image 

segmentation. All the segmented regions that contained the computed seeds 

were labelled as being part of the subject. 

The authors of this work decided to compute 44 features divided into three 

different types: global image features, features of salient regions, and features 

that depict the subject-background relationship. 

Concerning to the global features, it was used a simplified version of the 

algorithm proposed in [11], three sharpness measurements and the calculation 

of the middle 98% mass of the luminance histogram, also based on a feature 

presented in [11]. The average pixel intensity [14] was calculated as measure of 

exposure. Some photographic rules were also included, particularly, the rule of 

thirds and the low depth of field, a measurement of the distances in which an 

object appears acceptably sharp. Both features were based on the works of 

Datta et al. in [14]. 

For the subject regions, the same features were computed, excepting, 

obviously, the rule of thirds. In addition, there were included other 

measurements. In terms of texture, it was calculated the sum of the average 

wavelet coefficients over all levels, applied to each channel on the HSV colour 

space. In order to test the “fill the frame” principle, which suggests that the 

subject should occupy a large portion of the image, it was computed the 

dimension of the salient regions. The position, distribution, and total number of 

salient locations were also included in this work. A professional photo usually 
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has a strong focus on the subject, which means the number of salient regions is 

low and their locations are densely distributed. Such distribution is calculated 

using the standard deviation of all the salient locations. The mean and standard 

deviation of the saliency map were also computed, so the experiment includes 

the salience strength information. 

The last set of features, the subject-background comparison, was mostly based 

on the principle which states that the subject should be emphasized in 

comparison with the background. Wong et al. applied the same methods used 

for the global image features to compute exposure, saturation, hue, blurriness, 

and texture details, for both the salient and background regions. The differences 

of the respective features of the subject and the background were computed 

using the squared difference. These measurements are a way of determining in 

which way the subject is similar to the background. The edge spatial distribution 

described in [11] was also computed for both the subject and the background 

areas. The comparison was again calculated by means of the squared 

difference. 

To allow a direct comparison with the results of Data et al. [14], the authors tried 

to download the same set of photos, from Photo.net. However, some of the 

users have removed their pictures. Thus, just a subset of the original dataset 

was retrieved. The features were used to train one-dimensional SVM. Using 5-

CV, the algorithm achieved an accuracy of 78.8%, significantly higher than 

70.12%, the score obtained by Datta et al. By applying Datta’s algorithm on the 

exact same dataset, the accuracy raised to 73%, still below the performance of 

the results of Wong et al. Once again, an algorithm using differentiation 

between subject and background clearly outperformed previous works where 

such characteristic was not contemplated. The obtained results were calculated 

by means of a different dataset comparing with the one used in this project. 

Thus, the reported accuracies cannot be directly matched. 

Sun et al. [22] tried a different approach by calculating separated saliency maps 

for features connected with intensity, colour, orientations, and face locations, 

and comparing them with the saliency mask. This solution addressed the 
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problem of personalized photo assessment, taking user preference into quality 

evaluation. Although being a slightly different problem compared with the one 

proposed in this project, it is interesting to explore ideas which can contribute to 

improvements on a potential solution. 

Bhattacharya et al. [2] used an aesthetically driven approach to create an 

interactive application that enables users to improve visual appeal of digital 

photographs using spatial recomposition. The process was designed in such 

way that the user is guided by the system which presents recommendations for 

possible improvements. 

The authors included just two aesthetical features. The first one was the already 

described rule of thirds, which is applied to images containing a single and 

distinctive foreground object. The second feature was the visual weight ratio for 

pictures of landscapes or seascapes. In this case, the image has two distinctive 

parts, divided by the horizon. The visual weight ratio suggests that the ratio of 

the areas corresponding to each part should approximate to the golden number. 

In order to test the importance of the selected features, Bhattacharya et al. built 

a dataset for each of the identified categories: single-subject compositions and 

images of landscapes/seascapes. A total of 632 photographs were downloaded 

from free image sharing portals, like Flickr. A subset of 150 random images for 

each category was used to train a SVM-based model. Performing grid search 

on the RBF kernel parameters, it was possible to achieve an accuracy of 87.4% 

for photographs with single foreground and 96.1% for landscapes/seascapes. 

There are no details on the techniques used to perform the grid search. The 

results can be easily over-fitted to data, which means the system would 

probably perform significantly worse with a new set of pictures. Again, the 

usage of a different dataset does not allow a direct result comparison. 

Cheng et al. [23] developed a completely autonomous system of photo 

enhancement. The learning framework is quite different from previous works. 

The objective was developing an algorithm which learns some aesthetical 

features by example. After that, the user could introduce wide-field camera 
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inputs, e.g., zoomed-out or panoramic photos, and receive the output picture 

corresponding to a region of interest of the original image. 

In the training phase, professional photographs were segmented using a 

modified version of [20]. From each extracted patch, the first three colour 

moments of the three colour channels were calculated. Moreover, texture 

information was retrieved by calculating the histogram of 8 oriented gradients 

for each of the 4x4 spatial regions of the patches. These two features allowed 

the creation of a 137-dimensional feature vector per image. By using K-means 

algorithm, with K=1000, and determining each clustering centre properties, a 

visual vocabulary was constructed in order to identify representative patches. A 

face detection algorithm was also applied, and each identified face is 

associated with one of the visual words: frontal face region, left profile, or right 

profile. Due to the large variation of the training photos, the authors thought it 

would be interesting to group them in sub-topics by, again, applying the K-

means algorithm, with K=100, and counting the occurrence of each visual word. 

Each group of images had its own model, instead of a general one. Each model 

was composed by a spatial probabilistic distribution for the visual words and a 

probabilistic distribution of pairs of words. 

The enhancing process used the calculated models to select a region of interest 

in images which would make them more aesthetically appealing. Again, after 

segmentation, the patch characteristics, colour moments, histogram of oriented 

gradients, and face occurrence, were computed. A visual word, from the ones 

calculated during the training phase, was associated with each patch by using 

nearest neighbour algorithm. Such an algorithm was again applied to determine 

to which of the sub-topics the image belongs. After knowing the sub-topic of a 

photo, a probabilistic model was built. The algorithm performed an intensive 

search within the image to find the region of interest which maximizes the value 

of the probabilistic model. 

The pictures used to train the model were obtained by crawling the online 

sharing website, Flickr. Just pictures about landscapes were considered, being 

downloaded 80000 of those. The system was tested by computing the results of 
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76 wide-field photos and asking 50 subjects for their opinions. Most of them 

agreed the output was better than the input. 

Desnoyer et al. [24] addressed the problem of developing a system which would 

allow autonomous agents to create pleasing imagery. They stated the 

previously used datasets from large online communities were not appropriate 

for learning how to take a good picture, since they represented results late in 

the media generation process, as the photographers had already framed the 

shot and picked the best results. 

Similarly to the previous works, a set of features was developed. Colour, 

complexity, contrast, texture/blur, and uniqueness, were considered. Almost all 

the used features were based on previous work. However, some novel 

measurements were included. Some examples are the Michelson contrast 

measure and the RMS of the intensity values. 

For classification, the authors decided to use AdaBoost. The parameters of the 

classifier were selected by applying 5-fold cross validation. The algorithm was 

tested on two datasets: one downloaded from DPChallenge, similar to the ones 

used in previous works, and the other constituted by pictures taken by the 

Apollo astronauts while on the Moon. The latter did not suffer any kind of 

filtering, providing the required examples of the early stages of the creation 

process. Such images were labelled using a survey. The system achieved an 

error rate of 18.1% on the Apollo dataset and 38.2% on the DPChallenge one. 

The most successful features had similar results for both datasets, meaning 

they are components of universal beauty. Desnoyer et al. concluded this kind of 

algorithms could be used in autonomous agents. They mentioned their next 

step would be developing an autonomous robotic cameraman that can create 

great imagery. Although some of the photos were retrieved from DPChallenge, 

the same source used in this work, it is a different dataset, which means the 

results are not comparable. 

Li et al. [25] addressed a problem which had not been much explored. They 

focused their efforts on pictures with faces. Firstly, a face detection algorithm 

was applied. The identified faces were considered the subject while the 
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remaining area was labelled as background. The extracted features were 

divided in three sets: technical, social, and perceptual. In terms of technical 

features, the authors used some of the measurements previously described in 

this document. Colour, brightness and clarity contrast between the subject and 

the background were among the computed components. The social relationship 

features included the relative position of faces, measurements of face 

expression, like mouth and eye openness, and face pose, by calculating a 3-

dimensional vector representing the face orientation. The perceptual features 

are mostly connected with rules of composition. Concepts like the rule of thirds 

or symmetry on faces distribution were included. As this was a recent research 

area, there was no public datasets available. From Flickr, it was downloaded a 

set of 500 images containing faces and, through a survey, the photographs 

were rated. The system achieved an accuracy of 68% on the categorization 

test, where a SVM classifier placed the images into one of five categories, 

depending on their score. The reported accuracy was obtained using a leave-

two-out cross validation type, but cannot be compared with the results of the 

current project, since the used dataset was not the same. 

Yeh et al. [26] developed a personalized ranking system for personal use. The 

system ranks pictures by manual introduction of the weights of the features and 

by manual selection of examples of good images. Such approach, allows users 

to tell the algorithm their preferences. 

The used features were mostly based on the existing works. The rules were 

divided in three categories: photograph composition, colour and intensity 

distribution, and personalized features. 

 

Figure 2-4. Simplicity example. (a): high simplicity; (b): low simplicity. 
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In terms of photograph composition, the authors included the rule of thirds and 

two simplicity features. The first one calculates the ratio between the subject 

and the total image area and the second one is the simplicity measurement 

used in [15]. The simplicity principle is represented in Figure 2-4. 

Concerning to the colour and intensity features, texture, clarity, colour 

harmonization, intensity balance, and contrast were considered. Texture was 

extracted from the MPEG-7 homogeneous texture descriptor, which uses Gabor 

filters to evaluate responses of the image under different scale and orientations. 

Clarity is the characteristic that measures the blurring levels. Two features were 

used. The first one calculated the ratio of clear pixels in the image using the 

technique described in [11]. The other feature attempted to detect the bokeh 

effect in an image by partitioning it in grids and applying blur detection on them. 

This effect is known by creating out-of-focus light points. If the number of clear 

grids is inside a pre-determined interval, the image is said to have bokeh. 

Colour harmonization feature was calculated by applying a set of hue 

templates, which are believed to describe the human colour perception, and 

reporting the value which minimizes the distance between the hue histogram 

and each of the different templates. To compute the intensity balance, the sum 

of the absolute differences between symmetric pixels was calculated. If the 

image is completely symmetric, the final value is zero, otherwise it is as high as 

the difference between left and right areas. The final considered characteristic 

was the contrast. For such purpose, the authors included the Weber contrast, 

which measures the disparity between pixels in terms of intensity. A colour 

contrast feature was also used, in this case, the colour distance between each 

pair of segments. For that, the image was segmented and each of the 

calculated segments assumed the colour of its pixels. The feature value 

corresponded to the distance-weighted sum of the colour-distance of each pair 

of segments. 

The personalized features included average values of the brightness and 

saturation channels and the ratio of each channel of the RGB colour space. 

Further used features include the aspect ratio of the image and two Boolean 
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values which report the presence of human faces and if the image is in grey 

scale. 

For the ranking test, Yeh et al. used ListNet as classifier. The results were 

presented to the user ordered by the achieved classification. In order to 

compare the system with previously developed ones, the authors used the 

algorithm on the same dataset used by Ke et al. [11] and Luo et al. [15]. The 

overall result was the same as the one achieved by Luo et al., 93% of accuracy, 

but the individual features performance was significantly higher. Similarly to the 

work developed by Luo et al., there are no details on parameters selection. 

Thus, is difficult to understand to what extent the results are over-fitted to the 

testing data. However, this work uses the same dataset as in [11] and [15], 

which will also be part of this work. Thus, the results can be used to 

comparison. 

In [27], Huang et al. created a framework to personalized ranking of portraits. 

The overall system is very similar to [26]. However, some features, like the ratio 

of the body part appearing in the image, were originally introduced. 

In 2011, Bhattacharya et al. [3] continued their previous work [2]. Among other 

improvements, the authors included a tilt correction tool and optimal object 

replacement, in which case requires the previous object place to be repainted. 

A patch-based filling algorithm was used to perform that task. Under the same 

conditions as in [2], it was reported an accuracy of 86%. 

Gadde et al. [4] developed a photographer robot able to take pictures using 

aesthetical principles. The whole system was based on the work developed in 

[15]. The main difference was on using a different algorithm to determine the 

subject region. By performing the exact same experience as in [15] the authors 

reported an accuracy of 79%, using the same dataset as in this work. The 

learned principles were used to guide the robot on the photographic process. 

Dhar et al. [28] tried to build a feature set of higher level than the previous 

developed work. The system itself is similar to [15], and achieved comparable 

results. However, some of the implemented features are different. In this case, 
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depth of field measurements, opposing hues calculation, indoor/outdoor 

classification, presence of people or animals, and sky-illumination attributes 

detection were performed. It was done a much more intensive work on the 

attribute testing. For each feature, the authors calculated the precision recall 

curves in order to detect the most effective ones. 

Geng et al. [29] addressed the problem of web image search. Although in 

theory some of the prior work could be used for such purpose, they included 

some context information on image evaluation process, like EXIF data, 

webpage structure and content. The aesthetic features were the same as in 

previously developed systems. It was reported a 12.9% precision improvement, 

using the contextual information. 

Meur et al. [30] proposed a method for predicting the visual congruency of an 

image. Visual congruency reflects the variation among different subjects looking 

at the same picture. If the image has a very distinctive foreground, it will have a 

high congruency. The results were tested on a specific database to eye-tracking 

problems. Some interesting features were calculated. The first one was the 

inclusion of a face detector, since the inclusion of human faces significantly 

impact the visual deployment of the observer. The same colour harmony feature 

used in [26] was also included. Furthermore, the authors used a probabilistic 

model to compute the depth of field for each pixel in the image. An estimate of 

scene complexity was included by calculating the entropy of the wavelet 

coefficients. The last two used features are the number of regions produced by 

meanshift segmentation and the amount of contours, detected using Sobel 

edge detectors on vertical, horizontal and diagonal directions. Although the 

features of this work are similar to the ones used on aesthetics evaluation, the 

problem itself is quite different, so it is not relevant to report them. 

The work developed by Su et al. [31] was very different from what had been 

done so far. They addressed images with no clear distinction between subject 

and background. The applied features were not innovative. However, it would 

be quite difficult to apply a subject detection algorithm, so an alternative 

approach was developed. The images were divided in patches, which represent 
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areas seen as subject, in black, and background, in white. Features were 

calculated for the multi-size image patches and a bag of aesthetics features 

was generated by applying patch-wise operations on the feature vectors. Such 

bag of aesthetics is used to feed an AdaBoost classifier. In the same dataset 

used in [23], which is different from the one used in this project, the system 

achieved an accuracy of 92.06%, significantly higher than the comparing work. 

The authors also noticed that contrast features perform better than absolute 

measurements. 

Recently, there have been developments on image memorability estimation. 

Isola et al. [32] [33] developed a way of predicting such characteristic. This is a 

slightly different problem comparing with aesthetics assessment, but it shows 

possible uses of the techniques developed during the last decade on aesthetics 

evaluation applied to other domains. 

Moorthy et al. [34] wrote a paper analysing the state of the art on visual quality 

assessment and pointing possible research directions. The authors pointed out 

the lack of explicit databases for image appeal. Current available datasets were 

built by downloading images from photo sharing websites like Flickr, Photo.net 

and DPChallenge. However, users rate pictures under different conditions. 

Different monitors, for example, can lead to a very different evaluation, since 

they’re not calibrated in the same way. Thus, current datasets are full of noise 

making the task of developing and evaluating algorithms rather difficult. 

Furthermore, Moorthy et al. reported there are no standardized methods for 

results evaluation. This problem makes the task of comparing results extremely 

difficult. Another identified issue is the lack of large-scale theoretical subjective 

studies on image appeal. Scientific community would then probably assist to a 

serious improvement on feature quality. Finally, the authors suggested future 

approaches should include content-describing features, since users tend to be 

influenced by the meaning of images. Other recommended direction was the 

creation of personalized systems, instead of general one, in order to overpass 

the subjectivity issue and develop custom solutions for each user. 
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The problem of aesthetical assessment on photographs reached a fairly 

complex level. Lots of different features were developed. However, there is 

always room for new ones: this is an exploration problem and new additions are 

always welcome. As mentioned in [34], there are no standardized methods for 

results evaluation which makes the algorithmic comparison to be extremely 

difficult. Even when the same dataset is used, there are many other variables 

which are not implemented in the same way. The parameter selection for the 

machine learning algorithms, for example, is rarely addressed on the analysed 

papers. This is a crucial step when it comes to over-fitting avoidance. In this 

work, I want to test some new features and, at the same time, introduce some 

practices on the testing phase which can make the whole process more clear 

and reliable.  
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3 ELEMENTS OF A GOOD PICTURE 

In this chapter, I will explore some aesthetical concepts which can lead to good 

photography. This study assumes a big importance since the features to be 

developed should be highly correlated with the aesthetical principles which 

guide professional photographers on their demand for great pictures. 

Among all the books and research papers, there is a generalized principle 

which seems to assume the highest importance: the existence of a strong point 

of emphasis. This prominent area is also known as subject of a picture. A good 

photography should be simple in the way that the observer knows exactly where 

to look at. Such simplicity can be achieved by creating strong distinction 

between the subject and the background. Several techniques can be used to 

produce that characteristic. In [35], the authors point out positioning and 

contrast as characteristics to take into account. In terms of positioning, an 

amateur photographer intuitively places the subject at the centre of an image. 

However, there is a viewer-researched classical guide, called Rule of Thirds, 

which is believed to take into account much more prominent positions. This rule 

has some interesting concepts behind, so it is worth explaining its origin. We 

need to go far back in time: not to the renaissance, not to any of the ancient 

civilizations, but to the origin of the Universe. There is a number which seems to 

rule the course of Nature. People name it Φ, or Phi, and its value is 

approximately 1.618. A large number of phenomena are related to this 

proportion: the organization of galaxies’ spirals, the growth of sunflowers’ 

seeds, and the hawks’ diving path are just some examples of such singularity. 

Because of this property, this number is also known as Divine proportion. 

 

Figure 3-1. The Divine Proportion. 
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Figure 3-1 shows a spiral which follows the Divine proportion. In each division, a 

square is created and the remainder is used in the new iteration, following the 

mathematical formula 

which has a possible solution of 
  √ 

 
, the golden number. The spiral converges 

to a point which is believed to be a crucial position to aesthetics. Photographers 

use a rule of thumb which tries to approximate this behavior: the rule of thirds. 

In Figure 3-2 we can observe that by dividing the image in 3 equal parts, both 

vertically and horizontally, we can approximate the spiral convergence points. 

The rule of thirds states that the subject of an image should be placed near one 

of those key points. 

 

Figure 3-2. The Rule of Thirds. 

The other mentioned characteristic is the contrast, so that the subject and the 

background are highly distinguishable. In [35], the referred contrast is 

essentially connected with brightness. Figure 3-3 shows an example of that 

concept. 

 

Figure 3-3. Subject region enhanced by brightness contrast. 

    
 

 
, (3.1) 
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However, there are other contrast types. In [11], besides the already stated 

lighting dissimilarity, it is also mentioned colour and blur contrast. These two 

concepts are shown in Figure 3-4 and Figure 3-5, respectively. 

 

 

Figure 3-4. Colour contrast. 

The so important simplicity concept states that someone who is observing a 

picture should know exactly where the subject is. Thus, another relevant 

characteristic is the simplicity of the background, so the viewer doesn’t get 

distracted from the core of the image. 

 

Figure 3-5. Blur contrast. 

The aesthetical study performed in [11] was mainly based on [12] and [13]. In 

addition to the mentioned contrast principles, the authors highlighted the 

importance of realism. Contrarily to snapshots, which are realistic scenes, 
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professional photos often use a set of techniques to produce surreal 

representations of a view. Professionals have the main objective of impressing 

their audience, which can be achieved by using a large number of intense and 

saturated colours. Figure 3-6 is an example of the described characteristic. In 

(a), the photographer was careful in choosing a specific time of the day in order 

to achieve the presented colour palette. Possibly, this picture was also post-

processed. 

 

(a) (b) 

Figure 3-6. Photographic realism. (a): “Golden Gate Bridge at Sunset” by Buzz 

Andersen, 2005, has a certain level of surrealism; (b): “Golden Gate 3” by Justin 

Burns, 2005, is a realistic view of the scene. 

It may seem that just a few aesthetical characteristics were described in this 

section. However, from these simple rules, we can derive a fairly large set of 

features. By taking in account principles used by professional photographers, it 

is expected the developed features to have a high correlation with the concept 

of good quality picture.  
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4 VISUAL FEATURES EXTRACTION 

In this chapter I introduce the developed and extracted features for aesthetics 

assessment. A feature can be seen as a measurement of an image 

characteristic. The objective is evaluating the images and calculating numbers 

corresponding to the considered characteristics. Obviously, in this project, the 

introduced features try to report information relative to the studied aesthetics 

principles. 

For a better organization of this document, I will divide this chapter in four 

sections, corresponding to different types of features: global, subject, 

background and subject/background relation. 

4.1 Saliency Map 

The saliency map tells us the saliency relation between pixels in an image. 

Figure 4-1 shows two different examples of saliency maps in (b) and (c). These 

kinds of maps describe pixels saliency by associating them with a value 

between 0 and 1, where 0 corresponds to the minimum possible saliency and 1 

to the maximum. 

 

(a) (b) (c) 

Figure 4-1. Example of saliency maps. (a): original image; (b): graph-based visual 

saliency; (c): region based contrast saliency. 
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There are several different algorithms which compute saliency maps. This work 

uses two of them: the graph-based visual saliency from [18] and the region 

based contrast saliency from [21]. As depicted in Figure 4-1 these are quite 

different from each other. In the GBVS, pixels are treated independently, so the 

corresponding saliency map does not provide a strong region separation. On 

the other hand, the RBCS groups similar pixels so the saliency map is 

composed by saliency regions. I take advantage of the characteristics of both 

approaches and use them in different contexts, which will be described later on 

this document. 

The first used saliency map technique was the GBVS. This approach involves 

three main steps: first extracting certain features, then forming activation maps 

by using the extracted feature channels, and then normalizing and combining 

the different activation maps. The used features are four orientation maps 

corresponding to orientations   {               } using Gabor filters, a 

contrast map computed by means of the luminance variance in a local 

neighbourhood of size      , and the luminance map itself. Each retrieved 

feature has a correspondent activation map. For that, the whole map is 

interpreted as a fully-connected graph, with each edge having a weighting 

measurement which depends on the dissimilarity between the two connected 

nodes, which can be seen as pixels, and on the distance between them. The 

dissimilarity is defined as 

 ((   )‖(   ))  |   
 (   )

 (   )
|  

(4.1) 

where M is the feature map. Thus, the final weight is calculated 

 ((   ) (   ))   ((   )‖(   ))  (       )  (4.2) 

 (   )     (      )  (4.3) 

which means w will be proportional to the dissimilarity and to the closeness of 

two nodes in the graph. From the constructed graph, a Markov chain is created 

by normalizing the outbound edges’ weights to 1. The equilibrium distribution of 
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this chain would naturally accumulate mass at nodes with high dissimilarity, 

since such transitions are associated with a higher likelihood than similar nodes. 

This way, we end up with an activation map which describes the saliency on a 

certain feature domain, which is derived from pairwise contrast. The objective is 

to combine all the calculated activation maps so the whole feature set is 

considered. For that, it is necessary to normalize each of them, since after 

combination the master map may be too nearly uniform, which is not very 

informative. Hence, it is important to concentrate activation in a few key 

locations. For that, it is performed a new weighting step 

  ((   ) (   ))   (   )  (       )  (4.4) 

where A is the previously calculated activation map. After that, the Markov chain 

process is repeated once more in order to calculate the mass concentration at 

each node. Different activation maps can then be combined in order to present 

the final image saliency. 

The RBCS is a totally different method. The main difference of this algorithm is 

that it uses a region-based approach. Thus, the image is segmented in first 

place using a graph-based method [20]. For each resulting segment, it is 

calculated the saliency by comparing its colour contrast to all other regions in 

the image, such that 

 (  )  ∑    (   (     ))

     

  (  )   (     )  
(4.5) 

where Ds is the Euclidean spatial distance between the two regions’ centroids, 

w is the relative region size, and Dr is the Euclidean colour distance in the 

L*a*b* colour space. This way, not only the colour disparity between regions is 

being considered, but also their closeness and size. 

4.2 Subject Mask 

The subject mask is a binary image which makes the distinction between 

subject and background. Developing such an algorithm is not a trivial task. 
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Many methods exist, but none of them achieves perfect results. However, some 

give a good insight about the subject/background distinction. 

 

(a) (b) (c) (d) 

Figure 4-2. Elements of the subject mask calculation. (a): original image; (b): 

meanshift image; (c): RBCS map; (d): subject mask. 

The subject region is known by having a higher saliency comparing to the 

background. It suggests that we can use the saliency map to predict which 

image pixels constitute the subject and which ones belong to the background. 

 

Figure 4-3. Subject mask calculation diagram. 

I use the method developed in [36]. Firstly, the meanshift algorithm segments 

the image. This step is useful since the subject is interpreted as an area and not 

independent pixels. Thus, similar pixels can be grouped to form connected 

components within the image. For each segment, it is calculated the average 

saliency value using the RBCS map. The subject is constituted by those 

segments which have average saliency twice the average image saliency. This 

way, we end up with a binary image which assigns each image pixel to one of 

the subject or the background.  Figure 4-3 shows a simple flow of the described 
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process. I use the RBCS map because it provides us a little insight about region 

saliency. However, the saliency map segmentation is not refined enough, so the 

referred extra segmentation step is required. Figure 4-2 shows the different 

elements of the subject mask calculation. 

4.3 Global Features 

Global features are those which measure characteristics from the whole image. 

Every single pixel is treated in the same way without any kind of distinctions. 

4.3.1 Simplicity 

Simplicity is an important characteristic to evaluate, since it tells us if the image 

has a large number of components, spreading the observer attention. 

 

Figure 4-4. Laplacian filter. 

The Laplacian filter, shown in Figure 4-4, is widely used on edge calculation. 

Convolving this filter with an image allows identifying the pixels which are 

significantly different from its neighbourhood. Complex areas are known for 

having lots of distinctive pixels. Figure 4-5 shows two examples of image 

filtering using the Laplacian. 

 

Figure 4-5. Laplacian image example. (a),(c): original image; (b),(d): result after 

applying Laplacian filter. 
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The first developed feature, f1, calculates the normalized area of the bounding 

box which encloses 75% of the energy present in the Laplacian image. The 

smaller the box, the simpler the image is. This feature is based on the ones 

used in [11] [24]. Such a calculation is performed by computing the vertical and 

horizontal histograms of the Laplacian and discarding (  √    )   of the 

energy in each end. Figure 4-5 (a) returns a value of 0.283, while Figure 4-5 (c) 

result is 0.736. 

 

(a) (b) (c) (d) 

Figure 4-6. Saliency map characteristics. (a): distinctive subject image; (b): 

saliency map of (a), with mean value of 0.341 and standard deviation of 0.239; 

(c): complex subject image; (d): saliency map of (c), with mean value of 0.444 

and standard deviation of 0.178. 

The saliency map provides information about the pixel prominence. Thus, we 

can use it to determine the scene complexity. Two features are extracted from 

the saliency map, which correspond to its first two statistical moments, the 

mean value, in (4.6), and the standard deviation, in (4.7). 

   
∑ ∑  (   )  

 
  

(4.6) 

   √
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(4.7) 

where I represents the image, i and j the pixel coordinates and N the total size 

of the image. 

The mean value can tell the contribution that both high and low saliency areas 

have in the image. On the other hand, the standard deviation reports in which 

way the saliency values are close to each other. It is expectable that 

professional images have a higher standard deviation than snapshots, since 
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subject regions should have much higher saliency than the background. Figure 

4-6 shows the example of two different images. (a) has a much more distinctive 

subject than (c), which translates in having lower saliency mean and higher 

standard deviation. f2 and f3 are original features, which means they were not 

tested before. It will be interesting to observe their performance during the 

classification phase. 

 

(a) (b) 

Figure 4-7. Hue count feature. (a): with few hue values, scores 18; (b): with the 

presence of several hue values, scores 7. 

In the same way, the count of present hues can be a good measure of 

complexity. If an image has a large number of different hues, we expect it to 

contain a much more distracting scene. A professional photography usually 

achieves its dynamics mostly by mixing different tones of a few hue values, 

while a snapshot often contains many objects, each with its own distinctive 

colour. In this work I include the hue count feature from [11]. A 20-bin histogram 

of the hue component is created. Just pixels with brightness values in the range 

[0.15; 0.95] and saturation greater than 0.2 are considered, since hue 

calculation would become inaccurate otherwise. 
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  {  |  ( )    }, (4.8) 

where H is the calculated histogram, m is the maximum occurrence in H and α 

is the sensitivity parameter. In this work α = 0.05 is used. 

The hue count feature, f4, will be 

       ‖ ‖. (4.9) 

Figure 4-7 shows two examples of the application of this feature. (a) is much 

simpler than (b), achieving a much higher score. 

 

(a) (b) (c) (d) 

Figure 4-8. Number mean shift segments feature. (a),(c): original images; (b): 

segmented image with 226 produced segments; (d): segmented image with 1108 

produced segments. 

As previously mentioned, mean shift algorithm is a clustering technique widely 

used in computer vision and image processing. We can use it to perform colour 

segmentation in an image by grouping similar connected pixels into a single 

colour area. Each region has the average value of its pixels. A monotonic image 

is naturally segmented since it just includes one colour. On the other hand, 

applying mean shift to an image with a large complexity will not make a big 

difference, since it is difficult to find similar connected pixels. This characteristic 

suggests a new way of measuring the simplicity of a picture. I include another 

feature from [24], f5, which count the number of segments after performing the 

mean shift algorithm in an image. Figure 4-8 shows two examples of segmented 

images. (a) is much simpler than (c). Applying the mean shift algorithm will 

result in the production of 226 segments in (b) and 1108 in (d), suggesting this 

measure can be used to quantify simplicity. 
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Figure 4-9. Example of the luminance histogram width feature, where the middle 

98% of the histogram mass is computed.  

Another possible way of measuring the complexity of a photograph is by 

analyzing the distribution of its intensity histogram. If the histogram is nearly 

uniform, it will have a high number of different intensities, thus a high 

complexity. I use the luminance histogram width feature, f6, from [21], which is 

a modified version of a similar feature included in [11]. In this case, as shown in 

Figure 4-9, the width of the middle 98% luminance mass is reported. Figure 

4-10 shows two practical examples of the use of f6. 

 

(a) (b) 

Figure 4-10. Luminance histogram width feature. (a): Low luminance variance, 

scores 173; (b): High luminance variance, scores 239. 
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4.3.2 Contrast 

Contrast is an extremely important characteristic on determining aesthetically 

appealing imagery. Usually, professional photographers use this tool to 

enhance certain areas, making them more noticeable to the observers. 

 

(a) (b) 

Figure 4-11. Global contrast features. (a): high contrast image with Weber 

contrast = 256.13 and Michelson contrast = 1; (b) high contrast image with Weber 

contrast = 148.95 and Michelson contrast = 0.98. 

Weber contrast is a commonly used measure to determine the contrast level of 

an image. Yeh et al. use it in [26], by calculating the average normalized 

difference of each pixel to the mean pixel value. It is described by 
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 (   )      

    
  

  
(4.10) 

where L represents the luminance image, Lavg the average luminance value, i 

and j the pixel coordinates and N the total size of the image. 

Another well-known contrast measure is the Michelson Contrast, used in [24]. 

This calculation just considers the higher and the lower luminance values, 

evaluating the used luminance range. 
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(4.11) 

where Lmax and Lmin are the maximum and the minimum luminance values, 

respectively. 

Figure 4-11 shows the difference between high and low contrast images. (a) 

has unarguably higher contrast than (b). Both Weber and Michelson 

measurements are consistence with this empirical observation. (a) has Weber 

and Michelson contrast values of  256.13 and 1, respectively. In the same way, 

(b) scores 148.95 and 0.98. 

 

(a) (b) 

Figure 4-12. Brightness average comparison. (a): brightness dynamics is used to 

enhance the subject, having an average brightness value of 22.35%; (b): 

snapshot with automatically adapted brightness, having an average brightness 

value of 53.14%.  

Common cameras are programmed to automatically adjust some image 

characteristics in order to make them look reasonably good with small effort by 

the photographer. One of those automatic enhancements is the brightness 

correction. Most cameras adapt the average brightness to be 50% gray. 

However, professional photographers manually control the exposure so the 

subject and the background are significantly distinguishable, causing the 

average brightness to deviate from 50% gray. The larger the deviation, the 

more likely the photo was taken by a professional. This feature was previously 

used in [11] [21]. 



 

38 

   
∑ ∑  (   )  

 
  

(4.12) 

where B represents the brightness image component, i and j the pixel 

coordinates and N the total size of the image. Figure 4-12 shows the average 

brightness of two images. (a) looks like a professional photograph and scores 

22.35%, while (b), a snapshot, achieves 53.14%. 

4.3.3 Colour 

 

(a) (b) 

Figure 4-13. Average saturation comparison. (a): example of picture with pure 

colour usage, presenting a 57.59% value on the average saturation; (b): a much 

duller image, having an average saturation value of 35.63%. 

Pure colours tend to be more appealing than dull ones. Chromatic purity can be 

measured by the saturation component of the HSV colour space. Some 

professional photographers even use specialized film to obtain deeper colours. 

Thus, the average saturation of images can be useful to distinguish between 

professional photographs from snapshots. I introduce the same feature as in 

[14], 
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(4.13) 

where S represents the saturation image component, i and j the pixel 

coordinates and N the total size of the image. 



 

39 

Figure 4-13 compares two images concerning to their average saturation 

values. (a) uses much purer colours comparing to (b), achieving a value of 

57.59% against 35.63%. 

 

(a) (b) 

Figure 4-14. Colour harmony comparison. (a): example of a picture which colours 

are closer to the high quality model, presenting a feature value of 1.52; (b): an 

image which is closer to the low quality model, having a feature value of 0.95. 

I also use a modified version of the colour harmony feature introduced in [15]. A 

model representing each high and low quality images is created, so it is 

possible to determine how close each new image is to both components of the 

model. For the high and low quality photos in the training dataset, we can obtain 

the histograms of the average levels for each component of the HSV colour 

space such that 

         ( )         (         ( )), (4.14) 

        ( )         (        ( )), (4.15) 

where Mhigh,hue and Mlow,hue respectively represent the model for high and low 

quality images for the hue component, i is the histogram bin, and Hhigh,hue and 

Hlow,hue are the histograms of each high and low quality images, respectively, for 
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the hue component. The other model components, Mhigh,saturation, Mlow,saturation, 

Mhigh,brightness and Mlow,brightness, can be similarly calculated. In order to reduce the 

computational complexity, each histogram is limited to its 50-bin representation. 

The original implementation model was unnecessarily complex: the authors 

computed the combination of each histogram bin pair by adding both 

components. However, this step does not provide any advantage since it is just 

replying existing information and increasing the problem complexity. The 

applied simplification allows us to deal with much smaller histograms (50-

dimensional) than the ones created in [15] (1274-dimensional). 

Now that we have a model for the high and low quality images, the images can 

start being compared with it. For that I compute the cross-product distance 

between both the model and the image histogram for each component such that 
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(4.17) 

where Hhue is the 50-bin hue histogram of the image to be evaluated. Similarly 

the other distances, Distancehigh,saturation, Distancelow,saturation, Distancehigh,brightness, 

and Distancelow,brightness, can also be computed. 

The final feature is calculated by 

    
                

               
 
                       

                      
 
                       

                      
  

(4.18) 

Figure 4-14 shows two example images: (a) is much closer to the high quality 

model, while (b) is more similar with the low quality one. (a) and (b) presents 

feature values of 1.52 and 0.95, respectively. 

4.3.4 Blur 

Blur is a key concept on photography. To evaluate the general level of 

blurriness I use the same feature as in [11]. A blurred image is described as 
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          (4.19) 

where Ib is the blurred image, Io is the original image and Gσ is the blurring filter. 

The objective is recovering the σ parameter, given only Ib. The blurred image 

can be converted to the frequency domain by means of the Fourier transform 

such as 

     (  ), (4.20) 

where FFT denotes the Fast Fourier Transform. If we assume that the 

frequency distribution of the original image, Io, is approximately uniform, we can 

count the number of frequencies with power above a certain threshold like 

  ‖{(   ) |  (   )    }‖  (4.21) 

where u and v are the frequency coordinates, m is the maximum power in F and 

α is the sensitivity parameter. α = 0.2 was used. Since a smoothing filter just 

removes high frequencies, C can be an approximation for the maximum 

frequency present in the blurred image. Thus, the final feature is 
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(4.22) 

4.3.5 Others 

There are other image characteristics which potentially correlate with 

photographic aesthetics. As suggested in [14], the aspect ratio can be a 

relevant measurement. Ratios which approximate the already mentioned golden 

ratio are considered more pleasant. For some reason 4:3 and 16:9 formats are 

standards for television or movie screens. This feature is introduced by 

calculating 

    
 

 
  (4.23) 

where w and h are the image width and height, respectively. 
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(a) (b) 

Figure 4-15. Intensity balance example. (a): high balance image, with a feature 

value of 0.007; (b): low balance image, with a feature value of 0.050. 

Balance provides a sense of equilibrium and is a fundamental principle of visual 

perception. The eyes of the observers usually seek visual balance within a 

photograph. A good photographer uses composition to balance the image 

weights with respect to some key aspects. One possible measure is the left-

right balancing used in [26]. I start dividing the image in two halves using a 

vertical line. For each part, an intensity histogram is computed, which allows us 

to compare both considered areas. In [26], the authors directly perform the 

comparing operation on both histograms. However, the human eye has some 

difficulties distinguishing close intensities. In order to achieve a more accurate 

result, I convolve the histograms with a Gaussian filter. This makes each 

histogram position considering its neighbourhood, which reflects the relation 

between similar pixels. Both histograms can now be compared, by calculating 

the summed squared difference each histogram position  
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(4.24) 

where Hl and Hr respectively represent the left and right histograms, i the 

histogram bin, and N the total size of the image. The normalization process is 

required so we can compare images with different sizes. Figure 4-15 shows a 

practical example of the intensity balance feature. (a), with a value of 0.007, as 

a higher balance than (b), with a value of 0.050. 
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4.4 Subject Features 

The subject features only analyse the image pixels which are set as foreground 

in the subject mask. Although being based in previously developed features, I 

originally introduce all the measurements in this section to the context of subject 

evaluation. 

4.4.1 Contrast 

I again use the average brightness measurement, f15. The process is similar to 

the one descried in (4.12), this time performed over the subject area. 

Similarly to (4.11), Michelson contrast is also used, creating a new contrast 

feature, f16. 

The root mean square, RMS, measures the standard deviation of a distribution. 

I introduce three of these measurements, one for each of the luminance, f17, 

hue, f18, and saturation, f19. They follow the expression 
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(4.25) 

where X represents one of the luminance, hue or saturation images, Xavg the 

same component average value, s the subject pixel coordinates and Sarea the 

size of the subject area. 

4.4.2 Colour 

 

(a) (b) (c) (d) 

Figure 4-16. Subject average saturation. (a): high saturation subject, with feature 

value of 165.16; (b): subject mask of (a); (c): low saturation subject, with feature 

value of 80.11; (d): subject mask of (c). 
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Similarly to the global feature, shown in (4.13), I calculate the average 

saturation value, but this time in the subject area. The reasons of this inclusion 

are exactly the same as before. However, this feature, f20, is even more 

important since the subject is the most prominent area in a picture. In Figure 

4-16, examples of this feature are presented: (a) has a much stronger subject in 

terms of saturation comparing to (c).  

4.5 Background Features 

The set of background features is calculated on the pixels which are considered 

part of the background. This is the part of the image which is complementary to 

the subject. The set of features described in this section assumes a great 

importance because the background of a good image has very distinctive 

characteristics: it usually is unobtrusive, so the subject area can have a much 

higher impact on the observer. 

4.5.1 Simplicity 

Colour simplicity is a good way of evaluating the background area. If an image 

background has high colour complexity, it will retain a lot of attention, distracting 

the observer from the real subject. 

 

(a) (b) (c) (d) 

Figure 4-17. Background colour simplicity. (a): high simplicity, with feature value 

of 0.0034; (b): subject mask of (a); (c): low simplicity, with feature value of 

0.0491; (d): subject mask of (c). 

Similarly to [15], I use a feature, f21, which calculates the number of 

background colours which have a significant presence in the image. In order to 

reduce the computational complexity, each component of the RGB colour space 
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is firstly reduced to a 16-values scale. A 4096-histogram (163) can be then 

computed, with each bin corresponding to a different colour. The colour 

simplicity feature can be defined as 

  {  |  ( )    }, (4.26) 

    ‖ ‖     , (4.27) 

where H is the calculated histogram, i is the histogram bin, m is the maximum 

occurrence in H and α is the sensitivity parameter. α = 0.01 was used. This 

means the feature reports the number of histogram bins which are above a 

certain relative value. Figure 4-17 shows two images with different background 

complexity. The one in (a) has an almost uniform background, unlike (b) which 

is rather complex. 

 

(a) (b) (c) (d) 

Figure 4-18. Background hues count. (a): low number of hues, with feature value 

of 18; (b): subject mask of (a); (c): high number of hues, with feature value of 6; 

(d): subject mask of (c). 

The global hue count feature has potential to be applied to the background 

domain. Actually, it is probably even more relevant in such a context since the 

background simplicity has a higher influence on the picture quality than the 

subject. Thus, f22 was created following the same process as (4.9), but 

computed on the background area. 
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4.5.2 Contrast 

 

(a) (b) (c) (d) 

Figure 4-19. Background contrast features. (a): low contrast background, with 

Michelson contrast value of 0.736, luminance RMS of 0.068, hue RMS of 0.115, 

and saturation RMS of 0.287; (b): subject mask of (a); (c): high contrast 

background, with Michelson contrast value of 1, luminance RMS of 0.209, hue 

RMS of 0.211, and saturation RMS of 0.262; (d): subject mask of (c). 

Still in the simplicity domain, we can expect the background of aesthetically 

pleasant images to have low contrast pixels. That way, I use some contrast 

measures already described in this document: Michelson contrast (f23), 

luminance RMS (f24), hue RMS (f25), and saturation RMS (f26). In Figure 4-19, 

it is possible to compare two images with completely different background 

types: (a) is much more uniform than (c), which is confirmed by the four 

considered background contrast values. 

4.6 Subject/Background Relation Features 

In this section, I will show the features which describe the relation between the 

subject and the background. This is probably the most important set of features 

since the most distinctive characteristic of a good photograph is a clear 

separation between these two areas. 

4.6.1 Contrast 

Since aesthetically pleasant images have high subject/background distinction it 

is worth measuring the contrast between these two areas. 
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(a) (b) (c) (d) 

Figure 4-20. Lighting ratio feature. (a): high subject/background disparity in 

terms of brightness, with feature value of 2.241; (b): subject mask of (a); (c): low 

brightness disparity, with feature value of 0.139; (d): subject mask of (c). 

To measure the subject/background brightness disparity I used the lighting 

feature introduced in [15], which is described by 

    |   (
        

           
)|  

(4.28) 

where Bsubject and Bbackground are the mean brightness values of the subject and 

background areas, respectively. Figure 4-20 shows two images with a totally 

different use of lighting: in (a) the subject is much more distinguishable than in 

(c). 

 

(a) (b) (c) (d) 

Figure 4-21. Subject/background HSV average difference. (a): high distinction, 

with hue average difference of 6844.88, saturation average difference of 6767.15,  

and brightness average difference of 21017.20; (b): subject mask of (a); (c): low 

distinction, with hue average difference of 869.91, saturation average difference 

of 1422.92,  and brightness average difference of 2839.53; (d): subject mask of 

(c). 
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In order to extend the comparison between foreground and background, I 

included the features suggested in [21], where the authors compute the squared 

difference of the average values between the subject and the background for 

each of the brightness, f28, hue, f29, and saturation, f30, colour channels. The 

measurement is described by 

where X represents one of the brightness, hue or saturation channel images, s 

and b the subject and background pixel coordinates, respectively,  and Sarea and 

Barea the size of the subject and background areas, respectively. Figure 4-21 

reports two examples of subject/background distinction on the HSV channels: in 

(a) all the difference of averages are higher than in (b), which means (a) has a 

more distinctive subject. 

 

(a) (b) (c) (d) 

Figure 4-22. Subject/background Weber contrast. (a): high contrast image, with a 

feature value of 1.963; (b): subject mask of (a); (c): low contrast image, with a 

feature value of 0.418; (d): subject mask of (c). 

I also use an improved version of the Weber contrast. This is a measurement 

which can be easily applied to the subject/background context. It was not tried 

in any of the analyzed works but I believe it can be highly correlated to the 

aesthetical evaluation we are interested in performing. In this measure, it is 

calculated the normalized average distance of the subject to the average 

background value in the luminance domain. It allows us to measure the average 

luminance disparity between the two areas. The feature is described by 
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where L represents the luminance image, Lbackground the average luminance of 

the background area, s the subject pixel coordinates and Sarea the total size of 

the subject. Figure 4-22 shows the application of f31 on two images. (a) has a 

much higher subject/background luminance contrast than (b). 

 

(a) (b) (c) (d) 

Figure 4-23. Subject/background Michelson contrast. (a): high contrast image, 

with a feature value of 1; (b): subject mask of (a); (c): low contrast image, with a 

feature value of 0.764; (d): subject mask of (c). 

The subject/background Michelson contrast is another example of a contrast 

measurement which can efficiently integrate the set of features. I introduce this 

feature by using a similar approach to (4.11), but this time considering the 

maximum luminance value of the subject and the lowest luminance value of the 

background. 

    
                 

                 
  

(4.31) 

where LMaxSubj represents the subject maximum luminance value and LMinBack the 

background minimum luminance value. Expectedly, most of the images are 

going to achieve a value of 1, which means this feature can be efficient on 

identifying snapshots rather than detecting good quality photographs. Figure 

4-23 exemplifies the described feature. (a), with a feature value of 1, has higher 

contrast than (b), which has a feature value of 0.764. 
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(a) (b) (c) (d) 

Figure 4-24. Subject/background RMS contrast features. (a): high distinction, 

with luminance RMS of 0.500, hue RMS of 0.354, and saturation RMS of 0.536; 

(b): subject mask of (a); (c): low distinction, with luminance RMS of 0.250, hue 

RMS of 0.087, and saturation RMS of 0.206; (d): subject mask of (c). 

Similarly to the RMS features previously introduced, this measurement is 

computed for the luminance, f33, hue, f34, and saturation, f35, domains, 

concerning to the subject/background distinction, so that 

where X represents one of the luminance, hue or saturation images, XBackAvg the 

same component background average value, s the subject pixel coordinates 

and Sarea the size of the subject area. In Figure 4-24, (a) has higher values than 

(b) for the described set of features. It means (a) has a higher 

subject/background variance in each of the analysed components. 

4.6.2 Composition 

The composition of a picture has high influence on the way the observer 

percepts aesthetics. However, this is a high-level concept which is difficult to 

evaluate. 

The rule of thirds is one of the most used features among photo aesthetical 

assessment works [2] [14] [15] [21] [25] [26] [28]. In this project I include a novel 

way of determining the subject position by means of the Graph-based visual 

saliency map. With this map, it is possible to use the pixels’ weight depending 

on their saliency and calculate the correspondent centre of mass. In order to 

increase the importance of high-saliency pixels, an exponential value of the 

saliency map is used as follows 
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where S corresponds to the saliency map and i and j are the picture vertical and 

horizontal  coordinates, respectively. The final feature reports the distance of 

the subject to the closest key-point defined by the rule of thirds. 

where Pi represents each of the rule of thirds’ key points, Imageheight  the height 

of the image and Imagewidth the image width. Figure 4-25 shows this feature 

applied to two different images. (a) has a better score than (c), since its subject 

is closer to one of the intersection points of the rule of thirds. 

 

(a) (b) (c) (d) 

Figure 4-25. Example of the rule of thirds. (a): original high quality image; (b): 

feature applied on the saliency map of (a), with a relative distance to the closest 

intersection point of 0.044; (c): original low quality image; (d): feature applied on 

the saliency map of (c), with a relative distance to the closest intersection point 

of 0.200. 
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Another compositional characteristic which may be correlated with aesthetics is 

the subject size. In this case, I calculate the percentage of the image which is 

considered part of the subject, such that 

where Sarea is the size of the subject area and Tarea is the total image size. 

Figure 4-26 shows two examples of this feature usage. 

 

(a) (b) (c) (d) 

Figure 4-26. Subject ratio feature. (a): image with subject ratio value of 0.146; (b): 

subject mask of (a); (c): image with subject ratio value of 0.037; (d): subject mask 

of (c). 

4.6.3 Blur 

It is possible to enhance the subject saliency by blurring the background areas. 

Actually, this is one of the most used techniques by photographers. 

 

Figure 4-27. Low Laplacian contrast image. (a): original image with a 

subject/background Laplacian ratio of 0.753; (b): subject mask; (c): Laplacian 

image. 
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(a) (b) (c) 

Figure 4-28. High Laplacian contrast image. (a): original image with a 

subject/background Laplacian ratio of 38.429; (b): subject mask; (c): Laplacian 

image. 

A blurred area is known for having its details smoothed. This means it has low 

sharpness values. I decided to measure the difference in sharpness by means 

of the previously described Laplacian filter. By convolving an image with the 

Laplacian filter we obtain a sharpness map: the higher the pixel values, the 

more distinctive they are. This map can be used to calculate the average 

sharpness values for both the subject and the background, so we can relate 

these values as follows 

where L is the Laplacian image, s and b are respectively the subject and 

background pixels, and Sarea and Barea are the subject and background areas, 

respectively. The highest the value of f38, the more enhanced is the image 

subject comparing to the background. Figure 4-28, represents a high Laplacian 

contrast image while Figure 4-27 exemplifies a low Laplacian contrast image. 

These are two practical examples of the use of f38. 
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(a) (b) 

Figure 4-29. Probabilistic blur detection. (a): original image; (b): blur detection. 

In [30], Meur et al. propose a depth of field measurement. The depth of field is 

the distance between the nearest and the farthest objects in a scene that 

appear sharp in an image. The feature introduced by [30] is obviously just an 

approximation to that distance. It is based on blurriness detection. I decided to 

use this feature on the subject/background comparison context. For that, three 

different blurring kernels of size    , with   {     }, are applied to the 

luminance of the original image. The vertical and horizontal derivatives 

histograms are then computed, such that 

where I is the original image, fk is the blurring kernel,    [    ] and    

[    ] . This two distributions are used to calculate the divergence with the 

original distribution, px1, for each image coordinate (   ), so that 

        (       ), (4.39) 

        (       ), (4.40) 

  (   )  ∑ (  (   |   )(   )    (   |   )(   ))
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where Wij is a     window centered on the considered position and KL is the 

KL-divergence calculated by 

where KL measures how close p is to q. If pij and qij are exactly the same, their 

KL value will be 0 (mathematical indeterminations like      are treated as 0). 

This way, Dk reports the similarity of a region, before and after applying the 

    blurring kernel. If an area is originally blurred, its variation will not be very 

prominent. The final blurring value of a pixel is 

which after normalization will create an image similar to the one presented in 

Figure 4-29 (b). The final feature is the subject/ background relation concerning 

to the average B values, such that 

where Subjectarea and Backgroundarea are respectively the subject and 

background areas, and similarly s and b are the subject and background pixels. 

Figure 4-30 and Figure 4-31 show the use of f39.  

 

(a) (b) (c) 

Figure 4-30. High Blur contrast image. (a): original image with a 

subject/background Blur ratio of 1.944; (b): subject mask; (c): Laplacian image. 
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(a) (b) (c) 

Figure 4-31. Low Blur contrast image. (a): original image with a 

subject/background Blur ratio of 0.766; (b): subject mask; (c): Laplacian image. 
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5 LEARNING AND CLASSIFICATION TECHNIQUES 

This chapter introduces the techniques used in the learning and classification 

phases. I start by describing the classifications methods. Then, some other 

used techniques are presented, in particular the ones related to feature 

selection. 

5.1 Classification Methods 

In this section, I will introduce the classification methods which will be used. The 

objective is to present a light overview of the selected techniques, so it is easier 

to understand my choices. The model will be trained on a labelled dataset, 

which means just supervised learning algorithms are selected. 

The objective of machine learning methods is to create a model based on 

observed data patterns, so it is possible to take informed decisions on further 

examples. 

5.1.1 Support Vector Machine 

 

Figure 5-1. Linear separable data on SVM. 

SVM is one of the most used machine learning techniques. It was introduced in 

the context of binary classification by Cortes et al. in [37]. The objective of this 

technique is to find a linear data separator. Figure 5-1 shows an example of 
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linear separable data in the 2D space. The support vectors, which are the points 

lying on the boundaries, are used to calculate the optimal linear separator, such 

that the margin is minimized. 

However, in the real world it is normal to find data which is not linearly 

separable, which makes impossible the application of the previous approach. 

Although, there is a way of overcoming the problem: by projecting the data in a 

higher-dimensional space, the points can actually become separable. Figure 

5-2 shows an example of a 1D to 2D projection, by means of a quadratic 

function. There are several auxiliary functions, or kernels, which can be used. 

Some examples are the linear, radial basis function, sigmoid, and polynomial 

kernels. 

 

(a) (b) 

Figure 5-2. Projection in higher dimension. (a): non-linearly separable space; (b): 

linearly separable space. 

SVMs are known for being very robust to noise and less over-fitting prone 

comparing to other methods. However, it is computationally expensive, which 

means it will run slower than many other classifiers. 

5.1.2 Gentle AdaBoost 

Boosting is a technique which combines a large number of weak classifiers. A 

weak classifier is defined to be only slightly correlated with the true 

classification, having just above chance accuracy. In boosting, we keep training 

weak classifiers and adding them to the global model. In each iteration, it is 

attributed a weight to each classifier depending on its accuracy. The training 

data has also associated weights, so the misclassified examples keep gaining 

importance. Thus, future weak learners have a stronger focus on the 
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misclassified examples. During the classification phase, the model can use a 

number of techniques, like weighted voting. Figure 5-3 shows an example of the 

data flux in a boosting classifier: the input example is introduced to each weak 

classifier which output a classification value. The final system output is 

calculated by considering each of those values depending on their weights. 

 

Figure 5-3. Boosting example. 

Gentle AdaBoost is a boosting algorithm introduced in [38]. It has a particular 

way of weighting data points, since it puts less weight on outliers. This feature 

makes Gentle AdaBoost one of the most successful boosting algorithms. In this 

case, the weak classifiers are trees. 

Gentle AdaBoost has a huge advantage over SVM: it can select informative 

features from a potential very large feature pool. This can be useful to this work, 

since we are in the presence of a fairly large feature set. However, AdaBoost is 

more sensible to noise than SVM. 

5.1.3 Random Forest 

Random forests [39] are somehow similar to boosting. They also combine 

several classifiers, which in this case are decision trees. The main difference is 

in the training phase, where, contrarily to boosting, the classifiers are grown 

independently from each other. This characteristic allows random forests to be 

less overfit prone. For the construction of the decision trees which constitute a 

random forest, it is just used a random subset of the total feature set. This 
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makes each tree to be a relatively weak classifier, and significantly reduces the 

computational complexity. This work addresses a binary classification problem. 

Thus, the final classification is determined by majority vote of the decision trees 

which are part of the forest. 

5.2 Feature Normalization 

It has been shown [40] that normalization is a pre-processing stage which can 

play an important role on machine learning algorithms performance. This 

characteristic is also mentioned in [41]. In order to take advantage of this 

property, I pre-processed the data by normalizing the feature set values, every 

time it is possible, so they can lie in the [   ] interval. 

5.3 Feature Selection 

Sometimes, it is not useful to have a large feature set. The existence of a large 

number of attributes can lead to high system complexity. By removing features, 

the dimensionality of the problem is reduced. It helps improving the 

performance of the learning models by speeding up the process, defying the 

curse of dimensionality1 [42] or enhancing the generalization capability. 

Several techniques can be used to reduce the feature space. The most popular 

approaches are probably the ones which use greedy strategies. This kind of 

algorithms is known for making the locally optimal choice at each stage.  

Although greedy strategies do not always find optimal solutions, they can 

approximate such a value in a reasonable amount of time. 

In this project, I use a mix of forward and backward selection. Forward selection 

starts with an empty feature set and sequentially adds the one which maximizes 

the accuracy of the system. It can be described by the following steps: 

1. Start with an empty set    { } 

                                            
1
 The curse of dimensionality refers to the problem caused by high dimensional spaces, where 

data become easily sparse and dissimilar. This characteristic creates some difficulties to 
machine learning algorithms, since data patterns can be destroyed. 



 

62 

2. Select the next best non selected feature    which maximizes the 

current feature set accuracy              [        (    )] 

3. Update the feature set          
        

4. Go to 2 

On the other hand, backward selection starts with the whole features included 

on the set. It sequentially removes the attribute which allows the new feature set 

to have the higher accuracy. It can be described as: 

1. Start with the full set      

2. Select the existing feature       which maximizes the current feature 

set accuracy              [        (    )] 

3. Update the feature set          
        

4. Go to 2 

As previously mentioned, this work combines these two approaches in order to 

select a feature set which allows the system to have better performance. I 

introduce a new selection process. Firstly, forward selection is applied till the 

number of selected features is equal to the number we want to consider, N, plus 

one. The feature set size is excided so it is also possible to apply backward 

selection. Thus, by performing backward selection in two steps, the number of 

features is reduced to N-1. Again, forward selection is used, so we end up with 

the final feature set of size N. Forward selection is performed in first place 

because it is expected the feature set to be much smaller than the total number 

of features. If backward selection was used instead, the greedy solution could 

be much more distinct from the optimal solution, because of the required extra 

steps. On the other hand, performing backward selection in the end of the 

forward selection allows getting rid of some features which may not be relevant 

on the context anymore.  
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6 RESULTS 

In this chapter I will report the results obtained by applying my algorithm to an 

existent dataset. This will allow measuring the performance of the overall 

system and compare it with other existing solutions. 

6.1 Dataset 

In order to have a base of comparison, I use the dataset which was originally 

created for evaluation of [11]. This dataset was chosen because it was used by 

a large number of other works, [4] [11] [15] [26] [31]. With this decision, I expect 

to contribute to a more uniform approach, allowing the scientific community to 

have a much stronger base of comparison. 

The considered dataset was created by acquiring a set of images from 

DPChallenge.com, a photo contest website. In this website, users compete 

against each other by submitting their photographs, which are voted by the 

other website users in a scale from 1 to 10. 

 

 Training Testing 

Professional photos 3000 3000 

Snapshots 3000 3000 

Table 6-1. Dataset composition in terms of number of photos. 

From the DPChallenge website, 60000 photos, submitted by more than 40000 

users, were retrieved. Each of the downloaded photos has been rated by at 

least 100 users, which minimizes the interference of possible outliers. The 

objective was to create two image subsets: one including good photographs 

examples and the other being composed by bad quality samples. Although, the 

subjectivity of the performing task makes the distinction quite difficult. In order to 

minimize dissensions, just the top and bottom 10% of the total photos were 

selected and assigned as high quality professional photographs and snapshots, 

respectively. Thus, each subset has 6000 images, building a total dataset of 
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12000 photos. From each set, half of the photos were assigned to the training 

set and the other set to the testing set. Table 6-1 shows such a distribution of 

photographs. 

6.2 Classification Results 

I start the classification process by using the whole feature set on the referred 

data set. For that, the classifiers described in section 5.1 are trained, which 

means it is necessary to select the corresponding parameters. In order to try to 

maximize the system accuracy, I perform grid search on a predefined 

parameter domain. The used grid search domains and steps are presented in 

Table 6-2, Table 6-3 and Table 6-4. 

 

 weak count weight trim rate max depth 

Domain [       [ [      [ [   [ 

Step 10 0.1 1 

Table 6-2. AdaBoost parameter grid search. 

 

 SVM type kernel degree /   / coef0 / C /   /   

Domain {         } {                                         

       } 

2 

Table 6-3. SVM parameter grid search. 

 

 max depth 

Domain [     [ 

Step 1 

Table 6-4. Random forest parameter grid search. 

                                            
2
 Automatically generated by the OpenCV function CvSVM::get_default_grid. 
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In grid search, the objective is to find the parameters which achieve the highest 

accuracy scores on the considered data. Obviously, the results will possibly be 

adjusted to the noise contained in the used dataset, which can lead to some 

data overfitting. In order to efficiently evaluate the performance of the model, it 

is necessary to test the results in a completely different dataset comparing with 

the one used in the learning phase. For grid search, I apply a 10-fold cross 

validation technique to the training set, so the parameters can be chosen 

independently from the testing set. The data split of the total dataset is 

represented in Figure 6-1. 

 

Figure 6-1. Data set usage on the parameter grid search. 

In 10-fold cross validation, the considered set is randomly partitioned into 10 

subsamples. Of the 10 subsamples, a single one is retained as the validation 

data while the remaining 9 are used to train the model. The cross-validation 

process is repeated 10 times, with each subsample being used exactly once as 

the validation data. In the end, I average the 10 results obtained from the folds, 

so a single estimation is produced. The 7th fold of the 10-fold cross validation 

process is represented in Figure 6-2. 

 

Figure 6-2. 7th fold of the 10-fold cross validation process 

As previously mentioned, the objective of grid search is to maximize the 

calculated accuracy on the considered set. In this case, it will try to maximize 

the average accuracy returned from the 10-fold cross validation which 
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corresponds to a configuration of the parameters. For the considered classifiers, 

the following values are determined: 

 AdaBoost 

o Parameter values 

 weak count: 110 

 weight trim rate: 0.98 

 max depth: 3 

o 10-fold cross validation accuracy: 91.5% 

 SVM3 

o Parameter values 

 SVM type: C_SVC 

 kernel: Sigmoid 

 degree: 0 

  : 0.00015 

 coef0: 0.1 

 C: 62.5 

  : 0 

  : 0 

o 10-fold cross validation accuracy: 73.5% 

 Random Forrest 

o Parameter values 

 max depth: 32 

o 10-fold cross validation accuracy: 88.9% 

 

 

 

 

                                            
3
 By means of the OpenCV function CvSVM::train_auto 
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  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good TP FN 

Bad 
FP TN 

Table 6-5. Confusion matrix fields. 

In order to have an unbiased accuracy measure, it is necessary to test the 

selected parameters on the testing set, which was not used till now. The 

resulting confusion matrices are shown in Table 6-6, Table 6-7 and Table 6-8. 

The confusion matrices report the number of elements which are correct and 

the misclassified ones, for each considered class. For purposes of simplicity, I 

will refer to each of the field values of the confusion matrices by True Positives 

(TP), False Positives (FP), False Negatives (FN) and True Negatives (TN), as 

presented in Table 6-5. 

 

  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good 2224 776 

Bad 
567 2433 

Table 6-6. Confusion matrix of the AdaBoost classifier applied to the whole 

feature set. 
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  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good 2068 932 

Bad 
391 5609 

Table 6-7. Confusion matrix of the SVM classifier applied to the whole feature 

set. 

 

  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good 2466 534 

Bad 
286 2714 

Table 6-8. Confusion matrix of the Random Forest classifier applied to the whole 

feature set. 

I decided to try another classifier which combines all of the previously described 

ones. For that, a voting strategy is implemented, where each of the classifiers 

report its classification. The final classification is the one which gathers more 

votes. Table 6-9 presents the confusion matrix of the combined classifier. 

 

  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good 2242 758 

Bad 
212 2788 

Table 6-9. Confusion matrix of the combined classifiers applied to the whole 

feature set. 
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From the confusion matrices, it is possible to extract several relevant statistics. 

One of the most important is the accuracy, which measures the ratio of correct 

cases, and is described in (6.1). The accuracy measures of each considered 

classifier are presented in Table 6-10.  

 

 AdaBoost SVM Random Forest Combination 

Accuracy 77.6% 78.0% 86.3% 83.8% 

Table 6-10. Accuracy of the different classifiers applied on the whole feature set. 

As mentioned, there are other relevant statistics which can be extracted from 

the presented confusion matrices. The ones described in (6.2), (6.3), (6.4) and 

(6.5) are shown in A.2 (Appendix 2). 

In order to shoe the effectiveness of the features, a table with the accuracy of 

each of them is included in A.3. The correspondent chart is presented in A.4. 

The used parameters are those defined by the described grid search. 

As mentioned in section 5.3, feature selection may reveal to be useful when 

trying to improve the overall performance of a system. In order to test this 

premise, the process described on the referred section is followed. I decided to 

find a feature set of size 10, since at that point almost all the features have a 

stable accuracy over 85%, as shown in A.5. As mentioned, the features are 

         
     

           
 

(6.1) 

          
  

     
  

(6.2) 
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chosen depending on the observed accuracy, after adding, on forward 

selection, or removing a feature, on backward selection. The accuracy cannot 

be measured on the testing set. Otherwise the trained model could overfit to the 

testing data, which would lead to doubtful results. Thus, it is again used 10-fold 

cross validation on the training set. It works exactly on the same way as 

previously described. Figure 6-1 and Figure 6-2 show an overview of the 

process. I decided to use the C-Support Vector classification with a linear 

kernel. This decision was based on the fact that most meaningful features 

should allow a linear separation between professional pictures and snapshots. 

As described in section 5.3, the first step to take is performing forward selection. 

Such a technique is used till the feature set has size 10. In A.5, it is represented 

the table used on the forward selection for the first 10 steps. By the end of this 

run, the feature set   {                                     } is 

selected. 

In order to determine the performance of the system at this stage, I perform the 

exact same steps as the ones used to test the whole feature set. By means of 

grid search, the following parameters are determined: 

 AdaBoost 

o Parameter values 

 weak count: 160 

 weight trim rate: 0.98 

 max depth: 4 

o 10-fold cross validation accuracy: 90.3% 

 SVM4 

o Parameter values 

 SVM type: NU_SVC 

 kernel: Sigmoid 

 degree: 0 

  : 0.03375 

                                            
4
 By means of the OpenCV function CvSVM::train_auto 
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 coef0: 0.1 

 C: 0 

  : 0.09 

  : 0 

o 10-fold cross validation accuracy: 36.9% 

 Random Forrest 

o Parameter values 

 max depth: 22 

o 10-fold cross validation accuracy: 79.5% 

 

The correspondent confusion matrices are presented in Table 6-11, Table 6-12 

and Table 6-13. Table 6-14 shows the combined classifier previously described. 

The achieved accuracies are presented in Table 6-15. At this point, we can see 

there is a better overall performance. In addition, the problem complexity was 

severely reduced. A.6 contains further statistical information extracted from the 

confusion matrices, which can help us to understand the efficiency of the 

current system. A.7 and A.8 report the accuracy of each individual selected 

feature. 

 

  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good 2017 983 

Bad 
735 2265 

Table 6-11. Confusion matrix of the AdaBoost classifier applied to the 10 feature 

set defined after forward selection. 
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  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good 2428 572 

Bad 
29 2265 

Table 6-12. Confusion matrix of the SVM classifier applied to the 10 feature set 

defined after forward selection. 

 

  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la
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s
 

Good 2377 623 

Bad 
254 2746 

Table 6-13. Confusion matrix of the Random Forrest classifier applied to the 10 

feature set defined after forward selection. 

 

  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la
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Good 2433 567 

Bad 
169 2831 

Table 6-14. Confusion matrix of the combined classifier applied to the 10 feature 

set defined after forward selection. 
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 AdaBoost SVM Random Forest Combination 

Accuracy 71.4% 90.0% 85.4% 87.7% 

Table 6-15. Accuracy of the different classifiers applied to the 10 feature set 

defined after forward selection. 

As mentioned in 5.3, forward selection is a greedy strategy which locally 

searches for the best possible solution at each step. If we keep applying 

forward selection we may end up with a very inefficient solution. This kind of 

behaviour comes from the non-linear nature of the feature combination, which 

allows two good features to perform badly when combined. To minimize this 

characteristic, I apply a combination of forward and backward selection around 

the size 10. This action will remove features which lost their relevance during 

the forward selection process. Thus, forward selection is applied to the 

previously obtained feature set so an extra feature is chosen. 2 backward 

selection steps are then performed to the 11-sized feature set, reducing its 

dimensionality to 9. However, the objective is ending up with a 10-dimensonal 

feature set, which is achieved by using forward selection again. The final 

feature set is represented by   {                                    }. 

The data process is presented in A.9. 

The previously described grid search is again performed, so it is possible to 

select the learning parameters. The following values are found: 

 AdaBoost 

o Parameter values 

 weak count: 250 

 weight trim rate: 0.96 

 max depth: 3 

o 10-fold cross validation accuracy: 89.9% 

 SVM5 

o Parameter values 

                                            
5
 By means of the OpenCV function CvSVM::train_auto 
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 SVM type: NU_SVC 

 kernel: Sigmoid 

 degree: 0 

  : 0.00015 

 coef0: 0.1 

 C: 0 

  : 0.09 

  : 0 

o 10-fold cross validation accuracy: 39.9% 

 Random Forrest 

o Parameter values 

 max depth: 24 

o 10-fold cross validation accuracy: 78.5% 

The confusion matrices which show the performance of these classifiers are 

shown in Table 6-16, Table 6-17, Table 6-18 and Table 6-19. Each classifier’s 

accuracy is presented in Table 6-20. Further statistical measures are shown in 

A.10. A.11 and A.12 present the accuracy of each individual feature. 

 

  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good 2136 864 

Bad 
562 2438 

Table 6-16. Confusion matrix of the AdaBoost classifier applied to the 10 feature 

set defined after forward and backward selection. 
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  Predicted class 

  Good Bad 

A
c
tu

a
l 
c
la

s
s
 

Good 2636 364 

Bad 
313 2687 

Table 6-17. Confusion matrix of the SVM classifier applied to the 10 feature set 

defined after forward and backward selection. 

 

  Predicted class 

  Good Bad 

A
c
tu
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l 
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Good 2498 502 

Bad 
271 2729 

Table 6-18. Confusion matrix of the Random Forrest classifier applied to the 10 

feature set defined after forward and backward selection. 

 

  Predicted class 

  Good Bad 

A
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l 
c
la

s
s
 

Good 2611 389 

Bad 
256 2744 

Table 6-19. Confusion matrix of the combined classifier applied to the 10 feature 

set defined after forward and backward selection. 
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 AdaBoost SVM Random Forest Combination 

Accuracy 76.2% 88.7% 87.1% 89.3% 

Table 6-20. Accuracy of the different classifiers applied to the 10 feature set 

defined after forward and backward selection. 
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7 DISCUSSIONS 

In this chapter, I will discuss the results from the previous section and compare 

them with other authors’ works. 

The first obtained result was the performance of the classifiers using the full 

feature set. Analysing the data from A.2, it is easily seen that the Random 

Forest outperforms the other methods in terms of accuracy, with a value of 

86.33% comparing with the 83.83% value performed by the combined classifier, 

which is the second best in this category. Also in terms of recall, Random 

Forest performs better than the combined classifier, with a value of 82.2% 

against 74.7%. It indicates this is a strong classifier when it comes to identifying 

the accurately reported professional photos among all the ones which belong to 

such a class. However, under certain constraints, the combined classifier may 

be considered the best choice. It reports a precision value of 91.4% comparing 

with the 89.6% value returned by the Random Forest, which can be valuable if 

our main concern is having the best possible ratio of photos correctly classified 

as professional among all the ones receiving that classification. The True 

Negative Rate indicator is also favourable to the combined classifier, which 

achieves 92.9% against the Random Forest value of 90.4%. This means the 

combined classifier is a better option when it comes to identifying the rate of 

snapshots which were correctly classified as so. In the considered feature set, 

both AdaBoost and SVM present a much poorer performance than the other 

classifiers. 

This first algorithm run allows us to get an idea of how each feature performs. 

Although this analysis cannot be interpreted in a linear way, since the classifier 

parameters are optimized to the whole feature set, it is possible to get a taste of 

the developed features’ efficiency. Data presented in A.3 and A.4 shows each 

feature’s accuracy when independently run by the classifiers, which are 

optimized for the whole feature set. At first sight, it is possible to see that SVM 

reports a much higher standard deviation of the feature values. It produces 

features with both the highest and lowest accuracy. The other classifiers have 

much more balanced accuracy values, with Random Forest and combined 
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classifier slightly outperforming Gentle AdaBoost. Arguably, the best presented 

features are f1 (75% energy Laplacian box), f4 (hue count), f11 (colour 

harmony), f21 (subject colour simplicity), f22 (subject hue count) and f38 

(subject/background Laplacian relation). Most of these features (f1, f4, f22 and 

f38) are related to simplicity, which shows the importance of this aspect on the 

classification process. f22 and f38 were originally introduced in this paper; being 

part of the mentioned restricted feature set implies that they have a relevant role 

on image aesthetics assessment. 

After performing forward selection, as shown in A.5, the feature set got reduced 

to 10 attributes: f1 (75% energy Laplacian box), f9 (average brightness), f11 

(colour harmony), f17 (subject luminance RMS), f22 (background hue count), 

f28 (subject/background brightness squared difference), f30 (subject/ 

background saturation squared difference), f31 (subject/background Weber 

contrast), f32 (subject/background Michelson contrast) and f37 (subject relative 

size). The individual feature performance, presented in A.7, shows that f1, f11 

and f22 have a much higher accuracy than the other attributes. All these three 

features were part of the high accuracy set when using the whole features. 

In terms of performance of the overall system with the reduced feature set, from 

A.6, we can observe a notorious improvement. The SVM classifier achieves an 

accuracy of 90.0%, outperforming the other classifiers in every measurement 

but recall, where the combined classifier performs slightly better, with 81.1% 

against 80.9% from the SVM. However, all the other statistics give advantage to 

the SVM classifier, mainly when it comes to precision and TNR where it 

achieves a round number of 99%. 

The combined forward and backward selection led to a new set of features, as 

shown in A.9. This process substituted f28 and f37 by f4 and f10. A.11 and A.12 

show us that f1, f4, f11 and f22 are the most distinctive features. Once again, 

these features are all part of the best set determined while using the whole 

attributes. In general terms, the accuracies seem to be higher comparing with 

the ones calculated after the forward selection phase. Although there are 
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shared features between these two steps, the accuracy values are different 

because of the different parameters of the classifiers. 

In terms of accuracy, we assist to an overall improvement of the results, as 

presented in A.10. Excluding SVM, all the classifiers improve their general 

performance. In this case, the combined classifier achieved a value of 89.3%, 

achieving the best accuracy among the considered methods. However, it is not 

enough to perform better than the SVM used after forward selection. Figure 7-1 

shows an overview of the accuracies achieved by the different methods under 

the three tested conditions. There is a notorious overall improvement through 

the process, despite the system having its best performance in the SVM 

classifier after forward selection. 

 

Figure 7-1. System accuracy. 

Concerning to the other measurements, we can observe different behaviours. 

As shown in Figure 7-3, the recall values follow an increasing pattern. Both 

SVM and combined classifier, applied after forward and background selection, 

perform over 87%. However, both precision and TNR values decrease after 

applying the combined forward and background selection. Precision presents a 

higher value of 91.1% using the combined classifier, which is way lower than 

the 98.8% achieved by the SVM classifier after forward selection. The TNR has 

its higher value of 91.5%, using the combined classifier, which is much lower 

than the SVM value after forward selection, which presented a value of 99.0%. 
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Figure 7-2. System Precision. 

 

Figure 7-3. System Recall. 

 

Figure 7-4. System TNR. 
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Figure 7-5. System Kappa Statistic. 

This analysis shows that different classifiers should be used for different tasks. 

If the objective is accurately classifying the highest number of images 

independently of the considered class, then we may prefer using SVM after 

forward selection. However, if it is preferable to report the highest number of 

professional photos, it is better to use a classifier with higher precision, like 

SVM after combined forward and backward selection. If we want a more 

balanced system, we may want to use the combined classifier after combined 

forward and backward selection. 

 

 

Figure 7-6. Comparison of the different algorithms which use the same dataset. 
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It is important to compare the developed classifiers with the existing related 

works. This step is extremely difficult since all the environments seem to be 

different. There are lots of variables involved which mean we cannot directly 

compare all the algorithms. In order to reduce a variable, I just considered 

works which share the dataset used in this project: Ke et al. [11], Luo et al. [15], 

Gadde et al. [4] and Yeh et al. [26]. Figure 7-6 shows a comparison of the 

accuracy achieved by those algorithms and the SVM classifier which presented 

the highest accuracy in this project. In this set, my classifier report the 3rd best 

results, right behind the work developed by Luo et al. and Yeh et al., which 

achieve an overall accuracy of 93%. However, there are other variables which 

interfere with the final system score. As shown during this process, parameter 

selection may have a huge role on the final accuracy. On the other works, there 

are no evidences of the way the authors performed such a step. If the 

parameters are selected using the testing set accuracy, the final results will 

probably be overfitted to the data. This property will lead to a much higher 

reported accuracy than the one which will be observed in unseen data. 

There is also another relevant comparison: the precision-recall relation. In this 

project, the SVM classifier achieved precision and recall values of 99% and 

81%, respectively. Excepting Gadde et al., all other authors present information 

of their precision-recall values. Those numbers are shown in Table 7-1 and 

Table 7-2. In this particular domain, the algorithm developed in this project 

clearly outperforms the other implementations. 

 

 Recall 

Ke et al. <1% 

Luo et al. 16% 

Yeh et al. 16% 

Current project 81% 

Table 7-1. Recall values when precision = 99%. 



 

85 

 Precision 

Ke et al. 65% 

Luo et al. 86% 

Yeh et al. 79% 

Current project 99% 

Table 7-2. Precision values when recall = 81%. 
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8 CONCLUSIONS 

In this thesis, I developed an aesthetics-driven system for classifying images as 

professional photos or snapshots. The project is based on several works which 

address the same problem. However, as an open research field, there is always 

room for improvements. I expanded the used features by introducing a few new 

ones. The originally introduced f22 (background hue count), f31 

(subject/background Weber contrast relation), f32 (subject/background 

Michelson contrast relation) and f38 (subject/background Laplacian relation) are 

among the set of features with best accuracy. Nevertheless, the main subject of 

study was the learning phase. In this project, I introduced a classifier which was 

never tried in any of the related works: Random Forests. Although not achieving 

the best possible classification accuracy, this classifier has proved to be robust 

enough to rival with the most widely used techniques. It constantly beat 

AdaBoost which is a common choice among the scientific community. In 

addition, a combined classifier was created, by using a voting strategy taking 

into account the three considered classifiers. In some cases, this technique 

outperforms all the other classification methods. Lastly, I put a lot of effort in 

building a clear process which follows the rules of a good machine learning 

method. The first important step was selecting a widely used dataset, since it is 

crucial to have a similar base of comparison. Then, I developed attribute and 

parameter selection techniques using grid search and forward/backward 

selection. In these methods, the testing dataset is never used, so it is possible 

to avoid overfitting. 

The results of the project show that this system has slightly lower accuracy than 

the state of the art algorithms. However, it outperforms the other solutions in 

terms of precision and recall values. In addition, all the details were described in 

this document, so one can easily reproduce the work. I experienced some 

difficulties trying to replicate some other authors’ implementations. With this 

project, I tried to make the whole process clear enough so anyone can achieve 

the same results. Thus, I can say the project goals were achieved. 



 

88 

Despite the promising result of this work, I believe there are some ways of 

further improving the solution. Subject extraction relies on saliency maps and 

image segmentation. Both of them are open problems with results which are not 

completely related with humans’ perception. It is possible that the extracted 

subject region does not match the actual subject, decreasing the overall 

classification performance. Refining the subject extraction algorithm would 

certainly improve the system accuracy. It would also be useful trying other types 

of classifiers and selection techniques. Most authors are mainly concerned with 

the feature set. However, in order to extract the best performance from the 

features, it is necessary to have a strong classifier. Data patterns are often 

complex and the application of relevant machine learning techniques may 

heavily influence the system’s performance. Finally, applying the system on a 

real application would allow understanding its real impact. 
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APPENDICES 

A.1 Feature Names 

Global Features 

f1 75% energy Laplacian box 

f2 Average saliency 

f3 Saliency standard deviation 

f4 Hue count 

f5 Number of meanshift segments 

f6 98% luminance histogram mass width 

f7 Weber contrast 

f8 Michelson contrast 

f9 Average brightness 

f10 Average saturation 

f11 Colour harmony 

f12 FFT blur estimation 

f13 Aspect ratio 

f14 Intensity balance 

Subject Features 

f15 Average brightness 

f16 Michelson contrast 

f17 Luminance RMS 

f18 Hue RMS 

f19 Saturation RMS 
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f20 Average saturation 

Background Features 

f21 Colour simplicity 

f22 Hue count 

f23 Michelson contrast 

f24 Luminance RMS 

f25 Hue RMS 

f26 Saturation RMS 

Subject/background Relation Features 

f27 Lightning ratio 

f28 Brightness squared difference 

f29 Hue squared difference 

f30 Saturation squared difference 

f31 Weber contrast 

f32 Michelson contrast 

f33 Luminance RMS 

f34 Hue RMS 

f35 Saturation RMS 

f36 Rule of thirds 

f37 Subject relative size 

f38 Laplacian relation 

f39 Blur relation 
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A.2 Statistical Information of the Whole Feature Set 

 

 Accuracy Precision Recall TNR Kappa 

AdaBoost 0,776167 0,796847 0,741333 0,811 0,552333 

SVM 0,7795 0,840992 0,689333 0,869667 0,559 

Random Forest 0,863333 0,896076 0,822 0,904667 0,726667 

Combined 0,838333 0,91361 0,747333 0,929333 0,676667 
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A.3 Feature Accuracy Using the Whole Feature Set Parameters: 

Table 

 

Feature AdaBoost SVM Random Forest Combined 

f1 0,748 0,198 0,762 0,721 

f2 0,488 0,48 0,501 0,489 

f3 0,484 0,413 0,485 0,46 

f4 0,714 0,746 0,739 0,742 

f5 0,554 0,711 0,586 0,619 

f6 0,51 0,46 0,508 0,514 

f7 0,517 0,457 0,59 0,565 

f8 0,674 0,533 0,686 0,669 

f9 0,709 0,5 0,623 0,665 

f10 0,658 0,5 0,636 0,638 

f11 0,801 0,089 0,81 0,743 

f12 0,535 0,467 0,544 0,538 

f13 0,602 0,429 0,609 0,597 

f14 0,429 0,294 0,441 0,379 

f15 0,539 0,561 0,531 0,552 

f16 0,66 0,686 0,675 0,678 

f17 0,586 0,366 0,575 0,554 

f18 0,594 0,38 0,582 0,567 

f19 0,632 0,476 0,625 0,615 
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f20 0,639 0,453 0,612 0,608 

f21 0,744 0,893 0,687 0,821 

f22 0,696 0,728 0,751 0,751 

f23 0,692 0,318 0,689 0,675 

f24 0,508 0,536 0,449 0,49 

f25 0,656 0,531 0,644 0,66 

f26 0,601 0,582 0,57 0,609 

f27 0,582 0,725 0,58 0,651 

f28 0,571 0,31 0,557 0,51 

f29 0,603 0,556 0,626 0,652 

f30 0,603 0,518 0,569 0,603 

f31 0,615 0,235 0,624 0,554 

f32 0,671 0,321 0,67 0,653 

f33 0,582 0,309 0,589 0,538 

f34 0,616 0,473 0,6 0,619 

f35 0,603 0,446 0,585 0,569 

f36 0,527 0,57 0,512 0,539 

f37 0,513 0,484 0,518 0,516 

f38 0,675 0,777 0,716 0,73 

f39 0,676 0,258 0,693 0,649 

 

Green cells report accuracy over 70%. 
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A.4 Feature Accuracy Using the Whole Feature Set Parameters: Chart 
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A.5 Feature Selection: Forward Selection Phase 

Green cells correspond to the selected features. The feature picked at a certain step is 

maintained through the whole run. 

Feature Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Step10 

f1 0,859                   
f2 0,51 0,856 0,612 0,854 0,851 0,853 0,852 0,638 0,851 0,857 
f3 0,444 0,85 0,852 0,854 0,855 0,855 0,854 0,853 0,858 0,857 
f4 0,54 0,649 0,854 0,852 0,856 0,672 0,528 0,853 0,857 0,858 
f5 0,853 0,495 0,853 0,853 0,855 0,855 0,854 0,854 0,854 0,851 
f6 0,491 0,843 0,855 0,551 0,854 0,851 0,853 0,643 0,853 0,85 
f7 0,505 0,853 0,854 0,853 0,857 0,854 0,852 0,856 0,855 0,855 
f8 0,852 0,855 0,851 0,851 0,854 0,854 0,857 0,853 0,855 0,856 
f9 0,851 0,619 0,849 0,83 0,854 0,852 0,861       

f10 0,851 0,853 0,855 0,852 0,699 0,855 0,854 0,858 0,858 0,852 
f11 0,55 0,855 0,855 0,852 0,653 0,853 0,852 0,851 0,863   
f12 0,852 0,855 0,539 0,853 0,859 0,853 0,853 0,575 0,852 0,853 
f13 0,44 0,779 0,854 0,856 0,852 0,664 0,765 0,854 0,855 0,855 
f14 0,615 0,854 0,85 0,598 0,854 0,854 0,851 0,854 0,854 0,854 
f15 0,522 0,856 0,854 0,856 0,853 0,855 0,85 0,856 0,598 0,853 
f16 0,851 0,855 0,854 0,849 0,854 0,854 0,853 0,856 0,853 0,853 
f17 0,854 0,715 0,853 0,859             
f18 0,581 0,467 0,854 0,853 0,855 0,746 0,58 0,855 0,606 0,855 
f19 0,857 0,64 0,5 0,854 0,728 0,855 0,853 0,85 0,856 0,853 
f20 0,512 0,835 0,858 0,828 0,831 0,853 0,851 0,855 0,854 0,855 
f21 0,783 0,855 0,62 0,855 0,852 0,758 0,856 0,85 0,855 0,846 

f22 0,852 0,857                 
f23 0,853 0,854 0,853 0,48 0,857 0,543 0,853 0,857 0,854 0,856 
f24 0,855 0,523 0,852 0,551 0,854 0,542 0,854 0,854 0,852 0,854 
f25 0,555 0,853 0,856 0,853 0,852 0,679 0,852 0,854 0,857 0,854 

f26 0,51 0,383 0,852 0,853 0,853 0,854 0,854 0,755 0,856 0,852 
f27 0,854 0,853 0,855 0,852 0,853 0,856 0,851 0,777 0,853 0,853 
f28 0,851 0,855 0,852 0,854 0,542 0,853 0,851 0,859     
f29 0,495 0,854 0,852 0,848 0,852 0,538 0,855 0,856 0,851 0,854 
f30 0,855 0,843 0,849 0,73 0,863           
f31 0,852 0,438 0,483 0,855 0,855 0,86         
f32 0,854 0,853 0,858               
f33 0,622 0,855 0,854 0,549 0,853 0,553 0,853 0,853 0,855 0,842 

f34 0,516 0,854 0,853 0,852 0,853 0,854 0,711 0,854 0,854 0,855 
f35 0,501 0,854 0,857 0,854 0,854 0,858 0,854 0,854 0,852 0,766 
f36 0,856 0,854 0,854 0,853 0,854 0,85 0,856 0,855 0,855 0,694 
f37 0,563 0,85 0,854 0,853 0,748 0,854 0,852 0,766 0,608 0,863 
f38 0,832 0,59 0,529 0,44 0,78 0,479 0,655 0,682 0,551 0,658 

f39 0,687 0,613 0,506 0,812 0,556 0,679 0,688 0,5 0,525 0,621 
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A.6 Statistical Information of the Feature Set after Forward 

Selection 

 

 Accuracy Precision Recall TNR Kappa 

AdaBoost 0,713667 0,732922 0,672333 0,755 0,427333 

SVM 0,899833 0,988197 0,809333 0,990333 0,799667 

Random Forest 0,853833 0,903459 0,792333 0,915333 0,707667 

Combined 0,877333 0,93505 0,811 0,943667 0,754667 
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A.7 Feature Accuracy after Forward Selection: Table 

 

Feature AdaBoost SVM Forest All 

f1 0,744 0,765 0,771 0,783 

f9 0,661 0,707 0,666 0,678 

f11 0,823 0,843 0,809 0,879 

f17 0,572 0,628 0,58 0,603 

f22 0,705 0,702 0,751 0,751 

f28 0,555 0,356 0,571 0,528 

f30 0,595 0,448 0,572 0,558 

f31 0,641 0,3 0,641 0,606 

f32 0,637 0,554 0,668 0,641 

f37 0,518 0,517 0,513 0,519 

 

Green cells report accuracy over 70%. 
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A.8 Feature Accuracy after Forward Selection: Chart 
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A.9 Feature Selection: Combined Forward and Backward 

Selection Phase 

 

Feature Forward1 Backward2 Backward3 Forward4 

f1   0,857 0,855   

f2 0,849     0,857 

f3 0,72     0,716 

f4 0,858 0,854 0,854   

f5 0,854     0,851 

f6 0,852     0,853 

f7 0,853     0,852 

f8 0,853     0,857 

f9   0,854 0,853   

f10 0,852     0,859 

f11   0,853 0,857   

f12 0,854     0,851 

f13 0,767     0,854 

f14 0,851     0,854 

f15 0,855     0,854 

f16 0,854     0,854 

f17   0,854 0,852   

f18 0,853     0,854 

f19 0,854     0,679 

f20 0,644     0,854 

f21 0,853     0,855 

f22   0,854 0,853   



 

107 

f23 0,854     0,853 

f24 0,563     0,695 

f25 0,855     0,689 

f26 0,856     0,855 

f27 0,855     0,855 

f28   0,862   0,854 

f29 0,857     0,853 

f30   0,853 0,855   

f31   0,853 0,855   

f32   0,853 0,853   

f33 0,855     0,855 

f34 0,659     0,847 

f35 0,853     0,855 

f36 0,853     0,856 

f37   0,855 0,856 0,853 

f38 0,461     0,681 

f39 0,527     0,702 

 

Dark green cells correspond to features included during forward selection, while 

dark red ones represent excluded features during backward selection. Light 

green cells show attributes which constitute the feature set at each stage.  
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A.10 Statistical Information of the Feature Set after Combined 

Forward and Backward Selection 

 

 Accuracy Precision Recall TNR Kappa 

AdaBoost 0,791698 0,712 0,812667 0,524667 0,791698 

SVM 0,893862 0,878667 0,895667 0,774333 0,893862 

Random Forest 0,902131 0,832667 0,909667 0,742333 0,902131 

Combined 0,910708 0,870333 0,914667 0,785 0,910708 
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A.11 Feature Accuracy after Combined Forward and Backward 

Selection: Table 

 

Feature AdaBoost SVM Forest All 

f1 0,722 0,765 0,767 0,777 

f4 0,716 0,738 0,742 0,742 

f9 0,697 0,5 0,654 0,685 

f10 0,659 0,5 0,65 0,65 

f11 0,825 0,844 0,806 0,855 

f17 0,568 0,628 0,578 0,604 

f22 0,666 0,738 0,751 0,751 

f30 0,584 0,448 0,573 0,55 

f31 0,651 0,289 0,632 0,604 

f32 0,649 0,554 0,668 0,649 

 

Green cells report accuracy over 70%. 

  



 

110 

A.12 Feature Accuracy after Combined Forward and Backward Selection: Chart 
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