
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Web System For Creating And
Managing Virtual High Performance

Computing Environments

Pedro Adriano Pessoa Teixeira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Jorge Manuel Gomes Barbosa (PhD)

July 19, 2012

Web System For Creating And Managing Virtual High
Performance Computing Environments

Pedro Adriano Pessoa Teixeira

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Pedro Alexandre Guimarães Lobo Ferreira do Souto (PhD)

External Examiner: Pedro Manuel Henriques da Cunha Abreu (PhD)

Supervisor: Jorge Manuel Gomes Barbosa (PhD)

July 19, 2012

Abstract

Current Grid computing infrastructures are generally not very flexible when it comes to the users’
needs. As such, whenever it is required, the user must adapt its code to the infrastructures specifi-
cations.

On the other hand, Cloud Computing is associated with an extreme flexibility allowing the in-
frastructure to adapt itself to the users’ requirements. Another aspect present in Cloud Computing
but non-existent in Grid Computing is the Quality of Service factor, where a user can submit a job
according to a certain cost or deadline.

FEUP — Faculty of Engineering of Port University — has started developing a private cloud
project at its Informatics center (CICA — Informatics Center Prof. Correia de Araújo) — in which
a user can create custom Virtual Machine images on-the-fly and have the system automatically
provision the required resources to run the submitted job.

OpenStack and OpenNebula are competing cloud management platforms, both with their own
methods of dealing with Virtual Machine images.

In this report both cloud management platforms are reviewed and a choice is made as to which
one to use for integrating with the developed web system which serves as a portal to FEUP’s private
cloud project. The technologies that support these platforms are discussed so that the environment
on which they are inserted can be identified.

The work and research involved in creating a web system based on Python and Django that is
capable of creating Virtual Machine images according to the users requisites, as well as capable
of managing those said VM images is also documented.

The integration with OpenStack is presented and the advantages the implemented web system
has over the mentioned cloud middleware tool are documented.

i

ii

Resumo

As infraestruturas actuais de computação em Grelha geralmente não são muito flexíveis no que diz
respeito às necessidades dos utilizadores. Assim sendo e sempre que é necessário, é o utilizador
que tem de adaptar o código às especificações das infraestruturas.

Por outro lado, a computação em Nuvem é associada a uma flexibilidade extrema, permitindo
assim que seja a estrutura a adaptar-se aos requisitos do utilizador. Outro aspecto presente neste
tipo de computação, mas que é totalmente ausente na computação em Grelha, é o factor Qualidade
de Serviço, em que um utilizador pode submeter um trabalho de acordo com um determinado
custo ou um determinado prazo.

A FEUP — Faculdade de Engenharia da Universidade do Porto — começou a desenvolver o
seu próprio projecto de nuvem privada no seu centro de informática (CICA — Centro de Infor-
mática Prof. Correia de Araújo) em que um utilizador pode criar as suas imagens de máquinas
virtuais on-the-fly e ser o sistema a provisionar os recursos necessários para correr o trabalho de
computação desejado.

OpenStack e OpenNebula são duas plataformas de gestão de nuvens, competidoras no mer-
cado, sendo que ambas possuem os seus próprios meios de lidar com imagens de máquinas virtu-
ais.

Neste documento as duas plataformas de gestão de nuvens são revistas e uma delas é escolhida
para ser usada no projecto de nuvem privada da FEUP. As tecnologias que servem de suporte a
estas plataformas são também abordadas, para que o leitor consiga sentir-se contextualizado.

O trabalho e pesquisa envolvido na criação de um sistema web baseado em Python e Django
que é capaz de criar imagens de máquinas virtuais de acordo com os requisitos do utilizador, bem
como capaz de gerir essas imagens é também documentado.

A integração com OpenStack é apresentada e as vantagens que o sistema web implementado
tem sobre a ferramenta de middleware para clouds são documentadas.

iii

iv

Acknowledgements

To the people at CICA, namely Miguel Costa and Jorge Ruão, for going out of their way to help me.

To Prof. Jorge Barbosa for all the support, guidance and most of all, patience.

To Prof. Tito Vieira, for being the link between me and CICA and for the guidance in the early
stages of the project.

To everyone who shared these last seven years with me, days and nights. I could not have made it
without your help and support.

To the members of NiFEUP, past and present, for giving me a sense of belonging and helping
me when I most needed. A special “Thank you” to Carlos, who helped me solve many technical
issues, and to Nuno, who helped me give a better look to the project.

To my Mother, my Father and my Sister, for the immeasurable support and gargantuan ammounts
of patience needed to put up with my antics.

Pedro Teixeira

v

vi

“It is sometimes an appropriate response to reality to go insane.”

Philip K. Dick, VALIS

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Objectives . 2
1.3 Dissertation Structure . 3

2 Cloud Middleware 5
2.1 Virtualization and Virtual Machines . 5

2.1.1 Hypervisors . 8
2.2 Grid Computing . 8
2.3 Cloud Computing . 12

2.3.1 Utility Computing . 15
2.4 Grids VS. Clouds . 17
2.5 Technology Review . 18

2.5.1 Web technologies . 18
2.5.2 AWS – Amazon Web Services . 19
2.5.3 Google Cloud – Google’s App Engine 20
2.5.4 Microsoft Azure . 21

2.6 FEUP’s Computing System . 22
2.6.1 Clusters . 22

2.7 Cloud middleware solutions . 24
2.7.1 OpenStack . 24
2.7.2 OpenNebula . 27
2.7.3 Project Aeolus . 29
2.7.4 Contextualization . 30
2.7.5 OpenNebula VS OpenStack . 33

2.8 Image creation . 36
2.8.1 Oz . 36
2.8.2 JeOS and vmbuilder . 37
2.8.3 VeeWee and Vagrant . 37

2.9 Conlusions . 38

3 Problem Statement 39
3.1 Problem Description . 39
3.2 CICA’s private cloud project . 40

3.2.1 The big picture . 40
3.2.2 The stakeholders . 41
3.2.3 The objectives . 41
3.2.4 Requirements specification . 42

ix

CONTENTS

3.3 The solution . 43
3.3.1 UML diagram . 43
3.3.2 Use Cases . 44
3.3.3 Relevant system details . 57
3.3.4 VM image management . 59

3.4 Conclusions . 60

4 Approach and Results 61
4.1 Implementation . 61

4.1.1 Web system . 61
4.2 Integrating with OpenStack . 65

4.2.1 Advantages over OpenStack . 69
4.3 Results . 70
4.4 Conclusions . 71

5 Conclusion 73
5.1 Conclusions . 73
5.2 Future Work . 74

A Grids VS. Clouds 77

B OpenStack VS. OpenNebula 79

C IRC conversation about Cloud-init 81

D vmbuilder script 83

E Use cases 85

F Web system screenshots 93

References 101

x

List of Figures

2.1 Cloud Actors. [BYV+09] . 14
2.2 OpenStack Software Diagram [CCb]. 25
2.3 OpenNebula’s Architecture [PLa]. 28
2.4 OpenNebula’s components [PLb]. 29
2.5 Launching an instance in Horizon. 31
2.6 Script to be ran once the instance is launched. 32
2.7 Comparison between the number of committers on OpenStack and OpenNeb-

ula [DSI]. 34
2.8 Comparison between the number of commits on OpenStack and OpenNebula [DSI]. 35
2.9 Comparison between the programming languages in OpenStack and OpenNeb-

ula [DSI]. 35

3.1 CICA’s full computing project. 40
3.2 Entities and their relationship in the system. 43

4.1 One of the VM image creation test runs. 65
4.2 Relationships between the different OpenStack services. [Pep] 66
4.3 Proposed architecture implementation for integrating with OpenStack. 67
4.4 OpenStack Horizon Dashboard. 68
4.5 OpenStack services. 68
4.6 Customizing an instance in OpenStack. 69
4.7 The administration interface. 70
4.8 Changing user details in the administration interface. 71

A.1 Comparing Grids and Clouds [VRMCL08]. 78

B.1 Comparing OpenStack and OpenNebula on Ohloh.com.[DSI] 80

E.1 UC1 – Login into the web system. 85
E.2 UC2 – Perform management operations. 86
E.3 UC3 – Create a new VM image. 87
E.4 UC4 – Launch a VM. 87
E.5 UC5 – View system wide statistics. 88
E.6 UC6 – Search for a VM image. 88
E.7 UC7 – View the details of an existing VM image. 89
E.8 UC8 – Modify the details of an existing VM image. 89
E.9 UC9 – View user details. 90
E.10 UC10 – Modify the user’s details. 90
E.11 UC11 – Reserve an image for later use. 91

xi

LIST OF FIGURES

E.12 UC12 – Mark an image for deletion. 91
E.13 UC13 – Customize an image and save it. 92

F.1 Create a VM image. 93
F.2 Post image creation screen. 94
F.3 The start page. 94
F.4 List of available VMs to launch. 95
F.5 Login screen. 95
F.6 Management area accessible from the start page. 96
F.7 Management area accessible from the start page. 96
F.8 Search page. 96
F.9 Results of a search for “vim, program1, program2, gcc, tex”. 97
F.10 User details page. 97
F.11 VM images available to the user (includes public and created by the user). 98
F.12 Most used VM images by the current user. 98
F.13 Most used VM images system wide. 99
F.14 Tag cloud. 99
F.15 Most searched “tags” in the system. 99
F.16 Link to “Image management”. 99

xii

List of Tables

xiii

LIST OF TABLES

xiv

Abbreviations

ACL Access Control List
AMI Amazon Machine Image
API Application Programming Interface
CICA Centro de Informática Prof. Correia de Araújo
CLI Command Line Interface
CPU Central Processing Unit
DNS Domain Name Server
FEUP Faculdade de Engenharia da Universidade do Porto
GUI Graphical User Interface
IRC Internet Relay Chat
MIEIC Mestrado Integrado em Engenharia Informática e Computação (Integrated

Master in Informatics and Computer Engineering)
MVC Model-View-Controller
OS Operating System
QOS Quality of Service
UML Unified Modeling Language
VD Virtual Disk
VM Virtual Machine
VO Virtual Organization
VW Virtual Workspace

xv

Chapter 1

Introduction

High performance computing describes the ability of using parallel processing in order to perform

advanced application programs with a great deal of efficiency, reliability and quickness. [Tec]

Current Grid Computing infrastructures are generally not very flexible when it comes to the

users’ needs. As such, whenever it is required, the user must adapt its code to the infrastructures

specifications.

On the other hand, Cloud Computing is associated with an extreme flexibility allowing the in-

frastructure to adapt itself to the users’ requirements. Another aspect present in Cloud Computing

but non-existent in Grid Computing is the Quality of Service factor, where a user can submit a job

according to a certain cost or deadline.

Furthermore, there is also the elasticity component1, something that is not available in Grid

Computing technologies but is inherent to Cloud Computing, and is one of its flagships that may

be able to cross over to grid infrastructures.

In this document is presented the design and implementation of a web system that serves as an

interface for CICA’s private cloud project. Some of the technologies that support this web system

are also described, as well as providing a contextual background in terms of computing and some

of its internal fields.

This first chapter introduces a brief technological and situational context, as well as the mo-

tivation behind the choice of this subject and the objectives set. The document’s structure is also

shown.

1.1 Context

Leonard Kleinrock (part of the team that developed Arpanet, an early seed for the Internet) said in

1969:

1An application can expand and contract on demand, across all its tiers (presentation layer, services, database,
security and more). Its components can expand independently from each other, without affecting, reconfiguring or
changing the other components.

1

Introduction

“As [...] computer networks [...] grow and become sophisticated, we will probably see

the spread of ‘computer utilities’ which, like present electric and telephone utilities,

will service individual homes and offices around the country.” [BYV+09]

Confirming Kleinrock’s prediction, computing is migrating in a direction where people de-

velop software for an incredible amount of people so it can be used as a service, instead of running

said software on their personal computers. Different providers such as Amazon, Google, IBM

and Sun Microsystems are now establishing data centers dedicated to hosting Cloud Computing2

applications spread around the world in order to ensure redundancy and reliability in case one of

the datacenters fails.

User requirements for Cloud services are complex and varied, so service providers need to

know they can be flexible when delivering those services at the same time they keep the users

clear from the infrastructure on which those services stand.

Computing services are available instantly when anyone needs them and the consumers only

required to pay the providers when they actually access and use those resources. Consumers no

longer have the need to invest in and maintain complex IT infrastructures and software developers

are facing new challenges. They must create custom made software that will be used as a service,

instead of the traditional practice of installing the software in the users’ machines. Some people

state this is the era of pervasive computing, where computation and information are available all

the time. [McF]

Having this in mind, FEUP has started developing a private cloud project at its Informatics

center (CICA - Centro de Informática Prof. Correia de Araújo). As it will be discussed in greater

detail in Chapter 3 - Problem Statement - this document reports the work realized on the front-end

of the private cloud project.

1.2 Motivation and Objectives

Some computing infra-structures, namely Grids3 and Clusters4, can be rather inflexible when com-

pared to Clouds, as the latter are supposed to allow the user to take advantage of a myriad of

services, and not just computing power. [Sun]

However, as powerful as these infra-structures can be, they can be deemed useless if people

who need to work with them, cannot do it because they have no knowledge of the technologies.

As such, this type of issue causes a lack of growth in the use of FEUP’s computing system.

This project aims at increasing the usability of the current computing system that exists at

FEUP and with this, increase its usage and stop the lack of growth. In order to achieve this goal,

it was proposed that a web portal would be developed which would simplify the access to the

system. This portal would have a list of common software packets and Linux distributions that

2Using multiple server computers via a digital network as if they were a single computer.
3Distributed systems that are loosely coupled, heterogeneous and geographically dispersed and act together to per-

form very large tasks.
4Group of linked computers working closely together as if they were a single machine.

2

Introduction

the user could choose from and create an VM image which would be used to run the researcher’s

computing job.

Furthermore, this document presents a possible integration with an emerging technology in

the cloud computing field (OpenStack), a technology that surpassed some of its direct competitors,

even though it was started later.

1.3 Dissertation Structure

This Dissertation is structured as follows:

Chapter 2: “Cloud Middleware” — Bibliographic review on some of the most relevant areas

for this project and on the candidate technologies for the implementation.

Chapter 3: “Problem Statement” — Exposes the “problem” that originated this dissertation, as

well as the solution proposed and its relevance and contribution.

Chapter 4: “Approach and Results” — Reviews some implemented technical aspects consid-

ered relevant. In this chapter the integration with OpenStack is discussed.

Chapter 5: “Conclusion” — Reviews the project, drawing conclusions on what was imple-

mented and what remains to be done, with reference to Chapter 4. It provides a summary of the

contributions and the future work for this project.

Abbreviations are used throughout this document to improve readability, all of which can be

found in Abbreviations. References and citations appear inside [square brackets] and in highlight

color. Highlighted text will act as an hyperlink when visualizing this document in a computer.

Terms which refer to programming methods, functions, Django modules, Python libraries and

Ubuntu processes are displayed in true type font.

3

Introduction

4

Chapter 2

Cloud Middleware

This chapter presents a bibliographic review on the subjects covered by this project.

Firstly, the concepts of Virtualization, Grid and Cloud Computing are presented, as well as a

comparison between these two areas. There is also an analysis on existing developments, applica-

tions and projects on the area of Cloud and Grid Computing.

Two community driven projects for cloud middleware solutions (OpenStack and OpenNebula)

are compared and one of them is chosen to use in the project focused by this document.

Some of the computing technologies in use at FEUP are also presented and discussed.

2.1 Virtualization and Virtual Machines

Throughout this project, Virtual Machines (VMs) are mentioned in great amount and as such, they

deserve a special section.

Certain problems arise when the requirements of different virtual organizations (VOs)1 that

need to use the same resources are in conflict or are incompatible with site policies. The software

available on clusters cannot guarantee isolation of different communities and maintain resource

availability while ensuring good utilization of those said resources. This is where Virtual Machines

(VMs) come into play. They are emulations of lower layers of computer abstractions on behalf

of the higher layers and allow the isolation of the applications from the hardware and neighbour

VMs and customizing the platform so it suits the user’s needs [FFK+06, ZKFF05].

Virtualization benefits include an improvement in fault isolation and independence from guest

VMs, performance isolation and simplifying the migration of VMs across different physical ma-

chines. These benefits enable VMs to share pools of platform and data center resources [NS07].

The ability to serialize and migrate the state of a VM paves the way for better load balancing

and improved reliability that cannot be achieved with traditional resources. Deploying virtual

clusters – set of VMs configured to behave as a cluster and intended to be scheduled on a physical

resource at the same time [ZKFF05] – of diverse topologies requires the ability to deploy many

1An organization whose members are geographically apart, using technologies that make them appear to be a unified
organization with a real physical location.

5

Cloud Middleware

VMs in a coordinated manner so that sharing of infrastructure, such as disks and networking, can

be properly configured. This can become more costly than the deployment of single VMs.

In order to understand more, it is necessary to define virtual workspaces (VWs). These are an

aggregation of an execution environment and the resources allocated to that specific environment.

It is described by the workspace metadata, containing all the information needed for deployment.

An atomic workspace, representing a single execution environment, specifies the data that must be

obtained and the deployment information that must be configured on deployment. It is also needed

to specify a requested resource allocation, something that describes how much of each resource

should be allocated to the workspace.

These atomic workspaces can then be combined to formed what is called a virtual cluster.

Foster et al propose an aggregate workspace that contains one or more workspace sets – atomic

workspaces with the same configuration. Cluster descriptions can be defined in ways that atomic

workspaces can be constructed flexibly into more complex structures, organizing at the same time

the infrastructure sharing between the virtual nodes. This deployment enables the user to specify

different resource allocations for different members of aggregates defined like this. Foster et al

consider that the trade-off they obtained is acceptable, as the slowdown suffered was of about 5%

and considering that virtual machines offer unprecedented flexibility in terms of matching clients

to resources [FFK+06].

Zhange et al also approached the virtual cluster theme in an article written with both Foster and

Freeman, where they combine virtual clusters with Grid technology. The authors only considered

two types of node within the cluster: head-nodes and worker nodes. They optimized the loading

of the virtual images through image cloning (only transferring one image for all the worker nodes

and one image for the head-node, therefore cloning all the worker node images at either staging or

deployment time) and they considered that the cost of virtual cluster deployment and management

is a good justification for expecting that they may be used for VOs for large groups of short jobs

and single long-running jobs. They also found that the cost of running batch jobs in a a virtual

cluster was very acceptable [ZKFF05].

Katarzyna Keahey and Tim Freeman introduce the term contextualization in order to describe

the process of quickly deploying fully configured images and adapt them to their deployment

context, for single VMs. The authors understand contextualization as the process of adapting

an appliance to its deployment context (an appliance defining an environment as an abstraction

independent of its deployment). They are deployed dynamically and are potentially associated

with a different context. According to the authors, they can also fulfill three different roles [KF08]:

1. Appliance providers – they configure environments, maintain them and guarantee their con-

sistency;

2. Resource providers – they provide resources with limited configuration requirements that

are designed to support appliances but no longer to provide end-user environments for mul-

tiple communities;

6

Cloud Middleware

3. Appliance deployers – they coordinate the mapping of appliances onto available resource

platforms and information exchange between groups of appliances to enable them to share

information.

There are different types of approaches, since providers can have the applications running

inside VMs or provide access to the VMs as a service (Amazon Elastic Compute Cloud), enabling

the users to install their own applications. With virtualization, companies are trying to save power

by getting the most of what they consume. Running several operating systems inside one machine,

they can run independently and CPU idle time is kept to a minimum [Wei07].

Virtualized computing clusters offer the advantage of being able to transform themselves to

the user’s needs. However, as pointed out by Nishimura et al, previous work has shown that the

system does not scale when increasing the number of VMs and their detailed configuration is not

allowed. To counter this issue, Nishimura et al propose a new way of managing virtual clusters so

that a flexible and fully-customizable system integration by creating VMs on-the-fly is achieved.

The authors also propose the creation of virtual disk caches (VD caches), in order to reduce

software installation time. This VD cache is created when a user requests it and is automatically

destroyed to keep the total cache size within the given space. What the authors did was that when

an installation request is made by the user, the system selects physical resources to host a vir-

tual cluster for the request, instantiates a set of VMs and installs the operating system and other

requested software to them. The experiments conducted by the authors using a prototype imple-

mentation showed that installing a 190-node virtual cluster can be done in 40 seconds, indicating

that the installation of a 1000-VM could be done in under two minutes [NMM07].

Nathuji and Schwan addressed the issue of integrating power management mechanisms and

policies with the virtualization techniques deployed in virtual environments. They propose the Vir-

tualPower approach which aims to control and synchronize the effects of the power management

policies applied by the VMs to the virtualized resources.

The authors propose this approach having in mind the current limitations in battery capacities

and the power delivery and cooling limitations existent in data centers when they try to handle the

constant demands of performance and scalability. The authors state that their approach can exploit

the hardware power scaling and the methods that control the power consumption of the underlying

platforms. It takes guest VMs’ power management policies and coordinates them through the

system in order to achieve the objectives.

The power management actions are encoded as a set of rules, these being based on a set of

mechanisms which serve as a base to implement the power management methods. This approach

aimed to present guest VMs with a set of power states and then use the state changes requested by

the VMs as inputs to virtualization-level management policies, including those to use specific plat-

forms and their power management capabilities, along with policies that take into consideration

goals derived from the applications running through the whole system and from global constraints,

such as rack-level limitations on maximum power consumption.

7

Cloud Middleware

Their findings showed that it is possible to respond to specific power management goals and

policies implemented in guest VMs without a need for application specificity to be established at

the virtualization level [NS07].

2.1.1 Hypervisors

An hypervisor is a piece of software that emulates the functioning of certain hardware, a process

called Hardware Virtualization. KVM – Kernel-based Virtual Machine – an open-source virtual-

ization software2 is used on the back-end of the project..

The following features for KVM were identified [Car11]:

• Virtualization using hardware virtualization extensions, such as Inter-VT and AMD-V, thus

enabling faster virtualization;

• Symmetric Multi Processor emulation – enables multiprocessor hardware emulation;

• Live migration of VMs between hosts, allowing VM relocation without downtime;

• Paravirtualized networking and block devices, which enables faster emulation of those de-

vices.

2.2 Grid Computing

Buyya et al believe that Grid computing facilitates the sharing, selection and aggregation of geo-

graphically dispersed resources, be it supercomputers, storage systems, data sources or even spe-

cial assets owned by organizations for solving large-scale resource-intensive problems in different

areas of expertise, and that was Grid computing’s motivation. Buyya also created a definition for

"Grid" at the 2002 Grid Planet conference held in San Jose, United States [BYV+09]:

“A Grid is a type of parallel and distributed system that enables the sharing, selection,

and aggregation of geographically distributed ’autonomous’ resources dynamically

at runtime depending on their availability, capability, performance, cost, and users’

quality-of-service requirements.”

Ian Foster, one of the most revisited authors regarding Grid computing, states that the “Grid”

must be looked upon in respect of the applications it contains, the business value it generates and

the scientific results it is capable of returning, instead of its architecture. Carl Kesselman and Ian

Foster wrote the following definition in their book “The Grid: Blueprint for a New Computing

Infrastructure” [KF98]:

“A computational grid is a hardware and software infrastructure that provides depend-

able, consistent, pervasive and inexpensive access to high-end computational capabil-

ities.”
2Nuno Cardoso compared XEN and KVM, but came to the conclusion that neither offered an advantage over the

other, so KVM was chosen due to its simplistic installation process.

8

Cloud Middleware

Foster and Steve Tuecke redefined the definition, this time referring social and policy issues,

affirming that Grid computing is related to resource sharing and problem solving in a coordinated

manner and that these occur in dynamic, multi-institutional virtual organizations, the aspect to

remember being the power to do something with the result. The authors also stated that they are

preoccupied with the “direct access to computers, software, data and other resources.”

As such, Foster proposes (as pointed out by the title of his article) a three point checklist that

defines what a Grid system should be [Fos02]:

• The Grid should coordinate resources that are not subject to centralized control – Integration

and coordination of both users and resources that live within different domains;

• The Grid should use standard, open, general-purpose protocols and interfaces, as this will al-

low the establishment of dynamic resource-sharing arrangements and the creation of some-

thing more than an agglomerate of incompatible and non-interoperable distributed systems;

• The Grid should deliver nontrivial qualities of service, such as response time, throughput,

availability, security, co-allocation of multiple resource types to meet complex user de-

mands, resulting in the utility of the combined system to be greater than just the sum of

its parts.

Foster also states that the Web is not a Grid, as though its general-purpose protocols support

the access to distributed resources; they do not coordinate their use to deliver qualities of service.

Some large-scale Grid deployments inside the scientific community abide by the three points

described by Foster, such as NASA’s Information Power Grid and the TeraGrid, which will link

major U.S. academic sites, as they integrate resources from several institutions, use open and

general-purpose protocols (Globus Toolkit, which will be discussed in further details later on this

report) to negotiate and manage sharing and they address multiple dimensions of the quality of

service, such as security, reliability and performance [Fos02].

Stockinger started a survey where he contacted over 170 Grid researchers globally spread in

order to obtain a general feel on how the Grid was being defined. The results showed that the Grid

infrastructure should provide a set of capabilities, such as [Sto07]:

• Description of available resources, what they are capable of doing and how they are con-

nected;

• Visibility into the state of resources, including notifications and logging of significant events

and state transitions;

• Assurance of the quality of service across an entire set of resources for the lifetime of their

use by an application;

• Provision, life-cycle management and decommissioning of allocated resources;

• Accounting and auditing of the service;

9

Cloud Middleware

• Security.

The results also showed that a Grid should have a set of characteristics, including [Sto07]:

• Collaboration – sharing resources in a distributed manner;

• Aggregation – the Grid is more than just the sum of all parts;

• Virtualization – Services are provided in a way that the complexity of the infrastructures

is hidden from the end-user through the creation of an abstract "layer" between clients and

resources;

• Heterogeneity;

• Decentralized control, Standardization and Interoperability – supporting Ian Foster’s defini-

tion;

• Access transparency – users should be able to access the infrastructure without having to

preoccupy themselves how they are doing it;

• Scalability;

• Reconfigurability;

• Security – specially since the systems are often spread through multiple administrative do-

mains.

The members of the EGEE (Enabling Grids for E-sciencE Project) also state that their Grid

abides by some of the characteristics mentioned above, namely "decentralized control", "hetero-

geneity" and "collaboration" [B0́8]. Their Grid is described in greater detail in the "Grids VS

Clouds" section below.

Bote-Lorenzo et al also identified some core Grid characteristics that coincide with Stockinger

and Ian Foster’s definitions. These include scalability, heterogeneity, resource coordination and

dependable, consistent and pervasive access. The propose the following definition for a Grid [BLDGS04]:

“... large scale geographically distributed hardware and software infra-structure com-

posed of heterogeneous networked resources owned and shared by multiple adminis-

trative organizations which are coordinated to provide transparent, dependable, per-

vasive and consistent computing support to a wide range of applications. these ap-

plications can perform either distributed computing, hight throughput computing, on-

demand computing, data-intensive computing, [...]”

Baker et al say that the Grid has evolved from something static and carefully configured,

to what has been witnessed in the past years, where it became a seamless and dynamic virtual

environment, capturing the attention from the industry and thus making an impact on the Grid’s

architecture and protocols and standards.

10

Cloud Middleware

The authors also describe a few standards and organizations that have been actively present

in the Grid’s environment over the past years. These include the Global Grid Forum (GGF), a

community-driven set of groups which goal is to develop standards and best practices for wide-

area distributed computing. The GGF creates a group of documents that provide some information

to the Grid community, dividing its efforts into several categories, including architecture, data and

security.

The authors also approach the World Wide Web Consortium (W3C), an international organiza-

tion created to promote common and interoperable protocols. This organization was responsible

for creating the first Web Services specifications in 2003, such as SOAP and the Web Services

Description Language (WSDL). According to the authors, the most important Grid standard to

appear recently is the Open Grid Services Architecture (OGSA), which goal is to define a com-

mon, standard, and open architecture for Grid-based applications. It was announced by the GGF

at the Global Grid Forum in 2002 and in March 2004 it was declared by the GGF to be the flagship

architecture [BAFB05].

Iosup, Dumitresco and Epema analyzed four Grid implementations and the differences on their

workload [IDE+06]:

• Firstly, they covered the LHC Computing Grid, which testbed has 25,000 (twenty five thou-

sand) CPUs and 3 PetaBytes of storage. Jobs are managed and routed to resources via a

Resource Broker, which tries to conduct the job matchmaking and balance the workloads at

the global level. The site used by the authors had around 880 CPUs;

• Secondly, they looked at the Grid3 testbed, representing a multivirtual organization envi-

ronment that sustains production level services required by various physics experiments. It

is composed by more than 30 sites with 4500 (four thousand five hundred) CPUs;

• Thirdly, they analysed the TeraGrid system – used for scientific research – which has over

13,6 TeraFLOPS of computing power and can store 450 TeraBytes of data;

• Finally, they reviewed the DAS-2 environment, which has 400 CPUs spread over five Dutch

Universities and its workload ranges from single CPU jobs to very complex ones. These can

be submitted either via the local resource managers or to Grid interfaces that communicate

with them.

They discovered that while Grid research focuses on complex application types, most of the

applications encountered were extremely easy to run in parallel (embarrassingly parallel applica-

tions).

The authors identified two large problems, a scale (origin and size of the data that must be

collected) and a methodological (missing components of the information) problem. In order to ad-

dress the first problem, the information should ideally come from three different sources [IDE+06]:

• Local and Grid scheduler – without these logs, job arrival and dependency information can

be lost and an analysis of site-related performance metrics cannot be done;

11

Cloud Middleware

• Grid AAA (authentication, authorization and accounting) modules – these modules provide

the information regarding the link between jobs and their owners;

• Monitoring systems – without the information these systems provide, it is impossible to

understand how the applications are running within the Grid and to quantify the system

utilization.

The authors concluded that a small number of VOs and users control the workload in terms of

submitted jobs and consumed resources, system evolution can appear at the system, VO and user

level and should be considered when provisioning resources [IDE+06].

Malcolm Atkinson from the National e-Science Center in the United Kingdom, says the fol-

lowing [Sto07]:

“With Web Services we allow a thousand flowers to bloom. With a Grid we organize

the planting and growth of a crop of plants to make harvesting easier.”

Iosup et al end their article with the following quote [IDE+06]:

“[...] conclude that Grids are not yet utilized at their full capacity.”

which serves as a conclusion for this section.

2.3 Cloud Computing

Similarly to the Grid, many definitions arise when one talks about the Cloud. Presently, it is

considered normal to obtain access to content spread over the Internet without a reference to the

hosting infrastructure that lies underneath it. This infrastructure is made of data centers that are

being monitored by service providers.

Buyaa et al state that Cloud computing extends this paradigm in where the capabilities of the

applications are viewed as complex services that can be accessed over a network. The authors also

believe that the Cloud is an infrastructure from where businesses and users can access applications

from anywhere in the world anytime they want. Cloud computing’s services need to be reliable,

scalable and sufficiently autonomic to support omnipresent access, dynamic discovery and they

need to support composability, as they must permit to be reassembled and selected in any order to

comply to the user’s requirements.

The authors have a definition of their own [BYV+09]:

“A Cloud is a type of parallel and distributed system consisting of a collection of inter-

connected and virtualized computers that are dynamically provisioned and presented

as one or more unified computing resource(s) based on service-level agreements es-

tablished through negotiation between the service provider and consumers.”

12

Cloud Middleware

They believe that Clouds are the new datacenters with hypervisor technologies such as VMs,

with services provided on-demand as a personalized resource collection in order to meet the

service-level agreement, which should be established à priori with a “negotiation” and accessi-

ble as a composable service via Web Service technologies.

Vaquero et al state that the paradigm of Cloud computing shifts the infrastructure to the net-

work in order to reduce the costs that are normally associated with the management of hardware

and software resources.

Having in mind Gartner’s Hype Cycle3, Vaquero et al state that Cloud computing is now in its

first stage – Positive Hype – mixing every definition that appears into an overly general term that

confuses every single person. The same thing that happened to Grids can be applied here. There

are no widely accepted definitions (Foster’s being the most accepted one) and a clear definition

can help transmit what it actually is and how businesses can reap benefits from it.

There are many Cloud definitions, but they all focus on certain technological aspects. Thus,

Vaquero et al try to analyze all the features of Cloud computing in order to reach a clearer defini-

tion.

The authors try to distinguish the different actors and scenarios that can arise:

The actors:
Service Providers make services accessible to Service Users through Internet-based Interfaces.

The computing infrastructure is offered “as a service” by the Infrastructure Providers, moving

computing resources from the SPs to the IPs, in order to give the firsts flexibility and reduced

costs.

The scenarios [KG09, VRMCL08]:

• Infrastructure as a Service – IPs are responsible for the management of a large set of com-

puting resources, such as storing and processing capacity. If they use virtualization, they can

split, assign and dynamically resize the resources to build ad-hoc systems as the customers

(SPs) demand, by deploying the software stacks that run their services.

• Platform as a Service – Clouds offer an additional abstraction layer – they can provide the

software platform where systems run on. The sizing of the hardware resources demanded

by the execution of the services is made in a transparent manner. The applications devel-

oped are run on the provider’s infrastructure and are delivered through the Internet from the

provider’s servers. The Google Apps Engine is a very good example.

• Software as a Service – Cloud systems can host many services that users can be interested

in, such as online word processors or even Google Apps.

3Graphic representation of the maturity, adoption and social application of specific technologies. It has five phases:
1 Product launch that generates interest; 2 – Frenzy of publicity generates over-enthusiasm and unrealistic expectations;
3 – Technologies fail to meet expectations and become unfashionable; 4 – Press stopped to cover the technologies, but
some businesses continue to experiment and understand its benefits; 5 – Benefits become widely demonstrated and
accepted. Technology becomes stable and evolves.

13

Cloud Middleware

Figure 2.1: Cloud Actors. [BYV+09]

In the article written by Vaquero et al, many Cloud definitions are gathered. Markus Klems

states that the key elements for the Cloud are immediate scalability and the optimization of re-

sources usage, these being bring provided by increased monitoring and automation of resources

management. Jeff Kaplan and Reuven Cohen prefer to focus on the business model, paying more

attention to the collaboration and pay-as-you-go and reducing the costs of investment. Douglas

Gourlay and Kirill Sheynkman define the Cloud as being simple virtualized hardware and soft-

ware, combined with monitoring and provisioning technologies [GKC+, VRMCL08].

McFedries believes that the basic unit of the Cloud is nothing other than data centers – huge

collection of clusters – that can offer a large supply of computing power and storage simply by

using whatever resources they can spare [McF].

Kevin Hartig defines Cloud Computing as being able to access resources and services needed

to perform certain tasks with needs that are constantly changing. The application or user requests

access from the cloud rather than on a specific endpoint of the network or a resource. The Cloud

becomes a virtualization of resources that is both self maintainable and manageable, a view also

shared by Jan Pritzker, who focuses his definition on virtualization and on-demand resource allo-

cation. Other authors such as Reuven Cohen, Praising Gaw, Damon Edwards and Ben Kepes (to

name a few) are strong believers that Cloud computing is nothing more other than a buzz word,

14

Cloud Middleware

grouping concepts such as deployment, load balancing, provisioning and data and processing out-

sourcing [GKC+].

Having this in mind, Vaquero et al believe that the Cloud is a large pool of easily usable

and accessible virtualized resources (such as hardware, development platforms and/or services),

these being dynamically reconfigured to adjust to a variable load (scaling) also allowing for an

optimum resource utilization. The pool of resources is typically exploited by a pay-per-use model

in which guarantees are offered by the Infrastructure Provider by means of customized Service-

Level Agreements. The authors also state the set of features that resemble this minimum definition

would be scalability, pay-per-use utility model and virtualization [VRMCL08].

Brian Hayes states in his article that even though the future of Cloud computing is still unclear,

there are a few directions in which it can go. One of those directions is Web based services,

such as Google Docs or even Photoshop Express. Salesforce.com also offers a variety of online

applications and its slogan is actually "No software!".

As mentioned earlier in the report, Amazon.com also ventured into this new paradigm, offering

data storage and computing capacity, each of these services being able to expand and contract as

the users need (elasticity) and Google has its App Engine, providing hosting on Google server

farms.

There is great concern in terms of scalability in the Cloud, as it might be necessary to orga-

nize resources so that the program runs flawlessly even though the number of concurrent users

increases might arise. Hayes also mentions that Cloud computing raises questions in terms of

privacy, security and reliability, since personal documents are being delivered to a third-party ser-

vice [Hay08].

Nicholas Carr writes in his book that a shift is happening, where the Cloud is becoming similar

(if not equal) to the electric grid, as we can connect to the Cloud and get data, storage space and

processing power cheaply and instantly (Utility Computing) [Car09].

Aaron Weiss writes in his article that the Cloud is robust, even self-healing, as it has many

sources from where to get the power to recover from whatever accident occurs. Weiss states

that the Cloud is also very power consuming, as roughly 50 percent of the energy it consumes

comes from the cooling process alone. Giants such as IBM and Microsoft are also scouting lo-

cations where the hydroelectric power is cheaper and greener, so they can establish their cluster

centers [Wei07].

2.3.1 Utility Computing

Computing is going in such a direction that the services made available to the user are being

delivered in such a way that computing is becoming equal to traditional utilities such as water,

gas, electricity and telephone services [BYV+09].

In an article published by InfoWorld (formerly the Intelligent Machines Journal), Utility com-

puting is mentioned as being a form of Cloud computing, where storage and virtual servers are

being offered and can be accessed on demand, such as the services offered by Amazon.com, Sun

or IBM [B0́8].

15

Cloud Middleware

IBM Global Services provide the following definition for Utility Computing [Rap04]:

“Utility computing is the on demand delivery of infrastructure, applications, and busi-

ness processes in a security-rich, shared, scalable, and standards-based computer en-

vironment over the Internet for a fee. Customers will tap into IT4 resources – and pay

for them – as easily as they now get their electricity and water.”

Utilities have the following characteristics [Rap04]:

• Necessity – Users depend on utility services to fulfill their day-to-day needs. It takes time

for distribution networks to spread and costs to decline, as it also takes time for users to

adapt to the service. Once they do, the service may grow in importance as users begin to

find new ways to reap benefits from it;

• Reliability – The service must be readily available when and where the user requires it, as

a temporal or intermittent loss of service may cause several issues to the user. Redundancy

must be built into production capacity in order to make up for hypothetical service failures;

• Usability – Users have a “plug-and-play” mentality and they need to feel at ease with what-

ever feature they are using;

• Utilization rates – Utilities are driven by a necessity to carefully manage utilization rates.

User demands for utility serves mays vary over time and across service regions. This may

lead to spikes in utilization of the service and under-utilization in off-peak periods. Service

providers must have in mind that how the service is billed may influence how users use that

service;

• Scalability – As production capacity grows, the unit cost of production shrinks. It might

be expected that as the demand for the service rises, the quality of service may decline or

vice-versa.

Bhattacharya and Vashistha state that utility based computing allows computing resources to

be available for a customer on demand, as the customers subscribe to the services of the utility

provider and only pay for the quantum of the resources used. This allows any customer to cut

down on IT infrastructure spendings as they can simply subscribe to the provider’s services and

use the computing resources at will, only paying for as much as they use. Typical measures of

usage include metered CPU hours and memory space usage [BV08].

Ross and Westerman write in their article that utility computing relies on several important

technical capabilities to deliver what it promises – services available on-demand. The authors

believe that for most firms, the impact of utility computing will be on the extent and nature of

outsourcing. The benefits that can be obtained only enhance the current benefits of IT and business

processes outsourcing: lower cost, variable capacity and increased strategic focus. On demand

4Information Technologies

16

Cloud Middleware

capacity leads to firms to invest less in computing capacity. Advances in autonomic computing

may reduce the number of people needed to monitor operations and thus reduce labor costs.

The authors believe that firms will be able to do more with less and will be able to allocate

their most strategic resources to their most strategic opportunities [RW04].

2.4 Grids VS. Clouds

As one knows, Grids and Clouds share a few goals, such as reducing computing costs and increas-

ing flexibility and reliability through the use of third-party operated hardware.

Vaquero et al lay out a very comprehensive list of features and discuss the similarities and dif-

ferences between them. The list includes resource sharing, heterogeneity, virtualization, security,

the offer of high level services such as metadata search, the awareness of architecture, dependen-

cies and platform, software workflow, scalability and self management, standardization, payment

model and quality of service. The list is shown in Figure A.1 which is in Appendix A.

The authors also believe that Grids are meant to be user friendly, virtualized and automatically

scalable utilities, something that steps into the Clouds’ path, but they still need to be able to

incorporate virtualization techniques in order to obtain some advantages already present in the use

of Clouds, like migrability and hardware level scalability [VRMCL08].

A few members of the Enabling Grids for E-sciencE (EGEE, now part of the European Grid

Infrastructure) performed a comparative analysis on Grids and Clouds, focusing two implemen-

tations of both: the EGEE project for Grid and the Amazon Web Service (AWS) for Cloud, using

metrics such as performance, scale, ease of use, costs and functionality, amongst others. The Grid

in use by the EGEE runs on gLite, an open source software which had development funding from

the EGEE, described in a later section of this document, as it is used in some extent by FEUP’s

cluster system.

When comparing both EGEE Grid and the Amazon Web Service, the authors of the analysis

encounter a set of differences and similarities [B0́8]:

• The AWS does not expose how they operate their data centers and how they implement the

user interfaces, execute the user requests and maintain their accounting, its back-end is still

a grey area;

• The EGEE Grid exposes both user interface as well as the resource interface to permit

providers to connect their resources. The AWS hides this second interface;

• The authors assume that on the resource side, both systems work in similar manner, as both

cases require a queueing mechanism whether the data center is dispatching a grid job via a

batch system or is requested to instantiate a new virtual machine;

• The greatest benefit of the Cloud proposed by Amazon is its interfaces and usage patterns,

focused on simplicity;

17

Cloud Middleware

• Both services are not fail-proof, but the authors consider that a centralized Cloud might not

be able to provide the resilience that the distributed nature of EGEE does;

• Grids are typically used for job execution – limited duration execution of a program, part

of a larger set of jobs, consuming or producing a significant amount of data. Clouds, even

though they support a job usage pattern, they seem to be more often used for long-serving

services;

• Amazon bills users for computing resources usage with a minimum of one hour usage. This

stops being efficient when dealing with a large number of small jobs;

• Elasticity in the Grid is made by adding worker nodes at a site or adding new sites;

• The complexity in the Cloud is kept server-side, which makes its entry point very low,

something that is still considered a goal to achieve for Grids.

2.5 Technology Review

With the shift of the computing industry towards a provision of Platform as Service and Software

as a Service, consumers can access resources on-demand without having to preoccupy themselves

with time and location and as such, Buyya et al believe that there will be an increasing number

of Cloud platforms being developed [BYV+09]. Two of those platforms are OpenNebula and

OpenStack, open-source toolkits for Cloud management. In this report they will both be analyzed,

and as they play a major role in this project, they were given their own section in this chapter (2.7).

The technologies considered to build the web application will also be presented in this section,

as well as which one will be used.

Amazon’s computing service (2.5.2), Google’s App Engine (2.5.3) and Microsoft Azure (2.5.4)

are described in this section.

2.5.1 Web technologies

As one of the objectives is the creation of a “Web System”, it is necessary to approach the candidate

technologies for the application.

Since two cloud platforms will be revised, they are both built in two different programming

languages and both of those technologies can be used in a web context (with the appropriate

platforms supporting them), Python on the Django platform and Ruby on the Rails platform will

be discussed in this section of the document.

2.5.1.1 Ruby on Rails

“Ruby on Rails is a breakthrough in lowering the barriers of entry to programming.

Powerful web applications that formerly might have taken weeks or months to develop

can be produced in a matter of days.” -Tim O’Reilly, Founder of O’Reilly Media [HH]

18

Cloud Middleware

Ruby on Rails is a Web 2.0 framework that attempts to combine PHP’s simple immediacy

with Java’s architecture, purity and quality. It forms an environment and provides all the tools to

create business-critical, database-supported web applications. Its basic objectives are simplicity,

reusability, expandability, testability, productivity and maintainability.

It implements an MVC (Model-View-Controller) architecture, which clearly separates code

according to its purpose.Ruby code is easy to read and is based on languages such as Python, Perl

and Lisp [BK07].

Ruby on Rails official website offers a wide range of APIs, guides and books, which make for

an extremely well documented framework [HH].

2.5.1.2 Python and Django

Django is a high-level Python web framework that encourages rapid develop and clean, pragmatic

design. It was designed to handle two challenges: intensive deadlines and the requirements of the

experienced web developers who wrote it.

Just like Ruby on Rails, Django focuses itself on the DRY 5 principle, which states [CCd]:

“Every piece of knowledge must have a single, unambiguous, authoritative represen-

tation within a system.”

Django’s documentation is extremely extensive, and can be found in its official website 6 and in

the online version of “The Django Book”, a free book about the Django Web Framework 7.

Python and Django are the best candidates to be used, as vmbuilder is a suitable choice for

the needs of this project, since it can run inside Ubuntu and is Python based. Python will also

be used in any scripting necessary, unless it cannot be done specifically in Python. The back-end

scripting is written in Bash, something that can be easily integrated into Python modules [sei].

Just as Ruby on Rails, Django uses an MVC architecture.

In addition and as it will be mentioned later in this document, OpenStack is coded in Python

which makes integration easier than what would happen if different languages were used.

2.5.2 AWS – Amazon Web Services

The Amazon Web Services consist of several components, but only two will be taken into consid-

eration in this document, as they are the most relevant to the work discussed: Amazon’s Simple

Storage System (2.5.2.1) and Amazon’s Elastic Computing Cloud (2.5.2.2).

2.5.2.1 Amazon’s Simple Storage Service

The core service for the Amazon Web Services is the Amazon’s Simple Storage Service, that gives

the user the power to store large amounts of data in a reliable way which does not hinder its

5Don’t Repeat Yourself.
6https://docs.djangoproject.com/en/1.4/
7http://www.djangobook.com

19

https://docs.djangoproject.com/en/1.4/
http://www.djangobook.com

Cloud Middleware

availability. Data is accessed through protocols such as SOAP8 and REST9, while also being able

to be accessible via normal web browsers. The storage model runs on a two-level hierarchy, where

the users can create buckets and place data objects in those buckets. Strings are used as keys for

both buckets and objects, thus being able to be easily incorporated in URLs. Users are charged 15

US cents per Gigabyte per month, each user being able to have up to 100 buckets and each can

hold up to 5GB of data [Haz08].

2.5.2.2 Amazon’s Elastic Computing Cloud

Physically speaking, the Elastic Computing Cloud (EC2) is a large number of computers on which

Amazon provides time to paying customers, these computers being spread all over the United

States. EC2 is based on the XEN virtualization technology, which allows one physical computer

to be shared by several virtual ones, each with its own operating system.

Through the use of virtualization, the users create an image of their software environment

using the tools provided. This will be used to create and instance of a machine in Amazon’s

Cloud. Customers can freely choose configuration templates for their instance and they can create

and destroy the instances at will, enabling the software to scale itself to the amount of computing

power it needs [B0́8, Haz08].

Amazon has released Elastic IPs (Static IPs for Dynamic Cloud Computing), which allows

the assignment of static IPs to dynamic resources that are deployed via EC2, as well a service

that enables users to request EC2 instances to be geographically distributed, as a response to

the demand for EC2 IP addresses in a static range for application range for applications like email

service hosting, as well as providing a safety net in case the operations of an Amazon Web Services

data center go awry.

Amazon provides a variety of ways of requesting the EC2 instances, namely through the use

of Web Services, supporting Buyya et al’s Cloud definition previously mentioned in the document.

Amazon has also introduced its own performance unit named "EC2 Compute Unit". Since

Amazon ventured into the Utility computing field, model it follows differs from the traditional way

developers were formatted to think about CPU resources. Instead of renting a certain processor

for several months or years, it is now rented by the hour. One EC2 Compute Unit provides the

CPU equivalent of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor [Ama].

2.5.3 Google Cloud – Google’s App Engine

The Google Cloud’s official name is App Engine or Appengine. It gives developers the ability

to run web applications on Google’s infrastructure, the same that is being used by Google for

GMail and Google Docs. The Cloud appears to be a platform accessible over the Internet with

8Simple Object Access Protocol – Used to exchange information in the implementation of Web Services in computer
networks.

9Representational State Transfer – Style of software architecture for distributed hypermedia such as the World Wide
Web.

20

Cloud Middleware

limitless hardware, the latest software and abundant storage for deploying web applications. The

App Engine has the following features [HP10]:

• Automatic horizontal scaling and load balancing;

• APIs10 for authenticating users with Google Accounts and for sending emails. No system

administration is needed by the user to set up or allow access to these APIs;

• Fully featured Eclipse developed environment that simulates Google App Engine on the

localhost for development and testing;

• Persistent storage and support for transactions and queries using the standard JDO11 and

JPA12 APIs;

• Generous free quotas, which allow small universities to have access to the same hardware

and software as large industries. Each user can have 10 applications created, each with

10 versions, which totals an effective development environment of 100 applications. A free

account supports six and a half CPU hours a day, with 1GB of stored data and sending email

to 2000 recipients a day and a max of 5 million page views a month;

• It is free, with no contracts to sign, no hardware expense and no system administration costs

for maintaining, updating, patching or backing up App Engine;

• Eclipse plug-in available for Apple, Linux and Windows, which allows standard debugging

using Eclipse debug tools. It provides menu based functionality to automatically upload the

application to the Google App Engine;

• Requires no system administration;

• Simple web based, user friendly console.

2.5.4 Microsoft Azure

Microsoft Azure platform is a cloud computing platform which offers a set of cloud computing

services similar to those offered by Amazon Web Services. Windows Azure Compute (Microsoft’s

counterpart to Amazon’s EC2), only supports Windows virtual machines and offers a limited va-

riety of instance types when compared with Amazon’s EC2. Its instance type configurations and

cost scales up linearly from small to extra large and its instances are available in 64 bit x86_64

environments.

It has been speculated that the clock speed of a single CPU core in Azure’s terminology is

approximately 1.5 GHz to 1.7 GHz.[GWQF10] Windows Azure enables developers to build, host

and scale applications in Microsoft datacenters, not requiring upfront expenses, long term com-

mitment and users only pay for the resources they use. Windows Azure relieves the user from
10Application Programming Interface
11Java Data Objects
12Java Persistence API

21

Cloud Middleware

the effort of configuring load balancing and failover, is designed to let developers build applica-

tions that are continuously available, even if they need software updates and hardware failures

occur [Mic].

2.6 FEUP’s Computing System

In this section FEUP’s computing system is analyzed in detail. The cluster system and the tech-

nologies it uses in its management are described and detailed. FEUP’s cluster system currently

uses three different technologies, Moab, gLite and Condor. Currently FEUP currently has both

OpenNebula and OpenStack running (the last one for research purposes only), both technologies

having been already discussed in the previous section(2.7)

2.6.1 Clusters

Three different technologies are currently in use by FEUP’s Cluster system: Moab(2.6.1.1), gLite(2.6.1.2)

and Condor(2.6.1.3).

2.6.1.1 Moab Cluster Suite

Moab Cluster Suite is a proprietary tool for high performance computing systems, developed by

the company Cluster Resources. It has built-in modules for work management, Cluster adminis-

tration and monitoring, report creation. It is composed by three essential components:

• Moab Workload Manager – scheduling and workload management engine;

• Moab Cluster Manager – graphical interface for Cluster administration, monitoring and

report analysis;

• Moab Access Portal – web based portal for job management and submission, directly fo-

cused on the end-user.

A resource manager supplies the system with basic functionalities for initiating, stopping,

canceling or monitoring jobs. Moab Workload Manager uses a resource manager’s services to get

information about the state of the resources and the node workload. It is also used to manage jobs

and to send information on how they should be run and it can be configured to manage more than

one resource manager simultaneously. Its composing nodes can be split into three groups:

1. Master node – Manages the resources;

2. Submissive/Interactive nodes – Allow users to manage and submit jobs into the system;

3. Computing nodes – Execute the submitted jobs.

Is is also possible to split the nodes into two groups – source and destination nodes. The first

ones are the nodes where there users, portals or other systems can submit their jobs and the latter

22

Cloud Middleware

ones are where the jobs are executed. Jobs originate in a source node and are transferred to the

destination nodes. Decisions are made in the source nodes, so it is possible to choose which nodes

will execute the submitted jobs. Moab also allows for the establishment of connections between

several Grid systems, which permit access to additional resources [Pin10, Resb].

2.6.1.2 gLite

gLite consists in a set of components designed with the objective of building a Grid computing

infrastructure for resource sharing developed by the project EGEE (Enabling Grids for E-sciencE),

also mentioned in an earlier section. gLite is based on four core concepts [Pin10, CER]:

• Computing Element (CE) – Set of local computational resources, namely a Cluster. It is

composed by three components:

– Grid Gate – generic interface for the Cluster who receives jobs and submits it to the

Local Resource Management System (LRMS);

– Local Resource Management System (LRMS) – Sends the jobs to the worker nodes

for execution;

– Worker Nodes – Cluster nodes where jobs are executed.

• Storage Element (SE) – Supplies access to data storage resources;

• Information Service (IS) – Resource research is made through this component, which is

also responsible for supplying information regarding resources and their state;

• Workload Management System (WMS) – Receives jobs from users, appropriately allo-

cates a CE, saves jobs states and gets the final results.

2.6.1.3 Condor

Condor is a free and open-source workload management system, developed by the Condor Re-

search Project. It has built-in job queueing mechanisms, scheduling and priority policies, resource

monitoring and management. Users submit jobs to Condor, which puts them in a queue, chooses

when and where to execute them based on defined policies, carefully monitors their progress and

informs the user when the jobs are finished. Condor can manage dedicated nodes or harness

the CPU energy wasted in workstations that are turned on but unused. If the system detects the

machine became suddenly unavailable, Condor can migrate the state of the job into a different

machine and resume work. It offers an extremely flexible structure to assign resources to jobs,

allowing these to have specific requisites and resource preferences, as well as enabling the re-

sources to specify preferences over jobs to execute. Each machine from Condor can play several

roles [Pin10, Tea]:

• Central Manager – Machine that collects information and makes the negotiation between

resources and resource requests. All resource requests go through the Central Manager.

There can only be one Central Manager in a Condor infrastructure;

23

Cloud Middleware

• Execute – Machine which executes jobs, therefore allowing the network to take advantage

of its resources. Any machine can be configured to take this role;

• Submit – Machine responsible for the job reception and submission to the Central Manager.

Any machine can be configured to take this role;

• Checkpoint Server – Machine which stores checkpoint files for all submitted jobs.

2.7 Cloud middleware solutions

As mentioned in the previous section (2.5), OpenStack and OpenNebula are two projects that

deserve their own section when talking about the developments, applications and services that

exist in their field.

Since the objectives of the project involved the implementation of a virtual environment creator

and manager, both these platforms were deemed worthy of a more detailed inspection. Both

projects are open source (OpenNebula offers an “Enterprise Edition”, which can put its open

source status in question (2.7.2)) and one of them will run alongside the web page that will be

developed and will interact with.

Image contextualization will be approached, since it is directly linked to one of the objectives

of this project — creating different virtual environments according to the users’ needs.

Project Aeolus will also be discussed in this section, as it contains one of the tools that will be

discussed in the next section (Image creation) and is related to the objective referred earlier, Oz.

2.7.1 OpenStack

OpenStack is a global collaboration of developers and cloud computing technologists producing

the open source cloud computing platform for public and private clouds. The aim of this project is

to deliver solutions for all types of clouds by being simple to implement, massively scalable and

filled with features.

First released in October 2010 and now on its fifth version (codename Essex), OpenStack has

undergone major changes and revamps over the past months [CCb].

It was founded by Rackspace Hosting and NASA13 (deployed as NASA’s Nebula cloud [NASA])and

it has grown to be a global software community of developers collaborating on a standard open

source cloud operating system. Current companies involved with OpenStack include OpenStack

Foundation, Canonical, Cisco, Dell, Red Hat, SUSE and Yahoo! [Incb].

OpenStack’s mission is to enable any organization to create and offer cloud computing services

running on standard hardware.

All of its code is available under the Apache 2.0 license and as such, anyone can run it, build

applications on it or submit changes back to the project. It is commoditizing the IaaS market,

enabling the users to get from Amazon today into their own private data centers and cloud envi-

ronments by using open source [Incb].
13North American Space Agency

24

Cloud Middleware

2.7.1.1 OpenStack Architecture

The following figure depicts OpenStack’s software diagram:

Figure 2.2: OpenStack Software Diagram [CCb].

OpenStack has four major components:

• Compute – Also known as Nova, it is designed to provision and manage large networks of

virtual machines. Provides an API so that developers who wish to build cloud applications

can access the compute resources, as well as web interfaces for administrators and users.

Its architecture is designed to be flexible in the cloud design, so that no proprietary hard-

ware or software is required and has the ability to integrate with legacy systems and third

party technologies. Nova can manage and automate pools of compute resources and works

with a great deal of virtualization technologies, enabling the administrators to use multiple

hypervisors, such as KVM or XenServer.

• Networking – A pluggable, scalable and API-driven system for managing networks and IP

addresses. Keeps the network from bottlenecking or being a limitation factor in the cloud

deployment. Designed to provide flexible networking models to cater the needs of different

applications and user groups. Manages IP addresses, allowing both static IPs or DHCP.

Allows the administrator or the user to reroute traffic in case of maintenance or failure.

OpenStack Networking has an extension framework which allows extra network services,

such as intrusion detection systems, firewalls and VPNs to be deployed and managed.

• Storage – Also known as Swift, it is ideal for cost effective and scale-out storage 14. It

has a fully distributed and API-accessible storage platform which can be integrated directly

14A storage system that uses a scaling methodology in order to create a dynamic storage environment which will
support balanced data growth on an as-needed basis. Its architecture uses a number of storage nods that are configured
to create a storage pool or are configured to increase computing power and is designed to scale boyth capacity and
performance [Incc]

25

Cloud Middleware

into applications or used as a backup, achieving and data retention tool. It allows for block

devices to be exposed and connected to compute instances for expanded storage, better

performance and integration with enterprise storage platforms. OpenStack Swift’s object

storage is a distributed storage system for static data such as VM images, photo and email

storage, backups and archives. It has no central point of control thus providing greater

scalability, redundancy and durability. Storage clusters can scale horizontally by adding

new servers. If one of the servers or a hard drive fails, OpenStack replicates its content from

other active nodes to a new location in the cluster. Furthermore, OpenStack uses algorithms

in order to replicate and distribute data accross different devices which allows for the use of

inexpensive hard drives and servers.

• OpenStack Dashboard – Also known as Horizon, it provides administrators and users with

a GUI to access, provision and automate cloud-based resources. It is extensible, making it

easy to attach third party services, such as billing, monitoring and additional management

tools. It is a simpler way to access the resources, which can also be done by building their

own tools using either OpenStack’s or EC2’ compatible API.

Alongside the four components described above, OpenStack also has a few shared services

which make implementing and controlling the cloud an easier job. They are designed in a way

that they can integrate with themselves as well as the components above.

OpenStack has its own identity service – named Keystone – which shows a central directory

of users mapped to the OpenStack services they can access. Keystone acts as a common authen-

tication system accross the operating system that the cloud sits on and can integrate with existing

backend services such as LDAP. This identity service allows the administrator to configure cen-

tralized policies across the users and systems as well as defining permissions for the four major

components depicted above, whereas the users can get a list of services they can access, make API

requests or log into the web dashboard – Horizon – to create resources linked to their account.

Another important serviced provided by OpenStack is its image service Glance. It provides

discovery, registration and delivery services for disk and server images. It has the ability to snap-

shot a server image and store it, which can then be used as a template to get new servers up and

running very quickly – and consistently in the case of setting up multiple servers – rather than

installing a server OS and individually configuring the additional services required. Glance can

store both disk and server images in a great variety of backends, including OpenStack’s own object

storage. A standard REST interface is provided for querying information on disk images and that

lets clients stream the images to new servers. The image registry supports a wide range of formats,

which include images generated by KVM, Qemu, VMWARE and RAW images.

This project is under close surveillance by CICA as it is viewed as a possible substitute for

OpenNebula. OpenStack is also discussed in the following chapter 3 as it is one of the focus points

of the work realized.

26

Cloud Middleware

2.7.1.2 DevStack

Since OpenStack still has a somewhat complex deployment process, DevStack was created in order

to provide whoever wishes to try out OpenStack for development purposes, essentially being a set

of scripts and utilities to quickly deploy an OpenStack cloud.

Its goals include the following:

• To enable the user to quickly build development OpenStack environments in a clean Ubuntu

or Fedora environment;

• To describe working configurations of OpenStack;

• To make it easier for developers to get familiar with OpenStack without the need to under-

stand every single part of the system at once.

Created by Rackspace Cloud Builders 15, DevStack will be used as it simplifies the deployment

process (and is used by FEUP’s OpenStack researcher). DevStack will be further expanded in

Chapter 4 – Approach and Results – when its deployment is discussed.

2.7.2 OpenNebula

OpenNebula was initially created as a research project in 2005 by Ignacio M. Llorente and Rubén

S. Montero from Universidad Complutense Madrid, being publicly released in 2008. It now works

as an open source project after having evolved through several releases (now on version 3.4). It is

the result of many years of research and development in efficient and scalable management of vir-

tual machines on large-scale distributed infrastructures in close collaboration with OpenNebula’s

user community and leading experts in cloud computing.

Most of OpenNebula’s features have been developed as a response to the use cases from

many of the companies involved in the project (these include RESERVOIR 16, StratusLab 17 and

4CaaSt 18) and its technology has evolved mostly thanks to the effort the community has put into

it [Ope].

It was first released as a software package in Ubuntu 9.04, has its own command-line tools

and gives the user different configuration scripts which enable a simple and flexible way to design

and manage running virtual machines. Since the release of version 3.0, OpenNebula has intro-

duced a GUI called Sunstone (only runs on Firefox and Chrome browsers), which allow the users

and administrators to manage all OpenNebula’s resources (as long as they have access to them,

something that can be regulated via ACLs or external modules) [Pin10].

15Business launched by Rackspace that helps other businesses deploy OpenStack [Ince]
16Framework developed to aid both technology and information specialists in enterprises in creating a cloud with all

the coding and architecture specifications needed [resa].
17A project aiming to develop a complete and open-source cloud distribution that allows both grid and non-grid

resource centers to offer and exploit an IaaS cloud. It is particularly focused on enhancing distributed computing
infrastructures such as the European Grid Infrastructure (EGI) [str].

18Project created for the development of an advanced PaaS cloud platform which supports the optimized and elastic
hosting of Internet-scale multitier applications, embedding all the necessary features, so that the programming of rich
applications is simplified [Hid].

27

Cloud Middleware

OpenNebula’s architecture is presented in Figure 2.3 and its main components are presented

in Figure 2.4.

Figure 2.3: OpenNebula’s Architecture [PLa].

• Interfaces and APIs — OpenNebula offers two main ways to manage its instances: CLI or

GUI (Sunstone). Several cloud interfaces such as OCCI 19 and EC2 Query 20;

• Users and Groups — OpenNebula supports user accounts and groups, as well as several

authentication and authorization mechanisms. These can be used to create isolated com-

partments inside the same cloud (multi-tenancy). An ACL mechanist also exists to allow

different role management;

• Hosts — Various hypervisors are supported by the virtualization manager, which has the

ability to control and monitor the lifecycle of VMs, something that can be extended to

the physical hosts. It is compatible with Xen, KVM and VMware, three platform virtual

machines that emulate the whole physical computer machine;

• Networking — A network subsystem that allows OpenNebula to easily integrate with spe-

cific network requirements of existing datacenters;

19Open Cloud Computing Interface. Web service that enables the user to launch and manage virtual machines in the
OpenNebula installation [OCC].

20Web service that enables the use of virtual machines through Amazon’s EC2 Query Interface (2.5.2.2).

28

Cloud Middleware

Figure 2.4: OpenNebula’s components [PLb].

• Storage — OpenNebula supports multiple data stores in its storage subsystem which pro-

vides extreme flexibility in planning the storage backend. Disk images can be stored in both

file and block device, also having support for the VMware datastore;

• Clusters — Clusters are pools of hosts that share datastores and virtual networks. They are

used for load balancing, high availability and high performance computing.

OpenNebula does not have a built-in utility to create VMs from scratch, but its templates allow the

VMs to boot an ISO image, leaving the user with just creating an empty hard disk image.

It provides monitoring capabilities which become rather useful when there is a need to trou-

bleshoot, scale or control resource allocation scenarios. OpenNebula exports drivers that commu-

nicate directly with the hypervisor (KVM – 2.1.1) and return useful data, such as the amount of

CPU used, reserved and used memory and network traffic [CGH09].

In March 2010, OpenNebula’s main authors founded C12G Labs 21, which has led to it

being referred to as "...proprietary tech with an element of openness...", which could limit its

growth [Cor].

2.7.3 Project Aeolus

Aeolus consists of a set of tools to build and manage groups of VMs across clouds (both public

and private). It has four components:
21Company that provides enterprise-grade solutions built around OpenNebula

29

Cloud Middleware

• Conductor — Provides cloud resources to users, manages their access to and use of those

resources, controls user’s instances in clouds, launches a VM on a cloud, keeps track of it

during its lifecycle and cleans up after the VM is no longer needed. It alerts the user when

something happens, such as the VM crashing or the user is about to exhaust the hours of

monthly usage, for example. It instructs the user on which cloud to chose depending on

certain parameters, including cost, quality of service (QOS) data and other metrics. If the

user wishes to, the Conductor can perform that choice;

• Composer — Builds cloud-specific images from generic templates, in order to allow users

to choose clouds freely by using compatible images. The user can specify arguments to pass

into the build process so that the software installation can be configured. Images can be

rebuilt from the original template in order to update packages or for feature enhancements,

bug fixes or security issues.

• Orchestrator — Manages groups of instances. Users can automatically bring up a set of

different instances on a single cloud or group of clouds, configure them and make them

aware of each other;

• HA Manager — Makes instances or groups of instances manageable. Provides isolation,

recovery and notification of failed applications or instances. Lets the user create policies for

maintaining or relaunching services within a specific infrastructure.

2.7.4 Contextualization

At the end of instantiating a VM, its data can be set or overrun by user request, thus creating the

possibility of setting up an infinite number of environments using only one VM image.

OpenStack and OpenNebula have different ways of handling this process, which are described

in this section of the document.

2.7.4.1 OpenStack

OpenStack’s Image Service provides discovery, registration and delivery services for disk and

server images, taking advantage of OpenStack’s ability to copy or snapshot a server image and

store it immediately (2.7.1.1).

Currently only Ubuntu and Amazon AMI images can be contextualized using OpenStack. This

happens because cloud-init 22 is used [CCa].

Cloud-init handles importing ssh keys for password-less login and setting the host name,

amongst other things. The instance acquires the instance specific configuration from Nova-compute

by connecting to a meta data interface [CCa].

22Ubuntu package that handles early initialization of a cloud instance. It is installed in the Ubuntu Enterprise Cloud
(UEC) images and also in the official Ubuntu images available on Amazon’s EC2.

30

Cloud Middleware

If an image from a distribution that does not have cloud-init is being used, this setup needs to

be performed via the use of a set of scripts which should be included in a specific file (rc.local) so

they can be executed at boot time.

In Figure 2.5 and Figure 4.6 the Horizon dashboard is shown when launching a new instance.

Figure 4.6 shows the area where the cloud-init configuration file is placed so it can be ran at boot

time.

Figure 2.5: Launching an instance in Horizon.

It is important to mention that information on cloud-init was obtained after going on Open-

Stack’s Internet Relay Chat (IRC) channel in the Freenode IRC network 23 and talking directly to

the main contributers of the cloud-init module, Joshua Harlow and Scott Moser.

According to both of them, cloud-init is in the process of being available to a wider selection

of distributions, which include openSUSE, Fedora and Red Hat.

The conversation is attached in Appendix C.

23#openstack on irc.freenode.net

31

Cloud Middleware

Figure 2.6: Script to be ran once the instance is launched.

32

Cloud Middleware

2.7.4.2 OpenNebula

As mentioned in section 2.7.2, OpenNebula’s Storage System allows administrators and users to

set up images (OS or data) to be be used in VMs.

OpenNebula supports three types of images:

• OS — Contains a working operative system;

• CDROM — Readonly data;

• DATABLOCK — Storage for data, which can be accessed and modificed from different

VMs. They can be created from previous existing data, or as an empty drive.

The type of an existing image can be changed when performed a specific command and the

images can be managed either by using Sunstone or OpenNebula’s CLI.

In order to create an OS Image, a contextualized VM needs to be created and its disk extracted.

OpenNebula- has two contextualization mechanisms available:

• Automatic IP assignment — Several pre-created scripts are provided by OpenNebula for

Debian, Ubuntu, CentOS and openSUSE based systems, all of which can be adapted for

other distributions.

• Generic Contextualization — Configuration parameters are given to a newly started VM

by using an ISO image. The VM description file contains the contents of the ISO file (files

and directories), instructs the device that the ISO image will become accessible and specifies

the configuration parameters that will be written to a file for later use inside the VM.

When using the generic contextualization mechanism, the VM description file can be used

to create a contextualization image, which will contain the context values. These include the

hostname, root password and the Domain Name Server (DNS). These values will be held inside

the CONTEXT parameter residing inside the contextualization image, whose variables can be

specified in three different ways:

• Hardcoded;

• Using template variables;

• Pre-defined variables [PLc].

2.7.5 OpenNebula VS OpenStack

One thing was missing in the cloud computing scene: a cloud management layer. A cloud operat-

ing system that added automation and control at scale. That is where OpenStack comes into play.

As mentioned earlier in this chapter (section 2.7.1), OpenStack is built by a world wide community

of developers, something that made it a good choice to investigate, as the open source culture is

something always worthy of enriching [Incb].

33

Cloud Middleware

One question remained: “Why choose to work with OpenStack and not with OpenNebula?”.

First of all, OpenStack is a more recent project and OpenNebula. It is backed up by some

renowned names in the industry, such as Dell, AMD, Intel, Canonical, Cisco, StackOps, HP, NEC,

AT & T, Yahoo! and Red Hat. Some of these companies also support OpenNebula, but OpenStack

has more support from the industry.

The coding activity on both projects was also taken into account when choosing which cloud

middleware to deploy. With the help of OHLOH 24, the differences can be easily observed as it

is shown in Figure B.1 (Comparing OpenStack and OpenNebula on Ohloh.com.[DSI]), which is

included in Appendix B.

OpenStack has more favourable statistics, such as the number of committers and number of

commits over time (shown in Figures 2.7 and 2.8). If this is viewed with the knowledge that

OpenNebula was created first, and OpenStack managed to outdo it, great things can be expected.

Figure 2.7: Comparison between the number of committers on OpenStack and OpenNebula [DSI].

In addition to this and as it was referred earlier in this in chapter (section 2.7.2), OpenNebula’s

creators have founded an enterprise of their own (C12G Labs) which offers an enterprise version of

OpenNebula (named OpenNebulaPro). This deviates from the open source philosophy, something

that OpenStack maintains.

On a more technical aspect, OpenStack is mainly written in Python whereas OpenNebula is

mainly coded in C++ and Ruby, as it can be observed in Figure 2.9.

24An open source directory that anyone can edit. It features comprehensive metrics and analysis on thousands of
open source projects. [DSI]

34

Cloud Middleware

Figure 2.8: Comparison between the number of commits on OpenStack and OpenNebula [DSI].

Figure 2.9: Comparison between the programming languages in OpenStack and OpenNeb-
ula [DSI].

Rodrigo Benzaquen, director of site operations and infrastructure at MercadoLibre, a Latin

America e-commerce market leader which chose to use OpenStack as their cloud solution, stated

the following [CCc]:

“Before this [OpenStack’s deployment], we would have had someone physically de-

ploy the server which would take a day or longer. With OpenStack, we don’t have to

do that; our developers are now able to create and manage their servers”.

which helped to confirm the choice of cloud middleware to use.

35

Cloud Middleware

2.8 Image creation

One of the big objectives in this project is the automatic creation of virtual environments. As such,

it is necessary to present some of the tools used for this process, having in mind the restrictions

enforced by the choices made regarding the rest of the technologies which will be used in the rest

of the project, namely OpenStack and its restriction regarding the use of cloud-init to contextualize

the virtual images.

Considering these restrictions, it was chosen to follow the software recommendations made

by OpenStack’s documentation when building virtual images:

• Oz — Part of the Aeolus project mentioned in section 2.7, it is a command line tool used by

Rackspace Cloudbuilders to images for Linux distributions;

• VMBuilder — Python based software package for creating VM images of free software

GNU/Linux-based OS. It supports Xen, VirtualBox, VMware, KVM and Amazon EC2 [dt];

• VeeWee – Vagrant — VeeWee being the tool used to easily build Vagrant-based boxes or

KVM, Virtual Box and Fusion images [Incd, Inca].

These technologies will be reviewed for further use in the project.

2.8.1 Oz

As mentioned earlier, Oz is part of a bigger project called Aeolus 25.

It was created in order to simplify the automatic installation of guest OS, always using the

native OS tools to do the installs. This is done so that when when the installation finishes, the disk

image left by Oz is exactly the same as if was used an installation CD.

There are three functionalities available in Oz:

• Install the OS — Oz was built with enough knowledge to install minimal operating systems

with little input. It just needs to be told which OS to install and where the installation media

is, doing the rest automatically;

• Customize the OS — This is the relevant part for the project. Oz has the ability to install

additional packages and files into the OS;

• Generate metadata on that OS — This includes package manifest. This metadata is repre-

sented in an XML file denominated ICICLE.

In the OS customization process (which is always done as a separate step from the OS install in

order to reduce the chances of failure), Oz is able to run the native tools, such as Yum and apt-get;

modify the OS disk image in order to allow remote access, start up the OS in a controlled KVM

guest; run remote commands (for example: ssh) to install packages and files and shut down the

OS. It then undoes the changes to the disk and generates the metadata on that OS [HI].
25http://aeolusproject.org/index.html

36

http://aeolusproject.org/index.html

Cloud Middleware

2.8.2 JeOS and vmbuilder

Ubuntu JeOS (pronounced “juice”) is a variant of the Ubuntu Server OS, which is configured

specifically for virtual appliances. It is no longer available as a CD-ROM ISO for download, but

can be built using Ubuntu’s vmbuilder.

JeOS is a specialized installation of Ubuntu Server Editio with a tuned kernel that only contains

the base elements needed to run in a virtualized environment and as such, suitable for the project

covered by this document. The tuning is done in order to take advantage of key performance tech-

nologies in the virtualization products from VMware, creating a combination of reduced size and

optimized performance which ensures that JeOS delivers a highly efficient use of server resources

in a large virtual environment.

With only the minimal required packages and without unnecessary drivers, software compa-

nies can configure their OS according to their needs. They have the safety of knowing that the

updates required will be limited and the users will be able to deploy virtual appliances on top of

JeOS which will need less maintenance than what would have been needed were they installed on

top of a full server.

vmbuilder takes away the need of downloading a JeOS ISO. It will fetch the various pack-

age and build a VM specifically designed for what the users desire. It is a script that automates

the process of creating a ready to use Linux based VM, currently supporting the KVM and Xen

hypervisors.

Command line options can be used to perform actions such as adding or removing packages,

choosing which Ubuntu version and mirror and more.

vmbuilder was first introduced as a shell script in Ubuntu 8.04 LTS, as a hack to help de-

velopers test their code in a VM without needing to restart the server from scratch every time they

needed. A few of Ubuntu administrators noticed the script, improved and adapted it to so many

use cases that the author of this script (Soren Hansen) rewrote it as a Python script with revamped

goals:

• Ability to be reused by other distributions other than Ubuntu;

• Use plugin mechanisms for all virtualization interactions so that others can easily add logic

for other virtualization environments;

• Provide an easy to maintain web interface as an alternative to the CLI [Ubu].

This technology becomes extremely relevant to the project as it covers the creation of cus-

tomizable environments.

2.8.3 VeeWee and Vagrant

Vagrant is a free and open-source Ruby based project, started by Mitchell Hashimoto and John

Bender on January 21st, 2010. With its first release on March 7, 2010, Vagrant’s goal is to create a

37

Cloud Middleware

tool to manage all the complex parts of development within a virtual environment without affecting

the developer’s workflow. Its developers are currently working on getting Vagrant working on

every major OS platform (Linux, OS X and Windows).

Vagrant’s development is not supported by any company, as its developers work on the project

on their free time. The only external help they get is via contributions, which can be done via com-

pleting Vagrant’s documentation, its code (open-source project) or submitting financial donations

(the developers prefer other types of contributions) [HJB].

VeeWee is a toll built by Patrick Debois as a way to customize the boxes Vagrant creates.

This process is simple, as Vagrant creates three files, one of which is definition.rb, a Ruby

file which contains the main definition of the template created by VeeWee. In this file the user

can define settings like the memory and disk size. Another file VeeWee creates is preseed.cfg

which can be modified to configure the actual install process, controlling details including, but not

limited to, the partitions and their size and timezone setup [MD].

Besides Vagrant boxes, VeeWee can be used for:

• Creating VMware and KVM VMs;

• Interacting (creating, destroying, halting and remote accessing them via the ssh command)

with those VMs;

• Exporting those VMs.

The customization process relevant to the project by modifying the templates used for creating

the images.

2.9 Conlusions

In this chapter the main technologies to consider for the project implementation were presented, as

well as some of the key concepts needed for understanding the technical environment surrounding

this dissertation. Some of the technologies related to the development of the web application were

also discussed (Python, Django, Ruby and Rails).

Python and Django were chosen as the tools to build the web application, since they integrate

well with OpenStack, which is coded almost fully in Python and the Horizon dashboard is built

on Django (OpenNebula is mostly coded in C++ and its interface Sunstone is built on Ruby on

Rails).

As for the image creation process, it was decided to use vmbuilder to build instances of

Ubuntu JeOS and compare it to the use of cloud-init in the contextualization process (cloud-init is

used on already built images).

38

Chapter 3

Problem Statement

In this chapter the problem will be described and justified, using references from the bibliographic

study presented in Chapter 2.

The problem statement includes the project’s requirements specification, which in turn in-

cludes the stakeholder identification.

A design for the solution is presented, including the UML (Unified Modeling Language) dia-

gram, so that the reasoning behind the solution can be understood. Use cases are also described so

that a clear view on what the system does can be obtained. All the use case diagrams are collected

in Appendix E – Use cases.

The details for the implementation are described in the next chapter (Chapter 4 – Approach

and Results).

3.1 Problem Description

Currently, FEUP’s computing infrastructures are only accessed by those who have the technical

knowledge to interact with the system. These people are technicians whose area of expertise

encompasses outsourcing computing resources to perform computing jobs.

If someone from an area unrelated to the computing system wants to perform any operation in

it, that someone must contact the said technicians and waste valuable time trying to find someone

that can be of assistance.

Having this in mind, CICA has started developing a project that reduces the amount of techni-

cal knowledge necessary to perform the said computing operations.

This document focuses only on the front-end of the project, the back-end having already been

developed by former MIEIC student Nuno Cardoso as part of his Master Thesis. CICA’s project

is described in greater detail in the following section.

39

Problem Statement

3.2 CICA’s private cloud project

In this section CICA’s private cloud project is described in a greater detail, along with the imple-

mented architectural solution.

The use case scenarios are presented, as well as the UML diagram which shows the entities

involved in the web application. As it is customary when designing a software application, a

requirements elicitation process was held and the results are also shown in this section.

3.2.1 The big picture

As it was mentioned earlier in this chapter and in the document, the work depicted in this disser-

tation is part of a bigger project currently being worked on at CICA (FEUP’s Informatics Center).

This project aims at simplifying the process of submitting a computing job into FEUP’s com-

puting infrastructures, thus making them more accessible to the academic community, without the

users having to spend time learning about the technologies and how the system actually works.

In order to better understand the full extension of the issue, Figure 3.1 shows the whole system

as it should function, through the means of an hypothetic and yet plausible use case scenario:

Figure 3.1: CICA’s full computing project.

40

Problem Statement

Firstly, a researcher of a specific field of study wants to conduct a more complex operation

that involves greater computing efforts than his/her home and/or work computer. As such, the

researcher proceeds to access the designed system through a web page where he/she can:

• Choose a suitable work environment for his/her computational needs according to a set of

available options;

• Create his/her own work environment according to the specifications he/she provides the

system with, namely which programs are needed for the computing job.

The system will then automatically create a VM image which will be the environment where

the computing job will be run. This VM image will be passed onto the back-end of the project

where a virtual cluster will be created according to that virtual environment.

Finally a username and password combination should be returned so that the researcher can

enter the created environment and perform his/her operations.

3.2.2 The stakeholders

The following stakeholders were identified for this project:

• FEUP researchers;

• Web system administrator;

These are the only people or groups of people which will interact with the system.

3.2.3 The objectives

Having the project outlined, the following objectives were set:

1. The web system must be able to create VM images;

2. The VM image creation must be dynamic, i.e. the images must be created according to the

users specifications, which are inputted via the web system — contextualization;

3. The web system must help the users regarding which VM image might be more suitable for

their needs by providing the appropriate means for that decision;

4. The web system must provide a way for managing the VM images which were registered in

it. This management can be performed by either the users (with limitations) or the system

administrator;

5. All the above features must be made transparent for the user (the user does not need to know

how things work, as long as they do).

These objectives can be translated into system requirements, which are stated in the next sec-

tion of this chapter.

41

Problem Statement

3.2.4 Requirements specification

As it was mentioned, a software application has certain requirements which must be met so that it

complies with the system stakeholders’ necessities.

As such, interviews were held with some of these stakeholders in order to understand how the

system should behave and what functionalities it should offer.

These requirements can be split in two categories:

1. Functional requirements — what the system should do and what functions it should per-

form [LLC];

2. Non-functional requirements — Constraints or restrictions that must be considered when

designing the solution [non].

3.2.4.1 Functional requirements

The identified functional requirements are:

• The system must allow the creation of VM images;

• This creation must be dynamic – the user must be able to choose what software is to be

installed;

• The user must be presented with tools which allow him/her to better choose which VM

image is better suited for his/her needs or if a new VM image must be created;

• The VM images must be manageable – they need to have the option to be modified and/or

deleted, as well as located within the web system;

• The VM image specification within the system must have a certain degree of granularity, so

that the previous requirement is able to be met;

• The system must allow the separation of users – login system, with different permissions

for different users;

3.2.4.2 Non-functional requirements

The identified non-functional requirements are:

• The system must be intuitive;

• The system must be as simply designed as possible;

• Users without specific technical knowledge in computing technologies must be able to use

the system.

42

Problem Statement

3.3 The solution

In this section the solution is documented and the thought process behind it is justified. An UML

diagram is included for better understanding on how the system works.

3.3.1 UML diagram

Once the requirements and the stakeholders were defined, a diagram depicting the relations be-

tween the different elements in the system was produced and it is shown in figure 3.2.

Figure 3.2: Entities and their relationship in the system.

As it can be observed, the following entities are portrayed:

• Image – represents the VM images that are created and registered in the system;

• User – represents the users that are registered in the system;

• User Tasks – represents which task the user has running in the system. This refers to the

VM image creation process;

43

Problem Statement

The following relationships between the aforementioned entities can be observed:

• A user can create several VM images, but one image can only have one owner (this, however,

does not mean that an image cannot be used by several users);

• An image can have several “tags” and one “tag” can by used by several images;

• A user can have one task running in the system, specifically one creation of a VM image

(this is explained in greater detail in the next chapter, Approach and Results);

• A user can use a VM image, this being logged in the system for statistical purposes;

• The “tag” search is also logged for statistical purposes and to help users select a suitable

VM image for their needs.

3.3.2 Use Cases

Alongside the delineation of the entities, relationships and requirements, there is also the need to

delineate the use cases for the web system. These describe what actions can be taken inside the

web system, either by normal users or the system administrator.

Use case diagrams are used as visual aids for their textual representation and some screenshots

are provided.

3.3.2.1 UC1 – Login into the web system

Actors:

• Researcher/Administrator.

Brief description:

The researcher/administrator (known as “user” for the rest of this use case for simplicity) wishes

to log into the web system.

Basic flow:

• The web system prompts the user for his/her username and password combination (provided

beforehand by the system administrator in order to maintain control over who accesses the

web system);

• The user inputs his/her username and password in the boxes provided;

• The web system validates the entered username and password and logs the researcher/ad-

ministrator into the system.

44

Problem Statement

Alternative flows:

If an incorrect username and password combination is supplied, the page will simply reload. The

user must enter a valid username and password combination to proceed.

Pre-conditions:

None.

Post-Conditions:

If the use case is successful, the user is logged into the system. If the user is a researcher, no

special privileges will be gained. If the user is an administrator, “administrator” status will be

granted and he/she will gain administration privileges over the system.

If the use case is unsuccessful, no changes are made to the system state.

The diagram for this use case can be viewed in Figure E.1 which is in Appendix E.

3.3.2.2 UC2 – Perform management operations

Actors:

• System administrator.

Brief description:

The system administrator wants to perform management operations in the system.

Basic flow:

• There are two ways the system administrator can perform management operations:

1. By accessing the system administration panel, which has a different URL from the

web system the researchers use;

2. By logging into the web system and clicking “Image management”.

• If the administrator chooses the first option, he/she has to follow the next steps:

– The system administrator must perform the login action as described in the first use

case (UC1 – Login into the web system) using his/her credentials, which are the same

for both parts of the system;

– Inside the administration section, the administrator is able to perform several tasks:

45

Problem Statement

∗ Manage the users who can access the web system. This includes adding and

deleting users; editing users’ details and promoting users to administrators.

∗ Manage the database of the system. The administrator can: add VM images to

the database; edit VM images’ details; and edit or add everything that can be

registered by researchers (this may be helpful for testing purposes).

• If the administrator wishes to use the web system, he/she has to follow the next steps:

– The system administrator must perform the login action as described in the first use

case (UC1 – Login into the web system) using his/her credentials;

– He/she must click on the link “Image management”;

– He/she will then be able to:

∗ View which of the images were marked for deletion by their creators;

∗ View which of the images have been in the system for a certain amount of time

and have not been used for another amount of time;

∗ Decide whether to delete those images or not;

∗ View the current status of all the VM images.

• After deciding what to do, he/she will have to save the modifications, whichever were made;

• After the changes are saved, the state of the system is updated.

Alternative flows:

None.

Pre-conditions:

User must be logged in as administrator.

Post-Conditions:

The system state will change to whichever operations the system administrator chose to perform.

The diagram for this use case can be viewed in Figure E.2 which is in Appendix E.

3.3.2.3 UC3 – Create a new VM image

Actors:

• Researcher.

46

Problem Statement

Brief description:

A researcher wishes to create a new VM image.

Basic flow:

• In order to create a new VM image, the researcher must be logged into the system;

• After a successful login, the researcher must select the appropriate option from the list

provided by the web system (“Create a new VM image”);

• After being redirected to the VM creation page, the researcher must fill in the details for the

newly created VM image:

– Name of the VM image;

– Tags to be used for the VM image. These should describe the VM image with as much

detail as possible so that other users can find it if they need a similar environment;

– Mark the image as “Public” or not. This will affect whether the VM image will be

available for use by other researchers;

– Select which packages they wish to install in the new VM.

• After filling the required details, the researcher must click on the “Create” button;

• The researcher will then be redirected to the “Post VM image creation” page which will

be refreshed every few minutes so that the VM creation process status can be updated and

displayed to the researcher. After the VM is created, the researcher will be prompted on

whether the system should launch the VM;

Alternative flows:

The VM image name is already in use. In this case the VM image creation will fail and the

page will be refreshed so that the VM image details can be filled out one more time.

Pre-conditions:

User must be logged in.

Post-Conditions:

If the use case is successful, a new VM image will be inserted into the system. If the use case

47

Problem Statement

fails, no changes will occur.

If the researcher chooses to launch the VM image, he/she will go into the use case 3.3.2.4 — UC4

– Launch a VM.

The diagram for this use case can be viewed in Figure E.3 which is in Appendix E.

3.3.2.4 UC4 – Launch a VM

Actors:

• Researcher.

Brief description:

A researcher wishes to launch a VM.

Basic flow:

• In order to launch a VM, the user must be logged in;

• After a successful login, the researcher has three ways of launching a VM image, depending

on whether he/she was the creator of the VM image:

– If he/she created the VM image that he/she wishes to launch, the VM image can be

found in either by:

∗ The “User details” page, which can be accessed anywhere in the system by simply

clicking on the name that appears on the top-right corner in every page. In the

“User details” page the researcher must click the name of the VM image and

afterwards click the “Launch VM” button;

∗ Clicking the link “Launch an already existing VM image” located in the system’s

index page, which will show the user’s created VM images, as well as the VM

images in the system which are marked as “Public”. The researcher will then

have to click the VM image’s name and click the “Launch VM” button displayed

in the VM image details’s page.

– If he/she did not create the VM image, the researcher must search if the VM image is

already created (clicking the link “Search for a VM image” in the index page of the

web system and entering use case 3.3.2.6 – UC6 – Search for a VM image. If the

image is found, the researcher must click on the appropriate link shown in the search

results page (the VM image name) which will redirect the researcher to the VM image

details’ page where a link to launch that VM will be displayed (“Launch VM”), should

the VM image be public. If the image is not public, the researcher will have to contact

48

Problem Statement

either the VM image creator via the email provided in the search results page or the

system administrator.

• If the researcher clicks the “Launch VM” button in the VM image detail’s page, he/she

will be redirected to the VM launch page, which will display the information regarding the

state of the launch. This page will refresh every few seconds and as soon as the VM image

is deployed, a warning will be displayed, informing the researcher. The system will also

provide the researcher with a username and password combination so that the researcher

can access the newly deployed VM.

Alternative flows:

The researcher chose to launch a VM after creating it (coming from the use case 3.3.2.3 — UC3 –

Create a new VM image). In that case the researcher only needs to click the “Launch VM” button

displayed.

Pre-conditions:

User must be logged in.

Post-Conditions:

If the use case is successful, a VM image will be deployed and will be ready for use.

The diagram for this use case can be viewed in Figure E.4 which is in Appendix E.

3.3.2.5 UC5 – View system wide statistics

Actors:

• Researcher/Administrator.

Brief description:

A researcher or administrator (known as “user” in this use case for simplicity) wishes to see the

system statistics.

Basic flow:

• In order to view the system statistics, the user must be logged in;

• After a successful login, the user can access the system wide statistics by clicking in the

appropriate link “View statistics”;

49

Problem Statement

• After being redirected to the statistics page, the user is displayed the following information

about the system:

– Most used VM images in the system - shows the user the five most used VM images in

the system with a clickable VM image name which redirects to the VM image details;

– “Tag” cloud - visual representation of the “tag” usage in the system i.e. the bigger the

font used in the “tag” name, the higher the usage. In front of the “tag” the VM images

which contain that “tag” are displayed;

– “Tag” search frequency - shows the user which “tags” were searched more frequently.

• After viewing the statistics, the user can return to the “Index” page by clicking the appro-

priate link.

Alternative flows:

None.

Pre-conditions:

User must be logged in.

Post-Conditions:

None.

The diagram for this use case can be viewed in Figure E.5 which is in Appendix E.

3.3.2.6 UC6 – Search for a VM image

Actors:

• Researcher/Administrator.

Brief description:

A researcher or administrator (known as “user” in this use case for simplicity) wishes to search

for a VM image.

Basic flow:

• In order to search for an existing VM image, the user must be logged in;

50

Problem Statement

• After a successful login, the user can search for an existing VM by clicking the appropriate

link – “Search for a VM image”;

• After being redirected to the search page, the user must input the search terms he/she wishes

to search for. The search terms should be separated by commas (“,”);

• If the system finds any VM images which are tagged with any of the search terms inputted,

these VM images will be displayed in a list with clickable names, which redirect to the VM

image details’ page.

Alternative flows:

Search terms are not found. An error message is displayed and the user is redirected to the search

page.

Pre-conditions:

User must be logged in.

Post-Conditions:

None.

The diagram for this use case can be viewed in Figure E.6 which is in Appendix E.

3.3.2.7 UC7 – View the details of an existing VM image

Actors:

• Researcher/Administrator.

Brief description:

A researcher or administrator (known as “user” in this use case for simplicity) wishes view the

details of an existing VM image.

Basic flow:

• In order to view the details of an existing VM image, the user must be logged in;

• After a successful login, if the user has created that VM image, he/she must click on his/her

username displayed in the top-right corner of the page he/she is currently in and select the

desired image in the “Created images” section of the page;

51

Problem Statement

• If the user did not create that VM image, he/she has several options for viewing a VM image

detail page:

1. Searching for the VM image using the “Search” page and going into the use case 3.3.2.6

– UC6 – Search for a VM image;

2. Going into use case 3.3.2.5 – UC5 – View system wide statistics – and click the VM

image names displayed in that page;

3. Clicking the link “Launch an existing VM image” in the “Index” page and click the

names of the VM images displayed in that page.

Alternative flows:

None.

Pre-conditions:

User must be logged in.

Post-Conditions:

None.

The diagram for this use case can be viewed in Figure E.7 which is in Appendix E.

3.3.2.8 UC8 – Modify the details of an existing VM image

Actors:

• Researcher.

Brief description:

A researcher wishes to modify the details of an existing VM image.

Basic flow:

• In order to modify the details of an existing VM image, the researcher must be logged in

and must be the one who created the VM image in question;

• After a successful login, the researcher must go into use case 3.3.2.7 – UC8 – Modify the

details of an existing VM image– and click on his/her username displayed in the top-right

corner of the page he/she is currently in and select the desired image in the “Created images”

section of the page;

52

Problem Statement

• The researcher must then click the “Modify VM image” button and will be redirected to the

VM image modification page where he/she will be presented with a form with the details

he/she is able to modify;

• After the user is done updating the desired fields, he/she must click the “Update” button.

Alternative flows:

The selected VM image is currently being used by another user. The user will not be able to

modify the VM image and the use case will fail.

Pre-conditions:

User must be logged in and he/she must be the creator of the VM image.

Post-Conditions:

VM image details are updated.

The diagram for this use case can be viewed in Figure E.8 which is in Appendix E.

3.3.2.9 UC9 – View user details

Actors:

• Researcher.

Brief description:

A researcher wishes to view his/her own details.

Basic flow:

• In order to view his/her own details, the researcher must be logged in;

• After a successful login, the researcher must click on his/her name displayed in the top-right

corner of any page he/she is in;

• The researcher will then be redirected to the user details’ page.

Alternative flows:

53

Problem Statement

None.

Pre-conditions:

User must be logged in.

Post-Conditions:

None.

The diagram for this use case can be viewed in Figure E.9 which is in Appendix E.

3.3.2.10 UC10 – Modify the user’s details

Actors:

• Researcher.

Brief description:

A researcher wishes to modify his/her own details.

Basic flow:

• In order to modify his/her own details, the researcher must be logged in;

• After a successful login, the researcher must click on his/her name displayed in the top-right

corner of any page he/she is in;

• The researcher will then be redirected to the user details’ page;

• The researcher must then click on the “Modify” button;

• The researcher will be presented with the “Modify user details” page which contains a form

with the details which are possible to be modified;

• After the researcher performs the wanted modifications, he/she must click the “Update”

button.

Alternative flows:

None.

54

Problem Statement

Pre-conditions:

User must be logged in.

Post-Conditions:

User details are updated.

The diagram for this use case can be viewed in Figure E.10 which is in Appendix E.

3.3.2.11 UC11 – Reserve an image for later use

Actors:

• Researcher.

Brief description:

The researcher wants to reserve an image so he/she can be able to use it in a certain time in

the future.

Basic flow:

• The user logs into the system and clicks the link “Reserve an image for later use.”;

• The user is then redirected to a VM image creation page, which has an extra field: the date

on which the user wishes to have the VM image ready for use;

• After inputting the date and customizing the VM image, the request is sent by clicking the

appropriate button in the page;

• After the changes are saved, the state of the system is updated.

Alternative flows:

None.

Pre-conditions:

User must be logged in.

Post-Conditions:

55

Problem Statement

A new request for the creation of a VM image is sent for processing.

The diagram for this use case can be viewed in Figure E.11 which is in Appendix E.

3.3.2.12 UC12 – Mark an image for deletion

Actors:

• Researcher.

Brief description:

The researcher wants to mark an image for deletion.

Basic flow:

• The user logs into the system, goes to his/her user detail page (UC9 – View user details)

and clicks the desired image to mark for deletion;

• At the image details page, the user then click the appropriate button.

• The request is sent to the system administrator.

Alternative flows:

None.

Pre-conditions:

User must be logged in and must be the creator of the image he/she wants to mark for deletion.

Post-Conditions:

A new request for the deletion of the VM image is sent to the system administrator.

The diagram for this use case can be viewed in Figure E.12 which is in Appendix E.

3.3.2.13 UC13 – Customize an image and save it

Actors:

• Researcher.

56

Problem Statement

Brief description:

The researcher wants to customize an image created by another user and save it in the system.

Basic flow:

• The user logs into the system, goes to the detail page of the image he/she wishes to cus-

tomize (UC7 – View the details of an existing VM image);

• The user will then click the button “Customize this VM image.”;

• The user will be redirected to the “Modify VM details” page and click the “Update” button;

• This configuration can be done either in the web system or inside the VM image itself.

Alternative flows:

If the new VM image has the same name as the original, the use case will fail.

Pre-conditions:

User must be logged in and the image he/she wants to customize must be public. The new VM

image must have a different name than the original.

Post-Conditions:

A new VM image will be created using the new configuration.

As it was mentioned in the flow of the use case, this allows for users to either append software

which can be included using the web system or using software of their own, when they ssh into

the VM image. This opens the possibility of using user-owned software, i.e. proprietary software

owned by the researcher, and the sharing of this newly created VM image with others who do not

own the said software but need it and for some reason cannot obtain it.

The diagram for this use case can be viewed in Figure E.13 which is in Appendix E.

3.3.3 Relevant system details

In this part of the document, relevant system details are presented, namely how the system helps a

user in choosing a suitable VM image.

The Vm image management issue is also addressed, and specifications on how it can be done by

an administrator inside the web system is shown.

57

Problem Statement

3.3.3.1 Helping the user

In order to help a user choose a suitable VM image to use for his/her computational job, the

following was implemented:

• A set of statistics was created so the user can see which VM images or “tags” are more used

across the system (detailed below);

• A search function so the user can find a VM image by searching for “tags” associated with

VM images;

The search function was implemented so that the user can access the system and search for the

programs he/she needs to have installed in VM image. If any of the inputted terms match any of

the “tags” used in a VM image, that VM image will be displayed to the user. Since the system

supports multiple “tag” search, the user can search for all the terms he/she wishes to and if a VM

image containing all the terms searched exists in the system, it will be shown and the user will

know that is the suitable environment for his/her needs.

As for the set of statistics, different types were created:

1. What VM images the user that is logged in has available to him (this includes public images

and those the user created);

2. Which VM images are more used across the system;

3. A “Tag” Cloud was created, showing which “tags” were most used across the system;

4. Which “tags” were most searched across the system.

For users who already created a VM image, it is important to know which ones they already

created, since they might need to re-use them again. This can be seen in Figure F.11 – VM images

available to the user (includes public and created by the user).

The most used VM images can be used to identify better created VM images, which can

complement the VM image the user had in mind. This can be seen in Figure F.13

Knowing which “tags” were more used can help the users identify an environment that was

not created yet, an environment that aggregates some of the most used “tags” may be helpful for

some researchers. For this a “tag” cloud was created.

The “tag” cloud was included so the user could get a visual representation over the distribution

of “tags” across the system. More used “tags” mean that whatever that “tag” describes is certainly

relevant for most of the users in the system and as such, it may be relevant for the user who is trying

to figure out if a new VM image should be created. A “tag” cloud can be seen in Figure F.14 – Tag

cloud.

58

Problem Statement

Knowing which “tags” were more searched across the system can help the system administra-

tor in knowing if it might be profitable in pinning some of the images “tagged” with some of the

most searched “tags” in the “Index” page so that users do not have to spend time searching for

something they use regularly. This can be seen in F.15 – Most searched “tags” in the system.

3.3.4 VM image management

One of the objectives for this project was that the created VM images can be manageable.

This management can be performed by either a normal user (limited management) or a system

administrator.

3.3.4.1 Normal users

A normal user can mark an image for deletion (in case he/she misstyped the image details or

realized that the image would not be needed after all).

Another important feature from the system is the possibility of reserving a VM image for later

use. If a user knows he/she will need to use a certain VM image in a certain time in the future,

he/she can reserve it, by specifying the date when the image will be needed and the system will

prevent that image from being deleted.

3.3.4.2 System administrators

System administrators have access to a reserved space inside the system, somewhere that the

normal users cannot access (they cannot see it). The link appears on the top-right corner of the

screen, as seen in Figure F.16 – Link to “Image management”.. The user in this screenshot has

administration privileges and can see the link to the management section.

In this section of the system, administrators are presented with details that help them manage

the VM images registered in the system.

Administrators can see every VM image in the system, as well as for how long they have been

registered and how long it has passed since they were last used. If a certain time has passed since

the image was last used, combining that information with how long they were registered in the

system, the administrators are warned of that occurrence and are given the option to eliminate

them from the system.

They also can see if a user has marked an image for deletion (in case the user missclicked or

mistyped the VM image details) and can choose to eliminate the images from the system.

The management area can be seen in Figure F.6 and Figure F.7. In this screenshot no VM

images were marked for deletion.

Administrators have access to the administration panel, a part of the system parallel to the

web interface designed. In this space, administrators can control the database-oriented part of the

system, which includes creating, modifying and deleting everything that was designed in a way

that can be stored in the database of the system.

59

Problem Statement

The most relevant part of this administration panel is the user management section, as this is

the only way available for creating, modifying and deleting users that can access the system. The

other features may be relevant if the system administrator wishes to test some aspects from the

system.

3.4 Conclusions

In this chapter was presented the architecture to be followed in Chapter 4 in the implementation

phase. CICA’s private cloud project was presented, this document covering the front-end of that

project. The objectives were outlined, as well as the use cases and stakeholders.

A model for a solution was also shown, which includes the UML diagram for the current work.

This diagram, along with the use cases and stakeholder identification, describe the system to be

implemented.

Some relevant system details were also presented, including the ways that the user is helped

when deciding what he/she needs to do to successfully run his/her computing job, while not wast-

ing valuable resources by creating a VM image that may already exist in the system.

Screenshots were provided so a general look of the system can be obtained. All the screen-

shots are collected at Appendix F – Web system screenshots for readability purposes and general

document organization.

60

Chapter 4

Approach and Results

This chapter depicts the main work which derived from the study performed in Chapter 2.

The implementation of some of the capabilities of the web system is explained, with special

detail to the “tag” system and its importance in the system.

A proposed integration with OpenStack is described, including the system architecture and

some technical details. Some advantages the developed web system has over this cloud middle-

ware are explained.

The results gathered from the work described in this document are presented.

4.1 Implementation

4.1.1 Web system

Two frameworks were considered for building the web system:

1. Ruby on Rails;

2. Django.

As it was concluded in Chapter 2 – Cloud Middleware – in the section Conlusions, Django

(and consequently Python) was chosen for the development of the web system.

In this segment of the document, some of the web system functionalities are document with

regards to their technical aspect.

4.1.1.1 The login system

The login system was implemented using the django.contrib.auth module (referred to as:

“Authentication module” for the rest of the chapter for readability reasons) which comes bundled

with a clean Django installation.

This module automates the process of managing users, permissions and the overall authenti-

cation aspect of a system, by providing a pre-created “Model” with a set of attributes, (Django

61

Approach and Results

uses an MVC architecture, as mentioned in Chapter 2 – Cloud Middleware, section Python and

Django) which can be edited if the necessity arises.

This module handles every user as a “normal” user unless the fields “is_staff” and/or “is_superuser”

are changed to “True” (these fields are present), which mean that a user will be able to access the

administration panel and have all the permissions inside the system without needing to explicitly

assigning them, respectively.

In the context of this project, the system administrator is a “superuser” and is the only one

who can access the administration panel. If there is a need of creating extra administrators, it can

be easily done by accessing the administration panel and following the instructions displayed.

In order to know which user has access to what, the user who is currently logged in is saved in

the current session. As such, it is possible to know which user is currently accessing the viewed

page (by accessing request.user in the Django “view” for the current page) and take actions

accordingly. In this project, if a user is not logged in, he/she cannot access the system at all, being

redirected to a login page each time they try and fail.

The administrator is shown a link to “Management” section hidden in the “Index” page from

the rest of the users, using the same login system. The “view” checks if the current user has the

field “is_staff” set to “True” and if it is, that link is shown.

Even if the normal users are aware of the management area and know the link to it, they still

cannot access it even if they are logged in, since the “view” for that page checks if the user has

access, thus preventing an outsider from doing harm to the system.

4.1.1.2 The “Search” function and the “Tag” system

In order to provide for a better VM image management, it was decided to implement a search

function, where users could easily find which VM images they were looking for with little effort

required.

The search function itself is not hard to implement, as long as the fields it searches over are

properly created. As such, it was necessary to identify which fields would be used.

Django has a module that covers that necessity. This module (called django-tagging),

allows for the association of a number of “tags” with any instance of any “Model” and simplifies

the process of working with “tags” [dja]. Upon the discovery of this module, attempts of working

with either the “Image name” or the “Image description” fields were automatically discarded.

The user has the ability of “tagging” an image on its creation process simply by typing which

keywords he/she wishes to attach to that image. Multiple word keywords are supported, as long

as they are separated via commas (specified in the image creation page).

This “tag” system now allows for the search function to use them. When the user uses this

function, he/she has to type in which keywords to search for. The system will then iterate over

the tags which were inputted and search in the system for all the images which were tagged with

that keyword, using a method included in the django-tagging module called get_by_model

which takes the “Model” that is needed to search over and the keyword inputted in the search form.

62

Approach and Results

The “Search” function also updates the frequency of which the “tags” were searched. If the

search term does not exist in the database, it is created with the usage of “1”. If it exists, its usage

is incremented once.

4.1.1.3 Helping the user choose a VM image

As it was mentioned in Chapter 3 – Problem Statement, in section Helping the user – different

types of “tools” were implemented in order to help the user choose which VM he/she should use:

• A set of statistics;

• A search function.

The set of statistics contains the following:

1. What VM images the user that is logged in has available to him (this includes public images

and those the user created);

2. Which VM images are more used across the system;

3. Which “tags” were most searched across the system;

4. A “Tag” Cloud was created, showing which “tags” were most used across the system.

These statistics were implemented by taking advantage of the relationships created and depicted

in the UML diagram shown in the previous section (UML diagram).

As it can be understood from the diagram, there is a direct relation between the user and the

VM image, as an image has an owner explicitly declared in its attributes.

Combining the knowledge from the current user in section (explained earlier in this chapter)

and that relation, collecting which VM images the user has created becomes relatively easy. After

this, all that is needed to do is collect which VM images are marked as being public and display

the two lists combined. The possibility of having a duplicate image is possible (since one of the

users images may be set as public) is addressed and is prevented by checking if any of the elements

from the first list already exists in the second list.

As for knowing which VMs are more used across the system, this is done by using association

derived from the relationship between images and users (represented as “Usage” in the UML

diagram). Each time a VM image is launched, the system internally increases the number of uses

from that image by taking the elements that identify the VM image and the user in session.

As it was explained earlier, when the user search for a “tag”, the number of uses of that “tag”

increases internally.

The creation of a “Tag” cloud is also a built-in functionality of the django-taggingmodule.

What it does it create a list of the “tags” used for a specified “Model”, using how many times the

63

Approach and Results

“tags” were used and associate them with a certain font size to be displayed. This assignment uses

either a logarithmic or a linear distribution so that a visual comparison can be made. The bigger

the used font, the more times that tag was used [dja].

4.1.1.4 VM image creation

The VM image creation was created by using bash 1 scripts. The web system calls these scripts

and they are ran server side. An example of those scripts can be found in Appendix D (vmbuilder

script).

These scripts are created using the information inputted by the user in the VM image creation

page. They take the name of the image and the name of the programs to be included in the VM

creation in order to contextualize it.

These scripts are built using Python’s ability to write to file and they are stored server side.

The files must be opened using the arguments “r+”, which means that the script will be overwritten

every time a VM image is created.

In order for the scripts to be run, whichever user is logged into the server and runs the web

system needs to have specific passwordless "Superuser" (sudo) access to that script. This needs

to be done since vmbuilder requires sudo permissions.

This access can be granted by modifying the sudoers file and granting sudo permission to

the user which will run the web system and only to the files which need to be run.

This guarantees that nothing in the system is compromised and that only specific scripts can

be ran using sudo permissions.

Furthermore, when the user creates a VM image, the system automatically adds “tags” to

the “Image” object created, according to which programs the user wished to include. This is

done to remove the possibility of the users forgetting to do so and the image “tagging” becoming

incomplete and consequently hurting the rest of the user base.

4.1.1.5 Managing tasks

Another aspect of the system worth detailing is how it deals with requests for VM image creations.

At the end of the VM image creation process inside the web system (shown in Figure F.1) the

method subprocess.call() from the Python module subprocess (allows to create new

processes, connect to input/output/error pipes and obtain the return codes) is used to run the VM

creation script. If this method is called inside the Python code, the Django “View” will wait until

the return code is obtained from the VM creation script call, and will only render itself after the

script finishes. Some tests were run and the average time for the script completion came to around

twenty minutes (as seen in Figure 4.1), which is a very high amount of time to wait.

As such, an asynchronous task/job queue based on distributed message passing named Celery

was used. Celery allows for the execution of certain tasks in the background, so the “Views” can

be loaded without having to wait for the subprocesses to finish executing.

1Unix command shell.

64

Approach and Results

Figure 4.1: One of the VM image creation test runs.

After the user clicks the "Create VM image" button in the VM creation page (Figure F.1 –

Create a VM image.), he/she will be redirected to the “VM launch” screen, which will be refreshed

every few minutes and check if the celery task which contains the command to run the VM

creation script has finished executing. As soon as it does, the page will refresh and show a link to

launch the VM.

Celery is also used to schedule certain maintenance jobs, such as checking if the disk where

the VMs are being stored is reaching a certain capacity (useful for administrators).

Finally, Celery sends these tasks to workers (processes created by Celery) who receive

them in a distributed manner (if a worker is free, it receives the task, instead of a worker who

is already working on something else). This means that more than one request that needs to be

handled in the background can be run at the same time [Sol].

The modules python-tagging and South are needed for the web application to func-

tion properly. python-tagging, as it was mentioned earlier, is crucial for the search function,

whereas South is used in database migrations.

4.2 Integrating with OpenStack

As it was mentioned earlier in the document, this project interacts with a cloud middleware,

namely OpenStack.

OpenStack being created to deliver a massively scalable cloud operating system, each of

the components is designed to work together in order to provide complete IaaS. This integra-

tion is facilitated through public APIs that each service offers, being available to the cloud’s end

users. [Pep].

Expanding the diagram shown in Figure 2.2, the relationships between the services are shown

in Figure 4.2:

The solution proposed for this project links the OpenStack Dashboard — Horizon — with the

designed Web application developed in Python and Django, as shown in Figure 4.3.

This integration proposition would expand the power of the private cloud project, by taking

advantage of OpenStack.

DevStack was used in order to simplify the cloud deployment.

Firstly, a clean installation of Ubuntu 12.04 LTS (as recommended by DevStack’ homepage)

was created on Linux’s Virtual Machine Manager (libvirt).

65

Approach and Results

Figure 4.2: Relationships between the different OpenStack services. [Pep]

DevStack deployment instructions were followed as they are in its webpage 2 and after the

script finished, the Horizon Dashboard was accessible via a webpage, as it can be seen in Fig-

ure 4.4.

All the desired services were up and running, as shown in Figure 4.5. Even though the image

service (Glance) was what was needed the most, it showed that the DevStack deployment is a

viable OpenStack development tool.

Connection with OpenStack is made by communicating with Glance, which can be made by

two ways:

• Through a RESTful API.

• Using a command line API.

Since this is a web system, the RESTful API will be used.

Communication with Glance is established when the user wants to store a newly created VM

image, wishes to use an already existing one and when the user wishes to view the images already

stored in the server. This last case can be eliminated by storing the previous results on a text file,

along with the timestamp of the last change made to that list (which should happen when a user

creates and inserts a new VM image into the system).

2http://devstack.org

66

http://devstack.org

Approach and Results

Figure 4.3: Proposed architecture implementation for integrating with OpenStack.

Due to time constraints, the full integration with OpenStack was not possible, but the work

described in this document provides a good start for that to happen.

The web interface which was developed offers some advantages over OpenStack itself, which

are described in the next section.

67

Approach and Results

Figure 4.4: OpenStack Horizon Dashboard.

Figure 4.5: OpenStack services.

68

Approach and Results

4.2.1 Advantages over OpenStack

At this moment, OpenStack does not offer the possibility of searching for a specific VM image to

launch. It just displays all the VM images registered and the user must manually search for the

VM he/she is looking for.

OpenStack also does not provide a way of actually creating a contextualized VM image. The

user must create on his/her own the script which will contextualize a pre-created clean VM image

(as it can be seen in Figure Customizing an instance in OpenStack.).

Figure 4.6: Customizing an instance in OpenStack.

Its Horizon dashboard is not user friendly for people who are not familiarized with some of

the computing aspects, but the developed system is. It simplifies the way it interacts with the

user, showing helpful tips and notes wherever is deemed necessary, successfully completing the

objective defined at the start – letting the users interact with the system without needing specific

technical knowledge.

Moreover the developed web system provides a simple and easy-to-use interface for managing

both users and VM images.

By taking advantage of the authentication module bundled with Django, user management

becomes simple, as its interface is intuitive (as shown in Figure 4.7 – The administration interface.

– and Figure 4.8 – Changing user details in the administration interface.).

Moreover, VM image management is simplified in the developed web system. The admin-

istrator is provided with visual aids which show which tasks need to be done. This allows for

69

Approach and Results

Figure 4.7: The administration interface.

researchers to become system administrators and not knowing anything related to the database

part of the system.

Since researchers implicitly need some knowledge (otherwise they would not be using the web

system), this can be ported to the management area. Since the administration system differentiates

between administrative access to the administration panel and VM image management from within

the web system, this is an advantage.

4.3 Results

In order to test whether the developed web system helped users in choosing which environment

was more suitable for their needs, a series of tests had to be run.

These tests involved the successive creation of VM images and their deployment, while mea-

suring the time it took from when the “Create VM image” was pressed in the web system until the

time when the VM was launched and ready to use.

As it was mentioned earlier, the creation of the VMs took an average of 20 minutes (this was

tested by using the time command which measures the system resource usage) and the actual

VM launch (from when the creation script finished until the VM was ready to use) took around 10

minutes (this on a laptop with an Intel i7 CPU running at 1.60 GHz with 4 GB of RAM).

Launching already existing VMs took an average of 10 minutes when they were launched from

the web system, keeping the time consistent with when they were launched right after they were

created.

This however, needs further testing in different machines and different environments, so an

actual measure can be taken.

Nevertheless, it can be said that with the use of a web system like the one that was developed,

users can actually take advantage from the VM images created by other users, which removes the

VM creation time, regardless of what that is.

With OpenStack, the VM images had to be constantly re-contextualized, something that this

web system addresses and fixes.

70

Approach and Results

Figure 4.8: Changing user details in the administration interface.

4.4 Conclusions

This chapter presented how the architecture described in Chapter 3 – Problem Statement) – was

implemented, from a technical point of view.

It was shown how the use of some Django modules were used in order to complete some of

the objectives and how the system works internally.

An integration with OpenStack was proposed, in order to maximize the power of the system.

This web system can be used as the interface for the cloud middleware, even replacing some of its

functions (i.e. image contextualization).

Improvements over the current OpenStack version were also referred, underlining the user-

friendly characteristic of the web system developed.

71

Approach and Results

72

Chapter 5

Conclusion

In this chapter the conclusions gathered from the work described in the previous sections is de-

scribed.

Recommendations for future work are also made.

5.1 Conclusions

During the realization of this project a few conclusions were drawn.

First of all, cloud computing is one major topic at the moment. Researchers are very fond of

the possibilities that cloud computing has and what it has to offer and they want to take as much

out of it as they can.

Companies are also shifting towards the cloud. They are setting their IT foundations in it,

abandoning the physical infrastructures and costs that come with them. More and more enterprises

offer cloud deployment services and the open source community is opened to these changes, as it

could be seen in the development of OpenStack and OpenNebula.

OpenStack is a major competitor in the cloud computing scene. If it continues with the same

pace it had (and maintained) since its first release, it will overthrow its competitors. It is extremely

powerful and has both the community and industry backup. OpenNebula is also trying to keep up

the pace, using the revenue from their enterprise edition to fuel the development of the project.

In addition, the Django framework came to be a powerful tool in this project. Its MVC archi-

tecture simplified the development process and Python is an easy to pickup programming language

with a very strong community behind it. The downside was that even though Python is relatively

simple, Django can become troublesome in some areas. If someone is not used to this kind of

frameworks, the learning process may be slow.

As for initially delineated objectives for this project, it can be concluded that the development

of the web system can help users in choosing the suitable VMs for their computing jobs. The

usage of statistics and visual aids helps the users locate what they are looking for.

The search function is a powerful tool in the web system, as it can locate anything that is

“tagged” with anything. If the user is looking for a VM image with the program Vim installed,

73

Conclusion

the search function will find it. As it was mentioned in the previous chapter, the automatic “tag”

addition complements the search function and expands its power.

VM images were created at an average of twenty minutes since the script was launched and

they were booted after an average of ten minutes since the script finished executing.

This boot time was also observed if the script to boot the images was launched regardless of

the time the image was created, which means that using a previously created image can improve

the actual use time of the system by twenty minutes.

This shows that users that use the web system can actually benefit from using images from

other users, as long as the VM images fit their needs.

The implementation of the possibility to reserve a VM image for usage in the future gives an

incredible amount of flexibility to the system, so that a user is not restrained as to when the VM

image might be created (the script finishing time may be slower due to high amounts of traffic in

the web system at that time).

Improvements over OpenStack were observed, namely in the way OpenStack approaches users

who do not have any technical knowledge in cloud computing. The Horizon dashboard contains

very technical terms, some of which may be unfamiliar to a use base that may contain users from

other engineering fields (FEUP’s user base, for example).

5.2 Future Work

One of the main improvements to be done is implementing the ability of customizing already ex-

isting VM images in the system. The use case was presented (Figure E.13 – UC13 – Customize an

image and save it.) and the technology was discussed (cloud-init) but it was not implemented.

This would improve the web system in a great way, simplifying the process of providing a proper

VM image to the user without the need of recreating an image when all that was needed was to

slightly tweak a previous VM image. The addition of user-owned software would increase the

value of the web system, offering a greater level of adaptability to users needs.

Another improvement would be the possibility of adding new packages to the VM images

configuration by user input, instead of choosing them on a fixed list, since this limits what the user

can choose from. Removing this limitation can potentially allow the project to scale outside of

FEUP’s range and open the possibility of deployment on other facilities. This could be achieved by

possibly searching repositories in real time, so that the user can have as many choices as possible.

The direct comparison with OpenNebula would be a great contribution as well. Comparing

VM creation and contextualization time, even comparing the development process by using Ruby

on Rails would lead to discover which process is more appropriate and beneficial. Plus, a direct

comparison between these two systems is yet to be found at the date of the creation of this doc-

ument. It has been discussed in both OpenStack and OpenNebula’s mailing lists, but no direct

comparison has yet been made.

Extending the use of this web system to other facilities is also a possibility. There are many

sites that can benefit from a web system like the one presented in this document. Furthermore,

74

Conclusion

there are no actual restrictions as to where this system can be implemented and it can be adapted

to any facility who wishes to use it.

Improvements could also be made in the management section of the web system. The areas

of management can be expanded outside of the web system itself. Checking the disk quota for

VM images is a possibility, and the system may be able to free some space by deleting older VM

images, similar to what is already implemented, but in a larger scale.

75

Conclusion

76

Appendix A

Grids VS. Clouds

77

Grids VS. Clouds

Figure A.1: Comparing Grids and Clouds [VRMCL08].

78

Appendix B

OpenStack VS. OpenNebula

79

OpenStack VS. OpenNebula

Figure B.1: Comparing OpenStack and OpenNebula on Ohloh.com.[DSI]

80

Appendix C

IRC conversation about Cloud-init

Below is presented the IRC conversation on cloud-init. Some parts have been left out so that what

is important can be understood.

Joshua Harlow uses the alias “harlowja”, Scott Moser uses the alias “smoser” and the author

of this report uses the alias “pteixeira”.

[03:07] <pteixeira> the way on how different instances from the same images are

configured (ip, authentication, etc etc etc)

[03:08] <zaitcev> So, it’s like what Audrey does?

[03:08] <pteixeira> audrey?

[03:09] <zaitcev> Actually, I think the fashionable tool these days is cloud-init. Au-

drey was originally put together by Aeolus people.

[...]

[03:11] <pteixeira> cloud-init only works on ubuntu based images, right?

[...]

[03:12] <smoser> coming soon to an RPM based distro near you.

[03:12] <smoser> (thanks to harlowja and others)

[...]

[03:12] <harlowja> ya, it will be nicer to work with other distros and debugging and

such soon

[03:12] <harlowja> that is the hope

[03:12] <smoser> pteixeira, it does exist in fedora at the moment, but in a limited

fashion

[...]

[03:13] <smoser> pteixeira, and there is cloud-init in debian sid right now, although

there is work to be don there also.

[03:13] <harlowja> ya, don’t expect it to do to much, i am working on something that

abstracts away as much of the distro stuff as possible to helper classes, some stuff

won’t work in fedora/rh... ie, aptupgrades and such but those can be removed

81

IRC conversation about Cloud-init

[03:14] <pteixeira> ill use the ubuntu one for now... are there any links that i can

follow so i can get some more richness on the document?

[03:15] <harlowja> code level, or just regular docs, or capability docs?

[03:15] <harlowja> https://help.ubuntu.com/community/CloudInit

[03:15] <harlowja> depends on how deep down the rabbit hole u want to go

[...]

[03:17] <pteixeira> actually, can you link me to the capability docs?

[03:18] <harlowja> the capabilities, are in that main one, http://bazaar.launchpad.net/ cloud-

init-dev/cloud-init/trunk/files/head:/doc/examples/ + code unless there is another

better place

[03:18] <harlowja> i would almost say look at http://bazaar.launchpad.net/ cloud-init-

dev/cloud-init/trunk/files/head:/cloudinit/CloudConfig/ also

[03:18] <harlowja> docs for this kind of stuff could be better i think

[03:19] <harlowja> datasource* modules there are how data gets loaded

[03:19] <harlowja> http://bazaar.launchpad.net/ cloud-init-dev/cloud-init/trunk/files/head:/cloudinit/

[...]

[03:20] <harlowja> http://bazaar.launchpad.net/ harlowja/cloud-init/rework/files might

be easier to follow, basically starting in stages.py/init and then to the stages.py/transforms

but don’t expect that branch to work yet

[03:20] <harlowja> but for refereence it might be better

[03:21] <harlowja> sorry, http://bazaar.launchpad.net/ harlowja/cloud-init/rework/files/head:/cloudinit/,

not the main dir

[...]

[03:22] <smoser> almost all of cloudconfig function is documented in the doc/ link

or source that harlow pointed at above.

[03:22] <smoser> and the wiki doc shows what all to feed CloudInit (one of the things

you can feed it is cloudconfig).

[...]

82

Appendix D

vmbuilder script

Script used to create VM images dynamically.

This creates a KVM Ubuntu image, version Precise Pangolin (-suite=precise), suitable

for virtual environments (-flavour=virtual), for 32 bit machine (-arch=i386), using the

German Ubuntu mirrors to get the packages (-mirror).

The section -o -libvirt=qemu:///system tells the system to register the newly created

with the system’s virtual machine manager.

In this case, a file named vmbuilder.partition was used to define the disk partitioning.

The section -templates=templates points to the folder where vmbuilder should use the

templates to build the image.

After this, we have the definition of the user, the name to be used and the password.

-addpkg tells vmbuilder to install the security updates, vim and acpid (used for functions

such as closing a laptop lid, pressing the power button, etc).

-firstboot refers to the script which will be run as soon as the VM image is booted. In

this case, the script boot.sh tells the newly created machine to read the information from the

repositories in order to find new packages (since this is a first boot, all of them will be new) and

installs ssh.

Finally, -mem=256 specifies the total RAM and –hostname, defines the machine’s hostname.

#!/bin/bash

sudo vmbuilder kvm ubuntu --suite=precise --flavour=virtual \

--arch=i386 --mirror=http://de.archive.ubuntu.com/ubuntu \

-o --libvirt=qemu:///system --ip=192.168.0.101 \

--part=vmbuilder.partition --templates=templates \

--user=user --name=Administrator --pass=password \

--addpkg=vim-nox --addpkg=unattended-upgrades \

--addpkg=acpid --firstboot=/home/pedro/Desktop/scripts/boot.sh \

--mem=256 --hostname=CHEM_IMG

83

vmbuilder script

84

Appendix E

Use cases

In this appendix all the use case diagrams are collected.

Figure E.1: UC1 – Login into the web system.

85

Use cases

Figure E.2: UC2 – Perform management operations.

86

Use cases

Figure E.3: UC3 – Create a new VM image.

Figure E.4: UC4 – Launch a VM.

87

Use cases

Figure E.5: UC5 – View system wide statistics.

Figure E.6: UC6 – Search for a VM image.

88

Use cases

Figure E.7: UC7 – View the details of an existing VM image.

Figure E.8: UC8 – Modify the details of an existing VM image.

89

Use cases

Figure E.9: UC9 – View user details.

Figure E.10: UC10 – Modify the user’s details.

90

Use cases

Figure E.11: UC11 – Reserve an image for later use.

Figure E.12: UC12 – Mark an image for deletion.

91

Use cases

Figure E.13: UC13 – Customize an image and save it.

92

Appendix F

Web system screenshots

In this appendix all the screenshots from the web system are collected.

Figure F.1: Create a VM image.

93

Web system screenshots

Figure F.2: Post image creation screen.

Figure F.3: The start page.

94

Web system screenshots

Figure F.4: List of available VMs to launch.

Figure F.5: Login screen.

95

Web system screenshots

Figure F.6: Management area accessible from the start page.

Figure F.7: Management area accessible from the start page.

Figure F.8: Search page.

96

Web system screenshots

Figure F.9: Results of a search for “vim, program1, program2, gcc, tex”.

Figure F.10: User details page.

97

Web system screenshots

Figure F.11: VM images available to the user (includes public and created by the user).

Figure F.12: Most used VM images by the current user.

98

Web system screenshots

Figure F.13: Most used VM images system wide.

Figure F.14: Tag cloud.

Figure F.15: Most searched “tags” in the system.

Figure F.16: Link to “Image management”.

99

Web system screenshots

100

References

[Ama] Amazon. Amazon EC2 FAQ - what is a “EC2 Compute Unit” and why did you introduce
it? http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_
and_why_did_you_introduce_it. Last accessed 16 July 2011.

[B0́8] Marc-Elian Bégin. An EGEE comparative study: Grids and clouds - evolution or revolu-
tion. Technical report, CERN - Engeneering and Equipment Data Management Service,
June 2008.

[BAFB05] M. Baker, A. Apon, C. Ferner, and J. Brown. Emerging grid standards. Computer,
38(4):43 – 50, april 2005.

[BK07] M. Bachle and P. Kirchberg. Ruby on rails. Software, IEEE, 24(6):105 –108, nov.-dec.
2007.

[BLDGS04] Miguel Bote-Lorenzo, Yannis Dimitriadis, and Eduardo Gómez-Sánchez. Grid char-
acteristics and uses: A grid definition. In Francisco Fernández Rivera, Marian Bubak, An-
drés Gómez Tato, and Ramón Doallo, editors, Grid Computing, volume 2970 of Lecture
Notes in Computer Science, pages 291–298. Springer Berlin / Heidelberg, 2004.

[BV08] Jaijit Bhattacharya and Sushant Vashistha. Utility computing-based framework for e-
governance. In Proceedings of the 2nd international conference on Theory and practice of
electronic governance, ICEGOV ’08, pages 303–309, New York, NY, USA, 2008. ACM.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Generation Computer Systems, 25(6):599 – 616,
2009.

[Car09] Nicholas Carr. The Big Switch: Rewiring the World, from Edison to Google. W.W. Norton
& Company, 2009.

[Car11] Nuno Cardoso. Virtual clusters sustained by cloud computing infrastructures. Master’s
thesis, FEUP - Faculdade de Engenharia da Universidade do Porto, 2011.

[CCa] Rackspace Cloud Computing. Introduction - Openstack Compute Starter Guide - es-
sex. http://docs.openstack.org/essex/openstack-compute/starter/
content/Introduction-d1e1257.html. Last accessed 14 June 2012.

[CCb] Rackspace Cloud Computing. Open Stack - Open Source Cloud Computing Software.
http://www.openstack.org/software/. Last accessed 12 June 2012.

101

http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it
http://docs.openstack.org/essex/openstack-compute/starter/content/Introduction-d1e1257.html
http://docs.openstack.org/essex/openstack-compute/starter/content/Introduction-d1e1257.html
http://www.openstack.org/software/

REFERENCES

[CCc] Rackspace Cloud Computing. User Stories - OpenStack Open Source Cloud Computing
Software. http://www.openstack.org/user-stories/. Last accessed 14 June
2012.

[CCd] Inc. Cunningham & Cunningham. Don’t Repeat Yourself. http://c2.com/cgi/
wiki?DontRepeatYourself. Last accessed 16 July 2011.

[CER] CERN. gLite - Lightweight Middleware for Grid Computing. http://glite.cern.
ch/. Last accessed 16 July 2011.

[CGH09] Damien Cerbelaud, Shishir Garg, and Jeremy Huylebroeck. Opening the clouds: quali-
tative overview of the state-of-the-art open source vm-based cloud management platforms.
In Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware,
Middleware ’09, pages 22:1–22:8, New York, NY, USA, 2009. Springer-Verlag New York,
Inc.

[Cor] LinkedIn Corporation. OpenStack vs Eucalyptus vs
OpenNebula. http://www.linkedin.com/groups/
OpenStack-vs-Eucalyptus-vs-OpenNebula-2685473.S.54382975. Last
accessed 14 June 2012.

[dja] A generic tagging application for Django projects. https://code.google.com/p/
django-tagging/. Last accessed 14 June 2012.

[DSI] Black Duck Software, Inc. Compare projects - Ohloh. http://www.ohloh.
net/p/compare?metric=Summary&project_0=OpenStack&project_1=
OpenNebula&project_2=. Last accessed 14 June 2012.

[dt] Ubuntu documentation team. JeOS and vmbuilder. https://help.ubuntu.com/12.
04/serverguide/jeos-and-vmbuilder.html. Last accessed 14 June 2012.

[FFK+06] I. Foster, T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer, and X. Zhang. Virtual
clusters for grid communities. Cluster Computing and the Grid, IEEE International Sym-
posium on, pages 513–520, 2006.

[Fos02] Ian Foster. What is the grid? a three point checklist. Grid Today, 1(6):22–25, 2002.

[GKC+] Jeremy Geelan, Markus Klems, Reuven Cohen, Jeff Kaplan, Douglas Gourlay, Praising
Gaw, Damon Edwards, Brian de Haaff, Ben Kepes, Kirill Sheynkman, Omar Sultan, Kevin
Hartig, Jan Pritzker, Trevor Doerksen, Thorsten von Eicken, Paul Wallis, Michael Sheehan,
Don Dodge, Aaron Ricadela, Bill Martin, Ben Kepes, and Irving W. Berger. Twenty-
One Experts Define Cloud Computing. http://virtualization.sys-con.com/
node/612375. Last accessed in 16 July 2011.

[GWQF10] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox. Cloud computing
paradigms for pleasingly parallel biomedical applications. In Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing, HPDC ’10,
pages 460–469, New York, NY, USA, 2010. ACM.

[Hay08] Brian Hayes. Cloud computing. Commun. ACM, 51:9–11, July 2008.

[Haz08] Scott Hazelhurst. Scientific computing using virtual high-performance computing: a
case study using the amazon elastic computing cloud. In Proceedings of the 2008 annual

102

http://www.openstack.org/user-stories/
http://c2.com/cgi/wiki?DontRepeatYourself
http://c2.com/cgi/wiki?DontRepeatYourself
http://glite.cern.ch/
http://glite.cern.ch/
http://www.linkedin.com/groups/OpenStack-vs-Eucalyptus-vs-OpenNebula-2685473.S.54382975
http://www.linkedin.com/groups/OpenStack-vs-Eucalyptus-vs-OpenNebula-2685473.S.54382975
https://code.google.com/p/django-tagging/
https://code.google.com/p/django-tagging/
http://www.ohloh.net/p/compare?metric=Summary&project_0=OpenStack&project_1=OpenNebula&project_2=
http://www.ohloh.net/p/compare?metric=Summary&project_0=OpenStack&project_1=OpenNebula&project_2=
http://www.ohloh.net/p/compare?metric=Summary&project_0=OpenStack&project_1=OpenNebula&project_2=
https://help.ubuntu.com/12.04/serverguide/jeos-and-vmbuilder.html
https://help.ubuntu.com/12.04/serverguide/jeos-and-vmbuilder.html
http://virtualization.sys-con.com/node/612375
http://virtualization.sys-con.com/node/612375

REFERENCES

research conference of the South African Institute of Computer Scientists and Informa-
tion Technologists on IT research in developing countries: riding the wave of technology,
SAICSIT ’08, pages 94–103, New York, NY, USA, 2008. ACM.

[HH] David Heinemeier Hansson. Ruby on Rails. http://rubyonrails.org/. Last ac-
cessed 16 July 2011.

[HI] Red Hat, Inc. Aeolus Project - Oz. http://aeolusproject.org/oz.html. Last
accessed 14 June 2012.

[Hid] Arif Hidayat. Morfeo 4CaaSt. http://4caast.morfeo-project.org/. Last ac-
cessed 14 June 2012.

[HJB] Mitchell Hashimoto and John Bender. Vagrant - Contribute to Vagrant. http://
vagrantup.com/contribute/index.html. Last accessed 14 June 2012.

[HP10] Joel Hollingsworth and David J. Powell. Teaching web programming using the google
cloud. In Proceedings of the 48th Annual Southeast Regional Conference, ACM SE ’10,
pages 76:1–76:5, New York, NY, USA, 2010. ACM.

[IDE+06] Alexandru Iosup, Catalin Dumitrescu, Dick Epema, Hui Li, and Lex Wolters. How are
real grids used? the analysis of four grid traces and its implications. In Proceedings of the
7th IEEE/ACM International Conference on Grid Computing, GRID ’06, pages 262–269,
Washington, DC, USA, 2006. IEEE Computer Society.

[Inca] GitHub, Inc. jedi4ever/veewee. https://github.com/jedi4ever/veewee. Last
accessed 14 June 2012.

[Incb] GitHub, Inc. OpenStack Essex Deploy Day · dellcloudedge/crow-
bar Wiki. https://github.com/dellcloudedge/crowbar/wiki/
OpenStack-Essex-Deploy-Day. Last accessed 14 June 2012.

[Incc] QuinStreet Inc. What is Scale-Out Storage? An IT Definition From Webopedia.com.
http://www.webopedia.com/TERM/S/scale_out_storage.html. Last ac-
cessed 14 June 2012.

[Incd] Rackspace US, Inc. Chapter 1. Getting Started with OpenStack - Open-
Stack Compute Administration Manual- Essex (2012.1). http://docs.
openstack.org/essex/openstack-compute/admin/content/ch_
getting-started-with-openstack.html. Last accessed 14 June 2012.

[Ince] Rackspace US, Inc. Open Cloud Deployment in Your Data Center Managed by Rackspace.
http://www.rackspace.com/cloud/private_edition/. Last accessed 14 June
2012.

[KF98] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, November 1998.

[KF08] K. Keahey and T. Freeman. Contextualization: Providing one-click virtual clusters. In
eScience, 2008. eScience ’08. IEEE Fourth International Conference on, pages 301 –308,
dec. 2008.

103

http://rubyonrails.org/
http://aeolusproject.org/oz.html
http://4caast.morfeo-project.org/
http://vagrantup.com/contribute/index.html
http://vagrantup.com/contribute/index.html
https://github.com/jedi4ever/veewee
https://github.com/dellcloudedge/crowbar/wiki/OpenStack-Essex-Deploy-Day
https://github.com/dellcloudedge/crowbar/wiki/OpenStack-Essex-Deploy-Day
http://www.webopedia.com/TERM/S/scale_out_storage.html
http://docs.openstack.org/essex/openstack-compute/admin/content/ch_getting-started-with-openstack.html
http://docs.openstack.org/essex/openstack-compute/admin/content/ch_getting-started-with-openstack.html
http://docs.openstack.org/essex/openstack-compute/admin/content/ch_getting-started-with-openstack.html
http://www.rackspace.com/cloud/private_edition/

REFERENCES

[KG09] Eric Knorr and Galen Gruman. What cloud computing really
means. http://www.infoworld.com/d/cloud-computing/
what-cloud-computing-really-means-031, 2009. Last accessed 16 July
2011.

[LLC] Dictionary.com, LLC. Functional requirements - Define Functional requirements at
Dictionary.com. http://dictionary.reference.com/browse/functional+
requirements. Last accessed 14 June 2012.

[McF] Paul McFedries. Ieee spectrum - Inside Technology. http://spectrum.ieee.org/
computing/hardware/the-cloud-is-the-computer. Last accessed 16 July
2011.

[MD] Marius Ducea. MDLog:/sysadmin. http://www.ducea.com/2011/08/15/
building-vagrant-boxes-with-veewee/. Last accessed 14 June 2012.

[Mic] Microsoft. Windows Azure | Microsoft Paas | Cloud Services | Application Hosting.
http://www.microsoft.com/windowsazure/. Last accessed 16 July 2011.

[NASA] NASA North American Space Agency. Nebula Cloud Computing Platform. http:
//nebula.nasa.gov/. Last accessed 14 June 2012.

[NMM07] Hideo Nishimura, Naoya Maruyama, and Satoshi Matsuoka. Virtual clusters on the fly
- fast, scalable, and flexible installation. Cluster Computing and the Grid, IEEE Interna-
tional Symposium on, 0:549–556, 2007.

[non] Functional and Non-Functional Requirements. http://www.
requirementsauthority.com/functional-and-non-functional.html.
Last accessed 14 June 2012.

[NS07] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated power management in
virtualized enterprise systems. In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, SOSP ’07, pages 265–278, New York, NY, USA, 2007.
ACM.

[OCC] OCCI. Open Cloud Computing Interface - Open Standard - Open Community. http:
//occi-wg.org/. Last accessed 14 June 2012.

[Ope] OpenNebula. OpenNebula. http://opennebula.org/about:faq#what_is_
opennebula. Last accessed 16 July 2011.

[Pep] Ken Pepple. Revisiting Openstack Architecture: Essex Edi-
tion. http://ken.pepple.info/openstack/2012/02/21/
revisit-openstack-architecture-diablo/. Last accessed 14 June 2012.

[Pin10] Jorge Fernando Maciel Rodrigues Ruão Pinheiro. Interligação de infra-estruturas de com-
putação de elevado desempenho heterogéneas recorrendo a um super escalonador. Master’s
thesis, FEUP - Faculdade de Engenharia da Universidade do Porto, 2010.

[PLa] OpenNebula Project Leads. OpenNebula: The Open Source Solution for Data Center
Virtualization. http://opennebula.org/about:technology. Last accessed 12
June 2012.

104

http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031
http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031
http://dictionary.reference.com/browse/functional+requirements
http://dictionary.reference.com/browse/functional+requirements
http://spectrum.ieee.org/computing/hardware/the-cloud-is-the-computer
http://spectrum.ieee.org/computing/hardware/the-cloud-is-the-computer
http://www.ducea.com/2011/08/15/building-vagrant-boxes-with-veewee/
http://www.ducea.com/2011/08/15/building-vagrant-boxes-with-veewee/
http://www.microsoft.com/windowsazure/
http://nebula.nasa.gov/
http://nebula.nasa.gov/
http://www.requirementsauthority.com/functional-and-non-functional.html
http://www.requirementsauthority.com/functional-and-non-functional.html
http://occi-wg.org/
http://occi-wg.org/
http://opennebula.org/about:faq#what_is_opennebula
http://opennebula.org/about:faq#what_is_opennebula
http://ken.pepple.info/openstack/2012/02/21/revisit-openstack-architecture-diablo/
http://ken.pepple.info/openstack/2012/02/21/revisit-openstack-architecture-diablo/
http://opennebula.org/about:technology

REFERENCES

[PLb] OpenNebula Project Leads. OpenNebula: The Open Source Solution for Data Center
Virtualization. http://www.opennebula.org/documentation:rel3.4. Last ac-
cessed 12 June 2012.

[PLc] OpenNebula Project Leads. OpenNebula: The Open Source Solution for Data Center
Virtualization. http://opennebula.org/documentation:rel3.4:img_guide.
Last accessed 15 June 2012.

[Rap04] M. A. Rappa. The utility business model and the future of computing services. IBM Syst.
J., 43:32–42, January 2004.

[resa] Reservoir fp7 - Home. http://www.reservoir-fp7.eu/. Last accessed 14 June
2012.

[Resb] Cluster Resources. Cluster Resources: Moab Cluster Software Suite. http://www.
clusterresources.com/products/moab-cluster-suite.php. Last accessed
16 July 2011.

[RW04] J. W. Ross and G. Westerman. Preparing for utility computing: The role of it architecture
and relationship management. IBM Syst. J., 43:5–19, January 2004.

[sei] stack exchange inc. Can I use Python as a bash replace-
ment? http://stackoverflow.com/questions/209470/
can-i-use-python-as-a-bash-replacement. Last accessed 16 July 2011.

[Sol] Ask Solem. Celery: Distributed Task Queue. http://celeryproject.org/. Last
accessed 14 June 2012.

[Sto07] Heinz Stockinger. Defining the grid: a snapshot on the current view. The Journal of
Supercomputing, 42:3–17, 2007.

[str] StratusLab Combining Grid and Cloud Technologies. stratuslab.eu. Last accessed
14 June 2012.

[Sun] Karishma Sundaram. Bright Hub - The Hub for Bright Minds. http://www.
brighthub.com/environment/green-computing/articles/68785.aspx.
Last accessed 16 July 2011.

[Tea] Condor Team. Condor Project Homepage. http://www.cs.wisc.edu/condor/.
Last accessed 16 July 2011.

[Tec] TechTarget. What is high-performance computing (HPC)? — Definition from
WhatIs.com. http://searchenterpriselinux.techtarget.com/
definition/high-performance-computing. Last accessed 14 June 2012.

[Ubu] Ubuntu. JeOS and vmbuilder. https://help.ubuntu.com/11.04/serverguide/
jeos-and-vmbuilder.html. Last accessed 16 July 2011.

[VRMCL08] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break
in the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39:50–55,
December 2008.

[Wei07] Aaron Weiss. Computing in the clouds. netWorker, 11:16–25, December 2007.

105

http://www.opennebula.org/documentation:rel3.4
http://opennebula.org/documentation:rel3.4:img_guide
http://www.reservoir-fp7.eu/
http://www.clusterresources.com/products/moab-cluster-suite.php
http://www.clusterresources.com/products/moab-cluster-suite.php
http://stackoverflow.com/questions/209470/can-i-use-python-as-a-bash-replacement
http://stackoverflow.com/questions/209470/can-i-use-python-as-a-bash-replacement
http://celeryproject.org/
stratuslab.eu
http://www.brighthub.com/environment/green-computing/articles/68785.aspx
http://www.brighthub.com/environment/green-computing/articles/68785.aspx
http://www.cs.wisc.edu/condor/
http://searchenterpriselinux.techtarget.com/definition/high-performance-computing
http://searchenterpriselinux.techtarget.com/definition/high-performance-computing
https://help.ubuntu.com/11.04/serverguide/jeos-and-vmbuilder.html
https://help.ubuntu.com/11.04/serverguide/jeos-and-vmbuilder.html

REFERENCES

[ZKFF05] Xuehai Zhang, Katarzyna Keahey, Ian Foster, and Timothy Freeman. Virtual cluster
workspaces for grid applications. Technical report, 2005.

106

