
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Encounter Management

João Pedro Martins dos Santos de Carvalho Aradas

Report of Project

Master in Informatics and Computing Engineering

Supervisor: Eurico Manuel Elias Morais Carrapatoso (Professor Auxiliar)

1st July, 2009

c© João Pedro Martins dos Santos de Carvalho Aradas, 2009

Encounter Management

João Pedro Martins dos Santos de Carvalho Aradas

Report of Project

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: António Ernesto da Silva Carvalho Brito (Professor Auxiliar)

External Examiner: Carlos Manuel Azevedo Costa (Professor Auxiliar Convidado)

16st July, 2008

Abstract

Historically the hospitals have made many efforts to make the correct management of their
patients and the services provided to them. This management was not always an easy task
due to a variety of factors. The most important is that every decision in a healthcare
facility ultimately deals with human lives. Other factors include the large amount of data
to be processed, organized and properly stored. These problems are worsened by the fact
that the patient’s data is considered sensible information. The technology streamlined
these processes facilitating this management.

The Encounter Management application is divided in two components. The compo-
nent of infrastructure (backend) and another for interaction with the user (frontend) in
which the user can perform activities for administratively admit, discharge transfer and
also the management of encounter/visits between the patients and the healthcare facilities
with the use of web forms. The backend is a database for storage of local information,
HL7 communication with external entities, and other interactions with external entities,
such as sources of identification and authentication. The frontend should provide an in-
teraction with the user, rich content, providing useful information, being able to cover the
requirements for the management of a encounter of a patient, both at the arrival of the
patient, as at the time of his discharge.

One objective of this project was to develop this software using the most advanced
management concepts of encounters and also the most advanced technologies in the mar-
ket. Another objective was to develop this software in a modular, dynamic and adaptable
way to all streams of work related to hospital management encounters.

To achieve the objectives, a combination of agile methodologies and a rigid process
of documentation was used.

The results obtained by applying this methodology resulted in a systematized mod-
elling of the concept of encounters and all the medical terms associated (episodes of care,
episodes and encounters). This modelling led to the development of the Encounter Man-
agement software for outpatient visits. This was properly modularized in frontend and
backend.

Subsequently, it was concluded that to develop new modules, would only be necessary
to add more workflows and the according user interfaces to the backend and frontend. The
choice of a workflow engine to the software development has proved to be a right choice
because it allows all new hospital workflows to be modelled correctly.

i

Resumo

Desde sempre os hospitais se preocuparam em fazer uma correcta gestão dos seus pa-
cientes e dos serviços prestados a estes. Esta gestão nem sempre foi uma tarefa fácil
devido a grande quantidade factores. O factor mais é importante deve-se ao facto de toda
e qualquer decisão numa unidade de saúde pode potencialmente afectar vidas humanas.
Outros factores incluem a grande quantidade de dados a serem tratados, devidamente or-
ganizados e guardados. Estes problemas são agravados pelo facto de todos os dados dos
pacientes serem sensı́veis. A tecnologia agilizou estes processos facilitando esta gestão.

A aplicação de gestão de visitas será constituı́da por uma componente de infra-estrutura
(backend) e outra de interacção com o utilizador (frontend), na qual será possı́vel realizar
actividades de admissão, transferência e alta bem como uma gestão integrada de encon-
tros entre pacientes e as unidades de saúde com o recurso a formulários web. O backend é
constituı́do por uma base de dados para armazenamento da informação local, serviços de
comunicação HL7 com entidades externas, e outras interacções com entidades externas,
como sendo fontes de identificação e autenticação. O frontend deverá disponibilizar uma
interacção com o utilizador, rica de conteúdos, disponibilizando informação útil, capaz de
cobrir os requisitos de gestão de uma visita de um paciente, tanto no momento da chegada
deste, como no momento da sua alta.

Um dos objectivos deste projecto foi desenvolver este software utilizando os mais a-
vançados conceitos de gestão de visitas tal como as mais avançadas tecnologias existentes
no mercado. Outro objectivo foi desenvolver o presente software de uma forma modular,
dinâmica e adaptável a todos os fluxos de trabalho hospitalares relacionados com a gestão
de visitas.

Para atingir os objectivos foi utilizada uma combinação entre metodologias ágeis e um
processo de documentação rı́gido.

Os resultados obtidos através da aplicação desta metodologia culminaram numa cor-
recta modelação do conceito de gestão de visitas e todos os termos médicos associados
(episódios de cuidados, episódios e encontros). Esta correta modelação levou ao desen-
volvimento do software de gestão de visitas do módulo de consultas externas. Esta foi
correctamente modularizada em frontend e backend.

Posteriormente, concluiu-se que para realizar o módulo de medicina interna e outros
relacionados com fluxos de trabalho hospitalares, apenas seria necessário adicionar mais
fluxos de dados ao backend e respectivas interfaces ao frontend. A escolha de um mo-
tor de fluxos de dados para o desenvolvimento do software revelou-se acertada porque
rapidamente qualquer nova situação hospitalar poderá ser modelada correctamente.

ii

In loving memory of my Grandparents
Horácio Mariano And José Aradas

iii

Acknowledgements

First and foremost i would like to thank everyone at Siemens that make this internship
possible. Special thanks goes to António Martins and Daniel Ramos for guiding me
continuously throughout the project. I would also like to thank the other internees at
Siemens, Tiago Caçador for the endless discussions on Silverlight and WPF, Nuno Silva
for the help in the implementation and Pedro Gomes for the help in all HL7 issues. Also
from Siemens I would like to thank Joaquim Matos and Ricardo Gomes for all the help
and comments on my work.

From FEUP I would like to thank the professor Eurico Carrapatoso for his guidance
and advices that helped throughout the project.

I would also like to thank all my friends for all the good moments, the support and
their great laughter.

The most important, I would like to thank my Parents Daniel Aradas and Delfina
Aradas and the best sister in the world Carolina Aradas for their never ending love and
support.

Last, but not least, I would like to thank Patrı́cia for the great moments.

João Aradas

iv

Contents

1 Introduction 1
1.1 About Siemens . 1
1.2 Context . 2
1.3 Project . 3
1.4 Motivation and Objectives . 3
1.5 Thesis Structure . 4

2 State of Art 5
2.1 International Healthcare Standards . 5

2.1.1 HL7 . 5
2.1.1.1 V2.X . 6
2.1.1.2 V3 . 7
2.1.1.3 HL7 Parser . 8

2.2 User Interface . 8
2.2.1 Rich Internet Applications . 8
2.2.2 Desktop Applications . 9

2.3 Back-End Technology . 9
2.3.1 Windows Communication Foundation 9
2.3.2 Windows Workflow Foundation 10

2.4 Object-Relational Mapping . 10
2.4.1 NHibernate . 11
2.4.2 Language Integrated Query . 11

2.5 Patient Administrative Management Implementations 11
2.5.1 Integrating the Healthcare Enterprise - Patient Encounter Man-

agement . 11
2.5.2 Global Patient Access (Siemens) - Encounter Management 12

2.5.2.1 Encounter . 13
2.5.2.2 Episode of Care . 13

2.5.3 ACSS - Sonho - The Portuguese Database 14
2.5.3.1 Functional Description 14

2.6 Planned Architecture . 15
2.7 Solutions on the Market . 17

2.7.1 Alert (Alert Life Sciences) . 17
2.7.2 E-Doctor (Hewlett-Packard) . 17

2.8 Conclusions . 18

v

CONTENTS

3 Problem Description 19
3.1 The Problem . 19
3.2 Project Requirements . 20

3.2.1 Encounter Management . 20
3.2.2 Workflow Builder . 23
3.2.3 HL7 Messaging Interoperability 24

3.3 Schedules and Deliverables . 25
3.3.1 Priorities . 25
3.3.2 Schedule . 27

3.4 Conclusions . 28

4 Solution Specification 30
4.1 Medical Terms . 30

4.1.1 Episode of Care . 30
4.1.2 Episode . 31
4.1.3 Encounter . 33
4.1.4 Interactions . 35

4.2 Study of Architectural Solutions . 37
4.2.1 Windows Workflow Foundation 37
4.2.2 Pageflow . 38

4.2.2.1 Navigation Architecture 39
4.3 Prototype . 40
4.4 Conclusions . 42

5 Design and Implementation 43
5.1 Design . 43

5.1.1 He-ncounter Software . 43
5.1.1.1 Architectural View . 44
5.1.1.2 Process View . 45
5.1.1.3 Physical View . 45
5.1.1.4 Database View . 45

5.1.2 Workflow Builder . 46
5.1.3 HL7 Communication . 46

5.2 Implementation . 47
5.2.1 He-ncounter Software . 47

5.2.1.1 Workflow Instantiation 48
5.2.1.2 Windows Presentation Foundation based Interface . . . 53
5.2.1.3 WPF Broker . 60

5.2.2 Workflow Builder . 62
5.2.3 HL7 Communication . 62

5.2.3.1 Sending Messages . 62
5.2.3.2 Receiving Messages 64

5.2.4 Patient Check-in Workflow Implementation 65
5.3 Development Methodologies and Tools 66
5.4 Conclusions . 67

vi

CONTENTS

6 Conclusions and Future Work 68
6.1 Success Evaluation . 68
6.2 Limitations . 69
6.3 Future Work . 69

References 72

A IHE Patient Encounter Management: Options of Triggers 73
A.1 Basic Subset of Trigger Events . 73

A.1.1 A01 – Admit inpatient . 73
A.1.2 A04 – Register outpatient . 73
A.1.3 A11 – Cancel Admit inpatient/Register outpatient 74
A.1.4 A03 – Discharge patient/End visit 74
A.1.5 A13 – Cancel Discharge patient/End visit 74
A.1.6 A08 – Update patient information 74
A.1.7 A40 – Merge patient identifier list 74

A.2 Inpatient/Outpatient Encounter Management Option of Trigger Events . . 75
A.2.1 A05 – Pre-admit patient . 75
A.2.2 A38 – Cancel Pre-admit patient 75
A.2.3 A06 – Change patient class to inpatient 75
A.2.4 A07 – Change patient class to outpatient 75
A.2.5 A02 – Transfer patient . 75
A.2.6 A12 – Cancel transfer patient 75

A.3 Pending Event Management Option of Trigger Events 76
A.3.1 A14 – Pending admit . 76
A.3.2 A27 – Cancel pending admit . 76
A.3.3 A15 – Pending transfer . 76
A.3.4 A26 – Cancel pending transfer 76
A.3.5 A16 – Pending discharge . 76
A.3.6 A25 – Cancel pending discharge 77

A.4 Advanced Encounter Management Option of Trigger Events 77
A.4.1 A54 – Change attending doctor 77
A.4.2 A55 – Cancel change attending doctor 77
A.4.3 A21 – Leave of absence . 77
A.4.4 A52 – Cancel leave of absence 77
A.4.5 A22 – Return from leave of absence 77
A.4.6 3.1.4.6 A53 – Cancel return from leave of absence 78
A.4.7 A44 – Move account information 78

A.5 Temporary Patient Transfers Tracking Option of Trigger Events 78
A.5.1 A09 – Patient departing – Tracking 78
A.5.2 A33 – Cancel patient departing – Tracking 78
A.5.3 A10 – Patient arriving – Tracking 78
A.5.4 A32 – Cancel patient arriving – Tracking 79

A.6 Historic Movement Management of Trigger Events 79

vii

List of Figures

2.1 Before and After the HL7 . 6
2.2 Ideal Architecture Overview . 16
2.3 Workflow execution . 16
2.4 Architecture Separated by roles . 17

3.1 Encounter Management - High level . 21
3.2 Inpatient - Detailed Use Case . 22
3.3 Outpatient - Detailed Use Case . 23
3.4 Workflow Builder - Detailed Use Case 24
3.5 HL7 Messaging Interoperability - Use Cases 25

4.1 Flow of the patient in the Emergency Episode 31
4.2 Flow of the patient in the Outpatient Episode 32
4.3 Flow of the patient in the Inpatient Episode 32
4.4 Flow of the patient in the Day Care Episode 32
4.5 Flow of the patient in the House Care Episode 33
4.6 Flow of the patient in the Continuous Care Episode 33
4.7 Example of Episode of Care . 35
4.8 Relationship between the Medical Concepts 36
4.9 Interactions of a workflow with 3 activities 40
4.10 Administrative clerk log in screen . 41
4.11 Patient selection for check-in . 41
4.12 Patient selection for check-out . 42

5.1 Architecture of the He-ncounter Implementation 44
5.2 He-ncounter Deployment Scenario . 46
5.3 The Database View . 47
5.4 Example of a Workflow . 48
5.5 Example of Activity Properties . 49
5.6 Welcome Screen with Log-In and Language Selection 57
5.7 Patient Selection Screen with Scheduled Patients 57
5.8 Patient Demographics Screen . 58
5.9 Insurance Validation Screen . 59

viii

List of Tables

2.1 Hospital Workflow Example . 12
2.2 Example of Episode of Care Workflow 12

3.1 Priorities for the General Use Cases for the Encounter Management . . . 25
3.2 Priorities for the Inpatient Use Cases for the Encounter Management . . . 26
3.3 Priorities for the Outpatient Use Cases for the Encounter Management . . 26
3.4 Priorities for the Workflow Builder . 27
3.5 Priorities for the HL7 Messaging Interoperability 27

ix

Listings

5.1 Example of a variable definition in the workflow 50
5.2 Example of the configuration File . 51
5.3 Starting a new Workflow . 53
5.4 Starting of an existing workflow . 54
5.5 Cancelling of a running workflow . 54
5.6 Suspending a running workflow . 55
5.7 Next action in a running workflow . 55
5.8 Previous action in a running workflow 56
5.9 Getting a Activity Output from a Workflow Activity 56
5.10 Example of localization usage in PatientDemographics.xaml 58
5.11 Translation to English in Resources.resx 59
5.12 Translation to Portuguese in Resources.pt-PT.resx 59
5.13 Code that sets the culture according to user selection 60
5.14 Multiple Workflow Definitions . 60
5.15 Changes in Page Mappings in Workflow Name 61
5.16 Creation of HL7 Message . 63
5.17 Some values assignation . 63
5.18 Example of an update demographics HL7 message 64

x

Glossary

This project was conducted in the area of Healthcare. Because of that, some of the terms
that are going to be introduced in the present thesis aren’t of general knowledge. These
terms that are presented in the following table are used throughout the document. For the
full understanding of the project and this thesis it is necessary to acknowledge a few
terms. In the following table it’s described a term in English, the correspondent
translation to Portuguese and finally a brief description of the term.

English Portuguese Description
Administrative
discharge

Alta administra-
tiva

The hospital have to ensure that the patient is ready to
go home, maybe he still need care, not from the hos-
pital but from family, friends, or any one else. Social
assistance will be involved if necessary.

Administrative
encounter

Encontro Admin-
istrativo

The personal contact between the patient and a health-
care professional in which no patient care is rendered,
e.g., scheduling an appointment.

Admission Admissão The process by which a patient becomes an inpatient
in a healthcare facility. It consists of bed assign-
ment, resource allocation for an inpatient stay, pro-
cessing paperwork (clinical, administrative, and fi-
nancial), and performing tasks required prior to the
patient’s arrival and/or execution of the inpatient ser-
vices. Includes clinical assessment of the patient and
initiation of the plan of care.

Ambulatory Ambulatório Ambulatory care services normally include: visit, en-
counter, consultation, treatment, and intervention us-
ing advanced technology, equipment and procedures.
The patient’s stay at the facility, from the time of reg-
istration to discharge, occurs on the same calendar
day.

Ambulatory
surgery

Cirurgia de am-
bulatório

This is a type of surgery that can be done to patient as
outpatients, because it does not require that the patient
stays in the hospital for more than 24 hours

Appointment Consulta Commitment of accomplishment a heath care service
that has been previous scheduled.

Clinical dis-
charge

Alta clı́nica When a doctor says that patient is medical treated to
go home.

xi

GLOSSARY

Day-hospital Hospital de dia Medical care including diagnosis, observation, treat-
ment and rehabilitation that is provided on an outpa-
tient basis. Ambulatory care is given to persons who
are able to ambulate or walk about. A well-baby visit
is considered ambulatory care even though the baby
may not yet be walking.

Encounter Encontro An encounter is the atomic activity that happens in-
side a healthcare facility.

Episode Episódio An episode occurs over time, consists of one or more
encounters, and covers health services to address one
or more medical problems. It ends when no appoint-
ments are made to address the medical problem. For
example, chronic illness can give reason for uninter-
rupted care - a lifelong episode. A series of events
which is distinct in itself. For example, a period of
fever, which disappears, may be an episode of fever
within a continuous process, such as a chronic illness.

Episode of care Episódio clı́nico A continuous course of care administered to a patient
by an healthcare provider for a specific medical prob-
lem, condition, or reason. From an application’s point
of view, an episode of care encompasses one or more
related Encounters.

Hospital dis-
charge

Alta hospitalar Similar to Administrative discharge.

Inpatient Internamento A patient whose care requires a stay in a hospital. As
opposed to an outpatient. An inpatient on the other
hand is ”admitted” to the hospital and stays overnight
or for an indeterminate time, usually several days or
weeks.

Lab Análise Study or determine the nature and relationship of the
parts of by analysis; usually : to examine by chemical
analysis.

Medical Appoint-
ment

Consulta médica This defines the act of assistance performed by a doc-
tor to an individual. It can consist in clinical obser-
vation, diagnostic, therapeutic prescription, counsel-
ing or checking the state of evolution of the patient’s
health state.

Operation Operação A procedure performed on a living body usually with
instruments for the repair of damage or the restoration
of health and especially one that involves incision, ex-
cision, or suturing.

Outpatient Consulta externa Is a patient who is not hospitalized overnight but who
visits a hospital, clinic, or associated facility for diag-
nosis or treatment. Treatment provided in this fashion
is called ambulatory care.

Outpatient ap-
pointment

Consulta externa Term related to a Schedule visit to a doctor in the hos-
pital.

Over schedule Extra agenda An appointment that is out of schedule.

xii

GLOSSARY

Patient Doente A person who requires medical care.
Person Pessoa Each kind of person, like visitor, health professional,

physician, desk clerk, patient.
Primary care Cuidados

primários
Basic or general health care focused on the point at
which a patient ideally first seeks assistance from the
medical care system.

Primary Health
Care Center

Centro de saúde Basic level of health care that includes programs di-
rected at the promotion of health, early diagnosis of
disease or disability, and prevention of disease.

Referral Referenciação The concept that defines, if a person will need Pri-
mary care or Secondary care.

Small Surgery Pequena cirurgia Surgical operation with a value of K inferior to 50.
Sonho Sonho System used in most of the Portuguese public hospi-

tals. This system is used for doing admissions, some
clinical support and billing.

Subsequence ap-
pointment

Consulta subse-
quente

Next appointment for the same reason of a previous
visit to a doctor in the hospital.

Surgery Intervenção
cirúrgica

One or more surgical operations with the same thera-
peutically objective and/or diagnostics, performed by
one or more surgeon in one operating room within
the same session, under anesthetics with or without
an anesthetist.

Tranfer a patient Tranferir paciente Change patient location. For example: Urgency to
inpatient.

Urgent appoint-
ment

Consulta urgente A kind of appointment that only physicians can
schedule because of it’s emergency.

xiii

Abbreviations

ACSS Administração Central do Sistema de Saúde
ADT Admit, Discharge and Transfer
API Application Programming Interface
ASP Active Server Pages
ASP.NET Microsoft platform for development of web applications
CT Computerized Tomography
EM Encounter Management
GPA Global Patient Access
HIS Hospital Information Systems
IDE Integrated Development Environment
CMDT In Portuguese Meios Complementares de Diagnóstico e Terapêutica,

the English direct translation is Complementary Means of Diagnostic
and Therapeutic

MPI Master Patient Index
MRD Medical Responsible Department
MRI Magnetic Resonance Imaging
ORM Object-Relational Mapping
RFID Radio-frequency identification
RIA Rich Internet Applications
RUP Rational Unified Process
SOA Service Oriented Architecture
UI User Interface
US Ultrasound
VB Visual Basic
WCF Windows Communication Foundation
WF Windows Workflow Foundation
WPF Windows Presentation Foundation
WWW World Wide Web
XAML eXtensible Application Markup Language

xiv

Chapter 1

Introduction

This chapter briefly contextualizes this internship project, presenting the company where
it was developed, the context of the project, a small explanation of the project, the moti-
vations and objectives and the thesis structure from this point on.

1.1 About Siemens

With 500 production centers in 50 countries and representation in 190 countries, Siemens
is spread all over the world. In Portugal, Siemens S.A. encloses two factories, software
research & development centers (Lisbon and Porto) and has a significant representation
all over the country through its partners and company headquarters. Since 2008, the
company is organized in three major sectors: Industry, Energy and Healthcare.

The Industry Sector and its solutions address Industry customers regarding produc-
tion, transportation and building systems. This Sector is organized in five divisions: In-
dustry Automation and Drive Technologies, Building Technologies, Industry Solutions,
Mobility and OSRAM.

The Energy Sector offers products and solutions for generation, transmission and
distribution of electrical energy. This Sector is organized in six divisions: Fossil Power
Generation, Renewable Energy, Oil & Gas, Energy Service, Power Transmission and
Power Distribution.

The Healthcare Sector stands for innovative products and complete solutions, as well
as service and consulting in healthcare industry. This Sector is organized in three divi-
sions: Imaging & IT, Workflow & Solutions and Diagnostics.

The Imaging & IT Division provides imaging systems for early diagnosis and inter-
vention, as well as for a more effective prevention. These systems are networked with
high-performance healthcare IT to optimize processes (such as hospital data systems like
Soarian R©, image processing systems like Syngo R©, and knowledge-based technologies
for diagnoses support).

1

Introduction

The Workflow & Solutions Division provides complete solutions for fields such as
cardiology and oncology and neurology. This Division offers solutions for, e.g. women’s
health (mammography), urology, surgery and audiology. It also provides turnkey solu-
tions (including national health IT systems, complete solutions for health care providers),
and consulting. In addition, Workflow & Solutions is responsible for the Sector’s service
business and for managing customer relations. The Diagnostics Division covers busi-
ness with in-vitro diagnostics, including immune diagnostics and molecular analysis. The
Division’s solutions range from point-of-care applications to automation of large labora-
tories.

First fully-integrated diagnosis company Siemens IT Solutions and Services, leader in
Information Technologies services, works as a transverse business unit.

In Portugal, Siemens SA Healthcare Sector is a market leader in the health care area,
known for its competence and innovation skills in diagnostic and therapy systems, as well
as information technologies and systems’ integration.

Recent Milestones in Portugal

• Breast Pathology Service in Hospital de São João in Porto, Hospital da Luz in Lis-
bon and Clı́nica Dr. João Carlos Costa in Viana do Castelo – first total patient focus
units, including all necessary technologies for the complete clinical process;

• Hospital da Luz in Lisbon – first hospital in Portugal with SOARIAN R©clinical
information system, becoming one of the most modern health care installations in
Europe;

• Clı́nica Quadrantes, in Lisbon – in-vitro diagnostics and information technology
systems, which together with a PET/CT system, complemented the existing Siemens
in-vivo diagnostic systems at the clinic;

• Universidade de Coimbra – 3 Tesla Magnetic Resonance Imaging System exclu-
sively for neuroscience research. This unit is part of the Brain Imaging Network
Grid, a scientific cooperation network which integrates the Universities of Coimbra,
Aveiro, Porto and Minho.

1.2 Context

The application of technology in healthcare has a long history. These two separate areas
have become evolved in many ways. In one hand the monitoring equipment and the
diagnostics equipments (CT or MRI Scanners) have evolved with the latest achievements
in technology research and on the other hand the software solutions that supports all the
activities within a healthcare facility. This healthcare related software has many roles,

2

Introduction

it helps provide electronic patient data information to the Hospital Information Systems
(HIS). Today the operations inside a healthcare facility are all supported by some kind of
software.

The healthcare facilities provide a variety of services to the patient. These services
range from diagnostics, consults, exams, surgery and many others. All these services
need a variety of support operations to happen. The software takes a relevant part in the
monitorization of all these activities.

When these procedures start, the beginning of the process is generally preceded by an
admission. Within the procedure, transfers can occur and in the end, within certain rules
the patient is discharged thus completing the cycle. These basic administrative healthcare
procedures are called Admit, Discharge and Transfer (ADT)

1.3 Project

An Encounter Management system allows to administratively process visits, admissions
and encounters of a patient in a healthcare facility. Typically there are admissions in the
emergencies, inpatient transfers or appointments all with the required discharges. During
that period there are healthcare services that are provided to the patient like appointments,
diagnostics or treatments. The objective of this application is to record and track these
encounters. One component of the applications’ infrastructure implies sending special
messages that reflect the events that are recorded by the application, so that other appli-
cations can be informed of those records. To achieve that objective, HL7 messages of
the ADT1 type (among others that are sent to other HIS applications) of the international
standard Health Level 7 (HL7) are used.

1.4 Motivation and Objectives

The evolution in the informatization of the healthcare facilities is paving the road for new
approaches for the patient treatments and handling. The possibility to create an applica-
tion that can unify the entire medical responsible departments (MRD) administrative task
is motivating.

The program to be created has to be designed in a modular way so that a medical
analysts can create his own workflows that support the various activities of the healthcare
facility. This workflow would be created by selecting the desired features, setting the
order between them and the transition conditions. All modules would work together to
provide a sandbox in which the analyst can create the necessary workflows. A workflow
is a set of functionalities that are ordered to achieve a certain objective.

1Type of messages in the HL7 standard that reflects the Admit, Discharge and Transfer operations inside a healthcare
facility

3

Introduction

The objectives of the project are:

• Project web page with authentication system;

• Validate, research and document the state of art on technologies and medical related
standards regarding the type of the problems proposed and existing solutions for the
problem or specific functionalities;

• Define an architecture that supports the Encounter concept;

• Produce a prototype that supports the workflow philosophy;

• Design and implement the Encounter Management;

• Use state of art technology when possible.

To pursue these objectives the Scrum Methodology is going to be used. In today’s soft-
ware development requirements often change during the product development life cycle
to meet shifting business demands, creating problems[1]. Scrum software development
process addresses these concerns[2]. To assist in the documentation process the Rational
Unified Process (RUP) is going to be used. This approach provides the best balance be-
tween the working periods in Scrum and the well defined documentation that is necessary
in RUP [3].

1.5 Thesis Structure

The thesis apart from the introduction contains 5 more chapters. In Chapter 2, it is de-
scribed the state-of-art and some existing applications. It is also detailed the used frame-
works and why they were chosen. In Chapter 3, it is presented a description of the prob-
lem by giving a deeper understanding of what this project aims to accomplish. Chapter
4 presents a high level solution of the problem that was described in the previous chap-
ter. It starts with the clear definition of the used medical terms that were defined and
adapted according to the needs of this project in particular and then shows and explains
the framework that supports the system. In Chapter 5 the design of the applications is pre-
sented and the implementation details of each module is described. In Chapter 6 reviews
the project, draws the necessary conclusions, the achievements and some future work to
further improve the project.

4

Chapter 2

State of Art

This chapter starts by introducing the healthcare standards. Then it shows the existing
technologies on the market that can help solve the problem that was briefly described in
the last chapter. It also shows some guidelines that the healthcare industry is currently
using in the various perspectives (Globally, in United States of America and in Portugal.
Finally a few solutions to the Encounter Management issues are described.

2.1 International Healthcare Standards

This project is developed in the Healthcare area. This area requires the understanding of
some existent International Healthcare Standards that the program must respect in order
to be fully integrable with the existent platforms. In the next sections it will be described
the standards that apply to the Encounter Management in particular. Such standards set
the language, structure and data types required for seamless integration from one medical
information system to another[4].

2.1.1 HL7

HL7[5] is a voluntary non-profit organization that is dedicated to the development of
standards in the health industry. The name Health Level Seven(HL7) is a reference to
the seventh layer of the OSI model. The name indicates that the HL7 clearly focus on
the protocols of the application layer that is independent of the lower layers. The final
purpose is the creation of coherent standards that allow the interoperability between all
the medical information systems, allowing the experts in the healthcare area to participate
in its development.

The HL7 develops conceptual specifications (e.g. HL7 RIM), documentation spec-
ification (e.g. HL7 CDA), application specification (e.g. HL7 CCOW) and messaging
specification (e.g. HL7 v2.x and V3.0). This last specification is of extreme importance

5

State of Art

because it is what defines how the information should be grouped and communicated be-
tween all the health related applications that are used in healthcare facility activities, thus
allowing a much greater interoperability between medical information systems[5].

2.1.1.1 V2.X

This version defines a series of electronic messages used to support not only clinical pro-
cess but also administrative, logistics and financial. Since 1987 this specification was
developed and was regularly updated, reaching from version 2.1 to version 2.6. The exis-
tence of this new protocol allowed application to communicate using only one language,
as it can be seen in figure 2.1.

(a) Medical Information Systems Without Hl7 (b) Medical Information Systems With HL7

Figure 2.1: Before and After the HL7

Knowing which version is being used by an application is not crucial because all
version 2.X are generally compatible with each other. The philosophy of this specification
says that all new version must be compatible with the existing ones. Every time new data
and message types are added, they are marked as optional elements, that means that recent
version can process a message of an application that uses an older version and vice-versa.

Although it exist a newer 3.0 version in the market, the version 2.X continues to be
the most used and is still under development. Despite all the efforts, this standard still has
a few problems:

• The lack of a consistent data model that implies that the storage of data done by an
clinical application has a direct impact over the pieces of the message that can be
implemented;

• Lack of formal methodologies to model the data elements and messages, this can
cause inconsistencies within the specification and create problems in the way that
each element of the message relates with the other elements;

6

State of Art

• The good specification flexibility leads to a vague and less precise specification.
There are no defined user roles for its usage, so the implementation of this standard
can vary across applications.

Nonetheless, despite this disadvantages, this version was used in the project because
it is the most used in the healthcare organizations. Besides, there are open source tools
that implement this specification, it eases the development of the HL7 communication
module.

This standard is supported by every major medical information systems vendor [5].

2.1.1.2 V3

Being this version of the HL7 specification that is based on a model, it is only logic to
begin to explain the information model that supports the generation of the standards of
this version: the Reference Information Model (RIM). This means that both the messaging
standards in V3 and the docummentation standards in V3 (e.g. CDA, CCD, etc.) are all
based in RIM.

RIM is the corner stone of the HL7 V3 development and a fundamental part of their
methodology. This model express the necessary data in each clinical or administrative
context and provides a representation of all the existing connections between the message
fields.

We can say that, if HL7 is a language, the Reference Information Model is the gram-
mar, that allows the creation of the correct phrases to the language in question and speci-
fies the relation between words.

RIM appears to be pretty simple as it’s core is only made by just six classes:

• Act - Represents the actions that are executed and need to be catalogued when the
services are provided;

• Participation - Represents the context of an act: who has done it, for whom it was
executed, etc.;

• Entity - Represents the materials and physical beings that are of interest, and take
part on the medical care;

• Role - Establishes the roles that the entities perform as participants in medical care
services;

• Act Relationship - Represents the links between two acts, i.e., the relationship be-
tween an order for an observation and the occurrence of said observation;

• Role Link - Represents ten links between each individual role.

7

State of Art

This standard defines, as the 2.x versions did, a series of electronic messages but in
version 3 these messages are based on an XML encoding syntax. The complete shift in
paradigm of the standard make it not backwards compatible. Switching to the new version
of the HL7 is a very complex operation[6]

2.1.1.3 HL7 Parser

To make use of HL7 it’s necessary to create and parse a great number of messages. To do
this manually would be time-consuming because of the number of existent HL7 messages
(over 500[7]). To address this issue an API called NHapi will be used.

NHapi is a .Net Version of Hapi (an HL7 framework for java) used to build and decode
HL7 V2.X messages. It acts as a parser of the HL7 messages. This object model allows
for parsing and encoding HL7 2.X data to/from pipe(—) delimited or XML formats.

2.2 User Interface

The user interface is an essential part of the program. It presents information to the user
as a form of output and it acknowledges the input from the user. This allows the system
to indicate the effect of the users input and other information.

2.2.1 Rich Internet Applications

Rich Internet Applications (RIA) are web applications that have some characteristics of
desktop applications. These similarities are in the interface and seamless communication.
These applications support such as Ajax, web browser plug-ins (such as adobe flash and
Microsoft Silverlight) and JavaScript, or via sandboxes or virtual machines.

Microsoft Silverlight

Microsoft Silverlight is a programmable web browser plug in that enables advanced fea-
tures that characterize rich internet applications. Microsoft Silverlight user a familiar
technique to go beyond the capabilities of standard web pages: a lightweight browser
plug-in. Microsoft Silverlight was created to improve the way .NET developers create
websites without ever needing to leave the same IDE1. This was developed to facilitate
the creation of RIA content inside the .NET framework[8, page xxv]. Silverlight exists
in two versions. The first version, Silverlight 1, is a relatively modest technology. It in-
cludes several features but lack support for Common Language Runtime (CLR) and .NET
languages, so any code written by the programmer has to be in JavaScript. Currently the
second version, Silverlight 2 adds the .NET-powered features such as CLR and a subset of

1Flash needed a completely different language (ActionScript) and a different IDE (Flex)

8

State of Art

.NET Framework classes, and a user interface model based on WPF[8, page xxvii]. A Sil-
verlight version 3 Beta is under production and it will improve the Silverlight capabilities
even further[9].

Adobe Flash

Adobe Flash[10] is a popular multimedia platform that is used to add animation and in-
teractivity to web pages. Flash is used for a variety of things, most recently, to develop
rich internet applications[11] (RIA) using the web browser plug-in.

2.2.2 Desktop Applications

Desktop Applications run on top of the operating system and are not dependent on a
browser or on the internet to start. Normally the program is by itself a client connected to
a server using centralized databases and operations.

Windows Presentation Foundation

Windows Presentation Foundation (WPF)[12] is a graphical subsystem in .NET Frame-
work 3.0 that uses a markup language (XAML) for the interface development. WPF
provides a consistent programming model for building applications and provides clear
separation between the user interface and the business logic. It enables several rational-
ities in a single solution such as user interface, 2D and 3D drawing, fixed and adaptive
documents, advanced typography, vector graphics, raster graphics, animation, data bind-
ing, audio and video.

WPF is considered the successor of the Windows Forms and is promoted for line-of-
business applications.

2.3 Back-End Technology

The back-end is related to the business logic of an application. It drives the user interface,
providing and collecting all the necessary data for the program in question. It involves all
the technology that is hidden from the end user.

2.3.1 Windows Communication Foundation

Windows Communication Foundation (WCF) is a programming framework used to build
applications that inter-communicate. WCF unifies the various communication program-
ming models supported in .NET 2.0, into a single model. Released in November 2005,

9

State of Art

.NET 2.0 provided separate APIs for SOAP-based communications for maximum in-
teroperability, binary-optimized communications between applications running on Win-
dows machines, transactional communications, and asynchronous communications. WCF
unifies the capabilities from these mechanisms into a single, common, general service-
oriented programming model for communications[13].

WCF is designed in accordance with Service oriented architecture (SOA) principles
to support Distributed computing where services are consumed by clients. Clients can
consume multiple services and services can be consumed by multiple clients.

2.3.2 Windows Workflow Foundation

Windows Workflow Foundation (WF) is a framework for defining, executing, and manag-
ing workflows. Workflows have several advantages over traditional programs[14, page 2].
They can handle long running work by persisting to a durable store when idle and load-
ing again once there is new work to do, the instances of the workflows can be changed
dynamically in run-time, they allow to declare business rules that are separated from the
code making it easier future changes.

Pageflow

Pageflow if a specific implementation of the WF, it is designed with the objective of
modelling the user interaction with an application using a workflow. Microsoft showed
Pageflow at TechEd[15] and released it as a sample application. It implements a generic
navigation framework that can support at the same time multiple UI (such as ASP.NET or
WPF) Currently the Pageflow sample only supports one active workflow per instance and
by default supports ASP.NET and WPF as UI on top of the workflow.

2.4 Object-Relational Mapping

The concept of Object-Relational Mapping (ORM) is a database abstraction layer is an
application programming interface which unifies the communication between a computer
application and databases. These communications are handled via an API that provides
consistent calls to any database while hiding the database specifics as much as possible.
There are many abstraction layers with different interfaces in numerous programming
languages.

10

State of Art

2.4.1 NHibernate

Nhibernate is a C# based ORM framework based on the original Hibernate for java that
provides a abstraction layer between the database and .NET application. It provides pro-
vides an abstraction that is important because it allows the use of a variety of relational
databases while maintaining the same code in the application.

NHibernate was chosen as a Object-relational mapping framework because it provided
out of the box compatibility with all the major relational databases vendors.

2.4.2 Language Integrated Query

Language Integrated Query (LINQ) is a Microsoft .Net Framework component that adds
native data querying capabilities to .Net languages. LINQ can also provide a abstraction,
like NHibernate, between the database and the back-end. It has many other functionalities
that are out of the scope of this project.

2.5 Patient Administrative Management Implementations

2.5.1 Integrating the Healthcare Enterprise - Patient Encounter Management

To develop Encounter Management (EM) software, an HL7 standard it’s needed. It is
used to inform all the patient administrative events, enabling them to synchronize their
application database with the latest information available. The group of messages that
is sent from EM are the HL7 ADT messages (admission, discharge and transfer). The
Integrating the Healthcare Enterprise (IHE)[16] creates profiles that support certain func-
tionalities. To implement this profiles a set of HL7 messages need to be supported. These
messages are called triggers, and there are triggers for every event that occurs in a hospital
such as admit, transfer, discharge or even a change in the patient demographic informa-
tion. These triggers represent actions that can be executed within the HL7 standard (more
information in the appendix A). The most useful configuration for each trigger is going to
be studied and analyzed to provide state-of-the-art HL7 compatibility.

The standard does not explicit a sequence in which these triggers can be called, but is
quite clear that a patient has to be admitted before he can be transferred and discharged.
In the appendix A are defined several subsets of trigger events[17] that are required to
implement said features.

Typical Clinical Workflows

Typical scenario:

1. Patient received at Emergency room by attending doctor U (The sent HL7 message
is the ADT A04 – Register outpatient).

11

State of Art

2. Doctor U admits de patient (The sent HL7 message is the ADT A06 – Change
patient class to inpatient), into location BB, referring him to attending doctor X.

3. The patient is moved to location GG (The sent HL7 message is the ADT A02 –
Transfer), keeping X for attending doctor.

4. The patient is discharged and leaves de hospital (The sent HL7 message is the
ADT A03 – Discharge).

These 4 real world events are expresses with 5 trigger events / messages, two of which
occur at the same time (step 2). Here the episode will be divided into 3 encounters as
shown in table 2.1 at page 12. For more information on the sent HL7 messages refer to
the appendix A.

Table 2.1: Hospital Workflow Example

2.5.2 Global Patient Access (Siemens) - Encounter Management

Global Patient Access is a software for Patient Management. It is going to be analysed
only the part of the software related to the Encounter Management.

According to GPA – EM every independent visit to a healthcare facility can be grouped
in episodes of care. In the table 2.2 at page 12 is an example of the episode of care
workflow.

Episode of
Care Episode of Care Patient A

Encounter Emergency
Encounter

Inpatient Encounter Outpatient
Encounter

Outpatient
Encounter

MRD Emergency
Department

Medical
Responsible
Department
1

Medical
Responsible
Department
2

Medical
Responsible
Department
3

Medical
Responsible
Department
3

ARHO Administratively Responsible Healthcare Organization
Table 2.2: Example of Episode of Care Workflow

12

State of Art

2.5.2.1 Encounter

Encounter replaces the usual concept of patient visit. Encounter is the smallest unit of
the patient’s interaction within a healthcare organization. It is located in time: past, cur-
rent, planned meeting or interaction. It takes place between a patient and one or more
healthcare professionals. The encounters exist to provide health-related services or for
assessing the health status of a patient.

The status of each encounter can be:

• Checked Out;

• Cancelled;

• Deleted;

• Checked In;

• Scheduled.

The encounters are assigned to an healthcare professional, such as admitting, attend-
ing, and consulting. There are a few restrictions on these assignations and a history is
retained of the changes.

The types of encounters that can occur within a hospital context are:

• Inpatient;

• Emergency;

• Observation;

• Outpatient;

– Recurring;

– Office/Clinic;

– Day Surgery;

– Pre-Admission Test;

• Visitor.

2.5.2.2 Episode of Care

Episodes of care groups all the encounters for one patient. These episodes comprise a
continuous contact with the patient by a Healthcare Organization. Episode of Care replace
the concept of a master visit with sub-visits. An Episode of care may consist of multiple

13

State of Art

encounters (such as Emergency Room to Inpatient, Medical, Surgical, and Neurology).
Episodes of Care can also be linked (example, Mother→ newborn baby) to another.

An Episode of Care belongs to one, and only one, administratively responsible health-
care organization. The entire encounter in an Episode of Care must be time-continuous,
with no time gaps. However, overlaps are permitted. Pending discharge indicator can
only be true if the Episode of Care has an inpatient encounter with a status of checked in.

2.5.3 ACSS - Sonho - The Portuguese Database

The Administração Central do Sistema de Saúde (ACSS) is the Portuguese government
entity that manages the Portuguese Healthcare System. They have just released[18] a
new specification of an application to integrate the Portuguese healthcare database named
Sonho. This database is used in almost every Portuguese hospital or healthcare facility.
The Glossary introduces some of the Portuguese concepts.

2.5.3.1 Functional Description

The following subsections show the various concepts that ACSS defines. There is a short
description and a list of activities that are involved in each concept.

Emergency Episode

The main features of this module are:

• Admission;

• Complete/Change case details;

• Associate an episode to a patient (error or other situations);

• Discharge;

Outpatient Episode

The main features of this module are:

• Pre-visit;

• Appointment Check-In;

• Discharge of Appointment;

14

State of Art

Inpatient Episode

The main features of this module are:

• Admission;

• Complete/Change case details;

• Discharge;

Ambulatory Episode

The main features of this module are:

• Appointment/Session Check-In;

• Discharge bulletin;

Surgery Episode

The main feature of this module is:

• Transfer/Admit to surgery;

2.6 Planned Architecture

The ideal architecture for the EM system would be a distributed, heavily service oriented
architecture (SOA).

The figure 2.2 at page 16 shows this architecture and the way it implements all the
services in a modular way. The client (WPF App) requests the next activity of the work-
flow from the Client AppController and the XML for the XAML (User interface) would
be downloaded from the IWizard Builder that generates the necessary XAML code to
be used in the presenter. The available workflows are distributed by the Server AppCon-
troller. This can be shown in any presenter (in this case Windows Presentation Foundation
is used) and all the information can come from various related services.

An example of an application running can be seen in figure 2.3 at page 16 and clearly
shows the workflow activity that runs inside the WPF Window. The window to be shown
is built using a WPF Wizard Builder (or ASP.NET if it is a Web Page) and provided
through an Event Broker that handles the communications between all the modules. The
information of the window that is displayed comes from the App Controller that commu-
nicates between the WF, the Wizard Builders and the Event Broker.

The final purpose of this architecture is the separation of work between the designer,
the developer and the medical analyst. In the figure 2.4 at page 17 it is clearly shown the

15

State of Art

Figure 2.2: Ideal Architecture Overview

Figure 2.3: Workflow execution

separations between the three roles. A designer can only work in the interfaces, the devel-
oper can make the connections between the workflow and the interface, and the workflow
can be build by a consultant from the healthcare facility and improve its accuracy with the
models of the healthcare facility. This way the software becomes fully modular with role
separation in the all stages of development.

16

State of Art

Figure 2.4: Architecture Separated by roles

2.7 Solutions on the Market

2.7.1 Alert (Alert Life Sciences)

Alert is a Portuguese software house that develops software related to healthcare. The
current interoperability policy makes alert compatible with IHE, HL7 and other medical
related standards[19].

ADT functionality is spread across the modules that are related to ADT (such as Alert
Outpatient, Alert Inpatient, Alert EDIS and Alert Oris)

2.7.2 E-Doctor (Hewlett-Packard)

This software was developed around the idea that paper is cumbersome and expensive.
The thought that a digital record is far easier to manage and also cheaper is the foundation
of this software. That said, the HP HIS relies on a proper infrastructure to provide its full
functionality.

One of the innovation feature is the integration of RFID on surgery and on transfers.
The identification of the patient can be made directly from the patient’s RFID.

17

State of Art

2.8 Conclusions

This chapter started by presenting the existing healthcare standards, the advantages and
disadvantages between them. It presented multiple options for user interface development
and several back-end technologies. It detailed a few implementations of the healthcare
standards. It also introduced the ideal architecture for the software and some solutions in
the market.

The chosen technologies for the implementation of the Encounter Management are
showed in section 5.1.1.1.

There are a lot of studies in the healthcare standards. These provide critical informa-
tion for the design phase that it is going to concern with concepts and the modelling of
the solution. There are also a great number of technologies that can help the develop-
ment process of this project. These technologies range from back-end frameworks (e.g
Windows Workflow Foundation) and front-end frameworks (e.g. Windows Presentation
Foundation). These frameworks help to speed up the developing process by enabling fast
prototyping and providing rich APIs.

18

Chapter 3

Problem Description

This chapter presents the problem that is presented by this project, the project require-
ments and what it aims to achieve. Finally it includes priorities and a schedule for the
task of the project.

3.1 The Problem

The problem that is presented by this project is tied to the need of hospital informatiza-
tion[20]. This accounts for electronic patient data and to find a way to unify the health
system so that is fully integrated and the information can be exchanged easily between
medical responsible departments and ultimately between hospitals1. This leads to the
need of standardization of the information.

The problem in the Encounter Management project involves a couple of steps. First it
is necessary to define the architecture that supports these encounters in a way that would
turn out to be flexible and adapted to all the medical activities that are performed in a
healthcare facility. Then it is needed to implement the architecture defined earlier in a
way that is flexible enough to be deployed in all the necessary scenarios, with localization
so that the software can be available in different languages dynamically in a way that it
does not need a completely separate program for each language. It is also necessary to
develop the user interface that satisfies the end user.

The end-goal is to provide a set of abstract activities that are performed in the context
of a healthcare facility. These activities can then be tied together so that they perform a
workflow. These workflows are activities in a healthcare facility such as patient check-in
(for inpatient, for emergency, for external appointments, etc), patient check-out, transfers,
edition of patient’s demographics and other administrative tasks inside a healthcare facil-
ity. These workflows have common activities2 that are shared among them, reducing the

1According to current laws
2Such as Editing Patient Demographics of Patient selection

19

Problem Description

number of needed interfaces and simplifying the construction of new workflows or the
adoption of existent ones to new business rules.

Episode of Care, Episodes and Encounters

An essential step in defining this problem is a clear definition of each term. This definition
has to be found and the relation of each of the terms completely defined so that a standard
can be defined and the previously mentioned interactions can be accomplished.

The very name of the project, Encounter Management points to a focus in the en-
counters3, the definition of those encounters are ambiguous because an encounter can be
an interaction from a patient with a healthcare facility that endures through the day and
also that each encounter is one individual interaction from that patient with the healthcare
facility.

3.2 Project Requirements

An important step in software development is the Project Requirements. The Project
Requirements are essential for a good project outcome[21]. In this chapter is going to be
presented the use cases4 needed to implement the Encounter Management.

3.2.1 Encounter Management

The workflow module is going to be the core of the entire system. It provides features
that support the Encounter Management concept. It is going to provide an interface that
follows the intentions of the users through the workflow. It provides useful features such
as suspending a workflow in a certain state and resumes it later. It provides a workflow
based interface to execute the desired Encounter Management Related Activity.

The features of the Encounter Management are separated in two main areas, the Inpa-
tient (for Patients that stay at the hospital for more than twenty four hours and are in the
Inpatient state) and the Outpatient (for Patients that attend appointments, go to emergen-
cies, hospital daycare staying in the hospital no more than twenty four hours and are in
the Outpatient state).

The following use cases will show the most common solutions that suit a healthcare
facility. Custom development can be made to meet the clients needs and published via the
workflow builder that is presented in the next section.

3Encounters some times are called Visits
4A use case is a description of a system’s behaviour as it responds to a request that originates from outside of that

system.

20

Problem Description

Use Cases

The use cases are divided in three areas. In the figure 3.1 at page 21 is showed the general
use cases of the Encounter Management.

Figure 3.1: Encounter Management - High level

This figure shows the basic use cases for the system. The Encounter Management
software needs a secure User Authentication system. It also needs to be able to perform
the basic tasks referred as Episode Management (Creation, Changing, Delete and the other
use cases in the figure). These use cases are the base for the Inpatient and Outpatient use
cases. They allow that patients can be admited/checked in by adding patient episodes and
discharged/checked out by changing a patient episode defining the end of the episode.
Other particular systems can be developed and created using the workflow builder.

The figure 3.2 at page 22 shows the use cases for the Inpatient.
The Inpatient is a particular model of providing healthcare knowing that the patient is

allays under healthcare surveillance. This surveillance extends to every patient care such
as drug administration, critical care and bed tracking. In this figure, Patients can be ad-
mitted to the system, using the patient listing, viewing and editing patient demographics.
A bed management software handles the beds that have been booked through the admit
process. This process can be cancelled through the Cancel Admit Patient. When neces-
sary a patient can be discharged from the facilities ending the encounter. This action can
also be cancelled. An Inpatient can also be transferred to another Medical Responsible
Department (MRD) or other healthcare facility. This activity can be cancelled. There is a
use case for a Pre-Admit Patient that is used when the patient needs to do exams prior to
the actual Admit. This activity can also be cancelled. After each activity an HL7 Message
can be sent to inform the registered systems.

The figure 3.3 at page 23 shows the use cases for the Outpatient.

21

Problem Description

Figure 3.2: Inpatient - Detailed Use Case

The Outpatient is a particular model of providing healthcare knowing that the patient
isn’t under healthcare surveillance. The patient is not under constant surveillance, does
not have an assigned bed and can only remain inside the healthcare facility for a duration
no longer that twenty four hours. In this figure the patient can be checked in for ap-
pointment that makes the patient available to attend the appointment, this uses the patient
list, checks the insurance for the appointment in question and can also view and edit the
patient demographics. The check in can be cancelled if desired. The check-out is also
available with the restriction that the patient has to be checked in to be checked-out. This
activity can also be cancelled. All these four activities are followed by an HL7 Messaging
system to all the registered systems.

For example in case of Siemens an external application called Soarian Scheduling

22

Problem Description

Figure 3.3: Outpatient - Detailed Use Case

schedules the encounters that are inserted into the system. A Billing System or ERP
validates the Insurance and checks the patients debts. A periodic scheduler checks if the
patients stay in the healthcare facility longer that twenty four hours. If there is any patient
in this condition a automatic check-out is made. This is made by checking the patient list
and the patients that have been checked in.

3.2.2 Workflow Builder

The Workflow Builder is a separate application that builds and deploys the workflows
for use in the Encounter Management. This allows the medical analyst to tweak existing
workflows and seamlessly develop new workflows to support the new medical workflows
that emerge in the needs of the healthcare facility. The creation of these workflows would
be done by dragging existent activities (that were previously created by the development
team) into the workflow and creating the connections between the activities. This al-
lows for a complete independent platform building without the need of a programmer and
without needing any programming knowledge. This allows the role separation that was
mentioned in section 2.6.

Use Cases

The figure 3.4 at the page 24 shows the use cases for the Workflow Builder.

23

Problem Description

Figure 3.4: Workflow Builder - Detailed Use Case

These workflow builder use cases is a workflow editor that can deploy workflows to
the program. This feature allows medical analyst to adjust and create new workflows. The
creation of the workflows is done by selecting the required activities and the correspon-
dent Pre-Activity action (that executes when the workflow action is called before the user
interaction) and the post-activity action (that executes after the workflow activity when
the user has done the input for the required user interface).

3.2.3 HL7 Messaging Interoperability

The HL7 Messaging standard is need to provide the communication between the En-
counter Management Software and other clients such as Master Patient Index (MPI). This
communication is essential to accomplish the interoperability needed by this application.

Use Cases

The figure 3.5 at the page 25 shows the use cases for the HL7 messaging interoperability.
The HL7 messaging interoperability module represent the HL7 communication that

is used across the application to notify all the required applications of the informations
that are processed inside the Encounter Management. It Sends HL7 messages, that are re-
quested by the EM. This needs to generate the HL7 message and to receive the respective
HL7 response. It also has a standalone server that is waiting for incoming HL7 mes-
sages. It receives these HL7 Messages, parses the HL7 message and then sends the right
response again in HL7 format.

24

Problem Description

Figure 3.5: HL7 Messaging Interoperability - Use Cases

3.3 Schedules and Deliverables

The definition of a schedule and the priorities list for the use cases is one important step
in every project. The milestones were already established in the beginning of the project,
providing a good understanding and control over the project.

3.3.1 Priorities

The tasks in a project need to be prioritized, this step is very important to insure the correct
focus of the developer.

There were several factors that were taken into account to decide the priority of each
use case such as the developing difficulty, importance for the project to be developed and
estimated task duration. The priority levels are Low, Medium and High were used.

The priority of the General Use Cases for the Encounter Management are shown in
the table 3.1 at page 25.

Name Priority
Episode of Care Management High
Episode Management High
Encounter Management High
Inpatient Management Medium
Outpatient Management High
HL7 Messaging High

Table 3.1: Priorities for the General Use Cases for the Encounter Management

25

Problem Description

The priority of the Inpatient Use Cases for the Encounter Management are shown in
the table 3.2 at page 26.

Name Priority
Admit Patient Medium
Cancel Admit Patient Low
Discharge Patient Medium
Cancel Discharge Patient Low
Transfer Patient Medium
Cancel Transfer Patient Low
Pre-admit Patient Low
Cancel Pre-admit Patient Low
Book Bed Low
List Patients High
Edit Patients Demographics High
View Patients Demographics High

Table 3.2: Priorities for the Inpatient Use Cases for the Encounter Management

The priority of the Outpatient Use Cases for the Encounter Management are shown in
the table 3.3 at page 26

Name Priority
Check-in For Appointment High
Cancel Check-in For Appointment Medium
Check-out For Appointment High
Cancel Check-out For Appointment Medium
List Patients High
View Patients that have been checked-in High
Check Insurance High
Edit Patients Demographics High
View Patients Demographics High
Check-out patients after 24H of check-in Medium
Check Debts Low

Table 3.3: Priorities for the Outpatient Use Cases for the Encounter Management

The priority of the Use Cases for the Workflow Builder are shown in the table 3.4
bellow at page 27.

26

Problem Description

Name Priority
Edit Workflow Medium
Create Workflow Medium
Deploy Workflow Low
Select Workflow Activity Medium
Select Pre-activity Action Medium
Select Post-activity Action Medium

Table 3.4: Priorities for the Workflow Builder

The priority of the Use Cases for the HL7 Messaging Interoperability are shown in the
table 3.5 at the page 27.

Name Priority
Send HL7 Message High
Receive HL7 Message Medium
Send HL7 Response Message Medium
Generate HL7 Message High
Receive HL7 Acknowledgement High
Parse HL7 Message Medium

Table 3.5: Priorities for the HL7 Messaging Interoperability

3.3.2 Schedule

The schedule of this project was divided in 5 phases:

1. Validate existing outputs for the project;

2. State of Art study;

3. Implementation;

4. Development of necessary documentation;

5. Final Development.

In the end of each phase a milestone is achieved.

Validate existing outputs for the project

The validating phase took about one week (2 March - 6 March). It consisted on under-
standing the problem, analysing existent documentation and to get familiarized with the
medical terms. The result of this phase was a complete integration in the development

27

Problem Description

team, better understating of the company’s philosophy and the medical terms involved in
the project. The milestone of this phase was the clear knowledge of the most important
medical terms.

State of Art study

The State of Art study phase took about three weeks (9 March - 27 March). It consisted in
the study of all the available technologies, international health standards, existing appli-
cations and a prototype that identified the phases of some process in a healthcare facility.
This phase resulted on the State of Art document and the Vision document, this phase also
produced a presentation for the promotion of the project inside Siemens. The milestone
of this phase was the state of art document.

Implementation

The implementation phase was the longest one with ten weeks (30 March - 6 June). It
consisted in the implementation of the architecture that supported the application and
the creation of some hospital workflows on top of the architecture. Some project related
documentation was updated or adjusted to fit the time frame. The milestone of this phase
was a working prototype.

Development of necessary documentation

This phase took about a month (8 June - 29 June). This time was reserved for the produc-
tion of software related documentation and this thesis. The milestone of this phase was
this thesis.

Final Development

This phase will take the remaining time, one month (30 June - 31 July). It will consist
in the creation of the final presentations to be showed at FEUP and at Siemens. Small
adjustments in the implementation and documentation could also be necessary until the
end of the duration of this project (31 July). The milestone of this phase is going to be a
reviewed thesis and a new version of the prototype.

3.4 Conclusions

This chapter began by presenting this project’s goal of creating an Encounter Management
software. It presented the requirements of this software. It ended with the schedule and
the deliverables.

28

Problem Description

This chapter clearly described the dimension of this project. The healthcare software
Encounter Management is used in all the medical responsible departments (MRD) inside
a healthcare facility needing a complete specification of the activities that can happen in
each MRD. These activities were prioritized in order to focus on each MRD making the
top priority the outpatient MRD.

29

Chapter 4

Solution Specification

Based on the requirements for the project and on prototyping work done during the re-
search and technology evaluation phase, a specification of the proposed solution was pro-
duced.

4.1 Medical Terms

To define a solution for the problem, first it is necessary to correctly define the medical
terms or concepts that are going to be used in the implementation. These definitions were
defined based on extensive research of existing healthcare programs and the European and
Portuguese legislation in the area of hospital administration and specific encounter terms.

4.1.1 Episode of Care

An Episode of Care acts as a container that holds Episodes (going to be explained in the
next chapter). The episodes that are inside an Episode of Care are all tied to the resolution
of a specific condition with the patient.

If the patient goes to the hospital because of a new problem then a new Episode of Care
is opened for that condition in particular and then all the actions that are taken regarding
that condition will be stored in that Episode of Care in particular.

This definition supports the idea that one Episode of Care contains every action that
was made to improve a certain condition1 of a patient. This way a patient can have
multiple Episodes of Care that are opened at the same time and are addressing different
conditions. This definition provides the flexibility and adjustability that are necessary to
support all the patients’ conditions.

An episode of care has these common properties:

• Referral - Who referred to this episode of care;
1This condition could be a group of problems that affect the patient’s health

30

Solution Specification

• Start Date - Date on which the episode of care starts;

• End Date - Date on which the episode of care ends;

• Description - Information regarding the episode of care.

4.1.2 Episode

The episodes are contained inside an Episode of Care as mentioned in section 4.1.1. The
Episodes are a container for Encounters (that represent the smallest interaction within
a healthcare facility). The Episodes have an associated type which refers to what kind
of Encounters they have (or can have). These types refer to every medical responsible
departments (MRD) inside a healthcare facility and within them can be inserted (via En-
counters) the operations that can be executed in said departments.

Here is a list of episode types and some properties that they hold:

• Emergency Episode . Described in figure 4.1 at page 31

– Does not have an assigned bed;

– Maximum duration of 24h2.

Figure 4.1: Flow of the patient in the Emergency Episode

• Outpatient Episode. Described in figure 4.2 at page 32

– Does not have an assigned bed;

– Typically to perform appointments and exams through pre-admission.

• Inpatient Episode. Described in figure 4.3 at page 32

– Must have an assigned bed;

– During periods greater than 24h for the various reasons.

31

Solution Specification

Figure 4.2: Flow of the patient in the Outpatient Episode

Figure 4.3: Flow of the patient in the Inpatient Episode

• Day Care Episode. Described in figure 4.4 at page 32

– Does not have an assigned bed;

– For small treatments and procedures.

Figure 4.4: Flow of the patient in the Day Care Episode

• House Care Episode. Described in figure 4.5 at page 33

– Does not have an assigned bed;
2According to legislation

32

Solution Specification

– Similar to daycare but it is done in the patient’s location.

Figure 4.5: Flow of the patient in the House Care Episode

• Continuous Care Episode. Described in figure 4.6 at page 33

– Does not have an assigned bed;

– Continuous care to recover from a condition.

Figure 4.6: Flow of the patient in the Continuous Care Episode

An episode has these common properties:

• Type - Can be any of the defined above;

• Start Date - Date on which the episode starts;

• End Date - Date on which the episode ends;

• Description - Information regarding the episode.

4.1.3 Encounter

An Encounter is the smallest interaction between the patient and the healthcare facility.
There are many type of encounters such as a simple appointment, to CMDT or surgery.
These encounters are grouped into episodes that associated with the MRD.

Here is a list of a few3 Encounters types and some properties that characterizes each
type:

3Custom encounters can be created to better adjust to the healthcare facility custom procedures

33

Solution Specification

• CMDT Encounter

– Involves tracking inside the hospital;

– Groups of exams and treatments of the same type that are done. consecutively

• Emergency Encounter

– Typically included in the Episode of Emergency;

– Does not have an assigned bed.

• Appointment Encounter

– A scheduled appointment between a physician and a patient;

– Does not have an assigned bed.

• Internal Medicine Encounter

– Typically included in the Episode of Inpatient;

– Must have an assigned bed.

• Intensive Care Encounter

– Typically included in the Episode of Inpatient;

– Must have an assigned bed.

• Surgery Encounter

– Included in many types of Episodes, but each one with particular conditions;

– Does not have an assigned bed.

• Treatment Encounter

– Typically included in the Episode of Emergency;

– Does not have an assigned bed.

• Traumatology Encounter

– Typically included in the Episode of Inpatient;

– Similar to Encounter of Internal Medicine but in a different MRD;

– Must have an assigned bed.

All the encounters have these common properties:

• Type - Can be any of the defined above;

• Facility - Where the encounter occurred;

34

Solution Specification

• Start Date - Date on which the encounter starts;

• End Date - Date on which the encounter ends;

• Bed Number - Bed that the patient occupies during the encounter (only for encoun-
ters that need an assigned bed);

• Description - Information regarding the encounter.

4.1.4 Interactions

To use this concepts of Episodes of Care, Episodes and Encounters they have to be linked
in a way that was described in the sections above. In figure 4.7 at page 35 is an example
of a Episode of Care to resolve a certain condition with the patient.

Figure 4.7: Example of Episode of Care

35

Solution Specification

The relationships between the above medical terms is showed in figure 4.8 at page 36
with a brief description.

Person

Episode of Care

Episode

Encounter

1

1

1

*

*

*

Figure 4.8: Relationship between the Medical Concepts

Person

This represents the person that interacts with the healthcare facility. It has all the associate
demographics. Some information is linked from the master files4(such as administrative
gender and marital state). It also contains the information about the patient’s insurance.

Episode of Care

The Episode of Care groups all the necessary information about one problem with the
patient, from the detection of the problem to the final resolution. A person can have
multiple Episodes of Care each one for each condition.

4These master files save the information that cannot be changed in a healthcare facility

36

Solution Specification

Episode

The Episode saves the information that is affected to each process that exists inside each
medical responsible department (MRD). An Episode groups all the encounter that hap-
pened consecutively inside a MRD.

Encounter

The encounter represents the smallest possible interaction between the patient and the
healthcare facility.

4.2 Study of Architectural Solutions

To solve the proposed architectural problem two technologies were studied. First a solu-
tion based in Windows Workflow Foundation that would be adapted to allow communi-
cation between a presenter module. Then, a solution based on the Pageflow framework is
goin to be presented.

4.2.1 Windows Workflow Foundation

A prototype was made that was supported by state machine running inside WF that de-
fined the needed workflow. Then the state of the workflow was then transmitted through
WCF to Microsoft Silverlight that showed the correspondent user interface.

The communication between the workflow and the WCF has to be custom developed.
All the created workflow activities have to contain a communications module to report
its state and get the required information from the WCF communication interface. Tests
were made and the development of this part could be troublesome because all the com-
munication has to be verified on a case by case basis to ensure the correct data types and
values attributed to said variables.

The communication between the WCF and Microsoft Silverlight was successfully
tested through http secure communication (https). This would allow the communications
to be processed in a secure environment. Basic navigation commands would be asked by
the user interface (sending the necessary query information) and the web service would
reply with the id of the interface to be showed and the content that should be displayed in
said interface.

This approach was tied by a lot of hard coding and didn’t provide the necessary flexi-
bility and scalability that the project needed so it was discarded.

37

Solution Specification

4.2.2 Pageflow

The second solution that was studied involved a framework that was built on top of the
WF framework.

The framework that supports the current solution is the Pageflow implementation on
top of the Windows Workflow Foundation(WF) framework. The reasons for this selection
of this framework are explaned here.

This framework enables a rapid prototyping that can use the existing framework as a
base for the workflows that define the various operations that can exist within a hospital.
By adopting this solution the ability to use persistence5 and tracking6 is greatly facilitated
recurring to the built in support for these two features.

This solution has several advantages but few limitations. The following advantages
are recognized to the Pageflow framework:

• Ability to create the workflows that represent an activity of the healthcare facility;

• The workflows that are created have similarities with state machine workflow;

• Each activity inside the workflow can be mapped to one user interface;

• Persistence allows to suspend and resume workflows at any given time7;

• Possibility to attach to each activity a operation that it is done before the activity is
executed and after it is executed8;

• Possibility to define the expiration date on the workflow so that the suspended work-
flows can be erased after the specified time;

• Ability to use multiple user interfaces to execute the same workflow9.

There are also a few limitations to this implementation10:

• The brokers included for the communication with ASP.NET and WPF only support
one workflow definition limiting the usability of this solution11;

• Complex definition of variables that support the workflow mechanics12.
5Enables long running applications that can persist the entire workflow even if the operation is stopped
6Enables the monitoring of the workflow enabling to show to the user the information of the current running work-

flow and all the workflows in the historic of the application
7An admission can be suspended because a more important operation has to be done and then when the operation

is finished the previous admission is still in persistence and can be resumed when it was suspended with no loss in the
data

8This allows the creation of procedures that call external evaluations that can alter the data inside the workflow, or
even notify external applications of specific events

9In the current pageflow framework there is support for WPF and ASP.NET
10A solutions to some of these limitations was developed
11A solution was developed to address this limitation
12These variables make the data available to the UI and allow persistence of the workflow

38

Solution Specification

• Platform limitation13

Pageflow has the ability to create custom activities that support various operations
that occur inside a healthcare facility, encapsulating these custom activities into a library.
This library can then be provided to the medical analyst of the healthcare facility and the
workflows can be custom defined by the analyst making a perfect fit for the needs of every
healthcare facility.

To create, edit, publish the workflows a custom tool can be used to prevent the analyst
for seeing unnecessary code. The activities14 for a certain workflow can be dragged to
a canvas, tied to each other to create the flow of information using a specially developed
tool. This workflow could be published or saved according to the analyst’s will.

4.2.2.1 Navigation Architecture

Now we are going to analyse a simple implementation of the Pageflow to better under-
stand the Pageflow’s functionality and powerful activity based construction.

In figure 4.9 at page 40 it is described a workflow with 3 activities that are running
on WPF with 3 user interfaces. The numbers close to the captions represent the order of
sequence that the workflow is executed. The description for each numbers is:

1 This represent the start of the workflow, the interface calls the desired workflow;

2, 10 and 18 The workflow activity reads the data that is needed from the context vari-
ables;

3, 11 and 19 The workflow activity executes some code that is predefined to execute be-
fore the execution of the activity;

4, 12 and 20 The workflow activity15 sends the variable to the user interface;

5, 13 and 21 The user interface shows the necessary data and waits for user interaction;

6, 14 and 22 The user interface15 sends the required data and requests the next workflow
activity;

7, 15 and 23 The workflow activity executes some code the is predefined to execute upon
data arrival;

8 and 16 The activity writes (updates) new data into the Context Variables;

9 and 17 The workflow activity15 passes the control to the next workflow activity;
13This framework is tied to the Windows Workflow Foundation that only is available in the .Net framework for

Windows
14These would include workflow activities and correspondent User Interface
15Performed by the Communication Broker, the WPF Broker in this example

39

Solution Specification

24 and 25 Return the control to the workflow selection menu.

Activity 1

(3)(7)

Activity 2

(11)(15)

Activity 3

(19)(23)

Context Variables

Send X

(4)

Send X

Changed

(6)

Next Activity (9) Next Activity (17)

Read X

(2)

Write Y

(8)

Read Y

(10)

Write Z

(16)

Read Z & Y & X

(18)

User Interface 1

(5)

User Interface 2

(13)

User Interface 3

(21)

Send Y

(12)

Send Y

Changed

(14)

Send

Z & Y & X

(20)

Send

Next

(22)
Start Workflow

ABC

(1)

Workflow ABC

Ended

(24)

Back to Workflow Selection Menu

(25)

Figure 4.9: Interactions of a workflow with 3 activities

This architecture allows the normal navigation through the workflow activities but also
allow to get back to the previous workflow if the user wants. It is allowed to go to the
next and previous user interface screen. It also allows to suspend a running workflow and
all the context variables are saved into the persistence store, making it available to restart
the same workflow in the exact step it was suspended. A workflow can also be cancelled
and returned to the menu erasing the current progress on the workflow.

4.3 Prototype

A prototype was developed as a feature showcase that describes the process of the Pa-
tient Check-in for appointment and the correspondent check-out. This prototype was
developed before the beginning of the internship. This was the basis for the development
of a workflow that supported a Patient Check-in for appointment and the corresponding
check-out.

40

Solution Specification

This prototype features full patient demographic edition, multiple reasons and types
of appointments and healthcare insurance validator.

This prototype was used as a base for the development of all the Outpatient use cases.
The figures 4.10, 4.11 and 4.12 show the user interface of this prototype.

Figure 4.10: Administrative clerk log in screen

Figure 4.11: Patient selection for check-in

41

Solution Specification

Figure 4.12: Patient selection for check-out

4.4 Conclusions

In this chapter the definition of each term that is going to be used in the software was
deepened and the relations between all the terms clearly established. The functionalities
of the base framework that is going to be used in the implementation were explained. The
interaction between the activities inside a workflow was also explained.

These terms and their relation can clearly map all the occurrences inside a healthcare
facility. The Pageflow framework enables fast prototyping and a great workflow manage-
ment.

42

Chapter 5

Design and Implementation

This chapter presents the design and implementation process. Special attention is going
to be given to complex tasks that are going to be shown.

It starts by presenting the design of all the modules involved in the development and
the implementation details of each. It ends with the presentation of the development
methodologies and the tools used in the project.

5.1 Design

Software design is a process that solves a problem by planing a solution for the problem.
This is done when the purpose and specifications of the software are determined. The
Design includes a low-level component and algorithm implementation issues as well as
the architectural view.

5.1.1 He-ncounter Software

The He-ncounter was the name chosen for the software developed in the project Encounter
Management. The He-ncounter has to be used in multiple clients running multiple work-
flows that are deployed inside a healthcare facility. Mostly, these workflows consist in a
sequence of activities that combined with user input provide the necessary data to make
the workflow proceed to the next state. Apart from the user interaction, some workflows
activities involve a few operations that are called before said activity executes and after
the input of the user has arrived. These pieces of code perform a variety of custom actions
that range from making queries to a database (or saving data to a database) to sending
HL7 messages to the applications that need the information.

This part of the software is the one that incorporates the running workflows, the user
interface of all the workflow activities involved and the communication between the work-
flow and the user interface that is called WPF Broker.

43

Design and Implementation

There are many support systems around this primary functionality, such as the object-
relational mapping used (NHibernate), the NHapi for the generation/parse of HL7 Mes-
sages. There is a Database that supports the whole business logic of the Episodes of Care,
Episodes and Encounters, a Persistence Store to save the state of the workflow and also a
Tracking Store that saves the information of all the running and completed workflows.

5.1.1.1 Architectural View

The architectural view shows the interaction between all the modules and frameworks.
This view summarizes the implemented architecture of the He-ncounter Software.

The Architecture is showed in the figure 5.1 in the page 44 with the correspondent
description.

Figure 5.1: Architecture of the He-ncounter Implementation

As it can be seen in the above figure, the principal component of the architecture is the
WF that runs the Pageflow framework on top of the Windows Workflow Foundation. This
contains all the available workflows that are currently deployed in the WPF and registred
in the Interface (created with Windows Presentation Foundation). The communications
is established in both directions using the WPF Broker. When the user clicks in the

44

Design and Implementation

interface to proceed, the next page is requested to the WF through the WPF Broker and
the response goes from the WF to the interface through the WPF broker. This approach
allows to multiple interfaces with multiple brokers maintain communication with the WF
at the same time in a seamless way.

As said in previous chapters the WF allows the workflow to suspend and be resumed
later. Whenever a workflow is in idle1 all the its context is saved into a database that then
supports the resume workflow function.

Some workflow activities use a post execution code that sends HL7 messages. These
messages are constructed with the NHapi framework, it allows to create all the standard
messages up to the version 2.5 of the HL7 standard. All these activities are logged using
Log4Net and stored for later debugging.

5.1.1.2 Process View

The process view evaluates non-functional aspects such as performance, scalability and
throughput. The main process system was identified in the section 4.2.2.1 in the figure
4.9 at page 40.

A few bottlenecks can be identified that can slowdown the entire system. Write and
read operations are executed synchronously and that can lead to the slow down the entire
system. These have to be kept to a minimum to improve the speed of the navigation in the
workflow.

5.1.1.3 Physical View

This view shows the base hardware topology that supports the system execution. It shows
the distribution of data and the communications between the various machines.

In the figure 5.2 at page 46 it is shown a deployment scenario.

5.1.1.4 Database View

This view shows the database that supports the entire concept of the chain Episode of
Care, Episode and Encounter. The figure 5.3 at page 47 shows the designed database.

This design clearly maps the concepts of Epsiode of Care, Episode and Encounter that
were shown in figure 4.8 and described at section 4.1.4.

The part of the database that is linked to the patient and not to the episodes of care
allow to completely define the patient with the needed properties. These properties range
from healthcare insurance, disabilities and chronic diseases (each person can have more
than one) to administrative gender and martial status (each person has one).

This database was a simplified version, developed to be used in this prototype.
1In Windows Workflow Foundation a workflow being idle is the moment that the workflow is in a delay stage or

waiting for a input.

45

Design and Implementation

System Database

Back End

Terminal

Front End

Terminal

Persistence and Tracking

Database

Workflow

Processer

WPF Broker

Server Room

Front End

Terminal

Front End

Terminal

Figure 5.2: He-ncounter Deployment Scenario

5.1.2 Workflow Builder

This module allows the creation of workflows for healthcare facilities and the deployment
of those workflows in the He-ncounter module. This module was described in section
2.6 and provides a complementary support module to be integrated with the He-ncounter
module presented in the previous section.

5.1.3 HL7 Communication

The HL7 communication is a fundamental part in creating a truly integrable system. This
communication is established using the HL7 standard. The messages that are when a
trigger action occurs.

The HL7 Communications infrastructure is divided in two parts, message sending and
message receiving.

Sending HL7 Messages

The sending of HL7 messages is triggered by worklflow activities that have HL7 messages
in the end of their executing cycle. These usually inform other applications that have
subscribed to such notification. An example is a communication of changes in patient
demographics.

46

Design and Implementation

Figure 5.3: The Database View

Receiving HL7 Messages

To receive an HL7 message it is necessary to have an independent application that waits
for the communication. This application is independent of the running workflows at any
given the moment.

This application has a direct connection to the database. These messages typically
request patient demographics data and schedule new encounters.

5.2 Implementation

The implementation phase of a software development is the realization of the application
that was defined in the design phase. This section discusses in greater detail how the
implementation actually was done. It is going to be described the main classes involved
in the program and the respective features.

5.2.1 He-ncounter Software

The He-ncounter Software does all the management of the episodes inside a healthcare
facility. This software relies on three layers in order to work.

47

Design and Implementation

It contains a set of workflows that can be defined to completely execute the needed
operations inside a healthcare facility.

These workflows can be executed by a variety of user interfaces. In this program the
user interface that executes the workflow is based on Windows Presentation Foundation
(WPF). This interface has all the necessary pages that are going to be called by the work-
flow, making them completely independent from the workflow activity in question.

To make the connection between the workflow and the user interface a communication
broker handles all the communication between the created workflows and the WPF based
user interface.

5.2.1.1 Workflow Instantiation

Instantiating a workflow involves a variety of tasks. The workflow activities have to be
connected, to each other to define the various tasks, then several variables have to be
created to attach to each workflow activity. Triggers can also be attached to the beginning
or the end of the workflow activity. Finally a configuration file has to be deployed to
the interface program that maps the workflow activities to each user interface, this file is
passed to the WPF Broker and the broker maps the next activity in the workflow to the
user interface on the configuration file.

Workflow Design

The creation of a workflow involves dragging available activities and connecting them to
define a workflow. An example of a workflow can be seen in figure 5.4 at page 48

PatientCheckIn

PatientSelection

PatientDemograph… PatientVisitDetails

PatientInsuranceD…

PatientCheckInSu…

NewEpisodeOfCare

ExistentEpisodeOf…

NewEpisode
ExistentEpisode

PatientCheckInFini…

Figure 5.4: Example of a Workflow

48

Design and Implementation

Each of the squared areas is an activity that performs a given action. Each activity can
be connected to other activities with a conditional rule that chooses an activity instead of
the other. The start activity is selected so that the workflow knows where to begin. The
designer generates code that stores all the connections, activities and the position of each
object in the designer view of Microsoft Visual Studio.

Each activity has a set a properties that describes them. An example can be seen in
figure 5.5 at page 49.

Figure 5.5: Example of Activity Properties

In the handlers option field (in figure 5.5), functions can be assigned to trigger in cer-
tain conditions. The handler executes the necessary code when the necessary conditions
(triggers) occur. The trigger Initialized performs the function when the workflow activity
is called, the trigger Input Arrived executes the function when the input from the user
interface is sent back to the workflow activity.

In the interaction option it is defined what variables are sent to the user interface
and where to store the data that is sent from the user interface. The Activity Output
and the Activity Output Type set the variable and the type of the variable that is sent
from the workflow, through the WPF Broker to the User Interface. This variable contains
information that is generally displayed in the User Interface. The Activity Input and the
Activity Input Type store the data that is sent from the User Interface to the workflow.
The type of the data has to be known by the interface so that the correct data type can be
sent to the workflow. The data is sent from the User Interface through the WPF Broker to
the workflow activity.

49

Design and Implementation

Workflow Variables and Triggers

The variables that the workflow uses are defined in the code through a publishing proce-
dure.

Listing 5.1: Example of a variable definition in the workflow

1 / / R e c i e v e d from E x i s t e n t E p i s o d e O f C a r e
2 p u b l i c s t a t i c DependencyPrope r ty S e l e c t e d E p i s o d e I d P r o p e r t y

= DependencyPrope r ty . R e g i s t e r
3 (” S e l e c t e d E p i s o d e I d ” , t y p e o f (i n t) , t y p e o f (P a t i e n t C h e c k I n)) ;
4
5 / / / <summary>

6 / / / Method t h a t s e t s and g e t s t h e
S e l e c t e d E p i s o d e O f C a r e I d P r o p e r t y

7 / / / </summary>

8 [D e s i g n e r S e r i a l i z a t i o n V i s i b i l i t y (
9 D e s i g n e r S e r i a l i z a t i o n V i s i b i l i t y . Hidden)]

10 p u b l i c i n t S e l e c t e d E p i s o d e I d
11 {
12 g e t
13 {
14 re turn ((i n t) (ba se . GetValue (
15 P a t i e n t C h e c k I n . S e l e c t e d E p i s o d e I d P r o p e r t y))) ;
16 }
17 s e t
18 {
19 base . S e t V a l u e (
20 P a t i e n t C h e c k I n . S e l e c t e d E p i s o d e I d P r o p e r t y , v a l u e) ;
21 }
22 }

In the listing above it’s described the variable that is used in the property Activity
Input from the figure 5.5. First it is registered in the workflow a property with the chosen
type. Then it is created function that has a set and get method that access and changes
the variable in question. The variables that are defined this way can be chosen by the user
interface and filtered by the types that exists in the current namespace.

The triggers that are executed in each one of the activities can perform simple notify-
ing actions or more complex calculations in accordance with the parameters that exist in
the current context. These can be set in the properties window showed in figure 5.5 or be
defined in the initialization of the workflow.

50

Design and Implementation

Configuration file

The configuration file can be found in the client that is going to call the workflow. It is
used to map the activities of the workflow to the various user interface pages. An example
configuration file can be seen in listng 5.2

Listing 5.2: Example of the configuration File

1 <N a v i g a t i o n M a n a g e r S e t t i n g s StartOnDemand=” f a l s e ”>
2 <Workflows>
3 <add mode=” Compiled ”

v a l u e =” PageFlowTempla te . P a t i e n t C h e c k I n ,
PageFlowTempla te ” name=” P a t i e n t C h e c k I n ” />

4 <add mode=” Compiled ”
v a l u e =” PageFlowTempla te . P a t i e n t C h e c k O u t ,
PageFlowTempla te ” name=” P a t i e n t C h e c k O u t ” />

5 < / Workflows>
6 <S e r v i c e s>
7 <add t y p e =” System . Workflow . Runtime . H o s t i n g .

Defaul tWorkf lowCommitWorkBatchService ,
System . Workflow . Runtime , V e r s i o n = 3 . 0 . 0 . 0 ,
C u l t u r e = n e u t r a l , Publ icKeyToken =31 bf3856ad364e35 ” />

8 <add t y p e =” System . Workflow . Runtime . H o s t i n g .
S q l W o r k f l o w P e r s i s t e n c e S e r v i c e ,
System . Workflow . Runtime , V e r s i o n = 3 . 0 . 0 . 0 ,
C u l t u r e = n e u t r a l , Publ icKeyToken =31 bf3856ad364e35 ”
C o n n e c t i o n S t r i n g =” I n i t i a l
C a t a l o g = Per s i s t enceADT ; Data
Source = l o c a l h o s t \SQLEXPRESS ; I n t e g r a t e d
S e c u r i t y =SSPI ; ” UnloadOnId le =” t r u e ”
L o a d I n t e r v a l S e c o n d s =” 120 ” />

9 <add
t y p e =” System . Workflow . Runtime . T r a c k i n g . S q l T r a c k i n g S e r v i c e ,
System . Workflow . Runtime , V e r s i o n = 3 . 0 . 0 . 0 ,
C u l t u r e = n e u t r a l , Publ icKeyToken =31 bf3856ad364e35 ”
C o n n e c t i o n S t r i n g =” I n i t i a l C a t a l o g =TrackingADT ; Data
Source = l o c a l h o s t \SQLEXPRESS ; I n t e g r a t e d
S e c u r i t y =SSPI ; ” I s T r a n s a c t i o n a l =” f a l s e ”
U s e D e f a u l t P r o f i l e =” t r u e ” TrackXomlDocument=” True ” />

10 < / S e r v i c e s>
11 < / N a v i g a t i o n M a n a g e r S e t t i n g s>

51

Design and Implementation

12 <W p f N a v i g a t i o n S e t t i n g s>
13 <PageMappings>
14 <add bookmark=” E x i s t e n t E p i s o d e O f C a r e ”

l o c a t i o n =” P a t i e n t V i s i t
D e t a i l s \ E x i s t e n t E p i s o d e O f C a r e . xaml ”
workflowname=” P a t i e n t C h e c k I n ” />

15 <add bookmark=” S e l e c t P a t i e n t C h e c k e d I n ”
l o c a t i o n =” S e l e c t P a t i e n t C h e c k e d I n . xaml ”
workflowname=” P a t i e n t C h e c k O u t ” />

16 < / PageMappings>
17 <Excep t ionMapp ings>
18 <add t y p e =” M i c r o s o f t . Samples . Workflow . UI .

Workf lowCance ledExcep t ion ”
l o c a t i o n =” Workf lowSelect ionWindow . xaml ” />

19 <add t y p e =” M i c r o s o f t . Samples . Workflow . UI .
WorkflowNotFoundExceptiom ”
l o c a t i o n =” Workf lowSelect ionWindow . xaml ” />

20 < / Excep t ionMapp ings>
21 < / W p f N a v i g a t i o n S e t t i n g s>

This configuration file has two sections a Navigation Manager Settings (line 1) and
a Wpf Navigation Settings (line 12). In the first section the are a few definitions that
the broker uses to connect to the desired workflow. First a list of active workflows that
are defined in another project, in this example the patient check in (line 3) and patient
check out (line 4). Then there is a list of services that enable three options. First the
workflow engine location (line 7), the SQL Persistence service (line 8) and the last one
is the SQL Tracking service (line 9). In the Wpf Navigation Settings there is a Page
Mappings section and a Exception Mappings section. In the first a bookmark is made that
points at the workflow action’s name, the location that points to a User Interface Page (a
XAML file) and the name of the workflow, allowing multiple workflows per client. In the
Exception Mappings section it is saved which user interface is showed when certain error
occurs.

There are two configuration differences from the first file configuration that Microsoft
proposed. The multiple workflow definitions in the Navigation Manager Settings and
the field workflowname in the Page Mappings section. These changes were necessary to
support multiple workflows per client. The implementation of these features is explained
in section 5.2.1.3.

52

Design and Implementation

5.2.1.2 Windows Presentation Foundation based Interface

The interface of this applications was made using Windows Presentation Foundation. This
technology allowed the rapid evolution of the interface because it clearly separates the
designing of the application (built on top of XAML and fine tuned with Microsoft Ex-
pression Blend) and the application coding. This clearly made the task easier because of
the complete separation between the visual layer and the code layer.

Workflow Calls

The navigation between the various user interfaces is made in a complete abstract way.
The pages are not called directly but instead these calls are made to the WPF brooker
that gets the request to the workflow and then returns the response of the workflow to the
interface. Being so, the navigation is completely abstract.

The actions that can be performed are workflow management(start a workflow, cancel
a running workflow and suspend a workflow) and navigation inside a workflow. Starting a
workflow can initialize a new workflow and even continue an existing workflow. Bellow
it’s given an example that shows how to start a new workflow:

Listing 5.3: Starting a new Workflow

1 / / Changes t h e s t a t i c v a l u e s o f W o r k f l o w A p p l i c a t i o n so t h a t
2 / / t h e a c t i o n i s t h e d e s i r e d one (S t a r t t h e work f low)
3 W o r k f l o w A p p l i c a t i o n . C u r r e n t U s e r I n p u t =
4 new U s e r I n p u t (Act ionKeys . S t a r t A c t i o n , n u l l ,

” P a t i e n t C h e c k I n ”) ;
5 / / E x e c u t e s t h e C u r r e n t U s e r I n p u t
6 t h i s . N a v i g a t i o n S e r v i c e . N a v i g a t e (”NavHub . xaml ”) ;

As can be seen in the listing 5.3 starting a workflow is a very simple task. First a
static variable saves the desired operations that are going to be executed by the navigate
function. ActionKeys is a sealed class that stores the options that can be executed inside
a workflow. In this case to start a new workflow the action key is of type StartAction. The
following field is null because it represents the activity input that is going to be passed
to the workflow (in this case the workflow is starting and the first activity does not have
any activity input property setted, as seen in section 5.2.1.1). The last field is the name of
the workflow that is going to be called. The second line is the actual navigation between
pages. The Navigation Service is provided to all user interfaces because they inherit from
the System.Windows.Controls.Page. This navigation service is then overridden by the
WPF broker. The value NavHub.xaml represents a control sequence that the overridden
implementation checks in its function. Then, according to the input and the current con-
strains, the next step is returned and navigated to by the navigation service.

53

Design and Implementation

The system allows to resume any interrupted workflow2. The system previously
queries the persistence database to acknowledge the currently running workflows and
the tracking database to get the information of these running workflows such as the name
of the workflow and the name of the current activity. To start a existing workflow the
following command is executed.

Listing 5.4: Starting of an existing workflow

1 / / Changes t h e s t a t i c v a l u e s o f W o r k f l o w A p p l i c a t i o n so t h a t
2 / / t h e a c t i o n i s t h e d e s i r e d one (S t a r t e x i s t i n g work f low)
3 W o r k f l o w A p p l i c a t i o n . C u r r e n t U s e r I n p u t = new

U s e r I n p u t (Act ionKeys . Co n t i n u eA c t i o n ,
P a t i e n t D e m o g r a p h i c s . ge tTex tCode (workf lowSelec t ionComboBox)) ;

4 / / E x e c u t e s t h e C u r r e n t U s e r I n p u t
5 t h i s . N a v i g a t i o n S e r v i c e . N a v i g a t e (”NavHub . xaml ”) ;

As it can be seen the in the listing 5.4 the methods that are called are the same but
with different parameters. The ActionKeys is now setted to ContinueAction so that the
behaviour of the navigate method reflects this difference and the only other parameter
that is passed is the GUID of the selected workflow. This GUID is stored in a combobox
that is selected by the user (this combobox contains all the information of the running
workflows).

When the workflows are created and are in execution, they can be cancelled if the user
desires. The cancellation erases from the persistence database that running worklfow.
To cancel a running workflow the following command is executed from within any user
interface of that particular workflow.

Listing 5.5: Cancelling of a running workflow

1 / / Changes t h e s t a t i c v a l u e s o f W o r k f l o w A p p l i c a t i o n so t h a t
t h e

2 / / a c t i o n i s t h e d e s i r e d one (S t a r t t h e work f low)
3 W o r k f l o w A p p l i c a t i o n . C u r r e n t U s e r I n p u t =
4 new U s e r I n p u t (Act ionKeys . Cance lAc t ion , n u l l) ;
5 / / E x e c u t e s t h e C u r r e n t U s e r I n p u t
6 t h i s . N a v i g a t i o n S e r v i c e . N a v i g a t e (”NavHub . xaml ”) ;
7 / / N a v i g a t e s t o t h e s t a r t page
8 Workf lowSelect ionWindow s ta r tWindow = new

WorkflowSelect ionWindow () ;
9 t h i s . N a v i g a t i o n S e r v i c e . N a v i g a t e (s t a r tWindow) ;

2The interruption of the workflows can occur by the user intention (specific button in user interface) or recover the
workflow from power loss,system failure and other causes.

54

Design and Implementation

The structure of the commands of the listing 5.5 is similar to the other commands with
a few differences. The ActionKeys is now of type CancelAction and when the navigation
service is activated it does not go to any page. A new start page is created and then the
WPF navigates to it. This navigation is handled by the default navigate function after it
passes the overridden function.

The running workflows can also be suspended. This suspension state provides the
flexibility needed when the administrative clerk wants pause the current operation and
resume it later. This suspend action is provided in a very straightforward way, since
every time the workflow stops in a activity that is waiting for user input the workflow is
persisted, then when the workflow is suspended executed the only thing that is done is the
redirection to the start page. This can be seen in the following listing.

Listing 5.6: Suspending a running workflow

1 Workf lowSelect ionWindow s ta r tWindow = new
WorkflowSelect ionWindow () ;

2 t h i s . N a v i g a t i o n S e r v i c e . N a v i g a t e (s t a r tWindow) ;

As it can be seen by executing these two commands the workflow is already suspended
and then the navigation goes to the start page.

The workflow navigation can also execute the true navigation commands such as Next
and Previous commands. They allow the freely navigation of the user through the various
pages that can be accessed. Every navigation saves the necessary data to the context of
the workflow (so that it can be persisted) and navigates to the next or the previous page.
To go to the next action following commands are executed.

Listing 5.7: Next action in a running workflow

1 / / Changes t h e s t a t i c v a l u e s o f W o r k f l o w A p p l i c a t i o n so t h a t
2 / / t h e a c t i o n i s t h e d e s i r e d one (S u b m i t a c t i o n t h e work f low)
3 W o r k f l o w A p p l i c a t i o n . C u r r e n t U s e r I n p u t =
4 new

U s e r I n p u t (Act ionKeys . Submi tAct ion , S e l e c t e d P a t i e n t I D) ;
5 / / E x e c u t e s t h e C u r r e n t U s e r I n p u t
6 t h i s . N a v i g a t i o n S e r v i c e . N a v i g a t e (”NavHub . xaml ”) ;

The next action seen in listing 5.7 is structured in the same way as the above but
in this case the ActionKeys is called SubmitAction and the next parameter passes the
variables that are going to be used in the input activity of the workflow. This variable is
passed through the WPF broker to the workflow. The navigation services handles all this
communication and resolves what page needs to be displayed next. If a workflow does
not need any activity input from the user interface, but it’s still waiting for user input in

55

Design and Implementation

order to proceed to the next workflow action. The parameter null can be passed if in a
specific case where there is no input value required in that workflow activity.

The previous command is similar to the above but returns the page of the last workflow
activity that was executed by the workflow. The previous command can be seen in the
following code .

Listing 5.8: Previous action in a running workflow

1 / / Changes t h e s t a t i c v a l u e s o f W o r k f l o w A p p l i c a t i o n so t h a t
t h e

2 / / a c t i o n i s t h e d e s i r e d one (P r e v i o u s work f low a c t i v i t y)
3 W o r k f l o w A p p l i c a t i o n . C u r r e n t U s e r I n p u t = new

U s e r I n p u t (Act ionKeys . BackAct ion , n u l l) ;
4 / / E x e c u t e s t h e C u r r e n t U s e r I n p u t
5 t h i s . N a v i g a t i o n S e r v i c e . N a v i g a t e (”NavHub . xaml ”) ;

The previous command is executed with the action keys setted to BackAction and ex-
ecuting the navigation service. This redirects the user to the last page that was displayed.

Workflow Activity Output

The activities that compose the worlflow receive their inputs from the user interface as
shown in the previous section, using the submit action, sends the information for the
workflow activity for processing. This links the input activity of the workflow activity to
the content that is sent in the Next action. When the workflows are running in the client it
is needed to pass information in the direction of the user interface. This is accomplished
by linking the variable that is going to be passed to the user interface to the Activity
Output property of the workflow activity. Then for each user interface page that needs
this Activity Output the following listing is executed:

Listing 5.9: Getting a Activity Output from a Workflow Activity

1 V a r i a b l e =
W o r k f l o w A p p l i c a t i o n . C u r r e n t I n t e r a c t i o n C o n t e x t . A c t i v i t y O u t p u t
a s V a r i a b l e T y p e ;

As seen in listing 5.9 the variable is stored inside the WPF broker and is retrieved with
a simple command. This clean concept allow the quick refactoring of the information that
is passed from the workflow and through the communications broker.

56

Design and Implementation

User Interface

The User interface is a very important phase in designing and implementing a program.
The figures 5.6, 5.7, 5.8 and 5.9 show screenshots of the program running the developed
workflow.

Figure 5.6: Welcome Screen with Log-In and Language Selection

Figure 5.7: Patient Selection Screen with Scheduled Patients

57

Design and Implementation

Figure 5.8: Patient Demographics Screen

Localization

Language localization is the process of translating a product into different languages or
adapting a language to a specific country or region. This application was thought from
start to support Portuguese (pt-PT[22]) and English (en-US[22]) languages. This process
is supported by the .Net framework in a different number of ways. The simplest approach
that provided the best results was to create a resource file and associate each resource file
with the language code. Then the application has to have the UI Culture set to read the
correct resource file.

The number of resource files created equals the number of languages that needs to
be supported by the program. In this application because there are two target languages
(English and Portuguese) two resource files were created, Resources.resx for the English
version (it has no language code because it is the default language) and Resources.pt-
PT.resx for the Portuguese version. These files are in XML and have three fields that need
to be filed, the Name that holds the code that will be called in the code of the UI (has
to be the same across all the resource files), the Value that holds the translation and the
Comment for additional information of the translation. Here is an example of a localized
object.

58

Design and Implementation

Figure 5.9: Insurance Validation Screen

Listing 5.10: Example of localization usage in PatientDemographics.xaml

1 <Labe l C o n t e n t =”{ x : S t a t i c
p r o p e r t i e s : R e s o u r c e s . Labe lPa t i en tDemograph ic sName }” />

The correspondent English translation is:

Listing 5.11: Translation to English in Resources.resx

1 <d a t a name=” Labe lPa t i en tDemograph ic sName ”
xml:space =” p r e s e r v e ”>

2 <v a l u e>F i r s t Name< / v a l u e>
3 < / d a t a>

And the Portuguese:

Listing 5.12: Translation to Portuguese in Resources.pt-PT.resx

1 <d a t a name=” Labe lPa t i en tDemograph ic sName ”
xml:space =” p r e s e r v e ”>

2 <v a l u e>P r i m e i r o Nome< / v a l u e>
3 < / d a t a>

59

Design and Implementation

All the translations are done in the two files (one for each language), the translation
codes (in this case the LabelPatientDemographicsName is the code) are used in the pro-
gram. The language can be changed in the Log-In screen. There it is asked to the user
which language he wants. According the selection the according culture is set.

Listing 5.13: Code that sets the culture according to user selection

1 i f ((bool) E n g l i s h R a d i o B u t t o n . I sChecked)
2 {
3 W pfApp l i ca t i on1 . P r o p e r t i e s . R e s o u r c e s . C u l t u r e = new

C u l t u r e I n f o (” en−US”) ;
4 }
5 e l s e
6 {
7 W pfApp l i ca t i on1 . P r o p e r t i e s . R e s o u r c e s . C u l t u r e = new

C u l t u r e I n f o (” pt−PT”) ;
8 }

5.2.1.3 WPF Broker

The WPF Broker is in charge of communicate back and forth from the User Interface (UI)
and the workflows that are instantiated by it. Using this module was very straightforward.
The module was already developed by Microsoft to make the communication between the
UI and the workflow. The developed solution clearly had a flaw, only one workflow type
of workflow was supported per client. This communication problem existed in various
levels. The configuration file wasn’t able to cooperate with the definition of multiple
workflows and the broker could not handle multiple workflow instantiation, it could only
call one workflow, as many times as it was needed but not different workflows. To address
this problem a full adaptation of the broker module was implemented and an adaptation
of the Pageflow Source code was also used.

Multiple Workflows per Client

To create support for multiple workflows a few changes were made to the broker that reads
the configuration file from the User Interface Module. The problem was that the broker
was only looking for one workflow definition and the page mappings were not linked to
any workflow in particular, they were only defined for the workflow that was defined. The
changes were made in two steps, first acknowledge the existence of multiple workflows
definitions. This was accomplished with the following changes in the WPF Broker.

Listing 5.14: Multiple Workflow Definitions

60

Design and Implementation

1 / / Work f lowElement work f l owElemen t = s e t t i n g s . Workf low ;
2 WorkflowElement workf lowElement = n u l l ;
3 f o r e a c h (WorkflowElement elm i n s e t t i n g s . Workflows)
4 {
5 i f (elm . Name . Eq ua l s (i n p u t . WorkflowName))
6 {
7 workf lowElement = elm ;
8 break ;
9 }

10 }

As in can be seen in listing 5.14 there was a single line that linked the workflow
element to the existing one in the configuration section. The change from one workflow
to multiple workflows replaced the single attribution to a cycle that finds all the existing
definitions and discovers which one is being called whose name is stored in the variable
input.WorkflowName.

There were also changes in the page mappings definitions because each page mapping
has to be assigned to one workflow. This was accomplished by changing the configuration
file reader in the WPF broker project.

Listing 5.15: Changes in Page Mappings in Workflow Name

1 p r i v a t e c o n s t s t r i n g workflowname = ” workflowname ” ;
2 [C o n f i g u r a t i o n P r o p e r t y (workflowname , D e f a u l t V a l u e = n u l l ,

I s R e q u i r e d = t rue)]
3 p u b l i c s t r i n g WorkflowName
4 {
5 g e t
6 {
7 re turn (s t r i n g) base [workflowname] ;
8 }
9 s e t

10 {
11 i f (v a l u e == n u l l)
12 {
13 throw new Argumen tNu l lExcep t ion (” v a l u e ”) ;
14 }
15 base [workflowname] = v a l u e ;
16 }
17 }

61

Design and Implementation

In listing 5.15 the definition of the workflow name that was shown in page mapping
property of listing 5.2 is implemented. In line 2 the Configuration Property attribute de-
fines which options are going to be considered when reading from the XML configuration
file.

The changes in the pageflow source code are of specific nature that do not apply to the
scope of this thesis.

5.2.2 Workflow Builder

This module allows the creation of the workflows in an independent way and separated
from the Microsoft Visual Studio 2008. This allows the application to be deployed with
controlled costs in any client.

A medical analyst can then use this application to create new workflows deploy them
and edit any current workflow that is saved and in production. This allows the creation
and deployment of the workflows without any programmer intervention. The workflow
activities that can be selected range from a variety of medical of health related activities
(e.g. select patient’s bed) to administrative tasks (e.g. get chargeable operations). Any
custom activities can be developed by the analyst’s request.

This module was not implemented due to time restrains.

5.2.3 HL7 Communication

This module allows the communication from the main application and many other exist-
ing applications through the international healthcare standard HL7 as analysed in section
2.1.1. These messages are integrated into workflow activities that perform specific actions
and also as a standalone program that receives HL7 messages querying the information
available in the database.

5.2.3.1 Sending Messages

The sent messages are integrated into special workflow activities that generate an HL7
message and send it to its destination (such as medical informations systems).

Sending Patient Demographics Changes

To send an HL7 message with the changes on the patient’s demographics a specific HL7
message needs to be sent (the message to send patient demographics changes is called
a ADT A28). To generate this message a class was created that uses NHapi to generate
the message with all the necessary headers and the required information in the necessary
fields. The A28 class is a static class having only one static method that receives an
Person as input and returns an ADT A28 HL7 message type. The function uses all the

62

Design and Implementation

data available from the Person to fill all the required information. The data is sent to the
Master Patient Index(MPI). The MPI is a repository that references all the patients known
by a medical department, clinic, hospital or a healthcare organization[23].

Listing 5.16: Creation of HL7 Message

1 P i p e P a r s e r p a r s e r = new P i p e P a r s e r () ;
2 b y t e [] byData = System . Text . Encoding . ASCII . Ge tBy tes (

p a r s e r . Encode (A28 . n o t i f i c a t i o n (Submi tedData . p e r s o n))) ;
3 c o n n e c t i o n . Send (byData) ;

The code in listing 5.16 shows the simple and clean usage that can be made by using
the NHapi framework and a class that handles that specific message. The static class links
the values in Person to the several fields in the message. Some examples are presented in
the following listing.

Listing 5.17: Some values assignation

1 p i d . G e t P a t i e n t I d e n t i f i e r L i s t (0) . IDNumber . Value =
p . IdNumber . T o S t r i n g () ;

2 p i d . G e t P a t i e n t I d e n t i f i e r L i s t (0) . A s s i g n i n g A u t h o r i t y . NamespaceID .
Value = ”He−n c o u n t e r ” ;

3 p i d . G e t P a t i e n t I d e n t i f i e r L i s t (1) . IDNumber . Value =
p . MpiId . T o S t r i n g () ;

4 p i d . G e t P a t i e n t I d e n t i f i e r L i s t (1) . A s s i g n i n g A u t h o r i t y . NamespaceID .
Value = ”MPI” ;

5 p i d . G e t P a t i e n t I d e n t i f i e r L i s t (2) . IDNumber . Value =
p . BiNumber . T o S t r i n g () ;

6 p i d . G e t P a t i e n t I d e n t i f i e r L i s t (2) . A s s i g n i n g A u t h o r i t y . NamespaceID .
Value = ” Es t ad o P o r t u g u ês ” ;

7 p i d . G e t P a t i e n t I d e n t i f i e r L i s t (3) . IDNumber . Value =
p . Ssn Id . T o S t r i n g () ;

8 p i d . G e t P a t i e n t I d e n t i f i e r L i s t (3) . A s s i g n i n g A u t h o r i t y . NamespaceID .
Value = ” Seguran ça S o c i a l ” ;

9 p i d . Ge tPa t i en tName (0) . FamilyName . Surname . Value =
p . LastName ;

10 p i d . Ge tPa t i en tName (0) . GivenName . Value = p . F i r s tName ;
11 p i d . Ge tPa t i en tName (0) .

S e c o n d A n d F u r t h e r G i v e n N a m e s O r I n i t i a l s T h e r e o f . Value =
p . MiddleName ;

A few values of the PID are assigned in listing 5.17.
The message that was generated can be seen in the following listing.

63

Design and Implementation

Listing 5.18: Example of an update demographics HL7 message

1 MSH| ˆ ˜ \& |He−n c o u n t e r | Development |MPI | Development |2 0 0 9 0 6 2 7 1 6 1 1 | |
ADTˆ A28 ˆ ADT A05 |1 6 : 1 1 : 3 0 |D | 2 . 5 | | | |AL

2 EVN| |200906271611
3 PID | | | 1 2 3 ˆ ˆ ˆ He−n c o u n t e r ˜ 1 2 3 ˆ ˆ ˆ MPI ˜ 1 2 3 2 1 4 ˆ ˆ ˆ Es t a do

P o r t u g u ês ˜ 1 2 3 ˆ ˆ ˆ Segura ça S o c i a l | | Aradas ˆ Jo ão ˆ C a r v a l h o | |
198610180000 |M| | |& S i t o ˆ ˆ Maia ˆ P o r t o ˆ ˆ PT | |2 2 3 4 5 6 7 8 9 ˜
9 1 2 3 4 5 6 7 8 ˜ ˆ ˆ ˆ t e s t e @ t e s t e . com | | | SOL | | | | | | | | | | PT | | | | | | |
200906271611 |He−n c o u n t e r

4 PD1 | | | Ce n t ro de Saúde da Maia
5 PV1 | |O

This message updates the demographics of the Patient ”João Aradas”.
The listing 5.18 is described bellow:

• MSH - The Message Header segment contains the message type, in this case,
ADTˆA28, which identifies the message type and the trigger event. The sender is
the He-ncounter application. The receiving application is the Master MPI. The mes-
sage was sent on 2009-06-27 at 16:11:30. The MSH segment is the initial segment
of the message structure.

• EVN - The Event, i.e. Trigger Event segment contains the timing of the trigger
event (2009-06-27 at 16:11:30)

• PID - The Patient ID segment contains the identifiers (3 identifiers, 1 person iden-
tifier and 2 patient identifiers) of patient João Patient as well as other demographics
data (e.g. address, 2 telephone numbers and email, birthdate).

• PD1 - The PD1 segment contains extra patient demographics such as the primary
care facility.

• PV1 - The Patient Visit segment (a mandatory segment in the ADTˆA28 message)
contains information about an encounter between a healthcare provider and the pa-
tient. Given the use case no data is conveyed, the O denotes that the patient is an
Outpatient.

5.2.3.2 Receiving Messages

The messaging receiving has to be workflow independent so that it can be active always to
respond to the queries from other medical information systems and provide the response
in an independent way from the workflow execution.

64

Design and Implementation

Synchronizing Master Files

The Master Files tables on the database are used to store static records that are relatively
permanent. These files have to be set accordingly to be valid. To maintain a correct stored
data the master files have to be synchronized by some authority that creates and manages
these databases.

Between several medical applications there are shared information, usually found un-
der the form of code or name lists (named catalogs), that should be centralized and glob-
ally available. These systems are, in general, composed by a central repository and by
various entities that consult this information (the consumers). The service of the reposi-
tory can be called a Master Files Management[24].

The operation of this module is independent of the rest of the program. It has a direct
connection to the database and when notified changes the values in the master files. This
change is transparent to the main program, when the next query happens the updated and
new values will appear in the user interface.

5.2.4 Patient Check-in Workflow Implementation

One of the implemented workflows is the Patient Check-in. This was the chosen workflow
to implement because it was already thought and developed in the prototype presented in
the section 4.3. The mapping of this workflow was already shown in section 5.2.1.1 in
figure 5.4.

First the patient needs to be selected from two available lists, one that holds the pa-
tients that were scheduled for the day in question and the other holds a list of all available
patients so that any patient can receive treatment even if it is not scheduled. After the
Patient Selection window, the selected patient demographics are shown and are available
for all the necessary changes that needs to be done (the administrative clerk queries the
patient to find possible errors in the demographics data. The next phase involves multiple
screens to determine if it is necessary to create a new Episode Of Care or choose an exis-
tent one. After that all the necessary information is gathered for the creation of Episodes
and Encounters. This is accomplished by using the workflow to follow decisions to the
direction on which to follow based on the selections of the administrative clerk. After this
step the insurance has to be validated using the website of the selected insurance. Finally
the last step presents to the user all the changes that were made in the demographics infor-
mation, the options that were selected in the Episode of Care and the selected Insurance.
If the summary is accepted then the information is submitted to the workflow that saves
the changes to the database and sends the necessary HL7 messages.

65

Design and Implementation

5.3 Development Methodologies and Tools

Choosing a development methodology implicates that one particular methodology has
advantages that compensate its probable flaws in the current project. The choice of the
development methodologies were made according to the decisions the project manager.
The following methodologies were used.

Scrum

Scrum is an iterative incremental framework for managing complex work. Scrum is a set
of process rules that set a group of best practices and predefined roles. There predefined
roles in scrum are:

• ScrumMaster - Maintains the process;

• Product Owner - Represents the stakeholders;

• Team - A cross-functional group who do the actual analysis, design, implementa-
tion, testing, etc.

During a ”sprint”, typically two to four weeks period, the team creates a potentially
shippable product increment. The set of features that go into a sprint come from the
product ”backlog”, which is a prioritized set of high level requirements of work to be
done. Which backlog items go into the sprint is determined during the sprint planning
meeting. During this meeting, the Product Owner informs the team of the items in the
product backlog that he wants completed. The team then determines how much of this
they can commit to complete during the next sprint[1]. During a sprint, it is note allowed
to change the items in the backlog, which means that the requirements are frozen for that
sprint. After a sprint is completed, the team demonstrates the use of the software.

The Scrum methodology was adapted to fit the particular needs of this project and the
time constrains.

Rational Unified Process

The Rational Unified Process[3] methodology is composed by many disciplines. Only one
was applied in this project. The discipline was the Configuration and Change management
discipline. This discipline is responsible for documents.

To create the necessary documentation this methodology provided streamlined docu-
mentation templates that allowed a correct documentation process.

66

Design and Implementation

Tools

To implement the system it was necessary to use a supported language of the used frame-
works. The WF and WPF frameworks developed by Microsoft were available in two
programming language, Visual Basic (VB) and C Sharp (C#). The chosen language was
C# because of the similarities to C++ and Java. C# is easy to learn and a very powerful
programming language.

To implement WF and WPF the Microsoft integrated development environment (IDE)
was used, the Microsoft Visual Studio 2008 Professional Edition. This allowed the use of
all the necessary frameworks in one IDE.

The WPF user interface was developed in two IDE, first in an earlier stage it was
developed in Microsoft Visual Studio 2008 because it allowed a fast prototyping with a
relatively advanced user interface. In a final stage, to tweak the user interface was used
Expression Blend, a software also from Microsoft that is integrated in to Microsoft Visual
Studio 2008 that focus on the design and the look and feel of the user interface. This
allowed the user interface development to focus on the design of the application.

5.4 Conclusions

This chapter showed the design and implementation details on the developed solution.
It was defined that a workflow runs in the Windows Workflow Foundation engine

and connects to a user interface (developed in WPF) through a broker that handles all
the communications. The interface supports multiple workflows and pause and resume
features.

It was shown the idea of the workflow builder application that creates and deploys
workflows to be used in the He-ncounter software. This module was not developed due
to time constrains.

The HL7 communication module was described and the integration with the He-
ncounter software showed. This modules allows the interoperability of the He-ncounter
software with other existent software.

Finally this chapter ended by presenting the development methodologies and the tools
used in the project.

67

Chapter 6

Conclusions and Future Work

Throughout the duration of the project all the software phases were passed. Challenges
arose during the development of this project that were identified and surpassed leading to
the success of this project.

The selected frameworks that support the software proved to be a right choice. The
Pageflow architecture was adapted to the specific needs of the project and the result was
great. All the necessary workflows can be modelled and the necessary interfaces can be
designed and associated with multiple workflow activities. Making this approach a valid
one to enable fast development of the workflows that meets the needs of the clients.

The limitation of the implementation of the Pageflow architecture was successfully
resolved and multiple workflows are now supported by the WPF client.

Now all the available workflows can be easily integrated into the existing software to
further improve the offering of the Encounter Management.

6.1 Success Evaluation

To evaluate the success of the project the goals defined in section 1.4 have to be evaluated.
As such these are the assessments that can be drawn.

1. Web page with authentication system - This objective was fulfilled in the early stages
of the project and the required authentications were given to all the necessary enti-
ties;

2. Document the state of art on technologies and medical related standards - This re-
port presented relatively complete overview of the different technologies, medical
related standards, the implementations of these standards and the frameworks that
can support the developed system;

3. Define an architecture that supports - the Encounter concept - The architecture was
define in chapter 4;

68

Conclusions and Future Work

4. Produce a prototype that supports the workflow philosophy - This prototype was
successfully implemented and showed the potential of using the Pageflow frame-
work.

5. Design and implement the Encounter Management - The design and implementation
of the Encounter Management was done as showed in chapter 5. The implementa-
tion was focused on the Inpatient (the outpatient would be similar);

6. Use state of art technology when possible - The developed solution uses components
recently released.

Even if not all the planned features were actually implemented, the successful achieve-
ment of goals 3,4 and 5 was already exposed in the previous chapters.

Form an overview perspective it is safe to say that while some activities were not
carried out, the project succeeded overall. Some features and planned activities had to be
dropped. The uncertainty of the type of work that had to be done led to planning more
than could be executed.

6.2 Limitations

The persistence and tracking databased have to be in SQL Server. This is a requirement
when using the out-of-the-box solution provided by the Windows Workflow Foundation.

The current solution only runs in localhost and was developed as a prof of concept.

6.3 Future Work

Regarding the continuation of this project, there were identified some features and activi-
ties that would benefit the application.

Despite designed and and extensively studied, the Workflow Builder module was not
implemented, because it was not a high priority feature and the time available was already
short. This would be the most interesting feature to implement because it ads an atractive
feature that can make the product sell in the health market. This would also allow the
implementation that is closest to the ideal architecture that was presented in section 2.6.

There were also another workflows that could have been developed (such as the Inpa-
tient workflows) but for the same reason that was mentioned above it was not considered
a priority, thus not being implemented. This can be accomplished with relative easy by
creating workflows activities that are necessary and link them to create the necessary
workflows and developed the correspondent user interfaces.

The user interface could be changed from WPF to Silverlight by making the necessary
adoptions to the communications broker. This would allow the program to be easily

69

Conclusions and Future Work

deployed in the necessary environment and improve the compatibility to other operating
systems. This would solve the problem mentioned above by making the program available
to run in a distributed environment.

70

References

[1] Ken Schwaber. Agile project management with Scrum. Microsoft Press, illustrated
edition, 2004.

[2] Linda Rising and Norman S. Janoff. The Scrum Software Development Process for
Small Teams. IEEE SOFTWARE, July/August 2000.

[3] Jochen Krebs Ahmad Shuja. RUP Reference and Certification Guide. IBM Press,
2007.

[4] California HealthCare Foundation. California clinical data project: Set-
ting standards. Available in http://www.chcf.org/documents/
CCDPProjectOverview.pdf, November 2004.

[5] Health Level Seven. http://www.hl7.org/. Online; accessed June 1, 2008.

[6] Richard Mercille Hervé Verdel Michel Cotten Antoine Geissbühler
Stéphane Spahni, Christian Lovis. Implementing a new ADT based on the
HL7 version 3 RIM. International Journal of Medical Informatics, (76):190–194,
2007.

[7] Health Level Seven, Inc. HL7 Messaging Standard Version 2.5.1, 2007.

[8] Matthew MacDonald. Pro Silverlight 2 in C# 2008. Apress, 2008.

[9] Microsoft. Welcome to the Silverlight 3 Beta. http://silverlight.net/
getstarted/silverlight3/default.aspx. Online; accessed June 5, 2008.

[10] Adobe. Adobe flash cs4. http://www.adobe.com/products/flash/. On-
line; accessed June 5, 2008.

[11] Adobe. Adobe flex. http://www.adobe.com/products/flex/. Online; ac-
cessed June 5, 2008.

[12] Microsoft. Windows presentation foundation. http://msdn.microsoft.com/
en-us/library/ms754130.aspx. Online; accessed June 5, 2008.

[13] Chris Bowen Steve Resnick, Richard Crane. Essential Windows Communication
Foundation (WCF): For .NET Framework 3.5. Addison-Wesley, February 2008.

[14] Bruce Bukovics. Windows Workflow in .NET 3.5. Apress, illustrated edition, 2008.

71

http://www.chcf.org/documents/CCDPProjectOverview.pdf
http://www.chcf.org/documents/CCDPProjectOverview.pdf
http://www.hl7.org/
http://silverlight.net/getstarted/silverlight3/default.aspx
http://silverlight.net/getstarted/silverlight3/default.aspx
http://www.adobe.com/products/flash/
http://www.adobe.com/products/flex/
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx

REFERENCES

[15] Matt Winkler. Introducing the pageflow sample. http:
//blogs.msdn.com/mwinkle/archive/2007/06/07/
introducing-the-pageflow-sample.aspx, June 2007. Online; accessed
June 5, 2008.

[16] René Spronk. HL7 ADT Messages. Technical report, Ringholm GmbH, 08 2008.

[17] Integrating the Healthcare Enterprise. IHE IT Infrastructure (ITI), 5 edition, Decem-
ber 2008.

[18] ACSS. Serviços de Manutenção Correctiva e Evolutiva das Aplicações da ACSS,
2009.

[19] S.A. ALERT Life Sciences Computing. Alert saúde na internet. http://portal.
alert-online.com/, 2009. Online; accessed June 5, 2008.

[20] Rainer Anzböck and Schahram Dustdar. Lecture Notes in Computer Science, chapter
Modeling Medical E-services, pages 49–65. Springer Berlin / Heidelberg, June
2004.

[21] Ian Sommerville. Software engineering. Pearson Education, 8 edition, 2007.

[22] ISO. Language code list. http://www.loc.gov/standards/iso639-2/
php/code_list.php. Online; accessed June 5, 2008.

[23] Pedro Tiago Magalhães Gomes. Master patient index. Master’s thesis, Faculdade de
Ciências da Universidade do Porto, 2009.

[24] Nuno Miguel Pereira da Silva. Master files management. Master’s thesis, Faculdade
de Ciências da Universidade do Porto, 2009.

72

http://blogs.msdn.com/mwinkle/archive/2007/06/07/introducing-the-pageflow-sample.aspx
http://blogs.msdn.com/mwinkle/archive/2007/06/07/introducing-the-pageflow-sample.aspx
http://blogs.msdn.com/mwinkle/archive/2007/06/07/introducing-the-pageflow-sample.aspx
http://portal.alert-online.com/
http://portal.alert-online.com/
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.loc.gov/standards/iso639-2/php/code_list.php

Appendix A

IHE Patient Encounter Management:
Options of Triggers

Here is going to be presented the Subset of triggers and respective funcionalities that have
been approved by IHE. All the subsets include the explanation and the description of
the messages sent trough the HL7 International Health Standard, some include practical
examples.

A.1 Basic Subset of Trigger Events

These are the basic subset of transaction of events and related massages. Our system
is a Patient Encounter Supplier and Patient Encounter Consumer and in its most basic
configuration has to support these 7 triggers and event messages.

A.1.1 A01 – Admit inpatient

The A01 trigger event is used only for Admitted patients only. These patients have to be
assigned a bed to be admitted. It begins the patients stay in the healthcare facility. This
information is entered in the primary Patient Administration System, and it is broadcasted
to the nursing units and ancillary systems. For example and A01 can be used to notify the
pharmacy that the patients has been admitted and may be legitimately prescribed drugs,
it can be also sent to finance so that the billing period can begin, and it can be also sent
to all the interested facilities that may be affected by the admit of a new person (dietary
system, laboratory, pathology, radiology, etc).

The message sent is of the type ADTˆA01ˆADT A01 and responded with ACKˆA01ˆACK.

A.1.2 A04 – Register outpatient

An A04 event trigger signals that the patient has arrived or checked in as a one-time, or
recurring outpatient, and is not assigned to a bed. The most common use of the A04 is at
the beginning of visit to the emergency room.

The message sent is of the type ADTˆA04ˆADT A01 and responded with ACKˆA04ˆACK.

73

IHE Patient Encounter Management: Options of Triggers

A.1.3 A11 – Cancel Admit inpatient/Register outpatient

For admitted patients, the event A11 is sent when the A01 is canceled. That can be for two
reasons, the admit was erroneous or because of a decision to not admit the patient after
all. For non-admitted patients the event A11 is sent when the A04 (register a outpatient)
event is canceled, either because it was erroneous or because of a decision to not check
the patient for the visit after all.

The message sent is of the type ADTˆA11ˆADT A09 and responded with ACKˆA11ˆACK

A.1.4 A03 – Discharge patient/End visit

An A03 event trigger signals the end of the patient’s visit to the healthcare facility. The
patient’s status has changed to discharged and the discharge date has been recorded. This
event can be sent to notify all the systems that were advised of the A01 event such as
the pharmacy, the nursing system, the finance system, etc. All these systems need the
information so that they’re sub-systems can handle the necessary changes now that the
patient is no longer in the healthcare facility. This can also be used for non admitted
patients to signal the end of a visit for a one-time or recurring outpatient who is not
assigned to a bed. It can also be used to signal the end of a visit to the Emergency Room.
If the patient’s dies this event has to have the PID-29 (Patient Death Date and Time) and
PID-30 (Patients Death Indicator) filled in.

The message sent is of the type ADTˆA03ˆADT A03 and responded with ACKˆA03ˆACK.

A.1.5 A13 – Cancel Discharge patient/End visit

The A13 event trigger is sent when an A03 event is canceled, either because of erroneous
entry of the A03 event or because of a decision not to discharge or end visit the patient
after all. The field PV1-3 (Assigned patient location) should reflect the location of the
patient after the cancellation has been processed. It can be different from the patient’s
location prior to erroneous discharge.

The message sent is of the type ADTˆA13ˆADT A01 and responded with ACKˆA13ˆACK.

A.1.6 A08 – Update patient information

The A08 event trigger is sent when any patient information has changed but when no
other trigger event has occurred.

The message sent if of the type ADTˆA08ˆADT A01 and responded with ACKˆA08ˆACK.

A.1.7 A40 – Merge patient identifier list

A merge has been done at the patient identifier list level. That is, two PID-3 (Patient
identifier list) identifiers have been merged into one. The A40 event is used to signal a
merge of records for a patient that was incorrectly filed under two different identifiers.

The message sent if of the type ADTˆA40ˆADT A39 and responded with ACKˆA40ˆACK.

74

IHE Patient Encounter Management: Options of Triggers

A.2 Inpatient/Outpatient Encounter Management Option of Trigger
Events

This option adds support for management for management of patient class and patient
location. The following trigger events plus the basic subset of chapter A.1 are required to
support the ”Inpatient/Outpatient Encounter Management”.

A.2.1 A05 – Pre-admit patient

An A05 Event is sent when the patient undergoes the pre-admission process. During this
process, episode-related data is collected in preparation for a patient’s visit or stay in a
healthcare facility.

This message is sent is of the type ADTˆA05ˆADT A05 and responded with ACKˆA05ˆACK.

A.2.2 A38 – Cancel Pre-admit patient

The A38 event is sent when the pre-admit patient is cancelled, either because of erroneous
entry of the A05 event or because of a decision not to pre-admit the patient after all.

This message is sent is of the type ADTˆA38ˆADT A38 and responded with ACKˆA38ˆACK.

A.2.3 A06 – Change patient class to inpatient

An A06 event trigger is sent when a patient who was present for a non-admitted visit
is being admitted after an evaluation of the seriousness of the patient’s condition. The
status is change from non-admitted to admitted. The new patient location should appear
in PV1-3 (Assigned patient location).

This message is sent is of the type ADTˆA06ˆADT A06 and responded with ACKˆA06ˆACK.

A.2.4 A07 – Change patient class to outpatient

An A07 event trigger is sent when a patient who was admitted changes the status to “no
longer admitted” but it is still being seen for this episode of care. This event changes a
patient from an “admitted” to a “non-admitted”

This message is sent is of the type ADTˆA07ˆADT A06 and responded with ACKˆA07ˆACK.

A.2.5 A02 – Transfer patient

An A02 event is issued as a result of the patient changing his or her assigned physical
location. The A02 event can be used with admitted and non-admitted patients. If the
patient is going to a temporary location (such as O/R, X-RAY, etc.) it is recommended
that the A09 (Patient departing – tracking) and A10 (Patient arriving – tracking) events be
used instead of A02.

This message is sent is of the type ADTˆA02ˆADT A02 and responded with ACKˆA02ˆACK.

A.2.6 A12 – Cancel transfer patient

The A12 event is sent when the transfer patient is cancelled, either because of erroneous
entry of the A02 event or because of a decision not to transfer the patient after all.

75

IHE Patient Encounter Management: Options of Triggers

This message is sent is of the type ADTˆA12ˆADT A12 and responded with ACKˆA12ˆACK.

A.3 Pending Event Management Option of Trigger Events

This option adds support for management of pending events. The following trigger events
plus the basic subset of chapter A.1 and the Inpatient/Outpatient Encounter Management
of chapter A.2 are required to support the ”Pending Event Management”.

A.3.1 A14 – Pending admit

An A14 Event trigger notifies the other systems of a planned admission. This happens
when there is a reservation or when a patient admission is to occur imminently. It is
similar to the pre-admit but without the implication that an account should be opened for
the purposes of tests prior to admission.

This message is sent is of the type ADTˆA14ˆADT A05 and responded with ACKˆA14ˆACK.

A.3.2 A27 – Cancel pending admit

The A27 Event trigger is sent when an A14 event is canceled, either because of erroneous
entry of the A14 event or because of a decision not to admit the patient after all.

This message is sent is of the type ADTˆA27ˆADT A21 and responded with ACKˆA27ˆACK.

A.3.3 A15 – Pending transfer

An A15 Event trigger notifies other systems of a planned transfer of a patient to a new
location when the patient not yet left the old location. It can be used to warn services that
the patient will move to the new location and their services should be redirect to the new
location (sucks as meal preparation).

This message is sent is of the type ADTˆA15ˆADT A15 and responded with ACKˆA15ˆACK.

A.3.4 A26 – Cancel pending transfer

The A26 Event trigger is sent when an A15 event is canceled, either because of erroneous
entry of the A15 event or because of a decision not to transfer the patient after all.

This message is sent is of the type ADTˆA26ˆADT A21 and responded with ACKˆA26ˆACK

A.3.5 A16 – Pending discharge

An A16 Event trigger notifies other systems of a plan to discharge a patient when a patient
has not yet left the healthcare facility. It is used for advanced notification of a discharge
in order to prepare for the patient’s change in location. For example the pharmacy for
the need to prescribe the discharge drugs, or the psychotherapy of the possible need for
post-discharge appointments or other services.

This message is sent is of the type ADTˆA16ˆADT A16 and responded with ACKˆA16ˆACK.

76

IHE Patient Encounter Management: Options of Triggers

A.3.6 A25 – Cancel pending discharge

The A25 Event trigger is sent when an A16 event is canceled, either because of erroneous
entry of the A16 event or because of a decision not to discharge the patient after all.

This message is sent is of the type ADTˆA25ˆADT A21 and responded with ACKˆA25ˆACK.

A.4 Advanced Encounter Management Option of Trigger Events

This option provides support to manage changes of attending doctor, leaves of absence,
and accounts. The following trigger events plus the basic subset of chapter A.1 are re-
quired to support the ”Advanced Encounter Management Option”.

A.4.1 A54 – Change attending doctor

An A54 Event trigger is issued as a result of change in the attending doctor responsible for
treatment of a patient. The new attending doctor should appear in the PV1 – 7 – Attending
Doctor. This could be used to notify the billing system that doctor’s fees should be billed
to the new doctor starting from the timestamp in the message.

This message is sent is of the type ADTˆA54ˆADT A54 and responded with ACKˆA54ˆACK.

A.4.2 A55 – Cancel change attending doctor

The A55 event is sent when an A54 event is canceled, either because of a decision not to
change the attending doctor after all.

This message is sent is of the type ADTˆA55ˆADT A52 and responded with ACKˆA55ˆACK.

A.4.3 A21 – Leave of absence

An A21 Event trigger is sent to notify systems that an admitted patient has left the health-
care facility temporarily. It is used for systems in with a bed is assigned to the patient, and
it puts the current admitted patient activities on hold. For example the dietary services are
informed that the patient is going home for the weekend.

This message is sent is of the type ADTˆA21ˆADT A21 and responded with ACKˆA21ˆACK.

A.4.4 A52 – Cancel leave of absence

The A52 Event trigger is sent when an A21 event is cancelled, either because of erroneous
entry of the A22 event or because of a decision not to put the patient on ”leave of absence”
after all.

This message is sent is of the type ADTˆA52ˆADT A52 and responded with ACKˆA52ˆACK.

A.4.5 A22 – Return from leave of absence

An A22 Event trigger is sent to notify systems that an admitted patient has returned to the
healthcare facility after a temporary ”leave of absence” turning off all the ”hold” status in
the various support services.

This message is sent is of the type ADTˆA22ˆADT A21 and responded with ACKˆA22ˆACK.

77

IHE Patient Encounter Management: Options of Triggers

A.4.6 3.1.4.6 A53 – Cancel return from leave of absence

The A53 Event trigger is sent when an A22 event is cancelled, either because of erroneous
entry of the A22 event or because of a decision not to return the patient from de ”leave of
absence” after all.

This message is sent is of the type ADTˆA53ˆADT A52 and responded with ACKˆA53ˆACK.

A.4.7 A44 – Move account information

A move has been done at the account identifier level. That is, a PID – 18 – Patient account
number associated with one PID – 3 – Patient Identifier list has been moved to another
patient identifier list. An A44 Event trigger is used to signal a move of records.

This message is sent is of the type ADTˆA44ˆADT A43 and responded with ACKˆA44ˆACK.

A.5 Temporary Patient Transfers Tracking Option of Trigger Events

This option tracks patient moves to and from temporary locations such as radiotherapy,
scanner, EKG, and dialysis. The following trigger events plus the basic subset of chapter
A.1 are required to support the ”Temporary Patient Transfers Tracking”.

A.5.1 A09 – Patient departing – Tracking

The A09 Event trigger is used when there is a change in a patient’s physical location (in-
patient or outpatient) and when this is not a change in the official census bed location, as
in the case of an outpatient setting. There are three situations that qualify as a non-census
location changes: Patient Tracking (this could be used when the nursing application sends
a transfer before the Patient Administration system issues an A02 Event trigger), the pa-
tient is in transit between locations from some time (the patients location between A09
and A10 if defined as in transit, similar to an A02 but with an interval in the middle) or
a notification of a temporary location change (The patient is sent to a temporary location
such as O/R, X-RAY, LIMBO, or HALLWAY. The patient may or may not return to the
same assigned location after occupying the temporary location).

This message is sent is of the type ADTˆA09ˆADT A09 and responded with ACKˆA09ˆACK.

A.5.2 A33 – Cancel patient departing – Tracking

The A33 Event trigger is sent when an A09 event is cancelled, either because of erroneous
entry of the A09 event or because of a decision not to send the patient after all.

This message is sent is of the type ADTˆA32ˆADT A21 and responded with ACKˆA32ˆACK.

A.5.3 A10 – Patient arriving – Tracking

The A10 Event trigger is used after the A09 event trigger, when the patient returns to the
assigned bed.

This message is sent is of the type ADTˆA10ˆADT A09 and responded with ACKˆA10ˆACK.

78

IHE Patient Encounter Management: Options of Triggers

A.5.4 A32 – Cancel patient arriving – Tracking

The A32 Event trigger is sent when an A10 event is canceled, either because of erroneous
entry of the A10 event or because of a decision not to receive the patient after all.

This message is sent is of the type ADTˆA32ˆADT A21 and responded with ACKˆA32ˆACK.

A.6 Historic Movement Management of Trigger Events

This option adds capability to cancel or update safely any Movement. The movements
update can be in the present, future or past. The movements cancel can only be present
or future movements. These movements represent every transfer inside the hospital, tem-
porary movements to temporary locations (such as mentioned in chapter A.5). To support
this capability it is necessary to add the segment ZBE bellow PV1/PV2. This segment is
used in the following trigger events: A01, A02, A03, A04, A05, A06, A07, A11, A12,
A13, A14, A15, A16, A21, A22, A25, A26, A27, A38, A52, A53, A54, A55 and Z99.

79

