
FACULDADE DE

Content Diffusion

Master in

Responsible fo

ACULDADE DE ENGENHARIA DA UNIVERSIDADE DO

Diffusion in ALERT® Clinical

Applications

Igor José Martins Amado

PROVISIONAL VERSION

Report of Project/Dissertation

Master in Informatics and Computing Engineering

Supervisor: Gabriel David

Responsible for Monitoring: Tiago Silva

July 2009

NIVERSIDADE DO PORTO

Clinical

Content Diffusion in ALERT® Clinical

Applications

Igor Amado

Report of Project/Dissertation

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Nome do presidente do júri (Title)

__

External Examiner: Nome do arguente do júri (Title)

Internal Examiner: Gabriel David

29th July 2009

Confidential

In accordance with the terms of the internship protocol and the confidentiality agreement ex-

ecuted with ALERT Life Sciences Computing, S.A. (“ALERT”), this report is confidential and

may contain references to inventions, know-how, drawings, computer software, trade secrets,

products, formulas, methods, plans, specifications, projects, data or works protected by

ALERT’s industrial and/or intellectual property rights. This report may be used solely for re-

search and educational purposes. Any other kind of use requires prior written consent from

ALERT.

i

Abstract

The product ALERT® is a suite of software applications that is filled with various types of Con-

tents such as types of analysis, diagnoses, exams, procedures.

 In the past, these Contents were managed through Excel files and different databases,

distributed by various sources, and then loaded into the ALERT® applications using manual

processes. This form of maintenance and processing of information was not automated and does

not centralize the universe of Contents of ALERT®. To solve this and other problems, it was

created the content repository, which centralizes all the Content information of ALERT®.

 As key objective for this project, ALERT wants a mechanism for content diffusion be-

tween that Content Repository and the various ALERT® clinical applications.

 The model of the repository is based on the common clinical data set approach, concep-

tual network, which has a design generic enough to be able to represent anything that is neces-

sary. By examining how the industry supports these processes of diffusion, we found that differ-

ent technological decisions lead to different forms of implementation. Particularly with regard

to diffusion, we conclude that the definition of a process, appropriate tools and technologies are

essential to its effectiveness.

 In this sense a technical analysis was done in detail, focusing on the content repository,

and the suite of products ALERT®, as regards the representation of content. The results of this

analysis identified that the flexibility allowed by the repository's model, means certain mappings

and transformations in the content diffusion process, as models of data are quite different.

 A solution was presented as a web application that has an underlying Configurations

module, with log and history, responsible for the management of metadata, mappings and trans-

formations, necessary for allowing interoperability between Content Repository and other data-

bases or documents metadata. To implement the proposed solution, a fully functional prototype

was developed for serving as a proof of concept.

 After implementation of the solution it was concluded that Content Diffusion is viable

and credible between the Content Repository and ALERT® clinical applications, through a

process of import and extraction with pre-defined rules.

ii

iii

iv

Acknowledgements

 I want to thank everyone that in some way helped me and supported me through the

realization of this work. ALERT: for making available all resources necessary to this project’s

development; Professor Gabriel David for his guidance; Tiago Silva, António Pinto and Carlos

Silva for the support and guidance inside the company; my Parents and Sister for the patience,

love and support during all this process.

Igor Amado

v

Table of Contents

1 Introduction .. 1

1.1 Context ... 1

1.2 Institution.. 2

1.3 Project ... 4

1.3.1 Motivation ... 4

1.3.2 Objectives .. 5

1.4 Report Overview .. 6

2 Repositories and Data Diffusion .. 7

2.1 State of Art ... 7

2.1.1 Repository .. 7

2.1.1.1 Problems caused by data dispersion ... 8

2.1.1.2 Clinical Datasets Approach – Conceptual Network 9

2.1.1.2.1 UMLS .. 10

2.1.1.2.2 SNOMED-CT.. 11

2.1.2 Data mapping and transformation ... 12

2.1.3 Code Generation for Content diffusion ... 14

2.2 Technological Review .. 16

2.2.1 Mapping and transformations based Tools .. 16

2.2.1.1 Object Relational Mapping .. 16

2.2.1.2 Data Warehousing ETL Mapping and Transformations 17

2.2.1.3 XML and XSLT ... 19

2.2.2 Development Tools .. 20

2.2.2.1 PL/SQL Developer ... 20

2.2.2.2 Eclipse .. 21

2.2.2.3 SVN .. 21

2.2.3 ALERT ® Technologies .. 22

2.2.3.1 Database – Oracle... 22

2.2.3.2 Middleware – JAVA .. 22

2.2.3.3 Presentation – Adobe Flash .. 23

vi

2.2.3.4 Adobe Flex ... 24

3 Problem Description ... 26

3.1 Past Situation .. 27

3.1.1 Past Content Workflow.. 28

3.1.2 Identified Problems .. 29

3.2 Content Repository ... 29

3.2.1 General Process ... 30

3.2.2 Content Repository Workflow ... 31

3.2.3 Basic Structure ... 31

3.2.4 Content Core .. 32

3.2.5 Content Filtering .. 34

3.3 Content Diffusion ... 36

3.3.1 Identified Implications ... 36

4 Proposed Solution ... 39

4.1 Requirements Analysis ... 39

4.1.1 General Features .. 39

4.1.2 Users Characteristics ... 40

4.1.3 Actors ... 41

4.1.4 Non-Functional Requirements ... 41

4.1.4.1 Reliability ... 42

4.1.4.2 Efficiency ... 42

4.1.5 Functional Requirements ... 42

4.1.5.1 Packages Overview .. 42

4.1.5.2 Use Cases ... 43

4.1.5.2.1 Package 1 - Database Access and Document Configuration 43

4.1.5.2.2 Package 2 - Metadata Extraction ... 46

4.1.5.2.3 Package 3 - Mappings Configuration .. 49

4.1.5.2.4 Package 4 – Query Generation and Content Import 52

4.1.5.2.5 Package 5 – Generation and Content Extraction 55

4.1.5.2.6 Package 6 – Administration .. 58

4.2 CIXE Architecture Overview ... 59

4.2.1 Front Office – User Interface ... 60

4.2.2 CIXE Data Model .. 60

4.2.3 Content Processor .. 60

4.2.3.1 Format Converter ... 60

4.2.3.2 Transformations ... 60

4.2.3.3 SQL Generator and Document Handler ... 61

4.2.3.3.1 During Import .. 61

4.2.3.3.2 During Extraction .. 61

4.2.4 Import and Extraction Requests Processing Layer .. 61

4.2.4.1 Object Connector.. 61

4.2.4.2 Import and Extraction Process ... 62

4.3 System Modelling ... 63

vii

4.3.1 Database and Document Metadata Repository .. 64

4.3.2 Mappings Configuration Repository ... 65

4.3.2.1 Custom Mapping Types Support .. 66

4.3.3 Mappings Configuration History ... 67

4.3.4 Import and Extraction process Log .. 68

4.3.5 Role Management .. 69

4.4 Summary .. 69

5 CIXE - Prototype Development .. 70

5.1 Implementation Decisions .. 70

5.1.1 XML as Generic format during Import and Extraction process 70

5.1.2 XSLT for Mapping and transformations ... 70

5.1.3 Adobe FLEX Framework for interface .. 71

5.1.4 Java as business logic and middleware .. 71

5.1.5 Hibernate for ORM and XRM ... 71

5.1.6 Oracle as database.. 72

5.2 Implemented Architecture .. 72

5.2.1 Logical Architecture and integration with Content Repository 72

5.2.2 Physical Architecture ... 73

5.3 User Interface Layer ... 74

5.3.1 Import .. 74

5.3.2 Extraction ... 75

5.3.3 Access Configurations ... 75

5.3.4 Mappings Configurations .. 75

5.3.5 Role Management .. 76

5.3.6 Value Objects .. 77

5.4 Business Logic Layer ... 77

5.4.1 Business Logic Communication .. 78

5.4.2 Application Utilities Components ... 79

5.4.2.1 Connection ... 79

5.4.2.2 Metadata Extraction ... 79

5.4.2.3 Content Extraction.. 80

5.4.2.4 XML Conversion.. 81

5.4.2.5 Mappings XSLT Transformations.. 81

5.4.2.5.1 Generating Transformations from templates ... 82

5.4.2.5.2 Applying Transformations .. 83

5.4.2.6 Document Generation .. 83

5.4.2.7 XSLT SQL Generation ... 83

5.4.3 Engine .. 84

5.4.3.1 Import ... 85

5.4.3.2 Extraction ... 86

5.5 Database Layer ... 86

5.6 CIXE prototype Test Case .. 87

5.6.1 Purpose .. 87

5.6.2 Database Access and Document Type Configuration 88

viii

5.6.3 Mapping Configurations .. 89

5.6.3.1 Mapping Types ... 90

5.6.3.2 Mapping ... 90

5.6.4 Performance Test Results .. 91

5.6.4.1 Import ... 91

5.6.4.2 Extraction ... 92

5.7 Summary .. 92

6 Conclusions ... 94

6.1 Objectives’ Satisfaction .. 94

6.2 Future Work ... 95

7 CIXE UML Model .. 98

8 CIXE Relational Model .. 100

9 Sample Excel Document ... 102

ix

List of Figures

Figure 1: ALERT’s Company Logo ... 3
Figure 2: ALERT® software in use at a healthcare unit ... 3
Figure 3: ALERT® Products .. 4
Figure 4: Conceptual Network Model [SCTM08] .. 9
Figure 5: Mappings example between Exams representations ... 13
Figure 6: Generic Code Generation process [XSLCG05] ... 15
Figure 7: ALERT ® Main Technologies .. 22
Figure 8: Overview of ALERT® Product Architecture .. 26
Figure 9: Overview of ALERT® Data components ... 27
Figure 10: Overview of Past Situation for ALERT® product’s Content dispersion 28
Figure 11: Past Workflow for Contents .. 28
Figure 12: General Content Repository Process ... 30
Figure 13: Content Repository Workflow for Contents .. 31
Figure 14: Basic Content Repository Structure... 32
Figure 15: Content Core Representation ... 33
Figure 16: Overview of the filtering process .. 34
Figure 17: Filtered Content example ... 35
Figure 18: Overview of the importation process ... 36
Figure 19: Overview of the extraction process ... 37
Figure 20: System Actor’s inheritance representation .. 41
Figure 21: Overview of System’s Packages .. 43
Figure 22: Package 1 Use Case Diagram – Database Access or Document Configuration 44
Figure 23: Package 1 – Listing and editing Configurations for database access and document
types Activity Diagram ... 45
Figure 24: Package 1 – General Activity Diagram of Configurations editing for database access
and document types ... 46
Figure 25: Package 2 Use Case Diagram – Metadata Extraction.. 47
Figure 26: Package 2 – Metadata Extraction Activity Diagram ... 48
Figure 27: Package 3 Use Case Diagram – Mappings Configuration ... 49
Figure 28: Package 3 – Create Mapping Type Activity Diagram ... 50
Figure 29: Package 3 – Create Mapping Activity Diagram .. 52
Figure 30: Package 4 Use Case Diagram – Query Generation and Content Import 53
Figure 31: Package 4 – Content Import Activity Diagram ... 54
Figure 32: Package 5 Use Case Diagram – Query Generation and Content Extraction 55
Figure 33: Package 5 – Content Extraction Activity Diagram .. 57
Figure 34: Package 6 Use Case Diagram – Administration .. 58
Figure 35: CIXE Client – Server Architecture .. 59
Figure 36: CIXE Architecture Overview .. 59
Figure 37: CIXE Import Process Overview .. 62
Figure 38: CIXE Extraction Process Overview .. 62
Figure 39: Database and Document Metadata Repository UML Model..................................... 64

x

Figure 40: Mappings Configuration Repository UML Model .. 65
Figure 41: Mapping Types TypeSquare Diagram ... 66
Figure 42: Mappings Configuration History UML Model .. 67
Figure 43: Import and Extraction process Log.. 68
Figure 44: Role Management UML Model .. 69
Figure 45: Content Information Representation Overview ... 71
Figure 46: Logical Architecture Diagram ... 72
Figure 47: Physical Architecture Diagram .. 73
Figure 48: Overview implemented Interface .. 74
Figure 49: Overview of implemented Business logic ... 77
Figure 50: Overview of Business logic communication ... 78
Figure 51: Import process workflow ... 85
Figure 52: Extraction process workflow ... 86
Figure 53: Login screen of the application ... 87
Figure 54: Different Structures ... 88
Figure 55: Database Access Configuration Screen ... 89
Figure 56: Mapping Configurations Screen .. 89
Figure 57: New Mapping Types Screen .. 90
Figure 58: Mapping Screen ... 91

xi

List of Tables

Table 1: Possible Combinations for Tags ... 35
Table 2: Example of Tag Values for a Content ... 35
Table 3: Retrieving Oracle Metadata .. 80
Table 4: Retrieving MySQL Metadata .. 80
Table 5: Content Information XML representation example .. 81
Table 6: Transformation Template example ... 82
Table 7: Transformation example ... 82
Table 8: Transformed XML .. 83
Table 9: Example of Parameter XML for SQL Generator .. 83
Table 10: SQL Generator Example Result .. 84
Table 11: Import process – Results ... 91
Table 12: Extraction process – Results ... 92

xii

Abbreviations

ALERT ALERT Life Sciences Computing, S.A. (the company)

ALERT® ALERT’s Products

AOM Adaptive Objective Modelling

API Application Programming Interface

Ch. Chapter

CIXE Content Import and Extraction Engine

CSV Comma Separated Values

DAO Data Access Object

DBA Database Administrator

DDL Data Definition Language

DML Data Manipulation Language

DTD Document Type Definition

ETL Extract, Transform and Load

IDE Integrated Development Environment

Java SE Java Platform Standard Edition

JDBC Java Database Connector

ORM Object Relational Mapping

PL/SQL Procedural Language/Structured Information Standards

Sec. Section

SQL Structured Query Language

SVN Subversion

UML Unified Modelling Language

XML Extensible Markup Language

XRM XML Relational Mapping

XSD Extensible Schema Definition

XSL Extensible Stylesheet Language

 1

Chapter 1

Introduction

1.1 Context

This report documents the Master in Informatics and Computing Engineering project called

“Content Diffusion in ALERT’s Clinical Applications” held in the 2nd half of school year

2008/09, from February to July, over a period of 20 weeks.

 The project was conducted in the company ALERT Life Sciences Computing SA, lead-

er in Portuguese market in the segment of the clinical software.

The ALERT® is a suite of software applications that is filled with various types of

Contents such as types of analysis, diagnoses, exams, procedures.

In the past, this Content was managed through Excel files and different databases,

distributed by various sources, and then loaded into the ALERT® applications using manual

processes. This form of maintenance and processing of information was not automated and does

not centralized the universe of Contents of ALERT®.

On the client, each of the Contents does not have a unique identifier that relates in a

standardized way, so it is virtually impossible to determine relationships between Contents or

make data analysis. Similarly, the Contents in the Client are not assigned with standard codes,

which would identify them in International Medical Standards.

To solve these problems, it was decided to create the Content Repository, which

centralizes all the Content information of ALERT®, assigns unique identifiers and classifies

each one of them with important parameters, such as Market, Version, Product, Author and

Creation Date. The flexibility of the Content Repository, however, allows as many

 2

classifications as are deemed necessary.

The aim of this project named Standardization is to standardize the identifiers of

ALERT’s Contents by creating and using an unique identifier for each of the objects associated

with Content that exist in ALERT® clinical software.

The Contents of the ALERT® universe will be coded, classified and recorded in a cen-

tral repository of Content and associated with the international standard in use in the ALERT®

application. This will allow relating in a direct and quick way Content from this Content Repo-

sitory and the ones from different customers, even if a particular Content may have different

identifiers in different installations. This kind of unique identifiers creation needs to be struc-

tured in a flexible way. For that, a conceptual network was used following by the example of the

model implemented on numerous coding systems like SNOMED-CT[SMCT09], currently

maintained and distributed by International Health Terminology Standards Development Organ-

ization, and Unified Medical Language System from National Library of Medicine.

Because the model implemented on the coding system SNOMED-CT is very flexible

and generic it is necessary to implement efficient mechanisms to import Content information

from where they are currently stored, such as other ALERT Databases and data files (Excel and

Flat files) that have their own metadata, to this generic model that will be the basis of the Con-

tent Repository Model. At the same time it will be inevitable the need of extraction of Contents

from this Content Repository to ALERT® clinical products and to documents as listings.

This report will focus on the implementation of efficient mechanisms for Content diffu-

sion – Import and Extraction – in ALERT’s Clinical Products and will be developed as a mod-

ule of this Content Repository.

1.2 Institution

ALERT, based in Vila Nova de Gaia, Portugal, is the parent company of a group of companies

called the ALERT Group of Companies. This group is distributed to other parts of the world,

including USA, Spain, Netherlands, Singapore, Brazil and the United Kingdom. Its mission:

"Improving health and prolong life, achieve profitability for the benefit of society

and inspire others to excellence, by our example."

 3

Figure 1: ALERT’s Company Logo

ALERT Group of Companies is dedicated to the development, distribution and imple-

mentation of software for health ALERT®, designed to create paperless medical environments

[ALE09a].

All development is done in Portugal, with subsidiaries responsible for distribution, marketing

and installation of products in their markets.

The ALERT® is currently distributed in 31 countries and is implemented in over 600

hospitals and nearly 8,000 health centers. It is available in 6 languages - English, Spanish, Ital-

ian, Dutch, European and Brazilian Portuguese and French. It is planned to release the

ALERT® in German, Slovak, Croatian, Chinese, Russian, Japanese and Arabic in the short

term.

As some distinctive features, the ALERT® presents a touch screen interface type, use of

different profiles for different health professionals, establishment of work flows between them

and biometric identification.

Figure 2: ALERT® software in use at a healthcare unit

 4

ALERT® RHIO defines the complete solution when it comes to healthcare for a coun-

try or region which, by its turn is subdivided into solutions for hospitals (ALERT® PAPER

FREE HOSPITAL), primary care (ALERT® PRIMARY CARE) and private clinics (ALERT®

PRIVATE PRACTICE).

When it comes to hospitals, in particular, there are specific products for each environ-

ment: triage (ALERT® TRIAGE), emergency service (ALERT® EDIS), external consult

(ALERT® OUTPATIENT), internment (ALERT® INPATIENT), and operating block

(ALERT® ORIS). There are also non-clinical solutions (ALERT® CRM e ERP) and for data

warehousing (ALERT® ADW).

Figure 3: ALERT® Products

1.3 Project

1.3.1 Motivation

The Content Repository to be implemented will host not only various types of clinical Content,

such as types of analysis, exams or diagnoses, and also non-clinical Content such as, for exam-

ple, pricing of procedures or diagnoses. After its completion, this system will centralize the

Contents of ALERT® clinical applications, allowing the extraction of Content for later importa-

tion into production environments.

This repository will allow creating a network of Contents, where each and every one of

them is represented as concepts, and relations between them.

ALERT is a company with global presence, whose products are in use and implemented

in more than 8,000 institutions throughout the world. Thus, the creation of this system, capable

 5

of providing, at any moment, Content to any installation of the suite of ALERT® products will

provide a clear added value in updating and maintaining Content in a list of customers increa-

singly wide.

Because of this kind of centralized Content Repository there comes a need for functio-

nalities to act on this Repository that make the Contents diffusion in ALERT® possible. These

functionalities include import Content to the Content Repository from file documents (excel and

flat files) or other databases, not necessarily with the same metadata as the Content Repository,

and the extraction of Contents for the ALERT® or for clients as listings, automatically. Essen-

tially it shows the need of mapping Content information between different data models, taking

into account their metadata information, in order to allow importing Contents to Content Repo-

sitory and extracting Contents from the Content Repository.

1.3.2 Objectives

This project will initially involve the creation of a Content Repository, where the creation and

updating of Content by multi-disciplinary teams, currently responsible for managing various

types of Content, will be performed.

Next, it will be established mechanisms for importing Contents from existing databases

and documents like excel files, and for extracting and packaging of Content associated with

clinical versions of ALERT® products or for creating documents with listing of Contents to

present to customers allowing them to choose what Contents do they need in their installation.

These packages will then be versioned, and tested in Data Quality Control environment for up-

dating the Content in production environments, with minimal human intervention.

Citing the official proposal [FEU09a], the developed software should primarily meet the

following requirements:

• The system should be able to export and package Content for all versions of

ALERT® clinical products, both for development and Data Quality Control envi-

ronments, and also for production environments. Therefore it will have to support

multiple types of data, by establishing procedures for extraction and processing of

Content from the Content Repository;

• The system needs to allow creating installation packages able to update the data-

bases of clinical ALERT® products, efficiently and optimized to reduce the impact

of updating systems in production;

• The system needs to allow creating total packages of Content, partial updates and

packages that support the upgrade of a certain type of Content, in response to re-

quest of clients in contact with the Support department.

 6

• The installation packages need also to allow the cleaning of outdated and unused

Contents and not used in the environments where they are executed;

• The system must keep a History and Log with all the information about the im-

port/extraction process that will allow identifying what is causing problems that

may occur during the process.

The role of this system is vital to the maintenance of updated Content in the ALERT®

clients, avoiding time consuming human intervention tasks subject to error, and decreasing the

time between the delivery of Contents by the responsible teams and the use of this Content in

production environments.

1.4 Report Overview

Besides the Introduction, where context, motivation and objectives of this project are presented,

sections for this report include in a second chapter State of Art for repositories and problems

that may advent of not implementing them where it should, leading to elevated data dispersion.

Also parts of this chapter are, State of art for data mapping and transformation, code generation

for content diffusion and technological review.

 Chapter three approaches subjects like problem description, past situation and the new

Content Repository approach that requires a module for content diffusion.

 Chapter 4 includes requirements analysis and proposed solution. Also in this chapter is

an overview of the proposed architecture and system modelling.

 In chapter 5 talks about is prototype development. This includes subjects like

implementation decisions, implemented architecture, user interface layer, business logic layer,

database layer and a test case for the prototype is made.

 Finally, chapter 6 is an overview of the conclusions for the project and future work.

 7

Chapter 2

Repositories and Data Diffusion

2.1 State of Art

In this chapter is described the State of Art of repositories and what can be used to implement a

model generic enough in order to allow it to represent anything that might need to be

represented in a repository.

For any repository there is a need to implement efficient mechanisms that will allow

diffusion of its information to other stakeholder elements. A mix between Data Mapping and

Code Generation, which is also covered in this section, can accomplish this.

2.1.1 Repository

An information repository is an easy way to deploy a secondary tier of data storage that can

comprise multiple, networked data storage technologies running on diverse operating systems,

where data that no longer needs to be in primary storage is protected, classified according to

captured metadata, processed, de-duplicated, and then purged, automatically, based on data

service level objectives and requirements. In information repositories, data storage resources are

virtualized as composite storage sets and operate as a federated environment.

There are different understandings and definitions of repositories of information or digi-

tal repositories. The question most relevant to this diversity is the variety of contexts, communi-

ties, goals and practices relating to the creation and operation of repositories. Systems world-

 8

wide, covering all subjects, allowing anyone to add or edit information, the institutional or sys-

tems for issues, only to authorized users, with the approval procedures and quality control.

Following the definition from “Digital Repositories JISC Briefing Paper” [DJP05] In-

formation Repository are where digital Content, resources, are stored and can be searched and

retrieved for later use. A repository supports mechanisms to import, export, identification, sto-

rage and retrieval of digital resources. However, even this definition is general and can be ap-

plied to different systems.

Information repositories were developed to mitigate problems arising from data disper-

sion and eliminate the need for separately deployed data storage solutions because of the con-

current deployment of diverse storage technologies running diverse operating systems. They

feature centralized management for all deployed data storage resources. They are self-contained,

support heterogeneous storage resources, support resource management to add, maintain, re-

cycle, and terminate media, track of off-line media, and operate autonomously.

Data dispersion refers to the unprecedented amount of data, structured and unstructured,

that business and government continue to generate at an unprecedented rate and the usability

problems that result from attempting to store and manage that data. While originally pertaining

to problems associated with paper documentation, data dispersion has become a major problem

in primary and secondary data storage on computers.

 2.1.1.1 Problems caused by data dispersion

The problem of data dispersion is affecting all areas of commerce as the result of the availability

of relatively inexpensive data storage devices. This has made it very easy to dump data into

secondary storage immediately after its window of usability has passed. This masks problems

that could gravely affect the profitability of businesses and the efficient functioning of health

services, police and security forces, local and national governments, and many other types of

organization. Data diffusion is problematic for several reasons:

• Difficulty when trying to find and retrieve information.

• Data loss and legal liability when data is disorganized, not properly replicated, or

cannot be found in a timely manner.

• Increased manpower requirements to manage increasingly chaotic data storage re-

sources.

• Slower networks and application performance due to excess traffic as users search

and search again for the material they need.

• High cost in terms of the energy resources required operating storage hardware.

 9

Because information repositories are intended to reduce IT staff workload, they are de-

signed to be easy to deploy and offer configuration flexibility, virtually limitless extensibility,

redundancy, and reliable failover.

 2.1.1.2 Clinical Datasets Approach – Conceptual Network

Clinicians and organizations use different clinical terms that mean the same thing. For example,

the terms heart attack, myocardial infarction, and MI may mean the same thing to a cardiologist,

but, to a computer, they are all different. There is a need to exchange clinical information con-

sistently between different health care providers, care settings, researchers and others (semantic

interoperability), and because medical information is recorded differently from place to place

(on paper or electronically), a comprehensive, unified medical terminology system is needed as

part of the information infrastructure.

Clinical Dataset often use conceptual networks as their inspiration for implementing

their data model. A conceptual network is a network that represents semantic relations between

the concepts. This is often used as a form of knowledge representation. Visually it could be

represented as a directed or undirected graph consisting of vertices, which represent concepts,

and edges. But in Figure 4 you can see a draft of how you could represent this conceptual net-

work as a data model.

Figure 4: Conceptual Network Model [SCTM08]

 10

• Concepts - The anchors for meaning

o Basic unit of meaning designated by a unique numeric code, unique name

(Fully Specified Name), and descriptions, including a preferred term and

one or more synonyms.

• Descriptions - Terms or names (synonyms) assigned to a concept

o Terms (strings of readable characters) used to express the meanings of the

concepts in human language

• Relationships - Link concepts either within a hierarchy or across hierarchies

o Concept-to-concept links used to express information in computer-

processable language

� First purpose: formal logical meanings

� Other purposes: tracking retired concepts, representing “facts” that

may vary, and supporting coding by suggesting valid qualifiers

• Subsets - Group of concepts, descriptions and/or relationships chosen to be relevant

for use in a given circumstance or scenario

 2.1.1.2.1 UMLS

Designed initially by Donald Lindberg, M.D., Director of the US National Library of Medicine

[NLM08] in 1986, the Unified Medical Language System [UMLS08] is a controlled compen-

dium of many vocabularies, which also provides a mapping structure between them. The pur-

pose of NLM's Unified Medical Language System is to facilitate the development of computer

systems that behave as if they "understand" the meaning of the language of biomedicine and

health. To that end, NLM produces and distributes the UMLS Knowledge Sources (databases)

and associated software tools (programs) for use by system developers in building or enhancing

electronic information systems that create, process, retrieve, integrate, and/or aggregate biomed-

ical and health data and information, as well as in informatics research. By design, the UMLS

Knowledge Sources are multi-purpose. They are not optimized for particular applications, but

can be applied in systems that perform a range of functions involving one or more types of in-

formation, e.g., patient records, scientific literature, guidelines, and public health data.

The UMLS is composed of three main knowledge components: Metathesaurus, Seman-

tic Network and SPECIALIST Lexicon.

The relationship between the various items below provides a logical understanding of

the structure and purpose of these three components:

• Metathesaurus, the core database of the UMLS, a collection of concepts and terms

from the various controlled vocabularies, and their relationships;

 11

• Semantic Network, a set of categories of relationships that are being used to classi-

fy and relate the entries in the Metathesaurus;

• SPECIALIST Lexicon, a database of lexicographic information for use in natural

language processing;

For the representation of a repository of information only the Metathesaurus component

would be of interest.

The Metathesaurus forms the base of the UMLS and it comprises over 1 million bio-

medical concepts and 5 million concept names, all of which are from over 100 controlled voca-

bularies and classification systems used in patient records, bibliographic, administrative health

data and full text databases. The Metathesaurus is organized by concept or meaning. In essence,

its purpose is to link alternative names and views of the same concept together and to identify

useful relationships between different concepts. It provides a basis of context and inter-context

relationships between these various coding systems and vocabularies to provide a common basis

of information exchange between the variety of clinical databases and systems. In the Metathe-

saurus, all the source vocabularies are available in a single, fullyspecified database format.

This dataset follows the model referred in 2.1.1.2.

 2.1.1.2.2 SNOMED-CT

SNOMED (Systematized Nomenclature of Medicine) [SMCT09] is a systematically organized

computer processable collection of medical terminology covering most areas of clinical infor-

mation. It allows a consistent way to index, store, retrieve, and aggregate clinical data across

specialties and sites of care. It also helps organizing the Content of medical records, reducing

the variability in the way data is captured, encoded and used for clinical care of patients and

research. It is owned and maintained by the College of American Pathologists [CAP09].

SNOMED began as a terminology system for pathology in 1965 and over the next 40

years evolved into SNOMED Clinical Terms (SNOMED CT). SNOMED CT resulted from the

merger of SNOMED Reference Terminology (SNOMED RT) developed by the College of

American Pathologists (CAP) and Clinical Terms Version 3 (CTV3) developed by the National

Health Service (NHS) of the United Kingdom. It is designed for use in software applications

like the electronic patient record, decision support systems, and to support the electronic com-

munication of information between different clinical applications. Its designers’ goal is that

SNOMED CT should become the accepted international terminological resource for healthcare,

supporting multilingual terminological renderings of common concepts.

The SNOMED CT core structure includes concepts, descriptions (terms) and the rela-

tionships between them with the objective of precisely representing clinical information across

the scope of health care.

 12

SNOMED CT is one of a suite of designated data standards for use in U.S. Federal

Government systems for the electronic exchange of clinical health information.

Sample Computer Applications Using SNOMED CT

• Electronic Medical Records

• Computerized Provider Order Entry Such As E-Prescribing Or Laboratory Order

Entry

• Remote Intensive Care Unit Monitoring

• Laboratory Reporting

• Emergency Room Charting

• Cancer Reporting

• Genetic Databases

The benefit of recording information in a standard terminology such as SNOMED CT is

linked to the benefits of the electronic care record and the benefits of recording clinical informa-

tion in a structured form

• It provides a consistent terminology across all care domains

• It allows precise recording of clinical information

• It has an inherent structure

• It is a developing international standard

SNOMED-CT tends to be used worldwide in various applications and is considered the

most comprehensive and evolving.

This dataset follows the model referred in 2.1.1.2.

2.1.2 Data mapping and transformation

Technologies for overcoming heterogeneities between autonomous data sources are key in the

emerging. At the heart of structural heterogeneity is the data-mapping problem. The data-

mapping problem is to discover effective mappings between structured data sources. These

mappings are the basic “glue” for facilitating large-scale ad-hoc information sharing between

autonomous peers in a dynamic environment. Automating their discovery is one of the funda-

mental unsolved challenges for data interoperability.

Overcoming structural heterogeneity is a long-standing problem in database research.

The approaches to data mapping are numerous. One contribution is the one of Indiana

University [WCFE04]. The main contribution of its research is a simple declarative data map-

 13

ping calculus (DMC) for reasoning about the data-mapping problem. This calculus is a minimal

extension of the standard relational model for cleanly expressing structural transformations for

data mapping.

The data-mapping problem is illustrated in Figure 5. Consider the three databases con-

taining patient exam information.

Figure 5: Mappings example between Exams representations

By this example you can see that each database contains the same information. As

shown, there are many natural ways to organize even the simplest datasets. For example, E1 and

E2 maintain the information in a single relation, while E3 contains a relation for each result. To

move between these representations of exam data, schema matching and both data-data and

data-metadata transformations must be performed. For example, mapping data from E1 to E2

involves promoting the values in column Exam in E1 to column names in E2 and “matching”

the Name and Patient attributes. To move information from E3 to E1, relation names must be

demoted to data values.

Other related data mapping solution are the works of Bilke and Naumann and Kang and

Naughton [SMUD05] on schema matching, and the Clio project on schema mapping. To my

knowledge, these works have not considered the full space of data-metadata transformations,

with only the Clio project considering any aspects of such mappings. Their work complements

and extends these works with a new perspective on the data mapping problem and a novel solu-

tion to this problem for the complete relational transformation space. This DMC approach solu-

tion can be considered as a useful addition to a multi-strategy data mapping approach. Relation-

 14

al languages for database interoperability motivate work on DMC. The DMC is a descendant of

the Uniform Calculus developed by Jain et al. [UDMR95], specialized to investigate relational

data mapping. This calculus is a novel development of Jain’s language that clearly captures a

very minimal extension of the standard relational model for structural transformations for data

mapping. DMC complements and extends this research with a logical characterization of the

full space of relational data mapping transformations.

2.1.3 Code Generation for Content diffusion

For the extraction process of some repositories, which is the case of Content Repository, there is

a need of some sort of code generation when extracting to some database taking into account its

metadata information.

Code generation is the technique of using or writing programs that write source code.

Code generators are tools built to serve engineers in the creation of applications. Just as wood-

workers use customized tools called jigs to allow them to build furniture more quickly and accu-

rately, code generators allow engineers to concentrate on building the application while the ge-

nerator handles the grunt work tasks.

Taking a look to the code generation process

Meta data is used to describe the characteristics about the program to be generated. The

metadata can be represented in various formats such as relational data, properties files, XML, or

other formats. A working program serves as the model that the generated programs should emu-

late. A code generation program uses the metadata and code fragments from the model program

to generate new programs.

 15

Figure 6: Generic Code Generation process [XSLCG05]

Generated programs share the characteristics of the model program. If the model pro-

gram is syntactically correct and well tested, the generated program will be syntactically correct

and well tested. If a bug is found in the model program, it can be fixed in the code generator and

all of the generated programs can be regenerated and corrected. In short, code generation can

save a lot of coding and testing.

Despite the benefits of code generation, it can promote a cut and paste type of mentali-

ty. It is wise to consider generalizing behavior and using inheritance or composition as well as

code generation in an overall strategy.

Another important consideration in code generation is determining whether customiza-

tion of generated programs is allowed. When customization is allowed, regeneration may not be

possible to pick up new features.

For years, every good SQL programmer and DBA has used code generation techniques

to generate SQL or other programs from SQL. The reason that this technique worked so well

was that relational database management systems have excellent metadata describing all of the

database objects. The SQL language made it trivial to query this metadata, combine it with code

fragments, and output generated programs.

Other languages, such as Perl, are also widely used to generate build scripts, code, and

the like. However, when using scripting languages, there may not be a standard data format and

 16

protocol that the language is optimized to use as in the case of SQL. On the positive side of the

equation, it is much easier to write modular code in Perl than SQL scripts.

XML [XML09], as with a relational database, excels at representing structured data.

XML happens to be a more portable and lightweight format. Just as SQL was able to easily

query the metadata from relational tables, XSL [XSL09] and XPath [XPH09] can easily query

data from XML documents, combine it with code templates, and output generated programs.

Whereas SQL code generation scripts were often ugly monsters, XSL was designed to

have modular templates of code that could be easily applied to nodes in the metadata document.

It provides the best of both worlds. Like SQL, it is optimized for a given data format and proto-

col-programmatic XML parsing isn't required. And like scripting languages such as Perl, code

templates can be easily modularized.

2.2 Technological Review

In this section is made a review of technologies that use this concept of mapping and

transformations of metadata and data between different data models.

 Also a review of technologies in use by ALERT is made.

2.2.1 Mapping and transformations based Tools

The concept of data mapping is used in several types of tools being Object Relational Mapping

tools and Data Warehousing tools some of the most well known.

 Data mappings can be done in a variety of ways using procedural code, creating XSLT

transforms or by using graphical mapping tools that automatically generate executable

transformation programs. These are graphical tools that allow a user to "draw" lines from fields

in one set of data to fields in another. Some graphical data mapping tools allow users to "Auto-

connect" a source and a destination. This feature is dependent on the source and destination data

element name being the same. Transformation programs are automatically created in SQL,

XSLT, Java programming language or C++. These kinds of graphical tools are found in most

ETL Tools (Extract, Transform, Load Tools) as the primary means of entering data maps to

support data movement.

 2.2.1.1 Object Relational Mapping

Whether we are developing a small or a big application, we always have to deal with data. It's

even a critical part of an application. Problem is this is tedious, repetitive work, which consumes

a lot of the time we would prefer to spend on other parts of the application, without forgetting

 17

that the less interesting the work is, the higher the risks of errors.

To solve these problems, multiple solutions exist. Their goal is to simplify the creation

of data access layers, automate data access, or generate data access code.

The principle of object-relational mapping is to delegate to tools the management of

persistence, and to work at code-level with objects representing a domain model, and not with

data structures in the same format as the relational database. Object-relational mapping tools

establish a bidirectional link with data in a relational database and objects in code, based on a

configuration and by executing SQL queries (dynamic most of the time) on the database.

Other solutions exist, such as those based on code generation. They all have their pros

and cons, just as it's the case for mapping tools themselves of course. The perfect tool for all

situations does not exist.

In terms of tools, the offer is huge. This is true for .NET as well as for Java, even if the

offer for Java is more advanced for historical reasons. There is anyway an impressive quantity

of tools for both sides.

The ORM approach has the following advantages:

• Java domain model uses natural Java programming style (uses Collections and Ite-

rators to navigate relationships)

• ORM runtime can provide capabilities such as Caching, Auditing that would have

to be hand-coded using the DAO approach

The ORM approach has the following disadvantages:

• Data and behavior are not separated

• Each ORM technology/product has a different set of APIs and porting code be-

tween them is not easy

The real values in using an ORM tool is to save time, simplify development (i.e. the

ORM tool handles the complexity for the developer), increase performance or scalability, and

minimize architectural challenges related to inability of the ORM tool or developer's experience.

 2.2.1.2 Data Warehousing ETL Mapping and Transformations

Extract, transform, and load (ETL) in database usage and especially in data warehousing in-

volves:

• Extracting data from different sources

• Transforming it to fit operational needs (which can include quality levels)

• Loading it into the end target (database or data warehouse)

 18

The advantages of efficient and consistent databases make ETL very important as the

way data actually gets loaded.

This article discusses ETL in the context of a data warehouse, whereas the term ETL

can in fact refer to a process that loads any database.

ETL can also function to integrate contemporary data with legacy systems.

Usually ETL implementations store an audit trail on positive and negative process runs.

In almost all designs, this audit trail does not give the level of granularity, which would allow

reproducing the ETL's result in the absence of the raw data.

Extract

The first part of an ETL process involves extracting the data from the source systems.

Most data warehousing projects consolidate data from different source systems. Each separate

system may also use a different data organization / format. Common data source formats are

relational databases and flat files, but may include non-relational database structures such as

Information Management System (IMS) or other data structures such as Virtual Storage Access

Method (VSAM) or Indexed Sequential Access Method (ISAM), or even fetching from outside

sources such as web spidering or screen-scraping. Extraction converts the data into a format for

transformation processing.

An intrinsic part of the extraction involves the parsing of extracted data, resulting in a

check if the data meets an expected pattern or structure. If not, the data may be rejected entirely.

Transform

The transform stage applies to a series of rules or functions to the extracted data from

the source to derive the data for loading into the end target. Some data sources will require very

little or even no manipulation of data. In other cases, one or more of the following transforma-

tions types to meet the business and technical needs of the end target may be required:

• Selecting only certain columns to load (or selecting null columns not to load)

• Translating coded values (e.g., if the source system stores 1 for male and 2 for fe-

male, but the warehouse stores M for male and F for female), this calls for auto-

mated data cleansing; no manual cleansing occurs during ETL

• Encoding free-form values (e.g., mapping “Male” to “1” and “Mr” to M)

• Deriving a new calculated value (e.g., sale_amount = qty * unit_price)

• Filtering

• Sorting

• Joining data from multiple sources (e.g., lookup, merge)

 19

• Aggregation (for example, rollup - summarizing multiple rows of data - total sales

for each store, and for each region, etc.)

• Generating surrogate-key values

• Transposing or pivoting (turning multiple columns into multiple rows or vice versa)

• Splitting a column into multiple columns (e.g., putting a comma-separated list spe-

cified as a string in one column as individual values in different columns)

• Applying any form of simple or complex data validation. If validation fails, it may

result in a full, partial or no rejection of the data, and thus none, some or all the data

is handed over to the next step, depending on the rule design and exception han-

dling. Many of the above transformations may result in exceptions, for example,

when a code translation parses an unknown code in the extracted data.

Load

The load phase loads the data into the end target, usually the data warehouse (DW). De-

pending on the requirements of the organization, this process varies widely. Some data ware-

houses may overwrite existing information with cumulative, updated data every week, while

other DW (or even other parts of the same DW) may add new data in a historized form, for ex-

ample, hourly. The timing and scope to replace or append are strategic design choices dependent

on the time available and the business needs. More complex systems can maintain a history and

audit trail of all changes to the data loaded in the DW.

As the load phase interacts with a database, the constraints defined in the database

schema — as well as in triggers activated upon data load — apply (for example, uniqueness,

referential integrity, mandatory fields), which also contribute to the overall data quality perfor-

mance of the ETL process.

 2.2.1.3 XML and XSLT

XML is a markup language for documents containing structured information.

Structured information contains both content (words, pictures, etc.) and some indication of what

role that content plays (for example, content in a section heading has a different meaning from

content in a footnote, which means something different than content in a figure caption or con-

tent in a database table, etc.). Almost all documents have some structure. A markup language is

a mechanism to identify structures in a document. The XML specification defines a standard

way to add markup to documents.

 Short for Extensible Style Language Transformation, the language used in XSL style

sheets to transform XML documents into other XML documents. An XSL processor reads the

XML document and follows the instructions in the XSL style sheet, then it outputs a new XML

 20

document or XML-document fragment. This is extremely useful in e-commerce, where the

same data need to be converted into different representations of XML. Not all companies use

the exact same programs, applications and computer systems.

 XSL Transformation (XSLT) is a member of the XML family of languages. It describes

how an XML structure is transformed into another XML structure.

 You can define mappings using XSLT together with XPath. XPath is also a specifica-

tion of the XML family. Using XPath you can address any node in an XML document. XSLT

implements XPath expressions to select substructures of an XML document. Using templates in

XSLT you can define the mapping rules for the selected substructures.

2.2.2 Development Tools

This section is meant to review tools used for accomplishing the daily tasks of this project in the

areas of Integrated Development Environments, version control and Presentation technologies.

 2.2.2.1 PL/SQL Developer

PL / SQL Developer [PSDEV09] is a tool developed by a Dutch company “All Round Automa-

tions”. It is a dedicated IDE is a dedicated unit to develop code for a database Oracle. This IDE

supports several features that improve productivity, such as:

• Editor, PL / SQL with syntax coloring, auto-complete with a code assistant, refac-

toring, code folding, beautifier (automatic code indentation), among others;

• Debugger for PL / SQL;

• Windows to analyze the results of SQL queries, command line (SQLPlus), dia-

grams of the data model;

• Creation and maintenance of projects;

• Tools to analyze the performance of code and SQL queries;

• Tools for creating and maintaining various types of objects that comprise the data

model as tables, constraints, views, triggers, packages, functions, procedures, and

others;

• Macros to automatically insert code for common macros and keyboard;

• Objects explorer: allows us to view all objects in the DB to which the user has

access;

• Extensible architecture that allows installation of plug-ins.

 21

This tool is adopted by ALERT as default database development tool.

 2.2.2.2 Eclipse

Eclipse [ECLP09] is best known for its Integrated Development Environment (IDE), but it’s a

multi-purpose open source platform, which can be used for a variety of software development

related tasks. It stands as a powerful user-friendly platform that increases productivity and effi-

ciency noticeably. Eclipse relies on plug-ins to provide integrated utilities for most popular pro-

gramming languages.

 This IDE is adopted by ALERT as default development environment for Java SE and

FLASH.

 2.2.2.3 SVN

SVN [SVN09] (also known as Subversion) is a version control system. It’s targeted at large

projects, and especially useful when concurrent editing of files is needed. It uses client-server

architecture: a server stores the most current version of the project and its history, and clients

connect to the server in order to check out a complete copy of the project. Clients then work on

their local copy and later check in their changes to the server (repository).

SVN features include:

• Support for concurrent work on the same project, by several developers;

• Automatic merge of changes, if no conflicting changes are made;

• Versioning of files, directories, renames, and file meta-data;

• Branching and tagging (e.g. create a branch for debugging while keeping the main

branch for

• New features development);

• Parseable and human-readable output;

• Efficient delta compression (when a file is committed to the server, only the lines

that have suffered changes from the previous version are transmitted and stored,

saving on resources).

All the database scripts and interface source code for ALERT® are kept on a Subver-

sion repository and managed through SVN versioning system. For interface development,

access to the repository is commonly accessed through Eclipse’s Subclipse plug-in. For the da-

tabase there is a plug-in for PL/SQL Developer.

 22

2.2.3 ALERT ® Technologies

In figure 7 are represented the main technologies used in all products developed by ALERT.

Figure 7: ALERT ® Main Technologies

 In resume three layers compose the application. Flash is used for interface between the

users and the application. Java is used as middleware and allows flash to communicate with the

database layer. Oracle is used as database information.

 2.2.3.1 Database – Oracle

Introduced in the late 1970s, Oracle [ORAC09] database is Oracle's flagship product and was

the first database product to run on a variety of platforms. Nowadays it is one of the most popu-

lar databases of the world.

ALERT® has Oracle database, because it is flexible, efficient and has small costs of

management. The version currently in use by ALERT® is Oracle10g, which was introduced on

the market in 2005.

 2.2.3.2 Middleware – JAVA

 Java is an object-oriented programming language, which aims to:

1. Allow the same program to be executed on multiple operating systems.

2. Contain built-in support for using computer networks.

3. Execute code from remote sources securely.

 23

4. Include the good aspects of other object-oriented languages, making it easy to use.

Perhaps the built-in support for computer networks and the ability to execute remote

code securely were the characteristics that most contributed to choosing Java. ALERT® needed

a fast, robust and secure way of interchanging data between multiple interfaces on the users’

equipments and a central database in a server. Java makes this link possible through the use of

web services.

Flash does not communicate directly with the database. Instead, there is an intermediate

Java layer that manages the connection between interface and database. Although the Java com-

ponent of the software is relatively small when compared to the other layers, and is essentially

made of automatically generated classes, it represents a vital part of the system. It exposes the

database functions, providing corresponding services, which can be accessed remotely. All in-

formation between the presentation and logic/data tiers is exchanged through these Java servic-

es, using Flash Remoting. This allows for interface development to be independent of database

structure (and vice-versa), thus any structural changes in database are transparent to a Flash

developer.

This layer is responsible for:

• Database connection management: Java manages every database connection and me-

thod invocation.

• Session management: logins, session timeouts and edit timeouts are managed within

this layer.

• Service logging and reports: Java maintains log files to track service exceptions.

 2.2.3.3 Presentation – Adobe Flash

Flash [FLS09] is an authoring tool widely used to create a diversity of interactive content and

applications.

Utilities created with Flash can be as simplistic as a promotional banner, or as complex

as 3D games, charting tools and complete websites. Although Flash is mostly used for web con-

tent (in great part due to its great flexibility, the reduced size of the files it produces, and be-

cause it’s a cross-browser tool), it’s also frequently adopted by developers to build the User

Interface components of their software.

There are several reasons why Flash was chosen as ALERT®’s interface authoring tool:

Flash is extremely flexible. Among other things, it works with vectorized components and does

not rely on strict component layouts. This makes it possible to run a Flash application on dis-

plays with different sizes and resolutions, without compromising its look and feel.

 24

Making ALERT® software remotely accessible to healthcare professionals has been on the

company’s plans since its foundation. When the time comes, this migration will be extremely

simplified by having a Flash-based interface, since it was designed as a technology for the web.

Apart from programmers, end user requirements to access ALERT® remotely will be virtually

inexistent: a browser with Flash player plug-in is the only software required, and both are found

on most computers or can be easily downloaded.

In addition to being a powerful design tool, Flash is bundled with its own object-

oriented scripting language, ActionScript, enabling the creation of complex applications behind

an appealing and flexible user interface.

Other technologies such as Oracle Forms, Windows forms, Java Applets or Ajax

(HTML and Javascript) could be eventual alternatives for Flash as ALERT®’s interface. In

spite of having their own advantages, whose discussion is out of the scope of this report, Adobe

Flash was considered a more adequate solution for the reasons explained.

 2.2.3.4 Adobe Flex

Adobe Flex [FLEX09] is a software development kit released by Adobe Systems for the

development and deployment of cross-platform rich Internet applications based on the Adobe

Flash platform. Flex applications can be written using Adobe Flex Builder or by using the freely

available Flex compiler from Adobe.

In February 2008, Adobe released the Flex 3 SDK under the open source Mozilla Public

License. Adobe Flash Player, the runtime on which Flex applications are viewed, and Adobe

Flex Builder, the IDE built on the open source Eclipse platform and used to build Flex

applications, remain proprietary.

 Flex development process is composed by these steps:

1. Define an application interface using a set of pre-defined components (forms, but-

tons, and so on)

2. Arrange components into a user interface design

3. Use styles and themes to define the visual design

4. Add dynamic behavior (one part of the application interacting with another, for ex-

ample)

5. Define and connect to data services as needed

6. Build the source code into an SWF file that runs in the Flash Player

 This technology is starting to be widely adopted in the rich interface application area,

and is overpowering Flash because of it’s becoming a more developers friendly language, not

 25

only because its IDE is Eclipse based but also because its development process accelerates the

overall time spent on visual components development.

 The user interface of all ALERT applications is evolving to the use of Adobe Flex as

standard technology for its implementation.

 26

Chapter 3

Problem Description

The ALERT® is a suite of software applications that is filled with various types of Contents

such as types of analysis, diagnoses, exams, procedures, medication, or allergies.

Figure 8: Overview of ALERT® Product Architecture

As you can see in Figure 8 ALERT® is composed by three main layers:

• Presentation – This is responsible of presenting the user with interfaces that allow

him to navigate among all the applications Contents and execute actions that affect

them.

 27

• Business Logic – This layer is responsible by information exchange between the

presentation and data layers. It executes the actions requested by the presentation

layer that will in some way affect information in Data layer.

• Data – Here we have Content Tables that have the information about the Content

itself, Parameterizations Tables with information where certain Contents are

available, and Transactional Tables are responsible of relating Content information

with Patient/Professional in order to build its Electronic Health Records

Figure 9: Overview of ALERT® Data components

(C-Contents Tables; P-Parameterizations Tables; T-Transactional Tables)

For this project’s implementation the focus is in the Data layer. The components that

will be saved to the Content Repository are the Contents component - this is where you have the

information that represent a Content – and Parameterizations component – this is where you

have the information that allows you to specify where your Contents will be available taking

into account numerous possible classifications like Market by country, Language, Product,

Version of the Product, and others.

3.1 Past Situation

In the past, this Content was managed through Excel files and different databases, distributed by

various sources, and then loaded in the ALERT® using manual processes.

As you can see in Figure 10, all Content is dispersed in different formats and from

different sources mainly databases and files documents.

Current Situation

SNOMED

ICPC2

ICD9

ICD10

LOINC

ALERT

Figure 10: Overview of

In ALERT there are several environments

to be available to ALERT® applications. This refers

example, types of analysis, exams or diagnoses

to the coding and pricing

environments, health centers and private practice

3.1.1 Past Content Workflow

In the past, Content workflow had two teams involved. Content team was responsible for

28

ALERT® Content

Database

Files/Spreadsheets

DEF

PROD

Versioning

ID1

ID2

ID3

Client A

Client B

Client C

: Overview of Past Situation for ALERT® product’s Content dispersion

In ALERT there are several environments where they have Content informatio

to be available to ALERT® applications. This refers not only to clinical C

example, types of analysis, exams or diagnoses but also includes non clinical

pricing of procedures, exams, analysis, among others, performed in hospital

health centers and private practice.

Workflow

Figure 11: Past Workflow for Contents

ontent workflow had two teams involved. Content team was responsible for

Client A
IDA

IDB

IDC

Client B
ID9.1

ID10.4

ID21.3

Client C
IDX

ID3

IDA

Situation for ALERT® product’s Content dispersion

Content information needed

Contents such as, for

des non clinical Contents, related

performed in hospital

ontent workflow had two teams involved. Content team was responsible for

 29

creating content, classifying them and validating its information. This was done by working in

an excel document that would be transferred by the person responsible for each phase of the

process. Then finally the development team would take the validated excel document and

convert its Contents to SQL DML files to create them in a Content database. This document

didn’t always have the same format so the process couldn’t be automated. In the end the script

is versioned for Data Quality Control.

3.1.2 Identified Problems

This form of content validation, maintenance and processing is not automated and does not

centralize the universe of Contents of ALERT®.

This dispersion, can lead to difficulty when trying to find and retrieve Contents needed

to certain Client installations and possible Data loss and legal liability when data is

disorganized, not properly replicated, or cannot be found in a timely manner. This kind of

Content dispersion has increased manpower requirements to manage increasingly chaotic data

storage resources such as, for example, multiple Databases with non-standardized schemas and

Excel files.

On the client side, each Contents does not have an unique identifier that relates in a

standardized way, so it is virtually impossible to determine relationships or make data analysis.

Similarly, the Contents in the Client are not assigned with code standards, which would identify

them in International Standards. This would allow interoperability with different Electronic

Medical Records implemented in different locations, and possibly make data analysis in

different markets.

Creating a new Content is not easy because of all this type of Content dispersion, it is

important to implement a Content development environment where one easily could create new

Content with validation and classification phases following a well-defined workflow.

3.2 Content Repository

In this section will be presented an overview of the solution, named Content Repository, a new

Content Development Environment currently being developed to solve the problems and

limitations referred in section 3.1.2.

 30

3.2.1 General Process

To solve the problems identified in section 3.1.2, it was decided to create a Content Repository,

which will centralize all Content information of ALERT® products, gives an Unique Identifier

and classifies each and every one of the Contents with different parameters such as Market,

Version, Product and Author.

Figure 12: General Content Repository Process

 By analyzing what was the best way of how to properly represent the Contents, it was

concluded that the model in which SNOMED-CT is based, given its flexibility and power in

dealing with different structures simultaneously, would be more appropriate. This model was

not only adopted by SNOMED-CT but also by other entities that publish clinical data sets, for

example the UMLS referred in the State of Art section of this document.

 After the study of this model and its features, it was determined which ones would be

taken to the Content Repository and which would not apply and / or that should be subject to

revision. The study was based on official technical references of SNOMED, developed by

IHTSDO.

 All modules that were not represented in SNOMED-CT model, or whose representation

is insufficient, were developed to maintain consistency with the other structural models.

3.2.2 Content Repository Workf

Figure

Now with the Content Repository, Content workflow has two teams involved. Content team is

responsible for creating content, classifying them and validating its information with a

workflow that is automatically managed by the Content Repository.

team will use this extraction tool to automatically generate SQL DML files and version them to

Data Quality Control.

3.2.3 Basic Structure

The Content Repository is composed of modules of information and features that relate and

exchange information with each other. Some of the mo

monitor and manage Content allowing them to be manipulated by other modules.

31

Content Repository Workflow

Figure 13: Content Repository Workflow for Contents

Now with the Content Repository, Content workflow has two teams involved. Content team is

responsible for creating content, classifying them and validating its information with a

workflow that is automatically managed by the Content Repository. In the end

team will use this extraction tool to automatically generate SQL DML files and version them to

Basic Structure

The Content Repository is composed of modules of information and features that relate and

information with each other. Some of the modules contain information (meta

monitor and manage Content allowing them to be manipulated by other modules.

: Content Repository Workflow for Contents

Now with the Content Repository, Content workflow has two teams involved. Content team is

responsible for creating content, classifying them and validating its information with a

In the end, Development

team will use this extraction tool to automatically generate SQL DML files and version them to

The Content Repository is composed of modules of information and features that relate and

dules contain information (metadata) to

monitor and manage Content allowing them to be manipulated by other modules.

 32

Figure 14: Basic Content Repository Structure

 All Content is associated with an history where all the information about actions taken

is recorded since the creation of each Content with information from the ground of the

amendment, the state after the change, the author and the date of amendment. In addition to the

treatment process of history, the Content Core has its own internal structures that record the

changes, relating them directly to the changed Content.

 The Contents referring to International Standards are recorded in their own structure,

which includes the functionality of mapping, if possible, to each Content a STANDARD ID

which indicates that Content as corresponding to each international pattern.

 To give meaning and to deal with the Content, the Characterization and Classification

module indicates the Tags (e.g. version or market) and attributes (eg, Minimum Age and Do-

sage) associated with each concept. This information is essential to control the extraction

process (including filtering).

 The Content Extraction Module to be developed is responsible for carrying out the

filtering (based on tags) and extract the information, properly formatted, of each filtered Content

(complete with its attributes).

3.2.4 Content Core

At the Core of the Content Repository is the basic structure of the Conceptual Network, which

organizes all the existing Content.

 The Conceptual Network is composed of three basic elements: concepts, relations b

tween concepts and Descriptions of Conce

and are set between two concepts. The wording of concepts can take different forms, depending

on their use: a full description defines in an absolute and exclusive way each Content, a pr

ferred term to define each Content in a

several Synonyms for the same concept.

 All elements that are necessary in the structure of the

defined as concepts and their

 The Contents are particular cases of Concepts

defined from classes of concepts specific to each

samples, etc.). A Content (and

named ID_CONTENT, generated sequentially and never reused,

disabled. Note that, even if disabled

Network, which maintains its identifier

prescribed or maybe replaced by an other Content, action that can be confirmed in history

module.

33

Figure 15: Content Core Representation

Network is composed of three basic elements: concepts, relations b

tween concepts and Descriptions of Concepts. Relations are defined as special kinds of concepts

and are set between two concepts. The wording of concepts can take different forms, depending

on their use: a full description defines in an absolute and exclusive way each Content, a pr

each Content in a more abbreviated way and there may be (not mandatory)

the same concept.

All elements that are necessary in the structure of the Conceptual

defined as concepts and their definition connections must be defined with other concepts.

ontents are particular cases of Concepts in the Conceptual

defined from classes of concepts specific to each Universe of Contents (analysis, diagnose

ontent (and, in general, each concept) has always a single

generated sequentially and never reused, not even if

if disabled, a Content continues to exist and be part of the

Network, which maintains its identifier, but its disabled was possibly defined because it

replaced by an other Content, action that can be confirmed in history

Network is composed of three basic elements: concepts, relations be-

pts. Relations are defined as special kinds of concepts

and are set between two concepts. The wording of concepts can take different forms, depending

on their use: a full description defines in an absolute and exclusive way each Content, a pre-

and there may be (not mandatory)

Conceptual Network should be

be defined with other concepts.

in the Conceptual Network. They are

tents (analysis, diagnoses,

single Unique Identifier

even if a Content is

continues to exist and be part of the Conceptual

, but its disabled was possibly defined because it

replaced by an other Content, action that can be confirmed in history

3.2.5 Content Filtering

The filtering process is activated by user action,

the Contents he wishes to

user defines the general extraction filter

this repository.

Figure

 The extraction filter is

which markets, products, or other factor version classifier implemented for the Content. Those

tags that classify the Content

nations of tags that do not apply,

there may be combinations of tags not defined in the rule, but that should be considered in ce

tain exceptional cases.

34

Content Filtering

The filtering process is activated by user action, which needs to define which

extract for a Client installation. The set of indicated

user defines the general extraction filter that will feed the extraction mechanism developed for

Figure 16: Overview of the filtering process

The extraction filter is a user defined set of values to be verified by tags that indicate

which markets, products, or other factor version classifier implemented for the Content. Those

ontent are the rule of classification. However, if the

tions of tags that do not apply, user shall register such combinations as Exceptions. Moreover,

there may be combinations of tags not defined in the rule, but that should be considered in ce

which filters to apply on

for a Client installation. The set of indicated conditions by this

d the extraction mechanism developed for

user defined set of values to be verified by tags that indicate

which markets, products, or other factor version classifier implemented for the Content. Those

the rule of classification. However, if the Content has combi-

shall register such combinations as Exceptions. Moreover,

there may be combinations of tags not defined in the rule, but that should be considered in cer-

 For example, a C

V2.4.3 and v2.5. These ratings, derived from all possible combinations between two tags of the

market and Version (Table

Table

 This rule defines the general classification of the

market, with six cases to consider (the number of combinations increases if we add

fications, such as product, for example). However, it may happen that the Content is not avail

ble in the U.S. market in case of version v2.5. In addition, you can still occur that the

available in the U.S. market only to V2.4.3.

 In conclusion, the practi

Table

35

Figure 17: Filtered Content example

Content can be defined in the markets UK, U.S. and PT, in versions

V2.4.3 and v2.5. These ratings, derived from all possible combinations between two tags of the

(Table 1).

Table 1: Possible Combinations for Tags

 V2.4.3 V2.5

UK x x

US x x

PT x x

This rule defines the general classification of the Content depending on version and

market, with six cases to consider (the number of combinations increases if we add

fications, such as product, for example). However, it may happen that the Content is not avail

ble in the U.S. market in case of version v2.5. In addition, you can still occur that the

available in the U.S. market only to V2.4.3.

n conclusion, the practical applications of the Content can be seen in Table

Table 2: Example of Tag Values for a Content

 V2.4.3 V2.5

UK � �

US � �

PT � �

BR � �

UK, U.S. and PT, in versions

V2.4.3 and v2.5. These ratings, derived from all possible combinations between two tags of the

ontent depending on version and

market, with six cases to consider (the number of combinations increases if we add other classi-

fications, such as product, for example). However, it may happen that the Content is not availa-

ble in the U.S. market in case of version v2.5. In addition, you can still occur that the Content is

cal applications of the Content can be seen in Table 2.

Thus, over the general

direct and simple way, there are two situations

exclusion of cases defined by

Rule.

3.3 Content Diffusion

In any type of repository there is a need to act functionalities that make

possible. In the Content Repository case, these diffusion functionalities refer to the need of

Content importation to the

Repository automatically not only

for Content listings.

3.3.1 Identified Implications

In the case of Content Import

Content in ALERT main Content Database named DEF, although it is a process

implemented where necessary, to apply on other Content databases or files with

register interest to the repository.

The Content Import Engine would have the purpose of allowing the import of new or

existing Content, to the Content Repository. These can be represented in different formats such

as the various current Content databases or documents like Excel / Flat Files tha

information.

Figure

36

the general Rule that allows classifying the majority of situations in a more

, there are two situations of exception to consider: An exception to an

exclusion of cases defined by rule and an exception to inclusion of a case not defined in

Content Diffusion

type of repository there is a need to act functionalities that make

In the Content Repository case, these diffusion functionalities refer to the need of

the Content Repository and Content extraction

automatically not only from/to ALERT® database structure but also to documents

Implications

Import, this applies mainly in the initial phase of loading from existing

ALERT main Content Database named DEF, although it is a process

implemented where necessary, to apply on other Content databases or files with

to the repository.

Content Import Engine would have the purpose of allowing the import of new or

existing Content, to the Content Repository. These can be represented in different formats such

as the various current Content databases or documents like Excel / Flat Files tha

Figure 18: Overview of the importation process

the majority of situations in a more

to consider: An exception to an

ule and an exception to inclusion of a case not defined in the

type of repository there is a need to act functionalities that make Content diffusion

In the Content Repository case, these diffusion functionalities refer to the need of

Content extraction from de Content

database structure but also to documents

, this applies mainly in the initial phase of loading from existing

ALERT main Content Database named DEF, although it is a process that can be

implemented where necessary, to apply on other Content databases or files with Content that

Content Import Engine would have the purpose of allowing the import of new or

existing Content, to the Content Repository. These can be represented in different formats such

as the various current Content databases or documents like Excel / Flat Files that have Content

In the case of Content Extraction, the process needs to take place whenever it is

necessary to extract Content information from the Content Repositor

ALERT® product or for listing. This process needs to be performed in an automated way, based

on requests made to an extraction tool.

The Content Extraction Engine works in the reverse direction of the import engine and

its purpose is to allow the extraction of

Content on the ALERT® product to install Content at the Client’s installation or for creating

documents such as Excel / Flat Files to allow

kind of process that the Content information contained in each of the extractions is recorded for

later reference, for example in case of upgrades or changes. The information on parameters used

in each extraction should also be registered, so it is always possible to find out how the

extraction took place in the event of an anomaly.

 This extraction engine

The filtering process takes into acco

Phase, and the possible existence of exceptions, of exclusion or inclusion, which are tested in a

second phase. Only after these two phases the selected Content will be added to the list of

Contents.

Figure

These functionalities of Content importation from different sources to the Content

Repository and Content extraction from the Content Repository to different target

representing different ALERT

what refer to Content Diffusion. Content Repository needs to be able to allow content diffusion

in an automated way.

37

In the case of Content Extraction, the process needs to take place whenever it is

ontent information from the Content Repository for installation i

® product or for listing. This process needs to be performed in an automated way, based

on requests made to an extraction tool.

The Content Extraction Engine works in the reverse direction of the import engine and

to allow the extraction of Content from the Content Repository for placing

® product to install Content at the Client’s installation or for creating

ocuments such as Excel / Flat Files to allow creating listings of Contents. It is important in this

kind of process that the Content information contained in each of the extractions is recorded for

later reference, for example in case of upgrades or changes. The information on parameters used

ion should also be registered, so it is always possible to find out how the

extraction took place in the event of an anomaly.

engine receives the list of Contents to extract from the filtering process.

The filtering process takes into account the existence of rules, which should be tested in a first

Phase, and the possible existence of exceptions, of exclusion or inclusion, which are tested in a

fter these two phases the selected Content will be added to the list of

Figure 19: Overview of the extraction process

These functionalities of Content importation from different sources to the Content

Repository and Content extraction from the Content Repository to different target

representing different ALERT® product versions or file documents with different structures are

what refer to Content Diffusion. Content Repository needs to be able to allow content diffusion

In the case of Content Extraction, the process needs to take place whenever it is

y for installation in

® product or for listing. This process needs to be performed in an automated way, based

The Content Extraction Engine works in the reverse direction of the import engine and

ontent from the Content Repository for placing

® product to install Content at the Client’s installation or for creating

listings of Contents. It is important in this

kind of process that the Content information contained in each of the extractions is recorded for

later reference, for example in case of upgrades or changes. The information on parameters used

ion should also be registered, so it is always possible to find out how the

ontents to extract from the filtering process.

unt the existence of rules, which should be tested in a first

Phase, and the possible existence of exceptions, of exclusion or inclusion, which are tested in a

fter these two phases the selected Content will be added to the list of

These functionalities of Content importation from different sources to the Content

Repository and Content extraction from the Content Repository to different target databases

® product versions or file documents with different structures are

what refer to Content Diffusion. Content Repository needs to be able to allow content diffusion

 38

 39

Chapter 4

Proposed Solution

This section describes requirements for the project and the proposed solution for meeting those

requirements.

 When we talk about import and extraction we are always talking from the Content

Repository point of view. Import refers to Content going from outside world to the repository,

and extraction refers to Content going from the repository to the outside world.

 From this point on the proposed tool will be referred to as CIXE, which stands for

Content Import and Extraction Engine.

4.1 Requirements Analysis

The proposed solution for this project was constructed based on a survey of requirements made

to the Team I was integrated. This survey of requirements is based on model for specification of

software requirements, using Use Cases from Rational Unified Process. Thus, the result of this

survey consists of a model of Use Cases containing the main Use Cases to capture functional

requirements of the system.

 In this section you have the determined requirements from the survey that affected the

proposed solution.

4.1.1 General Features

The main features required for CIXE are as follows.

 40

1. Database Access and Document Configurations

 This feature is responsible for managing all the access configurations to databases that

CIXE needs to import Content from or extract Content to. CIXE lets the user specify a set of

databases from which to obtain their metadata. This is the same for Excel/Flat Files metadata.

2. Extraction, storage and presentation of metadata of a database or document

 CIXE extracts the metadata of the selected database or document and visually presents

it to the user. The obtained metadata is stored in a repository, that way avoiding the need to

extract that information in each use.

3. Create Configurations of Mappings (with History)

 CIXE can associate the attributes of the database/document schema to attributes of the

Content Repository. This process is called data mapping. For each mapping you can associate

transformations responsible for transforming one structure to another. The application stores the

mappings in a repository, enabling them to reuse. When a new configuration for a new version

of a database is created, the application applies automatically all the mappings to the already

known elements from the previous version.

4. Import Content from Database or Document to Content Repository (with Log)

 Taking into account the mappings made by the user, CIXE allows extracting Content

from the selected database or document and applying them the necessary transformations to

change their representation from their format to the format of the Content Repository.

5. Extract Content from Content Repository to Database or Document (with Log)

 Based on the mappings made by the user CIXE allows the extraction of Content from

the Content Repository to other databases, using SQL-DML code generation, or to Excel/Flat

Files documents.

4.1.2 Users Characteristics

The main aim of CIXE is to allow the creation of mappings that will then make possible to au-

tomate the Content import and extraction process.

 Thus, it is primarily the Development Team who needs to perform mappings between

the Content Repository and other databases/documents. It is thus necessary that the user of the

system are familiar with the relational model of the Content Repository, as well as the schema

of the database or document they are working with.

 After this first mappings configuration phase, CIXE is ready to be used to automate the

import and extraction processes by the Content Team who doesn’t need to know anything

about how the mapping process is done.

4.1.3 Actors

There are three actors for this system:

1. User – this is the user that is able to import Content to the Content Repository

extracting Content from the Content Repository to other databases or documents, using

configurations previously created by the development team.

2. Developer – aside from in

create mapping configurations to other databases or documents

3. Administrator – this user inherits all the requirements from the other users but also it is

responsible for User Management and assigning

Figure

By default any user from the

gives them the permission to import and extract Content.

4.1.4 Non-Functional Requirements

41

actors for this system:

this is the user that is able to import Content to the Content Repository

extracting Content from the Content Repository to other databases or documents, using

configurations previously created by the development team.

aside from inheriting the same requirements as the

configurations to other databases or documents

this user inherits all the requirements from the other users but also it is

responsible for User Management and assigning correct roles to users

Figure 20: System Actor’s inheritance representation

By default any user from the Content Repository have the role User associated with him

gives them the permission to import and extract Content.

Functional Requirements

this is the user that is able to import Content to the Content Repository as well as

extracting Content from the Content Repository to other databases or documents, using

heriting the same requirements as the User this user can

this user inherits all the requirements from the other users but also it is

correct roles to users

associated with him that

 42

 4.1.4.1 Reliability

The main non-functional requirement is reliability.

 CIXE will have to handle a lot of information because of the thousands of Contents

there are in the universe of ALERT®, even when dealing with only one type of Content. For

this reason it is important to allow the flow of Content information to run without any kind of

error being introduced in the application. That would compromise the quality of Content

information transferred between Content Repository and other databases or documents, and

most certainly transferred information would become useless for the user.

 4.1.4.2 Efficiency

Other important non-functional requirement very important for this kind of tool is efficiency.

 As it was mentioned earlier, CIXE needs to handle large sets of information, like import

or extraction of all Contents of one pre-determined content type. This can be translated to

thousands of Contents. Because of that, this tool needs to be as efficient as possible, in order to

minimize the waiting time period users have until the end of the Import or Extraction process.

4.1.5 Functional Requirements

 4.1.5.1 Packages Overview

CIXE is composed by six packages that refer to the main functionalities determined for this tool.

In Figure 21 you can see an overview of all packages of this tool.

 4.1.5.2 Use Cases

In this section are presented all use cases for CIXE system.

data operations for Creating, Retrieving, Updating and Deleting.

 4.1.5.2.1 Package 1

In this Package we have all use cases that have as main goal allowing creating configurations

with access information to remote databases that have Content information of s

the repository. Also it has use cases for defining the types of documents that are allowed in the

system.

43

Figure 21: Overview of System’s Packages

In this section are presented all use cases for CIXE system. From this point on CRUD refers to

data operations for Creating, Retrieving, Updating and Deleting.

Package 1 - Database Access and Document Configuration

his Package we have all use cases that have as main goal allowing creating configurations

ccess information to remote databases that have Content information of s

has use cases for defining the types of documents that are allowed in the

From this point on CRUD refers to

Database Access and Document Configuration

his Package we have all use cases that have as main goal allowing creating configurations

ccess information to remote databases that have Content information of some interest to

has use cases for defining the types of documents that are allowed in the

Figure 22: Package 1 Use Case

 List Databases Access Configurations

 Makes available to the user a list of access configuration to databases that have Content

information of some interest to the Content Repository

 CRUD Database

 After listing database access configurations

configuration, and update or delete existing configurations.

are Oracle and Myself.

 List Document Configurations

 This use case makes available to the user a list of d

CIXE. It’s up to the Developer

interest to the Content Repository

 CRUD Document Configurations

44

: Package 1 Use Case Diagram – Database Access or Document Configuration

List Databases Access Configurations

Makes available to the user a list of access configuration to databases that have Content

information of some interest to the Content Repository.

CRUD Database Access Configurations

After listing database access configurations, the Developer is able to create a new

configuration, and update or delete existing configurations. Some examples of databases types

List Document Configurations

This use case makes available to the user a list of document types allowed to work w

Developer to ensure all documents that have Content information of some

interest to the Content Repository, have their corresponding type configuration created here

CRUD Document Configurations

Database Access or Document Configuration

Makes available to the user a list of access configuration to databases that have Content

is able to create a new

examples of databases types

ocument types allowed to work with

that have Content information of some

tion created here.

 After listing document type configurations,

configuration, and update or delete existing configurations.

documents and Flat files.

 In Figure 23 is presented the workflow for this configuration management. First

Developer start the application and choose configurations option. After that

if he want to access the database access configurations or

Depending on the option a list of database access or document types configuration are

presented, and the ability to execute CRUD

available.

Figure 23: Package 1 – Listing

The workflow for CRUD operations for the two configurations types described earlier is

the same. Developer is presented with a list of configurations and from that point

can add a new one, fill the required information and save configuration. Or

select an existing configuration, edit its information and save changes, or simply delete it.

45

document type configurations, the Developer is able to create a new

configuration, and update or delete existing configurations. Some examples are Excel

is presented the workflow for this configuration management. First

start the application and choose configurations option. After that

want to access the database access configurations or document types configur

Depending on the option a list of database access or document types configuration are

presented, and the ability to execute CRUD operations to these configurations are

Listing and editing Configurations for database access and document

types Activity Diagram

The workflow for CRUD operations for the two configurations types described earlier is

presented with a list of configurations and from that point

can add a new one, fill the required information and save configuration. Or

select an existing configuration, edit its information and save changes, or simply delete it.

is able to create a new

Some examples are Excel

is presented the workflow for this configuration management. First

start the application and choose configurations option. After that Developer choose

document types configurations.

Depending on the option a list of database access or document types configuration are

operations to these configurations are made

and editing Configurations for database access and document

The workflow for CRUD operations for the two configurations types described earlier is

presented with a list of configurations and from that point the Developer

can add a new one, fill the required information and save configuration. Or the Developer can

select an existing configuration, edit its information and save changes, or simply delete it.

Figure 24: Package 1 – General Activity Diagram

 4.1.5.2.2 Package 2

This is the package of use cases responsible for the extraction of all metadata of the databases

and documents CIXE needs to connect

format that allows mapping between this and the Content Repository metadata.

46

eneral Activity Diagram of Configurations editing

and document types

Package 2 - Metadata Extraction

This is the package of use cases responsible for the extraction of all metadata of the databases

and documents CIXE needs to connect to. Also it is responsible for presenting that metadata in a

format that allows mapping between this and the Content Repository metadata.

editing for database access

This is the package of use cases responsible for the extraction of all metadata of the databases

to. Also it is responsible for presenting that metadata in a

format that allows mapping between this and the Content Repository metadata.

Figure 25: Package 2 Use Case Diagram

 Connect to Database

 After retrieving access information for a database

application connects to the

 Present Database metadata

 After connecting to a database, all its metadata, particularly

in the screen.

 Upload Document

 Because this is a WEB

configuration, Developer

from the same type as the def

47

: Package 2 Use Case Diagram – Metadata Extraction

Connect to Database

er retrieving access information for a database and depending on its availability,

the database in order to extract its metadata.

Present Database metadata

After connecting to a database, all its metadata, particularly tables, is visually presented

Upload Document

Because this is a WEB-Based application, after selecting a document type

 needs to upload a document. It is mandatory that the document be

from the same type as the defined in the configuration.

Metadata Extraction

and depending on its availability, the

tables, is visually presented

Based application, after selecting a document type

to upload a document. It is mandatory that the document be

 Connect to Document

 After uploading the document to the server, the application

and parses its contents in order to extract its metadata.

 Present Document metadata

 After connecting and parsing

screen. Document metadata, particularly Excel and Flat Files, can be represented in the s

way as databases metadata.

 Excel

 - Document is considered as a database

 - Worksheets are equivalent to

 - Cells: First Line is column names; the rest are records

 - Columns metadata are Excel columns

 Flat Files

 - Document is viewed as a table

 - First Line is column names; the rest are records

 - Columns have a separator character

 The workflow for metadat

Figure 26

48

Connect to Document

After uploading the document to the server, the application connects to the document

in order to extract its metadata.

Present Document metadata

After connecting and parsing the document, its metadata is visually presented in the

screen. Document metadata, particularly Excel and Flat Files, can be represented in the s

way as databases metadata.

Document is considered as a database

heets are equivalent to Tables

: First Line is column names; the rest are records

Columns metadata are Excel columns

Document is viewed as a table

First Line is column names; the rest are records

Columns have a separator character

or metadata extraction is done as shown in Figure 26

26: Package 2 – Metadata Extraction Activity Diagram

connects to the document

the document, its metadata is visually presented in the

screen. Document metadata, particularly Excel and Flat Files, can be represented in the same

26.

Metadata Extraction Activity Diagram

 When we have a list of configurations we

Selecting a document types configuration we then need to upload a document of the same type

as the one required by the

contents and present its metadata. If a database access configuration was selected a connection

would have been made the database and its metadata presented.

 4.1.5.2.3 Package 3

This package has all use cases that have as main goal help in the process of mapping

information between Content Repository metadata and other Databases or Documents metadata.

Figure 27: Package 3 Use Case Diagram

 List and CRUD Mappings Configurations

49

have a list of configurations we need to select the one we want to use.

Selecting a document types configuration we then need to upload a document of the same type

the selected configuration, if valid we then connect to the file, parse its

metadata. If a database access configuration was selected a connection

would have been made the database and its metadata presented.

Package 3 - Mappings Configuration

has all use cases that have as main goal help in the process of mapping

ormation between Content Repository metadata and other Databases or Documents metadata.

: Package 3 Use Case Diagram – Mappings Configuration

List and CRUD Mappings Configurations

need to select the one we want to use.

Selecting a document types configuration we then need to upload a document of the same type

, if valid we then connect to the file, parse its

metadata. If a database access configuration was selected a connection

has all use cases that have as main goal help in the process of mapping

ormation between Content Repository metadata and other Databases or Documents metadata.

Mappings Configuration

 The Developer can list all available mappings configurations. He can create new

mappings configurations, retrieve, and update or remove existing mappings configurations. A

mapping configuration is what aggregates all specified mappings for Content Groups of one

database access or document configuration.

possible Content Groups.

 View Mapping Configuration History

 This Use case means that the

made to a mapping configurations

 List and CRUD Content Groups

 After selecting an existent mapping configuration or

has to select the Content Group he wishes to specify mappings on. Content Groups refers to

ALERT ®’s Content Universes such as Diagnoses, Analysis or Procedures.

aggregates all mappings specified

 List and CRUD Mapping Types

 In Figure 28 you can see an activity diagram for creating a Mapping Type.

Figure 28: Package 3

50

can list all available mappings configurations. He can create new

mappings configurations, retrieve, and update or remove existing mappings configurations. A

apping configuration is what aggregates all specified mappings for Content Groups of one

access or document configuration. For one mapping configuration you have many

View Mapping Configuration History and Log

This Use case means that the Developer must be allowed to view a history of changes

made to a mapping configurations and a log of imports and extractions for this configurations.

List and CRUD Content Groups

After selecting an existent mapping configuration or creating a new one, the

the Content Group he wishes to specify mappings on. Content Groups refers to

ALERT ®’s Content Universes such as Diagnoses, Analysis or Procedures.

specified for one of ALERT®’s Content Universe.

List and CRUD Mapping Types

you can see an activity diagram for creating a Mapping Type.

: Package 3 – Create Mapping Type Activity Diagram

can list all available mappings configurations. He can create new

mappings configurations, retrieve, and update or remove existing mappings configurations. A

apping configuration is what aggregates all specified mappings for Content Groups of one

For one mapping configuration you have many

must be allowed to view a history of changes

actions for this configurations.

creating a new one, the Developer

the Content Group he wishes to specify mappings on. Content Groups refers to

ALERT ®’s Content Universes such as Diagnoses, Analysis or Procedures. One Content Group

.

you can see an activity diagram for creating a Mapping Type.

Create Mapping Type Activity Diagram

 51

 CIXE must allow the Developer to create Mapping Types that will have a

transformation template associated with them. This allows the Developer to build Custom

mappings types and define property types required for such mapping to take place.

 Property types and transformation templates will allow the Developer to create

mappings that are instances of this Mapping Types that will have their own properties and

transformation. This Transformation is obtained by replacing mapping’s properties values in the

transformation template.

 List and CRUD Mappings

 As mentioned earlier in this section Developer must be able to create Mapping Types.

After having Mapping Types, the Developer must be able to create instances of that Mapping

Type for defining mappings, with transformations, between the Content Repository and other

Databases or Documents.

 The workflow for creating a mapping is represented in Figure 29. First Developer needs

to choose if he wants to create a new mapping configuration or if he wants to work on an

existing one. Then he should choose the Content Group he wants to work with. When inside a

Content Group, Developer should be able to create mappings. When creating a new mapping,

Developer should be presented with visual representation of Content Repository’s metadata and

the database/document’s metadata this mapping configuration relates to. After choosing the

Mapping Type to use, Developer needs to specify correspondence required for this mapping. To

do that Developer then needs to fill the form with information required for the chosen Mapping

Type.

Figure

 4.1.5.2.4 Package 4

This package has all use cases related to the

what type of Content Group

its contents while in case of a database, generating SQL queries of ty

query database for information. Both parsing and SQL queries generation is made based on

mappings information.

52

Figure 29: Package 3 – Create Mapping Activity Diagram

Package 4 – Query Generation and Content Import

This package has all use cases related to the Content Import process. This includes

Content Group User wants to import and, in case of a document, upload and parse

its contents while in case of a database, generating SQL queries of type select statements to

query database for information. Both parsing and SQL queries generation is made based on

Create Mapping Activity Diagram

Import

This includes choosing

to import and, in case of a document, upload and parse

pe select statements to

query database for information. Both parsing and SQL queries generation is made based on

Figure 30: Package 4 Use Case Diagram

 Import Content from Document

 When User wants to Import Content from a Document this document needs to have

already one mapping configuration previously specified by a

its type.

 Import Content from Database

 When User wants to

already one mapping configuration previously specified by a

 Log Process

 Every time an import process is run a log must be kept with important information such

as user that ran the process, time, and all valid and error messages returned by the process.

53

: Package 4 Use Case Diagram – Query Generation and Content Import

Content from Document

wants to Import Content from a Document this document needs to have

already one mapping configuration previously specified by a Developer already associated with

Import Content from Database

wants to Import Content from a Database this database needs to have

already one mapping configuration previously specified by a Developer.

Every time an import process is run a log must be kept with important information such

process, time, and all valid and error messages returned by the process.

Query Generation and Content Import

wants to Import Content from a Document this document needs to have

already associated with

Import Content from a Database this database needs to have

Every time an import process is run a log must be kept with important information such

process, time, and all valid and error messages returned by the process.

 SQL Select Generator

 Generates a select statement to run on a database to query information about Content to

import. This is done based on mappings.

 Change Mappings to be used

 Before running the import process, a Developer has also the possibility to choose what

mappings he wants to be used for this process.

Figure

 To better understand how the

see Figure 31. User starts by choosing the mapping configuration they need for the Document

54

Generator

Generates a select statement to run on a database to query information about Content to

This is done based on mappings.

Change Mappings to be used

Before running the import process, a Developer has also the possibility to choose what

mappings he wants to be used for this process.

Figure 31: Package 4 – Content Import Activity Diagram

To better understand how the workflow for the import process should be done you can

starts by choosing the mapping configuration they need for the Document

Generates a select statement to run on a database to query information about Content to

Before running the import process, a Developer has also the possibility to choose what

Content Import Activity Diagram

ow for the import process should be done you can

starts by choosing the mapping configuration they need for the Document

or database they want to import from (m

allows easy understanding for what they are for).

Groups the one witch the source has information about. After that it chooses the import option.

 If the source for previously selected mapping configuration is a Document, CIXE

the User to upload a file witch then is parsed based on specified mappings information. If it is a

Database then it will generate a query to retrieve required information, based on specified

mappings.

 4.1.5.2.5 Package 5

This package has all use cases related to the Conten

present in this package are extracting Content to a document, by generating a structured

document with Content information based on specified mappings, and to a da

generating SQL DML statements (insert, update, delete) with Content information based on

specified mappings.

Figure 32: Package 5 Use Case Diagram

55

or database they want to import from (mapping configurations should be named in a way that it

erstanding for what they are for). User then selects from a list of Content

Groups the one witch the source has information about. After that it chooses the import option.

If the source for previously selected mapping configuration is a Document, CIXE

to upload a file witch then is parsed based on specified mappings information. If it is a

Database then it will generate a query to retrieve required information, based on specified

Package 5 – Generation and Content Extraction

This package has all use cases related to the Content Extraction process. The main features

present in this package are extracting Content to a document, by generating a structured

document with Content information based on specified mappings, and to a da

generating SQL DML statements (insert, update, delete) with Content information based on

: Package 5 Use Case Diagram – Query Generation and Content Extraction

apping configurations should be named in a way that it

then selects from a list of Content

Groups the one witch the source has information about. After that it chooses the import option.

If the source for previously selected mapping configuration is a Document, CIXE asks

to upload a file witch then is parsed based on specified mappings information. If it is a

Database then it will generate a query to retrieve required information, based on specified

Extraction

t Extraction process. The main features

present in this package are extracting Content to a document, by generating a structured

document with Content information based on specified mappings, and to a database, by

generating SQL DML statements (insert, update, delete) with Content information based on

Query Generation and Content Extraction

 56

 Extract Content to Document

 When User wants to Extract Content to a Document, a mapping configuration to the

type it wants to extract to must already exist.

 Extract Content to Database

 When User wants to Extract Content to a Database this database needs to have already

one mapping configuration previously specified by a Developer.

 Log Process

 Every time an Extraction process is run a log must be kept with important information

such as user that ran the process, time, and all valid and error messages returned by the process.

 SQL DML Generator

 Generates SQL DML Insert, Update or Delete statements to run on a database to create

the Contents to extract. This is done based on mappings.

 Filter Content

 The extraction process can also be ran at anytime in application runtime when User

after specifying filters runs the extraction process

 Change Mappings to be used

 Before running the import process, a Developer has also the possibility to choose what

mappings he wants to be used for this process.

Figure 33

 To better understand how the workflow for the extraction process should be done you

can see Figure 33. User

Document or database they want to extract to (Mapping configurations should be named in a

way that it allows easy understanding for what they are for).

Content Groups the one he wishes to extract

Content is retrieve from the Content Repository.

 If the target for previously selected mapping configuration is a Document, CIXE

generate a structured document

then it will generate SQL DML statements that will create the extracted Content on target

database, based on specified mappings.

57

33: Package 5 – Content Extraction Activity Diagram

To better understand how the workflow for the extraction process should be done you

User starts by choosing the mapping configuration they need for the

Document or database they want to extract to (Mapping configurations should be named in a

way that it allows easy understanding for what they are for). User then selects from a list of

he wishes to extract. After that it chooses the

Content is retrieve from the Content Repository.

for previously selected mapping configuration is a Document, CIXE

generate a structured document based on specified mappings information. If it is a Database

SQL DML statements that will create the extracted Content on target

, based on specified mappings.

Content Extraction Activity Diagram

To better understand how the workflow for the extraction process should be done you

starts by choosing the mapping configuration they need for the

Document or database they want to extract to (Mapping configurations should be named in a

then selects from a list of

. After that it chooses the extract option. The

for previously selected mapping configuration is a Document, CIXE will

based on specified mappings information. If it is a Database

SQL DML statements that will create the extracted Content on target

 4.1.5.2.6 Package 6

This package has the use cases that a

its permissions but also list Content Repository Users and assign them roles.

Figure

 CRUD Capability

 The Administrator

functionality.

 CRUD Roles

 The Administrator

 Assign Role to a User

 After listing existent users and roles,

 By default every user has a

58

Package 6 – Administration

This package has the use cases that are responsible not only to create roles in this

its permissions but also list Content Repository Users and assign them roles.

Figure 34: Package 6 Use Case Diagram – Administration

CRUD Capability

Administrator can create capabilities that are required to limit access to some

Administrator can create roles and specify for each capability if it’s active or not.

Assign Role to a User

After listing existent users and roles, Administrator can assign a role to a user.

By default every user has a User role assigned.

to create roles in this system and set

its permissions but also list Content Repository Users and assign them roles.

Administration

can create capabilities that are required to limit access to some

can create roles and specify for each capability if it’s active or not.

can assign a role to a user.

4.2 CIXE Architecture Overview

From a conceptual point of view, CIXE needs to be a WEB based application to allow several

remote users to access it at the same time.

Figure

 CIXE needs to be able to connect to other databases and documents to

information and also to generate Documents and SQL DML scripts for databases. This Content

information transference is possible by defining mappings and associate transformation with

them, responsible not only for transforming between meta

transformations such as, for example, multiplying

59

CIXE Architecture Overview

From a conceptual point of view, CIXE needs to be a WEB based application to allow several

to access it at the same time.

Figure 35: CIXE Client – Server Architecture

Figure 36: CIXE Architecture Overview

to be able to connect to other databases and documents to

information and also to generate Documents and SQL DML scripts for databases. This Content

information transference is possible by defining mappings and associate transformation with

responsible not only for transforming between metadata but also allow other types of

transformations such as, for example, multiplying two attributes before saving it to the Content

From a conceptual point of view, CIXE needs to be a WEB based application to allow several

to be able to connect to other databases and documents to retrieve Content

information and also to generate Documents and SQL DML scripts for databases. This Content

information transference is possible by defining mappings and associate transformation with

data but also allow other types of

attributes before saving it to the Content

 60

Repository. In Figure 36 you can see an overview of CIXE components. During the Import and

Extraction process the Content information is represented in a generic format that is supported

by the Format Converter component.

4.2.1 Front Office – User Interface

CIXE needs to have a Front office so that users can interact with the system and all of its

functionalities. This component has all the interfaces for Use Cases determined during

requirement analysis.

4.2.2 CIXE Data Model

In CIXE data Model it’s stored all the important information for the application. This includes

information about Mappings and configurations of mappings for external databases, documents,

their access information, history and log for mappings configurations and administration.

4.2.3 Content Processor

The Content Processor is responsible for, for generating requests to retrieve Content information

and for transformations between Content Repository and other databases or documents

metadata.

 4.2.3.1 Format Converter

Format Converter is responsible for converting imported Content information from databases

and to a generic format and also to convert from that generic format to documents and

databases.

 4.2.3.2 Transformations

This component is responsible for applying Mapping’s transformations to the transferred

content. During the importing or extracting Content process, Content information is represented

in a generic format, and to this format are applied transformations to transform one metadata

structure to other metadata structure.

 61

 4.2.3.3 SQL Generator and Document Handler

With this component it is possible to generate SQL statements and also handle Documents’

Content information.

 4.2.3.3.1 During Import

During Import process, for databases, it is responsible for generating SQL Select statements

necessary for retrieving information from other databases. As for documents it is responsible for

parsing its contents. This parsing and generation is always done based on Databases and

Documents metadata and mappings information.

 4.2.3.3.2 During Extraction

During Extraction process, for databases, it is responsible for generating scripts of SQL DML

statements, necessary for creating extracted Contents in other databases. As for documents it is

responsible for generating its contents. This generation is always done based on mappings

information.

4.2.4 Import and Extraction Requests Processing Layer

The Requests layer handles all Import and Extraction requests and is responsible for

communicating and handling all the process with other layers.

 4.2.4.1 Object Connector

Object Connector component is responsible for connecting to databases using access

configurations, and for uploading the document to be processed for Content information.

 4.2.4.2 Import and Extraction Process

 A conceptual overview of Import process is shown in Figure

source, the Content Processor then, if a database is the source, generates SQL requests, if a

document parses its contents. This

between them. After that its contents are

mappings transformations are applied resulting in a

Repository metadata, allowing the application to save Contents

Figure

 Figure 38 shows a conceptual overview of Extraction process. After choosing Content

to Export, CIXE retrieves Content information from the Content Repository. At this time this

information is with Content Repository

transformations are applied resulting in a

allowing the application to generate SQL DML statements or documents with Content

information.

62

Import and Extraction Process

Figure 37: CIXE Import Process Overview

A conceptual overview of Import process is shown in Figure 37. After choosing Content

source, the Content Processor then, if a database is the source, generates SQL requests, if a

document parses its contents. This is always done taking into account mappings specified

between them. After that its contents are converted to a generic format. To this format,

mappings transformations are applied resulting in a structure equivalent to the Content

etadata, allowing the application to save Contents to the repository

Figure 38: CIXE Extraction Process Overview

shows a conceptual overview of Extraction process. After choosing Content

to Export, CIXE retrieves Content information from the Content Repository. At this time this

information is with Content Repository metadata structure. To this format mappings

transformations are applied resulting in a structured equivalent to the desired for extraction,

allowing the application to generate SQL DML statements or documents with Content

. After choosing Content

source, the Content Processor then, if a database is the source, generates SQL requests, if a

taking into account mappings specified

a generic format. To this format,

equivalent to the Content

to the repository.

shows a conceptual overview of Extraction process. After choosing Content

to Export, CIXE retrieves Content information from the Content Repository. At this time this

. To this format mappings

equivalent to the desired for extraction,

allowing the application to generate SQL DML statements or documents with Content

 63

4.3 System Modelling

Based on requirement analysis it was determined that CIXE has mainly five system logical

units:

1. Database and Document Metadata Repository

This repository is responsible for allowing representing, in its structure, metadata

information related to documents or databases that Content Repository has mappings specified.

2. Mappings Configuration Repository

In this module are saved all information about mappings and transformations necessary

to enable CIXE to know how it can map Content information between other databases and

documents metadata.

3. Mappings Configuration History

Because there is a necessity of keeping an history of mapping configurations, this

module is responsible for that. This way it is possible to know every change that was made for

each mapping configuration and what user was responsible for that.

4. Import and Extraction process Log

Import and Extraction process lead with enormous amount of data, something can go

wrong and make the process end badly. Because of this type of problems, it is imperative to

keep a log of this process. CIXE must be able to keep a log of any problems that occur during

the process, with messages that can help to understand what happened, and then more easily

solve the problem.

5. Role Management

 This is responsible for keeping information about CIXE capabilities, representing roles

available in the system and allowing assigning them to Content Repository Users.

 All of the described modules belong to CIXE domain and will be described in the

following sections using UML Modelling. For a final representation of the complete UML

model of this please refer to Appendix A.

4.3.1 Database and Document Metadata Reposit

In Figure 39 a representation of the class diagram of the structure used so save all information

about the objects which metadata can be mapped to the Content Repository.

Figure 39: Database and Document Metadata

 The Objects that need to be mapped to the Content Repository are Databases and

Documents.

 A database has important information required to allow CIXE connecting to it such as

server name, the port it uses for communication, the name

metadata and Content information are), the username and the password used authenticate in the

database server.

 As for documents, because CIXE doesn’t have to save the documents itself the only

information that’s necessary

CIXE. A document can be of different formats but the main formats that required to be

supported by CIXE are Excel documents, and Flat Files. For Flat files there is a need to know

which is the character used to separate information.

 An Object has associated Metadata

and Flat files can be represented with a set of Entities (tables) and Attributes (columns). Every

Entity can have a set of Attributes. Required Attribute information is its name (description), data

64

Database and Document Metadata Repository

a representation of the class diagram of the structure used so save all information

about the objects which metadata can be mapped to the Content Repository.

: Database and Document Metadata Repository UML Model

The Objects that need to be mapped to the Content Repository are Databases and

A database has important information required to allow CIXE connecting to it such as

server name, the port it uses for communication, the name of the schema (this is where the

metadata and Content information are), the username and the password used authenticate in the

As for documents, because CIXE doesn’t have to save the documents itself the only

information that’s necessary to save is the type of documents that are to be available to use with

CIXE. A document can be of different formats but the main formats that required to be

supported by CIXE are Excel documents, and Flat Files. For Flat files there is a need to know

is the character used to separate information.

An Object has associated Metadata. Metadata for database and documents like Excel’s

and Flat files can be represented with a set of Entities (tables) and Attributes (columns). Every

Attributes. Required Attribute information is its name (description), data

a representation of the class diagram of the structure used so save all information

about the objects which metadata can be mapped to the Content Repository.

Repository UML Model

The Objects that need to be mapped to the Content Repository are Databases and

A database has important information required to allow CIXE connecting to it such as

of the schema (this is where the

metadata and Content information are), the username and the password used authenticate in the

As for documents, because CIXE doesn’t have to save the documents itself the only

to save is the type of documents that are to be available to use with

CIXE. A document can be of different formats but the main formats that required to be

supported by CIXE are Excel documents, and Flat Files. For Flat files there is a need to know

. Metadata for database and documents like Excel’s

and Flat files can be represented with a set of Entities (tables) and Attributes (columns). Every

Attributes. Required Attribute information is its name (description), data

type, if it is a primary key, precision and scale, if a numeric value, and attribute’s default value.

Because of XML documents metadata, it was added a self

child. XML Entities can have other

4.3.2 Mappings Configuration Repository

Mappings Configurations are what allows the user to create configurations with groups of

mappings and transformations necessary for mapping Con

databases/documents and the

Figure 40

 Several MappingConfigurations

users. Something to take into account is that these configurations can be made for different

Versions of ALERT® products

start, MappingConfigurations can have several MappingContents. A MappingContent class

allows mapping to a certain Content Entity of a database or document,

an ID for the Entity and specify to what type of concept this Entity r

65

type, if it is a primary key, precision and scale, if a numeric value, and attribute’s default value.

Because of XML documents metadata, it was added a self-association for Entity

child. XML Entities can have other Entities as Childs, and so on.

Mappings Configuration Repository

Mappings Configurations are what allows the user to create configurations with groups of

mappings and transformations necessary for mapping Content information between

databases/documents and the Content Repository.

40: Mappings Configuration Repository UML Model

MappingConfigurations can be created in accordance to the necessities of the

ething to take into account is that these configurations can be made for different

Versions of ALERT® products and Object configurations can be used in many Versions

start, MappingConfigurations can have several MappingContents. A MappingContent class

allows mapping to a certain Content Entity of a database or document, which

an ID for the Entity and specify to what type of concept this Entity refers to.

type, if it is a primary key, precision and scale, if a numeric value, and attribute’s default value.

association for Entity class named

Mappings Configurations are what allows the user to create configurations with groups of

tent information between

: Mappings Configuration Repository UML Model

can be created in accordance to the necessities of the

ething to take into account is that these configurations can be made for different

Object configurations can be used in many Versions. To

start, MappingConfigurations can have several MappingContents. A MappingContent class

which attribute works as

efers to.

 ContentGoup allows users to group MappingContent by what

the Content Repository they belong to such as, for example, Diagnoses, Analysis or Procedures

group MappingContents. In the Content Repository, inside that type the

Contents and those are identified by conceptType.

 MappingContents can be reused in different MappingConfigurations so, for example,

when creating a new MappingConfiguration for a new product Version, that possibly comes

with a new object with new metadata, users can specify a source MappingConfiguration and

business logics are responsible for checking compatibility of each MappingContent with the

new Object’s metadata, saving the ones that are really necessary. MappingContent can

many Mappings defined for the Entity it refers to.

 Mappings allow user to specify correspondences between Content Repository’s

Attributes and other databases or documents’ Attributes. These Mappings can be internal or not,

meaning that if it uses on

information related information from other Entities it’s external. Being external, a Mapping has

Connectors that allow specifying the attributes that relates the two Entities. To each M

Transformations are associated, one

 4.3.2.1 Custom Mapping Types

 Using as basis the Adaptive Object pattern

functionality of allowing users to create new custom types

pattern allows dynamically specifying new business entities to the system in runtime. In this

case TypeObject is used to separate mappings of mapping types. Mappings have properties,

which are also implemented with TypeObje

types of mappings can be made by an user interface. The final result is what is called

TypeSquare and is represented in Figure

Figure

 With this kind of representation it is possible to CIXE to have an environment where

users not only can create new MappingTypes and PropertyTypes they think are necessary, but

66

ContentGoup allows users to group MappingContent by what Universe

they belong to such as, for example, Diagnoses, Analysis or Procedures

In the Content Repository, inside that type there are lots of subtypes of

Contents and those are identified by conceptType.

MappingContents can be reused in different MappingConfigurations so, for example,

when creating a new MappingConfiguration for a new product Version, that possibly comes

ew object with new metadata, users can specify a source MappingConfiguration and

business logics are responsible for checking compatibility of each MappingContent with the

new Object’s metadata, saving the ones that are really necessary. MappingContent can

many Mappings defined for the Entity it refers to.

Mappings allow user to specify correspondences between Content Repository’s

Attributes and other databases or documents’ Attributes. These Mappings can be internal or not,

meaning that if it uses only information from the mapped Entity, it’s internal, but if also uses

information related information from other Entities it’s external. Being external, a Mapping has

onnectors that allow specifying the attributes that relates the two Entities. To each M

Transformations are associated, one for Import and another one for Extraction.

ustom Mapping Types Support

Using as basis the Adaptive Object pattern 41 as an approach, CIXE supports the

functionality of allowing users to create new custom types of mappings. TypeObject

pattern allows dynamically specifying new business entities to the system in runtime. In this

case TypeObject is used to separate mappings of mapping types. Mappings have properties,

which are also implemented with TypeObject pattern using PropertyType. Specification of new

types of mappings can be made by an user interface. The final result is what is called

TypeSquare and is represented in Figure 41.

Figure 41: Mapping Types TypeSquare Diagram

With this kind of representation it is possible to CIXE to have an environment where

users not only can create new MappingTypes and PropertyTypes they think are necessary, but

Universe of Contents of

they belong to such as, for example, Diagnoses, Analysis or Procedures

re are lots of subtypes of

MappingContents can be reused in different MappingConfigurations so, for example,

when creating a new MappingConfiguration for a new product Version, that possibly comes

ew object with new metadata, users can specify a source MappingConfiguration and

business logics are responsible for checking compatibility of each MappingContent with the

new Object’s metadata, saving the ones that are really necessary. MappingContent can have

Mappings allow user to specify correspondences between Content Repository’s

Attributes and other databases or documents’ Attributes. These Mappings can be internal or not,

ly information from the mapped Entity, it’s internal, but if also uses

information related information from other Entities it’s external. Being external, a Mapping has

onnectors that allow specifying the attributes that relates the two Entities. To each Mapping 2

Extraction.

as an approach, CIXE supports the

of mappings. TypeObject [TOP09]

pattern allows dynamically specifying new business entities to the system in runtime. In this

case TypeObject is used to separate mappings of mapping types. Mappings have properties,

ct pattern using PropertyType. Specification of new

types of mappings can be made by an user interface. The final result is what is called

With this kind of representation it is possible to CIXE to have an environment where

users not only can create new MappingTypes and PropertyTypes they think are necessary, but

also create instances of that types to be used in Mappings

example of TypeObject patern, transformations and transformation templates (types) exist.

 Every MappingType has two transformation files templates associated with it, one for

import and another one for extraction. Proper

template. PropertyTypes in the transformations source code are represented with their name and

in a format that allows to easily identifying them.

 When creating a new Mapping of a certain MappingType, all the

defined for that Mapping (based on MappingTypes’ PropertyTypes), are used to replace its

correspondent PropertType occurrence in the transformation template source code.

4.3.3 Mappings Configuration History

Figure

It is important to have the possibility of viewing what changes users made in Mappings

Configurations. If something wrong happens during import or extraction when processing some

Mapping, there is a way of ch

something went wrong.

 Each MappingConfiguration has a MappingConfigurationHistory associated with it.

This MappingConfigurationHistory has many ComponentHistories.

 ComponentHistory is an h

relates to all different components that directly and indirectly interact with

MappingConfigurations. A History of Metadata, Entity, Attribute and Mapping changes is

maintained. Because of situa

67

also create instances of that types to be used in Mappings Configurations. Also following the

example of TypeObject patern, transformations and transformation templates (types) exist.

Every MappingType has two transformation files templates associated with it, one for

import and another one for extraction. PropertyTypes of one MappingType can be used in this

template. PropertyTypes in the transformations source code are represented with their name and

in a format that allows to easily identifying them.

When creating a new Mapping of a certain MappingType, all the

defined for that Mapping (based on MappingTypes’ PropertyTypes), are used to replace its

correspondent PropertType occurrence in the transformation template source code.

Mappings Configuration History

Figure 42: Mappings Configuration History UML Model

It is important to have the possibility of viewing what changes users made in Mappings

Configurations. If something wrong happens during import or extraction when processing some

Mapping, there is a way of checking past changes. That might be enough to find the reason why

Each MappingConfiguration has a MappingConfigurationHistory associated with it.

This MappingConfigurationHistory has many ComponentHistories.

ComponentHistory is an history of changes of a certain component of the database that

relates to all different components that directly and indirectly interact with

MappingConfigurations. A History of Metadata, Entity, Attribute and Mapping changes is

maintained. Because of situations that an user action such as, for example, replacing an attribute

Configurations. Also following the

example of TypeObject patern, transformations and transformation templates (types) exist.

Every MappingType has two transformation files templates associated with it, one for

tyTypes of one MappingType can be used in this

template. PropertyTypes in the transformations source code are represented with their name and

When creating a new Mapping of a certain MappingType, all the Properties values

defined for that Mapping (based on MappingTypes’ PropertyTypes), are used to replace its

correspondent PropertType occurrence in the transformation template source code.

: Mappings Configuration History UML Model

It is important to have the possibility of viewing what changes users made in Mappings

Configurations. If something wrong happens during import or extraction when processing some

ecking past changes. That might be enough to find the reason why

Each MappingConfiguration has a MappingConfigurationHistory associated with it.

istory of changes of a certain component of the database that

relates to all different components that directly and indirectly interact with

MappingConfigurations. A History of Metadata, Entity, Attribute and Mapping changes is

tions that an user action such as, for example, replacing an attribute

by another, this record of Component History would have one more ComponentRelated for that

action. ComponentRelated is generically representing Metadata, Entity, Attribute and Mapping

classes.

4.3.4 Import and Extraction process Log

Figure

CIXE must be able to keep a log of any problems that occur during the process, with

messages that can help to understand what happened,

Having that in mind a MappingConfiguration have many ProcessLog where all error, or alert

messages are stored.

ProcessLog Class is a Superclass for Import and Extraction process Log. The Import

and Extraction process are made based on mappings, because of that reason the ProcessLog has

many MappingLog that keep information important for the logging process such as generic

Message to be presented to the user, HelpfullInformation that contain error messages from the

business logic with extra information (this can be a possible cause for this situation, or a Stack

Dump), the user that ran the process and the date that this occurred.

68

by another, this record of Component History would have one more ComponentRelated for that

action. ComponentRelated is generically representing Metadata, Entity, Attribute and Mapping

Import and Extraction process Log

Figure 43: Import and Extraction process Log

CIXE must be able to keep a log of any problems that occur during the process, with

messages that can help to understand what happened, and then more easily solve the problem.

Having that in mind a MappingConfiguration have many ProcessLog where all error, or alert

ProcessLog Class is a Superclass for Import and Extraction process Log. The Import

are made based on mappings, because of that reason the ProcessLog has

many MappingLog that keep information important for the logging process such as generic

Message to be presented to the user, HelpfullInformation that contain error messages from the

iness logic with extra information (this can be a possible cause for this situation, or a Stack

Dump), the user that ran the process and the date that this occurred.

by another, this record of Component History would have one more ComponentRelated for that

action. ComponentRelated is generically representing Metadata, Entity, Attribute and Mapping

CIXE must be able to keep a log of any problems that occur during the process, with

and then more easily solve the problem.

Having that in mind a MappingConfiguration have many ProcessLog where all error, or alert

ProcessLog Class is a Superclass for Import and Extraction process Log. The Import

are made based on mappings, because of that reason the ProcessLog has

many MappingLog that keep information important for the logging process such as generic

Message to be presented to the user, HelpfullInformation that contain error messages from the

iness logic with extra information (this can be a possible cause for this situation, or a Stack

4.3.5 Role Management

 Content Repository haves a user management package. This is responsible for keeping

information about CIXE capabilities, representing roles available in the system and allowing

assigning them to Content Repository Users.

 Capability represents functionality. A

or not. Roles are then assigned to users

4.4 Summary

After surveying for requirements the team that will need the tool

an architecture and domain model

 The proposed solution

from the Content Repository

with log and history, responsible for the management of mappings and transformations between

Content Repository and other d

types.

 Mappings and transformations are required for the tool to know what to do with the data

from one point to another in the import

to specify what Content information

what transformations to apply to them. In Extraction process,

needed to transform information into the target metadata for then creating extracted Contents on

a document with a parser, or

69

Role Management

Figure 44: Role Management UML Model

ent Repository haves a user management package. This is responsible for keeping

information about CIXE capabilities, representing roles available in the system and allowing

assigning them to Content Repository Users.

Capability represents functionality. A Role has defined for each Capability if it is active

or not. Roles are then assigned to users

After surveying for requirements the team that will need the tool, and determining all use cases,

architecture and domain model for the tool were proposed to meet those requirements.

solution for allowing import to the Content Repository and extraction

from the Content Repository is a web application that has an underlying Configurations module

responsible for the management of mappings and transformations between

Content Repository and other databases or documents metadata with support for new mapping

appings and transformations are required for the tool to know what to do with the data

from one point to another in the import and extraction process. These are used in Import process

Content information to query from databases or to parse from

what transformations to apply to them. In Extraction process, these are used to specify rules

to transform information into the target metadata for then creating extracted Contents on

, or on a database with SQL DML Scripts.

ent Repository haves a user management package. This is responsible for keeping

information about CIXE capabilities, representing roles available in the system and allowing

Role has defined for each Capability if it is active

and determining all use cases,

to meet those requirements.

import to the Content Repository and extraction

a web application that has an underlying Configurations module,

responsible for the management of mappings and transformations between

with support for new mapping

appings and transformations are required for the tool to know what to do with the data

ction process. These are used in Import process

or to parse from documents as well

these are used to specify rules

to transform information into the target metadata for then creating extracted Contents on

 70

Chapter 5

CIXE - Prototype Development

A fully functional prototype of CIXE was developed in order to make a proof of concept for the

proposed solution. Here are presented the architecture, technologies and implementation

decisions for prototype implementation.

5.1 Implementation Decisions

5.1.1 XML as Generic format during Import and Extraction process

The generic format referred in section 4.2 used for representing Content information during

Import and Extraction process is required for representing Contents from any format in a format

that is unique without loss of information.

 The chosen format for this representation was XML because its structure allows

working with an Entity and Attribute based metadata and apply rules of transformations from a

XML representation to a different one by using XSLT.

5.1.2 XSLT for Mapping and transformations

 For mechanism of Content Import and Extraction it was decided to use mappings and

transformations of metadata between the source and the target from this process. This is done

using XSLT as basis for implementing transformations to metadata structure. It is possible to

make use of its possibilities for applying not only metadata transformations but also operational

transformations, such as, adding two attribute’s values

Figure

 Outside Content information format is converted to XML format, then XSLT

transformation rules defined in mappings are applied to it and a new format is generated which

has the same metadata as the Content Reposi

5.1.3 Adobe FLEX Framework for interface

Adobe Flex was a requirement because it’s the user interface of the Content Repository and will

be used in all future ALERT® applications.

5.1.4 Java as business logic and middleware

CIXE has a lot of XSLT processing in

because current XSLT processor in

Saxon [SAXN09], a Java SE based XSLT processor.

5.1.5 Hibernate for ORM and XRM

Hibernate [HBNT09] was chosen for da

it allows the development using Object Relational Mapping between Java SE classes. One of the

main features that were the reason for choosing Hibernate is its capability for XML Relational

Mapping. This allows automatically mapping a XML Document’s metadata to a database

metadata. This helps in the Import and Extraction process because Content Repository

information in XML format can be automatically mapped to the database layer.

71

make use of its possibilities for applying not only metadata transformations but also operational

such as, adding two attribute’s values and define a resulting metadata.

Figure 45: Content Information Representation Overview

Outside Content information format is converted to XML format, then XSLT

transformation rules defined in mappings are applied to it and a new format is generated which

has the same metadata as the Content Repository.

Adobe FLEX Framework for interface

Adobe Flex was a requirement because it’s the user interface of the Content Repository and will

be used in all future ALERT® applications.

Java as business logic and middleware

CIXE has a lot of XSLT processing in its backbone so Business logic is implemented in Java SE

because current XSLT processor in XSLT latest version (2.0) with the best performance is

a Java SE based XSLT processor.

Hibernate for ORM and XRM

] was chosen for data persistence between Java and Database layer because

it allows the development using Object Relational Mapping between Java SE classes. One of the

main features that were the reason for choosing Hibernate is its capability for XML Relational

s allows automatically mapping a XML Document’s metadata to a database

metadata. This helps in the Import and Extraction process because Content Repository

information in XML format can be automatically mapped to the database layer.

make use of its possibilities for applying not only metadata transformations but also operational

and define a resulting metadata.

Content Information Representation Overview

Outside Content information format is converted to XML format, then XSLT

transformation rules defined in mappings are applied to it and a new format is generated which

Adobe Flex was a requirement because it’s the user interface of the Content Repository and will

its backbone so Business logic is implemented in Java SE

latest version (2.0) with the best performance is

ta persistence between Java and Database layer because

it allows the development using Object Relational Mapping between Java SE classes. One of the

main features that were the reason for choosing Hibernate is its capability for XML Relational

s allows automatically mapping a XML Document’s metadata to a database

metadata. This helps in the Import and Extraction process because Content Repository

information in XML format can be automatically mapped to the database layer.

5.1.6 Oracle as database

Oracle Database is the default database used by all ALERT ® applications and was a

requirement because it’s the

5.2 Implemented

This section talks about the architecture defined for implementing this solution.

5.2.1 Logical Architecture

Logical architecture for CIXE is divided in three layers: User Interface, Business Logic and

Database.

 One thing that was asked to take into account is the use of open source technologies in

my decisions of technologies to use, but also I could use technologies that they already have

licenses to, which is the case for Oracle Database and Adobe Flex.

 Content Repository uses for its user interface Adobe Flex so this had to be the same for

CIXE Module User interface. Interface layer communicates with Business Logic layer using

Flash Remoting. Flash Remoting is a Flas

defined in the Business Logic Layer.

 Java was chosen for the reasons referred in section

 Hibernate was chosen for the reasons referred in section

72

Oracle as database

le Database is the default database used by all ALERT ® applications and was a

requirement because it’s the database used in all ALERT® applications.

Implemented Architecture

This section talks about the architecture defined for implementing this solution.

Logical Architecture and integration with Content Repository

Logical architecture for CIXE is divided in three layers: User Interface, Business Logic and

thing that was asked to take into account is the use of open source technologies in

my decisions of technologies to use, but also I could use technologies that they already have

licenses to, which is the case for Oracle Database and Adobe Flex.

Figure 46: Logical Architecture Diagram

Content Repository uses for its user interface Adobe Flex so this had to be the same for

CIXE Module User interface. Interface layer communicates with Business Logic layer using

lash Remoting is a Flash architecture that allows Flex to access business rules

defined in the Business Logic Layer.

Java was chosen for the reasons referred in section 5.1.4.

was chosen for the reasons referred in section 5.1.5.

le Database is the default database used by all ALERT ® applications and was a

This section talks about the architecture defined for implementing this solution.

and integration with Content Repository

Logical architecture for CIXE is divided in three layers: User Interface, Business Logic and

thing that was asked to take into account is the use of open source technologies in

my decisions of technologies to use, but also I could use technologies that they already have

Content Repository uses for its user interface Adobe Flex so this had to be the same for

CIXE Module User interface. Interface layer communicates with Business Logic layer using

h architecture that allows Flex to access business rules

 Database layer uses Oracle Database, for the reasons referred in section

5.2.2 Physical Architecture

Content Repository CIXE Architecture is based in a Client

 As the Content Repository, CIXE has a physical dispersion that consists in a user

in a workstation that accesses the application using a WEB Browser

HTML and Flash technologies.

 CIXE application

this application available to

Java SE server side component

73

Database layer uses Oracle Database, for the reasons referred in section

Physical Architecture

CIXE Architecture is based in a Client – Server configuration.

Figure 47: Physical Architecture Diagram

As the Content Repository, CIXE has a physical dispersion that consists in a user

accesses the application using a WEB Browser that is compatible with

and Flash technologies.

plication file is in a Server Machine with a Web Server responsible for making

this application available to remote users. ALERT’s default Web Server for applications with

server side component for business logic, which is the case of CIXE, is Apache Tomcat

Database layer uses Oracle Database, for the reasons referred in section 5.1.6.

Server configuration.

As the Content Repository, CIXE has a physical dispersion that consists in a user being

that is compatible with

erver responsible for making

erver for applications with an

, which is the case of CIXE, is Apache Tomcat

[TCAT09]. This Server Mac

management.

5.3 User Interface Layer

CIXE interface was implemented in Flex and Actionscript as interface’s

application is composed by lots of screens that

Figure

 Figure 48 gives an idea of how

files are not represented).

for each feature is presented.

5.3.1 Import

These are interface components

• List Documents Mappings configurations

• Upload Document

• List Databases

• List Content Groups (from Mappings Configurations)

74

This Server Machine also has a Database Server with Oracle responsible for data

User Interface Layer

CIXE interface was implemented in Flex and Actionscript as interface’s

application is composed by lots of screens that illustrate implemented features logical units.

Figure 48: Overview implemented Interface

gives an idea of how the implemented interfaces are structured

 In the following sections a list of implemented interface components

for each feature is presented.

terface components to help user in the Import process.

List Documents Mappings configurations (from Mappings Configurations)

Upload Document form

List Databases Mappings configurations (from Mappings Configurations)

List Content Groups (from Mappings Configurations)

hine also has a Database Server with Oracle responsible for data

CIXE interface was implemented in Flex and Actionscript as interface’s backoffice. The

features logical units.

are structured (actual class

interface components

(from Mappings Configurations)

(from Mappings Configurations)

 75

• Import Content

 These interfaces were implemented following the specified requirements in Package 4

of the system in section 4.1.5.2.4.

5.3.2 Extraction

These are interface components to help user in the Extraction process.

• List Documents Mappings configurations (from Mappings Configurations)

• List Databases Mappings configurations (from Mappings Configurations)

• List Content Groups (from Mappings Configurations)

• Extract Content

 These interfaces were implemented following the specified requirements in Package 5

of the system in section 4.1.5.2.5.

5.3.3 Access Configurations

These are interface components that allow users to create database access and document types

configurations.

• List Documents Types configurations

• Create / Edit /Delete Document Types configurations form

• List Database Access configurations

• Create/ Edit /Delete Database Access configurations form

 These interfaces were implemented following the specified requirements in Package 1

of the system in section 4.1.5.2.1.

5.3.4 Mappings Configurations

These are interfaces used to help in the mapping process. This folder includes other folders with

interface files. Metadata Viewer – for interfaces that implement Metadata viewing of database

and files feature; Mapping – for interfaces related for operating with mappings and mapping

types.

• List Documents Mappings configurations

• List Databases Mappings configurations

• Create/Edit/Delete Mapping configurations form

 76

• List Content Groups

• Create/Edit/Delete Content Groups form

• Present Entities Metadata

• View History

• View Logs

� Metadata Viewer

• List Entities

• Present Entity Metadata in form of a table

� Mapping

• List Mappings

• Create/Edit/Delete Mapping form

• List Mappings Types

• Create/Edit/Delete Mapping Types form

 Form for creating new mapping from a mapping type needs to be built dynamically,

taking into account the TypeSquare information referred in section 4.3.2.1 of the system model.

This TypeSquare has property types associated with mapping types. To solve this necessity,

when accessing the screen for creating a new mapping instance from a mapping type, interface

was implemented so that it will check each property types dataType attribute, and by that decide

what kind of component to present to the user.

 Some examples of dataTypes and respective components to show:

• Entity: shows a combo box with a list of entities as datasource

• Attribute: shows a combo box with a list of attributes as datasource

• Concept: shows a combo box with a list of concepts as datasource

• varchar: shows a text input box

 These interfaces were implemented following the specified requirements in Package 2

and 3 of the system in sections 4.1.5.2.2 and 4.1.5.2.3, respectively.

5.3.5 Role Management

These are interface components that allow the Administrator to manage system roles and

capabilities that control the components that are available to users.

• List Content Repository Users

• List and Create / Edit /Delete Roles

• List and Create / Edit /Delete Capabilities

• Assign roles to users.

 These interfaces were implemented following the specified requirements in Package 6

of the system in section 4.1.5.2.6

5.3.6 Value Objects

Value Objects are Actionscript classes

attributes and methods, in order to allow communication of the interface with the Business

Logic layer.

5.4 Business Logic Layer

This layer is implemented in Java SE and

implementing application functionalities.

implemented with an overview

Figure

 CIXE Business Logic Layer

Communication and Engine.

77

Assign roles to users.

These interfaces were implemented following the specified requirements in Package 6

4.1.5.2.6.

Value Objects are Actionscript classes that are mapped to Java SE classes, with the same name,

attributes and methods, in order to allow communication of the interface with the Business

Business Logic Layer

This layer is implemented in Java SE and is responsible for defining all business rules for

implementing application functionalities. Figure 49 illustrates the how this layer was

an overview of class file structure.

Figure 49: Overview of implemented Business logic

CIXE Business Logic Layer is organized in three main modules. These are Utilities,

Communication and Engine. Hibernate mappings folder has all necessary mapping

These interfaces were implemented following the specified requirements in Package 6

that are mapped to Java SE classes, with the same name,

attributes and methods, in order to allow communication of the interface with the Business

is responsible for defining all business rules for

how this layer was

three main modules. These are Utilities,

Hibernate mappings folder has all necessary mapping

configuration files to map not only class objects from Java to da

also nodes of XML documents.

5.4.1 Business Logic

This module is responsible

 As it was mentioned

layer using Value Objects

classes have associated with them

 Communication and persistence with Content

done with Hibernate by mapping Java classes

database mapping feature of Hibernate,

document entities to relational database enti

an associated Data Access Object pattern [

operations to that mapped Java class.

Figure

78

configuration files to map not only class objects from Java to database tables and attributes but

also nodes of XML documents.

Business Logic Communication

This module is responsible for communication between Business Logic and other layers.

mentioned earlier in section 5.3.6, Flex communicates with Business Logic

using Value Objects (actionscript classes) that are mapped to Java c

classes have associated with them related to them are stored in flex folder.

Communication and persistence with Content Repository and CIXE database layer is

by mapping Java classes and XML entities to database entities

feature of Hibernate, makes it easier to map information

entities to relational database entities. Each one of classes mapped by hibernate

Data Access Object pattern [DAOP09] based class that is responsible for CRUD

operations to that mapped Java class.

Figure 50: Overview of Business logic communication

tabase tables and attributes but

usiness Logic and other layers.

communicates with Business Logic

are mapped to Java classes. These Java

Repository and CIXE database layer is

to database entities. XML to

makes it easier to map information from XML

mapped by hibernate have

that is responsible for CRUD

communication

 79

5.4.2 Application Utilities Components

 Business Logic for Content information workflow during Content Import and

Extraction processes requires certain components to serve as support for handling the

information transferred between Content Repository and other Objects. These utilities include

functionalities, such as:

• Connecting to a document and retrieve metadata information

• Converting Content information to XML format

• Apply transformations to Content information in XML format resulting in a new XML

format possibly with new metadata

• Generating Documents from a XML document

• Generating SQL statements

o Select statements for creating queries that will get information from databases

o DML statements for creating, updating or removing Content information from a

database.

 5.4.2.1 Connection

CIXE is able to connect to other objects.

 Databases

 Connection to other databases is made by using a JDBC connector compatible with the

type of the database you are trying to connect. For the time being this is supported for Oracle

and MySQL.

 Documents

 As for documents, these need to be uploaded to the server so that the application is able

to open the document.

 5.4.2.2 Metadata Extraction

After connection, CIXE is able to extract metadata information from other databases and

documents that will have Content information that needs to be mapped to Content Repository.

 Databases

 Getting metadata information from databases requires making queries to specific system

tables that have information about entities and attributes that can be saved to CIXE metadata

model represented in section 4.3.1.

 80

 Oracle database metadata from tables of the user that is currently connected can be

retrieved with the following statement:

Table 3: Retrieving Oracle Metadata

select m.table_name, m.column_name, m.data_type,

m.nullable, m.data_precision

from user_tab_cols m

 As for MySQL the same is possible with the following statement:

Table 4: Retrieving MySQL Metadata

select m.table_name, m.column_name, m.data_type,

m.nullable, m.data_precision

from information_schema.columns m

 Documents

 As for documents, in order to get their metadata, they need to be parsed by the

application.

 Flat Files are simply parsed taking into account a separator character. These are

considered Entities and the first line of information are associated attribute names.

 Excel documents are parsed with a library called Apache POI [APOI09]. This is the

most complete open source Excel document processor for Java. With this library we can retrieve

information from Excel. When parsing Excel documents, these are considered as databases

where each sheet is represented by an entity. The first line of each sheet is considered as

entities’ attributes.

 5.4.2.3 Content Extraction

After connection, CIXE can extract Content information from other databases or documents.

The Entities and Attributes required for extracting Content from them are the ones that are used

in mappings as properties.

 We start by determining a list of Entities and Attributes that are used in mappings and

attributes used as Connectors (in case of an external mappings), including their respective

Entities.

 Databases

 To extract Content from a database it is necessary to generate a SQL Select statement

with Entities and Attributes from mappings and connectors. XSLT SQL Generation referred in

 81

section 5.4.2.7 has a module that does this by receiving the list of Entities, Attributes and

Connectors and returning the resulting SQL Select Statement.

 Documents

 As for documents they need to be parsed the same as referred in section 5.4.2.2 in order

to extract Content information.

 5.4.2.4 XML Conversion

After Content Extraction, Content information is converted to a generic format, namely XML.

 Databases

 After extraction from other databases, Content information is represented in a

ResultSet1 so this is converted to XML.

 Documents

 After extraction from documents, information is parsed and converted to XML.

 The structure used for representing Content information in XML is something like this:

Table 5: Content Information XML representation example

<?xml version="1.0" encoding="UTF-8" ?>
<CONTENTS>
 <CONTENT>
 <ID_DIAG type=”numeric”>4233</ID_DIAG>
 <ID_DIAG_PARENT type=”numeric”>2323</ID_ DIAG_PARENT>
 <AGE_MIN type=”numeric”>8</AGE_MIN>
 <AGE_MAX type=”numeric”>35</AGE_MAX>
 <GENDER type=”varchar”>M</GENDER>
 ...
 </CONTENT>
 ...
</CONTENTS>

 5.4.2.5 Mappings XSLT Transformations

Mappings have associated two transformations (one for Import and another one for Extraction)

that consist on XSLT transformation source code used for transforming Content information

from one metadata to another when importing or extracting.

1 ResulSet – Java Platform SE class usually for dealing with results from queries to databases

 82

 5.4.2.5.1 Generating Transformations from templates

Transformations for mappings instances are generated from their correspondent mapping type

transformations templates. This process consists in parsing transformation templates and

replacing property types occurrences by the property instance values.

 Take by example a mapping type with property types, identifier and value_type with

property instances values of ID_DIAG and varchar, respectively, for a certain mapping.

Table 6: Transformation Template example

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="CONTENTS">

<structure>
 <xsl:for-each select="CONTENT">
 <example>
 <ID_TEMP>
 <xsl:value-of select="$(identifier)"/>
 </ID_TEMP>
 <VALUETYPE>$(value_type)</VALUETYPE>
 </example>
 </xsl:for-each>
</structure>

</xsl:template>
</xsl:stylesheet>

 For an Import transformation like the one in Table 6, the process for generating the

transformation instance from a template will parse the document for values between $(…) and

change occurrences according to property_type names.

 The resulting transformation is illustrated in Table 7. This transformation is ready to be

applied to a XML document.

Table 7: Transformation example

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="CONTENTS">

<structure>
 <xsl:for-each select="CONTENT">
 <example>
 <ID_TEMP>
 <xsl:value-of select="ID_DIAG"/>
 </ID_TEMP>
 <VALUETYPE>varchar</VALUETYPE>
 </example>
 </xsl:for-each>
</structure>

 83

</xsl:template>
</xsl:stylesheet>

 5.4.2.5.2 Applying Transformations

Applying transformations to a XML formats generates a new XML document with new

metadata. For example if we apply Table 7 transformation to Table 5 XML we obtain Table 8

XML.

 Table 8: Transformed XML

<structure>
 <example>
 <ID_TEMP>
 4233
 </ID_TEMP>
 <VALUETYPE>varchar</VALUETYPE>
 </example>
 ...
</structure>

 5.4.2.6 Document Generation

CIXE generates documents by converting from a XML format to Excel using Apache POI

parser or Flat Files using a flat file parser.

 5.4.2.7 XSLT SQL Generation

At its core, XSLT is a templating language. It takes XML as input, and then uses a set of

templates to transform the XML into XML, HTML, or text.

 XSLT SQL Generator was implemented for generating SQL select statements required

when retrieving information from other databases. Also it is used for generating insert, update

and delete statements scripts for when extracting Content information from the Content

Repository to other databases. SQL Generator receives an XML document with parameters that

then are converted to SQL statements.

 Table 9: Example of Parameter XML for SQL Generator

<select>
 <entity name=”DIAGNOSES”>
 <attribute name=”ID”>
 </entity>

 84

 <entity name=”TRANSLATION”>
 <attribute name=”DESC”>
 </entity>
 <join>
 <source entity=”DIAGNOSES” attribute=”CODE_DIAG”>

 <target entity=”TRANSLATION” attribute=”CODE_T”>
 </join>
</select>

 After applying XSLT transformations for code generation this would result in a

statement like the one in table 10.

 Table 10: SQL Generator Example Result

select DIAGNOSES.ID, translation.DESC
from diagnoses, translation
where diagnoses.CODE_DIAG=translation.CODE_T

 For DML statements it works the same way. With a parameterization file we get the

final statement after applying transformations for code generation.

5.4.3 Engine

CIXE Engine module is responsible for the business logic necessary for controlling the

workflow for the Import and Extraction process. At any time this module communicates with

the other two main modules allowing it to use utilities module for handling Content information,

and communication module for accessing Content Repository and CIXE data model

information.

 5.4.3.1 Import

 Import process workflow

Import Content from is established.

necessary information for Content Extraction, but if a database, it will generate a SQL select

statement for the same effect

and entities from the mappings defined for

retrieved from the Object and converted to XML. To this XML, mappings Import

transformations, related to that Object, are applied creating a new XML

resulted XML will be persisted to database using

capability.

 Dependencies

 As it was mentioned in section 3.2.4, a

structure of the Conceptual Network, which organizes all the existing Content.

structure it is necessary to take into account, when importing Content, that Content information

85

Figure 51: Import process workflow

Import process workflow is presented in Figure 51. First a connection to the Object to

Import Content from is established. If the Object is a document it is parsed for retrieving the

necessary information for Content Extraction, but if a database, it will generate a SQL select

statement for the same effect. These parsing and SQL generations are made based on attributes

and entities from the mappings defined for the Object. After this, Contents information are

retrieved from the Object and converted to XML. To this XML, mappings Import

ed to that Object, are applied creating a new XML

resulted XML will be persisted to database using Hibernate XML to Database mapping

As it was mentioned in section 3.2.4, at the Core of the Content Repository i

structure of the Conceptual Network, which organizes all the existing Content.

structure it is necessary to take into account, when importing Content, that Content information

First a connection to the Object to

f the Object is a document it is parsed for retrieving the

necessary information for Content Extraction, but if a database, it will generate a SQL select

. These parsing and SQL generations are made based on attributes

Object. After this, Contents information are

retrieved from the Object and converted to XML. To this XML, mappings Import

ed to that Object, are applied creating a new XML metadata. Finally,

Hibernate XML to Database mapping

t the Core of the Content Repository is the basic

structure of the Conceptual Network, which organizes all the existing Content. Because of this

structure it is necessary to take into account, when importing Content, that Content information

mapped to Concepts are to be created first because o

descriptions.

 5.4.3.2 Extraction

Extraction process workflow

 First Content information is retrieved from Content Repository directly to XML using

Hibernate’s feature of XML to Database Mapping. This Content is represented in a

similar to Content Repository.

that Object, are applied creating a new XML

Documents, such as CSV or Excel files, and SQL DML scripts for databases.

5.5 Database Layer

Using UML model presented in 4.3 as base for converting for the relational model, we obtain a

data model as it is represented in

86

mapped to Concepts are to be created first because of the dependency of relationships and

Extraction

process workflow is presented in Figure 52.

Figure 52: Extraction process workflow

First Content information is retrieved from Content Repository directly to XML using

Hibernate’s feature of XML to Database Mapping. This Content is represented in a

similar to Content Repository. To this XML, mappings Extraction transformations,

that Object, are applied creating a new XML metadata. From this XML it is possible to generate

Documents, such as CSV or Excel files, and SQL DML scripts for databases.

Database Layer

Using UML model presented in 4.3 as base for converting for the relational model, we obtain a

data model as it is represented in Appendix B.

f the dependency of relationships and

First Content information is retrieved from Content Repository directly to XML using

Hibernate’s feature of XML to Database Mapping. This Content is represented in a metadata

To this XML, mappings Extraction transformations, related to

it is possible to generate

Documents, such as CSV or Excel files, and SQL DML scripts for databases.

Using UML model presented in 4.3 as base for converting for the relational model, we obtain a

 87

5.6 CIXE prototype Test Case

This chapter presents a Test Case made for evaluating performance of the application and also

to show some screens of the application running.

Figure 53: Login screen of the application

5.6.1 Purpose

This test has the purpose of creating two mappings configurations: one mapping configuration

to a database, more specifically to a Content table for Diagnoses, and another one to an Excel

document with Contents information. After these configurations, performance tests for Import

Content information are executed.

 Figure 54 illustrates the difference from Content information

the metadata of the Content Repository. Excel document metadata is not illustrated in this

picture but part of the document used is in

same structure as the Diagnoses table.

5.6.2 Database Access

First we have to create a database access configuration to the database for this test. The

application already has support for Excel document by default so there is no need to create a

new Document Type.

88

Figure 54: Different Structures

illustrates the difference from Content information metadata

the metadata of the Content Repository. Excel document metadata is not illustrated in this

picture but part of the document used is in Appendix C. Essentially this Excel document has the

same structure as the Diagnoses table.

Access and Document Type Configuration

have to create a database access configuration to the database for this test. The

support for Excel document by default so there is no need to create a

metadata in a database and

the metadata of the Content Repository. Excel document metadata is not illustrated in this

Essentially this Excel document has the

have to create a database access configuration to the database for this test. The

support for Excel document by default so there is no need to create a

 89

Figure 55: Database Access Configuration Screen

5.6.3 Mapping Configurations

Figure 56: Mapping Configurations Screen

In Figure 56 we have a list of existent configuration mappings for databases and the possibility

for creating new ones. The same happens for documents.

 90

 5.6.3.1 Mapping Types

Figure 57: New Mapping Types Screen

This screen allows creating new mapping types for extending new transformations capabilities

to the system. But by default application already has implemented mapping types that allow

transforming information to metadata representation for Concept, Relationship, Attributes and

Descriptions.

 5.6.3.2 Mapping

The screen presented in this section shows metadata information from the database that is being

mapped to Content Repository. This works the same way with documents. Metadata visual

representation helps to better understand what attributes and entities are available for mapping.

 Mapping types required for this case are:

• MappingContent (mapping to Diagnoses Entity as a concept)

• RelationMapping (mapping to parent and child relationship between id and

id_parent as an IS_A relationship)

• AttributeMapping (mapping AGE_MIN, AGE_MAX and GENDER as attributes)

• DecriptionMapping (external mapping translations as relationships)

5.6.4 Performance Test

Performance Tests are important to

development costs. Usually, when a project

and some times redefine architecture allowing better performance.

 5.6.4.1 Import

After creating required mappin

parameterization. Table 11

Number of

Diagnoses

Excel

Document
21670

Database 29 734

 As we can see in the table, application has

documents and database Import. It has a good average CPU and Memory usage during the

process. Time taken for the process is acceptable taking into account the number of Contents we

91

Figure 58: Mapping Screen

Test Results

Performance Tests are important to evaluate average performance of products and avoid higher

development costs. Usually, when a project fails performance tests, it’s necessary to optimize

and some times redefine architecture allowing better performance.

required mapping configurations we are ready to run Import

Table 11 has the results for the import test.

Table 11: Import process – Results

Number of

Diagnoses

Time

Taken

CPU

Usage

Memory

Usage

21670
109

seconds
33%~42% 310 MBytes

29 734
112
seconds

24%~32% 300 MBytes

As we can see in the table, application has Good performance values for both

documents and database Import. It has a good average CPU and Memory usage during the

process. Time taken for the process is acceptable taking into account the number of Contents we

evaluate average performance of products and avoid higher

fails performance tests, it’s necessary to optimize

we are ready to run Import tests using them as

Performance

 Good

 Good

Good performance values for both excel

documents and database Import. It has a good average CPU and Memory usage during the

process. Time taken for the process is acceptable taking into account the number of Contents we

 92

are importing. Although the document had almost minus 8100 than the database it took almost

the same time for the process to end. This could be because parsing time for document being

more exhaustive than querying time for database.

 Note: For every one of the Contents in this Import process was created 1 record for

Concepts, 1 for relationships and 3 records for attributes. As for descriptions, database had 7

different language translations and Excel document had only 1.

 5.6.4.2 Extraction

Extraction process was tested after importing 29 734 Diagnoses from a database and with the

purpose of extracting all those diagnoses. Mapping configurations were done earlier so we are

ready to run extraction tests using them as parameterization. Table 12 has the results for the

extraction test.

Table 12: Extraction process – Results

Time
Taken

CPU Usage Memory Usage Performance

Excel
Document

148
seconds

21%~39% 310 MBytes Good

SQL
Scripts

162
seconds

28%~35% 330 MBytes Good

 As we can see in the table, application has Good performance values for extracting

Contents to excel documents and SQL DML scripts. CPU, Memory Usage and Time taken for

the process is acceptable taking into account the number of Contents we are extracting. SQL

Scripts took a little more time than the excel documents. This could be because creating an

Excel document and parsing it to write the values is a more direct extraction process than first

creating XML parameterizations for XSLT SQL Generator and then applying transformations

for code generation, necessary for this type of extraction.

5.7 Summary

CIXE prototype worked as proof of concept for the proposed architecture and model defined for

the tool, allowing Content diffusion between ALERT® clinical Applications.

 With this solution, users can specify database access configurations or document types

and then create mappings configurations and specify mappings and transformations between the

Content Repository’s metadata and other databases or documents metadata. After having these

configurations, the prototype can import and extract Content information based on those

 93

mappings and transformations. This is possible by having a system data model, serving almost

as an metadata mapping repository, and by representing Content in XML, during the Import and

using XSLT for applying those mappings and transformations.

 94

Chapter 6

Conclusions

6.1 Objectives’ Satisfaction

The use of a conceptual network as a central repository of content, limits the dispersion of

sources of content and at the same time allows representing semantic relations between the con-

cepts.

 A solution was proposed to solve the issue of Content diffusion, which main purpose is

to establish mechanisms for:

• Importing Contents from existing databases and documents like excel files to the Con-

tent Repository

• Extracting and packaging of Content associated with ALERT® clinical applications or

for creating documents with listing of Contents to present to customers, allowing them

to choose the ones they want in their installation

 The proposed solution is a web application that has an underlying Configurations mod-

ule, with log and history, responsible for the management of metadata and mappings and trans-

formations necessary for allowing interoperability between Content Repository and other data-

bases or documents metadata.

 To implement the proposed solution, a prototype was developed where users can speci-

fy database access configurations or document types, and then create mappings configurations

and specify mappings and transformations between the Content Repository’s metadata and other

databases or documents metadata. After having these configurations, the prototype can import

and extract Content information based on those mappings and transformations. This is possible

by having a system data model, serving as an metadata and mapping repository for other data-

bases and documents, and by representing Content in XML, during the Import and XSLT for

applying those mappings and transformations.

 Given the expectations of the project, objectives were met in the analysis, specification

and implementation of a prototype of the solution.

 95

6.2 Future Work

The impact of this work is expected gradually in the daily work of different actors in Content

management, once the Content Repository starts to be used and benefit from the application

developed to allow import and extraction of Contents.

 For next steps to follow, the company's objective is progressively import the entire con-

tents of their current primary Content database, into the repository, then extracted to SQL scripts

and versioned for Data Quality Control.

 There is always space for improvements. One of them is to improve the logging process

for allowing even more detail and filtering information presented to the user. Other improve-

ments would be investing in some important aspects of the application’s interface. Improve-

ments to the interface in general would help users to better understand what steps they need to

do for executing an action. The area that needs more improving is Adjust the interface for map-

ping specification to be user-friendlier through the action of drag and drop between attributes

from one point to another of the Import and Extraction process. Because ALERT wants to use

this tool in other subsidiaries, it will be important to adapt the design of the interface to the look

and feel of the ALERT® products, giving users some familiarity to the interface.

 96

References

[SMCT09] IHTSDO, International Health Terminology Standards Development

Organisation, SNOMED-CT, March 2009. http://www.ihtsdo.org/snomed-ct/

[ALE09a] ALERT Life Sciences Computing, S.A. ALERT Life Sciences Computing —

Company presentation / March 2009, March 2009.

[FEU09a] FEUP, Proposta de projecto/dissertação: Difusão de conteúdos nas aplicações

clínicas ALERT®, 2009.

[DJP05] Digital Repositories JISC Briefing Paper, 2005

[SCS08] Guide to Health Informatics 2nd Edition, SNOMED-CT Core Structure, Enrico

Coiera, 2001.

[NLM08] National Institute of Health, National Library of Medicine, March 2009.

http://www.nlm.nih.gov/

[UMLS08] National Institute of Health, National Library of Medicine, Unified Medical

Language System, March 2009. http://www.nlm.nih.gov/research/umls/

[CAP09] College of American Pathologists Foundation, March 2009,

http://www.cap.org/apps/cap.portal

[WCFE04] Wyss, Catharine M., George H.L. Fletcher, Fulya Erdinc, and Jeremy T. En-

gle, “MIQIS: Modular Integration of Queryable Information Systems”, 2004.

[SMUD05] Bilke, Alexander and Felix Naumann, “Schema Matching using Duplicates”,

2005.

[UDMR95] Jain, M., A. Mendhekar, and D. Van Gucht, “A Uniform Data Model for Re-

lational Data and Meta-Data Query Processing”, 1995.

[XSLCG05] Code Generation Information for the Pragmatic Engineer, Code Generation

Network, 2008. http://www.codegeneration.net/

[XML09] W3C - World Wide Web Consortium. W3C XML Specification, April 2009.

http://www.w3.org/XML/.

[XSLT09] W3C - World Wide Web Consortium. W3C XSLT Specification, April 2009.

http://www.w3.org/TR/xslt20/

 97

[XPH09] W3C - World Wide Web Consortium. W3C XPATH Specification, April

2009. http://www.w3.org/TR/xpath/

[PSDEV09] Real solutions for Oracle Developers, allroundautomations, PL/SQL

Developer, 2009. http://www.allroundautomations.com/plsqldev.html

[ECLP09] The Eclipse Foundation, Eclipse, 2009, http://www.eclipse.org/

[SVN09] Garrett Rooney; Practical Subversion; Apress; (1st Edition, paperback), 2004

[ORAC09] Oracle Corporation, Oracle Database 10.2, 2009,

http://www.oracle.com/database

[FLS09] Gay, Jonathan. "The History of Flash", Adobe, 2009.

http://www.adobe.com/macromedia/events/john_gay/

[FLEX09] Adobe Systems Incorporated, Adobe Flex 3, June 2009.

http://www.adobe.com/products/flex/

[SAXN09] XSLT AND XQUERY PROCESSING, SAXONICA, Saxon, March 2009,

http://saxon.sourceforge.net/

[HBNT09] Red Hat, Red Hat Middleware, JBoss, Hibernate, March 2009,

https://www.hibernate.org/

[TCAT09] The Apache Software Foundation, Apache Tomcat, April 2009.

http://tomcat.apache.org/

[DAOP09] Sun Microsystems, Inc. Core J2EE Patterns – Data Access Object, 2009.

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.ht

ml

[TOP09] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern−Oriented Software Architecture − A System of Pat-
terns. Wiley and Sons Ltd., 1996.

[APOI09] The Apache Software Foundation, The Apache POI Project, April 2009,

http://poi.apache.org

 98

Appendix A

CIXE UML Model

99

 100

Appendix B

CIXE Relational Model

101

 102

Appendix C

Sample Excel Document

DESC_TRANSLATION CODE_ICD CODE_ICD_PARENT
ID_DIAGNOS
IS

PROCEDURES 00-99.99 409187
Procedures And Interventions, Not Elsewhere
Classified 00 00-99.99 400248

Pharmaceuticals 00.1 00 400253

Implantation of chemotherapeutic agent 00.10 00.1 400254

Infusion of drotrecogin alfa (activated) 00.11 00.1 400255

Administration of inhaled nitric oxide 00.12 00.1 400256

Injection or infusion of nesiritide 00.13 00.1 400257
Injection or infusion of oxazolidinone class of
antibiotics 00.14 00.1 400258

High-dose infusion interleukin-2 [IL-2] 00.15 00.1 400311
Pressurized treatment of venous bypass graft [conduit]
with pharmaceutical substance 00.16 00.1 416194

Infusion of vasopressor agent 00.17 00.1 416195

Infusion of immunosuppressive antibody therapy 00.18 00.1 416286

…

Personal history of monoclonal drug therapy V87.42 V87.4 479998

Personal history of antineoplastic chemotherapy V87.41 V87.4 480113

Personal history of other drug therapy V87.49 V87.4 480334
Contact with and (suspected) exposure to hazardous
metals V87.0 V87 480195

Contact with and (suspected) exposure to arsenic V87.01 V87.0 479867
Contact with and (suspected) exposure to other
hazardous metals V87.09 V87.0 480138
Contact with and (suspected) exposure to other
potentially hazardous substances V87.3 V87 480225
Contact with and (suspected) exposure to other
potentially hazardous substances V87.39 V87.3 479822

Exposure to mold V87.31 V87.3 480472

 103

