
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Using Sun Java Composite Application
Platform Suite (Java CAPS) for Enterprise

Application Integration

Ricardo Alves da Silva

Report of Project
Master in Informatics and Computing Engineering

Supervisor: Gil Manuel Magalhães de Andrade Gonçalves (Engineer)

14th July, 2009

Using Sun Java Composite Application Platform Suite
(Java CAPS) for Enterprise Application Integration

Ricardo Alves da Silva

Report of Project
Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: José Manuel de Magalhães Cruz (Doctor)

__

External Examiner: Feliz Ribeiro Gouveia (Doctor)

Internal Examiner: Gil Manuel Magalhães de Andrade Gonçalves (Engineer)

14th July, 2009

i

Abstract

Presently, given the high competitiveness felt in the business world, organizations are
increasingly investing in Information Technologies (IT) for knowledge sharing through the
storage, processing, production and communication of data. The problem is that typically this
information is not centralized in a single system, having the organizations a wide variety of
applications and systems for performing different tasks. Although belonging to the same
company, these systems are most of the times disparate and not compliant with each other. It is
to address this problem that emerges the concept of Enterprise Application Integration (EAI),
which consists in the process of connection between different business applications, to promote
a fast and reliable exchange of business processes and data. The retail world, where this project
is inserted, is also an example of this scenario, given the constant changes and updates made to
the retailers’ Enterprise Resource Planning (ERP) applications, aiming to optimize their
business model.

The work described in this report has been developed for a client who belongs to the

largest international consortium of retailers concerning the number of stores spread throughout
the world. It is a project in the EAI area, characterized by the implementation of data integration
flows between the Oracle Retail Merchandising System (ORMS) and a proprietary ERP of the
retailer, the IMAge. Since the IMAge represents a pilot-project, a gradual migration between
these systems is desirable, and a recommended integration based in the Publication/Subscription
model, using Java Composite Application Platform Suite (Java CAPS), from Sun Microsystems,
as main technology. This tool provides a standards-based, open, extensible platform for
developing software infrastructures using a Service-Oriented Architecture (SOA) approach.

This project has been developed at Wipro Retail, one of the largest companies for

consulting and implementation of information systems in the area of retail. During the period
length of the project was possible to deal with some of the latest distribution and integration
technologies used in the market of retailing, which are described throughout the report. The
study of the technologies involved in the project, the implemented solutions implemented and
the problems faced, all this combined with the integration of the EAI team constituted for the
client, proved to be a very profitable and enriching experience, not only in the functional scope
of retail, but also at technological level.

ii

Resumo

Actualmente, tendo em conta a elevada competitividade sentida no mundo dos negócios, as
organizações estão a investir cada vez mais em Tecnologias de Informação (TI) para partilha de
conhecimento através do armazenamento, processamento, produção e comunicação de dados. O
problema é que tipicamente esta informação não se encontra centralizada num único sistema,
possuindo as organizações uma ampla variedade de aplicações e sistemas para a realização de
diferentes tarefas. Ainda que pertencendo à mesma empresa, estes sistemas são muitas vezes
dispares e em não conformidade entre eles. É no sentido de dar resposta a este problema que
surge a Integração de Aplicações Empresariais (EAI), a qual consiste no processo de ligação
entre diferentes aplicações empresariais, no sentido de promover uma troca fiável e rápida de
processos de negócio e dados. O mundo do retalho, onde o presente projecto está inserido, é
também um exemplo deste cenário, tendo em conta as constantes alterações e actualizações
efectuadas às aplicações de Enterprise Resource Planning (ERP) dos retalhistas, visando
optimizar o seu modelo negócio.

O trabalho descrito neste documento foi desenvolvido para um cliente que pertence ao

maior consórcio internacional de retalhistas no que diz respeito ao número de lojas que têm
espalhadas pelo mundo. Trata-se portanto de um projecto na área de EAI, caracterizando-se pela
implementação de fluxos de integração de dados entre o Oracle Retail Merchandising System
(ORMS) e um ERP proprietário do retalhista, o IMAge. Uma vez que o IMAge representa um
projecto-piloto é desejável uma migração gradual entre estes sistemas, sendo recomendada uma
integração baseada no modelo de Publicação/Subscrição, usando como principal tecnologia o
Java Composite Application Platform Suite (Java CAPS) da Sun Microsystems. Esta ferramenta
disponibiliza uma plataforma aberta, extensível e baseada em padrões, para desenvolvimento de
infra-estruturas de software, usando uma abordagem baseada numa arquitectura orientada a
serviços (SOA).

Este projecto realizou-se numa das maiores empresas de consultoria e implementação de

sistemas de informação na área do retalho, a Wipro Retail. Durante o período de duração do
projecto foi possível lidar com algumas das mais recentes tecnologias de distribuição e
integração usadas no mercado do retalho, as quais são descritas ao longo do relatório. O estudo
das tecnologias envolvidas no projecto, as soluções implementadas e os problemas enfrentados,
tudo isto aliado à integração da equipa de EAI constituída para o cliente, revelou-se uma
experiência bastante proveitosa e enriquecedora, não só no âmbito funcional do retalho, mas
também ao nível tecnológico.

iii

Acknowledgments

Firstly the author wishes to thank his family, specially his parents, for every single effort
and sacrifice made to ensure the best education for their son. Their life values together with
their incessant love, affection, understanding and support, represent the greatest richness one
can have, and words are surely not enough to express the author’s gratitude to them.

Also, a very special acknowledgment to the Justiniano family, for the hosting provided

during the period of the author’s academic course. Certainly no money can pay their support,
advice and friendship felt in all of the good times shared in the recent years.

To the institution of project, Wipro Retail, thanks for the opportunity and excellent

conditions offered during the internship.
To Carla Almeida and Ana Raquel Lopes, for having followed the trainees during the

recruitment process and their integration in the company, always available and guaranteeing that
all necessary work conditions were gathered.

Thanks to Eng. Hugo Neto for his sympathy demonstrated throughout the recruitment
interview and for having recognized potential in the author for performing his internship at
Wipro Retail.

To everybody in the Wipro team gathered for this project’s retailer, under the wisdom and
comprehensive guidance of Dr. João Pinho, namely to my supervisor in the company, Eng. Rui
Peixoto, a special acknowledgment for his support, availability and willingness continuously
demonstrated throughout the internship, as well as for the other members of the integration
team, Eng. André Guimarães, Eng. Marco Ferreira, Eng. Paulo Correia and Eng. Sérgio Xavier,
for the ease of integration and sense of team spirit.

The author is also grateful to his FEUP supervisor, Eng. Gil Gonçalves, for his wise

guidance and availability for the period of the project, as well as his dedication and suggestions
on the writing of the present report.

For everyone at FEUP, namely Prof. Raul Vidal and Prof. Augusto Sousa, for their

continuous efforts for bringing together the best for their students, as well as every teacher and
colleague with whom the author had the privilege to learn and work during his academic
training.

Finally, the author would like to extend his acknowledgments to all those who directly or

indirectly gave their support and advice for the period of this project.

iv

Contents

1 Introduction ... 1
1.1 Scope ... 1

1.1.1 Institution of Project: Wipro Retail ... 2
1.1.2 The Client: DeSpar.. 4

1.2 Project .. 5
1.3 Motivation and Objectives ... 6
1.4 Structure of Dissertation .. 6

2 Business Overview .. 7
2.1 Retail .. 7

2.1.1 Types of Retailers ... 8
2.1.2 Retail Segments .. 8
2.1.3 Factors of Differentiation .. 9

2.1.3.1 Target Market .. 9
2.1.3.2 Product Range ... 9
2.1.3.3 Service Levels ... 10
2.1.3.4 Prices and Promotions ... 10

3 Technical Review .. 11
3.1 Enterprise Application Integration ... 11

3.1.1 EAI Topologies ... 12
3.1.2 Types of EAI ... 13

3.1.2.1 Data Level ... 13
3.1.2.2 Application Interface Level .. 13
3.1.2.3 Method Level .. 14
3.1.2.4 User Interface Level .. 14

3.1.3 EAI Architectures ... 14
3.1.3.1 Service-Oriented Architecture .. 14
3.1.3.2 Message-Oriented Middleware ... 15
3.1.3.3 Publish/Subscribe .. 16
3.1.3.4 Business Process Execution Language (BPEL) .. 16
3.1.3.5 Database Sharing .. 17

3.2 Oracle Retail .. 17
3.2.1 Oracle Retail Merchandising System (ORMS) ... 20

3.2.1.1 Foundation Data .. 20
3.2.1.2 Item Maintenance .. 21
3.2.1.3 Cost Maintenance .. 22
3.2.1.4 Deals Management .. 22
3.2.1.5 Purchase Orders .. 22
3.2.1.6 Backhaul Allowances .. 22
3.2.1.7 Inventory Management ... 23
3.2.1.8 Replenishment ... 23
3.2.1.9 Wholesale and Franchising ... 23

v

3.2.1.10 Stock Ledger ... 24
3.3 Java CAPS ... 25
3.4 DeSpar Pub/Sub Framework ... 28
3.5 Conclusions ... 28

4 Enterprise Application Integration using Java CAPS... 30
4.1 Introduction ... 30
4.2 Store Productivity Application .. 31

4.2.1 Assumptions .. 31
4.2.2 Architecture ... 31
4.2.3 GenericFromFTPToQ ... 32
4.2.4 Store Productivity Publisher ... 35
4.2.5 ORMS Subscriber ... 36
4.2.6 Data Model .. 37
4.2.7 Subscription Package .. 38

4.3 Reception/RTV Change Request ... 39
4.3.1 Assumptions .. 40
4.3.2 Architecture ... 40
4.3.3 IMAge Publishers ... 41

4.3.3.1 ImageOutputGateway ... 41
4.3.3.2 FromImageTAFR .. 42
4.3.3.3 Reception Publisher .. 42
4.3.3.4 RTV Publisher .. 43

4.3.4 ORMS Subscribers .. 44
4.3.4.1 Reception Subscriber .. 44
4.3.4.2 RTV Subscriber .. 45

4.3.5 Data Model .. 46
4.3.6 Subscription Packages... 48

4.4 Store to Warehouse Orders and Receptions .. 50
4.4.1 Assumptions .. 51
4.4.2 Architecture ... 52
4.4.3 IMAge Subscribers ... 52

4.4.3.1 Shipment Subscriber ... 52
4.4.3.2 OrderResponse Subscriber .. 54

4.4.4 Data Model .. 55
4.4.5 IMAge Mapping Packages .. 56

4.5 DeSpar Pub/Sub Framework Review .. 60
5 Tests ... 62

5.1 Unit Testing ... 62
5.2 Integration Testing ... 62
5.2.1 DeSpar Pub/Sub Framework Integration Testing .. 63
5.2.2 Application Integration Testing ... 63
5.3 User Acceptance Testing ... 63

6 Conclusions and Future Work ... 64
6.1 Project Retrospective ... 64
6.2 Objectives Satisfaction .. 65
6.3 Future Work ... 65

References .. 66
Appendix A: Publication Common Message Formats (CMF’s) 68

A.1 Store Productivity CMF ... 68
A.2 FWZ1 CMF ... 69
A.3 FWZ2 CMF ... 69

Appendix B: Subscription Common Message Formats (CMF’s) 71

vi

B.1 Store Productivity CMF ... 71
B.2 Reception CMF .. 72
B.3 RTV CMF .. 73
B.4 Shipment CMF .. 75
B.5 OrderResponse CMF ... 76
B.6 DAV1 CMF ... 77
B.7 DAV2 CMF ... 77
B.8 ORB1 CMF .. 78
B.9 ORB2 CMF .. 78

Appendix C: Staging Tables ... 79
C.1 Store Productivity Staging Tables ... 79
C.2 Reception Staging Tables .. 80
C.3 RTV Staging Tables .. 82

Appendix D: ORMS Subscription Packages ... 84
D.1 Store Productivity Subscription Package ... 84
D.2 Reception Subscription Package .. 85
D.3 RTV Subscription Package .. 86

Appendix E: IMAge Mapping Packages ... 88
E.1 MAP Procedure ... 88
E.2 GET_TID Function .. 89
E.3 GET_MSG_TYPE Function .. 90
E.4 GET_DESTINATION_MESSAGE Function ... 91
E.5 FORMAT_FIELDS Function .. 91
E.6 FILL_SRC_VALUES Function .. 92
E.7 FILL_EXTINFO_VALUES Function ... 92
E.8 MAP_DESTINATION_DETAILS Function .. 93
E.9 MAP_DESTINATION_CUSTOM_RULE Function .. 93
E.10 MAP_DST_CUSTOM_MULTIPLE_RULES Function ... 94
E.11 MAP_DESTINATION_EXTINFO_RULE Function ... 94
E.12 MAP_MULTIPLE_EXTINFO_RULE Function .. 95
E.13 BUILD_MESSAGE Function ... 96

Appendix F: Algorithms ... 97
F.1 Store Productivity Publisher JCD Algorithm .. 97
F.2 FromImageTAFR JCD Algorithm ... 98
F.3 Reception Publisher JCD Algorithm ... 99
F.4 RTV Publisher JCD Algorithm ... 99
F.5 ORMS Subscribers JCD Algorithm ... 100
F.6 IMAge Subscribers JCD Algorithm .. 100
F.7 Store Productivity PROCESS_STAGING Algorithm ... 101
F.8 Reception PROCESS_STAGING Algorithm .. 102
F.9 RTV PROCESS_STAGING Algorithm .. 103

Appendix G: Unit Test Documents (UTD’s) ... 104
G.1 Store Productivity UTD ... 104
G.2 Reception/RTV UTD ... 106
G.3 Store to Warehouse Shipment (DAV) UTD .. 107
G.4 Store to Warehouse OrderResponse (ORB) UTD ... 109

vii

List of Figures

Figure 1.1: Wipro logo .. 2
Figure 1.2: Wipro Retail offices and operations ... 3
Figure 1.3: Wipro Retail clients .. 3
Figure 1.4: Wipro Retail competency centres ... 4
Figure 1.5: Spar and DeSpar logos ... 4
Figure 3.1: Point-to-point topology ... 12
Figure 3.2: Bus-centric topology ... 13
Figure 3.3: Message-Oriented Middleware based system .. 15
Figure 3.4: Simple Publish/Subscribe messaging ... 16
Figure 3.5: BPEL process example in Java CAPS .. 17
Figure 3.6: Oracle Retail modules .. 18
Figure 3.7: Oracle Retail solution areas .. 19
Figure 3.8: ORMS organizational hierarchy ... 20
Figure 3.9: ORMS merchandise hierarchy .. 21
Figure 3.10: Wholesale and franchise business process workflow ... 24
Figure 3.11: Sun Java CAPS architecture ... 25
Figure 3.12: Java CAPS connectivity map example ... 26
Figure 3.13: Java CAPS deployment profile example .. 27
Figure 3.14: DeSpar Pub/Sub framework architecture ... 28
Figure 3.15: Project technologies overview .. 29
Figure 4.1: Store Productivity architecture ... 31
Figure 4.2: GenericFromFTPToQ component logic ... 33
Figure 4.3: GenericFromFTPToQ connectivity map definition .. 34
Figure 4.4: Store Productivity publisher connectivity map definition .. 36
Figure 4.5: Store Productivity ORMS subscriber connectivity map definition 37
Figure 4.6: Store Productivity CONSUME algorithm .. 39
Figure 4.7: Reception/RTV architecture ... 40
Figure 4.8: FromImageTAFR connectivity map definition .. 42
Figure 4.9: Reception publisher connectivity map definition ... 43
Figure 4.10: RTV publisher connectivity map definition ... 44
Figure 4.11: Reception ORMS subscriber connectivity map definition 45
Figure 4.12: RTV ORMS subscriber connectivity map definition ... 46
Figure 4.13: Reception CONSUME algorithm ... 49
Figure 4.14: RTV CONSUME algorithm ... 50
Figure 4.15: Shipments and Orders Responses from ORMS to IMAge 51
Figure 4.16: Store to Warehouse Orders and Receptions architecture .. 52
Figure 4.17: Shipment (DAV) IMAge subscriber connectivity map definition 53
Figure 4.18: OrderResponse (ORB) IMAge subscriber connectivity map definition 54
Figure 4.19: IMAge mapping rules data model .. 56
Figure 4.20: IMAge mapping packages algorithm .. 59
Figure 4.21: DeSpar Pub/Sub framework version analysis example using WinMerge 60

viii

Figure F.1: Store Productivity publisher JCD algorithm .. 98
Figure F.2: FromImageTAFR JCD algorithm .. 98
Figure F.3: Reception publisher JCD algorithm ... 99
Figure F.4: RTV publisher JCD algorithm ... 99
Figure F.5: ORMS subscribers JCD algorithm ... 100
Figure F.6: IMAge subscribers JCD algorithm ... 100
Figure F.7: Store Productivity PROCESS_STAGING algorithm .. 101
Figure F.8: Reception PROCESS_STAGING algorithm ... 102
Figure F.9: RTV PROCESS_STAGING algorithm .. 103

ix

List of Tables

Table 4.1: Store Productivity mapping table ... 32
Table 4.2: GenericFromFTPToQ configuration .. 34
Table 4.3: GenericFromFTPToQ components .. 35
Table 4.4: Store Productivity publisher components .. 36
Table 4.5: Store Productivity ORMS subscriber components .. 37
Table 4.6: Reception/RTV mapping table... 41
Table 4.7: ImageOutputGateway configuration .. 41
Table 4.8: FromImageTAFR components .. 42
Table 4.9: Reception publisher components ... 43
Table 4.10: RTV publisher components ... 44
Table 4.11: Reception ORMS subscriber components ... 45
Table 4.12: RTV ORMS subscriber components .. 46
Table 4.13: FWZ1 to Reception/RTV mapping table ... 47
Table 4.14: FWZ2 to Reception/RTV mapping table ... 47
Table 4.15: Warehouse Notifications mapping table .. 52
Table 4.16: Shipment (DAV) IMAge subscriber components .. 53
Table 4.17: OrderResponse (ORB) IMAge subscriber components ... 55
Table 4.18: IMAge DAV/ORB mapping packages description .. 57
Table A.1: StoreProductivity .. 68
Table A.2: FWZ1 .. 69
Table A.3: FWZ2 .. 69
Table B.1.1: StoreProdDesc .. 71
Table B.1.2: StoreProdDtlDesc ... 71
Table B.2.1: ReceptionDesc .. 72
Table B.2.2: ReceptionDetailDesc .. 72
Table B.3.1: RTVDesc .. 73
Table B.3.2: RTVDetailDesc .. 75
Table B.4.1: ShipmentFullDesc .. 75
Table B.4.2: ShipSkuDesc .. 76
Table B.5.1: OrderResponseFullDesc ... 76
Table B.5.2: OrderResponseDtlDesc .. 77
Table B.6: DAV1 .. 77
Table B.7: DAV2 .. 77
Table B.8: ORB1 ... 78
Table B.9: ORB2 ... 78
Table C.1.1: NB_EAI_STORE_PROD_STG table .. 79
Table C.1.2: NB_EAI_STORE_PROD_DTL_STG table .. 80
Table C.2.1: NB_EAI_RECEPTION_STG table ... 80
Table C.2.2: NB_EAI_RECEPTION_DETAIL_STG table ... 81
Table C.3.1: NB_EAI_RTV_STG table ... 82
Table C.3.2: NB_EAI_RTV_DETAIL_STG table ... 83

x

Table D.1.1: Store Productivity CONSUME procedure ... 84
Table D.1.2: Store Productivity PROCESS_STAGING function .. 85
Table D.2.1: Reception CONSUME procedure .. 85
Table D.2.2: Reception PROCESS_STAGING function ... 86
Table D.3.1: RTV CONSUME procedure .. 86
Table D.3.2: RTV PROCESS_STAGING function .. 87
Table E.1: MAP procedure ... 88
Table E.2: GET_TID function .. 89
Table E.3: GET_MSG_TYPE function .. 90
Table E.4: GET_DESTINATION_MESSAGE function .. 91
Table E.5: FORMAT_FIELDS function ... 91
Table E.6: FILL_SRC_VALUES function ... 92
Table E.7: FILL_EXTINFO_VALUES function .. 92
Table E.8: MAP_DESTINATION_DETAILS function ... 93
Table E.9: MAP_DESTINATION_CUSTOM_RULE function... 93
Table E.10: MAP_DST_CUSTOM_MULTIPLE_RULES function .. 94
Table E.11: MAP_DESTINATION_EXTINFO_RULE function .. 94
Table E.12: MAP_MULTIPLE_EXTINFO_RULE function ... 95
Table E.13: BUILD_MESSAGE function .. 96

xi

Abbreviations

ACC Acceptance
API Application Programming Interface
ASM Application Support and Maintenance
BPEL Business Process Execution Language
BPMN Business Process Modeling Notation
CMF Common Message Format
CMMI Capability Maturity Model Integration
CRM Customer Relationship Management
CRUD Create, Replace, Update and Delete
CSV Comma-Separated Values
DEV Development
DBMS Database Management System
DTD Document Type Definition
EAI Enterprise Application Integration
EDI Electronic Data Interchange
ERP Enterprise Resource Planning
FTP File Transfer Protocol
IDE Integrated Development Environment
IMAge Integrated Management Application for Grocery Enterprises
IS Information System
IT Information Technology
JAR Java Archive
JCAPS Java Composite Application Platform Suite
JCD Java Collaboration Definition
JMS Java Message Service
MOM Messaging Oriented Middleware
OLAP Online Analytical Processing
OMG Object Management Group
ORDF Oracle Retail Demand Forecasting
ORDM Oracle Retail Distribution Management
ORDW Oracle Retail Data Warehouse
OReIM Oracle Retail Invoice Matching
OReSA Oracle Retail Sales Audit
ORMS Oracle Retail Merchandising System
ORPAS Oracle Retail Predictive Application Server
ORPM Oracle Retail Price Management
ORSIM Oracle Retail Store Inventory Management
ORTM Oracle Retail Trade Management
ORWMS Oracle Retail Warehouse Management System
OTD Object Type Definition
POS Point-of-Sale

xii

RTV Return-to-Vendor
SCM Supply Chain Management
SOA Service-Oriented Architecture
SQL Structured Query Language
TAFR Transformation, Address, Filtering and Routing
UAT User Acceptance Test
UML Unified Modeling Language
UTD Unit Test Document
XML Extensible Markup Language

 1

1 Introduction

This first chapter introduces the project by presenting its scope, motivation and objectives,
in order to identify and define the problems that the dissertation addresses. This section also
describes briefly the project proposal, as well as the company where the work took place and its
final customer. Finally, it is presented a brief summary of each of the subsequent chapters.

1.1 Scope

Given the current factors of competitiveness and market changes within the enterprises,
today, more than ever, it is essential to have an investment in the area of the Information
Technologies (IT). In fact, nowadays almost all business relationships between customers,
suppliers and employees are based on Information Systems (IS).

Unfortunately, knowing the variety of interests of organizations, there isn’t a system able
to provide all the desired information, so, taking this into account, companies have different
types of IS’s according to their business needs. For this reason, such variety of applications is
sometimes referred to as islands of automation or information silos. Also the lack of
communication leads to inefficiencies, wherein identical data are stored in multiple locations, or
straightforward processes are unable to be automated.

Thus, in a point of view of creating value for the organization it is necessary to understand

and apply the concept of Enterprise Application Integration (EAI), which is the key domain of
this project.

The main objective of the EAI is the creation of a link between a set of computer enterprise
applications, promoting the basic principles in business such as communication, cooperation
and coordination. Of course, this process of integration only exists if the various systems have a
common business model to ensure a syntactic and semantic unification between the information
flow and shared knowledge.

The retail world, where this project will take place, is also an example of the described
scenario, taking into account the continuous efforts to improve its Enterprise Resource Planning
(ERP) market leader applications, which in this case aim to optimize the retail business
processes.

However, given the constant mutations of a market as dynamic as the retail, the proposed

EAI project should implement a flexible strategy, offering the ability of diverse systems within
the organizations to work together. This can be achieved using a Service-Oriented Architecture

 2

(SOA), a system architecture in which application components are built as interoperable and
reusable services.

One of the main advantages of the SOA architectural style is the fact that the developed
business services are technology-neutral and given the reusability aspect of these services
enterprises can simplify and accelerate new business applications development and deployment.

Therefore, by implementing SOA, a retail organization can align people, processes and
data through consolidated applications and shared information services, by orchestrating
consistent data sources across previously incompatible systems. With a strategy like this
retailers can harvest better sales data, strengthen loss prevention, reduce in-store pricing errors,
improve promotion personalization and timing and deliver more in-depth product information
directly to customers and sales associates.

With SOA, retailers are squeezing new efficiencies from existing processes and systems,
which can be key determiners of profit in today’s competitive environment.

1.1.1 Institution of Project: Wipro Retail

Figure 1.1: Wipro logo

Wipro Retail, a division of Wipro Technologies, based in Bangalore, India, is a global

services provider focused on becoming a leading specialist in the implementation of integrated
solutions and effective support of retail systems. The company’s reputation is based on
consistent, high quality service and a track record of delivering excellent results, by
implementing well engineered solution delivered to the highest standard, on time and on budget.
In fact, Wipro’s software development methodologies are the state of the art in the software
engineering, being the first company in the world to own a CMMI level 5 certification
[WRP08].

Wipro Retail, was formerly Enabler, a company founded in 1997, created through the

planned separation of the IS/IT department of Portugal’s leading retailer, Modelo Continente, a
division of Sonae Group.

Following the creation in Portugal, Wipro Retail has grown its business into a truly
international success; having now offices and operations in the major European countries.
Furthermore, the expansion continued beyond Europe, by acquiring costumers in North
America, Latin America, Middle East, Africa and Asia Pacific.

 3

Figure 1.2: Wipro Retail offices and operations

Since the year of foundation, Enabler and presently Wipro Retail, managed significant and

sustainable growth, focusing on leading retailers, such as AVA, Modelo Continente, Morrisons,
Nisa Today’s, Espirit, Despar, Renner, Galeries Lafayette, Sabeco e Fortress.

Figure 1.3: Wipro Retail clients

On the delivery perspective, Wipro Retail is organised in competency centres. Each one of

these structures will manage, maintain and develop a specific expertise related with the retail
business.

 4

Figure 1.4: Wipro Retail competency centres

The project described in this document represents the implementation of a retail solution in

the Enterprise Application Integration (EAI) area of competency.

1.1.2 The Client: DeSpar

DeSpar is a distinguished brand of Italian food-retailing, which belongs to the Spar group,
the largest consortium of retailers in the world by store count, with nearly 13,700 stores in 33
countries worldwide [Des09].

Spar was founded in the Netherlands in 1932 by Adriaan van Well, as a voluntary chain of
grocers under its original name “DeSpar”, the acronym for the Dutch sentence “Door
Eendrachtig Samenwerken Profiteren Allen Regelmatig” which translates into “We all benefit
from joint cooperation” [SPAR09]. As the organization expanded across Europe, the name was
later abbreviated by dropping the “De”, except in Italy, which is the only worldwide store that
maintains its original designation.

Van Well used the symbol of the fir tree, “Spar” in Dutch, to identify the organization and
it became the Spar logo. DeSpar, in order to keep with the international branding, maintains the
“Spar” section of the logo highlighted.

Figure 1.5: Spar and DeSpar logos

Since the date of its foundation until now, the Spar group is referred as a wining concept.

A testimony to this successful concept are the many awards and accolades all the different Spar
countries have won, thus always developing new business, ensuring that Spar is the world’s
largest retail food store chain.

 5

The link between DeSpar and Wipro Retail (Enabler at the time) dates back to 1999

[PPCS09], when the two companies have signed-off a proposal for the implementation of retail
solutions proprietary of Oracle: Oracle Retail Merchandising System (ORMS), Oracle Retail
Distribution Management (ORDM) and Oracle Retail Data Warehouse (ORDW). This was the
first international project of Enabler. Since the first go live, which was for the ORMS
implementation project, on January 2000, Enabler and now Wipro Retail has been supporting
DeSpar batch and applications. In the subsequent years, deals for Application Support and
Maintenance (ASM) have been signed, with the last contract signed in 2008 for the next 2 years
(2009 and 2010), from which this project is included.

1.2 Project

Following a demand for standardization of the systems within the Austria Spar
International AG (ASPIAG), an international subsidiary of Spar’s Austrian group, the DeSpar
stores decided to implement the IMAge (Integrated Management Application for Grocery
Enterprises), a solution that provides a browser-based interface which seamlessly combines
information and functionality from local and centralized sources [Int08]. This system falls into
the concept of an Enterprise Resource Planning (ERP), and can be basically described as a
solution that offers features such as inventory control and ordering, along with data analysis
capabilities.

Since DeSpar has been using ORMS as its ERP since the year 2000, whose
implementation was carried out by Wipro Retail, this situation creates a need for integration
between the ORMS and this new ERP, the IMAge.

Given the fact that the IMAge represents a pilot-project, a complete and immediate
migration of data should be avoided, thus ensuring no loss of information and guaranteeing that
the needed time is given to the users of this new ERP so they can adapt to its new features and
especially the business processes that the IMAge contemplates. By doing a phased migration, a
more reliable integration between these disparate systems can be achieved, as well as a real-time
and fast integration, which are the main goals of the Enterprise Application Integration (EAI).

There are innumerous ways of integration and one of the most recommended and currently
used in the client is the Publication/Subscription model, an integration pattern based on an
asynchronous messaging paradigm where one or more applications send messages (publishers)
into a staging area, frequently denominated as integration BUS, and one or more application
receive them (subscribers). The reasons for this being a highly recommended integration
solution is based on advantages such as application decoupling, transparency and scalability.

The tools and applications available on the market are also innumerous, being Sun
Microsystems one of the main competitors. Sun’s main and most recent EAI platform is known
as Java Composite Application Platform Suite (JCAPS), currently in its version 6, provides a
standards-based, open, extensible platform for developing software infrastructures using a
Service-Oriented Architecture (SOA) approach [Sun09b].

So, in general terms, the main objective of this project is the creation of data integration
interfaces between the ORMS and the proprietary system of DeSpar, the IMAge, using a
Publisher/Subscriber approach with Sun JCAPS 6 as main technology. With this tool it is
possible to go much further than a vanilla implementation (a software that is used without any
customization applied to it), which is necessary whenever the applications to integrate come
from different software companies, as in this case.

A project of this kind is essential to DeSpar, since it inherits all the advantages of a SOA
architecture, using EAI strategies, which have associated an extremely flexible data
communication model, that in addition to respond to new business processes implemented by
the IMAge, also ensures a real-time communication between this ERP and the ORMS.

 6

1.3 Motivation and Objectives

The main motivation for choosing this project is supported by a personal interest by the
author on every work involving the most recent distribution and integration technologies. This
interest has been developed during the author’s academic training, always being an area of
preference in terms of future work.

Also, the fact of having already some experience on the EAI area, using a SOA approach,
and knowing in advance that this architecture allows for a more quick development and
deployment of applications, to meet today’s rapidly changing business needs, is also a factor of
enthusiasm for participating in such a project. In addition, working with a top level architecture,
that goes beyond the traditional object-oriented architectures, therefore giving the opportunity of
having disparate systems choreographed into a far more flexible composite application.

Furthermore, the integration of Wipro’s EAI team and having the possibility to work for
the largest retailer in the world, in order to deliver a vital solution on the point of view of
creating value for the company, since the various organizational systems must be integrated to
guarantee the flow of business concepts.

Regarding the main goals of the project, at the end of the internship should have been

achieved the following objectives:
• Develop team work capabilities
• Acquire and understand the processes associated with the development of solutions for

EAI in the context of the retail world
• Develop skills to implement infrastructures based on a SOA approach, using the

Publication/Subscription model
• Increase competencies in distributed computing
• Develop knowledge in Messaging Oriented Middleware (MOM)
• Familiarize with JCAPS 6, exploring the following concepts:

o Business processes, using Business Process Execution Language (BPEL)
o Collaborations
o Connectivity maps
o Deployment profiles

1.4 Structure of Dissertation

Besides the introduction chapter, this document is organized as follows.
In chapter 2 is presented a business overview that characterizes the domain of the project,

the retail world.
The chapter 3 details the technologies and development techniques used throughout the

internship. It is intended with this section to describe the problematic of the enterprise
integration, the main subject of this project. The technologies involved with the developed
solution are also discussed in this section.

In chapter 4 a detailed presentation of the problem to solve is made as well as the work
developed to implement the integration solutions, according to an EAI approach.

Subsequently, in chapter 5 the testing strategy is explained, detailing the different test
approaches used to verify and validate the project developments.

Finally, in chapter 6 the report of the project is concluded, evaluating the given results and
pointing out near future work.

 7

2 Business Overview

In this section is presented a short functional overview of the business which characterizes
the domain of the project, the retail world. Firstly, it starts by describing the business of retail,
allowing the reader to retain some basic notions about this business model. Subsequently, are
detailed the types of retailers, the retail segments and their factors of differentiation.

2.1 Retail

Given the scope of this project, it is essential to acquire a notion of the business and all the
surrounding retail concepts, since these will always be present during the internship.

The business of retail consists in the distribution and sale of goods for final consumption.

This is a particular business, characterized in terms of IT as the handling of large volumes of
information, involving thousands of items and transactions.

Today, the retail is a dynamic and complex sector, which includes all the activities of
purchase of goods intended for resale or to final consumers.

Markets suffer constant changes and competition is increasingly tight, thus creating a
strong competition among retailers. The increasing demand of customers leads to higher levels
of quality in services. With the increasing globalization of markets, also in the retail sector there
is an increasingly global consolidation and greater number of multinational retailers, therefore
preferring more robust and scalable solutions. In addition to being subject to market conditions,
retailers also depend on the ability to deal and understand their customers. It is essential to
establish relationships of trust with them, and won their loyalty by the quality of services
provided. Maximizing the return of investment by retailers, largely depends on operating costs
(effort reduction without compromising the quality of services) and the ability to negotiate with
the suppliers.

In the retail industry, the main function is the distribution, which includes the processes
necessary for transaction of goods. The distribution includes the transportation, receipt, storage,
transfers, returns and deliveries. The chain attached to the distribution begins on the suppliers,
after orders from retailers and wholesalers. For this purpose, a supplier-retailer interaction is
needed, which can be made via EDI (Electronic Data Interchange) or simply by fax. This
electronic communication aims to facilitate and accelerate the process of information exchange.

The basic element for the retail business is the article for which each case is a case.
Articles may be consumable in short periods of time, require specific conditions of transport and
supply and have high turnover rates or simply seasonal, so the management of stocks should be

 8

optimized. For this reason, the retailer should at any point in time know the status of items
under it, taking note of prices and actual quantities. The access to a prices history is important to
boost promotions or mediate future negotiations with the suppliers.

The strategy to be applied by retailers depends largely on market conditions, but also of
future consumers. This implies a more meticulous and careful observation of them. To ensure a
more personalized service is important to know its recipient. The analysis of records and
information contributes to improved service delivery, to greater loyalty, and in return the retailer
may benefit from an increase in sales and sales margins, but essentially winning the trust and
loyalty of the customer. Following this, it is more profitable to maintain a client than to start the
conquest of a substitute.

To sum up, any retailer has the goal to manage in the best way their suppliers, ensuring
proper management of stocks, enhance customer relations, identify and understand the modus
operandi of the competition.

Thus, arises the need for IS’s in retail to support the management of all information
relevant to the business. The integrated management support systems allow greater efficiency in
the approach to suppliers, increased flexibility and greater capacity for real time decision
making.

2.1.1 Types of Retailers

Retailers can be classified into the three following types:
• Store retailers – These market their products in a fixed point of sale. Generally use

large areas of products exposure, as well as major media advertising (television,
magazines and Internet) to attract customers. Typically sell to the public for personal
or household use, but may also sell to corporate customers. Such establishments
include office supplies stores, consumer electronics and construction materials.
Exhibitions of products samples, petrol stations and services, as well as service
companies such as post-sale repair and installation, are considered store retailers.

• Non-store retailers – Like store retailers, these are organized to serve the public, but
use different methods of sale. The establishments of this type reach customers through
methods such as paper or electronic catalogues, selling door-to-door, demonstration in
domestic houses, sales in mobile street posts, and distribution by vending machines.
Amazon.com, Tupperware, Telesales, are examples of retailers of this type.

• Corporate organizations – This type of retailer achieve economies of scale, high
power of negotiation, brand awareness and efficient sales force through a purchasing
centre for the entire group. Note that even though many stores represent independent
brands, an increasing number is now part in some way of corporate organization.
Through the concentration of purchases of goods, to buy in large quantities at lower
prices, it allows to hire experts to deal with promotional pricing, inventory control and
sales forecasts. Sonae Distribuição and franchising brands are examples of this type of
retailer.

2.1.2 Retail Segments

The retail segments are groups of elements of particular retail business model that drives
different processes and different key performance metric benchmarks. There are 50 niche retail
segments. However, 8 key segments can be defined, including the majority of the retailers, as
described bellow:

• Specialty (Softlines/Hardlines) – Focus on selling a certain type of articles, which are
supplied to the customers in a special way, using specialized care services, e.g.
Footlocker.

• Department store – Distinguish from the other stores by the fact that sell a wide range
of products, and do not have a predominant line of goods, e.g. El Corte Inglés.

 9

• Discount – These are characterized as low-cost shops which usually offer a lower
range of products and services, but at very attractive prices, e.g. Lidl.

• Drug – Usually these stores combine prescriptions with convenience by offering broad
selections of merchandise in a relatively small space, e.g. M24.

• Consumer electronics – Large retailers that focus their activity over a range of goods,
thus owning a buying power in that range that allows them to charge prices that the big
chains can not compete, e.g. Fnac.

• Grocery – The major stores that sell from food to house products and are
characterized by practising low prices, with low profit margin, but with a high volume
of sales, e.g. Carrefour.

• Warehouse clubs – Retail stores, usually selling a wide variety of merchandise, in
which customers pay annual membership fees in order to shop. They offer low
customer service and keep costs down while operating on low margins, e.g. Makro.

• Furniture/Home – These retailers appeal to the more affluent 35 to 55 age group,
introducing the concept of showroom as the selling floor. Its supply chain key is to cut
the time from the customer’s purchase to the home delivery date, e.g. IKEA.

2.1.3 Factors of Differentiation

When envisioning a store concept, a retailer makes decisions on the level of service and
range of sellable products, pricing policy, geographic coverage, access to the customer, size and
location of the store. It is the balancing between each one of these factors that allow the
differentiation among the competitors and the progressive capture of a larger fraction of the
possible expense of the power of customers, to generate greater volume of business in their
stores.

Subsequently are examined the retailers marketing decisions according to the most
important dimensions of a differentiation strategy, which are basically of four types: target
market, product range, service levels and price and promotions.

2.1.3.1 Target Market

The choice of the target market is probably the most important decision that a retailer has
to make. Until the target market is defined and characterized, a retailer can’t make consistent
decisions in the range of products, decorating the store, advertising, price or service levels.

In order to ensure that they are reaching and satisfying their target customers, retailers
must carry out periodic market surveys.

2.1.3.2 Product Range

This factor must meet the expectations of the purchasing target market in terms of diversity
of products and brands within each product, facing the challenge to develop a strategy of
differentiated products. Typically, the possibilities are:

• Provide exclusive national brands that are not in sale by competitors
• Present well known brands
• Provide innovative and differentiated products
• Present firstly the latest news in the market
• Offer highly customized services

The adopted strategy will achieve higher levels of customer satisfaction, as well as allow

for a policy of purchasing and marketing more focused on customer needs.

 10

2.1.3.3 Service Levels

Another decision to be made by retailers concerns the range of services to offer to
customers. These can be grouped in three types, which are described bellow:

• Pre-sale services – Include the receipt of orders via phone or mail, advertising,
displays or demonstrations of products.

• Post-sale services – Consist of order and delivery of purchased items, wrapping gifts,
devolutions or installation of products.

• Additional services – These include information centres, parking, restaurants, repairs,
interior decoration, credit facilities or waiting rooms.

2.1.3.4 Prices and Promotions

The price is a determinant factor and should be decided in accordance with the target
market, the range of products and services and competitors. All retailers want to get high sales
volumes and higher margins. However, most retailers either have large margins and low sales or
low margins and high sales volume.

Regarding promotions, retailers use various means to increase sales. From advertising,

discount coupons, reward programs or product samples, retailers have to choose the most
appropriate means of promotion to support and strengthen its market position.

 11

3 Technical Review

As its own designation indicates, this chapter conducts a review to the main technologies
and methodologies used in the project. It is identified, in this section, the main problem
addressed by the dissertation, the enterprise integration. The architectures and technologies
involved with the developed solution are also detailed in this section.

3.1 Enterprise Application Integration

Enterprise Application Integration (EAI) is defined as the process of linking applications
and enterprise data sources so that they can easily share business processes and data. This
process must be accomplished without requiring significant changes to these existing
applications and the data [UTPG08].

Before EAI, the task of integrating enterprise computer applications and data within a
corporate environment has been an expensive and risky proposition, mainly because companies
were trying to combine applications that often ran on different hardware platforms and had no
protocols for communicating with other software packages outside of their own narrowly
defined realm. In a sense, companies had “islands” of business functions and data, and each
island existed in its own separate problem domain.

To solve this problem, following an EAI approach, it is necessary to define semantics for
application and data integration. That is, EAI defines a standard methodology or approach for
applications and data sources to communicate. By supporting this standard, applications can
easily communicate with other applications and data sources. The pieces in the integration
puzzle – such as an underlying database management system (DBMS) – can change, but
because of this common methodology, the replacement piece can be plugged in and the
communication can continue uninterrupted.

Thus, the EAI is best suited for heterogeneous environments, which describe a point
reached by a certain company due to some reasons, such as acquisitions or mergers with other
companies, where they have been compelled to absorb some other company’s systems into their
own environment. They may have been trying to increase their capacity – or avoiding replacing
existing systems – by patching their own internally developed systems or other purchased
systems onto their core systems. Or, they may be supporting large numbers of users on
distributed systems with a multitude of platforms.

In short, EAI allows the enterprise applications to work together, thus avoiding that
organizations have redundant activities, higher costs, and inefficient response to their
customers.

 12

3.1.1 EAI Topologies

The topology of an EAI defines the structure in which each application communicates
directly with the other applications. Therefore, when implementing EAI, there are two choices
that can be made: point-to-point or bus-centric.

The point-to-point model describes a decentralized structure in which each application

communicates directly with the other applications. This type of integration is most appropriate
for organizations that need to integrate few applications with a small number of services. Figure
3.1 illustrates the number of connections required for a sample point-to-point environment.

In a point-to-point integration environment, interfaces between the applications are usually
written as business needs arise. The problem with this approach is the lack of consistency, as
well as the need for a reengineering whenever new business goals are defined that require
applications to communicate with one another differently. Every change makes the environment
more difficult to understand, until eventually the structure is so complex that it is almost
impossible to manage effectively. In fact, such a complex structure doesn’t carry benefits to the
company due to the high IT costs surrounding the change requests.

Figure 3.1: Point-to-point topology

The bus-centric model provides a more centralized structure, in which an integration bus is

placed between the applications, and each application communicates with the bus rather than
communicating directly with other applications. This can be seen in Figure 3.2 which shows a
bus-centric topology where applications are connected through an integration bus.

Each application needs only an interface and a connection to the integration bus. To
simplify matters, the integration bus can rely heavily on existing standards, which means that
either the interfaces that already exist or the methodologies for writing them are well-defined.

The main advantage of a bus-centric approach is scalability. Imagining a typical large-
scale organization with thousands of islands of information, involving thousands of
applications, it wouldn’t be reasonable to create individual interfaces for every point of
interaction. Instead, the solution is to create an application integration environment that allows

 13

all of the applications to communicate in a logical, predefined way. This bus infrastructure
allows to modify or update elements much more easily, and to do so when the business requires,
rather than when the preexisting technology dictates. It should also allow the organization to
more easily change direction and to use the products and services it has to match evolving
requirements.

Because interfaces are within the integration bus (and are usually standards-based), there is
no need to rewrite them whenever new applications are introduced. However, the bus can be
technically challenging to implement and may be too costly for more simple application
integration environments. In addition, some data complexity may have to be sacrificed to ensure
that each application conforms to the standards of the integration bus.

Figure 3.2: Bus-centric topology

3.1.2 Types of EAI

Depending on the processes and data which require integration, EAI can be of the
following types: data level, application interface level, method level and user interface level.

3.1.2.1 Data Level

It is the process of moving data between data stores, which can be extracting information
from one database, processing that information as required and then updating in another
database.

The main advantage of the data level EAI is its relative simplicity. Though it may sound
simple, it is actually not very simple as one has to understand the complexities associated with
the database as well as how the information flows.

3.1.2.2 Application Interface Level

It refers to the leveraging of interfaces exposed by custom or packaged applications. Using
these interfaces, developers are able to bundle many applications together, allowing them to
share business logic and information. In order to integrate such systems with other systems in
the enterprise, the information must be extracted, place it in a format easily understood by the
target application and then transmit the information.

 14

3.1.2.3 Method Level

Consists in the sharing of the business logic that may exist within the enterprise, for
example, a method for updating a customer record may be accessed from any number of
applications, and applications may access each others methods without having to rewrite each
method within the respective application.

Method level EAI allows the enterprise to be integrated through the sharing of common
business logic or methods. This can be accomplished by either defining methods that can be
shared or by providing the infrastructure for method sharing. Methods may be shared either by
hosting them on a central server or by accessing them between applications (e.g. distributed
objects).

3.1.2.4 User Interface Level

This is a more primitive but nonetheless necessary approach. Using this scenario,
architects and developers are able to bundle applications by using their user interfaces as a
common point of integration. For example mainframe applications that do not provide database
level access may be accessed through the user interface of the application.

Though the other EAI levels are much more appealing technically, in many cases the user
interface is the only available mechanism for accessing data and logic. In spite of the
inefficiencies the advantage user interface has over the other is that it does not require much
changes to the source or target systems.

3.1.3 EAI Architectures

The following sub-sections give the reader a brief description of the integration
architectures used in this project.

3.1.3.1 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a newer architectural style of distributed
computing. It is based on creating loosely-coupled, independent, reusable business software
services that are interoperable, technology-neutral, and that can be choreographed or
orchestrated into a composite application running on the Internet. It can support a transformed
or modernized business process workflow and integrate partners, customers and suppliers. Since
business software services are reusable, new applications can be built more quickly [ISM08].

The mentioned business services can be created from existing software assets and
packaged applications, which grant to SOA a much greater business, IT flexibility and
adaptability, because composite applications can easily be changed and adapted. The integration
is completely automated by the architecture. Changing SOA-based applications to reflect future
business change is thus dramatically easier and faster. Also, within SOA services are loosely
coupled which means that they don’t have to know the technical details about each other to be
able to communicate, which is the single most important characteristic of SOA. This guarantees
the autonomy of services, allowing for them to be developed, installed, and maintained
independent from the other services.

SOA is based on, but extends, web services technology and exploits the broad, maturing
set of open web services standards needed for large-scale deployment. These enable SOA to
provide seamless interoperation of web services based business software services to run
smoothly across different hardware, operating system and middleware platforms, and across
different programming models, over the Internet, under open standards.

Thus, the benefits of SOA are directly related to the characteristics of the services that this
architecture implements. A service can be defined as a reusable function that can be invoked by
another component through a well-defined interface, with the main role of exposing important
business services in a flexible, easily composed and highly reusable fashion.

 15

So, the most important characteristics of a service are:
• Loose coupling – Services hide implementation details and minimize dependencies

with the requesting party.
• Reusability – Services must be reusable by definition. Services can be reusable over

several lines of business.
• Composition – Services can be assembled and coordinated to form new services.
• Aggregation – Services can be aggregated to form new functions. Aggregated

functions are more specific and therefore less reusable than the services they are
composed from.

• Generality – Services can be specific to a particular process or channel, or they can be
generic in nature. Generic services are more reusable.

• Granularity – Granularity is defined by the amount of data a service processes or by
the amount of processing in term of functionality the service implements. Granularity
is one of the major design issues in the service design process.

Since, with SOA, the application components are built as services that inherit these

characteristics, this allows offering a set of IT components flexible in both interoperability and
reusability, which can be used to support composite business processes, contributing for saving
costs within the company.

3.1.3.2 Message-Oriented Middleware

Message-Oriented Middleware (MOM) is a client/server infrastructure that increases the
interoperability, portability and flexibility of an application by allowing the application to be
distributed over multiple heterogeneous platforms [Sha07]. It reduces the complexity of
developing applications that span multiple operating systems and network protocols by
insulating the application developer from the details of the various operating systems and
network interfaces, by providing an Application Programming Interface (API) that extends
across diverse platforms and networks.

MOM, as shown in Figure 3.3, is software that resides in both portions of client/server
architecture and typically supports asynchronous calls between the client and server
applications. Message queues provide temporary storage when the destination program is busy
or not connected. MOM reduces the involvement of application developers with the complexity
of the master-slave nature of the client/server mechanism.

Figure 3.3: Message-Oriented Middleware based system

It also increases the flexibility of the architecture by enabling applications to exchange

messages with other programs without having to know what platform or processor the other
application resides on within the network.

The mentioned messages can contain formatted data, requests for action or both.
Technically, MOM systems provide a message queue between interoperating processes, so if

 16

the destination process is busy, the message is held in a temporary storage location until it can
be processed.

3.1.3.3 Publish/Subscribe

At a high level, the Publish/Subscribe mechanism helps keep co-operating systems
synchronized by one-way propagation of messages because one publisher sends a message to
any number of intended subscribers [Nar06].

With Publish/Subscribe messaging, there are message publishers, who produce messages,
and message subscribers, who register their interest in particular messages, as illustrated in
Figure 3.4. There is also a separate Publish/Subscribe facility that acts as the integration point,
where messages are made available by the publishers and delivered to the subscribers.

Figure 3.4: Simple Publish/Subscribe messaging

As detailed in Figure 3.4, the Publish/Subscribe pattern works with a publishing

application (MyTopicPublisher) which publishes a message on a specific topic (MyTopic).
Multiple subscribing applications (MyTopicSubscriber1 and MyTopicSubscriber2) can
subscribe to this topic and receive the messages made available by the publisher. The
Publish/Subscribe facility (Broker) takes the responsibility of delivering the published messages
to the subscribing applications based on the subscribed topic.

Since Publish/Subscribe is typically one part of a larger Message-Oriented Middleware
solution, the messaging system provides an API to access the messaging services.

3.1.3.4 Business Process Execution Language (BPEL)

Business Process Execution Language (BPEL) is a XML based language used to define
enterprise business processes with in web services. BPEL extends the web services interaction
model and enables it to support business transactions. The Processes implemented in BPEL can
orchestrate interactions between web services using XML documents in a standardized manner.
It has built-in support for asynchronous interactions, flow control and compensating business
transactions [Aru08].

In Figure 3.5 is represented a sample business process implemented using BPEL. In this
case, the exemplified process illustrates an application publisher and thereby describes tasks
associated with the publication process.

 17

Figure 3.5: BPEL process example in Java CAPS

BPEL supports two different types of business processes:
• Executable process – It models the actual behaviour of a participant in a business

interaction. They follow the orchestration paradigm and can be executed by an
orchestration engine.

• Abstract process – This is also a reasonable approach, and it represents partially
specified processes that are not intended to be executed. It uses process descriptions
that specify the mutually visible message exchange behaviour of each of the parties
involved in the protocol without revealing their internal behaviour.

In Java CAPS, the development of business processes can be made in two ways – working

directly with the XML source, or using a graphical view, similar to what is shown in Figure 3.5.
This BPEL design is based on the Business Process Modeling Notation (BPMN), a standards-
based graphical representation for specifying business processes. Thus, BPMN creates a
standardized bridge for the gap between the business process design and process
implementation [BPMN09]. The BPMN is maintained by the Object Management Group
(OMG), famous by their most-used specification, the Unified Modeling Language (UML).

Thus, the BPEL is emerging as the clear standard for composing multiple synchronous and

asynchronous services into collaborative and transactional process flows, facilitating the
development of SOA based applications. With BPEL, composite applications can become more
agile and adapt to changing business conditions quickly, therefore reducing implementation
costs.

3.1.3.5 Database Sharing

This methodology represents a tightly-coupled integration approach where multiple
applications share the same database schema, located in a single physical database.

Whilst having to share data between multiple applications each with its own database
might be difficult, it is no easier to have multiple applications share one database, because of the
difficulty in developing a database schema that satisfies requirements of multiple disparate
applications.

There are several approaches to achieve this kind of integration but the most commonly
used consists in the development of database packages, with their own procedures, functions
and triggers, to allow for CRUD (Create, Read, Update and Delete) operations to be executed
directly to the database without requiring external components.

3.2 Oracle Retail

Oracle is the world’s largest business software company, with more than 320.000
customers, representing a variety of sizes and industries in more than 145 countries around the
globe [Ora09a].

Although being best-known due to its Database Management Systems (DBMS), the
corporation also builds tools for middle-tier software, Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM) and Supply Chain Management (SCM).

Following the success of the company and its continuous ambition for expansion across all
areas of business, Oracle triggered a market strategy of smaller companies purchase, namely in

 18

the area of retail. Amongst these acquisitions, the highlight was the acquisition of Retek, back in
April 2005, an important decision in the corporation’s history since it strengthened Oracle’s
position in the retail applications market globally. Retek was the owner of the Retek
Merchandising System (RMS), renamed, after the acquisition, to Oracle Retail Merchandising
System (ORMS).

Over the years, Oracle increased in size and gained the trust of many customers, now
offering an integrated set of modules that include an understanding of the market, with a set of
comprehensive tools which support the entire structure of retailing. This set of tools was given
the name Oracle Retail.

The modular structure of the Oracle Retail is represented in Figure 3.6. The modules that a
given client implements vary greatly depending on their needs and owned legacy systems. From
the Oracle Retail integrating modules, only the ORMS will be detailed later in this report, given
the fact that was the only module addressed on the developed work.

Figure 3.6: Oracle Retail modules

The represented modules are organized into different areas of retail, according to an Oracle

Retail solution strategy, with the aim of providing a better profitability of resources and a good
supply chain planning. These areas of retail are demonstrated in Figure 3.7 and described
afterwards.

 19

Figure 3.7: Oracle Retail solution areas

The Oracle Retail business areas are now described:
• Demand Planning – This is a powerful and flexible Online Analytical Processing

(OLAP) tool, a category of business intelligence tool that supports the forecasting of
demand for sales of finished goods. Oracle Demand Planning is part of the Oracle
Advanced Planning Solution, and seamlessly integrates with the other Oracle Retail
solutions.

• Merchandise Optimization & Planning – This set of solutions allow to create
intelligent estimates of future business opportunities, providing a common demand
planning engine throughout the execution system of the company. The demand
planning solutions include a statistical forecast of demand and a forecast of
promotions. The products that allow these features are: Oracle Retail Demand
Forecasting (ORDF) and Oracle Retail Predictive Application Server (ORPAS).

• Merchandise Operations Management – These represent a fully integrated and large
expansion set of solutions which can be implemented in an independent manner.
Allows the coordination of business operations and maintain a single data source and
consistent throughout all the systems and channels. The following products are
included in this area: Oracle Retail Merchandising System (ORMS), Oracle Retail
Sales Audit (OReSA), Oracle Retail Trade Management (ORTM), Oracle Retail
Invoice Matching (OReIM) and Oracle Retail Price Management (ORPM).

• Inventory Optimization & Planning – It considers the demand, supply, constraints,
and variability in the extended supply chain to optimize the company’s strategic
inventory investment decisions. It allows for the organization to provide higher service
levels to their customers at a lower total cost.

• Supply Chain Execution – The applications in this area are responsible for planning
and optimizing the level of replenishment, but also a collaborative inventory
management. These solutions allow to make a precise match between supply and
demand, which is especially appealing for large product lines, multiple stores and
warehouses, complex networks of connection with vendors and environments with
large volumes of sales. The system presented as part of these solutions is the Oracle
Retail Warehouse Management System (ORWMS).

• Integrated Store Operations – These allow for the conduct of the business through
multiple channels, thus providing a consistent experience of buying at all channels –
stores, websites, catalogues or call centre. The main business activities included in this
area involve the management of Point-of-Sale (POS), store efforts management,

 20

customer orders and store inventories. The product that fits in this area is the Oracle
Retail Store Inventory Management (ORSIM).

The most important area of the Oracle Retail solutions is definitely the Merchandise

Operations Management, by the fact it includes the ORMS, the main module of the suite, since
it stores and manages all the reference information of the retailer.

3.2.1 Oracle Retail Merchandising System (ORMS)

Oracle Retail Merchandising System (ORMS) is the system that stores and controls
virtually all data in the retail enterprise and ensures data integrity across all integrated systems
[Goe08b].

ORMS provides easy access to the crucial information of daily merchandising activities
and ability to focus on key decisions that help achieve sales and profit targets, by streamlining
business practices and unifying business systems across retail channels to better serve
customers. Since ORMS has been developed as a web-based, scalable product, it fully supports
the large volumes found in retail, leaving time for retailers to concentrate on the bottom line.

The ORMS key functions are detailed in the following sub-sections.

3.2.1.1 Foundation Data

Foundation data is the data that defines core business concepts, and is shared among all
Oracle Retail solutions, such as: products, stores and warehouses, organizational and
merchandising hierarchy, suppliers and negotiations.

This data is divided by two structures: organizational hierarchy and merchandise hierarchy.

The organizational hierarchy, represented in Figure 3.8, creates the system relationships

that are necessary to support the operational structure of a company.

Company – The highest organizational unit
defined in ORMS. Only one company can be
defined.
Chain – It is used to group various store
formats, concepts, and geographical locations
within the organization.
Area – Defines a geographical group within
the organization. An area can belong to only
one chain.
Region – It is also used to group geographical
locations. A region can belong to only one
area.
District – Represents a geographical location
belonging to a given region. A district can
belong to only one region.
Store – level where transactions occur, such as
sales.
Warehouse – Represents a warehouse. It is not
bound to any level of the hierarchy.

Figure 3.8: ORMS organizational hierarchy

 21

The merchandise hierarchy, detailed in Figure 3.9, defines relationships within the system
for product management, financial support and productivity report.

Company – The highest merchandise unit,
shared from the organizational hierarchy. Only
one company can be defined.

Division – Represents the type of goods.

Group – A lower-level type grouping of
goods. Belongs only to a division.

Department – It is the level of management of
goods, which make reports, budget and
inventory and profitability.

Class – Product groups within a department.

Subclass – Grouping the classes into sub-
categories.

Item – Level where the articles are kept.

Figure 3.9: ORMS merchandise hierarchy

3.2.1.2 Item Maintenance

The item maintenance process, along with the foundation data, makes up the core of
ORMS. Items must be created in the system before the retailer can order, receive or sell any
goods.

The items can be of different types:
• Regular items – Created by differentiators from common information. The

differentiators are related to characteristics of the articles, such as colour, taste or size;
• Packs – A group of items that can be sold and/or ordered as one item. There are two

types of packs: simple packs (contains multiples of one component item) and complex
packs (contains multiple component items).

• Deposit items – These items have a portion which is returnable by the customer after
it has been sold to him, e.g. Beer bottles.

• Consignment items – Represent marketing arrangements where physical control of
merchandise is transferred from the consignor (the supplier) to the consignee (the
retailer). The owner of the goods remains with the consignor until the goods are sold,
e.g. Newspapers.

• Concession items – These items are similar to the consignment items in that the
retailer does not own the inventory being sold. Concession items differ from
consignment in that the ownership is not transferred when the items are sold. A retailer
rents floor space to a supplier on which the supplier sells their goods. Concession sales
are recorded and the retailer then bills the supplier using their chosen method, e.g.
Mobile phones.

• Transformable items – Refer to items that can be ordered as one item and then
broken into smaller items, e.g. Pork and lamb.

 22

3.2.1.3 Cost Maintenance

The initial cost of an item is established at item set-up at the item/supplier/original
country/location level. After an item is approved, any cost changes need to be handled through
the cost change form.

Cost changes can only be effected at the transaction level of an item, at three levels:
• Supplier
• Item (and item list)
• Location

These cost changes can be entered into the system via EDI or manually. When approved,

the system updates the item supplier cost record for a selected effective date, and can recalculate
any outstanding purchase order amounts not yet received.

Cost Changes are applied during the nightly batch on the night before the price change
effective date.

3.2.1.4 Deals Management

A deal is an agreement between two parts, fixing benefits and obligations for each other,
during a determined period. In the retail business, deals are made (mainly) with suppliers. Most
times, it represents a decrease in item cost (a discount) given by the supplier to the retail
company. In exchange, the supplier increases his sales and sustains a longer relation with the
retailer.

The ORMS supports four different types of deals:
• Fixed deals – Used to receive payments from suppliers in return for mentioning their

products in promotions or by displaying the product in prime shelf space.
• Purchase order specific deals – A deal that is applied to items on a specific purchase

order, which supersedes any other deals for the items on that purchase order. The deal
is closed automatically when the items on the purchase order are received.

• Off-invoice deals – These are used when a cost price reduction is received. The
supplier includes the discount in the invoices sent to the retailer. The discount is
applied over the purchase order cost price.

• Bill back deals – Allow the organization to receive money back after a specific event.
Bill backs are calculated based on individual purchase orders or receipts.

3.2.1.5 Purchase Orders

Purchase orders are responsible for maintaining store stock level with merchandise that
matches consumer demand. In some cases, the purchase orders can be created by the stores.
These orders are sent to the central system for integration and validation, or may be sent directly
to the suppliers.

Associated with the management of purchase orders is the process of receiving goods. The
receipts of goods in the warehouse or in store are validated on the related purchase orders.
Whenever exist discrepancies between the purchase order and the actually received, the system
allows the retailer to send the supplier a credit request.

3.2.1.6 Backhaul Allowances

The concept of backhaul is when the retailer collects the goods from the supplier using
their own transportation.

Backhaul allowances are used to offset the cost incurred by the retailer in transporting the
merchandise from the supplier. On receiving the goods from the supplier, allowances are stored
and calculated, and this will affect the stock value.

Backhaul allowances can be applied to the purchase orders in two ways:

 23

• Manually inserted in the purchase order (flat fee)
• Inherited from predefined backhaul allowance (calculated)

3.2.1.7 Inventory Management

The inventory management is relative to the treatment and handling of goods within the
retail group.

Transfers are used to move stock within the company from one location to another directly,
or if necessary, using an intermediate finisher that will send goods to another location (both
physical and virtual locations).

The ORMS transfers can have the following types:
• Returns from stores
• Stock movements between warehouses
• Stock movements between stores
• Stock movements between warehouses and stores due to replenishment or manual

transfers

3.2.1.8 Replenishment

Replenishment is an ORMS system responsible for constantly monitoring inventory
conditions and based on these conditions create the purchase orders or transfers to fulfil
consumer demand.

The process of replenishment is based on indicators located in:
• System options (e.g. purge days, order days)
• Supplier (scaling, defaults for all items/departments)
• Supplier inventory management (review cycle, sups minimums)
• Item/location (replenishment methods, supplier, activate dates)
• Item/supplier/origin country (lead time)

3.2.1.9 Wholesale and Franchising

The wholesale and franchise functionality in ORMS is based on a pull supply chain model,
designed to cope with businesses that require working with non-company stores.

Figure 3.10 illustrates the wholesale and franchise business process workflow.

 24

Figure 3.10: Wholesale and franchise business process workflow

The wholesale and franchise stores will send purchase orders via EDI, phone or fax to the

head office. Sourcing will always be done through the warehouse (warehouse stocked
replenishment) and replenishment will be affected by wholesale and franchise purchase orders,
which must be manually approved.

3.2.1.10 Stock Ledger

The stock ledger monitors the actual financial performance of the retailer by incorporating
all financial transactions relating to merchandising, including sales, purchase orders, transfers
and markdowns. Stock ledger values are summarized by day, week and month, offering a
variety of reporting options at the product, location, and time level.

Data is rolled up at the group, division, and company level for profit and loss, balance
sheet and retail inventory gross margin percentage reports.

 25

3.3 Java CAPS

On August 25, 2005, Sun Microsystems, Inc. acquired SeeBeyond [Sun08], a software
company specialized in systems integration and development of business integration software,
particularly famous for its EAI platform known as SeeBeyond ICAN (Integrated Composite
Application Network). After the acquisition, SeeBeyond’s flagship product ICAN was renamed
to Sun Java Composite Application Platform Suite (Java CAPS), or simply JCAPS.

JCAPS provides a standards-based, open, extensible platform for developing software
infrastructures using a Service-Oriented Architecture (SOA) approach. This unified and
comprehensive suite can help companies create composite applications from existing
investments as well as deliver new business services in a flexible SOA environment with no
vendor lock-in [Sun09b].

JCAPS, currently in its version 6, provides the needed tools for designing, deploying, and
managing platform-independent vendor-neutral composite applications. This latest version
retains most of the feature set of previous JCAPS releases, originating in the ICAN suite from
SeeBeyond, and provides further flexibility through standardization. Among these tools are
included integration, infrastructure, and security products as well as powerful developer tools.

The modular architecture of the JCAPS framework is represented in Figure 3.11.

Figure 3.11: Sun Java CAPS architecture

As represented above, the JCAPS framework has a layered architecture, formed with the

layers described bellow:
• Portal – This layer provides a user portal for collaboration and the ability to

personalize content for users based on a user’s identity-provisioned account.
• Business Activity Monitoring – Enables businesses supervision to determine trends

and proactively address critical business issues before problems escalate out of control.
Provides an event-driven architecture that supplies real-time trend detection based on a

 26

combination of business event filtering, aggregation, correlation, and analysis across
multiple applications and information resources.

• Business Process Management – Provides the ability to model, test, implement,
monitor, manage, and optimize business processes that orchestrate the flow of
activities across any number of web services, systems, people, and partners. Sun’s
Business Process Manager delivers an open, graphical modelling environment for the
industry-standard Business Process Execution Language (BPEL).

• Enterprise Service Bus – A Java technology-compliant, web services-based,
pluggable integration platform and the foundation of JCAPS. It allows for loosely
coupled components to communicate with each other through standards-based
messaging, providing a core integration, including comprehensive application
connectivity, guaranteed messaging, and robust transformation capabilities, and a
unified environment for integration development, deployment, monitoring, and
management.

• Infrastructure – Provides a strong foundation of application server and identity
support for the integration products, as well as a portal interface to support user
collaboration with composite applications.

Included with Java CAPS are NetBeans tools, an IDE that provides the single interface for

building, testing, and deploying reusable, secure Web services, composite applications, and
business processes for Java CAPS. Using NetBeans, the main components to develop for an
integration solution are as it follows:

• Business Processes – models actual behaviour of a participant in a business
interaction, by specifying execution of activities, its inputs/outputs and possible
exceptions in the message flow. Business processes in Java CAPS are meant to be
made following the Business Process Execution Language (BPEL).

• Collaborations – a component that uses Java code to connect to data sources; parse,
examine and manipulate incoming messages to form outbound messages; publish
outbound messages to data destinations and execute other business logic.

• Connectivity Maps – collects logical components, connect them to form message
routes, name external systems connectors and, in the case of JMS destinations, specify
the types of JMS destination that will be used.

• Deployment Profiles – given a collection of external resources, specified by a
determined environment, the deployment profile is the mechanism by which logical
components of the solution are mapped to physical resources.

In Figure 3.12 is represented a sample implementation of a Java CAPS project for the VAT

(Value Added Tax) business entity, illustrating a connectivity map that contains business
processes and collaborations. The deployment profile created for this application is
demonstrated in Figure 3.13.

Figure 3.12: Java CAPS connectivity map example

 27

The publication integration flow represented in the connectivity map above is interpreted

from left to right. Thus, a JMS queue, qVatTrigger, starts the whole process, once a triggering
message is received. That message will then be processed by the implemented BPEL,
bpVatPublisher, which is responsible for executing the following three operations:

• VatGetFromRMS – will execute a collaboration responsible for retrieving the VAT
family messages from the ORMS application.

• LoadConfig – this component will load the necessary configuration parameters
available from the properties files of the given Java CAPS project.

• TransformAndRouting – applies the necessary transformation and routing operations
to the received VAT message. This mechanism never changes the message contents.

After the successful execution of the mentioned BPEL operations, the publication flow is

concluded by sending the message to a JMS topic, tpVatPublisher. At this point, the VAT data
is ready for subscription by any kind of application, as long as it is supported by the Java CAPS
adapters. If an error occurs during the publication process, the message is sent to a JMS error
queue, qPublicationError, being a common practice to have a project subscribing that same
queue and sending an error message by email, for instance.

Figure 3.13: Java CAPS deployment profile example

As already described, the deployment profile represented above maps the logical

components of the solution into the physical resources. Since this is a publication project
example, it is used a Publisher/Subscriber environment and its publication logicalhost,

 28

represented in Figure 3.13 as lhPub01. After deploying the project, this logicalhost will be in
charge of hosting the services and components included in the project’s connectivity map.

The interpretation made for this VAT example can be roughly followed for other

Publication/Subscription projects implemented using Java CAPS for the NetBeans IDE.

3.4 DeSpar Pub/Sub Framework

In the particular case of this project’s client, DeSpar, the implementation of an EAI
solution, using JCAPS, will be held with the help of DeSpar Pub/Sub framework. This consists
of a bus-centric framework developed by Wipro Retail, using the Java language. The framework
development and eventual changes are in accordance with DeSpar needs for integration, adapted
to the systems used by the client, the ORMS and the IMAge.

Figure 3.14: DeSpar Pub/Sub framework architecture

In Figure 3.14 are represented the Publisher/Subscriber adapters implemented by the

framework and that have been used in this project.

3.5 Conclusions

Since the main objective of this project is not to make an intensive study of the adopted
technologies, in order to extrapolate its viability, primarily because it is a project directed to a
client, DeSpar, which has been a Wipro Retail customer since 1999, and since the inclusion of

 29

SeeBeyond ICAN and more recently Sun Java CAPS into the DeSpar projects dates back to the
year 2007, these are more than proven technologies and in fact demanded by the client.

Despite the factor of the technological restrictions imposed by the client, and since the goal
of the EAI is to achieve a reliable, real time and fast integration between disparate systems, then
a SOA approach, using the Publication/Subscription model, seems to perfectly fit this scenario.

Characteristics such as loosely-coupled, reusability, modularity and interoperability, which
define the ground rules for development, maintenance and usage of SOA, are reflected into
business benefits, since by allowing faster changes to existing systems and processes,
organizations can reduce their time used to maintain existing systems and free up IT people to
focus on building new services that will help business to grow. Thus, SOA seems, and in fact
proved to be, the correct strategy to meet the integration needs of the client.

Also, the use of the Oracle Retail suite represents a more than proven technology in the
retail world. Thousands of retail and wholesale distribution companies around the world rely on
Oracle for maximum flexibility and profitability. In fact, 20 of the top 20 global retailers run
Oracle [Ora09a].

Regarding the Java CAPS framework, although being a restriction from DeSpar and also
due to the already developed work with the framework, this can be considered as a good
restriction, since it is experience of Wipro Retail, both with DeSpar, as with other customers,
that the adoption of Java CAPS for the processes of EAI resulted in the following benefits:

• Simplification of the complexities of integration.
• Increase of business opportunity and value creation.
• Reduction of the time to market, by incrementing the IT flexibility and reactivity.
• Drastic reduction in IT costs, by pursuing reusable, template-based approaches to

development.
• Make faster and better business decisions.
• Broad support for multiple computing platforms and databases.

Finally, to better understand how these technologies emerge in the project, Figure 3.15

describes the interconnection of the various technologies used throughout the internship.

DeSpar
Applications

XML
Message

TAFR
Adapter

XML
Message

XML
Message

TAFR
Adapter

ORMS
Staging
Tables

Integration
BUS

Java CAPS

DeSpar
Pub/Sub

Framework

XML
Message

DeSpar
Application
Subscriber

Adapter

ORMS
Subscriber

Adapter

XML
Message

ORMS
Publisher
Adapter

Figure 3.15: Project technologies overview

 30

4 Enterprise Application Integration
using Java CAPS

This section provides a detailed presentation of the problem that this project intends to
solve, as well as the work developed throughout the internship. This work represents an
integration solution, following an Enterprise Application Integration (EAI) approach and is
described in the subsequent sub-sections.

4.1 Introduction

This internship is part of a bigger project from DeSpar, result of an Application Support
and Maintenance (ASM) contract signed between DeSpar and Wipro Retail. Taking this into
account, being part of an ASM project can be a much more challenging and enriching
experience, as in the end proved to be, due to the possibility of dealing with various
architectures and methodologies, accordingly to the client needs. Also, the fact of working in
the EAI project team represents a great opportunity for learning, due to the technological variety
involved in the client’s support and change requests.

Thus, the work developed at Wipro Retail during the internship can be grouped into four
major categories:

• Store Productivity Application – A productivity operational application, to store and
manage data related to employees’ efficiency in the stores.

• Reception/RTV Change Request – Follows a new data integration strategy regarding
Receptions and Return-to-Vendor (RTV) data.

• Store to Warehouse Orders and Receptions – Consists in the development of an
integration flow for data subscription regarding warehouse events for warehouse
shipments and store-to-warehouse orders responses.

• DeSpar Pub/Sub Framework Review – Represents a needed review of the
framework for versions merge and an impact analysing in existing projects.

The developed work is described in the following correspondent sub-sections.

 31

4.2 Store Productivity Application

This application follows a DeSpar request for dismissing its current “Produttivitá”
application, consisting in generic terms of a productivity operational application.

The project implements a Publisher/Subscriber model, for data publication by an AS400
system and subscription by the ORMS, regarding Store Productivity data. The AS400 system
application will put files available to publish information and use the existing
Publication/Subscription framework.

4.2.1 Assumptions

On the implementation of the Store Productivity integration flow should be taken into
account the following assumptions:

• The EAI publication process will not include any data transformation.
• A staging area will be created for storing temporary data before committing it to the

final ORMS tables. The created staging tables will hold processed data indefinitely.
There will be a table field containing the processing date to allow the data purge. The
staging tables purging process will be DeSpar responsibility.

• The data recovery will be made manually.
• The data will be referred as a message family, containing a message structure

supported by a NB_EAI_<OBJECT> (Oracle Object Type). Any changes to the
structure of the messages, will affect the specific message family and correspondent
NB_EAI_<OBJECT>, the JCAPS OTD’s and the Java Wrapper Classes.

• There will be a file for each store containing Store Productivity data. This file can be
sent in different days with the same name. Every time the file is sent will be
considered only the last data received as being the one to be processed into ORMS
final tables.

• The file containing data will be available in a CSV format.
• The filename pattern will be “staff_[STORE]_[DATE].dat”.

4.2.2 Architecture

The architecture of the Store Productivity integration flow to develop can be seen in Figure
4.1 that gives a general overview of components to implement, which are detailed in the
subsequent sections.

Figure 4.1: Store Productivity architecture

 32

The Integration BUS will be used to receive data from external applications. This way

AS400 system will send information about Store Productivity which will be integrated into
ORMS using the mapping detailed in Table 4.1.

Table 4.1: Store Productivity mapping table
Publication Subscription

Family AS400 File Pattern ORMS
StoreProductivity staff_[store]_[date].dat StoreProdDesc

4.2.3 GenericFromFTPToQ

This component will be used by the Store Productivity publisher, which will start by means
of a triggering system that uses a JMS queue that holds a message responsible for initiating the
publication business process. As its own name indicates, this component is a generic FTP
component, therefore it may be used in any other JCAPS developments.

This developed component is responsible for getting files from a FTP host and send each
file content to be processed using a Publisher/Subscriber approach. The logic implemented by
the component is represented in Figure 4.2.

 33

Figure 4.2: GenericFromFTPToQ component logic

The FTP access to the AS400 system, which will retrieve files with the data to be sent to

the integration BUS, is parameterized by a configuration file described in Table 4.2.

 34

Table 4.2: GenericFromFTPToQ configuration
GenericFromFTPToQ

Object Type New? Description

genericFromFTPToQ.properties Properties
file Y

Configuration file for the FTP access to
the AS400 system, which includes the
following new entries:
• maxFilesPerRound = the number of

files to be processed in each FTP.
• hostDirectory = the folder name in

the FTP host to retrieve the files.
• hostFileName = the filename pattern

to retrieve.
• hostPostCommand = the command

to execute after retrieve the file.
• hostPostDirectory = the name of the

directory in which to put the
processed files.

• hostPostFileName = the filename
pattern for the processed files.

• localBackupDirectory = the folder
name in which to backup files locally
(in JCAPS).

• trigger.host = the name of the host
where the trigger signal is to be sent

• trigger.port = the port number of the
queue in the host which will receive
the trigger signal.

• trigger.queue = the name of the
internal queue to send the trigger
signal.

As for the FTP component logic, this was implemented in JCAPS using a Java

Collaboration Definition (JCD). This collaboration, svcGenericFromFTPToQ, was then linked
with other logical components needed, by using a connectivity map, as illustrated in Figure 4.3.

Figure 4.3: GenericFromFTPToQ connectivity map definition

The components used in the connectivity map and illustrated above, are detailed in Table

4.3.

 35

Table 4.3: GenericFromFTPToQ components
GenericFromFTPToQ components

Object Type New? Description

qStoreProductivityTrigger JMS queue Y JMS queue that holds the message to start
the publication business process.

svcGenericFromFTPToQ Java
Collaboration Y

It is responsible for the FTP access to the
AS400 system, which will retrieve files
with the data to be sent to the integration
BUS.

BatchFTP1 FTP adapter Y Provides FTP access.
localFile File adapter Y Allows access to the FTP properties file.

qStoreProductivityData JMS queue Y
JMS queue that holds the Store
Productivity data retrieved from the CSV
files.

4.2.4 Store Productivity Publisher

This component is responsible for the data publication of the Store Productivity messages
into the integration BUS. The data publication process will start by means of a triggering
system, which uses a JMS queue that holds the message to initiate the publication business
process.

Thus, in general terms, the publication flow will start by executing a FTP access to the
AS400 system, which will retrieve the CSV format files with the data to be sent to the
integration BUS, and then will map the file content to a XML message structure using an Object
Type Definition (OTD). An OTD is a JCAPS component used to define and manipulate
message structures. To allow other components to manipulate fields within JCAPS messages,
the OTD provides both marshal (serialize) and unmarshal (deserialize) methods.

The OTD, StoreProductivity, used to map the received CSV files, via FTP, to XML
format, is detailed in Appendix A.1.

Since the goal is to insert the retrieved CSV files data into the staging area tables, it is

necessary to map the flat file format against the database format, which is achieved by defining
a Common Message Format (CMF) specification that basically defines the structure of the
messages, shared by publishers and subscribers, of the integration flow. The CMF definition has
been accomplished by using another OTD, which maps the file contents already in XML format
to the same structure defined in the Oracle Object Types, user-defined data types that will model
the Store Productivity data as unitary entities (objects) to allow the integration in the ORMS.

At this point, the OTD has been defined by means of a Document Type Definition (DTD),
and then imported to JCAPS, that automatically generates an OTD with the given DTD. The
structure of the generated OTD, StoreProdDesc, is described in Appendix B.1.

So, now the integration BUS contains the data formatted and ready to be sent for

publication, which is achieved by sending the message to a JMS topic, thus concluding the
publication flow. All the logic developed for the publication has been implemented using a
collaboration, jcdStoreProductivityPublisher (Appendix F.1), and included in the connectivity
map represented in Figure 4.4.

 36

Figure 4.4: Store Productivity publisher connectivity map definition

Table 4.4 describes the components used in the Store Productivity publisher connectivity

map.

Table 4.4: Store Productivity publisher components
Store Productivity publication components

Object Type New? Description

qStoreProductivityTrigger JMS queue Y JMS queue that holds the message to
start the publication business process.

svcGenericFromFTPToQ Java
Collaboration Y

It is responsible for the FTP access to
the AS400 system, which will retrieve
files with the data to be sent to the
integration BUS.

ftpConfig File adapter Y Allows access to the FTP properties
file.

BatchFTP1 FTP adapter Y Provides FTP access.

qStoreProductivityData JMS queue Y
JMS queue that holds the Store
Productivity data retrieved from the
CSV files.

jcdStoreProductivityPublisher JMS queue Y
It is responsible to receive and format
the data, from the integration Bus, to
be ready for publication.

tpStoreProductivityPublisher JMS topic Y Contains the data formatted from the
integration BUS.

qError JMS queue Y
JMS queue that holds any eventual
error message that occurred during
the publication process.

4.2.5 ORMS Subscriber

For the ORMS subscriber for Store Productivity data it is necessary to create the Java
Wrapper Classes, in order to make possible for the framework to interchange data between
systems, in this case between JCAPS and the ORMS.

The Java Wrapper Classes are responsible for the Oracle Objects initialization, taking
advantage of the Java Reflection API to read and write fields and methods of a selected class in
runtime, namely the methods used to map the CMF messages into the Oracle Object Types.

Thus, the data formatted according to the OTD, StoreProdDesc (Appendix B.1), is
received from the integration BUS and mapped via Java Wrapper Classes into the developed
Oracle Object Types. After creating the Oracle Object Types, the Java Wrapper Classes are

 37

easily generated using Oracle JDeveloper, a free IDE from Oracle, which simplifies the
development of Java-based SOA applications and user interfaces with support for the full
development life cycle.

Regarding the Store Productivity subscriber, a connectivity map has been defined, with a
collaboration, jcdStoreProductivityToRMS (Appendix F.5), to manipulate the received messages
and connect to the ORMS, in order to consume the data and integrate it with the destination
staging tables. Figure 4.5 illustrates the configuration of the developed subscription flow.

Figure 4.5: Store Productivity ORMS subscriber connectivity map definition

The components represented in the figure above are described in Table 4.5.

Table 4.5: Store Productivity ORMS subscriber components
Store Productivity subscription components

Object Type New? Description

tpStoreProductivityPublisher JMS topic Y Contains the data formatted from the
integration BUS.

jcdStoreProductivityToRMS Java
Collaboration Y

It is responsible to put the XML
message from the integration Bus into
the ORMS staging tables.

local File adapter Y Allows access to the subscription
properties file.

RMS
Oracle
External
Application

Y Provides an Oracle database
connection.

qSubRMSError JMS queue Y
JMS queue that holds any eventual
error message that occurred during
the subscription process.

4.2.6 Data Model

As previously described, an assumption for the implementation of the Store Productivity
application was the creation of a staging area for storing temporary data before committing it to
the final ORMS tables.

The staging tables are designed based on the message specification and the necessities of
the ORMS. Through the combination of these two factors, and analysing the message

 38

specification detailed in Appendix B.1, the typical approach used for the client, in this and other
projects, consists of defining a Common Message Format (CMF) that is divided in the two
following parts:

• StoreProdDesc – It is composed by a header which contains the standard features of
the entity, in this case the Store Productivity data description.

• StoreProdDtlDesc – This other part is formed by a logic of detail, to contain the
employees’ efficiency data in the store associated with the header of the message.

The CMF message is mapped via Java Wrapper Classes into the Oracle Object Types and

then the data is inserted on the staging tables with the aid of a developed subscription package.
Basically, to each of those Store Productivity CMF parts mentioned above correspond a staging
table, as described bellow:

• NB_EAI_STORE_PROD_STG – Staging table that will hold the Store Productivity
data description correspondent to the StoreProdDesc part of the CMF.

• NB_EAI_STORE_PROD_DTL_STG – On this table will be inserted the employees’
efficiency data contained in the StoreProdDtlDesc CMF element.

More information on the data model used in the Store Productivity application, namely the

staging tables description and message specification, are detailed in Appendixes A to C.

4.2.7 Subscription Package

The subscription package is an integration component which is part of the methodology of
database sharing. Since many applications share the same database schema it is necessary to
encapsulate all common database interactions, the so-called CRUD (Create, Read, Update and
Delete) operations. This integration mechanism is accomplished with the development of
packages that will insert the data mapped in the Oracle Object Type into the database staging
tables.

Thus, a subscription package represents a reusable component, by applications that use the
same logic of data integration, and allow for a fast and efficient execution of the CRUD
operations directly to the database, since the whole process is managed by the DBMS (Database
Management System).

The developed package uses the NB_RMSSUB_<BUSINESS_ENTITY> naming
convention, in this case NB_RMSSUB_STORE_PROD, since it is a Store Productivity
application. The package procedures and functions are described bellow:

• Procedure CONSUME – This is the main procedure of the package, which receives
the Oracle Object sent by JCAPS and manages its integration logic into the ORMS.

• Function PROCESS_STAGING – This function will be launched by the CONSUME
procedure and will load into the ORMS staging tables the information inside the
Oracle Object.

• Function PROCESS_CORE – This function will be launched by the CONSUME
function, after the PROCESS_STAGING function has finished and will insert the
temporary data in the staging area into the final ORMS tables, if no error occurred
during the staging phase.

The CONSUME algorithm implemented by the subscription package is represented by the

flowchart in Figure 4.6.

 39

Start

No

If Message = NULL

PROCESS_STAGING

If Message_Type = NULL

If Message_Type =
‘StoreProdCre’ Or
Message_Type =
‘StoreProdMod’

No

Yes

PROCESS_CORE

True

True

End

Raise
INVALID_INPUT

Raise
PROGRAM_ERROR

Yes

Yes

No

False

False

Figure 4.6: Store Productivity CONSUME algorithm

A more detailed description of the NB_RMSSUB_STORE_PROD package, namely its

procedures and functions, can be found in Appendix D.1.

4.3 Reception/RTV Change Request

This sub-section describes another development made in the context of the EAI strategy
being implemented for DeSpar.

The Reception/RTV consists of a change request by DeSpar that aims for the
implementation of an integration flow between the IMAge and the ORMS, and comprises the
two following business entities:

• Reception – This entity includes all the data relating to orders receipt by the retailer.
• Return-to-Vendor (RTV) – Similar to the Receptions, the RTV entity also deals with

items but with the difference that these need to be returned to the vendor.

 40

The link between these two entities, into the same integration flow, is due to the fact that
they share the same message structure which is received from the IMAge and sent into the
integration BUS.

In resemblance with the Store Productivity application, this change request implements a
Publisher/Subscriber model, for data publication by the IMAge system and subscription by the
ORMS, regarding Receptions and RTV data.

One version of the integration flow for the Common Message Format (CMF) referent to
the Receptions is already implemented, although some changes are required in order for the two
entities (Receptions and RTV) to be integrated and work as one. As for the RTV, a new
implementation will be made from scratch.

4.3.1 Assumptions

On the development of the Reception/RTV integration flow should be taken into account
the following assumptions:

• The EAI publication process will not include any data transformation.
• A staging area will be created for storing temporary data before committing it to the

final ORMS tables. The created staging tables will hold processed data indefinitely.
There will be a table field containing the processing date to allow the data purge. The
staging tables purging process will be DeSpar responsibility.

• The data recovery will be made manually.
• Each message family will use a different NB_EAI_<OBJECT> (Oracle Object Type).

Any changes to the structure of the messages, will affect the specific message family
and correspondent NB_EAI_<OBJECT>, the JCAPS OTD’s and the Java Wrapper
Classes.

• The external information block concept (EXT_INFO) will be only used as an
exception measure.

4.3.2 Architecture

The architecture of the Reception/RTV integration flow to develop can be seen in Figure
4.7 that gives a general overview of components to implement, which are detailed in the
subsequent sections.

Figure 4.7: Reception/RTV architecture

 41

The integration BUS will be used to receive data from external applications. This way
IMAge application will send information about Receptions/RTV which will be integrated into
ORMS using the mapping detailed in Table 4.6.

Table 4.6: Reception/RTV mapping table
Publication Subscription

Family IMAge data ORMS

Reception FWZ1 ReceptionDesc FWZ2

RTV FWZ1 RTVDesc FWZ2

4.3.3 IMAge Publishers

4.3.3.1 ImageOutputGateway

This component is responsible for all IMAge publications into the integration BUS. It
executes a specific IMAge SQL query, which retrieves the data to be sent to the integration
BUS.

This component has been updated to deal with the new RTV message types, namely in its
configuration properties which are described in Table 4.7.

Table 4.7: ImageOutputGateway configuration
ImageOutputGateway

Object Type New? Description

Publication_FromImage
.properties

Properties
file N

Configurations file containing the mapping
between the message type received and the
destination JMS queue to send the data.
This file will include the new entries:
• FWZ.Host = <JCAPS_host>
• FWZ.Port = <PORT_NUMBER>
• FWZ.Type = Q
• FWZ.Dest = qImageTAFRInput

• TAFR.Reception.Host = <JCAPS_host>
• TAFR.Reception.Port = <PORT_NUMBER>
• TAFR.Reception.Type = Q
• TAFR.Reception.Dest = qReceptionInput

• TAFR.RTV.Host = <JCAPS_host>
• TAFR.RTV.Port = <PORT_NUMBER>
• TAFR.RTV.Type = Q
• TAFR.RTV.Dest = qRTVInput

As the Reception and RTV messages are received with the same IMAge message format,

all of the received messages with the FWZ specific format are sent to its specific JMS queue, to
be analyzed and then sent to the configured destination.

 42

4.3.3.2 FromImageTAFR

The objective of the development of this component is to deal with specific
Transformation, Address, Filtering and Routing (TAFR) specifications with the received
messages in the JMS queue, and will be used to select the appropriate JMS destination to deal
with the received message (qReceptionInput/qRTVInput).

In the current interface, it is only used the routing capability of this TAFR component to
route messages based on the FWZ1.PO_TYPE value from the IMAge message received. The
PO_TYPE field designates the type of purchase order, thereby allowing to identify the kind of
order the message refers as it follows:

• PO_TYPE value is different of ‘99’ will be considered as a Reception
• PO_TYPE value is equal to ‘99’ will be considered as a RTV

The developed TAFR has been implemented using a collaboration, svcFromImageTAFR

(Appendix F.2), and follows the configuration represented in Figure 4.8.

Figure 4.8: FromImageTAFR connectivity map definition

Table 4.8 describes the components used in the FromImageTAFR connectivity map.

Table 4.8: FromImageTAFR components
FromImageTAFR components

Object Type New? Description

qImageTAFRInput JMS queue Y The JMS queue which will have the
IMAge messages to deal with.

svcFromImageTAFR Java
Collaboration Y

It is responsible for identifying the
entity type (Reception or RTV) and
send it to the correspondent
destination queue.

local File adapter Y Allows access to the TAFR properties
file.

qReceptionInput JMS queue Y
The destination queue which holds
the Reception/RTV messages to be
sent to the correspondent publisher.

4.3.3.3 Reception Publisher

The Reception publisher is responsible for the data publication of the Reception messages
into the integration BUS.

In order to map the IMAge messages, an OTD, ReceptionDesc, has been created, to have
the desired message structure defined, to send it for subscription. This OTD has been generated
via a DTD, and is detailed in Appendix B.2.

 43

All the logic developed for the Reception data publication has been implemented using a

collaboration, jcdReceptionGetFromImage (Appendix F.3), which has been included in the
connectivity map illustrated in Figure 4.9.

Figure 4.9: Reception publisher connectivity map definition

The components represented in the figure above are described in Table 4.9.

Table 4.9: Reception publisher components
Reception publication components

Object Type New? Description

qReceptionInput JMS queue N Contains the Receptions retrieved from
IMAge (after XML mapping).

svcReceptionGetFromImage Java
Collaboration N

It gets the Receptions message from the
integration Bus, maps and formats it
into XML and puts it back in the
integration Bus to be processed using
the Pub/Sub approach.

qPublicationError JMS queue N
JMS queue that holds any eventual error
message that occurred during the
publication process.

tpReceptionPublisher JMS topic N Contains the data formatted from the
integration BUS.

localFileSystem File adapter N Allows access to the publication
properties file.

4.3.3.4 RTV Publisher

This component is responsible for the data publication of the RTV messages into the
integration BUS.

In order to map the IMAge messages, an OTD, RTVDesc, has been created, to have the
desired message structure defined, to send it for subscription. This OTD has been generated via
a DTD, and is detailed in Appendix B.3.

 44

All the logic developed for the RTV data publication has been implemented using a
collaboration, jcdRTVGetFromImage (Appendix F.4), which has been included in the
connectivity map illustrated in Figure 4.10.

Figure 4.10: RTV publisher connectivity map definition

The components used in the connectivity map and illustrated above, are detailed in Table

4.10.

Table 4.10: RTV publisher components
RTV publication components

Object Type New? Description

qRTVInput JMS queue Y Contains the RTV’s retrieved from
IMAge (after XML mapping).

svcRTVGetFromImage Java
Collaboration Y

It gets the RTV message from the
integration Bus, maps and formats it into
XML and puts it back in the integration
Bus to be processed using the Pub/Sub
approach.

qPublicationError JMS queue Y
JMS queue that holds any eventual error
message that occurred during the
publication process.

tpRTVPublisher JMS topic Y Contains the data formatted from the
integration BUS.

localFileSystem File adapter Y Allows access to the publication
properties file.

4.3.4 ORMS Subscribers

4.3.4.1 Reception Subscriber

In relation to the Reception data subscription, the necessary Java Wrapper Classes have
been created and added to the JCAPS project, in order to make possible for the framework to
interchange data between systems, in this case between JCAPS and the ORMS. Therefore, the

 45

Java Wrapper Classes are responsible for translating the data, previously formatted according to
the OTD, ReceptionDesc (Appendix B.2), and received from the integration BUS, into the
developed Oracle Object Types. After creating the Oracle Object Types, the Java Wrapper
Classes are easily generated using Oracle JDeveloper.

For the ORMS subscriber for IMAge Reception data, it will pick the data from the
integration BUS and insert it into the ORMS staging tables.

The subscriber is implemented by a collaboration, svcReceptionToRMS (Appendix F.5),
and uses the configuration described in Figure 4.11.

Figure 4.11: Reception ORMS subscriber connectivity map definition

The components used in the connectivity map and illustrated above, are detailed in Table

4.11.

Table 4.11: Reception ORMS subscriber components
Reception subscription components

Object Type New? Description

tpReceptionPublisher JMS topic N Contains the data formatted from the
integration BUS.

svcReceptionToRMS Java
Collaboration N

It is responsible to put the XML
message from the integration Bus into
the ORMS staging tables.

Local File adapter N Allows access to the subscription
properties file.

RMS
Oracle
External
Application

N Provides an Oracle database
connection.

qSubRMSError JMS queue N
JMS queue that holds any eventual
error message that occurred during
the subscription process.

4.3.4.2 RTV Subscriber

For the ORMS subscriber for RTV data the necessary Java Wrapper Classes have been
created and added to the JCAPS project, similarly to the Reception publisher, in order to make
possible for the framework to interchange data between systems, in this case between JCAPS
and the ORMS. Thus, the data formatted according to the OTD, RTVDesc (Appendix B.3), is

 46

received from the integration BUS and mapped via Java Wrapper Classes into the developed
Oracle Object Types. As for other projects, the Java Wrapper Classes are generated using
Oracle JDeveloper.

The objective of the ORMS subscriber for IMAge RTV data is to pick the data from the
integration BUS and insert it into the ORMS staging tables.

The subscriber is implemented by a collaboration, svcRTVToRMS (Appendix F.5), and
uses the configuration described in Figure 4.12.

Figure 4.12: RTV ORMS subscriber connectivity map definition

The components represented in the figure above are described in Table 4.12.

Table 4.12: RTV ORMS subscriber components
RTV subscription components

Object Type New? Description

tpRTVPublisher JMS topic Y Contains the data formatted from the
integration BUS.

svcRTVToRMS Java
Collaboration Y

It is responsible to put the XML
message from the integration Bus into
the ORMS staging tables.

local File adapter Y Allows access to the subscription
properties file.

RMS
Oracle
External
Application

Y Provides an Oracle database
connection.

qSubRMSError JMS queue Y
JMS queue that holds any eventual
error message that occurred during
the subscription process.

4.3.5 Data Model

As previously described, the two business entities involved in this project, Reception and
RTV, share the same IMAge message specification, which in this case corresponds to the FWZ
message format.

 47

The FWZ definition is divided in the following two parts:
• FWZ1 – It is composed by the IMAge message header.
• FWZ2 – Formed by a logic of detail, which contains the IMAge message details

associated with the header of the message.

Tables 4.13 and 4.14 describe which fields of the FWZ IMAge message are mapped into a

Reception or RTV message structure.

Table 4.13: FWZ1 to Reception/RTV mapping table
FWZ1 Reception RTV

LOCATION √ √
ACQUISITION_NR √ √
TRANSACTION_NUMBER √ √
TRANSACTION_DATE √ √
PLAN_ACQUISITION_DATE √ √
PLAN_ACQUISITION_SYSDATE √ √
SUPPLIER √ √
RET_AUTH_NUM √ √
ARRIVAL_DATE √ √
SHIPMENT_DATE √ √
USER_CODE √ √
PO_TYPE √ √
UPC_DESC √
BOOKDATE √ √
ACQUISITION_NR_REF √
RET_AUTH_NUM_REF √
ARRIVAL_DATE_REF √
UPC √ √

Table 4.14: FWZ2 to Reception/RTV mapping table
FWZ2 Reception RTV

LOCATION √
ACQUISITION_NR √
TRANSACTION_NUMBER √
TRANSACTION_SEQ_NO √ √
SKU √ √
ACQUISITION_SKU √ √
WH √ √
SUPP_PACK_SIZE_QTY √ √
SUPP_PACK_SIZE √ √
QTY_RETURNED √ √
DISCOUNT_TYPE √
UNIT_COST_SUP_BASE √
DISCOUNT_RATE_1 √
DISCOUNT_RATE_2 √
UNIT_COST_ACTUAL √
UNIT_COST √ √
CHAINING_BASE √ √
CHAINING_FACTOR √ √
STATUS √ √
BUY_PRICE √ √
AUTO_SPK_QTY √ √

 48

AUTO_RETURN_QTY √ √
ITEM_TYPE √ √
RESERVATION_LOGIC √ √
UNIT_COST_DIRECT √ √
UNIT_COST_CONTROL √
BOL_POSITION_NR √

As previously described, an assumption for the implementation of the Reception/RTV

change request was the creation of a staging area for storing temporary data before committing
it to the final ORMS tables.

The Reception and RTV staging tables already exist in the ORMS, however a few changes
were required to some fields of these tables due to changes that occurred in the IMAge
messages definition.

The CMF for the Reception/RTV project is divided in the two following parts:
• ReceptionDesc – It is composed by a header which contains the standard features of

the entity, in this case Reception data description.
• ReceptionDetailDesc – This other part is formed by a logic of detail, to contain the

Receptions’ features data associated with the header of the message.
• RTVDesc – This represents the standard features of the RTV, which correspond to the

header of the message.
• RTVDetailDesc – Corresponds to the logic of detail relative to the RTV’s, which is

associated with the RTVDesc.

The Reception/RTV CMF message is mapped via Java Wrapper Classes into the Oracle

Object Types and then the data is inserted on the staging tables with the aid of a developed
subscription package. Basically, to each of those Reception/RTV CMF parts mentioned above
correspond a staging table, as described bellow:

• NB_EAI_RECEPTION_STG – Staging table that will hold the Reception data
description correspondent to the ReceptionDesc part of the CMF.

• NB_EAI_RECEPTION_DETAIL_STG – On this table will be inserted the
Receptions’ features data contained in the ReceptionDetailDesc CMF element.

• NB_EAI_RTV_STG – This is the RTV staging table where will be inserted the RTV
data description concerning the ReceptionDesc part of the CMF.

• NB_EAI_RTV_DETAIL_STG – On this table will be inserted the RTV’s features
data contained in the RTVDetailDesc CMF element.

More information on the data model used in the Reception/RTV change request, namely

the staging tables description and message specification, are detailed in Appendixes A to C.

4.3.6 Subscription Packages

These components deal with the data integration into the ORMS staging tables, following a
database sharing methodology, as in the Store Productivity application.

The usage of subscription packages encapsulates all common database interactions, the
CRUD (Create, Read, Update and Delete) operations, resulting in a reusable component that
will insert the data mapped in the Oracle Object Type into the database staging tables.

The subscription packages naming follows the usual practice adopted in this kind of EAI
projects which is the NB_RMSSUB_<BUSINESS_ENTITY> naming convention. In this
particular case, two packages have been developed – NB_RMSSUB_RECEPTION and
NB_RMSSUB_RTV – corresponding to the Reception and RTV business entities.

The packages procedures and functions are described bellow:
• Procedure CONSUME – This is the main procedure of the package, which receives

the Oracle Object sent by JCAPS and manages its integration logic into the ORMS.

 49

• Function PROCESS_STAGING – This function will be launched by the CONSUME
procedure and will load into the ORMS staging tables the information inside the
Oracle Object.

• Function PROCESS_CORE – This function will be launched by the CONSUME
function, after the PROCESS_STAGING function has finished and will insert the
temporary data in the staging area into the final ORMS tables, if no error occurred
during the staging phase.

The CONSUME algorithms implemented for both subscription packages are very similar

and are represented by the flowcharts in Figures 4.13 and 4.14.

Start

No

If Message = NULL

PROCESS_STAGING

If Message_Type = NULL

If Message_Type =
‘ReceptionCre’

No

Yes

PROCESS_CORE

True

True

End

Raise
INVALID_INPUT

Raise
PROGRAM_ERROR

Yes

Yes

No

False

False

Figure 4.13: Reception CONSUME algorithm

 50

Start

No

If Message = NULL

PROCESS_STAGING

If Message_Type = NULL

If Message_Type =
‘ReceptionCre’

No

Yes

PROCESS_CORE

True

True

End

Raise
INVALID_INPUT

Raise
PROGRAM_ERROR

Yes

Yes

No

False

False

Figure 4.14: RTV CONSUME algorithm

A more detailed description of the NB_RMSSUB_RECEPTION and NB_RMSSUB_RTV

packages, namely its procedures and functions, can be found in Appendixes D.2 and D.3,
correspondingly.

4.4 Store to Warehouse Orders and Receptions

Store to Warehouse Orders and Receptions is the designation given to another DeSpar
request for data integration, in this specific case from the ORMS application publishers to the
integration BUS and correspondent IMAge data subscription, regarding warehouse events,
namely warehouse shipments and store-to-warehouse orders responses.

Since this project deals with warehouse notifications, a business entity named
WhNotification will be used, which comprises the two following entities:

• Shipment – This entity contains information, which is sent by the ORMS application
to the IMAge, concerning shipped items, within a given store order.

 51

• OrderResponse – Represents an order confirmation, which is sent to the IMAge ERP
whenever a store order arrives to the ORMS.

With the implementation of this solution, stores that already operate with the IMAge

solution will be able to create store orders to the warehouses and acknowledge the reception of
the ordered goods. An overview schema of this whole EAI process is represented in Figure
4.15.

Figure 4.15: Shipments and Orders Responses from ORMS to IMAge

For now, the objective of this project involves the implementation of the IMAge

subscribers for the ORMS published Shipment (DAV) and Order Response (ORB) data into the
integration BUS, which are represented in Figure 4.15 by numbers 6 (yellow) and 4 (red),
correspondingly.

4.4.1 Assumptions

The following assumptions will be taken into account for the development of the Store to
Warehouse Orders and Receptions project:

• The EAI publication process will not include any data transformation.
• The data recovery will be manual.
• Each message family will use a different NB_EAI_<OBJECT> (Oracle Object Type).

Any changes to the structure of the messages, will affect the specific message family
and correspondent NB_EAI_<OBJECT>, the JCAPS OTD’s and the Java Wrapper
Classes.

• The external information block concept (EXT_INFO) will be only used as an
exception measure.

• The ORMS system will ensure the messages publication in the correct order.
• There will be no message bundling; each message will be published individually.
• Delete and modification messages won’t be implemented for the new families.
• There won’t be more than one unpublished message for the same ID.

 52

• There will be no message binding (process will not validate if a message was already
published in the past).

• It is not in the scope of this project to develop any new alarm or monitoring
mechanisms to process error messages. The current monitoring and error handling
mechanisms will be used.

4.4.2 Architecture

In Figure 4.16 is detailed the architecture of the Store to Warehouse Orders and Receptions
data integration flow to be implemented, giving a general overview of the components to
develop, which are described in the subsequent sections.

Figure 4.16: Store to Warehouse Orders and Receptions architecture

The integration BUS will be used to hold published data from applications. This way the

ORMS application will send information about Warehouse Notifications, which include
Shipments and Orders Responses data that will be integrated into IMAge using the mapping
detailed in Table 4.15.

Table 4.15: Warehouse Notifications mapping table
Publication Subscription

Family ORMS IMAge data

WhNotification
ShipmentFullDesc DAV1

DAV2

OrderResponseFullDesc ORB1
ORB2

4.4.3 IMAge Subscribers

4.4.3.1 Shipment Subscriber

For the IMAge subscriber for Shipment (DAV) data the necessary Java Wrapper Classes
have been created and added to a JCAPS project, in order to make possible for the framework to
interchange data between applications, in this case between JCAPS and the IMAge system.
Therefore, the Java Wrapper Classes are responsible for translating the data, previously
formatted according to the OTD, ShipmentFullDesc (Appendix B.4), and received from the

 53

integration BUS, into the developed Oracle Object Types. The Java Wrapper Classes are then
created using Oracle JDeveloper.

Regarding the IMAge DAV subscriber for ORMS Shipment data, it will pick the data from
the integration BUS and map it according to the IMAge message specification, by using a
mapping package designed for this effect. After invoking this mapping procedure, the message
is then sent to an IMAge JMS input queue in order to be processed by this application.

The developed subscription project is implemented by a collaboration,
svcMapDAVToImage (Appendix F.6), and uses the configuration described in Figure 4.12.

Figure 4.17: Shipment (DAV) IMAge subscriber connectivity map definition

The components represented in the figure above are described in Table 4.16.

Table 4.16: Shipment (DAV) IMAge subscriber components
Shipment (DAV) subscription components

Object Type New? Description

tpDAVToImage JMS topic Y Contains the ORMS data formatted from
the integration BUS.

svcMapDAVToImage Java Collaboration Y

It receives the CMF Shipment Message
(ShipmentFullDesc) and calls the mapping
to DAV IMAge message, which is then
sent into the qDAVOutput JMS queue that
would be subscribed afterwards by the
IMAge.

IMGMAP Oracle External
Application Y Provides an Oracle database connection.

local File adapter Y Allows access to the subscription
properties file.

qDAVOutput JMS queue Y DAV JMS output queue for all subscribed
IMAge messages.

qImageError JMS queue Y
JMS queue that holds any eventual error
message that occurred during the
subscription process.

 54

4.4.3.2 OrderResponse Subscriber

In relation to the OrderResponse (ORB) data subscription, the JCAPS project includes the
Java Wrapper Classes, as in previous projects, to allow the framework to map data between
systems, in this specific case between JCAPS and the IMAge system. Thus, the function of the
Java Wrapper Classes is to translate the data, previously formatted according to the OTD,
OrderResponseFullDesc (Appendix B.5), and received from the integration BUS, into the
developed Oracle Object Types. After the creation of the Oracle Object Types, the Java
Wrapper Classes are created using Oracle JDeveloper.

For the IMAge ORB subscriber for ORMS OrderResponse data, it will pick the data from
the integration BUS and map it according to the IMAge message specification, by using a
mapping package designed for this effect. After invoking this mapping procedure, the message
is then sent to an IMAge JMS input queue in order to be processed by this application.

The subscriber is implemented by a collaboration, svcORBToImage (Appendix F.6), and
uses the configuration described in Figure 4.11.

Figure 4.18: OrderResponse (ORB) IMAge subscriber connectivity map definition

The components used in the connectivity map and illustrated above, are detailed in Table

4.17.

 55

Table 4.17: OrderResponse (ORB) IMAge subscriber components
OrderResponse (ORB) subscription components

Object Type New? Description

tpORBToImage JMS topic Y Contains the ORMS data formatted from
the integration BUS.

svcMapORBToImage Java Collaboration Y

It receives the CMF Shipment Message
(OrderResponseFullDesc) and calls the
mapping to ORB IMAge message, which
is then sent into the qORBOutput JMS
queue that would be subscribed afterwards
by the IMAge.

IMGMAP Oracle External
Application Y Provides an Oracle database connection.

local File adapter Y Allows access to the subscription
properties file.

qORBOutput JMS queue Y ORB JMS output queue for all subscribed
IMAge messages.

qImageError JMS queue Y
JMS queue that holds any eventual error
message that occurred during the
subscription process.

4.4.4 Data Model

As previously described, this project comprises two business entities, Shipment and
OrderResponse, which are generalized by the WhNotification entity. For the IMAge message
specifications, the Shipments are mapped into the DAV (Dispatch Advice) message family and
the Orders Responses into the ORB (Order Response) message family.

The DAV and ORB definition is divided in the following parts:
• DAV1 – It is composed by the Shipments IMAge message header.
• DAV2 – Formed by a logic of detail, which contains the IMAge message details

associated with the Shipments header of the message.
• ORB1 – Consists of the Orders Responses IMAge message header.
• ORB2 – This is the logic of detail, associated with the Order Responses header, which

includes the IMAge message details.

Thus, the DAV and ORB message families correspond to the Shipment and

OrderResponse CMF. Each one of this CMF defines the ORMS message specification and are
divided in the following parts:

• ShipmentFullDesc – It is composed by a header which contains the standard features
of the entity, in this case shipped items description.

• ShipSkuDesc – This other part is formed by a logic of detail, to contain the
Shipments’ features data associated with the header of the message.

• OrderResponseFullDesc – This represents the standard features of the Order
Response, which correspond to the header of the message.

• OrderResponseDtlDesc – Corresponds to the logic of detail relative to the Orders
Responses, which is associated with the OrderResponseFullDesc.

The data mapping between the mentioned entities, Shipment to DAV, and OrderResponse

to ORB, is made with the aid of a mapping package which is implemented according to the
specific mapping needs of the involved messages. After the successful completion of the map
procedure, the IMAge formatted data is sent to an input JMS queue for post-processing.

 56

More information on the data model used in the Store to Warehouse Orders and
Receptions project, namely the messages specification, is detailed in Appendixes B.4 to B.9.

4.4.5 IMAge Mapping Packages

These components are responsible for mapping the data, published into the integration
BUS by the ORMS application, according to the IMAge input message format. The developed
IMAge mapping packages will pick the data received as an Oracle Object Type and return a
XML message in compliance with the IMAge message specification.

Since the presented mapping methodology is entirely implemented in an Oracle database,
this approach uses rules stored in database tables to transform and create incoming data to the
IMAge message format.

The data model where all the process lays is shown in Figure 4.19.

Figure 4.19: IMAge mapping rules data model

The IMAge mapping packages naming follows the usual practice adopted in this kind of

EAI projects which is the NB_IMGMAP_<BUSINESS_ENTITY> naming convention. In this
particular case, two packages have been developed – NB_IMGMAP_DAV and
NB_IMGMAP_ORB – corresponding to the Shipment and OrderResponse business entities.

The packages procedures and functions are described in Table 4.18.

 57

Table 4.18: IMAge DAV/ORB mapping packages description
IMAge DAV/ORB mapping package basic components

Procedure/Function name Description
BUILD_MESSAGE Build the IMAge message by assembling the header and

detail sections.
MAP This procedure will be called by the JCAPS IMAge

subscriber and returns the transformed message to
IMAge application.

GET_TID Generates the Transaction ID.
GET_MSG_TYPE Determines the incoming message type.
GET_DESTINATION_MESSAGE Determines the destination message ID.
FORMAT_FIELDS Applies formatting rules to fields.
FILL_SRC_VALUES Populates auxiliary structures for data mapping.
FILL_EXTINFO_VALUES Populates ExtInfo auxiliary structures for data mapping.
MAP_DESTINATION_DETAILS Applies mapping rules (mapping types) for each

incoming message field.
MAP_DESTINATION_CUSTOM_R
ULE

Applies data transformation and custom mapping for
message data fields.

MAP_DST_CUSTOM_MULTIPLE_
RULES

Applies data transformation and custom mapping for
message data fields.

MAP_DESTINATION_EXTINFO_
RULE

Applies data transformation and custom mapping for
message data fields that need information from ExtInfo
data structure.

The logic implemented by the IMAge mapping packages is represented by the flowchart in

Figure 4.20.

 58

 59

Figure 4.20: IMAge mapping packages algorithm

A more detailed description of the IMAge mapping packages, namely its procedures and

functions, can be found in Appendix E.

 60

4.5 DeSpar Pub/Sub Framework Review

Being part of the DeSpar EAI project team, allowed for the author to have a general view
of the retail business model and, at a lower level, an acquisition and consolidation of knowledge
regarding the systems used by the client and their needs for integration.

However, during the developed work throughout the internship there was a component that
was viewed by the author as a kind of “black box”, although being aware of its functional
context. This component is the DeSpar Pub/Sub framework.

The lack of technical knowledge of the framework was contradicted by a required review
for different versions merging and, later on, an impact analysing of this version merge into the
existing JCAPS Publisher/Subscriber projects. The objective is to analyse eventual differences
between disparate versions of the framework which exist in development (DEV) environment,
the machine used by Wipro Retail for implementation and testing. This is a very important work
that needed to be done in order to know the latest stable version of the framework that should be
used later in acceptance (ACC) environment, which corresponds to the machine used by the
client for User Acceptance Testing (UAT).

The execution of the framework review task has been accomplished by using WinMerge, a

free software tool for file comparison and merging text-like files. Figure 4.21 illustrates an
example of differences found between disparate versions of the DeSpar Pub/Sub framework.

Figure 4.21: DeSpar Pub/Sub framework version analysis example using WinMerge

The review of the disparate versions of the framework resulted in a list of changes that

were enumerated in order to determine which of the versions currently being used in DEV
environment better handles the Publication/Subscription requirements for the existing JCAPS

 61

projects. The differences between versions were found in the following components of the
framework:

• Error Handling – Found changes in the OTD’s used for error handling, namely in the
error message definition.

• Reflection Utilities – These utilities take advantage of the Java Reflection API to read
and write fields and methods of a selected class in runtime, namely the methods used
to map the CMF messages into the Oracle Object Types. The detected changes were
precisely in the way the framework accesses these methods.

• Object Mapping – Some features have been deprecated in these classes responsible
for the mapping between CMF OTD’s and Oracle Objects.

• IMAge Publishers – Changes that affected the properties specified in the
configuration files used by the IMAge publishers.

• Java Wrapper Classes – The way the Java Wrapper Classes initialize the Oracle
Objects was also subject of changes. A new Java interface class has been included to
deal with the process of Oracle Objects initialization, allowing for a more flexible
application decoupling.

With these versioning differences detected, the isolation of the latest stable version of the

DeSpar Pub/Sub framework has been accomplished by importing different JAR versions of the
framework into the projects in DEV environment and then analysing the impact this action had
on the existing integration flows, by means of unit testing. Ultimately a stable version of the
framework has been found, only requiring small changes in the IMAge publication
configuration files and regeneration of the Java Wrapper Classes initializers.

This task is perfectly contextualized within the scope and objectives of this project since it
allowed for a better understanding of the Publication/Subscription model and provided skills for
developing future integration flows using an integration BUS framework.

 62

5 Tests

In this chapter, the testing strategy, used to evaluate the developed integration solution, is
detailed across the different test approaches for verification and validation of the various project
developments.

5.1 Unit Testing

Unit tests check the individual software components during development. In computer
programming, unit testing consists of a verification and validation method applied to a software
unit, which represents the smallest testable part of an application.

For the implemented Publisher/Subscriber integration flows, using JCAPS, the unit tests
have been performed throughout the development phase and in a Development (DEV)
environment.

In general terms, the unit tests produced for a Publication/Subscription project should meet
the following criteria:

• Message is received from the publisher
• Message is sent for publication into the integration BUS
• Message data is correctly mapped into the CMF
• Data is successfully subscribed
• Data is inserted into the staging tables

The unit tests produced for the developed work were made by the author and are presented

in a Unit Test Document (UTD), which is then included in the documentation of the project.
The UTD’s produced for Store Productivity, Reception/RTV and Store to Warehouse Orders
and Receptions projects are presented in Appendix G.

5.2 Integration Testing

The developed work throughout the internship is currently being subject to integration
testing. Since the tests are still underway by a DeSpar development and testing team, no
feedback can be reported for this kind of tests.

 63

The goal of the integration tests is to validate the interface between software components.
This sort of tests occurs after unit testing and before user acceptance testing, for the reason that
the inputs for integration testing are modules which are supposed to have been unit tested.

Once these modules are grouped into a larger collection, tests that constitute an integration
test plan are applied to those collections. The obtained output is an integrated system ready for
User Acceptance Testing (UAT).

For the developed Publisher/Subscriber integration flows, the integration tests should
verify and validate the integration with the DeSpar Pub/Sub framework and the involved
applications.

5.2.1 DeSpar Pub/Sub Framework Integration Testing

It is intended with this testing phase to validate the integration between the two entities
involved in a Publication/Subscription model of EAI – the Publisher and the Subscriber – and,
in this particular case, the coordination between the Common Message Format (CMF) used in
the publication and subscription phases of integration, by the DeSpar Pub/Sub framework.

These integration tests ensure that the inputs sent to the framework are in accordance with
the CMF specification expected by the framework, as well as its outputs, which should be
successfully mapped into the Oracle Objects with the aid of the Java Wrapper Classes. These
framework inputs are tested during the publication phase, while its outputs correspond to the
subscription phase.

The data mapping processes are also tested, namely in the comparison between the
received messages format and the one specified in the CMF, and data validation.

5.2.2 Application Integration Testing

This is a more functional testing and is basically responsible for checking if the operations
are successfully executed and data effectively exchanged between the applications involved in
the Publisher/Subscriber integration flow.

For the integration flows implemented during the internship, the publishing applications
being subject of testing are the AS400 system (for the Store Productivity application), the
IMAge ERP (for the Reception/RTV change request) and the ORMS (for the Store to
Warehouse Orders and Receptions). Both the first two projects have as subscribing application
the ORMS, more specifically its staging tables, whose data is then internally processed and
afterwards made available to be viewed in the ORMS interface. On the other hand, the Store to
Warehouse Orders and Receptions project has for subscriber the IMAge application.

5.3 User Acceptance Testing

User Acceptance Testing (UAT) is the responsibility of DeSpar and is made subsequently
by a client testing team, to check if the developed software meets its requirements. The
developed work will be subject to this phase of testing, by the client, as soon as the integration
tests are completed.

The UAT is one of the final stages of the project, and precedes the client acceptance of the
new system or change request. These tests results are very important since they provide a certain
degree of confidence to the client of the system performance in production.

 64

6 Conclusions and Future Work

This final section concludes the report of the project, presenting a retrospective of the
internship and evaluating the satisfaction of the proposed objectives. Some directions
concerning future work are also expressed in this chapter.

6.1 Project Retrospective

The Enterprise Application Integration (EAI) is a complex, yet an indispensable process in
the current world of business. The inexistence of a single software application capable of
centralizing all business processes or the necessity for systems transition results in integration
needs. For this reason, the motivation was always kept up very high during this project,
supported by a personal interest by the author for the EAI area, especially due to its diversity in
terms of distribution and integration technologies.

The project proved to be very challenging and enriching, allowing to have an overview of
the retail market and its business entities. In this context, this project granted a familiarization
with the main module of the Oracle Retail suite, the Oracle Retail Merchandising System
(ORMS), from an integration point of view, as well as the proprietary system of the client, the
IMAge. The study was focused on the message families supported by the publishers/subscribers
and the integration of these messages into the DBMS supported by the mentioned systems. Also
to emphasize, is the use of Java CAPS as a unified and comprehensive integration framework,
which allows for an easy creation of composite applications, using a SOA approach.

For the developed work at Wipro Retail, this has always been in consonance with the
project proposal and proved to be an extremely enriching experience, which was far beyond the
acquisition of technical skills, also allowing for the development of team work capabilities. The
clarification of doubts about any technology involved in the project has been as simple as
possible, thanks to the people of the EAI team always available, thereby facilitating the sharing
and acquisition of knowledge in the area.

Finally, at a personal and interpersonal level, the integration in Wipro Retail has been
accomplished in the best way possible, much due to the excellent working conditions provided
by the company, as well as a spirit of team work and mutual help, perceived throughout the
internship.

 65

6.2 Objectives Satisfaction

Given the date of beginning of the project and by the time the author start working at
Wipro Retail, the phase of analysis and design of the integration solution to develop for this
project was almost completed. Therefore, the work of the trainee was more targeted to a review
of the proposed solution and its implementation and testing. This proved to be very
advantageous because it allowed the acquisition of a much deeper technical expertise, given the
technological variety present in an EAI project, while at the same time obtaining a sensibility
for the integration needs of the client, thus acquiring the required skills to participate in the
analysis of future integration interfaces for upcoming projects.

Regarding the objectives specified for this project, were overall achieved, except for the
use of the Business Process Execution Language (BPEL), which was discarded in the phase of
analysis and design, since its use was not justified given the business interactions involved in
this project. However, the BPEL language is being subject of study by the client project team, in
order to evaluate the use of this concept in future DeSpar projects and change requests.

In relation to the developed work, the best way to evaluate the objectives fulfilment is by
the results obtained during the tests phase, particularly from the unit tests produced intensively
to the implemented integration flows. These tests ensure that everything is perfectly functional
as designed in the analysis of the integration solution. The testing covers all the interface of
integration, from the publication to the subscription phase and subsequent database integration.

6.3 Future Work

With respect to future work concerning this project will be characterized by the migration
of the developed integration interfaces into the acceptance (ACC) environment of the client.
Once these integration flows are in production and validated by the client, other interfaces for
different business entities will need to be developed as they are requested by DeSpar.

Also, as this internship made part of an Application Support and Maintenance (ASM)
project signed-off between Wipro Retail and DeSpar, any change request that comes up from
the client concerning Enterprise Application Integration (EAI) using Java CAPS should
represent future work for the author.

One final advantage of this internship was the fact of conceding the necessary skills and
competencies to develop integration solutions in the technological context of DeSpar, thus any
present or future project, in the area of EAI, should represent potential work for the author.

 66

References

[Aru08] Dhanasekar Arumugam. Introduction to BPEL. Wipro Technologies, November
2008.

[BPMN09] Object Management Group. Business Process Modeling Notation (BPMN) –
Version 1.2, January 2009. http://www.omg.org/docs/formal/09-01-03.pdf .

[CKMS08] Michael Czapski, Sebastian Krueger, Brendan Marry, Saurabh Sahai, Peter
Vaneris, and Andrew Walker. Java CAPS Basics: Implementing Common EAI
Patterns. Prentice Hall, 2008.

[Des09] Despar Italia, 2009. http://www.desparitalia.it/ .

[Fer08] Marco Ferreira. DeSpar Pub/Sub Framework ADSM Handover. Wipro Retail,
December 2008.

[Fer09a] Marco Ferreira. DeSpar Pub/Sub Integration Flows – Mapping Packages
Architecture for IMAge Subscribers. Wipro Retail, March 2009.

[Fer09b] Marco Ferreira. TRD 10774 – #1251 - IMAge - Store to WH Orders and
Receptions. Wipro Retail, June 2009.

[Goe08a] Henrique Goes. Retail Today. Wipro Retail, October 2008.

[Goe08b] Henrique Goes. Oracle Retail (OR) Solutions Overview. Wipro Retail, October
2008.

[Gui08] André Guimarães. Sun Java CAPS 6 (Brief Overview). Wipro Retail, December
2008.

[Int08] InterSystems Corporation. SPAR Austria Empowers Local Store Managers with
Caché-based ERP System, 2008.
http://www.intersystems.com/casestudies/cache/spar.html .

[ISM08] Introduction to SOA on Mainframes. Wipro Technologies, 2008.

[Nar06] Lakshmi Narayanaswamy. Possible Integration Patterns (White Paper). Wipro
Technologies, December 2006.

[Ora09a] Oracle Corporation, 2009. http://www.oracle.com/ .

[Ora09b] Oracle Corporation. Oracle Retail Merchandising System Documentation Library,
2009. http://download.oracle.com/docs/cd/B31318_01/rms/index.html .

[Pei09a] Rui Peixoto. TRD 10774 – #1203 - IMAge - Promotion New Requests
implementation. Wipro Retail, January 2009.

[Pei09b] Rui Peixoto. TRD 10774 – #1227 - VEMO RTV interface implementation. Wipro
Retail, April 2009.

[PPCS09] Nuno Pinto, João Pinho, Paulo Correia, and Silvio Santos. ASM DeSpar 2009
Presentation. Wipro Retail, May 2009.

 67

[Sha07] Hitesh Shah. Message-Oriented Middleware. Wipro Technologies, April 2007.

[SPAR09] SPAR International, 2009. http://www.spar-international.com/ .

[Sun08] Sun Microsystems, Inc. Sun Welcomes SeeBeyond Customers and Partners, 2008.
http://www.sun.com/software/seebeyond/ .

[Sun09a] Sun Java Composite Application Platform Suite (Java Caps) Data Sheet. Sun
Microsystems, Inc., 2009.

[Sun09b] Sun Microsystems, Inc. Sun Java Composite Application Platform Suite (Java
CAPS), 2009.
http://www.sun.com/software/javaenterprisesystem/javacaps/index.jsp .

[Sun09c] Sun Microsystems, Inc. Sun Java CAPS Documentation, 2009.
http://developers.sun.com/docs/javacaps/api/javadocs/ .

[UTPG08] Unix Technology Practice Group, BFSI – TPG. Enterprise Application Integration.
Wipro Technologies, October 2008.

[W3S09] W3Schools. DTD Tutorial, 2009. http://www.w3schools.com/dtd/default.asp .

[Wip09] Wipro Technologies. Retail, CPG & Distribution, 2009.
http://www.wipro.com/retail/ .

[WRP08] Wipro Retail Presentation. Wipro Retail, 2008.

 68

Appendix A: Publication Common
Message Formats (CMF’s)

This appendix contains the Common Message Format (CMF) specification for the
messages used in the publication phase of the developed integration flows. Each CMF definition
corresponds to an OTD (Object Type Definition) which is included in the correspondent
publisher for the JCAPS project.

A.1 Store Productivity CMF

Table A.1: StoreProductivity
Field Destination CMF CMF field

DATE StoreProdDesc FILE_DATE
STORE StoreProdDesc STORE
REPARTO StoreProdDtlDesc REPARTO
HOUR_ORDINARY StoreProdDtlDesc NUM_HOURS
HOUR_EXTRA StoreProdDtlDesc NUM_HOURS_EXTRA
HOUR_VACATION StoreProdDtlDesc NUM_HOURS_VACATION
HOUR_ILL StoreProdDtlDesc NUM_HOURS_ILL

 69

A.2 FWZ1 CMF

Table A.2: FWZ1
Field Destination CMF CMF field

FIL ReceptionDesc/RTV
Desc LOCATION

WZNR ReceptionDesc/RTV
Desc ACQUISITION_NR

BNR ReceptionDesc/RTV
Desc TRANSACTION_NUMBER

BDATE ReceptionDesc/RTV
Desc TRANSACTION_DATE

PWZDATE ReceptionDesc/RTV
Desc

PLAN_ACQUISITION_DAT
E

PWZZEIT ReceptionDesc/RTV
Desc

PLAN_ACQUISITION_SYS
DATE

LINR ReceptionDesc/RTV
Desc SUPPLIER

LSNR ReceptionDesc/RTV
Desc RET_AUTH_NUM

LSDATE ReceptionDesc/RTV
Desc ARRIVAL_DATE

WZDATE ReceptionDesc/RTV
Desc SHIPMENT_DATE

PERSNR ReceptionDesc/RTV
Desc USER_CODE

BART ReceptionDesc/RTV
Desc PO_TYPE

WZINFO ReceptionDesc UPC_DESC
BOOKDATE ReceptionDesc/RTV

Desc BOOKDATE

REFWZNR ReceptionDesc ACQUISITION_NR_REF
REFLSNR ReceptionDesc RET_AUTH_NUM_REF
REFLSDATE ReceptionDesc ARRIVAL_DATE_REF
EAN_CODE ReceptionDesc/RTV

Desc UPC

A.3 FWZ2 CMF

Table A.3: FWZ2
Field Destination CMF CMF field

FIL ReceptionDetailDes
c LOCATION

WZNR ReceptionDetailDes
c ACQUISITION_NR

BNR ReceptionDetailDes
c TRANSACTION_NUMBER

BPOS ReceptionDetailDes
c/RTVDetailDesc TRANSACTION_SEQ_NO

ARTNR ReceptionDetailDes SKU

 70

c/RTVDetailDesc
WZPOS ReceptionDetailDes

c/RTVDetailDesc ACQUISITION_SKU

LAGER ReceptionDetailDes
c/RTVDetailDesc WH

MGVE ReceptionDetailDes
c/RTVDetailDesc SUPP_PACK_SIZE_QTY

FAKTOR ReceptionDetailDes
c/RTVDetailDesc SUPP_PACK_SIZE

MEVE ReceptionDetailDes
c/RTVDetailDesc QTY_RETURNED

NRABATT ReceptionDetailDes
c DISCOUNT_TYPE

LISTPREIS ReceptionDetailDes
c UNIT_COST_SUP_BASE

RABATT1 ReceptionDetailDes
c DISCOUNT_RATE_1

RABATT2 ReceptionDetailDes
c DISCOUNT_RATE_2

EKPREIS ReceptionDetailDes
c UNIT_COST_ACTUAL

ESPREIS ReceptionDetailDes
c/RTVDetailDesc UNIT_COST

KETTBASIS ReceptionDetailDes
c/RTVDetailDesc CHAINING_BASE

KETTFACTOR ReceptionDetailDes
c/RTVDetailDesc CHAINING_FACTOR

STATUS ReceptionDetailDes
c/RTVDetailDesc STATUS

EKWERT ReceptionDetailDes
c/RTVDetailDesc BUY_PRICE

MEVEGEBINDE ReceptionDetailDes
c/RTVDetailDesc AUTO_SPK_QTY

MGVEGEBINDE ReceptionDetailDes
c/RTVDetailDesc AUTO_RETURN_QTY

ARTTYP ReceptionDetailDes
c/RTVDetailDesc ITEM_TYPE

BUCHUNGSLOGIK ReceptionDetailDes
c/RTVDetailDesc RESERVATION_LOGIC

RICHTPREIS ReceptionDetailDes
c/RTVDetailDesc UNIT_COST_DIRECT

LTISPREIVSOERRID
E

ReceptionDetailDes
c UNIT_COST_CONTROL

LIPOSNR ReceptionDetailDes
c BOL_POSITION_NR

 71

Appendix B: Subscription Common
Message Formats (CMF’s)

This appendix contains the Common Message Format (CMF) specification for the
messages used in the subscription phase of the developed integration flows. Each CMF
definition corresponds to an OTD (Object Type Definition) which is included in the
correspondent subscriber for the JCAPS project.

B.1 Store Productivity CMF

Table B.1.1: StoreProdDesc
Field Destination table Table field Datatype

FILENAME NB_EAI_STORE_PROD_STG FILENAME VARCHAR2(30)
STORE NB_EAI_STORE_PROD_STG STORE NUMBER(10)
FILE_DATE NB_EAI_STORE_PROD_STG FILE_DATE VARCHAR2(20)
STORE_PROD_
DTL_DESC*

NB_EAI_STORE_PROD_DTL_
STG

Table B.1.2: StoreProdDtlDesc
Field Destination table Table field Datatype

REPARTO NB_EAI_STORE_PROD_DTL_
STG REPARTO NUMBER(15)

NUM_HOURS NB_EAI_STORE_PROD_DTL_
STG NUM_HOURS NUMBER(6,2)

NUM_HOURS_
EXTRA

NB_EAI_STORE_PROD_DTL_
STG

NUM_HOURS_
EXTRA NUMBER(6,2)

NUM_HOURS_
VACATION

NB_EAI_STORE_PROD_DTL_
STG

NUM_HOURS_
VACATION NUMBER(6,2)

NUM_HOURS_I
LL

NB_EAI_STORE_PROD_DTL_
STG

NUM_HOURS_I
LL NUMBER(6,2)

 72

B.2 Reception CMF

Table B.2.1: ReceptionDesc
Field Destination table Table field Datatype

TID NB_EAI_RECEPTION_STG TID NUMBER(15)
LOCATION NB_EAI_RECEPTION_STG FELL NUMBER(8)
ACQUISITION_
NR NB_EAI_RECEPTION_STG WZNR VARCHAR2(15)

TRANSACTION
_NUMBER NB_EAI_RECEPTION_STG BNR VARCHAR2(15)

TRANSACTION
_DATE NB_EAI_RECEPTION_STG BDATE DATE

PLAN_ACQUIS
ITION_DATE NB_EAI_RECEPTION_STG PWZDATE DATE

PLAN_ACQUIS
ITION_SYSDA
TE

NB_EAI_RECEPTION_STG PWZZEIT DATE

SUPPLIER NB_EAI_RECEPTION_STG LINR NUMBER(8)
RET_AUTH_N
UM NB_EAI_RECEPTION_STG LSNR VARCHAR2(15)

ARRIVAL_DAT
E NB_EAI_RECEPTION_STG LSDATE DATE

SHIPMENT_DA
TE NB_EAI_RECEPTION_STG WZDATE DATE

USER_CODE NB_EAI_RECEPTION_STG PERSNR VARCHAR2(15)
PO_TYPE NB_EAI_RECEPTION_STG BEARD NUMBER(2)
UPC_DESC NB_EAI_RECEPTION_STG WZINFO VARCHAR2(200)
BOOKDATE NB_EAI_RECEPTION_STG BOOKDATE DATE
ACQUISITION_
NR_REF NB_EAI_RECEPTION_STG REFWZNR VARCHAR2(15)

RET_AUTH_N
UM_REF NB_EAI_RECEPTION_STG REFLSNR VARCHAR2(15)

ARRIVAL_DAT
E_REF NB_EAI_RECEPTION_STG REFLSDATE DATE

UPC NB_EAI_RECEPTION_STG EAN_CODE VARCHAR2(16)
RECEPTIONDE
TAIL_DESC*

NB_EAI_RECEPTION_DETAIL
_STG

Table B.2.2: ReceptionDetailDesc
Field Destination table Table field Datatype

LOCATION NB_EAI_RECEPTION_DETAIL
_STG FELL NUMBER(8)

ACQUISITON_
NR

NB_EAI_RECEPTION_DETAIL
_STG WZNR VARCHAR2(15)

TRANSACTION
_NUMBER

NB_EAI_RECEPTION_DETAIL
_STG BNR VARCHAR2(15)

TRANSACTION
_SEQ_NO

NB_EAI_RECEPTION_DETAIL
_STG BPOS NUMBER(4)

SKU NB_EAI_RECEPTION_DETAIL
_STG ARTNR NUMBER(8)

ACQUISITION_
SKU

NB_EAI_RECEPTION_DETAIL
_STG WZPOS NUMBER(4)

WH NB_EAI_RECEPTION_DETAIL CAMP NUMBER(4)

 73

_STG
SUPP_PACK_SI
ZE_QTY

NB_EAI_RECEPTION_DETAIL
_STG MGVE NUMBER(8,4)

SUPP_PACK_SI
ZE

NB_EAI_RECEPTION_DETAIL
_STG FACTOR NUMBER(10)

QTY_RETURN
ED

NB_EAI_RECEPTION_DETAIL
_STG MEVE NUMBER(8,4)

DISCOUNT_TY
PE

NB_EAI_RECEPTION_DETAIL
_STG NRABATT VARCHAR2(1)

UNIT_COST_S
UP_BASE

NB_EAI_RECEPTION_DETAIL
_STG

CUNNING_PRI
CE NUMBER(8)

DISCOUNT_RA
TE_1

NB_EAI_RECEPTION_DETAIL
_STG RABATT1 NUMBER(8)

DISCOUNT_RA
TE_2

NB_EAI_RECEPTION_DETAIL
_STG RABATT2 NUMBER(8)

UNIT_COST_A
CTUAL

NB_EAI_RECEPTION_DETAIL
_STG EKPREIS NUMBER(8)

UNIT_COST NB_EAI_RECEPTION_DETAIL
_STG ESPREIS NUMBER(8)

CHAINING_BA
SE

NB_EAI_RECEPTION_DETAIL
_STG

CHAINING_BA
SIS NUMBER(8)

CHAINING_FA
CTOR

NB_EAI_RECEPTION_DETAIL
_STG

CHAINING_FA
CTOR NUMBER(8)

STATUS NB_EAI_RECEPTION_DETAIL
_STG STATUS NUMBER(1)

BUY_PRICE NB_EAI_RECEPTION_DETAIL
_STG EKWERT NUMBER(20)

AUTO_SPK_QT
Y

NB_EAI_RECEPTION_DETAIL
_STG

MEVEGEBIND
E NUMBER(8)

AUTO_RETUR
N_QTY

NB_EAI_RECEPTION_DETAIL
_STG

MGVEGEBIND
E NUMBER(8)

ITEM_TYPE NB_EAI_RECEPTION_DETAIL
_STG

TYPE_OF_KIN
D NUMBER(2)

RESERVATION
_LOGIC

NB_EAI_RECEPTION_DETAIL
_STG

RESERVATION
_LOGIC NUMBER(2)

UNIT_COST_DI
RECT

NB_EAI_RECEPTION_DETAIL
_STG RICHTPREIS NUMBER(12)

UNIT_COST_C
ONTROL

NB_EAI_RECEPTION_DETAIL
_STG

LTISPREIVSOE
RRID NUMBER(1)

BOL_POSITION
_NR

NB_EAI_RECEPTION_DETAIL
_STG LIPOSNR VARCHAR2(6)

B.3 RTV CMF

Table B.3.1: RTVDesc
Field Destination table Table field Datatype

TID NB_EAI_RTV_STG TID NUMBER(13)
TRANSACTION
_NUMBER NB_EAI_RTV_STG RTV_ORDER_

NO NUMBER(6)

SUPPLIER NB_EAI_RTV_STG SUPPLIER NUMBER(10)
STATUS_IND NB_EAI_RTV_STG STATUS_IND NUMBER(2)
LOCATION NB_EAI_RTV_STG STORE NUMBER(4)
WH NB_EAI_RTV_STG WH NUMBER(4)

 74

TOTAL_ORDE
R_AMT NB_EAI_RTV_STG TOTAL_ORDE

R_AMT NUMBER(20,4)

SHIP_TO_ADD
_1 NB_EAI_RTV_STG SHIP_TO_ADD

_1 VARCHAR2(30)

SHIP_TO_ADD
_2 NB_EAI_RTV_STG SHIP_TO_ADD

_2 VARCHAR2(30)

SHIP_TO_ADD
_3 NB_EAI_RTV_STG SHIP_TO_ADD

_3 VARCHAR2(30)

SHIP_TO_CITY NB_EAI_RTV_STG SHIP_TO_CITY VARCHAR2(20)
STATE NB_EAI_RTV_STG STATE VARCHAR2(3)
SHIP_TO_COU
NTRY_ID NB_EAI_RTV_STG SHIP_TO_COU

NTRY_ID VARCHAR2(3)

SHIP_TO_PCO
DE NB_EAI_RTV_STG SHIP_TO_PCO

DE VARCHAR2(10)

RET_AUTH_N
UM NB_EAI_RTV_STG RET_AUTH_N

UM VARCHAR2(12)

COURIER NB_EAI_RTV_STG COURIER VARCHAR2(20)
FREIGHT NB_EAI_RTV_STG FREIGHT NUMBER(20,4)
CREATED_DA
TE NB_EAI_RTV_STG CREATED_DA

TE DATE

COMPLETED_
DATE NB_EAI_RTV_STG COMPLETED_

DATE DATE

HANDLING_PC
T NB_EAI_RTV_STG HANDLING_PC

T NUMBER(12,4)

HANDLING_C
OST NB_EAI_RTV_STG HANDLING_C

OST NUMBER(20,4)

EXT_REF_NO NB_EAI_RTV_STG EXT_REF_NO VARCHAR2(14)
COMMENT_DE
SC NB_EAI_RTV_STG COMMENT_DE

SC VARCHAR2(255)

ACQUISITION_
NR NB_EAI_RTV_STG ACQUISITION_

NR VARCHAR2(15)

TRANSACTION
_DATE NB_EAI_RTV_STG TRANSACTION

_DATE DATE

PLAN_ACQUIS
ITION_DATE NB_EAI_RTV_STG PLAN_ACQUIS

ITION_DATE DATE

PLAN_ACQUIS
ITION_SYSDA
TE

NB_EAI_RTV_STG
PLAN_ACQUIS
ITION_SYSDA
TE

DATE

ARRIVAL_DAT
E NB_EAI_RTV_STG ARRIVAL_DAT

E DATE

SHIPMENT_DA
TE NB_EAI_RTV_STG SHIPMENT_DA

TE DATE

USER_CODE NB_EAI_RTV_STG USER_CODE VARCHAR2(15)
PO_TYPE NB_EAI_RTV_STG PO_TYPE NUMBER(2)
BOOKDATE NB_EAI_RTV_STG BOOKDATE DATE
UPC NB_EAI_RTV_STG UPC VARCHAR2(16)
RTVDETAIL_D
ESC* NB_EAI_RTV_DETAIL_STG

 75

Table B.3.2: RTVDetailDesc
Field Destination table Table field Datatype

SKU NB_EAI_RTV_DETAIL_STG SKU NUMBER(8)
SHIPMENT NB_EAI_RTV_DETAIL_STG SHIPMENT NUMBER(10)
INV_STATUS NB_EAI_RTV_DETAIL_STG INV_STATUS NUMBER(2)
QTY_RETURN
ED NB_EAI_RTV_DETAIL_STG QTY_RETURN

ED NUMBER(12,4)

UNIT_COST NB_EAI_RTV_DETAIL_STG UNIT_COST NUMBER(20,4)
REASON NB_EAI_RTV_DETAIL_STG REASON VARCHAR2(1)
TRANSACTION
_SEQ_NO NB_EAI_RTV_DETAIL_STG RTV_SEQ_NO NUMBER(4)

ACQUISITION_
SKU NB_EAI_RTV_DETAIL_STG ACQUISITION_

SKU NUMBER(4)

SUPP_PACK_SI
ZE_QTY NB_EAI_RTV_DETAIL_STG SUPP_PACK_SI

ZE_QTY NUMBER(8)

SUPP_PACK_SI
ZE NB_EAI_RTV_DETAIL_STG SUPP_PACK_SI

ZE NUMBER(10)

CHAINING_BA
SE NB_EAI_RTV_DETAIL_STG CHAINING_BA

SE NUMBER(8)

CHAINING_FA
CTOR NB_EAI_RTV_DETAIL_STG CHAINING_FA

CTOR NUMBER(10)

STATUS NB_EAI_RTV_DETAIL_STG STATUS NUMBER(1)
BUY_PRICE NB_EAI_RTV_DETAIL_STG BUY_PRICE NUMBER(20)
AUTO_SPK_QT
Y NB_EAI_RTV_DETAIL_STG AUTOMATIC_S

PK_QTY NUMBER(8)

AUTO_RETUR
N_QTY NB_EAI_RTV_DETAIL_STG AUTOMATIC_

RETURN_QTY NUMBER(8)

ITEM_TYPE NB_EAI_RTV_DETAIL_STG ITEM_TYPE NUMBER(2)
RESERVATION
_LOGIC NB_EAI_RTV_DETAIL_STG RESERVATION

_LOGIC NUMBER(1)

UNIT_COST_C
ONTROL NB_EAI_RTV_DETAIL_STG UNIT_COST_C

ONTROL NUMBER(1)

B.4 Shipment CMF

Table B.4.1: ShipmentFullDesc
Field Datatype

SHIPMENT NUMBER(10)
ORDER_NO NUMBER(8)
TSF_NO NUMBER(8)
SHIP_DATE DATE
RECEIVE_DATE DATE
EST_ARR_DATE DATE
SHIP_ORIGIN VARCHAR2(1)
STATUS_CODE VARCHAR2(1)
INVC_MATCH_STATUS VARCHAR2(1)
INVC_MATCH_DATE DATE
TO_LOCATION NUMBER(4)
TO_LOC_TYPE VARCHAR2(1)
COURIER VARCHAR2(20)
NO_BOXES NUMBER(4)
QC_IND VARCHAR2(1)

 76

EXT_SHIPMENT VARCHAR2(15)
EXT_REF_NO_IN VARCHAR2(15)
EXT_REF_NO_OUT VARCHAR2(15)
COMMENTS VARCHAR2(160)
BARCODE VARCHAR2(20)
FAIL_OCR_F VARCHAR2(1)
OK_CM_F VARCHAR2(1)
FROM_LOC_TYPE VARCHAR2(1)
FROM_LOCATION NUMBER(4)
SUPPLIER NUMBER(10)
EXT_ORDER_NO VARCHAR2(14)
SHIP_SKU_DESC*

Table B.4.2: ShipSkuDesc
Field Datatype

SHIPMENT NUMBER(10)
SKU NUMBER(8)
UPC VARCHAR2(13)
UPC_SUPPLEMENT NUMBER(5)
CARTON VARCHAR2(20)
INV_STATUS NUMBER(2)
STATUS_CODE VARCHAR2(1)
QTY_RECEIVED NUMBER(12,4)
UNIT_COST NUMBER(20,4)
UNIT_RETAIL NUMBER(20,4)
QTY_EXPECTED NUMBER(12,4)
MATCH_INVC_ID NUMBER(10)
QTY_SHIPPED NUMBER(12,4)
SUPP_PACK_SIZE NUMBER(4)
INNER_PACK_SIZE NUMBER(4)
SHIP_CARTON_WT NUMBER(12,4)
CATCH_WGH_F VARCHAR2(1)
ITEM_TYPE_F VARCHAR2(1)

B.5 OrderResponse CMF

Table B.5.1: OrderResponseFullDesc
Field Datatype

EXT_ORDER_NO VARCHAR2(14)
FROM_LOC NUMBER(4)
FROM_LOC_TYPE VARCHAR2(1)
TO_LOC NUMBER(4)
TO_LOC_TYPE VARCHAR2(1)
CURRENT_SYSDATE DATE
SUPPLIER NUMBER(10)
SUP_NAME VARCHAR2(32)
CONTACT_PHONE VARCHAR2(20)
CONTACT_FAX VARCHAR2(20)
CONTACT_EMAIL VARCHAR2(100)
ORDERRESPONSE_DTL_D
ESC*

 77

Table B.5.2: OrderResponseDtlDesc
Field Datatype

EXT_ORDER_NO VARCHAR2(14)
FROM_LOC NUMBER(4)
FROM_LOC_TYPE VARCHAR2(1)
TO_LOC NUMBER(4)
TO_LOC_TYPE VARCHAR2(1)
SKU NUMBER(8)
SHIP_CARTON_WT NUMBER(12,4)
INNER_PACK_SIZE NUMBER(4)
TSF_QTY NUMBER(12,4)
TSF_NO NUMBER(8)
TSF_TYPE VARCHAR2(2)

B.6 DAV1 CMF

Table B.6: DAV1
Field Source CMF CMF field

FIL ShipmentFullDesc TO_LOCATION
BNR ShipmentFullDesc TSF_NO
LINR ShipmentFullDesc SUPPLIER
LSNR ShipmentFullDesc EXT_SHIPMENT
LSDATE ShipmentFullDesc SHIP_DATE
LIEFDATE ShipmentFullDesc EST_ARR_DATE
TEILLIEF (NULL)
ABSCHLUSS (NULL)
AUFTYP (0)

B.7 DAV2 CMF

Table B.7: DAV2
Field Source CMF CMF field

FIL ShipmentFullDesc TO_LOCATION
BNR ShipmentFullDesc TSF_NO
POS (NULL)
ARTNR ShipSkuDesc SKU
MGVE ShipSkuDesc QTY_SHIPPED/SUPP_PAC

K_SIZE
MEVE ShipSkuDesc QTY_SHIPPED
EKPREIS ShipSkuDesc UNIT_COST
POSTYP ShipSkuDesc (CUSTOM_RULE)
POSABSCHLUSS (NULL)
RICHTPREIS ShipSkuDesc UNIT_RETAIL
LIPOSNR (NULL)
FAKTOR ShipSkuDesc (CUSTOM_MULTIPLE_RU

LE)
EAN ShipSkuDesc UPC

 78

B.8 ORB1 CMF

Table B.8: ORB1
Field Source CMF CMF field

FIL OrderResponseFull
Desc TO_LOC

BNR OrderResponseDtlD
esc TSF_NO

ORDATE OrderResponseFull
Desc CURRENT_SYSDATE

ORTIME OrderResponseFull
Desc CURRENT_SYSDATE

LIEFNAME OrderResponseFull
Desc SUP_NAME

LIEFTELEFON OrderResponseFull
Desc CONTACT_PHONE

LIEFFAX OrderResponseFull
Desc CONTACT_FAX

LIEFEMAIL OrderResponseFull
Desc CONTACT_EMAIL

ORTYP OrderResponseFull
Desc TSF_TYPE

LIEFNR OrderResponseFull
Desc SUPPLIER

B.9 ORB2 CMF

Table B.9: ORB2
Field Source CMF CMF field

FIL OrderResponseDtlD
esc TO_LOC

BNR OrderResponseDtlD
esc TSF_NO

BESTPOS (NULL)
ARTNR OrderResponseDtlD

esc SKU

MGVE OrderResponseDtlD
esc

TSF_QTY/INNER_PACK_SI
ZE

MEVE OrderResponseDtlD
esc TSF_QTY

BESTELLGRUND (NULL)
BESTELLGRTEXT (NULL)

 79

Appendix C: Staging Tables

The staging tables, created to store temporary data, are detailed in this appendix. These
tables are responsible for holding the mentioned temporary data before committing it to the final
ORMS tables.

C.1 Store Productivity Staging Tables

Table C.1.1: NB_EAI_STORE_PROD_STG table
Primary key: SEQ_NO, FILENAME, STORE, FILE_DATE
Foreign keys: N/A

Fields
Name Datatype Null? Default

SEQ_NO NUMBER(15) No
FILENAME VARCHAR2(30) No
STORE NUMBER(10) No
FILE_DATE VARCHAR2(20) No
CREATION_SEQ_NO NUMBER(15) Yes 0
MESSAGE_TYPE VARCHAR2(15) No
MESSAGE_SUBTYPE VARCHAR2(15) Yes
TRANSACTION_TIME_STAMPS DATE Yes
DATE_TO_BE_PROCESSED DATE No
SUB_STATUS VARCHAR2(1) No
ERROR_DESC VARCHAR2(255) Yes

 80

Table C.1.2: NB_EAI_STORE_PROD_DTL_STG table
Primary key: SEQ_NO
Foreign keys: NB_EAI_STORE_PROD_STG.SEQ_NO

Fields
Name Datatype Null? Default

SEQ_NO NUMBER(15) No
REPARTO NUMBER(15) No
NUM_HOURS NUMBER(6,2) Yes
NUM_HOURS_EXTRA NUMBER(6,2) Yes
NUM_HOURS_VACATION NUMBER(6,2) Yes
NUM_HOURS_ILL NUMBER(6,2) Yes

C.2 Reception Staging Tables

Table C.2.1: NB_EAI_RECEPTION_STG table
Primary key: SEQ_NO
Foreign keys: N/A

Fields
Name Datatype Null? Default

SEQ_NO NUMBER(15) No
TID NUMBER(15) No
FELL NUMBER(8) No
WZNR VARCHAR2(15) No
BNR VARCHAR2(15) No
BDATE DATE No
PWZDATE DATE No
PWZZEIT DATE No
LINR NUMBER(8) No
LSNR VARCHAR2(15) No
LSDATE DATE No
WZDATE DATE No
PERSNR VARCHAR2(15) No
BEARD NUMBER(2) Yes
WZINFO VARCHAR2(200) Yes
BOOKDATE DATE No
REFWZNR VARCHAR2(15) Yes
REFLSNR VARCHAR2(15) Yes
REFLSDATE DATE Yes
EAN_CODE VARCHAR2(16) No
USER_ID VARCHAR2(30) No
MESSAGE_TYPE VARCHAR2(15) No
MESSAGE_SUBTYPE VARCHAR2(15) Yes
TRANSACTION_TIME_STAMPS DATE Yes
DATE_TO_BE_PROCESSED DATE No
SUB_STATUS VARCHAR2(1) No
ERROR_DESC VARCHAR2(255) Yes
RETRY_NO NUMBER(8) No 0

 81

Table C.2.2: NB_EAI_RECEPTION_DETAIL_STG table
Primary key: SEQ_NO
Foreign keys: N/A

Fields
Name Datatype Null? Default

SEQ_NO NUMBER(15) No
FELL NUMBER(8) No
WZNR VARCHAR2(15) No
BNR VARCHAR2(15) No
BPOS NUMBER(4) No
ARTNR NUMBER(8) No
WZPOS NUMBER(4) No
CAMP NUMBER(4) No
MGVE NUMBER(8,4) Yes
FACTOR NUMBER(10) No
MEVE NUMBER(8,4) No
NRABATT VARCHAR2(1) Yes
CUNNING_PRICE NUMBER(8) Yes
RABATT1 NUMBER(8) Yes
RABATT2 NUMBER(8) Yes
EKPREIS NUMBER(8) Yes
ESPREIS NUMBER(8) Yes
CHAINING_BASIS NUMBER(8) Yes
CHAINING_FACTOR NUMBER(8) Yes
STATUS NUMBER(1) No
EKWERT NUMBER(20) No
MEVEGEBINDE NUMBER(8) No
MGVEGEBINDE NUMBER(8) No
TYPE_OF_KIND NUMBER(2) Yes
RESERVATION_LOGIC NUMBER(2) Yes
RICHTPREIS NUMBER(12) Yes
LTISPREIVSOERRID NUMBER(1) No
LIPOSNR VARCHAR2(6) Yes
USER_ID VARCHAR2(30) No
MESSAGE_TYPE VARCHAR2(15) No
MESSAGE_SUBTYPE VARCHAR2(15) Yes
TRANSACTION_TIME_STAMPS DATE Yes
DATE_TO_BE_PROCESSED DATE No
SUB_STATUS VARCHAR2(1) No
ERROR_DESC VARCHAR2(255) Yes

 82

C.3 RTV Staging Tables

Table C.3.1: NB_EAI_RTV_STG table
Primary key: SEQ_NO
Foreign keys: N/A

Fields
Name Datatype Null? Default

SEQ_NO NUMBER(15) No
TID NUMBER(13) No
RTV_ORDER_NO NUMBER(6) No
SUPPLIER NUMBER(10) No
STATUS_IND NUMBER(2) Yes
STORE NUMBER(4) Yes
WH NUMBER(4) Yes
TOTAL_ORDER_AMT NUMBER(20,4) Yes
SHIP_TO_ADD_1 VARCHAR2(30) Yes
SHIP_TO_ADD_2 VARCHAR2(30) Yes
SHIP_TO_ADD_3 VARCHAR2(30) Yes
SHIP_TO_CITY VARCHAR2(20) Yes
STATE VARCHAR2(3) Yes
SHIP_TO_COUNTRY_ID VARCHAR2(3) Yes
SHIP_TO_PCODE VARCHAR2(10) Yes
RET_AUTH_NUM VARCHAR2(12) Yes
COURIER VARCHAR2(20) Yes
FREIGHT NUMBER(20,4) Yes
CREATED_DATE DATE Yes
COMPLETED_DATE DATE Yes
HANDLING_PCT NUMBER(12,4) Yes
HANDLING_COST NUMBER(20,4) Yes
EXT_REF_NO VARCHAR2(14) Yes
COMMENT_DESC VARCHAR2(255) Yes
ACQUISITION_NR VARCHAR2(15) Yes
TRANSACTION_DATE DATE Yes
PLAN_ACQUISITION_DATE DATE Yes
PLAN_ACQUISITION_SYSDATE DATE Yes
ARRIVAL_DATE DATE Yes
SHIPMENT_DATE DATE Yes
USER_CODE VARCHAR2(15) Yes
PO_TYPE NUMBER(2) Yes
BOOKDATE DATE Yes
UPC VARCHAR2(16) Yes
USER_ID VARCHAR2(30) No
MESSAGE_TYPE VARCHAR2(15) No
MESSAGE_SUBTYPE VARCHAR2(15) Yes
TRANSACTION_TIME_STAMPS DATE No
DATE_TO_BE_PROCESSED DATE No
SUB_STATUS VARCHAR2(1) No
ERROR_DESC VARCHAR2(255) Yes
RETRY_NO NUMBER(8) Yes 0

 83

Table C.3.2: NB_EAI_RTV_DETAIL_STG table
Primary key: SEQ_NO
Foreign keys: N/A

Fields
Name Datatype Null? Default

SEQ_NO NUMBER(15) No
RTV_ORDER_NO NUMBER(6) No
SKU NUMBER(8) Yes
SHIPMENT NUMBER(10) Yes
INV_STATUS NUMBER(2) Yes
QTY_RETURNED NUMBER(12,4) Yes
UNIT_COST NUMBER(20,4) Yes
REASON VARCHAR2(1) Yes
RTV_SEQ_NO NUMBER(4) Yes
ACQUISITION_SKU NUMBER(4) Yes
SUPP_PACK_SIZE_QTY NUMBER(8) Yes
SUPP_PACK_SIZE NUMBER(10) Yes
CHAINING_BASE NUMBER(8) Yes
CHAINING_FACTOR NUMBER(10) Yes
STATUS NUMBER(1) Yes
BUY_PRICE NUMBER(20) Yes
AUTOMATIC_SPK_QTY NUMBER(8) Yes
AUTOMATIC_RETURN_QTY NUMBER(8) Yes
ITEM_TYPE NUMBER(2) Yes
RESERVATION_LOGIC NUMBER(2) Yes
UNIT_COST_CONTROL NUMBER(1) Yes
USER_ID VARCHAR2(30) No
MESSAGE_TYPE VARCHAR2(15) No
MESSAGE_SUBTYPE VARCHAR2(15) Yes
TRANSACTION_TIME_STAMPS DATE No
DATE_TO_BE_PROCESSED DATE No
SUB_STATUS VARCHAR2(1) No
ERROR_DESC VARCHAR2(255) Yes

 84

Appendix D: ORMS Subscription
Packages

This appendix presents a more detailed description of the ORMS subscription packages,
namely its developed procedures and functions: CONSUME and PROCESS_STAGING. The
packages are components responsible for the data integration into the ORMS staging tables,
using a methodology of database sharing.

D.1 Store Productivity Subscription Package

Table D.1.1: Store Productivity CONSUME procedure
Name: CONSUME

Description: This procedure will receive an Oracle Object sent by
JCAPS and manage the integration logic into ORMS.

Returns: N/A
Fields

Name Datatype IN/OUT Default
O_ERROR_MESSAGE VARCHAR2(255) OUT
O_STATUS VARCHAR2(1) OUT
I_MESSAGE_TYPE VARCHAR2(15) IN
I_MESSAGE_ SUBTYPE VARCHAR2(15) IN
I_MESSAGE NB_EAI_STORE_PROD IN
I_FILENAME VARCHAR2(255) IN
I_STORE NUMBER(4) IN

Development details
This procedure only will tolerate the following message types: “StoreProdCre”,
“StoreProdMod”

Exception handling:
In case of error, the procedure will send O_Status with
“E” and O_Message_Error with the correspondent error
message.

 85

Table D.1.2: Store Productivity PROCESS_STAGING function
Name: PROCESS_STAGING

Description:
This function will be launched by the CONSUME
procedure and will load into the staging tables the
information inside the Oracle Object.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_Error_Message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2(255) OUT
I_MESSAGE_TYPE VARCHAR2(15) IN
I_MESSAGE_ SUBTYPE VARCHAR2(15) IN
I_MESSAGE NB_EAI_STORE_PROD IN
I_FILENAME VARCHAR2(255) IN
I_STORE NUMBER(4) IN

Development details

Exception handling:
In case of error, all DML instructions at the staging tables
will be rolled back and the O_Error_Message will be sent
up to the procedure CONSUME.

D.2 Reception Subscription Package

Table D.2.1: Reception CONSUME procedure
Name: CONSUME

Description: This procedure will receive an Oracle Object sent by
JCAPS and manage the integration logic into ORMS.

Returns: N/A
Fields

Name Datatype IN/OUT Default
O_ERROR_MESSAGE VARCHAR2(255) OUT
O_STATUS VARCHAR2(1) OUT
I_MESSAGE_TYPE VARCHAR2(15) IN
I_MESSAGE_ SUBTYPE VARCHAR2(15) IN
I_MESSAGE NB_EAI_RECEPTION IN

Development details
This procedure only will tolerate one message types: “ReceptionCre”

Exception handling:
In case of error, the procedure will send O_Status with
“E” and O_Message_Error with the correspondent error
message.

 86

Table D.2.2: Reception PROCESS_STAGING function
Name: PROCESS_STAGING

Description:

This function will be launched by the CONSUME
function and will load the staging tables
NB_EAI_RECEPTION_STG and
NB_EAI_RECEPTION_DETAIL_STG with the
information inside the Oracle Object.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_Error_Message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2(255) OUT
I_MESSAGE_TYPE VARCHAR2(15) IN
I_MESSAGE_ SUBTYPE VARCHAR2(15) IN
I_MESSAGE NB_EAI_RECEPTION IN

Development details

Exception handling:
In case of error, all DML instructions at the staging tables
will be rolled back and the O_Error_Message will be sent
up to the procedure CONSUME.

D.3 RTV Subscription Package

Table D.3.1: RTV CONSUME procedure
Name: CONSUME

Description: This procedure will receive an Oracle Object sent by
JCAPS and manage the integration logic into ORMS.

Returns: N/A
Fields

Name Datatype IN/OUT Default
O_ERROR_MESSAGE VARCHAR2(255) OUT
O_STATUS VARCHAR2(1) OUT
I_MESSAGE_TYPE VARCHAR2(15) IN
I_MESSAGE_ SUBTYPE VARCHAR2(15) IN
I_MESSAGE NB_EAI_RTV IN

Development details
This procedure only will tolerate one message types: “RTVCre”

Exception handling:
In case of error, the procedure will send O_Status with
“E” and O_Message_Error with the correspondent error
message.

 87

Table D.3.2: RTV PROCESS_STAGING function
Name: PROCESS_STAGING

Description:

This function will be launched by the CONSUME
function and will load the staging tables
NB_EAI_RTV_STG and NB_EAI_RTV_DETAIL_STG
with the information inside the Oracle Object.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_Error_Message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2(255) OUT
I_MESSAGE_TYPE VARCHAR2(15) IN
I_MESSAGE_ SUBTYPE VARCHAR2(15) IN
I_MESSAGE NB_EAI_RTV IN

Development details

Exception handling:
In case of error, all DML instructions at the staging tables
will be rolled back and the O_Error_Message will be sent
up to the procedure CONSUME.

 88

Appendix E: IMAge Mapping Packages

In this appendix is presented a detailed description of the implemented IMAge mapping
packages, namely its procedures and functions, for both DAV and ORB entities, referent to the
Store to Warehouse Orders and Receptions project. The mapping packages are components
responsible for mapping the data, published into the integration BUS by the ORMS application,
according to the IMAge input message format.

E.1 MAP Procedure

Table E.1: MAP procedure
Name: MAP

Description:

This function is the only exposed procedure and is
responsible for the message creation process control flow.
It manages the message creation and transformation
process.

Returns: N/A
Fields

Name Datatype IN/OUT Default
O_ERROR_MESSAGE VARCHAR2 OUT
O_MESSAGE_DST NB_EAI_IMAGE OUT
O_STATUS VARCHAR2 OUT
O_TID VARCHAR2 OUT
I_MESSAGE_TYPE VARCHAR2 OUT
I_MESSAGE_SUBTYPE VARCHAR2 IN
I_MESSAGE ORACLE_OBJECT IN
O_ERROR_MESSAGE VARCHAR2 IN

Algorithm

 89

Development details

Exception handling:
In case of error, this procedure will return a message,
O_ERROR_MESSAGE, with the description of the error
and the O_STATUS set to “E”.

E.2 GET_TID Function

Table E.2: GET_TID function
Name: GET_TID

Description:
This function generates the transaction ID for the message
under mapping according to the IMAge Transaction ID
specification.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 IN/OUT
O_TID VARCHAR2 OUT

Algorithm

IMAge specifies that TID can be generated as a result of 3 concatenated numbers.

TID = LP_TID || JAVA_SYS_TIME_IN_MILLIS || <random natural number between 0
and 9>

 90

LP_TID is a constant natural number from 0-9 for every Transaction, is defined at package
level.

JAVA_SYS_TIME_IN_MILLIS is computed from the 12 rightmost digits of the Java system
time in milliseconds

As an example, taking LP_TID = 2, JAVA_SYS_TIME_IN_MILLIS = 345245674889 and the
random number = 5, then the generated TID would be, TID = 23452456748895

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

E.3 GET_MSG_TYPE Function

Table E.3: GET_MSG_TYPE function
Name: GET_MSG_TYPE

Description:

This function sets the message type internally to the
package. The message type is used during the
transformation process to differentiate sub-messages
inside the main family message.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 IN/OUT
O_MESSAGE_TYPE VARCHAR2 OUT
I_MESSAGE ORACLE_OBJECT IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

 91

E.4 GET_DESTINATION_MESSAGE Function

Table E.4: GET_DESTINATION_MESSAGE function
Name: GET_DESTINATION_MESSAGE

Description:
Function that for a given destination message and
application, returns the message ID in the base rule tables
and the number of details it contains.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 OUT
O_MSG_ID NUMBER OUT
O_DTL_COUNT NUMBER OUT
I_DESTINATION_APPLICATI
ON

VARCHAR2 IN

I_DESTINATION_MSG VARCHAR2 IN
Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

E.5 FORMAT_FIELDS Function

Table E.5: FORMAT_FIELDS function
Name: FORMAT_FIELDS

Description:
This function applies a format to every field of the
transformed/mapped message according to definitions
stored in the base rules tables.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 IN/OUT
O_SRC_VALUE VARCHAR2 OUT
I_SRC_VALUE VARCHAR2 IN
I_RECORD_ID NUMBER IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

 92

E.6 FILL_SRC_VALUES Function

Table E.6: FILL_SRC_VALUES function
Name: FILL_SRC_VALUES

Description:

This function loads the business data from the Message
Oracle Object to a temporary array structure used to
support data transformation throughout the mapping
package.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 IN/OUT
O_SRC_ITEM_DESC SRC_VALUES IN/OUT
I_MESSAGE_TYPE VARCHAR2 IN
I_MESSAGE ORACLE_OBJECT IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

E.7 FILL_EXTINFO_VALUES Function

Table E.7: FILL_EXTINFO_VALUES function
Name: FILL_EXTINFO_VALUES

Description:

This function loads the ExtInfo data structure from the
Message Oracle Object to a temporary array structure
used to support data transformation throughout the
mapping package.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 IN/OUT
O_EXTINFO SRC_VALUES_TBL IN OUT
I_MESSAGE ORACLE_OBJECT IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

 93

E.8 MAP_DESTINATION_DETAILS Function

Table E.8: MAP_DESTINATION_DETAILS function
Name: MAP_DESTINATION_DETAILS

Description:
This function iterates from message field to message field
defined in the base rules tables and maps the field data
according the rule type.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 OUT
O_MSG VARCHAR2 IN/OUT
I_MSG_ID NUMBER IN
I_DTL_COUNT NUMBER IN
I_MESSAGE_TYPE VARCHAR2 IN
I_SRC _DATA_DESC SRC_VALUES IN
I_EXTINFO SRC_VALUES_TBL IN
I_TID VARCHAR2 IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

E.9 MAP_DESTINATION_CUSTOM_RULE Function

Table E.9: MAP_DESTINATION_CUSTOM_RULE function
Name: MAP_DESTINATION_CUSTOM_RULE

Description: This function is responsible for all the mapping logic in
fields where the defined mapping rule is the rule type = 3.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 OUT
O_SRC_VALUE VARCHAR2 IN/OUT
I_MESSAGE_TYPE VARCHAR2 IN
I_DETAIL VARCHAR2 IN
I_SRC_DATA_DESC VARCHAR2 IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

 94

E.10 MAP_DST_CUSTOM_MULTIPLE_RULES Function

Table E.10: MAP_DST_CUSTOM_MULTIPLE_RULES function
Name: MAP_DST_CUSTOM_MULTIPLE_RULES

Description:

This function is responsible for all the mapping logic in
fields where the defined mapping rule is the rule type = 5.
This means that a field is mapped from several input
fields and some logic is needed to compute the resulting
field.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 IN/OUT
O_SRC_VALUE VARCHAR2 IN/OUT
I_DETAIL VARCHAR2 IN
I_SRC_VALUE_LST VARCHAR2 IN
I_SRC_DATA_DESC SRC_VALUES IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

E.11 MAP_DESTINATION_EXTINFO_RULE Function

Table E.11: MAP_DESTINATION_EXTINFO_RULE function
Name: MAP_DESTINATION_EXTINFO_RULE

Description:

This function is responsible for all the mapping logic in
fields where the defined mapping rule is the rule type = 4.
This means that applies data transformation and custom
mapping for message data fields that need information
from one field of the ExtInfo data structure.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 IN/OUT
O_SRC_VALUE VARCHAR2 IN/OUT
I_EXTINFO SRC_VALUES_TBL IN
I_MAIN_LABEL VARCHAR2 IN
I_DTL_LABEL VARCHAR2 IN

 95

I_MAP_VALUE VARCHAR2 IN
I_DETAIL VARCHAR2 IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

E.12 MAP_MULTIPLE_EXTINFO_RULE Function

Table E.12: MAP_MULTIPLE_EXTINFO_RULE function
Name: MAP_MULTIPLE_EXTINFO_RULE

Description:

This function is responsible for all the mapping logic in
fields where the defined mapping rule is the rule type = 6.
This means that applies data transformation and custom
mapping for message data fields that need information
from multiple fields from the ExtInfo data structure.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 OUT
O_SRC_VALUE VARCHAR2 IN/OUT
I_SRC_DATA_DESC SRC_VALUES IN
I_SRC_EXTINFO SRC_VALUES_TBL IN
I_DETAIL VARCHAR2 IN
I_MAIN_LABEL VARCHAR2 IN
I_DTL_LABEL VARCHAR2 IN
I_SOURCE_VALUE VARCHAR2 IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

 96

E.13 BUILD_MESSAGE Function

Table E.13: BUILD_MESSAGE function
Name: BUILD_MESSAGE

Description:
This function builds the output IMAge message, already
transformed and mapped. This assembles the mapped
data, the header and details message structure.

Returns:

Boolean.
False – When the process execute with errors. In this
situation, the variable O_error_message have to contain
the error detail.
True – When the process execute without errors.

Fields
Name Datatype IN/OUT Default

O_ERROR_MESSAGE VARCHAR2 IN/OUT
O_MESSAGE_DST NB_EAI_IMAGE OUT
I_TID VARCHAR2 IN
I_MESSAGE_DATA VARCHAR2 IN

Development details

Exception handling: In case of error, the function will return false and update
the error message accordingly.

 97

Appendix F: Algorithms

In this appendix are presented the developed algorithms which were not included in the
body of the report, consisting basically of the algorithms implemented by the Java Collaboration
Definition (JCD) used in the developed Publication/Subscription integration flows and the
PROCESS_STAGING algorithms of the subscription packages.

F.1 Store Productivity Publisher JCD Algorithm

 98

Load configuration

Input message unmarshalling

Set StoreProdDesc message header

LOOP
For each line in input message

LOOP
For each line in input message

Map StoreProdDesc message to
BusMessage format

BusMessage marshalling

Send BusMessage to JMS topic

End process

Set StoreProdDesc detail

Figure F.1: Store Productivity publisher JCD algorithm

F.2 FromImageTAFR JCD Algorithm

Figure F.2: FromImageTAFR JCD algorithm

 99

F.3 Reception Publisher JCD Algorithm

Init

MapImgMsg

Load configuration

Input message unmarshalling

Map ReceptionDesc message to
BusMessage format

BusMessage marshalling

Send BusMessage to JMS topic

End process

Figure F.3: Reception publisher JCD algorithm

F.4 RTV Publisher JCD Algorithm

Init

MapImgMsg

Load configuration

Input message unmarshalling

Map RTVDesc message to BusMessage
format

BusMessage marshalling

Send BusMessage to JMS topic

End process

Figure F.4: RTV publisher JCD algorithm

 100

F.5 ORMS Subscribers JCD Algorithm

Figure F.5: ORMS subscribers JCD algorithm

F.6 IMAge Subscribers JCD Algorithm

Figure F.6: IMAge subscribers JCD algorithm

 101

F.7 Store Productivity PROCESS_STAGING Algorithm

Figure F.7: Store Productivity PROCESS_STAGING algorithm

 102

F.8 Reception PROCESS_STAGING Algorithm

Figure F.8: Reception PROCESS_STAGING algorithm

 103

F.9 RTV PROCESS_STAGING Algorithm

Figure F.9: RTV PROCESS_STAGING algorithm

 104

Appendix G: Unit Test Documents
(UTD’s)

This final appendix includes the Unit Test Documents (UTD’s) produced for both Store
Productivity and Reception/RTV projects.

G.1 Store Productivity UTD

Unit Test Document

TRD Authors Developers/Unit Testers

ID Test Tester Date Ok* Comments
101 FTP properties successfully loaded RSA 05/05/2009
102 Obtained FTP host file list to be

processed
RSA 05/05/2009

103 All files are processed up to a
maximum per round

RSA 05/05/2009

104 Each of the CSV file contents are
mapped into a XML message and sent
into a JMS

RSA 05/05/2009

105 JMS message is mapped correctly for
Store Productivity data

RSA 05/05/2009

106 Message is sent into the integration
BUS

RSA 05/05/2009

107 Message is successfully subscribed RSA 05/05/2009
108 Message is inserted into staging tables RSA 05/05/2009

 105

TRD Authors Developers/Unit Testers

ID Test Tester Date Ok* Comments

* Use or X and fill in details in the Comments column in case of errors found

Principles for Software Development
Principle Developer Ok* Comments

Defensive Programming RSA
RJP

No Hardcode use RSA
RJP

Good code readability RSA
RJP

* Use or X and fill in details in the Comments column in case of nonfulfilment of the Principle

NOTE: The (singular) no fulfilment of any of these principles must be approved by the Project Sponsor. The reason for the

no fulfilment must be previously documented, in the project team meeting minute, as well as in the analysis and design documents
and in the source code.

Comments *
TRD Authors * Developers/Unit Testers **

* Performance expectations. Expected confidence in the unit tests. Etc.
** Performance achieved. Confidence in the unit tests. Aspects to be considered in the integration tests. Etc.

 106

G.2 Reception/RTV UTD

Unit Test Document

TRD Authors Developers/Unit Testers

ID Test Tester Date Ok* Comments
101 Received FWZ message from IMAge and

sent to TAFR JMS
RSA 22/05/2009

102 JMS message is mapped correctly for
FWZ1 and FWZ2 data

RSA 22/05/2009

103 If FWZ1.PO_TYPE equals “99” the JMS
message is sent to RTV Publisher JMS,
otherwise is sent to RECEPTION
Publisher JMS

RSA 22/05/2009

104 Message is sent to the correspondent
Subscriber interface

RSA 22/05/2009

105 Message is inserted into staging tables RSA 22/05/2009

* Use or X and fill in details in the Comments column in case of errors found

Principles for Software Development
Principle Developer Ok* Comments

Defensive Programming RSA
RJP

No Hardcode use RSA
RJP

Good code readability RSA
RJP

* Use or X and fill in details in the Comments column in case of nonfulfilment of the Principle

NOTE: The (singular) no fulfilment of any of these principles must be approved by the Project Sponsor. The reason for the

no fulfilment must be previously documented, in the project team meeting minute, as well as in the analysis and design documents
and in the source code.

Comments *
TRD Authors * Developers/Unit Testers **

 107

* Performance expectations. Expected confidence in the unit tests. Etc.
** Performance achieved. Confidence in the unit tests. Aspects to be considered in the integration tests. Etc.

G.3 Store to Warehouse Shipment (DAV) UTD

Unit Test Document

TRD Authors Developers/Unit Testers

ID Test Tester Date Ok* Comments
100 PROCESS DATA SENT FOR

SUBSCRIPTION INTO THE
INTEGRATION BUS

101 Received WhNotification.Shipment
message from the integration BUS, in
XML format, corresponding to a
“ShipmentCre” message type

RSA 26/06/2009

102 Message is mapped correctly into its
CMF “ShipmentFullDesc”

RSA 26/06/2009

103 NB_IMGMAP_DAV.MAP procedure is
called by the subscriber, returning the
transformed message in the IMAge
message format

RSA 26/06/2009

104 NB_IMGMAP_DAV.MAP returns an
error status and message if error occurs

RSA 26/06/2009

105 Message is sent to an IMAge input JMS
queue for subscription

RSA 26/06/2009

200 IMAGE SUBSCRIPTION PACKAGE –

MAP PROCEDURE

201 Input parameters are verified RSA 26/06/2009
202 Message TID is successfully generated RSA 26/06/2009
203 The incoming message type is correctly

determined
RSA 26/06/2009

204 The destination message ID is properly
determined

RSA 26/06/2009

205 Auxiliary structures of type VARRAY
are successfully populated for data
mapping

RSA 26/06/2009

206 ExtInfo auxiliary structure is correctly
filled for data mapping

RSA 26/06/2009

 108

TRD Authors Developers/Unit Testers

ID Test Tester Date Ok* Comments
207 Each of the fields in the existing message

details (DAV2) is successfully mapped
according to the defined mapping rules

RSA 26/06/2009

208 Each of the fields for the message header
(DAV1) is successfully mapped
according to the defined mapping rules

RSA 26/06/2009

209 The message header and detail is
correctly assembled, returning the final
message according to the IMAge
message format

RSA 26/06/2009

* Use or X and fill in details in the Comments column in case of errors found

Principles for Software Development
Principle Developer Ok* Comments

Defensive Programming RSA
No Hardcode use RSA
Good code readability RSA

* Use or X and fill in details in the Comments column in case of nonfulfilment of the Principle

NOTE: The (singular) no fulfilment of any of these principles must be approved by the Project Sponsor. The reason for the

no fulfilment must be previously documented, in the project team meeting minute, as well as in the analysis and design documents
and in the source code.

Comments *
TRD Authors * Developers/Unit Testers **

* Performance expectations. Expected confidence in the unit tests. Etc.
** Performance achieved. Confidence in the unit tests. Aspects to be considered in the integration tests. Etc.

 109

G.4 Store to Warehouse OrderResponse (ORB) UTD

Unit Test Document

TRD Authors Developers/Unit Testers

ID Test Tester Date Ok* Comments
100 PROCESS DATA SENT FOR

SUBSCRIPTION INTO THE
INTEGRATION BUS

101 Received WhNotification.OrderResponse
message from the integration BUS, in
XML format, corresponding to a
“OrderResponseCre” message type

RSA 26/06/2009

102 Message is mapped correctly into its
CMF “OrderResponseFullDesc”

RSA 26/06/2009

103 NB_IMGMAP_ORB.MAP procedure is
called by the subscriber, returning the
transformed message in the IMAge
message format

RSA 26/06/2009

104 NB_IMGMAP_ORB.MAP returns an
error status and message if error occurs

RSA 26/06/2009

105 Message is sent to an IMAge input JMS
queue for subscription

RSA 26/06/2009

200 IMAGE SUBSCRIPTION PACKAGE –

MAP PROCEDURE

201 Input parameters are verified RSA 26/06/2009
202 Message TID is successfully generated RSA 26/06/2009
203 The incoming message type is correctly

determined
RSA 26/06/2009

204 The destination message ID is properly
determined

RSA 26/06/2009

205 Auxiliary structures of type VARRAY
are successfully populated for data
mapping

RSA 26/06/2009

206 ExtInfo auxiliary structure is correctly
filled for data mapping

RSA 26/06/2009

207 Each of the fields in the existing message
details (ORB2) is successfully mapped
according to the defined mapping rules

RSA 26/06/2009

208 Each of the fields for the message header
(ORB1) is successfully mapped
according to the defined mapping rules

RSA 26/06/2009

209 The message header and detail is
correctly assembled, returning the final
message according to the IMAge
message format

RSA 26/06/2009

 110

TRD Authors Developers/Unit Testers

ID Test Tester Date Ok* Comments

* Use or X and fill in details in the Comments column in case of errors found

Principles for Software Development
Principle Developer Ok* Comments

Defensive Programming RSA
No Hardcode use RSA
Good code readability RSA

* Use or X and fill in details in the Comments column in case of nonfulfilment of the Principle

NOTE: The (singular) no fulfilment of any of these principles must be approved by the Project Sponsor. The reason for the

no fulfilment must be previously documented, in the project team meeting minute, as well as in the analysis and design documents
and in the source code.

Comments *
TRD Authors * Developers/Unit Testers **

* Performance expectations. Expected confidence in the unit tests. Etc.
** Performance achieved. Confidence in the unit tests. Aspects to be considered in the integration tests. Etc.

