

Faculty of Engineering of University of Porto

Implementation of a Single Sign On

solution using Security Assertion

Markup Language

Filipa Alexandra Santos Cerdeira Mendes Moura

Temporary Version

Project’s Report

Integrated Masters in Informatics Engineering and Computing

Supervisor: Prof. Raul Moreira Vidal

June 2009

© Filipa Moura, 2009

Implementation of a Single Sign On solution using

Security Assertion Markup Language

Filipa Alexandra Santos Cerdeira Mendes Moura

Project’s Report

Integrated Masters in Informatics Engineering and Computing

Approved in oral examination by the committee:

Chair: ___

__

External Examiner: ___

Internal Examiner: ___

 June 2009

Legal Terms

In accordance with the terms of the internship protocol and the confidentiality

agreement executed with ALERT Life Sciences Computing, S.A. (“ALERT”), this

report is confidential and may contain references to inventions, know-how, drawings,

computer software, trade secrets, products, formulas, methods, plans, specifications,

projects, data or works protected by ALERT’s industrial and/or intellectual property

rights. This report may be used solely for research and educational purposes. Any other

kind of use requires prior written consent from ALERT.

i

Abstract

Today’s dynamic market longs for innovative solutions that, not only add value for

the business, but also improve the user experience and satisfaction. Single Sign On can

be seen as a major step towards this direction.

This project’s goal was to design a Single Sign On solution that was compliant

with the Security Assertion Markup Language (SAML) standards.

Single Sign On allows an user to log in once to one application and gain access to

multiple applications without any further actions, while SAML is an XML-based

standard whose major goal is to solve the Web Single Sign On problem.

Adopting standards is an advantage and simplifies software interoperability:

whether or not the software is made by the same vendor, implementing SAML

standards makes it virtually possible to communicate with all the existing software that

conforms to the same standard.

Research done about Single Sign On and SAML lead to an architecture description

of how the solution should be structured in order to achieve all the requirements initially

defined. Since the project’s goal matched ALERT’s objectives, a proof of concept was

developed over ALERT® software.

After defining the architecture, state of the art technologies were studied to

evaluate the software that best fitted the project’s requirements. The main problem of

evaluating the software available for SAML solutions was the complexity of the

installation and testing processes. On the contrary of what was expected, local

deployment and simple testing was harder and, in some situations, unachievable on the

time that was available for the project.

After choosing OpenSSO Enterprise as the software to be used, a prototype was

developed. OpenSSO implements SAML and is presented as the single solution for

Web access management, federation and Web services security offered by Sun

Microsystems.

This prototype was a huge stride to the project’s success because it allowed a

clearer understanding of SAML message flow and the configurations needed as well as

it permitted to discover how to overcome OpenSSO restrictions.

Since the prototype covered all interactions and flows on a Single Sign On

solution, the process of integrating the software with MyALERT® and ALERT®

Online was simplified. These are the two ALERT applications that were used because

they are online applications that offer a single point of entrance, presenting separated

flows.

The tests performed were all successful and the conducted evaluation concluded

that the framework is stable and that it could be easily extended and integrated with

other applications because of its modular architecture.

The fact that the most relevant requirements were implemented, accomplishing a

rather complete deployment of Single Sign On, but opens the door to the usage of

SAML for authorization purposes. The versatility of SAML and the modularity of the

ii

solution offer innumerous options to achieve a better user experience with simpler

interactions and greater software interoperability.

iii

Resumo

O mercado actual aspira por soluções inovadoras que não só criem valor para o

negócio mas, acima de tudo, que melhorem a satisfação e a experiência da utilização. O

mecanismo Single Sign On é considerado como um grande passo para atingir os

referidos objectivos.

O propósito deste projecto era implementar uma solução de Single Sign On que

estivesse de acordo com os standards da Security Assertion Markup Language (SAML).

O Single Sign On permite ao utilizador autenticar-se numa aplicação e ganhar

acesso a diversas aplicações sem necessitar de qualquer acção extra, enquanto que o

SAML é um standard XML cujo maior objectivo é o de solucionar a problemática do

Single Sign On em ambientes Web.

A adopção de standards é vantajosa e permite melhorar a interoperabilidade entre

diferentes aplicações: mesmo que a aplicação não tenha sido desenvolvida pela mesma

empresa, o facto de implementar SAML torna possível a comunicação entre todas as

aplicações que estejam de acordo com o mesmo standard.

Foram realizados estudos sobre Single Sign On e SAML que permitiram elaborar a

descrição da arquitectura da solução final, para que se atingissem todos os requisitos

propostos. Dado que o propósito do projecto em causa está de acordo com os objectivos

da ALERT, foi desenvolvida uma prova de conceito sobre software da ALERT.

Após a arquitectura ter sido definida, realizou-se uma análise às tecnologias actuais

de forma a que se pudesse avaliar qual o software que melhor se enquadra nos requisitos

do projecto. A maior dificuldade sentida no que toca à referida avaliação relaciona-se

com a complexidade dos processos inerentes à instalação, configuração e testes do

software avaliado. Ao contrário do que seria de esperar, a implementação local e a

execução de testes às aplicações foi mais difícil do que o previsto e, em alguns casos,

não atingível no tempo disponível para a realização do projecto em causa.

Da referida análise surgiu como escolha o OpenSSO Enterprise. O OpenSSO é a

solução apresentada pela Sun Microsystems para gestão de acessos e segurança de

serviços Web e federação, implementando SAML. Posteriormente foi desenvolvido um

protótipo com base na supracitada decisão.

O protótipo assumiu um papel relevante para o sucesso do projecto dado ter

permitido uma compreensão mais clara do fluxo de mensagens SAML e das

configurações necessárias para a aplicação correcta do mesmo, mas também porque

possibilitou descobrir como ultrapassar restrições do OpenSSO.

Como o protótipo foi extenso e se debruçou sobre todas as interacções e fluxos

presentes numa solução de Single Sign On, o processo de integração da referida solução

nas aplicações ALERT Online® e MyALERT® foi simplificado. Estas aplicações

fazem parte das já aplicações que a ALERT oferece e foram escolhidas devido a serem

aplicações online, com um único ponto de entrada, que apresentam fluxos separados.

iv

Todos testes realizados apresentaram resultados positivos e a avaliação feita à

referida framework conclui que a mesma se encontra estável e que pode ser facilmente

expansível e integrada com outras aplicações devido à sua arquitectura modular.

Dado que os requisitos mais relevantes foram implementados, tendo sido atingida

uma implementação extensa de Single Sign On, a solução permite que novos

desenvolvimentos sejam feitos que podem incluir a utilização do SAML em acções de

autenticação. A versatilidade inerente ao SAML e a modularidade da solução oferece

inúmeras opções que permitem oferecer uma melhor experiência ao utilizador e maior

interoperabilidade com outras aplicações.

v

Acknowledgments

First and foremost I would like to thank everyone at ALERT for making this

project possible: from the interview until today, I can say nothing but a big thank you

for welcoming me as you did and making me feel at “home” since my first day.

Filipe Pereira, or my boss as I like to call him, was definitely one of the most

valuable persons I met at ALERT: it provided me guidance when needed but also left

me to discover the solutions alone, forcing me to grow up from a student to a company

worker.

From my team, Technical Architecture Security, I have to also thank André

Tavares for being able to put up with me during all this time but also for always being

available to provide a helping hand when needed, and Joana Costa, that proved that two

women on a manly company can still be friends and help each other.

Since this project involved many areas, I also have to refer Pedro Vilaça and Nuno

Guerreiro from the Technical Java Architecture team, for helping me understand the

Java layer and being patient with all my doubts and questions and Ricardo Pereira, from

Technical Flash Architecture, that taught me Flash basics. André Cova and Alexandre

Albuquerque were absolutely indispensable to helping me learn how to run and

configure Apache Servers.

Vitor Monteiro and Nuno Martins are the project managers for MyALERT® and

ALERT® Online, and their help for understanding their software’s flow was also very

important.

I can’t end my list of friends at ALERT without thanking Diogo Coelho, Rui

Marante, Mauro Martins, Nuno Freitas, Pedro Albuquerque, Rafael Santos, João

Loureiro and João Ribeiro for making me feel welcome and for all the funny lunches

and nights out.

Referring now to my home institution, FEUP, I have to thank to my responsible

Raul Moreira Vidal, for helping and supporting me, not only during this project’s

course, but all through my university career.

Also, to all the OpenSSO support team from Sun, especially Bruno Bonfils, Pat

Patterson and Emily Xu: their support was indispensable for learning how to configure

OpenSSO.

Not directly related to this internship, but also worth mentioning, is my friend

Tiago Nunes that provided me with wise advices on how to survive a working life with

happiness and motivation.

To all my other friends, who walked my horse when I was working late or were

patient enough to cope with my lack of time available: thank you! They know who they

are so I won’t mention any names here.

Last, but not least, my family and my housekeeper: thank you for all your support.

And Mom, thank you for all the times you woke up early to prepare breakfast for me!

Filipa Moura

vi

Content

1. Introduction ... 1

1.1. Context .. 1

1.2. Motivation ... 2

1.3. Project ... 3

1.3.1. Goals ... 4

1.3.2. Schedule and Deliverables .. 4

1.4. Report Overview ... 5

2. Technical Overview ... 6

2.1. Single Sign On .. 7

2.1.1. Description .. 7

2.2. Single Logout .. 11

2.3. Scenarios ... 11

2.3.1. Single Sign On .. 13

2.3.2. Identity Federation .. 14

2.3.3. Single Logout .. 15

2.4. Security Assertion Markup Language ... 15

2.4.1. Specification ... 16

2.4.2. Exchange ... 19

3. Architecture ... 26

3.1. Relevant Requirements ... 26

3.1.1. Functional Requirements .. 26

3.1.2. Non-functional Requirements And Constraints .. 27

3.2. Logical View ... 28

3.3. Dependency View ... 29

3.4. Behavioral View ... 30

3.4.1. Scenario & Collaboration Models .. 30

3.4.2. State Models ... 31

3.5. Deployment View ... 34

4. Technology Review ... 37

4.1.1. Relevant Requirements ... 37

4.1.2. Available Providers ... 38

4.1.3. Software Comparison ... 41

4.1.4. Software Evaluation .. 43

4.1.5. Libraries Comparison ... 44

4.1.6. Libraries Evaluation .. 46

4.1.7. Decision .. 46

5. Proof of Concept .. 51

5.1. ALERT® Online ... 51

5.2. MyALERT® ... 51

5.3. User Interaction ... 51

5.4. Software Design .. 55

5.4.1. Overview ... 55

vii

5.4.2. Technology ... 56

5.4.3. Logical View... 57

5.4.4. Behavioral View ... 61

5.5. Implementation ... 64

5.5.1. Deployment Environment ... 65

5.5.2. Computer Specifications ... 66

5.5.3. Details ... 66

5.5.4. Code .. 67

5.5.5. OpenSSO Setup .. 72

5.6. Tests .. 73

5.7. Solution Evaluation ... 74

5.7.1. Overview ... 74

5.7.2. Non-functional requirements .. 75

6. Conclusion.. 76

6.1. Future Work .. 77

Glossary.. 79

References .. 82

Appendix A: ALERT .. 87

Appendix B: Gantt Diagram .. 88

Appendix C: Browser Cookie .. 89

Appendix D: SAML exchange.. 90

viii

List of Figures

Figure 1: Regular sign on options on separate systems. ... 3

Figure 2: Single Sign On example. ... 3

Figure 3: Legacy systems approach to sign on actions. .. 8

Figure 4: Systems sharing an User Account Manager for Single Sign On. 9

Figure 5: Multiplicity of authentication methods and domains. ... 9

Figure 6: One single user (Mary Jane) has different user identities for each domain. 10

Figure 7: Single Logout overview. .. 11

Figure 8: Context view for Single Sign On. .. 12

Figure 9: Single Sign On actions flow. ... 13

Figure 10: Identity Federation. .. 14

Figure 11: Single Logout actions flow. ... 15

Figure 12: Relationship between SAML, ID-FF and Shibboleth. ... 17

Figure 13: SAML components [OAS09]. .. 18

Figure 14: Single Sign On SAML exchange. .. 20

Figure 15: Single Sign On authentication Request example. .. 21

Figure 16: Simple Single Sign On Response example. ... 21

Figure 17: Single Sign On SAML exchange including user authentication actions. 22

Figure 18: Single Sign On Response example. ... 23

Figure 19: Single Logout SAML exchange. ... 24

Figure 20: Logout Request example. .. 24

Figure 21: Logout Response example. .. 25

Figure 22: Key use cases. .. 26

Figure 23: White box description of the SSO system. .. 28

Figure 24: Example of SAML exchange with different SAML versions 29

Figure 25: SSO Sequence Model .. 30

Figure 26: Single Logout sequence model. ... 31

Figure 27: Single Sign On state diagram. ... 32

Figure 28: Single Logout state diagram. ... 33

Figure 29: Deployment Diagram .. 34

Figure 30: ALERT® application interaction with SPINE Server ... 35

Figure 31: Hospital deployment example. .. 35

Figure 32: RHIO example. .. 36

Figure 33: Datacenter deployment example.. 36

Figure 34: Example interaction on AOL and MyALERT® (Part I). .. 52

Figure 35: Example interaction on AOL and MyALERT® (Part II). ... 53

Figure 36: Example interaction on AOL and MyALERT® (Part III)... 54

Figure 37: Example interaction on AOL and MyALERT® (Part IV). 55

Figure 38: Black box view of the solution. ... 56

Figure 39: Logical view of the proof of concept. .. 58

Figure 40: Logic view of the Identity Provider. .. 59

Figure 41: Logic view of the Service Provider. .. 60

Figure 42: Logic view of the User Agent. ... 61

Figure 43: Process flow on the Identity Provider during Single Sign On. 61

Figure 44: Process flow on the Service Provider during Single Sign On. 62

ix

Figure 45: Process flow on the Service Provider side for SP-initiated SLO. 63

Figure 46: Process flow on the Identity Provider side for SP-initiated SLO. 64

Figure 47: Deployment environment of the proof of concept. .. 65

Figure 48: Java class diagram of ALERT® Online. ... 67

Figure 49: Flash class diagram of ALERT® Online. .. 68

Figure 50: Java class diagram of OpenSSO custom authentication module. 69

Figure 51: Java class diagram of MyALERT®. ... 70

Figure 52: Flash class diagram of MyALERT®. .. 71

x

List of Tables

Table 1: Project’s tasks breakdown. .. 5

Table 2: Supported Actions ... 42

Table 3: XML Standards ... 42

Table 4: Authentication Methods .. 42

Table 5: Operating Systems - Server .. 42

Table 6: Operating Systems - Client ... 43

Table 7: Browser ... 43

Table 8: Supported Actions ... 45

Table 9: XML Standards ... 45

Table 10: Authentication Methods .. 45

Table 11: Operating Systems - Server .. 45

Table 12: Operating Systems - Client ... 45

Table 13: Browser ... 46

Table 14: Java ... 46

Table 15: Summary table of the software comparison. ... 47

Table 16: Summary table of the library comparison. .. 47

Table 17: Computer specifications.. 66

xi

Abbreviations

AOL ALERT® Online

HL7 Health Level 7

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICD9 International Statistical Classification of Diseases and Related Health Problems

ICPC2 International Classification of Primary Care

IdP Identity Provider

JAAS Java Authentication and Authorization Service

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

NHS National Health Service

OASIS Organization for the Advancement of Structure Information Standards

PHR Personal Health Record

POC Proof of Concept

RMI Remote Method Invocation

SAML Security Assertion Markup Language

SDK Software Development Kit

SLO Single Logout

SP Service Provider

SSL Secure Socket Layer

SSO Single Sign On

TLS Transport Layer Security

URL Uniform Resource Locator

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

1

1. Introduction

This thesis presents the result of a project developed during four months, whose

major goal was the implementation of a Single Sign On solution using Security

Assertion Markup Language (SAML). The deployment and integration of such solution

within all the existing frameworks was considered as the foremost factor to measure its

success.

In order to thrive, the knowledge learnt during the Master studies, had to be applied

for the resolution of the complex engineering problem. It was a multifarious project that

required extensive research in order to offer an innovative solution that can replace the

similar frameworks that already exist on the software.

Since the project presented many facets, it involved the collaboration of

innumerous teams to approve the architecture and design which lead to an easier

integration.

This project was developed for ALERT (more information about ALERT on

Appendix A).

1.1. Context

Today’s market is innovative and competitive. Traditional solutions are no longer

feasible if applications are to thrive and conquer user satisfaction.

The amount of time spent every day on login actions by each user can no longer be

seen as acceptable, changes have to be done to prevent such repetitive tasks.

The ability of run multiple applications at the same time, has led users to

multitasking but having to login in each and every single application consumes time.

Users usually tend to sign on into all applications at the same time, so they can later

interact with them without having to be worried with access restrictions. Assuming that

all applications are run on a browser and are available on the Internet means that the

login actions include the time to load the welcome page, time for the user to enter his

credentials (if the login form is on the welcome page, if not, more extra time to load the

login form), time for the credentials to be validated and then time to be redirected to the

restricted access area.

Introduction

2

The average time spent on login actions is 20 seconds
1
. If a user wants to access his

personal email, company email and a sports website, he will spend about one minute or

more only in login actions. Also, because when a browser is closed, most of the user

sessions are terminated, the user will have to login again to every single application. At

the end of the day, the time spent on such tasks is no longer affordable. Let alone to

consider the case when a user fails to remember his website credentials and has to ask

for a password reset and wait for the email response.

A method called Single Sign On is the perfect solution for the above problem: as

long as the providers agree on certain aspects, the user will only need to login once and

he will automatically gain access to all the providers.

1.2. Motivation

The healthcare market, which was considered to be one of the most innovative and

competitive markets [War88] and where time is critical, demands the best out of each

action on the application in terms of efficiency and user experience. Given that the

project was developed for ALERT, which is a company that focuses on offering

software solutions for the healthcare market, it must be taken into account specific

market concerns.

Currently ALERT presents an innovative suite of clinical documentation that

represents the workflow of all the different staff that works on the healthcare industry.

ALERT® Software displays and stores patient information and data through a modern

view that respects international medicine standards as ICD9 or ICPC2. It also uses

communication standards (such as HL7) to enhance its interoperability with multiple

software applications.

The diversity and multiplicity of software that ALERT provides already offers

some web-browser applications that can be accessed through the Internet. Alas, users’

authentication in several applications, whether or not provided only by ALERT, is a

complex and time-consuming task that could be overcome by using the current

technologies for Single Sign On. According to the company’s strategy, ALERT aims to

achieve Single Sign On through the usage of standards that are currently in vogue on the

healthcare market, which will allow great interaction with other applications. At the

moment, SAML is the most used standard on clinical applications therefore it will be

the adopted standard.

An XML based standard entitled Security Assertion Markup Language (SAML),

offers a standard solution for Single Sign On that enables applications from different

providers to settle on an agreement that allows the user to be logged in to one

application and be recognized on the others providers website, whether or not they share

the same credentials.

The use of Single Sign On relates to two important factors: time and money. It will

reduce the time spent on sign on actions but also the costs of helpdesk calls related with

sign on operations (such as password loss). It is also relevant the improvement it will

bring to the user experience, thus increasing user’s satisfaction.

The project should take into consideration the multiplicity of environments where

ALERT software executes and interacts with: local applications, browsers (on a local

network) and online (on the Internet). It should support the maximum browsers possible

and should be developed in Java to be easily integrated with ALERT® software tier

model.

1
 Time measured based on a sample of different login actions done by 10 different users.

Introduction

3

1.3. Project

Since the market commands a better user experience to be offered, ALERT has

directed its efforts to include a Single Sign On solution.

Something as simple as logging in to an application can turn into a hard task as

users have different usernames/passwords for every application. The complexity

increases as users need to keep track of each and every credential.

If time is money, let’s picture a scenario where a doctor working at a hospital

forgets one of his passwords and has to call the Helpdesk to recover it. Since he will not

be able to access the information system the hospital provides for outpatient records he

will have to wait to get the password back before he can take notes about the patient he

is observing, which leads to time being spent on unproductive tasks.

The aim of this project is to reduce the time consumed by login tasks, and Single

Sign On is the solution. Single Sign On (SSO) is a method of access control that allows

a user to log in once and gain access to the resources of multiple software systems,

without being prompted to log in again.

Figure 1: Regular sign on options on separate systems.

Figure 2: Single Sign On example.

The basic scenario of Single Sign On usage is demonstrated next. The MD John

Doe wanted to log on into application A and afterwards to B:

• without SSO, MD John Doe has to log in into application A and then log in

again into application B (Figure 1);

• with SSO, MD John Doe logs into application A and when he accesses

application B he is automatically recognized and logged in (Figure 2).

Now, if instead of two applications, four or five were to be used at the same time

(such as applications for outpatient, pharmacy prescriptions, lab requests and

Introduction

4

scheduling), John Doe would eventually spend a lot of time logging into all

applications. With SSO this is not necessary, therefore John’s interaction with all

applications becomes simpler and faster, which is exactly what the market aims for.

ALERT® software is getting broader and interacts with multiple applications from

different providers. The goal of this project is to adopt standard protocols that support

SSO, making interaction simpler not only for ALERT® applications, but with all of the

other applications ALERT® software has to interact with.

1.3.1. Goals

The major goal of this project is to implement a Single Sign On solution that

complies to the SAML standard. This solution should be as interoperable as possible

and should be easily scalable. It should be presented as a framework that could be easily

integrated with ALERT® software.

This framework should be as independent as possible from SAML, so that if in the

future it is chosen to adopt another standard or another SSO technology, this can be

easily done with no additional effort.

Even though, the framework is the final and most important output, there are other

goals to accomplish so that the ultimate result is as successful as expected. These

objectives include:

• Requirements analysis for a Single Sign On solution for various ALERT®

applications;

• Document containing the Architecture description of the solution that will be

implemented;

• Document containing an analysis of solutions already offered by companies,

including system and extra requirements offered, as well as, the requirements that could

not be achieved;

• Software library that achieves the following generic requirements:

o Support for the various ALERT® applications as well as non-ALERT

applications;

o Support for Windows platforms (XP/VISTA/Others), Linux/Unix, and, if

possible, Macintosh platforms;

o Support for multiple authentication methods as biometrics, smartcard and

password;

o Provide a standard API that offers a transparent interface for ALERT®

software;

• Library integration on various ALERT® applications;

• User documentation.

The conjunction of all the goals detailed above will follow the development cycle

of functionality for critical environments, including functional analysis, prototyping,

technical analysis, development, documentation and testing.

1.3.2. Schedule and Deliverables

According to the goals described in 1.3.1, the deliverables are:

• architecture description document;

• software provider comparison document;

• prototype;

• software library;

• and user documentation.

Introduction

5

This project was developed during 20 weeks, which also contained training in

ALERT® software and company procedures, as seen on Table 1.

Table 1: Project’s tasks breakdown.

Description Week(s) Days

Getting familiar with the company and its products 1 5

Project Requirement analysis, debate with the concerned areas and

creation of the architecture description
2 and 3 10

Analysis of the existing solutions in the market and creation of a

document for solution comparison
4 and 5 10

Discussion and decision of the solutions to acquire and what

should be developed internally
6 4

Software project design 7 5

Software implementation and discussion of what requirements will

be accomplished
8 to 14 28

Project documentation for the Master thesis 15 and 16 8

Integration of the solution with the ALERT® software and testing 17 and 18 9

Documentation of the developed functionalities 19 and 20 10

The project’s Gantt Diagram is included in Appendix B.

1.4. Report Overview

This dissertation is composed by six chapters, starting with an overview of the

project. It is presented the motivation and context for the project as well as its goals and

its schedule.

It is followed by the state of the art analysis, containing the solution specification

that presents a Single Sign On description as well as a description of the SAML

standards.

Chapter four contains the initially defined architecture for the solution, being

composed by all relevant architectural views.

On the fifth chapter, state of the art technologies, such as software applications or

libraries that implement SAML are analyzed in order to evaluate the one that best fits

the previously defined architecture. This chapter also includes the specification of the

prototype that was developed.

The sixth chapter presents the proof of concept. It starts with a brief explanation of

the applications it involves and goes to the details of the adapted architecture. It

provides the implementation’s fine points and the output of the tests that were

conducted. The chapter ends with a critical evaluation of the solution.

The final chapter presents a review of the project with all its positive and negative

factors. It also announces perspectives for future developments.

6

2. Technical Overview

Many authors consider authentication as one of the key aspects of cryptography

and network security. Single Sign On is an authentication process that permits a user to

enter its credentials once and gain access to multiple applications.

However, it should be understood that SSO is not making a stand only in the

healthcare industry:

• Windows Live ID was developed and provided by Microsoft to allow users to

sign on to many websites using only one account [Wik091];

• Microsoft also offers SAML support on its Federated Identity and Identity

Metasystem “Geneva” [Mic09];

• Google provides its own SSO service that allows partner companies to access

Google’s web-applications like Gmail or Google Calendar [Goo09], through the

utilization of SAML;

• and on the economical sector SSO is also being implemented: on [Sah08] a

case study for a SSO solution that provides a single authentication interface to all end

users on the International Bank of India is presented.

The idea is spreading and it is starting to be implemented by every company that

wishes to prevail and thrive in the competitive market. Recent debates among numerous

Chief Information Officers show that Single Sign On is something that is on their radar

screens as an important or high priority requirement [Sah09]. A survey conducted by

the Healthcare Information and Management Systems Society (HIMSS) Analytics

showed that 79% of IT executives ranked SSO as the highest priority for the next two

years [Dav09].

The implementation of a Single Sign On solution is evaluated on the case study for

a dynamic healthcare portal site for the National Taiwan University Hospital. Even

though there were many positive feedbacks, users were unsatisfied with the solution

offered. The fact that it presents a list with over 250 function links that allows users to

access other sites it originated many users complains due to the delay injected by the

time spent on finding and choosing the desired site from the broad list [Yun07]. This

proves the point that Single Sign On should be achieved in a simple way that does not

require linkage between all sites that implement it.

Sentillion, a company focused on Identity and Access Management for healthcare,

has already created an SSO Solution that was developed exclusively for healthcare and

it is being adopted by hospitals. Nevertheless, it does not use standards which reduces

Technical Overview

7

(and might annul) its interoperability with other software applications that do not use

the same Sentillion solution.

The Security Assertion Markup Language is a well known standard among the

healthcare industry and its utilization has lead to successful cases such as the NHS

Spine and the Mayo Collaborative Services:

• The United Kingdom uses NHS Spine, a national network that stores patient

information while also offering interfaces with all the local IT Systems within the

National Program but, most importantly, Spine uses SAML for SSO operations;

• The famous Mayo Clinic in the United States, through the Mayo Collaborative

Services, also supports SAML for access to critical information resources and content.

Supporting SAML will open the system for federation scenarios aside from

providing interoperability with systems which implement this industry standard. Even

though not related to the healthcare industry, SAML is already being used by the

Citizen and Agency e-government services in Portugal.

2.1. Single Sign On

2.1.1. Description

Single Sign On is a mechanism whereby a single authentication action grants

access to all other systems where the user has access permission.

Since information systems start to proliferate to support business processes, users

start to face manifold sign on actions to several systems, where the user credentials are

usually different.

For the following example, it will be assumed that the user credentials for each

system are the same.

On legacy systems, even though they may work under the same enterprise, they

both have their own authentication framework as well as user information management

and database: the user signs in into the primary domain and is required to sign on to

every other domain he wishes to access. User information is not correlated between

domains and usually for each domain the user has its own set of credentials.

As seen on Figure 3, every domain has its own Authentication Framework and

User Account Manager. The Authentication Framework is responsible for validating the

users’ credentials and the User Account Manager will handle its sessions. The Domain

and Resources represent specific application data and logic.

For each domain, the user has a correspondent set of credentials. Therefore, for

each login action on a separated domain, the user has to provide the correlated set of

credentials.

Technical Overview

8

Figure 3: Legacy systems approach to sign on actions.

On current systems, this approach is no longer feasible: if a user usually works

under a usual set of domains, the amount of time spent on sign on activities has to be cut

down to the minimum. Single Sign On achieves time reduction on sign-on operations to

individual domains which also includes the reduction of the probability of such sign on

operations failing.

On a system that provides SSO there is a primary entity for user account

management (Figure 4). After a user is logged in into a primary domain, this

information is communicated to the user account management which will then handle

all other secondary sign on operations. This approach eliminates the need for the user to

provide a set of credentials for each domain, providing them to the primary domain is

enough.

The User Account Manager is responsible for communicating with the secondary

domains and manage the user sessions on each one of them. This is possible due to the

existence of a trust relationship between all of the domains.

Technical Overview

9

Figure 4: Systems sharing an User Account Manager for Single Sign On.

However, these actions are not quite as trivial as they may appear, since the

information exchange can occur in different ways and this needs to be defined

according to the company’s needs and security measures. But on most of the actual

scenarios, the user does not have only one type of credentials for all the systems.

Therefore, the next step is to consider a scenario where the credentials for each

service are unique, not only in content but also in type (Figure 5).

Figure 5: Multiplicity of authentication methods and domains.

Technical Overview

10

The complexity of SSO arises as the need to find a solution for such diverse

authentication systems increases and the answer resides on Identity Federation. Identity

Federation has been named “the linchpin of digital convergence” and “one of the most

important technologies of the modern era” [Sun09].

Every person has their own separated digital identity for every service they need to

interact with (such as their bank or their phone company) but, in some cases, the

companies may decide to offer a new service that has to encapsulate multiple services

from various providers.

However, situations where each company has its own set of customer data and

decide to share it are not viable options either for business or legal reasons. And in case

companies do choose to share it, they will face synchronization problems.

Figure 6: One single user (Mary Jane) has different user identities for each domain.

On Figure 6 the same user, Mary Jane is registered on three different domains and,

for each, she has a specific profile (represented by the distinct identity cards). In this

case, sharing specific profile details is not considered acceptable.

Identity Federation means that an agreement between the providers exists and that

the user identity will be referred by a set of identifiers [OAS09]. The utilization of

identifiers eliminates the need to share specific profile details.

The identifier could be something as simple as the customer’s email or address.

This approach annuls the need for the providers to share the customer information, yet

making it possible to map the customer across different providers.

Federation is a very important part of SSO since it allows accomplishing SSO in a

manner that is transparent to the user, even though a user may have different credentials

for each provider.

The advantages that result from using SSO should now be clear and

straightforward to understand and include:

• reduction of the time spent on log in actions;

• reduction of security complexity related to sign on operations;

Technical Overview

11

• reduction of password fatigue that arises from different user name and

password combinations;

• reduction of IT costs due to decrease of calls to the Helpdesk regarding

password loss;

• strengthening and centralization of user access control;

• improvement of report and monitoring for regulatory compliance.

2.2. Single Logout

After SSO has been performed it should be possible to execute a single logout.

Single Logout (SLO) permits near real-time session logout from all active sessions

associated with a user.

When a user performs SSO, at each request he is logged in to one extra application.

On the other hand, Single Logout allows multiple logout from all applications with one

simple action.

Figure 7: Single Logout overview.

On Figure 7, the user requests logout from one application and is automatically

logged out from all other applications where he shares a SSO session.

Besides allowing a faster logout for the user, thus simplifying its experience and

improving its satisfaction, SLO benefits go further [FEI09]:

• since SLO destroys all SSO sessions, they will be no longer available for

hijacking attempts;

• because service may close down in a controlled manner, the risks of lockups

or problems due to instability are minimized;

• cleanup is done and resources can be release sooner.

2.3. Scenarios

Now that the aim of the solution has been defined and the concept is becoming

clearer, there are some entities that need to be understood before proceeding to a more

detailed and technical view. There are three major intervenients that will participate in a

SSO/SLO scenario are:

Technical Overview

12

• Identity Provider – manages credentials of the individual end users and

verifies if they are valid. Rather than being just a simple database where the user

credentials are stored, it also presents logic that allows to authenticate and access

information about users;

• Service Provider – entity that provides services. It stores the resources that the

user wishes to access thus needs to know whether or not the user is authenticated;

• User Agent – Represents the application the user wishes to interact with and is

responsible for providing the requested resources to the user and managing the

exchange of messages between Identity and Service Provider.

A simple and usual interaction could be exemplified by the situation when the user

wants to access protected resources from another system. The user would have to

authenticate himself at the Identity Provider, firstly, and then request access the

resource stored on the Service Provider.

In order for the Service Provider to allow the user to access the resource, it needs to

know the user with whom it is interacting. Therefore, it will need to communicate with

the Identity Provider to become acquainted with the user’s identity.

Figure 8 intents to clarify the interactions that occur on the system. The user

interacts with the user agent who in turn will interact with both Service and Identity

Provider. It is important to refer that the Service and Identity Provider will never

communicate directly, but always through the User Agent.

Figure 8: Context view for Single Sign On.

It must also be referred that there will always be one and only one Identity Provider

but there can be multiple Service Providers. A practical example can be found on

Google: while Google plays the Identity Provider role, Gmail and Greader can be seen

as different Service Providers.

It should also be noticed that these interactions are possible because there is a trust

relationship between Identity and Service Providers that allows them to confide in the

information the other provider transmits.

Technical Overview

13

Real life examples are probably the best way to understand how SSO actions will

be handled by the Providers therefore in the next sections, simulations of different user

interactions relative to sign on operations will be presented.

2.3.1. Single Sign On

The first scenario for SSO at a Service Provider assumes that the user has already

authenticated himself on the Identity Provider. It is the simplest scenario because no

user credentials are involved, they were already handled during the sign on at the

Identity Provider.

Figure 9: Single Sign On actions flow.

It starts with a user that wishes to access Service Provider A, to a specific resource,

say a user that wants to read his company’s email (step 1 and 2). Since this resource is

only available for registered users, it will need to contact the Identity Provider to

become aware of whether the user is authenticated or not, so it can propagate its session

to the Service Provider (step 3 and 4).

Since the email reader will only grant access to authenticated users, and only to the

receiver of such emails, it will interrogate the Identity Provider if a valid user session

exists and waits for the response. In this case, the Identity Provider can be represented

by the company’s website,

The “user information” referred on the diagram is simply a general designation that

implies that some type of information, related to the user, was shared. It allows the user

to be identified and could be, in this case, the user’s email. Nevertheless, the details

about this information will be discussed later.

After contacting the Identity Provider, and in case the user information that the

Service Provider A received is valid (step 5 and 6), the user will be automatically signed

in to Service Provider A and will be granted access to the requested resource (step 7 and

8). Meaning, if there is really a user with the given email, the email reader will grant the

user access to his private emails.

Technical Overview

14

It should also be referred the role that the User Agent plays on these operations,

which is redirecting the requests from the Service Provider to the Identity Provider, and

the responses from the Identity Provider to the Service Provider.

2.3.2. Identity Federation

On the latter scenario, it was mentioned that some type of user information was

sent from the Identity Provider to the Service Provider. This is related to Federated

Identity and to the different mechanisms supported by SAML for establishing and

managing federated identities. The method that will be used is entitled “Federation via

Transient Pseudonym Identifiers”.

The mechanism forces user information to be sent and, the main reason for it to be

called transient, is because a temporary identifier between the Identity Provider and the

Service Provider is set during the user’s SSO session.

The motive for using this type of federation is that it avoids having to manage user

IDs at the Service Provider, supporting a truly anonymous service.

John Doe

Inte
rac
t w
ith
app

lica
tion

 log
ged

 as

joh
nX

Prepares to log johnY

Share the attribute that is used for identity

federation

(neither knows the local ID used on the other

side)

Application X

Identity

Provider

Application Y

Figure 10: Identity Federation.

As an example, the user John Doe has logged in onto application X and now he

wishes to access application Y. His username on X is johnX, and on application Y is

johnY but he has registered with the same email on both. Application Y will perform a

request for Single Sign On and wait for application X answer. Then it will check the

attribute that it has received, trying to map it to a user on its own database. In this case,

the attribute used could be the email. If this operation is accomplished, SSO is

successful.

Technical Overview

15

2.3.3. Single Logout

The following scenario assumes that the user has already authenticated himself at

the Identity Provider and performed SSO to Service Provider A and B. Thus, at the

moment, the user has three active sessions: at the Identity Provider, Service Provider A

and Service Provider B.

Considering the first described scenario, the user has currently an active account at

its company’s website, on the email reader but also at the website for project

management. He shares a workstation and wishes to sign off every application with one

single action therefore he requests logout, which the company decided to implement as

Single Logout.

Figure 11: Single Logout actions flow.

The user requests SLO to Service Provider A, the email reader. SP A will

communicate with the Identity Provider which is responsible for propagating the

decision to all the other Service Providers where the user has an active session, to the

company’s project management website in this case (steps 5 to 8). In Figure 11 the

Identity Provider communicates the user logout request to Service Provider B, and

afterwards replies to Service Provider A’s initial request (step 9 and 10).

Again, the User Agent also only plays the role of message redirecting.

2.4. Security Assertion Markup Language

Now that the interactions between the providers are clear, it is time to understand

how SAML will be used to achieve SSO. But first, it is important to clarify the value of

standards.

Technical standards are established norms or requirements [Wik092] and

businesses can benefit by using them as strategic market instruments. Standards present

Technical Overview

16

innumerous benefits, but the focus will remain on the ones that the planned solution will

benefit from.

Standards are mostly related with the need of interoperable software, since

companies prefer not to be locked to specific technologies or vendors. Since standards

are usually open, it is usual that other providers will implement the same solution

according to standards. Therefore it will be easier for systems from different parties to

interoperate and communicate with one another, improving data exchange. This is the

major reason why standards should be used: to ensure better and easier interoperability

and eliminate the risk that the software developed is dependent on some kind of vendor

software.

Also, the utilization of standards simplifies product development and reduces non-

value-adding costs thereby increasing the ability to compare competing products. It

promotes effective research and development which can, and usually leads to, the

making of products that are easier to use.

Having clarified the magnitude that applying standards can conquer, the details of

SAML will be described next. After having a basic understanding of the SAML

structure, it will be demonstrated how to take advantage of it for the scenarios

previously described.

2.4.1. Specification

Security Assertion Markup Language is an XML-based standard developed by the

Security Services Technical Committee of the Organization for the Advancement of

Structured Information Standards (OASIS). Its major goal is to solve the Web Single

Sign On problem [Eve09].

As a framework for communicating user authentication, entitlement and attribute

information, SAML allows business entities to make assertions regarding the identity,

attributes, and entitlements of a subject to other entities, such as a partner company or

another enterprise application, therefore allowing the exchange of security information

between on-line business partners.

SAML is a flexible and extensible protocol that was designed to be used by other

standards. SAML v1.0 became an OASIS Standard in November 2002. Shortly after,

version 1.1 was released and accomplished great success, gaining momentum in

important industry segments like education, government and financial services. It was

implemented by all major Web access management vendors. SAML v2.0 followed the

successful path.

It was designed to be interoperable with other standards such as the Liberty

Alliance Project, the Shibboleth project and the OASIS Web Services Security standard.

SAML v2.0 was the triumphant feature upgrade from v1.1. It presents a critical

step towards full convergence for federated identity standards since it unifies disparate

federated identity building blocks from v1.1 taking into account Liberty’s Identity

Federation Framework (ID-FF), capabilities present in the Internet2’s Shibboleth

architecture and enhancement requests resulting from experience from SAML v1.x

deployments in the industry [OAS92]. Figure 12 shows the evolution path that lead to

SAML v2.0.

Technical Overview

17

Figure 12: Relationship between SAML, ID-FF and Shibboleth.

Nowadays v1.0 is considered to be obsolete, while v1.1 is still used and v2.0 is the

latest. Alas, on-the-wire representations of SAML v2.0 assertions and protocol

messages are incompatible with v1.x processors thus, from here on, when SAML is

mentioned it refers to v2.0 except when specifically mentioned otherwise.

Several reasons lead to adoption of SAML standard for the exchange of security

information, including:

• Single Sign On – even though various products have claimed to provide web-

based SSO, they relied only on browser cookies that do not allow that the authentication

state information is available to other domain. Therefore complex mechanisms had to be

developed which did not work on heterogeneous environments;

• Federated Identity – SAML has implemented protocols that simplify the

creation of federated identity;

• Web Services and other standards – SAML allows that the security assertion

format does not have to comply with the protocol context also, its modularity simplifies

industry efforts to address authorization services [OAS091].

Because it is a standard, SAML promotes interoperability by providing a set of

standard interfaces which allows for faster, cheaper and more reliable integration

between systems.

More concrete benefits that derive from SAML are related to [Car09]:

• Platform neutrality – it abstracts the security framework from vendor

implementations and architectures, allowing dynamic integration of existing security

infrastructures;

• Loose coupling – information does not need to be synchronized between

directories or in identity information systems;

• Improved online experience for end users – enables users to authenticate at the

Identity Provider and then access Service Providers without additional authentication;

• Reduced administrative costs for Service Providers – reduces the cost of

maintaining account information since it is all stored on the identity provider;

• Risk transference – can push responsibility of the identities management to the

Identity Provider, which is more suitable with its business model.

SAML is composed by four different types of components as seen on Figure 13.

Technical Overview

18

Figure 13: SAML components [OAS09].

Assertions

An assertion is a package of security information that provides statements about the

subject [OAS098].

There are three kinds of assertion statements:

• Authentication – typically generated by a SAML authority that successfully

authenticated a user and should at least describe the particular means used to

authenticate the user and the specific time at which the authentication took place;

• Attribute – contains specific attributes of the specified subject;

• Authorization Decision – related to the actions the subject is entitled to do.

Protocols

SAML supports multiple protocols but the most used for SSO are [OAS099]:

• Authentication Request Protocol – allows a principal to request assertions

containing authentication statements and, optionally, attribute statements;

• Single Logout Protocol – provides a mechanism that permits near-

simultaneous logout of all active sessions that are associated with a principal.

Bindings

SAML Protocol Bindings detail how to map SAML protocol messages exchange

into transport protocols. There are bindings defined for HTTP as well as for SOAP.

Profiles

A profile defines how to combine SAML components in order to enhance

interoperability in particular usage scenarios. By defining constraints and extensions it

can remove some of the flexibility inevitable in a general-use standard.

One of the profiles is the Web Browser SSO Profile that details how to use the

Authentication Request/Response Protocol in conjunction with different bindings so as

to accomplish SSO with standard web browsers.

Technical Overview

19

Profiles

Since SAML profiles are the major intervenients on the SSO and SLO events, the

profiles related to these actions will now be described more thoroughly.

Web Browser SSO Profile

The Web Browser SSO Profile provides innumerous options within two

dimensions of choice: who initiated the message flow (either the Identity or the Service

Provider) and which bindings are used to deliver the messages.

During the implementation, SSO will always be SP-initiated. On the most common

scenario the user decides, at some point after having authenticated himself, to access a

resource on the SP. Since the user is not logged in at the SP, it will be redirected to the

IdP to authenticate. The IdP will create an assertion that represents the user’s

authentication and afterwards it will be sent back to the SP which processes it and

determines whether or not to grant the user access to the resource.

When it comes to the bindings, there are many combinations of message flows and

bindings that are possible, but the major concern is on the Authentication Request

Message and its Response.

The profile defines two SAML messages to be used:

• Authentication Request Protocol <AuthnRequest> - represents the SSO

request;

• Response <Response> - contains the response to the SSO request.

Single Logout Profile

Single Logout permits near real-time session logout of a user from all participants

in a session. The Single Logout profile allows reversing all the sign-on process of all the

providers at once.

A user that visits an SP decides to log out of its web SSO session and issues a

request to the IdP. The IdP will process the request and destroy the local session

information about the user. Afterwards, it determines all other service providers where

the user also has a valid session and will request them to logout the user. After this has

been accomplished, it will respond to the initial Service Provider with the status of the

action.

The profile defines two SAML messages to be used:

• Single Logout Protocol <LogoutRequest> - represents the SLO request;

• Response <Response> - contains the response to the SLO request.

2.4.2. Exchange

Now that the flow of the actions has been defined, it is time to become acquainted

with the part that SAML plays during SSO and SLO. Nevertheless, before presenting

SAML samples of messages exchange, some security issues SAML facesare presented

next as well as possible solutions to overcome them.

Alas proving simple SAML assertions may not be adequate to ensure a secure

system. In order to prevent “man-in-the-middle” attacks (such as spoofing), SAML

specifications define a number of security mechanism.

The specifications also suggest that the trust relationship between user agent and

identity provider should already be established and rely on a Public Key Infrastructure.

When it comes to the exchange of SAML:

• For transport-level security, one should use HTTP over SSL 3.0 or TLS 1.0;

Technical Overview

20

• When a message containing an assertion is delivered to a relying party via a

user's web browser, to ensure message integrity, it is mandated that the response

message be digitally signed using XML Signature.

Transport Level Security

For Single Sign On it is important to secure the message transport, and since the

user agents will be running on a browser, HTTPS will be used since it refers to the

combination of a normal HTTP interaction over an encrypted SSL or TLS connection.

XML Signature

XML Signature is a W3C recommendation that defines XML syntax for digital

signatures. Since response containing assertions will be sent, and it is important to

ensure message integrity, XML Signatures will be used on responses.

On the following sub-sections SAML exchange will be detailed through SAML

code samples. These samples should be seen as mere examples, since the messages can

contain other XML elements and attributes, as long as they comply to specification.

The scenarios are equal to the ones detailed earlier: the focus here will be only on

the exchanged SAML messages.

User Single Sign On

For Single Sign On, the “Web Browser SSO Profile” will be used. On this section

the focus will be on the “Authentication Request Protocol” used.

The following diagram presents a scenario in which a user wishes to access a

resource on Service Provider A. It is assumed that the user has a valid authentication

context at the Identity Provider.

Figure 14: Single Sign On SAML exchange.

Technical Overview

21

On step 3 the Service Provider A asks the Identity Provider if the user has a valid

authentication context (step 3). This “question” is encapsulated as an AuthNRequest

(Figure 15).

As already mentioned, because the Service and Identity Provider do not

communicate directly, Service Provider will send the request to the User Agent A which

will forward it to the Identity Provider (step 4).

Figure 15: Single Sign On authentication Request example.

This request includes:

• the namespace;

• the URL for the Assertion Consumer Service (the module that processes

assertions), in this case http://www.sp.example.com/SSO;

• the provider name, in this case “acompany.com”;

• the id of the request;

• the SAML version being used, in this case 2.0;

• the issue instant at which the request was made, in this case 31T12:00:00Z;

• the destination, in this case http://www.idp.example.com.

The Identity Provider will then have to process the request and issue a response to

the Service Provider.

Figure 16: Simple Single Sign On Response example.

The response is structure in a similar way of the request but:

• it is digitally signed (<ds:Signature>);

• it states the issuer of the response;

• and that the authentication operation was successful.

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

AssertionConsumerServiceURL="http://www.sp.example.com/SSO"

AttributeConsumingServiceIndex=”0” ProviderName=”acompany.com” ID="abe567de6"

Version="2.0" IssueInstant="2005-01-31T12:00:00Z"

Destination="http://www.idp.example.com/"/>

<samlp:Response xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

mlns:samlp="urn:oasis:names:tc:SAML:2.0:assertion" Version="2.0" ID="abe567de6"

InResponseTo=" abe567de6" IssueInstant="2005-01-31T12:00:00Z"

Destination="http://www.sp.example.com/SSO">

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#”>

[...]

</ds:Signature>

<saml:Issuer> http://www.idp.example.com </saml:Issuer>

<samlp:Status>

<samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

</samlp:Status>

</samlp:Response>

Technical Overview

22

This response will then be sent to the User Agent (step 5) which will forward it to

the Service Provider (step 6). At this moment that the Service Provider knows the user

is valid and it has an active session, it grants him access to the resource (step 7 and 8).

User Sign In

Now, it will be assumed that the user has not yet logged in to the Identity Provider.

Since the Identity Provider is the component responsible for user authentication,

the user will have to be redirected to it, for the user’s credentials to be validated.

Even though this is not the usual SSO scenario, it can also occur and will proceed

in a similar way to regular SSO, where the user is already authenticated at the Identity

Provider.

The SAML protocol used will be the same as before, but at some point, the user

will be redirected to the Identity Provider for authentication.

Figure 17: Single Sign On SAML exchange including user authentication actions.

In comparison to Figure 14, steps 1 to 4 are equal. But since there is no valid

session at the Service Provider, the user will be redirected to it and asked to sign in.

This is accomplished in steps 5 and 6.

The SAML message response will be again equal to the one in the previous section,

as well as the following steps.

Federation

The only difference between the SAML used for federation and the SAML used for

simple SSO is that the response will contain user attributes. These attributes will allow

Technical Overview

23

the Service Provider to map the user: for example, they can be used to perform an

access check or to create a local session.

Figure 18: Single Sign On Response example.

In this case, the attribute “email” with the value “john@company.com” was

encapsulated on the response.

Single Logout

For Single Logout, it will be used the SAML “Single Logout Profile”. In the

following Figure the user is visiting Service Provider A when he requests Single Logout

(step 1 and 2).

<samlp:Response xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:assertion" Version="2.0" ID="abe567de6"

InResponseTo="example-ncname" IssueInstant="2005-01-31T12:00:00Z"

Destination="http://www.sp.example1.com/SSO">

 <saml:Issuer> http://www.idp.example.com </saml:Issuer>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#”>

[...]

 </ds:Signature>

 <samlp:Status>

 <samlp:StatusCode

 Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

 </samlp:Status>

 <saml:Assertion

 xmlns:saml=""urn:oasis:names:tc:SAML:2.0:assertion""

 ID=""s277a85ca92692821b3f4cc6b91fa4fed9c084a508""

 IssueInstant=""2009-05-06T18:31:08Z"" Version=""2.0"">

 [...]

 <saml:AttributeStatement>

 <saml:Attribute Name=""email"">

 <saml:AttributeValue

 xmlns:xs=""http://www.w3.org/2001/XMLSchema""

 xmlns:xsi=""http://www.w3.org/2001/XMLSchema-

 instance"" xsi:type=""xs:string"">

 john@company.com

 </saml:AttributeValue>

 </saml:Attribute>

 </saml:AttributeStatement>

 </saml:Assertion>

</samlp:Response>

Technical Overview

24

Figure 19: Single Logout SAML exchange.

The procedure is similar to Single Sign On: the Service Provider A will create a

SAML Request and will wait for a SAML Response from the Identity Provider (step 3

and 4).

Figure 20: Logout Request example.

The request identifies the principal to be logged out (<saml:NameID>) as well as a

unique session identifier (<saml:SessionIndex>).

After verifying that the request came from a known and trusted Service Provider,

the Identity Provider will process the request and destroy any local session information

about the user. Afterwards it will send a similar <LogoutRequest> to Service Provider

B (step 5 and 6). Subsequent to receiving the response from the Service Provider B

<samlp:LogoutRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:assertion" Version="2.0"

ID="abe567de6" IssueInstant="2005-01-31T12:00:00Z"

Destination="http://www.idp.example1.com/SSO"

Reason="urn:oasis:names:tc:SAML:2.0:logout:user">

<saml:Issuer> www.acompany.com </saml:Issuer>

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#”>

[...]

</ds:Signature>

<saml:NameID format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">

32sHGn/qYH6cdyVlDQG/IpAMACbM

</saml:NameID>

<saml:SessionIndex xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" >

s2c5da2s23d2534bt53456345789

</samlSessionIndex>

</samlp:LogoutRequest>

Technical Overview

25

(step 7 and 8), the Identity Provider will send the response to Service Provider A (step 9

and 10).

Figure 21: Logout Response example.

It is important to refer that the message sent in steps 5 and 6 is similar to the one in

Figure 20 as well as the message in step 7 and 8 to Figure 21.

<samlp:LogoutResponse xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns:samlp="urn:oasis:names:tc:SAML:2.0:assertion" Version="2.0"

ID="abe567de6" InResponseTo="www.acompany.com"

IssueInstant="2005-01-31T12:00:00Z"

Destination="http://www.sp.example1.com/SSO"

Reason="urn:oasis:names:tc:SAML:2.0:logout:user">

<saml:Issuer> www.idp.example.com </saml:Issuer>

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#”>

[...]

</ds:Signature>

<saml:NameID format="urn:oasis:names:tc:SAML:2.0:nameid-format:emailAddress">

j.doe@company.com

</saml:NameID>

<samlp:Status>

<samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

</samlp:Status>

</samlp:LogoutResponse>

26

3. Architecture

Having defined the goals and the flow that the solution is to achieve, the systems

architecture was defined.

Through modularity and encapsulation, an easily extensible solution was designed

that meets all the requirements and respects the constraints, as well as it is easily

pluggable to new software.

3.1. Relevant Requirements

Most of the architectural requirements mentioned on the following sections are

related to the project’s goal and play an important role on its success.

3.1.1. Functional Requirements

Functional requirements provide the application architecture of the system. The

following use case reflects all the different interactions the system must perform.

User

Sign in to User

Agent

Single Sign On

Single Logout

Figure 22: Key use cases.

The main purpose of this implementation is that a user can sign in to a user agent

and therefore access protected resources. This user interaction can be decomposed into

three scenarios:

Architecture

27

• Application and external server: for example, a doctor using ALERT® may

wish to access data about a specific patient that is stored in a national server;

• Two ALERT® applications: a user may wish to interact with two different

ALERT® applications at the same time;

• ALERT® software and a third party tool: if two distinct applications are

running in the same computer, there should be no need to login at both, rather login at

one and the second one do an automatically login. An example would be an ALERT®

and an NHS application that are running at the same computer where the user is

interacting.

All these different user agents are either stand-alone applications or applications

that run on a browser.

3.1.2. Non-functional Requirements And Constraints

Non-functional requirements drive the technical architecture of the system. The

non-functional requirements and constraints for this SAML solution are:

• Interoperability

o With ALERT® applications;

o With as many authentication methods as possible, at least with

� Smartcard;

� Username and password;

� Biometrics;

• Platform Compatibility and Portability

o With the following operating systems

� Client:

• Windows (XP / Vista / Others);

• Linux/Unix;

• Macintosh, if possible;

� Identity and Service Provider:

• Windows (32 and 64 bits);

• Linux (32 and 64 bits);

• HP UX;

• AIX;

o With as many browsers as possible, at least with

� Internet Explorer;

� Firefox;

� Chrome;

o With XACML v2.0;

o It should work on stand-alone applications.

• Security

o Restrict server access;

o Provide data security

� During transfer;

� While in storage;

• Usability

o Solution interaction should be clear and elegant;

• Extensibility and Scalability

o Adding new features or customizing the software should be

straightforward;

Architecture

28

o It should present a standard API that provides a transparent interface with

the current ALERT® applications;

o Connecting multiple hosts and getting them to work as a unit should be

possible;

• Documentation

o Technical documentation;

• Availability and Reliability

o It should present no single point of failure;

o Should aim for continuous availability to its users.

3.2. Logical View

The following image aims to present a white box description of system, exposing

its inner structure.

Figure 23: White box description of the SSO system.

The ALERT® Client contains modules for:

• Communication – located in the Flash layer, it is responsible for handling all

the in and out coming communications and passing them to the correct package (SAML

broker or Session Logic);

• SAML Broker – located in the Java layer, it contains the XML processor for

SAML. It can either process the incoming SAML and then pass it to the Session Logic

package, or receive data from the referred package and transform into SAML;

• Session Logic – It’s responsible for handling the SAML requests and

responses, as well as other type of actions.

The Identity Provider SAML broker and Communication module are similar to the

ALERT Client modules with the same name. Nevertheless, the Authentication Logic

package is responsible to extract the data such user credentials and validate them and to

generate responses for the SAML requests.

Again, the SAML broker and Communication module in the Service Provider act

alike the ALERT® client modules. The Access logic is responsible for verifying if the

user can have access to determined resources thus it is able to generate requests for

authentication, authorization and attributes.

Architecture

29

3.3. Dependency View

Between the elements that compose the system, there are a number of dependencies

that have to be taken into account in order for it to function properly.

Since both three elements will have a component for SAML management, there are

SAML restrictions that will be shared. Since SAML v1.x and v2.0 are incompatible, all

elements must communicate using the same version.

The framework will have to support all SAML versions. Even though it may seem

a bit complicated how it can support all versions, it is important to clarify that:

• Between Service Provider A and User Agent A, the SAML version will

always be the same, even though it may change to Service Provider B and User Agent B

(see Figure 24);

• The Identity Provider will need to know what SAML version every User

Agent is using, so he can communicate accordingly.

Figure 24: Example of SAML exchange with different SAML versions

Additionally, the system presents more dependencies which are not only related to

SAML:

• User agents have to trust IdP – in order for user agents to allow users to

authenticate, they need to have a trust relationship with the IdP;

• User agents need to have access to the user information;

Architecture

30

o If the user agents are running on a browser, cookies have to be accepted

so the user identifier can be stored;

• The User Agent has to support Java and needs to have a browser, as well as

being connected to a network (internal or external, depending on the case).

• Authentication framework

o Responsible for validating the user credentials and returning a subject

(carries one or more principals if the authentication was successful)

3.4. Behavioral View

In order to have a clear view of the flow between the different software

components and how each process interoperates with another one and in what order,

sequence and state diagrams are included next.

3.4.1. Scenario & Collaboration Models

In order to elucidate a SSO scenario, a sequence model is presented. In this model

it is assumed that the user has not yet signed on into any user agent.

User AgentService Provider Identity ProviderUser

Request access to resource

Request Resource

Request Authentication Reference

A. Challenge for credentials

B. User credentials

Request Authentication Reference

Responds Authentication Reference

Responds Authentication Reference

Resource Access Granted

Access Resource

Figure 25: SSO Sequence Model

Architecture

31

The sequence model showed on Figure 26 presents Single Logout when it’s

initiated by the Service Provider. The Identity Provider will be responsible for logging

the user out in every system he was authenticated on. As before, Service Provider X

aims to represent all Service Providers, others than the one that initiated the logout

request.

Figure 26: Single Logout sequence model.

3.4.2. State Models

The following state model (Figure 27) begins to clarify how SSO will be

accomplished. In the following diagram one can understand the different actions that

occur whether a simple sign on is occurring (on the right side) where user credentials

are needed or if a single sign on operation is taking place (left side).

Architecture

32

Figure 27: Single Sign On state diagram.

For Figure 27 and Figure 28 the actions that happen in the Identity Provider are

marked in blue, for the Service Provider the color is green and for the User Agent is

pink.

In Figure 28 the colors used are the same but when a state refers to a Service

Provider rather than the one connected to the initial User Agent where the user asked for

the logout, it’s presented in orange. The Single Logout occurs on the left side, when the

Identity Provider takes charge of logging the user off from all other Service Providers.

On the right only regular logout actions occur.

Architecture

33

User Logout

Request for User Logout

Check if user is logged into more Service Providers

Destroy local session

Yes No

Request User Logout from Other Service Providers

Receives Logout Response From Other Service Providers

Respond User is logged out

User logged out

Receives Single Logout Response

Responds User is logged out

Figure 28: Single Logout state diagram.

Architecture

34

3.5. Deployment View

The following model describes how functional entities in the logical view are

deployed onto implementation entities.

Figure 29: Deployment Diagram

Next four different deployment scenarios will be presented.

• Instantiation example of the components in the case of an ALERT®

application interaction with a SPINE Server (Figure 30);

Architecture

35

Figure 30: ALERT® application interaction with SPINE Server

• Deployment example on a Hospital (Figure 31);

Figure 31: Hospital deployment example.

Architecture

36

• Regional Health Information Organization (RHIO) example(Figure 32);

Figure 32: RHIO example.

• Deployment using a datacenter (Figure 33).

Figure 33: Datacenter deployment example.

37

4. Technology Review

Having discussed the goals for the SSO solution, it was time to evaluate the market

in pursuit of a software application that would fit the requirements and help to track

down the objectives. An extensive and thorough analysis of the software solutions the

market has to offer was conducted.

The aim of this research was to find the best possible solution that would conform

to the company’s needs. If no available solution fitted the business’ requirements, a

fully customized solution would have to be developed.

It is important to refer that the technologies that do not use SAML or are not

specially designed for healthcare (such as the well known OpenId) were not study

objects given that the utilization of SAML is one of the main requirements because of

the role it plays on the healthcare industry.

4.1.1. Relevant Requirements

One of the goals of organizations that implement SAML is to reduce its

deployment time while maintaining the SAML standard’s inherent security.

Nonetheless, as stated in [Har08], a SAML solution deployment can take weeks or even

months and, on such a competitive market as the healthcare industry, this delay is not

affordable. Therefore, it was chosen, if possible, to make use of an already available

software or library that could help reduce the deployment time.

In order to measure how well the different software solutions adapt to the project

needs, metrics were defined to help compare and evaluate the different options

available.

These requirements aim to reflect the need for a SAML solution that would

perform SSO as well as SLO and is as compatible as possible with all types of systems.

The following metrics were defined:

• Ability to perform Single Sign On - since it is the purpose of the project, the

chosen solution has to allow Single Sign On;

• Ability to perform Single Sign on without inter-site redirection – the need for

links in each page for other applications would mean the existing legacy systems would

have to be redesigned and altered every time a new application needed to support SSO,

which is not a valid option;

Technology Review

38

• Ability to allow/perform Federated Identity – different applications may have

different identity providers which means it must be allowed for applications to agree on

user tokens that identify the same user defined by different attributes on different

service providers;

• Ability to perform Single Logout – it is desirable for users to also be allowed

to perform SLO after SSO is achieved;

• Ability to perform authorization requests – the authentication framework will

communicate with web applications via SAML, therefore the application has to allow

these types of requests;

• Support for SAML – meeting the standards is the best way to ensure

interoperability with all applications that ALERT may wish to SSO with;

o SAML v1.x

o SAML v2.0

• Support for XML Signature;

• Support for XACML v2.0 – the authentication framework uses XACML thus

for communication purposes XACML will be used;

• Support for SOAP – SOAP is the protocol usually used for exchanging XML-based

messages over computer networks, normally using HTTP/HTTPS;

• Compatibility with the following authentication methods
2

o Smartcard;

o Password;

o Biometrics;

• Compatibility on the client side with
2

o Windows;

o Linux/Unix;

o Macintosh*;

• Compatibility on the server with
2

o Windows 64bits;

o Linux 64bits;

o HP UX;

o AIX;

• Browser compatibility
2

o Internet Explorer;

o Firefox;

o Chrome*.

Fields marked with * are considered to be of low priority in comparison to the

others.

4.1.2. Available Providers

Two different types of solutions were evaluated: on one hand software that already

performed the majority of the actions desired and that should be easy to bundle, and on

the other hand, libraries that could be helpful in case the solution had to be built from

scratch.

Not all available and evaluated solutions are presented in the following sections

since most of them did not meet the minimal requirements.

2
 These are the methods ALERT applications use or are compatible with.

Technology Review

39

Software

Shibboleth

Shibboleth [Shi09] is standards based, open source software package for web

single sign-on across or within organizational boundaries. It allows sites to make

informed authorization decisions for individual access of protected online resources in a

privacy-preserving manner.

It implements OASIS standards like SAML in order to provide a federate single

sign on and attribute exchange framework.

It is released under the Apache Software License.

Ping Federate

Ping Federate [Pin09] is standalone federated identity management software that

delivers secure Internet SSO for all external partner connections while working with the

existing identity infrastructure.

Its capabilities include:

• Single Sign On;

• Single Logout;

• Federated Identity System Configuration;

• First and Last Mile Integration;

• External Data Look-Up;

• External Connections;

• SaaS Provisioning;

• SaaS Connectors;

• Auto-Connect™;

• Certificate Management.

It is based on several standards such as SAML and WS-Federation.

simpleSAMLphp

SimpleSAMLphp [FEI091] is an application written in native PHP that deals with

authentication. It supports several federation protocols, authentication mechanisms and

can be used for local authentication, as a Service or as an Identity provider.

It is compliant with standard protocols such as SAML 2.0.

 Even though it was written in PHP it also supports non-PHP environment by using

the Auth Memcookie approach, but it is not fully documented.

OneSign

OneSign [Imp09] is an application developed by Imprivata to address industry

compliance initiatives, to increase user productivity and to reduce password

management costs.

It is specially designed for the healthcare industry thus it is used in numerous

hospitals and healthcare centers. It provides Single Sign On and it also deals with

authorization issues.

Technology Review

40

The main difference from the other referred softwares is that it works as a desktop

solution.

OpenSSO

Sun OpenSSO Enterprise [jav09] is the single solution for Web access

management, federation, and Web services security. OpenSSO, the open source access

management and federation server platform, is the core of OpenSSO Enterprise.

Its goal is to provide an extensible foundation for an identity services infrastructure

in the public domain, facilitating Single Sign On for web applications hosted on web

and application servers.

OpenSSO was developed in Java and comprises the following modules on a free

right-to-use basis:

• Session management;

• Policy;

• Console;

• Administration tools;

• Federation;

• Web services;

• Policy agents.

Libraries

Lasso

Liberty Alliance Single Sign On (LASSO) [Las09] is a software C library that

aims to implement the Liberty Alliance standards, under the GNU General Public

License. A commercial license is also available.

 It has successfully taken Liberty Alliance interoperability tests and implemented

Id-FF, ID-WSF and SAML 2.0.

It secures the access to applications as well as simplifies it by using the Single Sign

On technology. It is built on top of libxml2, XMLSec and OpenSSL. At the moment

Python, Perl, Java and PHP bindings are tested and distributed.

OpenSAML

OpenSAML [Int09] is an open-source toolkit, in Java and C++, produced by

Internet2 developers as a part of their work on the Shibboleth project.

It provides core message, binding, and profile classes for implementing

applications based on SAML. It is able to create objects with the individual information

fields that make up a SAML message, build the correct SAML representation and parse

the SAML back into object form.

Currently, OpenSAML version 2.0 is in development which will support SAML

1.x and 2.0 and is provided under Apache 2.0 license.

Technology Review

41

4.1.3. Software Comparison

Simple evaluation

Before proceeding to evaluating all the referred software providers, a first basic

assessment was conducted for the five different software options.

Shibboleth, Ping Federate and OpenSSO seemed to present themselves as probably

good solutions so the evaluation was to continue, which did not happen with

simpleSAMLphp and OneSign.

simpleSAMLphp

Even though it provided the basic requirements, the fact that it was written in PHP

allowing just the AuthMem cookie to be used in order to allow Java, restricted possible

customizations of the software.

Integrating software built in PHP into an ALERT client where Flash and Java

layers coexist was considered too much of a mix when performance and scalability were

taken into account.

It was also taken into consideration that simpleSAMLphp was a solution designed

for academic environments. This made it unsuitable to function in a professional

environment since it could not provide all the security and requirements.

OneSign

The fact that OneSign is used by so many hospitals and healthcare centers seemed

to be a good starting point. Nevertheless it was also decided that this would not be a

good option for ALERT to consider:

• It is offered as a desktop solution:

o Therefore it will take time to load before it can be used and it needs to be

configured by each user;

o ALERT became aware of healthcare facilities that had used a desktop

solution and they measured the time it took for it to get into action being

in average about 3 minutes;

o Since time is critical in healthcare environments, solutions that are proven

to be time-consuming cannot be accepted;

• It does not comply with SAML and therefore to SSO standards, which would

make the creation of identity federations complex.

Consequently OneSign was excluded from the following steps in the software

providers’ evaluation.

Requirements comparison

The fields marked with � mean that the requirement is met. It should also be

mentioned that the lack of � on the field can either mean that the action is not supported

(by default or at all) or that no specific tests to evaluate it have been conducted.

When it comes to the actions supported, OpenSSO comes out as the winner,

supporting all actions that are required by ALERT. Shibboleth fails to implement Single

Logout which is a major setback.

Technology Review

42

Table 2: Supported Actions

 SSO SSO without

Inter-site

redirection

Federated

Identity

Single

Logout

Authorization

Requests

Ping

Federate

� � � �

OpenSSO � � � � �

Shibboleth � � �

As seen before, since PingFederate does not support Authorization Requests, it

does not support XACML. Other than that, all three solutions support the required XML

standards.

Table 3: XML Standards

 SAML

v1.x

SAML

v2.0

XACML

v2.0

XML

Signature

SOAP

Ping

Federate

� � � �

OpenSSO � � � � �

Shibboleth � � � � �

ALERT supports a wide range of authentication methods. Unfortunately, when

using default configurations, only PingFederate supports all three required

authentication methods.

Table 4: Authentication Methods

 Smartcard Password Biometrics

Ping Federate � � �

OpenSSO � �

Shibboleth �

On server interoperability matters, the only difference between the three providers

is that OpenSSO also supports HP UX.

Table 5: Operating Systems - Server

 Windows

32bits

Linux

32bits

Windows

64bits

Linux

64bits

HP UX AIX

Ping

Federate

� � � �

OpenSSO � � � � �

Shibboleth � � � �

Technology Review

43

No software solution specifies if they can interoperate with Macintosh.

Table 6: Operating Systems - Client

 Windows Linux Macintosh

Ping Federate � �

OpenSSO � �

Shibboleth � �

Again, no software solution specifies whether or not they can be executed on

Chrome.

Table 7: Browser

 Internet

Explorer

Firefox Chrome

Ping Federate � �

OpenSSO � �

Shibboleth � �

4.1.4. Software Evaluation

A more detailed evaluation was conducted therefore it was chosen to test more

carefully the three providers in order to evaluate their implementation and possible

configuration and customization.

Ping Federate

Ping Federate fails to implement XACML and authorization requests, therefore

failing critical requirements. Nevertheless it proved to be simple software to install and

test, when tested in a computer which is not connected to a local network since it

assumed “localhost” for all configurations. This configuration fails to function in

ALERT computers due to its internal network definitions, so it was deployed on a

personal computer.

It provided sample applications for the Identity and Service Provider which were

used and tested.

Ping Identity was contacted via e-mail in order to clarify some developer questions

and their support was effective and fast.

Ping Federate is a commercial solution which is not cost free.

OpenSSO

OpenSSO is the software that complies with most of the requirements, making it

eligible as a good possible solution.

Innumerous issues occurred when trying to test and install OpenSSO: the tutorials

were not clear and setting up the environment was a complicated task. There were no

clear instructions about how to use Apache Server for creating virtual hosts, how to link

them to Apache Tomcat and most importantly, how to use them on OpenSSO.

Technology Review

44

Since this approach was unsuccessful, it was time to attempt to deploy OpenSSO

on Glassfish since it is also developed by Sun Microsystems. Even though it was also

not simple, it turned to be effective in the end.

Afterwards, it was time to follow the tutorials and evaluate the solution. Again,

problems occurred with the guides, as well as with the deployment of new components

of OpenSSO (such as the OpenSSO SDK).

All problems fixed and, after getting familiar with the software and understanding

its flow, it was possible to evaluate OpenSSO.

The documentation is very extensive and offers various OpenSSO deployment

scenarios. Given that ALERT’s goals are complex, there will be the need to customize

OpenSSO and also to use different scenarios at the same time. Since it was written in

Java, it can be adapted through new Java modules and extensions.

OpenSSO offers support at an IRC Channel, where OpenSSO developers offer

their expertise to help others solving their problems.

As already mentioned it is an open source solution and it is free.

Shibboleth

Shibboleth also complies to most of the requirements, unfortunately trying to

deploy an Identity Provider as well as a Service Provider at the same time with

Shibboleth proved to be an impossible solution since the learning curve is very steep.

Even after receiving help from the Shibboleth mailing-list (official support), this

task could not be accomplished.

When trying to deploy an Identity and a Service Provider at the same time, it is

especially hard to understand how Shibboleth works. Problems arose in different areas

(with certificates, metadata, federation, etc) and after solving an issue, a new one would

emerge.

Shibboleth experts suggested to try to deploy just one part (Identity or Service

Provider) and test it against Test Shib [Int091]. After being sure that one of the parts

was working, deploying the other one to match it should be easier.

So it was decided to try to deploy just the Service Provider and test it. This proved

not possible because there was the need to have an external IP address, and this scenario

is not allowed in ALERT.

In the end, no valid Shibboleth testing was accomplished.

4.1.5. Libraries Comparison

In what concerns the libraries, the initial research showed no reason to exclude any,

so both of them were evaluated.

Requirements comparison

Since libraries were now being evaluated, some requirements did not apply. In

these cases, the term N/A (Non Applicable) was used.

Once again, the fields marked with � mean that the requirement is met. The fields

that do not present any type of symbol mean that either there is no official information

about the subject or that it is not met.

Only Lasso presented information about what could be accomplished with its usage

so there is no data regarding OpenSAML to compare with.

Technology Review

45

Table 8: Supported Actions

 SSO SSO without

Inter-site

redirection

Federated

Identity

Single

Logout

Authorization

Requests

Lasso � � �

OpenSAML

Both libraries fail to implement XACML but OpenSAML already supports SOAP.

Table 9: XML Standards

 SAML

v1.x

SAML

v2.0

XACML

v2.0

XML

Signature

SOAP

Lasso � � �

OpenSAML � � � �

Since the libraries are only used to create and analyze SAML, it is not of their

domain to support authentication methods.

Table 10: Authentication Methods

 Smartcard Password Biometrics

Lasso N/A N/A N/A

OpenSAML N/A N/A N/A

The behavior of both libraries when it comes to supporting different operating

systems is identical.

Table 11: Operating Systems - Server

 Windows

32bits

Linux

32bits

Windows

64bits

Linux

64bits

HP UX AIX

Lasso � � � �

OpenSAML � � � �

Again, they both support the same client operating systems. They both state that

they support Macintosh, which all the software providers failed to achieve.

Table 12: Operating Systems - Client

 Windows Linux Macintosh

Lasso � � �

OpenSAML � � �

Technology Review

46

Such as for the authentication methods, browser support is not in the scope of these

libraries. This does not mean that they do not work correctly on the following browsers,

but that it will depend on how they are used on the SSO implementation.

Table 13: Browser

 Internet

Explorer

Firefox Chrome

Lasso N/A N/A N/A

OpenSAML N/A N/A N/A

Since ALERT® middle-tier uses Java, it was important to know whether or not

they were written in Java.

Table 14: Java

 Java

Lasso

OpenSAML �

4.1.6. Libraries Evaluation

The usage of SAML libraries was not tested. Nevertheless they were analyzed and

evaluated.

Both libraries are cost free.

Lasso

Lasso is the library that meets most of the requirements but still falls short of

minimum requirements.

Also, after an analysis and debate with Lasso experts it was discovered that it does

not deal with XACML, and that the Lasso XML objects are not converted into Java

DOM objects. When asked about Identity Providers mentioned that they had never

written an Identity Provider in Java since usually the Identity Provider and much of the

Service Providers are written in Python.

OpenSAML

OpenSAML does not by itself implement full SAML profiles such as single sign-

on, but can be used to simplify the implementation of such profiles. Therefore, an

extension to OpenSAML had to be performed in order for it to be used when creating

Identity and Service Providers.

It appeared to be a good starting point, yet extensive programming would have to

be done in order for it to be usable.

4.1.7. Decision

There was not a solution that comprised all the requirements defined at the

beginning. The ALERT goals and aims for the project are very wide and hard to

accomplish within a single solution.

Technology Review

47

A simple and effective SSO and SLO platform that complied with SAML standards

was the main goal. Its interoperability and compatibility was also an important aspect.

The biggest challenge to overcome was measuring the value of each solution and

whether the requirements that were not met were critical
3
 or not. Nevertheless, the

requirements defined do not overview all important aspects to take into account when

choosing a software solution: its cost, support, documentation, scalability and simplicity

of usage must also to be considered.

Making it all even more complex, the deployment of the three software solutions

proved to be a thorny task that presented innumerous problems, taking longer than

expected.

The final choice proved to be a very elaborate and hard decision to take due to the

inexistence of the perfect solution. A summary table is presented next.

Table 15: Summary table of the software comparison.

SSO Single

Logout

SAML XACML Windows Linux

Ping

Federate

� � � � �

OpenSSO � � � � � �

Shibboleth � � � � �

The major differences reside in the support for Single Logout and XACML, but

also on the costs.

Ping Federate was excluded since it did not support XACML. Even though it is a

simple and commercial solution, consequently integration and support would not be a

complicated task, the fact that it is not cost free and that it does not support XACML

made it an invalid option.

It was discovered that Shibboleth was used in academic environments and, even

though it met most of the requirements, the support proved to be insufficient to allow an

inexperienced user to install and test it.

When it comes to the libraries, they are both in an embrionary state which means

that adopting them could become as difficult and complex as writing the whole software

from scratch (see table below).

Table 16: Summary table of the library comparison.

SSO Single

Logout

SAML XACML Windows Linux Java

Lasso � � � � �

OpenSAML � � � �

3
 A requirement is considered to be critical if its non-implementation compromises the project’s success.

Technology Review

48

OpenSAML lacks the implementation of the SAML 2.0 profiles for Single Sign

On and Single Logout and none of them implement XACML. Therefore they had to be

extended before they could be effectively used.

Thus OpenSSO was deemed to be the best existing solution for the project. It

provides extensive and clear documentation, good support and it meets the most

important requirements. Since it was developed by Sun Microsystems, a level of trust

can be associated with the product and the fact that it is free adds up to the final

decision.

Prototype

Having decided that OpenSSO was the software to be used for the Single Sign On

solution, more extensive and complex tests were made in order to be sure of its

adaptability to ALERT® software.

During the technology research phase, some questions arose relative to the

OpenSSO flow that needed to be answered. Those questions were:

• OpenSSO user data store has to be either Sun Directory Server or a supported

LDAPv3 compliant directory server: can this restriction be overcome?

• Is OpenSSO integration with ALERT® possible respecting ALERT®’s

software architecture and flow?

• Can OpenSSO be integrated with ALERT® according to SAML standards?

• Are there any downsides to the usage of OpenSSO?

It was chosen to implement a prototype whose flow was simple but still allowed to

answer the above questions. It was written in J2EE because the final solution will be

written in Java but also because the prototype must include web interaction, which can

be easily done on J2EE.

For local deployment, Glassfish was user as he application server. For each

OpenSSO instance and application, a domain was created. An overview of the prototype

will be presented.

Important details

Before proceeding to the prototype details there are some concepts that have to be

clarified:

• SSO token – OpenSSO creates a token that represents a Single Sign On token. It

contains token related information such as the authentication method but also

session related information such as the maximum session time. It can also

include other properties, such as specific user attributes;

• Metadata – refers to the descriptive information embedded inside a file. It

contains information about the providers;

• Cookie – a cookie is automatically created by OpenSSO entitled

“iPlanetDirectoryPro” that contains the SSO token (more information about the

cookie is available on Appendix C);

• OpenSSO SDK – it includes client-side Java classes and configuration

properties and it can be used to write web applications that access an OpenSSO

Enterprise server.

Technology Review

49

User Interaction

The user starts by accessing the Identity Provider (www.idp.com). He wishes to

login so provides its credentials. After successful login, a page is displayed with

information about the SSO token that was created.

Afterwards the user accesses a Service Provider and opens a new tab for

www.sp.com. He clicks a button that invokes Single Sign On and is redirected to a

restricted area on the Service Provider. This area presents a button for Single Logout

that, when clicked, automatically signs off the user from the Identity as well as from the

Service Provider.

Implementation issues

First, it will be examined the deployment on the Identity Provider side.

OpenSSO is usually used with its login form, meaning, users are usually redirected

to OpenSSO to login. This presented a problem because integration had to be

transparent and provide the same look and feel throughout the whole process so this

could not occur.

After experimenting and analyzing the OpenSSO SDK it was discovered that it

could be written a custom way to sign on users to OpenSSO using nothing but a simple

command line. The first obstacle had been overcome.

Subsequent to successfully passing the first obstacle, it was time to figure out a

solution for how to delete OpenSSO restriction from only being compatible with LDAP

v3 compliant servers. Research was done and it was learnt that custom authentication

modules could be written. Authentication custom modules must include:

• a class that extends AMLoginModule, an abstract class that implements JAAS

LoginModule that provides methods to access OpenSSO services;

• and the module XML configuration.

One of the methods that has to be overridden is process() that is called to

authenticate a subject. This method can potentially connect to another type of data store

or through RMI invoke an authentication framework that validates the user. The LDAP

restriction was overcome.

On the Service Provider, the deployment is simpler. Since OpenSSO already

provides simple interfaces for Service Provider initiated Single Sign On as well as

Single Logout, there was no need for extensive developments.

Since federation is needed and there is no real linkage between OpenSSO instances

and the data stores, the implementation had once again to be customized. It was chosen

to use a Service Provider Adapter that includes methods that can be extended to perform

user specific logic during SAMLv2 protocol.

Evaluation

After the prototype was developed and tested it was concluded that it served its

purpose of answering the initially posed questions:

• the dependency of a supported LDAP v3 compliant directory server was

eliminated, which could have presented the major obstacle to OpenSSO

implementation;

• integrating OpenSSO with ALERT® can be done respecting ALERT®’s flow

and layers;

Technology Review

50

• through OpenSSO configurations, SSO can be achieved respecting SAML

standards while dealing with OpenSSO restrictions and customizations;

• OpenSSO has not shown any downside to its usage.

The prototype was a success since it overcame all the difficulties and answered all

questions. Nonetheless one challenge had yet to be overcome: the deployment of

OpenSSO on Apache Tomcat and Apache HTTP servers.

Even after understanding the OpenSSO flow, deploying it on Apache servers was a

complicated task since there are no tutorials available for this deployment option and it

is considered a complex task by the OpenSSO team. However, because OpenSSO was

better understood at this time the challenge was overcome. It was chosen to deploy the

same prototype on Tomcat to test if the behavior was equal to the one in Glassfish,

which proved to be the same as expected.

51

5. Proof of Concept

In order to demonstrate the feasibility of the solution, a proof of concept (POC)

was developed. This POC aims to demonstrate that this innovative approach is viable,

feasible and capable of solving the Single Sign On problem.

For this POC, two existing applications where used: the ALERT® Online and

MyALERT®. It was chosen only to use SAML v2.0.

It was decided to use these two applications because they are online applications

that offer a single point of entrance, presenting separated flows.

5.1. ALERT® Online

ALERT® Online (AOL) is the institutional website. AOL presents information

about the company and its products, as well as the latest news related to ALERT. It

provides the ability to purchase ALERT ® products as well as to access them.

5.2. MyALERT®

A Personal Health Record (PHR) that stores all the essential health information on

an online record. A PHR is initiated and maintained by an individual and its main goal

is to provide a complete and accurate summary of the individual’s health care history.

An example would be when the individual changes doctor, in case the individual

decides to share its PHR, the new doctor will easily become acquainted of medical

history and its details. MyALERT® is the PHR solution offered by ALERT.

5.3. User Interaction

In order to clarify the experience and interaction the user will face, it was chosen to

include a diagram of the screens the user will see as well as the processing that will

occur on the background on AOL and MyALERT® (Figure 34 to Figure 37). It is

similar to a high-level state diagram.

Proof of Concept

52

The color purple refers to the Service Provider, in this case, MyALERT® and blue

refers to the Identity Provider, AOL. The orange interactions indicate user’s or

redirection actions.

Scenario

A user wishes to access the MyALERT® but is not yet logged in. The user will be

redirected to ALERT® Online to login, and after successful authentication he will be

redirected to MyALERT® and access it.

Providers

• ALERT® Online: www.alert.com

• MyALERT®: www.phr.com

Diagram

Figure 34: Example interaction on AOL and MyALERT® (Part I).

User opens the browser and

tries to access MyALERT®

Does the user have an active

session?

MY ALERT tries to grant

access to restricted area

Service Provider: www.phr.com

No

Proof of Concept

53

Figure 35: Example interaction on AOL and MyALERT® (Part II).

Service Provider: www.phr.com

No

Request Single Sign On

Receives SAML Request

Identity Provider: www.alert.com

Redirect to Login

Does the user have an active

session?

No

Proof of Concept

54

Figure 36: Example interaction on AOL and MyALERT® (Part III).

Ask for User Credentials

Identity Provider: www.alert.com

Are the credentials valid?

Yes

Send SAML Response

Redirect to the Service

Provider

Is the user authenticated at

www.alert.com?

Yes

Service Provider: www.phr.com

Proof of Concept

55

Figure 37: Example interaction on AOL and MyALERT® (Part IV).

5.4. Software Design

In order to implement the proof of concept, the structure of the two providers (AOL

and MyALERT®) had to be studied for the software design to be adapted accordingly.

The result of this analysis is explained on the following sections.

5.4.1. Overview

The Proof of Concept was implemented accordingly to the predefined architecture.

Using OpenSSO forced to some small changes that will be explained next.

The Identity as well as the Service Provider will be composed not only by the

application itself, but will also contain an OpenSSO instance. OpenSSO will be

responsible for handling the SAML messages, including its creation and processing.

Therefore, this POC is composed by three major elements (Figure 38):

• User Agent – it will hold the SSO cookie and handle and redirect the SAML

messages through an applet;

Yes

Create local session

Grant user access

Service Provider: www.phr.com

Proof of Concept

56

• Service Provider – OpenSSO is responsible for creating SAML requests and

process the responses and the application represents the legacy system (MyALERT®);

• Identity Provider – OpenSSO processes the SAML requests and creates

SAML requests and responses interacting with the Authentication Framework that

validates the users’ credentials. It also includes application specific logic (AOL logic).

User Agent

Cookie

SAML

Auth Applet Service Provider

Application

Application

Identity Provider

Authentication

Framework

Figure 38: Black box view of the solution.

Here one can understand the importance of the utilization of OpenSSO since it

allows complete separation of the application from SAML standards. This separation of

concerns permits that the solution is easily integrated onto new applications since it is

easily detachable.

5.4.2. Technology

For the implementation of the SSO solution, different technologies were used.

The choice for the programming language for the Service and Identity Provider

turned out to be the simplest of all choices. The project needed one that was easy to

master but, more important, platform independent, therefore Java was chosen. Not only

is the language already used by ALERT® software, but also OpenSSO provides Java

libraries for customization modules.

Since OpenSSO and the application don’t share the same context and there was the

need for Inter Process Communication, Java Remote Method Invocation was used.

Proof of Concept

57

When it came to the User Agent, Adobe Flash was used because ALERT® User

Experience Tier already uses it and there were no disadvantage in employing it. PHP

was also used for the same reasons.

The application servers where ALERT® software usually runs are Apache HTTP

Server 2.2.11 and Apache Tomcat 5.5. In order to be able to link Apache HTTP and

Apache Tomcat, the module jk from Apache Jakarta was employed; a module for PHP

support was also used.

During the development of the framework, the main tools used were:

• Eclipse – an open source development platform, mainly designed for Java

programming;

• Macromedia Flash 8 – is an advanced environment for creating interactive

websites;

• Subversion – Version Control System;

• Service Capture – an application that captures all HTTP traffic sent from the

browser or the IDE.

5.4.3. Logical View

 This section aims to present a white box description of the system, exposing its

inner structure. It will only be shown the components that are related to this project.

It is important to understand the different modules on each component and how

they interact in order to comprehend the full extent of the solution.

On the following page, Figure 39 clarifies the interactions between the different

modules can be seen, as well as the flow of SAML messages.

OpenSSO will be used for session management and SAML processing therefore:

• OpenSSO will receive and be responsible for all SAML exchange;

• On the Identity Provider, OpenSSO authentication module will be invoked

in order to authenticate the user on OpenSSO so future session management

is available.

Proof of Concept

58

SAML

SAML

J
A
V
A

Application

Authentication

Framework

Identity

Repository

SSO Logic

OpenSSO IdP

Auth

Module

J
A
V
A

Identity Provider

OpenSSO

Logic

J
A
V
A

Application

Identity

Repository

SSO Logic

OpenSSO SP

J
A
V
A

Service Provider

OpenSSO

Logic

F
L
A
S
H

User Agent

SSO Logic

Figure 39: Logical view of the proof of concept.

Identity Provider

The Identity Provider is composed by two parts: the application and OpenSSO

(Figure 40).

Proof of Concept

59

Figure 40: Logic view of the Identity Provider.

Application

The application is composed by two layers: a Java layer where all the logic is built

upon and another layer (which could be PL/SQL depending on the ALERT®

application) that communicates with the data store.

The three major modules on the application that are related to the project are the

SSO Logic, Authentication Framework and the Identity Repository.

SSO Logic

Its main goal is to manage all the session logic related to SSO operations therefore it:

• Receives the user credentials, sends them to the Auth module and waits for the

response;

• Creates the session cookie and updates the SSO token;

• Is responsible for all other session management processing needed.

Authentication Framework

This framework is responsible for validating the user credentials, however it was

not developed under the scope of this project.

Identity Repository

More than a simple data store where the user information is stored, it is also

responsible for processing the data that is extracted from the database.

Proof of Concept

60

OpenSSO Identity Provider

On the OpenSSO side, there was the need to develop a customized authentication

module that could validate the user accordingly to ALERT procedures.

AuthModule

This module authenticates the user on OpenSSO so sessions can be managed by

this software.

OpenSSO Logic

OpenSSO already comprehends its own logic which includes SAML processing

and session management. This module is not target of any development but it was worth

referring to on the logical view.

Service Provider

The Service Provider is composed by a custom module on the application side, on

the Java layer.

Figure 41: Logic view of the Service Provider.

SSO Logic

This module will authenticate the user locally if federation is possible.

OpenSSO Logic

Just like on the identity Provider, represents default OpenSSO logic.

Proof of Concept

61

User Agent

The User Agent is composed only by a Flash Layer.

F
L
A
S
H

Figure 42: Logic view of the User Agent.

SSO Logic

The goal of this module is to redirect the SAML messages being exchanged.

5.4.4. Behavioral View

On the Proof of Concept, the Single Sign On is as follows:

Figure 43: Process flow on the Identity Provider during Single Sign On.

Proof of Concept

62

On the Identity Provider, when a user wants to login at the application, the user

agent retrieves its credentials and sends them to ALERT software that will redirect them

to the customized module in OpenSSO. This module will create a local session after

checking that the user’s credentials are valid. Then he will set the user attributes used

for federation on the SSO token created by OpenSSO and the user is finally logged. All

these actions are transparent to the user.

OpenSSO Logic SSO Logic Identity RepositoryUser User Agent

User Agent OpenSSO ALERT

User Accesses SP Application

User Single Sign On

Request User SSO

Receives SSO Response

Validates SSO

Validates User

Returns User is Valid

Sets User Session

User is logged

Creates cookie

SSO successful

Checks cookie

A

Figure 44: Process flow on the Service Provider during Single Sign On.

The Service Provider flow starts when a user wants to access the application. Since

he needs to be logged on, and assuming he is not at the moment, the Service Provider

will request SSO. On “A” the flow was omitted because it was already described. After

receiving the response, OpenSSO will automatically create a cookie containing the SSO

token and the user is redirected to the Service Provider. If the cookie exists, the Service

Provider will try to validate the user by performing federation actions. Given the user is

valid, it sets the user’s session.

Proof of Concept

63

For the Single Logout sequence diagrams, it was chosen not to include Service

Provider X since it is not relevant for the implementation since its behavior is very

simple.

Figure 45: Process flow on the Service Provider side for SP-initiated SLO.

Figure 45 refers to the flow on the Service Provider when the user requests Single

Logout. A SAML SLO request will be created and sent to the Identity Provider. The

flow on the Identity Provider hidden on “A” is visible on the next figure.

After receiving a SLO response, the OpenSSO on the Service Provider will delete

the SSO cookie and destroy the user session. Single Logout is then achieved.

Proof of Concept

64

OpenSSO Logic SSO LogicUser Agent

Receives Single Logout request

Destroy user session

Local session destroyed

Destroys User Session

Destroy local user session

Responds Single Logout successful

User Agent OpenSSO ALERT

A

Deletes cookie

Requests Logout on SP X

Receives Logout successful on SP X

Figure 46: Process flow on the Identity Provider side for SP-initiated SLO.

After receiving a SLO request, OpenSSO calls the module SSO Logic through RMI

to destroy the user session on ALERT. After ALERT’s user session is destroyed, it will

delete the SSO cookie and local session details. It is time to request logout from all

other Service Providers where the user is logged in to. After receiving successful Single

Logout responses, it will respond to the Service Provider that initiated the request. The

processing done by Service Provider X was omitted (represented by “A”).

5.5. Implementation

After adapting the initial architecture with OpenSSO usage, it was time to develop

the framework for Single Sign On.

Proof of Concept

65

The implementation was more difficult than expected since AOL and MyALERT®

are complex applications and understanding their flow was not straightforward. The

same applies to the deployment on a local environment. The major cause for these

difficulties was the insufficient documentation available:

• there were no appropriate guides about how to deploy AOL and MyALERT®

locally since this was never done before;

• regarding the applications flow, the documentation proved to be inadequate for

someone who isn’t familiar with them.

5.5.1. Deployment Environment

In order to develop the solution, a local environment had to be set up. Three

different workstations were used to emulate real life scenarios, where all three

components are physically separated.

User Agent

User Agent

Service Provider

OpenSSO

Identity Provider

g

OpenSSONodeInstance1

1

*

1

*

NodeInstance2

Figure 47: Deployment environment of the proof of concept.

Identity Provider

On the Apache HTTP Server, different Virtual Hosts were created for AOL and

OpenSSO. After setting up all the configurations needed, they were linked to Apache

Tomcat through workers that use the jk module. This module is a part of the Apache

Jakarta Project that enables linking both servers. A PHP module was also included.

OpenSSO and AOL were deployed into different Apache Tomcat Servers.

Service Provider

For the Service Provider, the same virtual host as well as the same Tomcat instance

was used for both MyALERT® and OpenSSO.

Proof of Concept

66

User Agent

No setup was done for the User Agent.

5.5.2. Computer Specifications

As already mentioned three separate computers were used for deployment and

testing. Each computer specification is as follows.

Table 17: Computer specifications.

Identity Provider Service Provider User Agent

Number of processors 2 2 2

Processor 3.00 GHz 1.86 GHz 3.00 GHz

Cache Memory 4,00 GB 2,00 GB 3,00 GB

Architecture 32 bits 32 bits 32 bits

Operating System Windows Vista Windows Vista Windows Vista

5.5.3. Details

Before proceeding to the framework implementation, some details have yet to be

clarified.

Cookies

Each time a SAML response is created or received, a cookie is also created and

associated with it. In order to detach the utilization of SAML of the SSO operation, an

SSO token is created by OpenSSO that contains details about the authenticated user.

Therefore there will be two cookies: on the Identity Provider after successful login

indispensable for following SSO actions, and on the Service Provider after receiving a

successful response from an Authentication Request.

Auxiliary files

ALERT® ONLINE

• opensso.properties – contains information about the OpenSSO deployment

such as its naming URL;

• openssoauth.properties – contains information about the realm where login

will occur such as the name of the authentication module and the cookie name.

MyALERT®

• opensso.properties – in a similar way to the equally named file on the Identity

Provider, it also contains information about the OpenSSO deployment.

Proof of Concept

67

• openssocookie.properties – contains information about the cookie created by

OpenSSO.

5.5.4. Code

It was not considered relevant to include all the details about the framework, but

rather its main components. Development was needed in the Java and Flash layer, as

well as on index.php. Most of the implementation makes use of OpenSSO SDK

libraries, especially for login actions.

ALERT® ONLINE

Java

Figure 48: Java class diagram of ALERT® Online.

package mni.core.servlets

class RequestFilter implements javax.servlet.Filter

In order to allow cookie creation a ServletResponse had to be available.

• public void processRequest(ServletRequest request, ServletResponse

response, BufferedHttpRequestWrapper wrapped, FilterChain chain, Connection c,

double idRequest) throws ServletException, IOException – the parameter

ServletResponse was added and the method was restructured.

package mni.core.sessions

class ConnSession

Since RequestFilter invokes ConnSession, the constructor also had to be altered to

support the ServletReponse parameter.

Proof of Concept

68

package mni.aol.sso

class Aol_login

The goal of this class is to validate the users’ credentials and create its session.

• private com.sun.identity.authentication.AuthContext getAuthContext(String

orgName, String i_desc_user, String i_pass_user)throws AuthLoginException,

IOException – gets OpenSSO authentication context and submits the users

credentials to the OpenSSO login module (ALERTLogin);

• public aol_login_out validate_user_new(String i_desc_user, String

i_pass_user, Double i_id_language) throws EhrException – logs the user into

OpenSSO and, if successful, proceeds to set the federation attributes onto the SSO

token and creates the cookie that contains the OpenSSO token.

class Aol_login_out implements Serializable

Aol_login_out implements the output for Aol_login, containing variables for errors

and user info.

class MyAuthentication

Reads OpenSSO custom authentication properties and stores them.

class OpenSSOListener

This listener is used to initialize OpenSSO properties and load them into the

System Properties.

Flash

Figure 49: Flash class diagram of ALERT® Online.

It was chosen not to include all methods of both classes on Figure 49 since they

weren’t the target of any development.

class mni.online.screens.LoginPass extends mni.online.screens.Login

This class extends the Login and is used for user sign on using a password.

• private function validateUser(user_str:String, pass_str:String):Void –

responsible for user validation and invoke validate_user_new;

Proof of Concept

69

• private function VALIDATE_USER_Result(validate_re:Object):Void – if user

login operations occurred successfully, it will redirect the user to the OpenSSO goto

URL.

PHP

index.php

Index.php was altered to reflect the new application flow.

OpenSSO Identity Provider

Java

Figure 50: Java class diagram of OpenSSO custom authentication module.

Since the solution is very particular because neither AOL nor MyALERT® use

LDAP data stores, there was the need to develop a custom authentication module to deal

with authentication on OpenSSO. The XML file with the module configuration was also

included on OpenSSO.

package authentication

class ALERTLogin extends AMLoginModule

Since ALERTLogin extends AMLoginModule, it needs to override three methods.

The most important method for user sign on is described next:

• public int process(Callback[] arg0, int arg1) throws LoginException –

validates the user credentials against the database, creates an ALERTPrincipal and

returns -1 if validation was successful.

class ALERTPrincipal implements Principal

This class implements the Principal therefore it contains the getters, setters as well

as the constructor.

Proof of Concept

70

MyALERT®

Java

Figure 51: Java class diagram of MyALERT®.

package mni.phr.plsql.*

All the classes had to be restructured in order to act accordingly to the Single Sign

On flow, especially in regard to the user session.

package mni.core.servlets

class RequestContextFilter

The filter had to be reconfigured in order to allow initialize_sso() to be invoked

before checking for user permissions.

package mni.core.sessions

class ConnSession

Just like on AOL, the constructor also had to be altered to support the

ServletReponse parameter.

Proof of Concept

71

package mni.phr.sessions

class LogOutSSO

This class is responsible for clearing the cookie created by OpenSSO that contains

the SSO token. It is used for local logout.

• public Boolean deleteCookie() – retrieves the OpenSSO cookie and deletes it.

class MyCookie

Reads OpenSSO cookie properties and stores them.

class Sso

This class is responsible for initializing Single Sign On operations. It validates if

the user has already logged in or not.

• public Sso_out initialize_sso() - checks for the existence of the OpenSSO SSO

cookie. If it exists, it compares the attributes stored on the SSOtoken with the ones

existing in the user data store:

o if mapping is possible then federation is possible, therefore it creates a

local user session in MyALERT® and returns true;

o in case mapping is not possible or the cookie doesn’t exist, it will return

false.

class Sso_out implements Serializable

Sso_out is used to implement the output for Sso. It implements getters and setters

as well as the constructor.

class OpenSSOListener

This class presents the same behavior as on the Identity Provider.

Flash

Figure 52: Flash class diagram of MyALERT®.

Again, only the relevant methods of the classes were included.

class mni.phr.entrance.PhrAccess

This class controls access and buttons events.

• private function evaluateLogout(buttonParam):Void – evaluates the exit;

• private function logoutResult():Void – evaluates the result of the function

mentioned above;

Proof of Concept

72

• private function logoutRefresh():Void – refreshes the browser after all logout

actions are done.

class mni.phr.entrance.PhrInit

This class initializes MyALERT® variables and services.

• private function loadBasicInfo():Void – initializes global managers and

invokes initialize_sso();

• private function loadBasicInfoOld(re:ResultEvent):Void - loads basic info

with the services complete and, in case the return from initialize_sso() was:

o true - call user preferences and saves them into the global scope;

o false – invokes Single Sign On.

PHP

index.php

This file was modified in order to include more parameters to pass for the flash

layer, but also to change its normal behavior related to ALERT® Online.

5.5.5. OpenSSO Setup

For each OpenSSO instance a Fully Qualified Domain Name was created:

• www.alert.com for ALERT® Online;

• and www.phr.com for MyALERT®.

Afterwards, there was the need to setup the JVM for each Apache Tomcat instance

so that OpenSSO could be correctly deployed and could function properly. A custom

configuration was made for each OpenSSO Provider.

After the initial deployment, specific configuration was needed. The most

important steps of this stride will be described next.

To create the SAML v2.0 providers there was the need to set up a Hosted Identity

Provider and a Remote Service Provider:

• for the Hosted Identity Provider, a Circle of Trust was created and a signing

key was enabled;

• for the Remote Service Provider, the metadata had to be exported.

On the Service Provider, analogously to the Identity Provider, there was the need to

setup a Hosted Service Provider and a Remote Identity Provider:

• for the Hosted Service Provider, the same signing key and circle of trust as of

the Identity Provider were used;

• for the Remote Identity Provider, metadata had to be exported.

Since there is no real linkage between the user data stores from the Service and the

Identity Provider, the user profile had to be set to ignored. For the same reason, on the

attribute mapper the values for federation had to be set (in this case, userid) and, on the

Service Provider, auto federation was enabled.

For security reasons, it was chosen that all the assertions had to be digitally signed.

Proof of Concept

73

Finally, after the custom authentication module was developed, it was integrated

into OpenSSO Identity Provider.

5.6. Tests

After implementing the solution, it was tested in order to assess its quality.

Therefore the developed solution was tested against the project specification including

its goals and requirements.

The solution’s scope was to implement a Single Sign On solution using SAML,

which was done with the aid of OpenSSO. Unit testing wasn’t conducted because it was

more relevant to the final solution the deployment configuration than the developed

code. Following the project’s ambit, integration tests, as well as interoperability and

usability tests, were better suited.

All the tests presented a successful output.

Integration

The final solution allowed a clear and distinct interaction between Service and

Identity Provider.

It allows authentication services to be separated from the Service Provider which

will only deal with specific application logic. Identity Provider is the component

responsible for authentication.

ALERT® ONLINE was easily integrated with MyALERT® because they were

already separate services, even though the user’s authentication was done on

MyALERT® . Since the prototype had already been developed, it was clear where to

interfere with the applications flow and make changes.

Nevertheless, the solution cannot be considered final because MyALERT® ’s user

data store has to reside in ALERT® ONLINE.

SAML usage

Single Sign On was achieved using SAML exchange and according to standards. It

was used SAML v2.0 and Single Sign On protocols. The messages that are exchanged

during Single Sign On actions can be consulted on Appendix D.

Interoperability

Interoperability tests for other operating systems on the server side could not be

conducted because there wasn’t equipment available for testing.

Nevertheless, for the user agent the following tests were made:

• Operating System

o Windows 32bits (Windows Vista);

o Linux 32bits (Ubuntu 8.10);

o Mac OS 64bits (Mac OSX 10.5 Leopard).

• Browser

o Mozilla Firefox 3.0;

o Internet Explorer 7.0;

o Google Chrome 2.0.

All the tests were successful.

Proof of Concept

74

Usability

Comparing the initial usability of MyALERT® and ALERT® Online to the final,

it was concluded that it was not compromised, rather simplified by providing a single

point of entrance for MyALERT® .

5.7. Solution Evaluation

The solution was developed to implement a Single Sign On solution on ALERT®

applications. ALERT® Online and MyALERT® were the applications chosen for the

proof of concept. After the solution has been finalized it is time to compare it with the

initial requirements in order to measure its success.

5.7.1. Overview

Evaluating the proof of concept is a complex and multifaceted task. The final

solution implemented Single Sign On protocols through the utilization of SAML and

state of the art technologies.

Even though only SAML v2.0 was used, altering the solution to also support

SAML v1.x, is expected to be a simple task since all major mechanisms for SSO are

already set up. Nevertheless one of the goals was also to create a framework that could

be easily extensible to support other standards and protocols: because of its modularity

the solution is easily detachable so this is also considered to be a plain chore.

In comparison to the prototype, no Service Provider adapter was used. The non-

usage of this module was a restriction inherent from MyALERT® ’s flow and Tomcat

contexts:

• MyALERT® sets an attribute on the session with the User that is currently

logged in;

• On Tomcat, each application is seen as a different web app which means no

context is shared between them;

• The SPAdapter runs on the OpenSSO instance which is deployed in a different

context than the one from MyALERT® ;

• The initial idea was to use RMI on the SP Adapter to connect to MyALERT®

and verify if federation was possible and afterwards set the session.

The problem is a result of all the above factors: because OpenSSO and

MyALERT® don’t share the same context, they don’t share the same session therefore

setting the session attribute with the User wasn’t possible. This is the reason why, on the

proof of concept, federation validation is done on MyALERT® after receiving the

SAML response.

High availability was not achieved since it obligated that there should be at least

two OpenSSO Enterprise instances per provider and they should be deployed behind a

load balancer. The main reason why it was not used, was because MyALERT® and

AOL were only used as a proof of concept. When going to production, load balancing

should be set up. It is not expected that any type of complications arise on the Single

Sign On deployment.

Since the solution is SAML compliant it can support other Identity Providers rather

than ALERT’s own, which leads to MyALERT® making its SAML requests to this

other Identity Provider. No other changes have to be made.

Proof of Concept

75

5.7.2. Non-functional requirements

Making a comparison between the final solution and the initial non-functional

requirements, the following can be perceived:

• Interoperability

o With ALERT® applications interoperability was achieved, since the

proof of concept was made on AOL and MyALERT® , integrating with

other ALERT applications should be straightforward;

o The only authentication method tested was username plus password

because it is the method used by AOL and MyALERT®. Supporting

multiple authentication systems is considered an easy task, only needing

SAML configurations according to the authentication method used.

• Platform compatibility and portability

o On the client three different Operating Systems were tested and the output

was successful;

o For the Identity and Service Provider, it was not possible to test another

operating systems because of equipment restrictions;

o All the tests performed on browsers had a positive output.

• Security

o Since HTTPS wasn’t used, cookie injection is possible which leads to

session hijacking
4
. When HTTPS is put into use, the probability of

occurring session hijacking diminishes and can be eliminated by storing

another type of information (it could be the MAC address of the

computer that created the cookie or its IP address).

• Extensibility and scalability

o Adding new features is considered to be straightforward;

o the final solution is modular thus can be easily integrated.

4
 For a long time, Google functioned with SAML and was aware of the described security leach. Google

only resolved this problem a few months ago.

76

6. Conclusion

The final goal of this project was to design a Single Sign On solution that was

compliant with SAML standards.

One of the objectives for the Single Sign On implementation was the support for

non-web applications, which was proven not to be possible with SAML. Since SAML

was designed for online applications, using it for something rather than it was designed

for implies changes that would compromise the standards. A valid alternative could

involve the usage of Kerberos tickets, which allows cross user authentication (cross

domain and realm authentication).

For web applications, a proof of concept that achieved the defined goal was

successfully implemented on two ALERT® applications: Online and MyALERT®.

Nowadays, Single Sign On solutions exist on ALERT® software but they are

custom made and don’t respect any standards. This compromises interoperability with

other applications since they were specially designed for ALERT® applications and the

other applications may not be compatible with the designed flow.

Altering the existing solutions to be compliant with SAML standards opens the

way for ALERT® applications to interoperate with third party tools.

During the solution design and implementation, various difficulties emerged. The

overcome challenges range from the set up of local environments using Apache servers

to the configuration of complex software such as OpenSSO.

One of the most valuable outcomes derives from the implementation of SAML

standards that allow to perform Identity Federation. Identity Federation’s advantages

come as very important for nowadays applications and businesses:

• It helps to reduce costs and complexity by allowing organizations to

collaborate freely;

• through quicker and simpler access to more services and products, the user

experience was improved;

• enterprise security was enhanced because each user only needs one pair of

credentials.

Conclusion

77

OpenSSO proved to be an excellent choice given that:

• when used with ALERT® applications, it can provide a centralized security

policy and infrastructure that mitigates the risks from both internal users and external

threats;

• it mitigates operational inefficiency by reducing the need to duplicate

resources, since it is not required to create a separate identity infrastructure for each new

application or online service;

• it provides a SDK for customizations;

• and enables effective access management.

OpenSSO SDK played a major role on the final solution because it helped in the

integration with the legacy systems as well as it helped to overcome some of the

OpenSSO restrictions.

Creating a prototype that used OpenSSO was definitely one of the major factors

that lead to the project’s success. OpenSSO is a very complex and extensive solution

that offers multiple deployment options: deploying a prototype helped to discover the

most appropriate configuration for the solutions’ goal. It is assumed that its

implementation lead to a better final structure of the proof of concept as well as more

efficient coding.

It can be concluded that the initial requirements analysis was broad and took into

account all the concerns that a SSO solution must handle. The designed architecture

provided a strong modular basis for software extensibility and scalability, that allows

easy integration with legacy systems.

The software library that was developed is ready for integration with other systems

and, because it was developed in Java, is interoperable with other platforms rather than

Windows.

It was written extensive and detailed technical documentation of the architecture,

technological review and final solution that allows users that aren’t familiar with the

solution to become easily and rapidly acquainted with it.

The developed framework is ready to be put into production. Since it is modular,

integrating it with new applications is simple, only depending on configuration.

6.1. Future Work

During the research and development of the project, there were identified features

that would benefit the final solution.

Even though SAML v2.0 is the version more commonly used, a framework that

implements SAMLv1.x Single Sign On could be developed. This would allow

ALERT® applications to interact with all applications that support SAML standards, no

matter what version they have chosen to implement. The two frameworks would be

available and, during the deployment, through simple configurations, one of the two

frameworks would be included, according to the application goals.

The only situation where the two SAML versions had to be supported would be on

the Identity Provider. Since OpenSSO supports all available SAML versions, in order to

support SAML v1.x only configuration would be needed.

The major goal for the SAML v1.x framework would be to improve

interoperability with other legacy systems.

Another option would be to use SAML on an Authorization framework. Since

SAML has the capability of encapsulating XACML, SAML could be used for

communications on an Authorization framework, more particularly, between the Policy

Conclusion

78

Information Point and external servers as well as between the requester and the Policy

Enforcement Point.

Again, since OpenSSO supports authorization requests and XACML, this new

feature could be implemented using OpenSSO SDK.

Finally, an additional feature could also be the simple exchange of user profiles.

Integrating the Healthcare Enterprise (IHE) advices the utilization of SAML profiles for

cross enterprise user authentication. This feature is more appropriate for the healthcare

market.

79

Glossary

Authentication Framework

Responsible for authenticating a user, usually by checking if the provided

credentials are valid.

Authorization Framework

Responsible for making authorization decisions, such as if a specific user is able to

access a particular resource.

Biometrics

Refers to the technologies that use human characteristics like fingerprints or eye

retinas for authentication purposes.

Circle Of Trust

A federation of Service and Identity Providers with whom principals can transact

business in a secure environment.

Datacenter

A facility used to store servers and associated components.

eXtensible Access Control Markup Language
It is an XML language for declarative access control policies, including a

processing model that describes how to interpret the policies.

Identity Provider

Manages credentials of the individual end users and verifies if they are valid.

Rather than being just a simple database where the user credentials are stored, it also

presents logic that allows to authenticate and access information about users.

Legacy system

A legacy system refers to an old application that continues to be used because it is

not viable to replace it.

Glossary

80

Man in the middle attack

It is an attack where independent connections are made in order to confuse the

victims to make them believe they are talking directly to each other, when in fact the

entire conversation is controlled by the attacker.

Organization for the Advancement of Structured Information Standards

OASIS is a not-for-profit consortium that drives the development, convergence and

adoption of open standards for the global information security [OAS100].

OpenSSO Enterprise

OpenSSO is the single solution for Web access management, federation and Web

services security offered by Sun.

Policy Enforcement Point

It is the logical entity that is responsible for installing and enforcing policies.

Policy Information Point

A Policy Information Point is the source of attributes values of a policy.

Proof of concept

POC is the evidence which demonstrates that an innovative approach is viable,

feasible and capable of solving a particular problem. It is drawn from actual experience

using an innovation in a real-world environment for a sufficient amount of time to prove

that the model: provides the intended results.

The most competitive applicants can show that they have assessed the effectiveness

of the proposed approach and have incorporated lessons learned in preparation for

replication or scaling up.

Security Assertion Markup Language

SAML is an XML-based standard developed by the Security Services Technical

Committee of the Organization for the Advancement of Structured Information

Standards (OASIS). Its major goal is to solve the Web Single Sign On problem.

Service Provider
Entity that provides services. It stores the resources that the user wishes to access

thus needs to know whether or not the user is authenticated.

Session hijacking

Session hijacking is the exploitation of a valid computer session and is used to gain

unauthorized access to resources.

Single Sign On

SSO is a mechanism whereby a single authentication action grants access to all

other systems where the user has access permission.

Single Logout

Glossary

81

SLO permits near real-time session logout of a user from all active sessions

associated with a user.

Sun Microsystems

Sun Microsystems, Inc. is an American company that provides network computing

infrastructure solutions that include computer systems, software, storage and services.

Its core brands include the Java technology platform, the Solaris operating system,

MySQL, StorageTek and the UltraSPARC processor [Sun093].

User Agent

Represents the application the user wishes to interact with and is responsible for

providing the request resources to the user and managing the exchange of messages

between Identity and Service Provider.

User credentials

User credentials refer to the information a user provides to attest his identity. It can

go from a simple combination of username and password to the user’s fingerprint.

82

References

[ALE09] ALERT, ALERT Online．[Online]http://www.alert-online.com/．

[And09] Skolberg Andreas et al., Interoperable SAML 2.0 Web Browser SSO

Deployment

Profile．[Online]http://rnd.feide.no/documents/saml2simple.html．

[AOL09] AOL, Webmaster.Info : About

Cookies．[Online]http://webmaster.info.aol.com/aboutcookies.html．

[Car09] Geyer Carol, Advantages of SAML | SAML

XML.org．[Online]http://saml.xml.org/advantages-saml．

[Coo09] Cookie Central, The Unofficial Cookie

FAQ．[Online]http://www.cookiecentral.com/faq．

[Dat09] Datamonitor, Sun Microsystems provides open source software to US

Department of

HHS．[Online]2009．http://opensource.cbronline.com/news/sun_microsy

stems_provides_open_source_software_to_us_department_of_hhs_080409

．

[Dav09] Kearns Dave, Single sign-on is top priority for healthcare execs - Network

World．[Online]http://www.networkworld.com/newsletters/netware/2006/

1002nw2.html．

[eHe09] eHealthNews.eu, eHealthNews.EU Portal - iSOFT Offers Healthcare

Single Sign-on Solutions after Agreement with

Sentillion．[Online]http://www.ehealthnews.eu/content/view/1036/26/．

[Eri00] Meta Access Management system – A Summary for DEST SII Proposals．

VullingsErik, DalzielJames

[Eve09] Maler Eve, SAMLV2.0-basics.pdf ．[Online]http://www.oasis-

open.org/committees/download.php/12958/SAMLV2.0-basics.pdf．

[FEI091] FEIDE, simpleSAMLphp | Feide

RnD．[Online]http://rnd.feide.no/simplesamlphp．

[FEI092] FEIDE, Single Sign On - Single Log Out．[Online]http://docs.feide.no/fs-

0034-1.0-en.html．

[Goo09] Google, SAML Single Sign-On (SSO) Service for Google Apps - Google

Apps APIs - Google Code．[Online]http://code.google.com/intl/pt-

References

83

PT/apis/apps/sso/saml_reference_implementation.html．

[Gre88] Greenberg Warren, Competition in the Health Care Sector: Ten Years

Later．s.l.，Duke University Press，1988．

[Häk09] Sagehaug Häkon, Programming Guide

SAML_XACML.pdf．[Online]http://www.bccs.uib.no/~hakont/SAMLX

ACMLExtension/files/ProgrammingGuideSAML_XACML.pdf．

[Hal07] OASIS XACML Update． Lockhart Hals.l.，OASIS．NAC 2007 Spring

Conference．

[Har08] Dynamic Security Assertion Markup Language: Simplifying Single Sign-

On． Harding P., Johansson L., Klingenstein

N.s.l.，IEEE，2008．IEE．pp.83-85．

[IEE09] IEEE, Standards Make Good Business

Sense．[Online]http://standards.ieee.org/sa-mem/why_std.html．

[IHE09] IHE, IHE.net Home．[Online]Integrating the Healthcare

Enterprise，2009．http://www.ihe.net/．

[Imp09] Imprivata, Single Sign-On for Healthcare Access Management &

Compliance．[Online]http://www.imprivata.com/onesign_solutions_healt

hcare．

[Int09] Internet2, Home - OpenSAML - Internet2

Wiki．[Online]http://www.opensaml.org/．

[Int091] Shibboleth, TestShib.org．[Online]https://www.testshib.org/．

[Jak05] Authorization-Authentication Using XACML and SAML． Wu Jake,

Periorellis Panos s.l.，University of Newcastle upon Tyne，2005．

[Jam01] Snell James, Tidwell Doug, Kulchenko Pavel, Programming Web Services

with Soap．s.l.，O'Reilly Media, Inc，2001．

[jav09] java.netopensso: Home．[Online]https://opensso.dev.java.net/．

[Las09] Lasso, Lasso - Free Liberty Alliance Single Sign

On．[Online]http://lasso.entrouvert.org/．

[Lib09] Liberty Alliance, Healthcare / Adoption / Home - Liberty

Alliance．[Online]http://www.projectliberty.org/liberty/adoption/healthcar

e.

[Mar09] Raepple Martin, Getting Started: Security Assertion Markup

Language．[Online]https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs

/library/uuid/2a563903-0b01-0010-b9a1-d3875ff74b32．

[Mic09] Microsoft“Geneva” Team Blog : Microsoft “Geneva”

Framework．[Online]http://blogs.msdn.com/card/archive/2008/11/04/micr

osoft-geneva-framework.aspx．

[OAS09] OASIS, sstc-saml-tech-overview-2 0-draft-13.pdf (application/pdf

Object)．[Online]http://www.oasis-

open.org/committees/download.php/22553/sstc-saml-tech-overview-

2%200-draft-13.pdf．

References

84

[OAS091] OASIS, sstc-saml-tech-overview-2.0-cd-02.pdf (application/pdf

Object)．[Online]http://www.oasis-

open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-

cd-02.pdf．

[OAS092] OASIS, History of SAML | SAML

XML.org．[Online]http://saml.xml.org/history．

[OAS093] OASIS, draft-sstc-solution-profile-kerberos-03.pdf (application/pdf

Object)．[Online]http://www.oasis-

open.org/committees/download.php/5392/draft-sstc-solution-profile-

kerberos-03.pdf．

[OAS094] OASIS,

SAMLv20ImplementationDraft01.pdf．[Online]http://xml.coverpages.org/

SAMLv20ImplementationDraft01.pdf．

[OAS095] OASIS, access_control-xacml-2.0-saml-profile-spec-

os.pdf．[Online]http://docs.oasis-open.org/xacml/2.0/access_control-

xacml-2.0-saml-profile-spec-os.pdf．

[OAS096] OASIS, Oasis Security Services Use Cases -- Straw Man Draft

3．[Online]http://www.oasis-open.org/committees/security/docs/draft-

sstc-use-strawman-03.html．

[OAS097] OASIS, XACML-ProfileSAML-

WD20040819.pdf．[Online]http://xml.coverpages.org/XACML-

ProfileSAML-WD20040819.pdf．

[OAS098] OASIS, SAML Assertion XSD．[Online]http://docs.oasis-

open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd．

[OAS099] OASIS, SAML Protocol XSD．[Online]http://docs.oasis-

open.org/security/saml/v2.0/saml-schema-protocol-2.0.xsd．

[OAS100] OASIS, OASIS: Advancing open standards for the global information

society．[Online]http://www.oasis-open.org/home/index.php.

[OMI09] OMII, OMII EUROPE – What are SAML and

XAML?[Online]http://library2.nesc.ed.ac.uk/fedora/get/lib:8713/DS1．

[Pat09] Patterson Pat, Sum Marina, Single Logout: A

Demo．[Online]http://developers.sun.com/identity/reference/techart/single

-logout.html．

[Pau09] Madsen Paul, XML.com: SAML 2: The Building Blocks of Federated

Identity．[Online]http://www.xml.com/pub/a/2005/01/12/saml2.html．

[Pin09] PingIdentity, PingFederate: Internet Single Sign-On, Internet User Account

Management, & Identity-Enabled Web

Services．[Online]http://www.pingidentity.com/products/pingfederate.cfm

[Pre09] Gralla Preston, How SAML

works．[Online]http://searchsoa.techtarget.com/tip/0,289483,sid26_gci81

8643,00.html．

References

85

[Rom09] Pletka Roman, Secure Propagation of Identities Using

SAML．[Online]http://www.security-

zone.info/download/kongress08/T6/R_Pletka.pdf．

[Sah08] Architecture of a single sign on (SSO) for internet banking． Bhosale

Sahana K.s.l.，IEEE，2008．IET International Conference．pp.103-

105．

[Sah09] Shah Sahid N., Single sign on (SSO) solutions in healthcare | The

Healthcare IT

Guy．[Online]http://www.healthcareguy.com/index.php/archives/218．

[Sen09] Sentillion, Sentillion: Identity and Access Management for

Healthcare．[Online]http://www.sentillion.com/．

[Shi09] Shibboleth, Shibboleth．[Online]http://shibboleth.internet2.edu/．

[Shi091] Shibboleth, SAMLDiffs – Shibboleth 1

Documentation．[Online]https://spaces.internet2.edu/display/SHIB/SAML

Diffs．

[Sin09] Single Logout Protocol．[Online]http://www.parallels.com/r/docs/sso/sso-

2.0-guide/index.htm?fileName=55765.htm．

[Sun09] Sun Microsystems, Sun Federated Identity

Management．[Online]http://www.sun.com/software/media/flash/demo_fe

deration/index.html．

[Sun091] Sun Microsystems, Sun OpenSSO Enterprise 8.0 Deployment Planning

Guide．[Online]https://opensso.dev.java.net/public/use/docs/fampdf/FAM

DPG.pdf．

[Sun092] Sun Microsystems, Deployment Example: SAML v2 Using SunOpenSSO

Enterprise

8.0．[Online]https://opensso.dev.java.net/public/use/docs/fampdf/FAMDP

G.pdf．

[Sun093] Sun Microsystems, Company

Info．[Online]http://www.sun.com/aboutsun/company/index.jsp.

[The09] The Times 100, Business Case Studies | BSI | Why are standards

important?[Online]http://www.thetimes100.co.uk/case-study--creating-

world-class-quality-standards--53-250-3.php．

[TRS09] T R S Cravo, SAMLDiffs - Shibboleth 1 Documentation - Internet2

Wiki．[Online]https://spaces.internet2.edu/display/SHIB/SAMLDiffs．

[Tun09] Namli Tuncay, Dogac Asuman,

Chapter8.pdf．[Online]http://www.srdc.metu.edu.tr/webpage/projects/sap

hire/publications/Chapter8.pdf．

[Val09] Rosset Valerio, Filippin Cleber V., Westphall Carla M., Distribuição de

Direitos para Sistemas DRM Utilizando Padrão de Segurança

SAML．[Online]http://inf.unisul.br/~ines/workcomp/cd/pdfs/2862.pdf．

[web09] Webex, WebEx: Federated Authentication

Service．[Online]http://developer.webex.com/c/document_library/get_file

References

86

?p_l_id=10914&folderId=11421&name=DLFE-201.pdf．

[Wik09] Wikipedia, Integrating the Healthcare Enterprise - Wikipedia, the free

encyclopedia．[Online]2009．http://en.wikipedia.org/wiki/Integrating_the

_Healthcare_Enterprise．

[Wik091] Wikipedia, Windows Live ID - Wikipedia, the free

encyclopedia．[Online]2009．http://en.wikipedia.org/wiki/Windows_Liv

e_ID．

[Wik092] Wikipedia, Standard - Wikipedia, the free

encyclopedia．[Online]http://en.wikipedia.org/wiki/Standard．

[Wik093] Wikipedia, FOSS Open Standards/Importance and Benefits of Open

Standards - Wikibooks, collection of open-content

textbooks．[Online]http://en.wikibooks.org/wiki/FOSS_Open_Standards/I

mportance_and_Benefits_of_Open_Standards．

[Wik094] Wikipedia, Separation of concerns - Wikipedia, the free

encyclopedia．[Online]http://en.wikipedia.org/wiki/Separation_of_concer

ns．

[Wik095] Wikipedia, Security Assertion Markup Language - Wikipedia, the free

encyclopedia．[Online]http://en.wikipedia.org/wiki/SAML．

[Yun07] Design and Enhance a Dynamic Healthcare Portal Site． WengYung-

Chinget al.s.l.，IEEE，2007．IEEE/WIC/ACM International

Conferences．pp.173-176．

87

Appendix A: ALERT

ALERT Life Sciences Computing is a Portuguese software house specialized in

healthcare solutions.

Created in 1999 under the name “Médicos na Internet” (“Doctors on the Internet”),

which mainly produced websites for medical and clinical associations, it grew into

ALERT on 2003. It currently has a multidisciplinary team of 750 employees.

Nowadays ALERT’s mission is to improve health and prolong life, achieve

profitability to benefit society, and inspire others to excel like it does.

With headquarters based in Porto, ALERT is spread all over the world. Composed

by six branches stationed in Portugal, Spain, United Kingdom, Netherlands as well as in

Northern America, Brazil and Singapore, the ALERT group of companies is fully

committed to the development, distribution and implementation of ALERT® healthcare

solutions, designed to create paper-free clinical environments.

Having won important awards over the past years as the Innovation Prize in 2006

and 2007, COTEC-BPI also in 2007 and the Medal of Honor from the Portuguese

Business Association in 2008, ALERT has been rapidly increasing its revenue every

year. In 2008 it presented a turnover of over 35 million Euros, mainly resulting of

contracts made outside of Portugal.

Its main products comprise a Paper Free Hospital suite which includes solutions for

entire hospitals such as for the emergency rooms, operating rooms, outpatient and

inpatient departments. It also provides non-clinical solutions as the ALERT® ERP and

ALERT® CRM.

ALERT® has already been adopted in Portugal, Spain, Italy, the Netherlands,

United Kingdom, Alaska, United States, Brazil as well as Malaysia and has never been

uninstalled.

88

Appendix B: Gantt Diagram

Figure 1: Project’s Gantt diagram.

ID
T
a
s
k
 N
a
m
e

S
ta
rt

F
in
is
h

M
a
r
2
0
0
9

A
b
r
2
0
0
9

M
a
i
2
0
0
9

J
u
n
 2
0
0
9

J
u
l
2
0
0
9

1
-3

8
-3

1
5
-3

2
2
-3

2
9
-3

5
-4

1
2
-4

1
9
-4

2
6
-4

3
-5

1
0
-5

1
7
-5

2
4
-5

3
1
-5

7
-6

1
4
-6

2
1
-6

2
8
-6

5
-7

1
2
-7

1
0
6
-0
3
-2
0
0
9

0
2
-0
3
-2
0
0
9

W
e
lc
o
m
e
 W
e
e
k

2
2
0
-0
3
-2
0
0
9

0
9
-0
3
-2
0
0
9

R
e
q
u
ir
e
m
e
n
t
A
n
a
ly
s
is
 a
n
d
 S
o
ft
w
a
re

A
rc
h
it
e
c
tu
re

3
1
3
-0
3
-2
0
0
9

0
9
-0
3
-2
0
0
9

R
e
q
u
ir
e
m
e
n
t
A
n
a
ly
s
is

4
2
0
-0
3
-2
0
0
9

1
6
-0
3
-2
0
0
9

S
o
ft
w
a
re
 A
rc
h
it
e
c
tu
re
 a
n
d

d
o
c
u
m
e
n
t

5
0
3
-0
4
-2
0
0
9

2
3
-0
3
-2
0
0
9

S
o
ft
w
a
re
 S
o
lu
ti
o
n
s
 C
o
m
p
a
ri
s
o
n

7
0
3
-0
4
-2
0
0
9

3
0
-0
3
-2
0
0
9

S
o
ft
w
a
re
 C
o
m
p
a
ri
s
o
n
 d
o
c
u
m
e
n
t

8
0
8
-0
4
-2
0
0
9

0
4
-0
4
-2
0
0
9

S
o
lu
ti
o
n
 D
is
c
u
s
s
io
n
 a
n
d
 D
e
c
is
io
n

9
0
8
-0
4
-2
0
0
9

0
4
-0
4
-2
0
0
9

P
ro
to
ty
p
in
g

1
0

1
7
-0
4
-2
0
0
9

1
3
-0
4
-2
0
0
9

S
o
ft
w
a
re
 D
e
s
ig
n

1
1

1
7
-0
4
-2
0
0
9

1
3
-0
4
-2
0
0
9

R
e
v
ie
w
 o
f
th
e
 A
rc
h
it
e
c
tu
re

d
o
c
u
m
e
n
t

1
2

2
4
-0
5
-2
0
0
9

2
0
-0
4
-2
0
0
9

S
o
ft
w
a
re
 I
m
p
le
m
e
n
ta
ti
o
n

1
3

1
6
-0
6
-2
0
0
9

0
8
-0
6
-2
0
0
9

T
h
e
s
is
 D
o
c
u
m
e
n
ta
ti
o
n

1
4

0
1
-0
7
-2
0
0
9

2
2
-0
6
-2
0
0
9

S
o
ft
w
a
re
 I
n
te
g
ra
ti
o
n
 a
n
d
 T
e
s
ti
n
g

1
5

1
5
-0
7
-2
0
0
9

0
6
-0
7
-2
0
0
9

F
u
n
c
ti
o
n
a
lit
ie
s
’
D
o
c
u
m
e
n
ta
ti
o
n

6
2
7
-0
3
-2
0
0
9

2
3
-0
3
-2
0
0
9

S
o
ft
w
a
re
 C
o
m
p
a
ri
s
o
n

89

Appendix C: Browser Cookie

A cookie that contains SSO related information will be used. This cookie will

contain information related to the SSO operation, which could range from the

authentication method used to particular user attributes. There will also be another

cookie containing session data (such as the session ID).

An HTTP Cookie is a parcel of text sent by a server to a Web client (in this case, to

the browser), which will be sent back unchanged by the client each time it access that

server.

A cookie has six definable attributes:

• Name – name of the cookie,

• Value – value associated with the cookie;

• Expires – the date until when the cookie is valid;

• Path – the subset of directories in a domain for which the cookie is valid;

• Domain – the domain for which the cookie is valid;

• Secure – a Boolean attribute which defines if there must be a secure https

connection in order for the cookie to be sent.

For Single Sign On, since the value of the cookie will contain innumerous

information and this information should not be easily read, it will be encoded. The

domain will be related to the issuer and, since the cookie is only sent through HTTPS

connections, the secure attribute shall be set to true.

Cookies present some limitations that will determine their implementation for SSO:

• Cookies cannot be set for domains other than those that the response is

originated from;

• Cookies can only be retrieved if they are valid for the document the script

resides in.

Therefore, the cookies will only be available to one domain and will not be shared

among Identity Provider and Service Providers.

90

Appendix D: SAML exchange

SSO Request made by the Identity Provider

<samlp:AuthnRequest ID=""s2bc965d244bd77a0ac1963d5d7ba5c6569ad46140""

Version=""2.0"" IssueInstant=""2009-06-17T13:22:15Z""

Destination=""http://www.alert.com:9999/opensso/SSORedirect/metaAlias/

idp"" ForceAuthn=""false"" IsPassive=""false""

ProtocolBinding=""urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact""

AssertionConsumerServiceURL=""http://www.phr.com:2222/opensso/Consumer

/metaAlias/sp"">

 <saml:Issuer>http://www.phr.com:2222/opensso</saml:Issuer>

 <samlp:NameIDPolicy Format=""urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"" SPNameQualifier=""http://www.phr.com:2222/opensso""

AllowCreate=""true""></samlp:NameIDPolicy>

 <samlp:RequestedAuthnContext Comparison=""exact"">

 <saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:P

asswordProtectedTransport</saml:AuthnContextClassRef>

 </samlp:RequestedAuthnContext>

</samlp:AuthnRequest>

Identity Provider receives the request and sends a response

<samlp:ArtifactResponse

xmlns:samlp=""urn:oasis:names:tc:SAML:2.0:protocol""

ID=""s2b1032277c3a9c7bd9565e6eabe7d4ec0237906d2""

InResponseTo=""s2bb521332e0f0265625ca2917165d52548da6b805""

Version=""2.0"" IssueInstant=""2009-06-17T13:22:27Z""

Destination=""http://www.phr.com:2222/opensso/Consumer/metaAlias/sp"">

 <saml:Issuer

xmlns:saml=""urn:oasis:names:tc:SAML:2.0:assertion"">http://www.alert.

com:9999/opensso</saml:Issuer>

 <samlp:Status xmlns:samlp=""urn:oasis:names:tc:SAML:2.0:protocol"">

 <samlp:StatusCode

xmlns:samlp=""urn:oasis:names:tc:SAML:2.0:protocol""

Value=""urn:oasis:names:tc:SAML:2.0:status:Success""></samlp:StatusCod

e>

 </samlp:Status>

 <samlp:Response

xmlns:samlp=""urn:oasis:names:tc:SAML:2.0:protocol""

Appendix D

91

ID=""s2595bb04813abaab9019ef4585b1418587d239947""

InResponseTo=""s2bc965d244bd77a0ac1963d5d7ba5c6569ad46140""

Version=""2.0"" IssueInstant=""2009-06-17T13:22:27Z""

Destination=""http://www.phr.com:2222/opensso/Consumer/metaAlias/sp"">

 <saml:Issuer

xmlns:saml=""urn:oasis:names:tc:SAML:2.0:assertion"">http://www.alert.

com:9999/opensso</saml:Issuer>

 <samlp:Status

xmlns:samlp=""urn:oasis:names:tc:SAML:2.0:protocol"">

 <samlp:StatusCode

xmlns:samlp=""urn:oasis:names:tc:SAML:2.0:protocol""

Value=""urn:oasis:names:tc:SAML:2.0:status:Success""></samlp:StatusCod

e>

 </samlp:Status>

 <saml:Assertion

xmlns:saml=""urn:oasis:names:tc:SAML:2.0:assertion""

ID=""s2e6b57cbd135f16268ac9e17b8ce0eb805074a043"" IssueInstant=""2009-

06-17T13:22:26Z"" Version=""2.0"">

 <saml:Issuer>http://www.alert.com:9999/opensso</saml:Issuer>

 <Signature xmlns=""http://www.w3.org/2000/09/xmldsig#"">

 <SignedInfo>

 <CanonicalizationMethod

Algorithm=""http://www.w3.org/2001/10/xml-exc-c14n#""/>

 <SignatureMethod

Algorithm=""http://www.w3.org/2000/09/xmldsig#rsa-sha1""/>

 <Reference

URI=""#s2e6b57cbd135f16268ac9e17b8ce0eb805074a043"">

 <Transforms>

 <Transform

Algorithm=""http://www.w3.org/2000/09/xmldsig#enveloped-signature""/>

 <Transform

Algorithm=""http://www.w3.org/2001/10/xml-exc-c14n#""/>

 </Transforms>

 <DigestMethod

Algorithm=""http://www.w3.org/2000/09/xmldsig#sha1""/>

 <DigestValue>UDyPcmjf6wPYutjG1aPjoN7Gf24=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>X/6BLSxLoFx1CiCsU2HP4cTZN5rDqF3Br3OqxS3VV22sYddmnaM

Nq7DDq2pNuZJktm0rR3KJhzb3INH+lWDAENz2NV/pPKc5UVDNFhwfiuwE9R0EF77a1pTen

2uTjtu8pYGmass2lE35QruU+kTtnDF21jzcQfuW1RQkjFW7NiE=</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>nMIICQDCCAakCBEeNB0swDQYJKoZIhvcNAQEEBQAwZzELMAkGA

1UEBhMCVVMxEzARBgNVBAgTCkNhnbGlmb3JuaWExFDASBgNVBAcTC1NhbnRhIENsYXJhMQ

wwCgYDVQQKEwNTdW4xEDAOBgNVBAsTB09wZW5TU08xDTALBgNVBAMTBHRlc3QwHhcNMDgw

MTE1MTkxOTM5WhcNMTgwMTEyMTkxOTM5WjBnMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2

FsaWZvcm5pYTEUMBIGA1UEBxMLU2FudGEgQ2xhcmExDDAKBgNVBAoTA1N1bjEQMA4GA1UE

CxMHT3BlblNTTzENMAsGA1UEAxMEdGVzdDCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgY

EArSQc/U75GB2AtKhbGS5piiLkmJzqEsp64rDxbMJ+xDrye0EN/q1U5Of+RkDsaN/igkAv

V1cuXEgTL6RlafFPcUX7QxDhZBhsYF9pbwtMzi4A4su9hnxIhURebGEmxKW9qJNYJs0Vo5

+IgjxuEWnjnnVgHTs1+mq5QYTA7E6ZyL8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQB3Pw/U

QzPKTPTYi9upbFXlrAKMwtFf2OW4yvGWWvlcwcNSZJmTJ8ARvVYOMEVNbsT4OFcfu2/PeY

oAdiDAcGy/F2Zuj8XJJpuQRSE6PtQqBuDEHjjmOQJ0rV/r8mO1ZCtHRhpZ5zYRjhRC9eCb

jx9VrFax0JDC/FfwWigmrW0Y0Q==</X509Certificate>

 </X509Data>

 </KeyInfo>

 </Signature>

 <saml:Subject>

 <saml:NameID

Format=""urn:oasis:names:tc:SAML:2.0:nameid-format:transient""

Appendix D

92

NameQualifier=""http://www.alert.com:9999/opensso""

SPNameQualifier=""http://www.phr.com:2222/opensso"">CNhLrwTsxJt1W/7icC

bVOGg7VE80</saml:NameID>

 <saml:SubjectConfirmation

Method=""urn:oasis:names:tc:SAML:2.0:cm:bearer"">

 <saml:SubjectConfirmationData

InResponseTo=""s2bc965d244bd77a0ac1963d5d7ba5c6569ad46140""

NotOnOrAfter=""2009-06-17T13:32:27Z""

Recipient=""http://www.phr.com:2222/opensso/Consumer/metaAlias/sp""/><

/saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Conditions NotBefore=""2009-06-17T13:12:27Z""

NotOnOrAfter=""2009-06-17T13:32:27Z"">

 <saml:AudienceRestriction>

 <saml:Audience>http://www.phr.com:2222/opensso</saml:Audience>

 </saml:AudienceRestriction>

 </saml:Conditions>

 <saml:AuthnStatement AuthnInstant=""2009-06-17T13:22:26Z""

SessionIndex=""s20c67847be65a7bbf15622ef3aba3050b8d349101"">

 <saml:AuthnContext>

 <saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:P

asswordProtectedTransport</saml:AuthnContextClassRef>

 </saml:AuthnContext>

 </saml:AuthnStatement>

 <saml:AttributeStatement>

 <saml:Attribute Name=""userid"">

 <saml:AttributeValue

xmlns:xs=""http://www.w3.org/2001/XMLSchema""

xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance""

xsi:type=""xs:string"">1</saml:AttributeValue>

 </saml:Attribute>

 </saml:AttributeStatement>

 </saml:Assertion>

 </samlp:Response>

</samlp:ArtifactResponse>

Service Provider receives and extracts the response

<samlp:Response ID=""s2595bb04813abaab9019ef4585b1418587d239947""

InResponseTo=""s2bc965d244bd77a0ac1963d5d7ba5c6569ad46140""

Version=""2.0"" IssueInstant=""2009-06-17T13:22:27Z""

Destination=""http://www.phr.com:2222/opensso/Consumer/metaAlias/sp"">

 <saml:Issuer>http://www.alert.com:9999/opensso</saml:Issuer>

 <samlp:Status>

 <samlp:StatusCode

Value=""urn:oasis:names:tc:SAML:2.0:status:Success""></samlp:StatusCod

e>

 </samlp:Status>

 <saml:Assertion

xmlns:saml=""urn:oasis:names:tc:SAML:2.0:assertion""

ID=""s2e6b57cbd135f16268ac9e17b8ce0eb805074a043"" IssueInstant=""2009-

06-17T13:22:26Z"" Version=""2.0"">

 <saml:Issuer>http://www.alert.com:9999/opensso</saml:Issuer>

 <Signature xmlns=""http://www.w3.org/2000/09/xmldsig#"">

 <SignedInfo>

 <CanonicalizationMethod

Algorithm=""http://www.w3.org/2001/10/xml-exc-c14n#""/>

 <SignatureMethod

Algorithm=""http://www.w3.org/2000/09/xmldsig#rsa-sha1""/>

 <Reference

URI=""#s2e6b57cbd135f16268ac9e17b8ce0eb805074a043"">

Appendix D

93

 <Transforms>

 <Transform

Algorithm=""http://www.w3.org/2000/09/xmldsig#enveloped-signature""/>

 <Transform

Algorithm=""http://www.w3.org/2001/10/xml-exc-c14n#""/>

 </Transforms>

 <DigestMethod

Algorithm=""http://www.w3.org/2000/09/xmldsig#sha1""/>

 <DigestValue>UDyPcmjf6wPYutjG1aPjoN7Gf24=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>X/6BLSxLoFx1CiCsU2HP4cTZN5rDqF3Br3OqxS3VV22sYddmnaM

Nq7DDq2pNuZJktm0rR3KJhzb3INH+lWDAENz2NV/pPKc5UVDNFhwfiuwE9R0EF77a1pTen

2uTjtu8pYGmass2lE35QruU+kTtnDF21jzcQfuW1RQkjFW7NiE=</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>MIICQDCCAakCBEeNB0swDQYJKoZIhvcNAQEEBQAwZzELMAkGA1

UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFDASBgNVBAcTC1NhbnRhIENsYXJhMQww

CgYDVQQKEwNTdW4xEDAOBgNVBAsTB09wZW5TU08xDTALBgNVBAMTBHRlc3QwHhcNMDgwMT

E1MTkxOTM5WhcNMTgwMTEyMTkxOTM5WjBnMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2Fs

aWZvcm5pYTEUMBIGA1UEBxMLU2FudGEgQ2xhcmExDDAKBgNVBAoTA1N1bjEQMA4GA1UECx

MHT3BlblNTTzENMAsGA1UEAxMEdGVzdDCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA

rSQc/U75GB2AtKhbGS5piiLkmJzqEsp64rDxbMJ+xDrye0EN/q1U5Of+RkDsaN/igkAvV1

cuXEgTL6RlafFPcUX7QxDhZBhsYF9pbwtMzi4A4su9hnxIhURebGEmxKW9qJNYJs0Vo5+I

gjxuEWnjnnVgHTs1+mq5QYTA7E6ZyL8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQB3Pw/UQz

PKTPTYi9upbFXlrAKMwtFf2OW4yvGWWvlcwcNSZJmTJ8ARvVYOMEVNbsT4OFcfu2/PeYoA

diDAcGy/F2Zuj8XJJpuQRSE6PtQqBuDEHjjmOQJ0rV/r8mO1ZCtHRhpZ5zYRjhRC9eCbjx

9VrFax0JDC/FfwWigmrW0Y0Q==</X509Certificate>

 </X509Data>

 </KeyInfo>

 </Signature>

 <saml:Subject>

 <saml:NameID Format=""urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"" NameQualifier=""http://www.alert.com:9999/opensso""

SPNameQualifier=""http://www.phr.com:2222/opensso"">CNhLrwTsxJt1W/7icC

bVOGg7VE80</saml:NameID>

 <saml:SubjectConfirmation

Method=""urn:oasis:names:tc:SAML:2.0:cm:bearer"">

 <saml:SubjectConfirmationData

InResponseTo=""s2bc965d244bd77a0ac1963d5d7ba5c6569ad46140""

NotOnOrAfter=""2009-06-17T13:32:27Z""

Recipient=""http://www.phr.com:2222/opensso/Consumer/metaAlias/sp""/>

 </saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Conditions NotBefore=""2009-06-17T13:12:27Z""

NotOnOrAfter=""2009-06-17T13:32:27Z"">

 <saml:AudienceRestriction>

 <saml:Audience>http://www.phr.com:2222/opensso</saml:Audience>

 </saml:AudienceRestriction>

 </saml:Conditions>

 <saml:AuthnStatement AuthnInstant=""2009-06-17T13:22:26Z""

SessionIndex=""s20c67847be65a7bbf15622ef3aba3050b8d349101"">

 <saml:AuthnContext>

 <saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:P

asswordProtectedTransport</saml:AuthnContextClassRef>

 </saml:AuthnContext>

 </saml:AuthnStatement>

 <saml:AttributeStatement>

 <saml:Attribute Name=""userid"">

Appendix D

94

 <saml:AttributeValue

xmlns:xs=""http://www.w3.org/2001/XMLSchema""

xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance""

xsi:type=""xs:string"">1</saml:AttributeValue>

 </saml:Attribute>

 </saml:AttributeStatement>

 </saml:Assertion>

</samlp:Response>

