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Abstract 

The way conceptual models are used today within application development 

depends heavily on the level of detachment between model and implementation. This 

model-implementation gap has an impact on model detail and its maintenance effort. In 

an environment where new requirements tend to be added while a project is evolving it 

is often very difficult to manage this gap. 

Typical roundtrip based approaches were able to tighten this gap at the cost of 

merging implementation detail in the model structure. They also imposed an additional 

effort on keeping those changes synchronized with implementation changes. Recent 

generative methodologies like Model-Driven Software Development (MDSD) 

overcome this problem by a forward only generative process directed by highly abstract 

Domain Specific Languages (DSLs), but they also have its drawbacks. They impose a 

delay between model changes and application execution that could inhibit model 

experimentation. 

Other approaches like Adaptive Object Modelling (AOM) focus on reducing the 

model-implementation gap by embedding the model within the implementation that is 

responsible for its run-time interpretation. Changes occurring in the model are 

immediately perceived by the application and have a direct impact on its behaviour.  

This dissertation is about building an AOM based framework for model embedded 

applications and applying it to specific domains. This framework (FV-RAD), based on a 

subset of UML class models, should provide instant model based prototyping of 

application requirements and its progressive refinement throughout the development 

process. It should also allow additional code attachments, extending its global 

functionality and "filling the holes" where the framework lacks in grasp. 

Two practical examples, one of them in the field of public transportation, are also 

provided as a demonstration of the framework's capabilities. 
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Resumo 

Actualmente, a forma como os modelos conceptuais são utilizados para o 

desenvolvimento de aplicações depende largamente da ligação entre o modelo e a 

implementação. Esta lacuna entre modelo e implementação tem um impacto sobre o 

nível de detalhe e esforço de manutenção do modelo. Num ambiente de constante 

mudança onde novos requisitos tendem a ser adicionados à medida que um projecto 

evolui, torna-se muitas vezes difícil gerir esta lacuna. 

Abordagens típicas como a engenharia roundtrip mostraram-se capazes de reduzir 

esta lacuna mas ao custo da imposição de detalhes de implementação na estrutura do 

modelo. Revelaram igualmente um esforço adicional na manutenção do sincronismo 

entre as alterações no modelo e aquelas resultantes da implementação. As metodologias 

generativas mais recentes como o Software Dirigido por Modelo (Model-Driven 

Software Development) são capazes de ultrapassar estes problemas através de um 

processo de geração de sentido único (forward only) dirigido por linguagens de 

modelação orientadas ao domínio (Domain Specific Languages) de um grande grau de 

abstracção, mas também têm as suas desvantagens. Elas impõem uma demora entre as 

alterações no modelo e a execução da aplicação que pode ser inibidora relativamente à 

modelação experimental. 

Outras abordagens como a Modelação por Objectos Adaptativa (AOM – Adaptive 

Object Modelling) incidem na redução da lacuna modelo-implementação pela 

incorporação do modelo na implementação que é responsável pela sua interpretação em 

tempo de execução. As alterações no modelo são imediatamente percebidas pela 

aplicação onde exercem impacto comportamental directo. 

Esta dissertação aposta na construção de um framework prático baseado em 

técnicas adaptativas, para aplicações de modelo embebido, e na sua aplicação em 

domínios específicos. Este framework, baseado num subconjunto dos modelos de 

classes do UML, deverá permitir a prototipagem automática dos requisitos da aplicação 

e o seu refinamento progressivo através do processo de desenvolvimento. Deverá 

igualmente permitir a anexação de código à implementação, estendendo a sua 

funcionalidade global e "tapando os buracos" onde o framework se revela mais 

limitado. 

Dois exemplos práticos, um deles no domínio dos transportes públicos, são também 

fornecidos como forma de demonstrar o potencial deste framework. 
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1 Introduction 

Software development is still a growing business with an increased history in 

applying new methodologies for its production. It is however strange to notice that, after 

all this time, it generally still comes down to the manual writing of thousands or 

millions of lines of code. In an era where the human error factor has been largely 

compensated through the use of automation based processes and redundant quality 

systems, it is discouraging to observe how such archaic, low level, error prone processes 

are still the most applied practices in IT. The price is still being paid and it is reflected 

in software quality and in deadlines that keep meeting failure. 

Software development is slowly raising its abstraction level, and releasing humans 

from the tedious repetitive tasks of low level programming. It is now time to relax our 

finger tips and embrace the next paradigm in software development by applying finger 

toes, to our models… 

1.1 Methodologies and RAD 

Early application development methodologies were typically devised as a waterfall 

like model [Royce'87], where a series of disciplined and well defined phases take place 

from requirement analysis and application design to the final implementation stages. 

These more rigorous approaches were intended to minimize the cost of possible future 

changes by predicting all system requirements and translating those into a big well 

thought design up front. 

The problem is that, in more evolving environments, where requirements tend to be 

added or changed more frequently, it may happen that by the time the “final” design has 

reached its implementation phase, the system has lost its utility by failing to comply 

with the latest requirements. This is especially true when customers are only able to 

decide on their actual needs by interacting with some sort of early version of a system 

prototype. 

Although predictive methodologies are still in use, more recent approaches to 

development have progressively become more adaptive to changing requirements. 

Application development has evolved into a more iterative and incremental process (ex. 
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RUP [JBR'99]). The idea was to minimize the time between gathering requirements and 

producing the first or the next software release, being it an intermediate prototype or a 

specific application component.  

Some methodologies, like Rapid Application Development (RAD), presented by 

James Martin in 1991 [Martin'91], have set changing requirements as their stepping 

stone to development. RAD encouraged the rapid production of application prototypes 

in short successive development cycles, supported by CASE tools, as a way for the 

developer to validate and gain immediate feedback on customer’s requirements. 

The formal methodology as described by James Martin is no longer practiced, but 

its principles are still in use. Current Agile Software Development methodologies (ex. 

SCRUM [SchwaberBeedle'02], XP [BeckAndres'05]) share a lot of those principles by 

reducing the time between picking the next priority requirements and releasing the next 

software version to a minimum, and thus bringing developers and stakeholders closer 

together in the development process. 

Although somehow lost in its original form RAD has now assumed a new broader 

meaning. Whenever software automation tools or frameworks are in place, the RAD 

acronym rises as the buzzword of choice which generally translates into speeding up the 

time from requirement or design changes to implementation results. 

1.2 Development at OPT 

OPT (Optimização e Planeamento de Transportes, SA) is the company providing 

the organizational context for this dissertation. Its mission is to provide excellence in 

innovative and optimized systems for transport planning, management and public 

information. 

OPT is the joint result of two different sorts of expertise, one related to operational 

research techniques in the field of transportation and optimization of resources, and 

another dedicated to software development. The core product of the company is the 

GIST system, a client-server modular system which allows for public transport 

companies to plan their offer and manage their resources in an optimized way. Major 

companies in Portugal use this system in a daily basis to manage their vehicle fleets and 

drivers. There are other important products at OPT and the company is also very 

committed to several projects related to public information. 

Another important project OPT is involved with is the development of a light 

version of the GIST system (GIST Light - Public Transport Planner). This version is 

intended for smaller public transport companies and for research purposes within the 

academic community. The idea is to provide a simple document based application that 

provides a useful decision support system for the management of vehicle and driver 

schedules. 

Depending on the type of project OPT has different strategies for the development 

process. Basically, there is a more strict documentation oriented process following 

several standards that is applied to larger projects with several stakeholders, and there is 

another more agile milestone oriented process that is used for instance in smaller 

projects where requirements aren’t clearly defined upfront, or long projects whose 

duration is an important factor for getting requirements outdated. 

Although different development methodologies are used, there is a set of common 

aspects that these share: 

 Even in larger projects some agility is always in place, in the sense that 
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requirements are rarely set up-front and development is always done in 

several iterations and oriented towards the next highest priority 

requirements. 

 Extensive use of evolving prototypes for validating, finding new 

requirements, and demonstrating progress. 

 Modelling is detached from implementation; no software automation tools 

are used. 

 Resort to UML class diagrams in design phase as the top modelling artefact. 

 Object oriented models like UML class diagrams are also used as the 

preferred mean to discuss conceptual issues. 

 A huge effort of the development process is spent either on programming 

the same recurring patterns repeatedly or trying to put these patterns in a 

generic library that is used extensively throughout the project. These 

patterns extend from functional logic to user interface and persistence. 

 The choice of which programming patterns to use, most of the times, could 

be easily inferred by analysing the conceptual model, along with some 

additional configuration detail. 

1.3 Motivation and Goals 

The aforementioned aspects of the development process at OPT have set the 

prelude to the urging need of a tool that would easily and rapidly translate the modelling 

effort involved in the conceptual design of applications into some form of  usable 

"material" like a functional library or a prototype. This "material" could be used for 

testing or demonstration purposes and it would still play an important role as a design 

proofing tool. However, the real impact in productivity should be achieved by using it 

as the foundation backbone for the remaining development effort, by allowing it to 

integrate smoothly with the implementation in an evolving way. 

In a nutshell, for the modelling effort to become more profitable and provide added 

value to each model, it should be able to answer some of the needs that arose from the 

development process at OPT. These needs extend from requirements and design issues 

to every aspect of the implementation process like functional logic, user interface and 

persistence: 

Requirements 

 Validating and gathering requirements within stakeholders through the use 

of rapid prototypes. 

Design 

 Testing the consistency of design models. 

 Using models to discuss and verify the impact of design decisions. 

 Base the implementation in design models. 

Functional Logic 

 Rapid transition from model to model-aware domain library. 

 Attaching functionality to models by integration with implementation tools. 
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 Overcoming model semantic limitations. 

 Running a model for testing purposes. 

User Interface 

 Raise intelligence level on current UI frameworks by making them model-

aware. 

 Automatic generation of model based user interface for prototyping. 

Persistence 

 Generating persistence schemas 

 Automatic model based persistence. 

The answer to these needs called upon the development of the framework in the 

scope of this thesis. It should be able to at least tackle some of the challenges that were 

being proposed. Being an inner development at OPT meant that, besides facilitating a 

better knowledge of its workings and use, there was an additional advantage that it 

could be tailored to fit company specific needs. 

The "GIST Light" project described earlier, particularly a more limited pre-release 

version called "Bus Planner", finally triggered the will for this framework. The fact that 

it is a single user flat-file based application somehow limited the scope for the initial 

aim of the intended framework, reducing the risk for project dispersion. 

Being a RAD framework that would rely on the description of entity Fields and 

allow the control of their changing Values, it was decided to name it "FV-RAD" (it 

seems all RAD related acronyms had been used up). It could stand as well for "Flat-file 

Version", "Fast Velocity", or “Framework Version", just take your pick. 

Having decided on the needs and boundaries that would define the initial scope of 

this thesis, it was now time to have a clear understanding of what would be its main 

goals and constraints: 

Goals 

 To build a framework that allows for the integration of an application's 

conceptual model within its implementation, thus becoming model-aware. 

 To demonstrate and test design models by rapidly producing executable 

prototypes. 

 To allow for prototypes to evolve until a final release is reached, by 

progressively refining its functionality with the implementation tools (ex: 

code extensions). 

 To spread the framework across all aspects of the implementation process: 

functional logic, user interface, and persistence. 

 To apply this framework to a real project. 

Constraints 

 Models are based on a subset of UML class diagrams. 

 Only single user flat-file based persistence should be supported. 
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1.4 Thesis Statement 

Software conceptual models are currently used in various ways. They might be 

totally detached from the implementation and used solely for design planning purposes, 

or they might somehow integrate with the implementation throughout the development 

process. This gap between model and implementation is also reflected on the structure 

and level of detail provided by these models. In an environment with frequent evolving 

requirements, a high level of detachment generally imposes a low level of detail so that 

the effort on keeping these models up-to-date is reduced; highly detailed models would 

tend to limit model usage to an initial design baseline. 

The bottom line is that a low level of interaction between model and 

implementation adds little value to each model. Shortening this gap and providing 

model usage and integration through all the development process, is one of the 

challenges we face today. Doing it in a way that smoothly integrates with the 

technology and tools provided by the implementation process of a specific organization, 

is another challenge that is faced in the scope of this thesis. 

The statement of this thesis is that, by embedding the model in the implementation, 

through the use of a framework inspired on Adaptive-Object-Modelling techniques and 

supported by a simple configuration process, we are able not just to make the 

implementation model-aware but also to adjust and close model semantics to a 

particular implementation technology. The bridge is established between highly abstract 

constructs provided by models and low level control provided by specific 

implementation tools. The advantages are obvious; the model-implementation gap is 

shortened in a way most suitable to developer needs. Models will have a direct impact 

on application development results and the organization will benefit from their added 

value and use. 

Also, by providing an initial "raw" implementation of the model, through the 

framework's interpretation of the model's domain, and by adding an intelligent User-

Interface library that is model-aware and some type of persistence mechanism (ex: 

XML), all main aspects of an application spectrum should be covered, and the ability to 

provide a fully working prototype should be acquired. The application core will be 

centred on the execution of its domain model. Translating requirements into working 

prototypes will be effortless, and final project outcome will be reached through the 

progressive refinement of implementation details. This refinement process should 

extend model semantics and provide additional functionality by "filling the holes" 

where the framework lacks its grasp.  

The framework hereby described is not intended to be a complete environment but 

rather a simple practical tool, suited and familiar to a particular development process, 

and inspired on premises that resemble the initial RAD goals established by James 

Martin. 

1.5 Thesis Outline 

The first chapter gives an introduction on RAD, modelling, and how modelling 

integrates the development process. It proceeds by putting these in the perspective of the 

hosting company and identifying the needs that originated this work. Finally the 

motivation and goals that led to this thesis are presented and concludes with the thesis 

statement. 
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Chapter 2 gives a state of the art analysis of modelling strategies and model 

oriented development. Special emphasis is put in generative software development and 

AOM. These approaches are finally classified and compared in the last section. 

Chapters 3 and 4 present the framework (FV-RAD) developed by the author in the 

scope of this thesis. After an initial contextualization, with specific technical goals and 

limitations intended for the first release (chapter 3), main technical issues are described 

in detail for the full understanding of the framework’s architecture. 

Chapter 5 gives a practical approach to using the developed framework. Use case 

considerations are explained initially. Examples are presented in the scope of a simple 

demonstration and the “Bus Planner" project currently under development at OPT 

(modelling issues). 

Chapter 6 presents final results and conclusions, and discusses the next steps for 

evolving the framework. 

Finally, some references and appendixes are provided as support for the reader of 

this thesis. 
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2 Modelling and Development 

Modelling is an integral part of almost every development process in use today. As 

methodologies evolve, models are getting closer to the problem space rather than 

imposing a specific solution. Future trends are becoming directed towards finding the 

best modelling languages and architectures for solving general purpose or specific 

domain oriented problems. It is thus important to situate models in the current 

development context and analyse how current approaches deal with the gap between 

highly abstract modelling languages and low level platform oriented implementation 

assets. 

2.1 Modelling 

2.1.1 The Need for Models 

Design models play an important role in software development. Whether of a 

general purpose nature like UML based models [BRJ'05, RJB'05] or custom built to suit 

a particular software domain like DSLs [DKVCzarneckiEisenecker'00, '00],  they 

capture system variability into design abstractions that are used as the baseline for the 

implementation process. They also provide a way of formalizing requirements into 

structural and behavioural constructs that define system concepts, functional logic, and 

constraints. Other important characteristics of software models are presented next: 

Models resume a reality or a solution to a problem. 

Models are able to define a conceptual plan (master plan). 

Models may translate design choices and direct the implementation of software. 

Models define a common language for discussing and understanding problems 

and solutions. 

Models are succinct, they don't have to draw the whole picture but rather 

synthesise the main structural and behavioural aspects of a system. Also, a small 

set of related modelling constructs has the ability to pass a lot of information 



 8 

through their huge semantical power. In a rough way, models allow the 

definition of very much with very little; this particularly applies to graphical 

modelling. 

Models are independent from implementation technology. A decrease in 

abstraction implies an additional weight in complexity and detail as you get 

closer to specific implementation technology. 

Models for design purposes must be computational as they can be tested and 

simulated; this also means they must be syntactically and semantically consistent 

(unambiguous). 

 

As methodologies evolved from more predictive to more adaptive, the importance 

of models, as a way to rapidly translate design into prototypes or into implementation 

was considerably more demanding. Stakeholders want to be able to see results from the 

early stages of the development process in order to validate their compliance to 

requirements, and developers want to continuously probe for costumer needs. The 

highly synthetic and semantical power of models supported by the right set of tools 

allows just for that to happen. 

2.1.2 Metamodelling 

Metamodels are models used for defining model structure. They are important in 

the context of the specification of the UML standard for modelling, which uses MOF 

(Meta Object Facility) as the meta-metamodel for the definition of the meta-models that 

give support to the UML specification [OMG'09]. Metamodelling can be seen as a 

multi-level structure where each level describes instances from the previous level. The 

OMG (Object Management Group) has 4 metalevels, M0 for final instances (objects), 

M1 for the models with classes describing the objects, M2 for the metamodels with 

classifiers describing the models, and finally M3 for the meta-metamodels that describe 

metamodels (see Figure 2.1) . 

 

Figure 2.1 - The four metalevels of OMG 
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Metamodels are also used for the construction of Domain Specific Languages 

(DSLs), by describing the abstract syntax of such languages (graphical or textual). They 

will be used as the basis for model-validation, model-to-model and model-to-code 

transformations in the context of generative methodologies (see sections 2.4, 2.5 and 

2.6). They are also used for the definition of tools and frameworks that are able to adapt 

to the respective domain (see section 2.7). 

2.2 Software Reuse 

Software reuse is about increasing the level of productivity in software 

development [ClementsNorthrop'02]. It’s been quite some time since subroutines were 

the only way of software reuse. From then, successive evolutionary steps have raised 

the level of software productivity and progressively reduced the need to write code (see 

Figure 2.2), although still not enough to satisfy the market demand for more and higher 

quality software. 

 

Figure 2.2 - Software reuse, from past to present 

 

Object oriented programming [Meyer'97], component based development 

[SGM'03], object oriented frameworks [FayadSchmidt'97, Johnson'92, Lewis'95], and 

the study and classification of important design patterns [GoFFowler'03, '95] have all 

been important breakthroughs for software reuse. The combined use of these and other 

emerging technologies like aspect-oriented programming [Laddad'03], at different 

abstraction layers, and a clear shift towards a paradigm for design reuse, through 

modelling and development of software production lines, has led to the current state of 

the art in software reuse through generative software development methodologies 

[Czarnecki'04] (also see sections 2.4, 2.5 and 2.6). 
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Models have never been as important for software reuse as they are today. As the 

level of abstraction for software development raises, modelling artefacts like Domain 

Specific Languages (DSLs) provide the ideal mean of expressing these abstractions and 

for translating these into a reusable architecture. The emphasis is no longer on 

composing an architecture from general components and frameworks, but rather on 

generating an architecture from DSL based configurations, isolating the developer from 

the cross-cutting concerns that are part of the architecture’s infrastructure. 

Adaptive Object Modelling (AOM) techniques [YBJ'01] have also been an 

important part in software reuse by empowering the user/developer to make run-time 

changes to the application by editing models based on general purpose DSLs. These 

models are interpreted at run-time by specialized frameworks, allowing the application 

to easily adapt to new requirement changes without the need for extra coding or 

compilation (see section 2.7). 

The market demand for more and higher quality software is still far from being 

fulfilled, but recent generative, adaptive technology trends and others open a new 

window for the future, where models and model oriented development will definitely 

play an important role. 

2.3 Development with Models 

In this section, a comparison is made between different model oriented strategies in 

development methodologies. This analysis is made from the perspective of dealing with 

the model-implementation gap and its impact on model usage. 

2.3.1 Detached Modelling 

In this strategy models are totally detached from the implementation. 

This is still one of the most used model based development strategies. Models are 

particularly useful at the beginning of the development process in order to guide the 

implementation process and they are used as a reference there upon. Unless it is a 

critical system or a big project with few evolving requirements where a more detailed 

specification is needed, these models should be kept simple in order to illustrate main 

system functionality and to reduce the effort on keeping the models updated as 

requirements evolve. 

2.3.2 Executable Modelling 

This strategy is based in executable models that embed the implementation. 

Some tools allow the definition of models for every aspect of the development 

process, from functional logic to user interface and persistence. These general purpose 

tools may even include some kind of high level programming language like OCL 

(Object Constraint Language) [RichtersGogolla'99] to detail model constraints or 

operations. Although these tools are considerably powerful, the problem is that they 

lack flexibility in low level control of technology. The conceptual and technological gap 

between existing modelling and implementation technologies has prevented good 

support for true integration between high level modelling and low level implementation 

constructs. Combining the power of a high level modelling and low level 

implementation technology into a single fully integrated development tool (no code 
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generation) is still a challenge to be overcome. An interesting attempt has been done by 

[RFBO'01] trying to devise an architecture for a UML virtual machine. There’s also a 

trend on applying UML virtual machines for MDA [MellorBalcer'02]. 

Another important aspect is that these are general purpose one size fits all abstract 

modelling languages (as opposed to DSLs), not oriented to a specific domain, which 

means there will be a semantic gap between these models and the domain. 

2.3.3 Design-Time Modelling 

Roundtrip Engineering 

This strategy tries to synchronize the models with the implementation. 

This is typically achieved through code generation and reverse engineering 

techniques (roundtrip engineering). Unless there is a deep integration of modelling tools 

within the development environment and its libraries, the effort put on synchronizing 

implementation code with modelling constructs, particularly after initial code generation 

phases, may be discouraging. When the programmer starts adding additional code and 

manually changes the implementation, it will be difficult to decide whether this code 

should be reflected in the model or kept "hidden" within the implementation. Even 

small things like changing the name of an attribute or adding a parameter may have to 

be synchronized, adding an additional overhead to the development effort. Models may 

end up being too much detailed and their abstraction level reduced in order to comply to 

a specific development environment and programming language. CASE tools typically 

explore this kind of modelling orientation [KSSSZ'02] (which is probably also why 

their success has been quite disappointing). 

Generative Development 

This strategy generates the implementation from models. Manual written code is 

added but no reverse-engineering is allowed [Czarnecki'04]. 

Generative software development generates all infrastructure code from DSL based 

models. These are highly abstract modelling languages that try to match a particular 

domain in the problem space (see sections 2.4, 2.5 and 2.6). By being domain oriented 

and more focused on the problem rather than on the solution, they are isolated from the 

specific platform where the implementation is due, thus ensuring better independence 

from technology variation or evolution. This high degree of abstraction also means that 

reverse engineering is practically impossible, as it would impose a level of 

implementation based detail on models (from the solution space) that is contradictory to 

its goals. 

Some tools may focus on full code generation, but the aim is to provide code 

generation for the entire domain architecture infrastructure and add code to fill the gaps 

where the models or the generator are unable to cope with. 

Generative methodologies are also directed toward the implementation of software 

production lines for given software system families. 

2.3.4 Run-Time Modelling 

In this strategy the model is embedded in the implementation. The implementation 

is model aware, and directed by the interpretation of the model. 
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This scenario is a good trade-off between the high level abstraction of a model and 

low level control of implementation technology. The abstraction level of the model is 

not compromised because the model doesn't have to be aware of the implementation 

technology but rather the opposite. By embedding the model, the decision on how the 

implementation attaches to its structure and behaviour is left to the implementation 

itself. As such it opens the possibility for the rising of tools and frameworks that 

manage this integration process. These may go from simple user interface gadgets, to 

more complex entity life-cycle management frameworks with prototyping capabilities 

and full support for model semantics. 

Adaptive Object Modelling [YBJ'01] (see section 2.7) provides an approach with 

an architectural style for this kind of methodology and the framework developed within 

this thesis follows some of its principles and inspiration. 

2.4 Generative Programming 

Generative Programming (GP) [Czarnecki'04], has been the inspiration behind 

some of the most advanced approaches to modelling and development in use today like 

Model-Driven Software Development and Software Factories which will be presented 

later (sections 2.5 and 2.6). 

It became popular mainly through Krzystztof Czarnecki’s and Ulrich Eisenecker’s 

book on Generative Programming [CzarneckiEisenecker'00], who defined GP as 

follows: 

Generative Programming is a software engineering paradigm based on modeling 

software system families such that, given a particular requirements specification, a 

highly customized and optimized intermediate or end-product can be automatically 

created on demand from elementary, reusable implementation components by means of 

configuration knowledge. 

The main focus in GP is software reuse. It advocates that traditional forms of reuse 

like Object Oriented Programming, Frameworks, Components and even Design 

Patterns, have been unable per se to deliver the promise of software reuse. A shift of 

paradigm is needed towards modelling and developing software system families rather 

than individual systems. GP is a system-family approach (also known as product-line 

engineering) which exploits the commonalities among systems of a given problem 

domain and manages its variabilities through a systematic approach. The creation of a 

system-family member is automatically generated from system specifications that are 

able to express those variabilities in one or more textual or graphical domain-specific 

languages (DSLs). The emphasis is on the configuration of the problem space and its 

automated transformation to the solution space through the use of domain-oriented 

modelling languages, rather than developing and composing individual components into 

a final application from the start (see Figure 2.3). 
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Figure 2.3 - Mapping between problem space and solution space (adapted from 

[Czarnecki'04]) 

 

Typical GP systems separate development into two processes, domain engineering 

and application engineering. Domain engineers define the structure of the DSLs needed 

to tackle a particular domain, and produce the necessary reusable assets (components, 

generators, analysis and design models, user documentation, etc.) that will be used by 

application engineers to transform their DSL specifications into implementation 

abstractions like elementary components connected through some glue generated code.  

The transformation in Figure 2.3 can be viewed recursively. Someone’s problem 

space may be someone else’s solution space, thus several transformations may be 

chained together to produce a final solution. At the same time several problem related 

spaces may map into the same solution space (ex: different aspects of a problem 

represented using different DSLs). Also the same problem space may produce results in 

several solution spaces. These related spaces and transformations end up producing a 

graph that corresponds to the idea of a network of domains [Neighbors'80] where the 

solution space of a domain exposes a DSL that is implemented by transformations to 

other DSLs in other domain implementations. 

The mapping from problem to solution space may also benefit from an aspect-

oriented approach [Laddad'03] [WebAOSD] that will allow for the composition of 

components in the solution space into well encapsulated aspect based modules. This 

isolates the application developer from the cross-cutting concerns that will be part of the 

domain infrastructure. 
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Figure 2.4 - Generative programming and related fields (extracted from 

[Czarnecki'04]) 

 

Figure 2.4 shows a perspective on how GP’s related fields intersect with the 

problem-mapping-solution spaces. For the current status on GP you may consult 

Krzystztof’s web site on [WebCzarneckiHelsen]. 

 

2.5 Model-Driven Software Development 

Model-Driven Software Development (MDSD) [StahlVölter'06], also known as 

Model-Driven Development (MDD) and Model-Driven Engineering (MDE), is a 

horizontal approach to modelling based on Domain Specific Languages (DSLs), model 

transformations and generative techniques. It has a strong orientation towards domain 

related aspects of software development rather than programming or computational 

ones. The emphasis is on the engineering principles that lead to the enhancement of 

development efficiency, quality, maintainability and reusability. This is achieved 

through the automation of all redundant artefacts that repeatedly populate and define an 

application’s infrastructure. Redundancy is delegated to a generative software 

architecture that knows all the construction principles and programming models from 

the various layers and aspects of a specific domain and is able to compose and assemble 

a domain related application from its building blocks. Infrastructure code is generated 

from formal models using one or more transformation steps (model-to-model or model-

to-code, see Figure 2.5). Cross-cutting implementation aspects will be centred in one 

place, for example in the transformation rules, just like infrastructure bugs. This 

separation of concerns [Laddad'03] promises better software maintainability by 

avoiding redundancy and by isolating technological changes. Additional application 

domain specific code is then added through protected code areas or using well known 

design patterns [Frankel'03]. 
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Figure 2.5 - MDSD, from model to code (extracted from [WebVölter]) 

 

Complexity is managed through highly abstract, problem oriented, modelling 

languages (DSLs) for the programming and configuration of various system aspects. 

This means that modelling artefacts will be focused more in the problem rather than the 

solution and are isolated as possible from its platform implementation. This level of 

abstraction imposes a forward only generative process, since the semantic gap between 

models and implementation code is just too high to allow reverse engineering.  

MDSD clearly separates the development of the domain architecture infrastructure 

from the development of the domain related application. This separation defines the 

assignment of team roles as domain architects and application developers within a 

MDSD project. 

Figure 2.6 presents a classified overview of the core concepts involved in MDSD. 

These concepts are centred around three important aspects: the DSLs that define a 

specific domain in the problem space for a given software family, the models built on 

those DSLs by application developers, and the transformation between these models 

and the target platform. These aspects will be further detailed in the next subsections. 
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Figure 2.6 - MDSD Core Concepts (extracted from [WebVölter]) 

2.5.1 Domain Architecture 

Building a domain architecture [Evans'04] demands a deep knowledge of a 

particular domain and may be figured as a two step process. The first step should be the 

domain analysis and manual generation (modelling and coding) of a reference 

model/implementation where all best practices and development patterns have been put 

to use, and where all required frameworks and supporting technologies (platform) have 

been set. The second step should derive the domain architecture from this reference 

model/implementation, not just in terms of the meta-models and domain specific 

languages that define the abstract and concrete syntax and semantics of the reference 

domain models, but also the transformation process and rules that will eventually result 

in the static code that defines the domain infrastructure on which application developers 

will build upon. 

The resulting artefacts will be the meta-models and DSLs that will comprise the 

domain related aspects of that software system family, the templates and model 

transformations that will direct the generative process, and the support frameworks and 

material that will be the base of the semantically rich platform on which applications are 

built. These artefacts are not end pieces of a first phase waterfall based development 

process but rather a continuous work in progress from domain architects that, just like 

their application developer counter-parts, should have an iterative and incremental 

approach to implementing and improving the architecture. 

Once architectures, models, and transformations have been defined, they can be 

used in the sense of a software production line for the production of diverse software 

system families. This is the manufacturing orientation of MDSD. As we can see, the 

focus is more directed towards finding the right development methodology for a given 

domain related problem through a specific platform rather than implementing a generic 

development environment as a one for all process. 

2.5.2 Application Development 

In MDSD, application developers are released from the tedious task of having to 

program the same constructs over and over again whenever they build a new domain 
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related application or whenever they incrementally add a new feature to it. The domain 

architecture is devised by architects and it will formalize and support that domain. 

Application developers may use the reference model/implementation as an orientation 

guide, and may concentrate on what they do best, designing the application by 

modelling it using the DSLs defined in the domain architecture, and coding the 

remaining domain specific logic (business logic) that was left out of the static 

generation process. Figure 2.7 shows a simple generative architecture used by 

application developers to devise a solution starting from a model written in a particular 

DSL and integrating manually written code to fill application specific aspects left out of 

the infrastructure. The resulting artefacts will be the DSL models, generated static code, 

and extended domain logic code that could not be expressed using the DSL. 

 

Figure 2.7 - A generative architecture (extracted from [WebVölter]) 

2.5.3 Model Driven Architecture 

Model-Driven Architecture (MDA) [Frankel'03] is a standardization initiative from 

the OMG (Object Management Group) with respect to model-driven development. It 

does not cover the entire MDSD spectrum but may be regarded as a specialization of 

MDSD (see Figure 2.8). The primary motivations were interoperability (through 

standardization) and portability (platform independence) of software system. 

MDA uses MOF (Meta Object Facility) as the meta-metamodel, for the definition 

of metamodels. As expected from the OMG, UML plays a central role in MDA which 

recommends the use of UML profiles [FuentesValecillo'04] as a concrete syntax for a 

DSL. OMG has even made some adaptations in the context of UML 2.0 to ensure it all 

fits well. OCL expressions are used to specify static semantics. 

A domain model in MDA can be independent from platform (PIM - Platform 

Independent Model) or platform specific (PSM - Platform Specific Model). 

Transformations may occur between models (recommended) or directly from PIM-to-

code. Platforms are also described via a metamodel. PDMs (Platform description 

Models) are used in order to enable transformation to platform specific models. OMG’s 

QVT (Query/View/Transformation) is expected to be the standard used for model-to-

model transformations by defining the conversion process between source and target 

metamodels. 

Another objective of many MDA representatives is to provide a foundation for 

executable UML models [MellorBalcer'02], whether they are interpreted by a UML 

virtual machine or completely compiled to a target platform through model 

transformations. By using general purpose models to be directly executed on a lower-
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level platform we are in fact raising the abstraction level of a programming language 

based on models, meaning there will be a semantic gap between this language and a 

specific domain. 

Basically, MDA instantiates MDSD with a set of standards that clearly define the 

mapping of a model to an existing platform. 

 

 

Figure 2.8 - MDA specialization on MDSD (extracted from [WebVölter]) 

2.5.4 Architecture Centric MDSD 

Architecture centric MDSD (AC-MDSD) is a specialization of MDSD that 

conceptually overlaps with MDA. The aim is to provide an architecture oriented domain 

(ex: architecture for client-server business applications) by generating the architecture 

infrastructure for that domain from specialized DSLs called design languages. These 

languages are usually based on UML profiles and contain architectural concepts that are 

as abstract as possible. 

The generation process will typically create an implementation framework that 

contains the architectural infrastructure code (the skeleton). This is usually achieved 

through single-step model-to-code transformations based on templates. Manually 

written code is then added to the implementation in protected areas or through suitable 

design patterns to complete a finished product (application). 

Design languages, templates and target platform will constitute the generative 

architecture for supporting a given software system family. 

2.6 Software Factories 

The concept of “software factories” was introduced by Microsoft 

[GreenfieldShort'03] [GreenfieldShort'04] to define a broad approach whose final intent 

is the industrialization of software development. This intent should provide the means 

through which application assembly becomes more cost effective through systematic 

reuse of development assets and processes. Microsoft’s vision encompasses the 
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establishment of software supply chains focusing on the mass customization of software 

products. 

By looking at the complete product-line engineering process, sometimes referred as 

“doing product lines the Microsoft way”, software factories are much wider in scope 

than MDSD. In fact, model-driven development is one of the main cornerstones on 

which software factories rely and they share much of its concepts and techniques. The 

convergence of software product lines, component-based development and model-

driven development, and the integration of these into a cohesive approach that supports 

new IDE oriented tools and practices are the key ideas that thrive from the innovation 

axis of software factories. 

As in MDSD [StahlVölter'06], software factories have two essential roles in the 

development process, one more directed towards the product line development that 

culminates in the production of a software factory, and another that uses the software 

factory for the development of a software product or product family. 

2.6.1 Product Line Development 

A software product line separates the commonalities and known forms of variation 

of a specific product family in order to automate their development 

[ClementsNorthrop'02, CzarneckiEisenecker'00, Parnas'76]. 

The product line developer will start by defining a set of DSLs for that product 

family. A simple factory could be based on a framework that addresses a specific 

domain, and the DSL would reflect the variability points in the framework to be filled 

through code generation. However, it is not always possible to build a framework for 

the implementation of a highly abstract DSL. In that case, progressive transformations 

to less abstract models may be needed before producing the executables. When models 

stack like this it becomes useful to categorize them as a layered grid. That is the next 

step in the product line development. 

The layered grid for categorizing models has columns to represent specific 

concerns like presentation, business, persistence, deployment, etc. The rows represent 

decreasing levels of abstraction like conceptual, logical and implementation layer. Each 

cell will represent a viewpoint from which software can be specified (see Figure 2.9).  

By positioning the DSLs within the grid and defining the mappings between the 

cells where partial or full automation is supported, a graph of viewpoints is produced 

that will describe the set of specifications and transformations needed to produce a 

software product. This graph is called a “software schema”. Figure 2.10 presents a 

simple software schema instantiating the viewpoints for the layered grid in Figure 2.9 

for the production of web based business applications. 
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Figure 2.9 - A layered grid with different viewpoints for categorizing models (extracted 

from [GreenfieldShort'03]) 

 

After the software schema is defined, production assets must be built, like editing 

tools and automation tools for transforming models, and processes used for describing 

the use of implementation assets. All these assets will be used by product developers to 

implement product family members, and will be collected into an artefact called a 

“software template”. 

A software factory is finally reached when a software template is plugged into an 

existing IDE (like Visual Studio), all assets will be integrated as an automated product 

line where software product customization and assembly may take its place. 

Software factories may also be used to produce other software templates that will 

integrate other software factories of more specialized family members. This opens the 

way for the formation of automated supply chains for full customization of software 

family members. 
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Figure 2.10 - A Software Schema (extracted from [GreenfieldShort'03]) 

 

2.6.2 Product Development 

By using a software factory (see Figure 2.11), product developers will be provided 

with all the necessary editors, tools, and specifications to rapidly assemble family 

members. After configuring the software factory appropriately, they will build DSL 

based models for each viewpoint within the “software schema” and there will be tools 

for translating those into lower abstraction models or into executables. Final results will 

be reached through progressive refinement of the models and through framework 

completion of specific member details, until all the software schema is fully populated 

on every existent viewpoint. At times, a bottom up approach may be used, by generating 

the necessary test components upfront that will be used for testing the various pieces of 

the working product as development progresses. 
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Figure 2.11 - Overview of a Software Factory (extracted from [GreenfieldShort'03]) 

 

2.7 Adaptive Object Modelling 

Some problem domains are characterized by frequent changes in requirements or 

by the constant need from users to configure and extend the resulting application. These 

problems demand for a highly flexible system that is able to dynamically adapt to new 

requirements, without the need for programmers to keep changing the code and building 

new versions of the system. A recurring architectural style for dealing with this consists 

of persisting the application domain as metadata outside the application code. This data 

may be a description of classes, attributes and relationships, as well as business rules for 

the validation of constraints and for performing operations. The application is then 

responsible for reading and interpreting the metadata at runtime and for translating it 

into the structural and behavioural logic that will drive its execution. This kind of 

system has been called an Adaptive Object Model (AOM) architecture [YBJ'01], as it 

allows for the domain model to be changed at runtime with immediate effect on the 

application behaviour that will rapidly adapt to the new business requirements. AOM 

also leads to the definition of a domain-specific language (DSL), this is the modelling 

language to be used by domain experts for describing entities, which needs to be 

interpreted by the system. 

2.7.1 AOM Design Patterns 

An Adaptive Object Model also defines a pattern for a recurrent object model 

structure used by typical run-time modelling architectures for adapting the application 

to domain changes in metadata (see Figure 2.12).  
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Figure 2.12 - AOM Common Structure (extracted from [YBJ'01]) 

 

This meta-model is based on a set of smaller design patterns, and will be 

responsible for loading the metadata, interpreting it, and changing the application 

behaviour and integrity rules, accordingly. 

The TypeObject pattern [JohnsonWoolf'97] is used to decouple instances (objects) 

from their classes (types) so that those classes may be implemented as instances. It 

allows for classes to be created dynamically at run-time without the need for 

recompilation. This pattern is used in Figure 2.12 to separate an Entity from its 

EntityType and a Property from its PropertyType . 

Entities have attributes which are implemented through the Property pattern 

[JosephYoder'98]. This pattern enables individual objects to augment their state by 

providing mechanisms for accessing, altering, adding, and removing properties or 

attributes at run-time. This can be done using a dictionary, vector or lookup table. Each 

property within a given entity will refer to its type and hold a particular value for that 

type. 

Associating Properties to Entities at each abstraction level (instances and types) by 

combining the TypeObject and Property patterns forms a square shaped pattern like the 

one shown on the left side of the picture. This pattern, called TypeSquare, is a very 

common theme in many AOM architectures. It shows that an EntityType defines a set 

of Property Types, one for each Property of the Entities assigned to that EntityType. 

The patterns presented till now are more directed towards a structural description 

of the domain, but the behavioural aspect of AOM is also a very important issue. The 

Strategy pattern [GoF'95] is used to define the behaviour of Entity Types. Basically, a 

Strategy is an object that represents an algorithm. Strategies are represented in the 

model as RuleObjects [Arsanjani'01]. These Rules may be used for validating purposes 

by enforcing constraints or for implementing operations on Entity methods. This pattern 

might also be used to validate Properties through their PropertyType. A Rule may be a 

simple primitive rule (PrimRule) or may be a composition of other rules 

(CompositeRule). Rules can be built up at run-time to represent a particular workflow 

process or a validation procedure. Lookup tables, grammar-oriented approaches 

[Arsanjani'01], workflow architectures [Manolescu'00], or other approaches may be 

used for defining rules. 

Relationships, also known as Associations or Accountabilities, are properties that 

refer to other entities. These could be implemented by deriving the Property class into 

Attribute and Association sub-classes. However, Entity-Relationship modelling in 
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AOM usually separates attributes from relationships. A way to do this is to use the 

Property pattern twice, one for simple attributes and other for associations. Associations 

(AccountabilityType) would then refer to the Entity Types involved on the relationship. 

Other important design patterns for building adaptable systems, used in conjunction 

with the above, are Composer, Interpreter and Builder [GoF'95]. Composer is used for 

building dynamic tree like structures for types and rules while Interpreter and Builder 

are used for building the structures from the metadata and for their run-time 

interpretation. 

2.7.2 Extended Architecture 

Figure 2.13 shows an extended version of the AOM architecture adapted from the 

AOM site [WebAOM]. 

 

Figure 2.13 - AOM Extended Architecture (adapted from [WebAOM]) 

 

The right side, related to information that is persisted in the metadata store, 

highlights the structural (classes, attributes and relationships) and behavioural aspects 

that define the Knowledge level of the system with available Types and Rules. The 

Operational level (at the left) represents all instances assigned to those Types and on 

which the Rules are to be applied. This level is related to application data that is 

typically persisted in a specific domain database. 

The above architecture is still a general reference for an AOM architecture from 

which new concepts may build upon. A new architecture could for instance be able to 

support component modelling where each component would aggregate some classes 

from a generic domain to be reused in similar applications [CDLM'05]. 
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2.7.3 Developing AOM applications 

Developing AOM applications involves several activities: 

 Defining the business entities, their properties, rules and relationships. This 

is where the domain experts take an important role. 

 Developing an engine for instantiating and manipulating those entities. This 

activity typically implies building a framework for reading and interpreting 

at run-time the metadata that was defined in the previous activity. This is 

one of the more important and complex activities in this process. However 

the difficult part is doing it for the first time. After that, the acquaintance 

with the design patterns is established, and it is just about reusing the same 

architecture. This framework may also include other aspects of the dynamic 

adaptation to requirements like User Interface automation. An AOM always 

involves the development of some kind of framework. The alternative is to 

use an existing one, if it exists. 

 Developing tools for creating, editing and storing the metadata descriptions 

that will be loaded an interpreted in run-time. 

Figure 2.14 presents a typical architecture for an AOM application. Metadata is 

stored in XML files. These files are parsed and interpreted at run-time by using the 

Interpreter and Builder patterns mentioned earlier. Metadata is then structured for a 

specific component responsible for instantiating and manipulating the domain objects 

through their type descriptions (entity types). These objects (entities) may then be 

persisted to a database. 

 

 

Figure 2.14 - AOM Application (extracted from [YBJ'01] 
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2.7.4 Advantages of AOM 

The main advantage of AOM is ease of change. Changes in business requirements 

may be put to work immediately by editing the metadata, probably by domain experts, 

without the need for programmers to change application code. 

Also, AOM projects will be smaller in terms of the number of classes that experts 

have to maintain. Classes that would normally be encoded in the application program 

are now encoded in a database. General concerns for “running” these classes will be 

embedded in the framework. 

Another advantage is shortening the gap between domain experts and developers. 

Domain experts can now take a more active role on the definition of the application 

structure and may work closer to developers to ensure the application complies with the 

requirements. 

As a direct result from the above mentioned factors, the time to market an 

application can also be reduced. Developers’ main concern is to ensure that the 

framework is able to deal with the different meta-types, properties and rules for that 

domain. After that, it is just a question of completing the domain structure. 

2.7.5  Disadvantages of AOM 

The main disadvantage of AOM systems is the complexity involved in their 

conception. Building the metadata interpretation engine, and understanding the 

metamodel and its inner workings is not an easy task. Programmers are not used to 

having classes defined in the database, outside the application code. The initial start-up 

cost, for setting up this framework, is higher than usual. Also, support tools and GUIs 

are required for the definition of the DSL and for storing the metadata. 

Another disadvantage is poor performance. Interpreting the metadata is not as fast 

as embedding the classes in code for compilation and binary execution. The behavioural 

aspect of AOM with more or less complex structures for representing constraints and 

operations poses a considerable overhead on execution time. However, this lack of 

speed is not considered as important by AOM’s authors as the lack of understanding 

mentioned earlier. 

2.8 Comparison on Model Oriented Approaches 

After going through some of the current modelling strategies in several 

development approaches it is now time for some general conclusions. Table 2.1 presents 

an overview of the different approaches for model oriented development. Column 

description is the following: 

 Development approach: name of the model oriented approach for 

development. 

 Model Abstraction: the level of abstraction typically supported by models 

through that approach. 

 Model Integration: how models integrate with that development strategy. 

 Developer Threads: which roles are imposed on the development process to 

assemble a final product (application). 

 Methodologies: methodologies that currently support that approach. 
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Table 2.1 - Comparing Model Oriented Approaches 

 

Development 

Approach 

Model 

Abstraction 

Model 

Integration 

Developer 

Threads 
Methodologies 

Detached 
Modelling 

High - 
Application 
developer 

Traditional 
development 

Executable 
Modelling 

High 

(general 
purpose) 

Model aware 
Application 
developer 

Executable 
UML (MDA), 

UML virtual 
machines 

Roundtrip 
Engineering 

Low 

Model-to-code. 

Code-to-model 

(reverse eng.) 

Application 
developer 

CASE tools 

Generative 
Development 

Very High 

(DSLs) 

Model-to-
model, 

Model-to-code 

(reverse eng.) 

Domain 
architecture 
developer 

(product line), 

Application 
developer 

GP, 

MDSD, 

Software 
factories 

Run-time 
Modelling 

High Model aware 

Framework 
developer, 

Domain expert 

AOM 
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3 The FV-RAD Framework 

After introducing the motivation and goals that led to this project (Chapter 1) and a 

brief analysis on the current state of the art in model oriented development (Chapter 2), 

it is now time to present and contextualize the framework that was developed in the 

scope of this thesis. 

3.1 Introduction 

Application development is typically structured around three important issues (see 

Figure 3.1): 

 Application Logic. For executing the application domain in compliance 

with the established UI and Persistence mechanism. This also defines the 

platform environment on which the application is implemented. Currently 

the main development platforms are “.Net” (with support for different 

language flavours) or Java based (ex: J2EE). The logic will typically have a 

separate component for the Domain, UI and Persistence aspects of the 

application. 

 User Interface (UI). For allowing the users to interact with the application, 

enter input data and obtain required outputs. It might be a simple console 

based interface, a desktop graphical interface, a complex web oriented 

interface, or another type of user interface. 

 Persistence mechanism. For keeping important data stored for use and 

persisted through different application sessions. It might be a 

relational/transactional database like ORACLE or SQL Server, an object-

relational framework like Hibernate or OpenAccess, a simple file based 

“load/save” mechanism, or other. 
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Figure 3.1 - Typical application structure 

 

Models play an important role in the development process (see section 2.1). In a 

way they act as the Master Plan that directs the implementation process (see Figure 3.2). 

As so, if a model is complete enough, we should be able to obtain an implementation, or 

at least a running prototype based on its definition. 

 

  

Figure 3.2 - The importance of models 

 

It would be interesting to have a tool that would be able, for a given model and 

target platform, to produce an implementation or a skeleton that could be extended with 

some additional logic (optional) to make it fully functional. We could call that tool from 

an OO language with statements like the following: 
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Implementation = UserTools.BuildApplication( 

Model, 

TargetPlatform {LogicType, UIType, PersistenceType} 

) + [LogicExtensions]; 

 

Generative methodologies (see Chapter 2) try to accomplish that by generating all 

the application code for a given software system family based on a highly abstract 

domain oriented model, to which some manually written code (logic extensions) may be 

added for producing the final application. Although the models should be platform 

independent (based on DSLs), the domain architecture is typically generated with a 

particular platform in mind: 

 

Implementation = UserTools.BuildAppForDomainAndPlatform( 

Model 

) + [CodeExtensions]; 

 

In an environment where requirements are constantly changing and model 

experimentation is considered an important asset (ex: interaction with stakeholders), it 

would be interesting to be able to run the application directly from the model without 

the need to setup a development environment or having to wait for final compilation. 

Logic extensions would be supplied in binary format (libraries). The logic platform 

would have to be established, as the tool itself would be built around it: 

 

UserTools.RunApplication( 

Model, 

UIType, PersistenceType, [LibraryExtensions] 

); 

 

The run-time environment provided by the FV-RAD framework that was 

implemented in the scope of this thesis is based on this approach. General goals were 

described in section 1.3, and section 3.4 details the technical goals behind the 

development of this framework. 

In order to simplify the development of an initial version, the UI has been targeted 

at Windows Forms while Persistence has been targeted at XML based files: 

 

UserTools.RunWinFormsXMLBasedApplication( 

Model, 

[LibraryExtensions] 

); 
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3.2 AOM versus FV-RAD 

FV-RAD is a run-time modelling framework that fits nicely with the AOM 

approach described in section 2.7 which has also been a source of inspiration for its 

development. They both have a metadata based infrastructure which defines a model 

that is interpreted at run-time, and they both share some of the patterns used in the 

design of their metamodels like the TypeObject, Property and TypeSquare patterns. 

There are however some main differences or variations from AOM’s privileged 

architecture: 

 FV-RAD’s metadata is more oriented towards structure rather than 

behaviour. This doesn’t mean that patterns like Strategy couldn’t be used 

for rules on operations and constraints. But in this implementation, 

behavioural aspects are delegated towards code extensions that define the 

operations on entities and the constraints on values, entities and domain. 

 FV-RAD shortens the distance between model and implementation (model-

implementation gap) by embedding associations in fields, rather than 

having a general Accountability type to define the associations separately 

from the properties that characterize the entities (which AOM privileges). 

By sharing associations with fields, the semantic gap between the model 

and the implementation technology (objects using fields to reference other 

objects) is shortened which facilitates the interpretation process. However, 

it is still possible to get the inverse field from the other side of the 

association, although inverse field synchronization is not yet implemented. 

 Fields in FV-RAD benefit from the extension mechanism which means that 

there might not be a state for that field but, instead, its value is obtained 

through a calculation process. Also, by setting a value to a field we might 

be changing the state of several other fields through some procedure. This is 

similar to Properties in “.Net”. 

 FV-RAD is focused in modelling a “full domain”, not just a segment of a 

domain. The concept of a DomainWorld, which is an instance of a 

DomainModel, has been added to fill this premise. DomainWorlds manage 

all their internal state, including the state of their entities. Any changes to a 

World may be verified and cancelled (like an object oriented transaction). 

Also, some mechanisms are provided for automatic entity life-cycle 

management (reference counts). 

 

3.3 Modelling Artefacts 

There are currently several modelling artefacts available. These may go from 

general purpose modelling languages like UML to domain specific languages (DSLs) 

like the ones used in generative methodologies. FV-RAD has adapted a variation on 

UML class-association diagrams as its modelling language. The reasons behind this 

choice are the following: 

 General purpose. Being general purpose oriented, the choice of a widely 

used modelling standard like UML became obvious. 
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 Wide acceptance. UML class diagrams are the most used modelling 

artefact in the hosting company (OPT) and most probably in other 

companies in the world. 

 Added value. Although UML has several modelling artefacts for different 

purposes (use case diagrams, sequence diagrams, activity diagrams, etc), 

class diagrams end up being the conceptual design central models where 

structure and behaviour are gathered in a cohesive scope with more added 

value to the application designer. 

 Prototyping. Focused on defining structural and behavioural elements, 

UML class diagrams are easily prone to design prototyping and validation. 

3.4  Technical Goals 

We have already stated the main general goals that motivated this project. In this 

section we present specific technical goals for the development of the FV-RAD 

framework: 

 Focused on run-time adaptation of UML class-association based diagrams. 

 Providing an interface for the definition of general purpose metadata. 

 Providing a base implementation for the metadata interfaces, including the 

definition of base data types for the definition of entity fields. 

 Providing an engine for the run-time interpretation of models based on the 

metadata. 

 Creating intelligent User Interfaces based on the knowledge of metadata. 

 Creating User Interface automatisms for the execution of model based 

prototypes. 

 User Interfaces will be implemented for Windows desktop. 

 Persistence will be implemented through XML based files. 
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4 FV-RAD Implementation 

The choice of target platform as “Microsoft .Net C#” is not only a technical based 

choice. It reflects the hosting company’s development culture that is currently more 

cantered in Microsoft’s tools and also the experience of the author of this thesis. 

Microsoft, with Visual Studio, also has very good support for the development of user 

interfaces, which eases the burden on the implementation of the user interface 

infrastructure. Although several compromises have been made in order to fulfil project 

deadlines, these were carefully planned so as to minimize the impact on the 

framework’s evolution. 

4.1 Architecture 

The architecture of the FV-RAD framework presented in Figure 4.1, reflects the 

pursue of the technical goals presented in section 3.4. 

Components have been layered according to a bottom up approach that starts with 

the definition of the metadata and ends up with the execution of UI automated model 

based prototypes. Below each title is the name of the “.Net” assembly where each 

component is located. 

 

Figure 4.1 - Architecture of the FV-RAD framework 
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The components that make up this architecture are described in Table 4.1, and will 

be explained in greater detail in the following sections. 

 

Table 4.1 - FV-RAD components and assemblies 

METADATA INTERFACES 

(Opt.FieldValues) 

Definition of the abstract interfaces needed for 

representing the metadata (ex: IEntityType, 

IField, IFieldType). 

METADATA BASE 

IMPLEMENTATION 

(Opt.FieldValues.Base) 

Provides a base implementation of the 

metadata interfaces including an initial set of 

base data types for typifying fields (ex: FTInt, 

FTString, FTEnum, FTReference). 

MODEL INTERPRETATION 

(Opt.FieldValues.Changes) 

Extends the metadata interfaces with 

additional interfaces needed to support the 

interpretation of domain models (ex: 

IDomainModel, IElementType, 

IDomainWorld, IElement).  

Grows on the base implementation of metadata 

interfaces to provide an implementation of the 

new interfaces. 

Manages state changes to domain data. It also 

provides an extension mechanism for 

providing additional functionality with code. 

METADATA BASED UI 

(Opt.FieldValues.Gui.Base) 

Provides an increased level of abstraction to 

UI widgets by making them aware of the 

metadata interfaces used for viewing and 

editing meta-based data (ex: FieldTypeEditor, 

FVListView). 

UI PROTOTYPING 

(Opt.FieldValues.Gui) 

Uses metadata based widgets to provide full 

UI automation for the execution of prototypes 

that use the “model interpretation” component 

for running models (ex: ElementEditor, 

ElementsList, ElementEditorForm, 

FVPrototype). 

4.2 Metadata Interfaces 

The Metadata Interfaces component is about providing a set of abstract interfaces 

for the definition of metadata. The fact that these are not concrete implementations 

ensures isolation from the specific implementation one might provide and allows for the 

development of additional metadata based applications and tools not fully domain 

oriented. 
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Figure 4.2 shows a diagram with the main interfaces provided by this component. 

A recurring feature in these interfaces and others that will be provided later is the use of 

Label properties for textual descriptions of some elements; the purpose is to establish a 

bridge with other UI oriented components without the need for additional resource 

mapping utilities. 

 

 

Figure 4.2 - Metadata base interface definitions 

 

Here’s a description of the main interfaces: 

 IEntityType 
Used for describing an entity type. It has a list of fields which may be 

fetched by field name or by a field index (“GetField”). Fetching with an 

index allows for speeding up access to field values in case they are stored in 

an array like data structure. 

There’s also the possibility of creating named views on that entity. A view 

is a list of field names (these might also be composed field names like 

“Employee.Department”) used to access a subset of the entity’s data. Views 

are fetched through “GetView(viewName)” and each entity type has a 

default view that may be fetched when no arguments are used with 

“GetView()”. 

Entity operations are still not supported in this version, although an 

IOperation interface has been assigned for that purpose. 

 IField 
Entity field descriptors. The field is identified by a short name “Name” 

property and there’s a textual description of the field name in the “Label” 

property. There may also be a default value assigned to that field (“Default” 
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property). Each field has a specified data type (“FieldType” property). 

There is also a set of additional boolean classifiers that are presented in 

Table 4.2. 

In the future, reference fields in binary associations will provide an inverse 

reference to the field which presents the role on the other side of the 

association (see IReference). 

 IFieldType 

Used for describing field data types. These are also very important for UI 

automation purposes where there will typically be a mapping from a field 

type to a specific UI widget for the edition of field values. Field types may 

be primitive (ex: Int or String), references to one or several entity elements 

(“IsReference == true”) or enumerations (“IsEnum == true”). There is also 

a validation procedure for field values of this type (“Validate”). 

 IReference 

Used for describing reference field types, which are the associations in 

UML class diagrams. References may be single (one element), unordered 

(collection) or ordered (list). 

A reference points to the EntityType of its elements (“RefType” property). 

Although not represented in the diagram, a reference also has an optionally 

assigned “IReferencePicker” which is used for returning elements that may 

be added to the reference field (automation purposes). 

The “IsChild” property is very important for the automated management of 

the life cycle of entities. It allows the implementation of UML composition 

qualifiers in associations (composite aggregation) and denotes a 

containment relationship between father and child (referenced) types. 

Shared aggregation is still not supported. 

Association cardinality will be implemented in the next version. 

 IEnum, IEnumItem 

Allows the definition of enumerated data types. 

 IFieldValues 

This is an important interface used for getting and setting field values in 

entity elements. In a way FV-RAD owes its name to this interface. Field 

values may be fetched by field name or field index (performance) and 

generics are used to typify input and output values. 

 IFilter 

This is a simple utility interface not present in the diagram that applies a 

filter to an entity element and returns a boolean to assert that the element 

verifies it or not. 

Appendix A shows the code for the all the interfaces hereby described. 

 

Table 4.2 – Field boolean classifiers 

IsStatefull This indicates if this is a field with an assigned state value (true) 

or if it should behave like a “.Net” inferred property, and have 

an associated procedure for getting and setting a value (false). 
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IsKeyField This isn’t quite the Key meaning we’re used to, as the field or 

set of fields (might be used in more than one field for the same 

entity type) that uniquely identifies an entity. Instead it is used 

to define the default field(s) to be presented when referencing 

this entity type (more UI oriented). 

IsPersistent States if the value of this field is to be persisted in a database 

(true) or session oriented (false). 

AllowNull The field allows Null values. 

AllowWrite Permission to set values on this field (true) as it could be 

internally assigned (false). 

AllowRead Permission to get values from this field (true) as these could be 

only accessed internally (false). 

IsUnique Not implemented. Could be used to ensure the uniqueness of 

some fields for this entity type (no two entities with the same 

values for these fields). 

IsUniqueInParent Not implemented. In a composite association this could be used 

to ensure the uniqueness of some fields for child entities with 

the same parent container (no two entities with the same values 

for these fields in the same parent container). 

 

4.3 Base Implementation and Data Types 

This component (Metadata Base Implementation) gives a base implementation for 

the Metadata Interfaces described previously.  Figure 4.3 shows the main classes for 

this component including a base implementation for entity types (“EntityType”), fields 

(“Field”) and the filtering utility (“Filter”). 

As we can see, there is also a singleton static class (“FT”) for accessing the 

implementation of the base data types used to define entity fields (ex: “FT.Date()”). It is 

possible through this class to define general enumeration types and additional domain 

types (like ORACLE domains). These data types are presented in more detail in Figure 

4.4. 
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Figure 4.3 - Base implementation of metadata Interfaces 

 

 

Figure 4.4 - Base definition of data types 
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4.4 Model Interpretation 

The Model Interpretation component provides additional interfaces and 

implementations that grow on the previous components and provide the foundation for 

the interpretation of models. Interpretation here means applying the definition of a 

model to create and make changes to data in a model based domain. This data that 

makes-up an instance of a given domain model is designated a World or a 

“DomainWorld”. 

4.4.1 Interpretation Goals 

The main goals devised for the interpretation engine were the following: 

 Interpretation of a DSL based on UML class diagrams 

 Single inheritance support 

 Composite associations management 

 Management of  entities state and life-cycle 

 Support for Object Oriented Transactions (only one level) 

 Referential Integrity management (through reference counts) 

 Creation of  an event log with all changes to data 

 Ability to define behaviour and constraints through code extensions 

 Persistence of data in XML files 

4.4.2 Models and Worlds 

Figure 4.5 presents a general perspective of the interpretation engine. The 

metamodel (model that defines the models which are instances of the metamodel) has 

been implicitly defined in code through the classes (which for this purpose are the meta-

classes) that make the interpretation component (see section 4.4.3). An explicit 

implementation (defining a model with the structure of the metamodel) has not been 

completed yet, that would allow for loading and saving the models itself in the same 

XML based format used to store model instances data (worlds). 

Models are instances of the metamodel. They provide a base implementation of 

entity types called ElementTypes (FV-RAD’s classes) for characterizing entity instances 

in the real world. They have fields that define how entities are structured and related and 

how they might behave (through code extensions). In a way models define how worlds 

may transit from a given state to the next. 

Worlds are instances of models and they must comply with their model definition 

structural and behavioural constraints. Descriptions of real-world entities are provided 

in the form of Elements which are instances of ElementTypes that have an instantiated 

value for each of its fields. World data may be saved in a XML based file (“.fvx”). 
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Figure 4.5 - Models and Worlds 

 

4.4.3 The Metamodel 

FV-RAD’s metamodel (see Figure 4.6) is a model that defines the structure of FV-

RAD’s models. The interpretation component has a class (or interface) for each of the 

elements presented in this metamodel. 

AOM’s TypeSquare pattern is used twice, once for DomainModel-ElementTypes vs 

DomainWorld-DomainElements, and another for ElementType-Fields vs. 

DomainElement-FieldValues. In other words, DomainWorld-DomainElement-

FieldValue are instances of DomainModel-ElementType-Field. Instances may be 

changed through the abstract interface Changeable (“IChangeable” in code), and the 

model elements control how these changes may occur. 

ElementTypes may inherit and extend their definition from other types (BaseType 

1-N association), Multiple inheritance (N-N) is not supported yet. 

Fields have type definitions called FieldTypes. These types may describe a 

relationship between ElementTypes through a Reference field type that points to the 

referenced ElementType. This relationship may be a composite aggregation 

(IsComposite, “IsChild” in code) which defines a containment association between 

element types. 

In the case of a binary association (which is maintained both ways), the Field used 

for the reference may also indicate the inverse field in the ElementType of the other side 

to allow for automatic management of synchronized references (not implemented). 

Explicit operations although represented (Operation) have not yet been 

implemented. 
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Figure 4.6 - FV-RAD UML based Metamodel 
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4.4.4 Implementation 

The implementation process started by the definition of new abstract interfaces able 

to comply with the intended metamodel that was previously shown. These interfaces 

grow on the metadata interfaces to provide the needed structure for model interpretation 

(see Figure 4.7). 

 

Figure 4.7 - Model interpretation Interfaces 
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Appendix B provides the code for the interfaces hereby provided. Here’s a general 

description on each one of those interfaces: 

 IChangeable 

Provides the ability to make changes to domain data (meaning domain 

worlds, elements, and field values). This is the base interface for object 

oriented transaction processing. 

 IState 

Represents a changeable state of a set of field values. It also allows fetching 

previous field values (prior to changes). 

 IDomainModel 

A domain model. It has a name, a version, and a set of element types. Also 

enables the creation of new DomainWorlds. 

 IElementType 

Element types support inheritance through a BaseType, they have labels for 

user interface purposes, and their instances may be persistent or not 

(“IsPersistent”). 

Another important property is the “IsHomeType” boolean classifier. If we 

imagine a compositional data tree that holds all the elements of a domain 

world, this property indicates that this is a home type, meaning that 

instances of this type are located in the root of that composition tree. In 

terms of user interface this means that access to those instances would be 

provided in a root menu. In future versions this will be an inferred property 

(by looking at the “IsChild” boolean classifier in associations). 

 IDomainWorld 

Holds all the data from a domain model instance. It allows for the creation, 

changing, and deleting of domain element instances whose life cycle it 

manages. It also has events for controlling all changes that occur in its data. 

 IElement 

An instance of an ElementType. It has operations for changing its state. 

Collection based fields (associations) are changed by adding or removing 

elements. The “Parent” is used for holding the parent element in a 

composite association where the parent object fully manages the life-cycle 

of its children (see the “IsChild” property). 

 IDomainElement 

A domain element is an instance of an ElementType that belongs to a 

DomainWorld. There are properties for managing this entity’s life-cycle 

within that World, like saying if it is a new element, or if it has been 

changed or deleted within the current transaction. 

 

In order to allow for object oriented transactions (verify, confirm or cancel 

changes), a specific mechanism was devised to allow for a DomainWorld (and its 

DomainElements) to get back to their previous state (when evoking 

“CancelChanges()”). This mechanism implied that collection field values also had to 

present a mechanism for recovering their previous state. This led to the implementation 

of new collection types that were devised for that purpose whose associated set of 

collection interfaces is presented in Figure 4.8. The last level of inheritance in these 

interfaces is needed for creating collections of elements with concrete implementations 

of the IElement interface. 
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Figure 4.8 - Transaction based collections 

 

Figure 4.9 presents the concrete implementation classes for some of the interfaces 

discussed earlier that make up the interpretation engine. An important issue regarding 

these classes is the implementation of a mechanism for life-cycle management of 

domain elements (see “Parent” and “RefCount” properties in DomainElement). When 

deleting a model element this basically works like this: 

 A domain element is deleted by executing the statement 

“world.RemoveElement(domElement);” 

 Recursively, by looking at the “IsChild” property of all its reference fields 

(associations), all its children are also removed (and their children’s 

children, and so on). 

 At some point the operation is confirmed by executing the statement 

“world.ConfirmChanges()”. 

 At this point all deleted instances (and other) are verified to check if there 

are references from existing elements pointing to them. This referential 
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integrity check is performed through the “RefCount” property that is 

permanently updated by the system. 

 If referential integrity is violated, then an exception is triggered and 

changes are not committed; otherwise all the changes will be committed 

through the domain’s data. 

 

 

Figure 4.9 - Concrete classes for model interpretation 

4.5 User Interface and Prototyping 

The user interface components will not be discussed in detail since they are out of 

the scope of this work. Although their development has been supervised by the author 

of this thesis, their implementation has been achieved by a team member (also involved 

in the persistence mechanism) to whom the author presents his deepest thanks. 

As mentioned earlier, there are basically two UI related components, one that 

provides basic UI controls based on the metadata interfaces, and another that grows on 

the latter to provide full automation of windows desktop prototypes based on the model 

interpretation interfaces. 
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The textual descriptions used in the UI are obtained through the “Label” (and 

“PluralLabel”) properties provided on these interfaces. 

FieldTypes are used as a mean to associate a basic UI gadget to a data type. 

Basically there is a mapping mechanism between FieldTypes and UI gadgets for the 

visualization and edition of field instances of that data type. 

Some of the existing controls are the following (a short image layout of each 

control is also provided after each description): 

 Field Editors 

Used for editing field values. They are composed of a label and a FieldType 

based control. This includes a Combo Box based control for enumerations 

and for choosing single element references. 

 

 Multi Field Editors 

Used for editing several field values in a single panel. 

 

 List Editors 

Used for editing lists of domain elements. There will be buttons to access 

every child (composite) and referenced collection fields on a selected 

element. These are also available in the form of grids that allow for in-cell 

edition of field values (each cell is a FieldType based control). 

 

 Collection Selectors 

Used for adding, removing, and ordering elements in a collection field. The 

ReferencePicker mentioned earlier (section 4.2) is used to populate the 
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“Available” elements list. 

 

 DomainElement editors with Tabbed Panels 

Used for editing the data of a domain element. 

The first tab is a general purpose multi field editor for basic fields and there 

is an additional tab for each collection field (composite or referenced). 

 

 

All these controls are resizable and have properties for defining the geometrical 

adaptation to their containers. For each of them there’s a possibility of choosing the 

actual fields to be used in visualization or for editing. Composed fields are allowed, for 

instance, we could say we want the “Department.Boss.Name” field presented in an 

Employees list. All field properties of the IField interface are used to present data 

accordingly either while editing a single element or an element list. 

 The difference between composite and reference collection fields is that the first 

allows the creation and removal of elements on the collection (see List Editors) and the 

latter only allows for adding and removing existing elements from the collection (see 

Collection Selectors). 

These controls are also available within full working prototype oriented forms. One 

of the basic problems on using these forms is that domain changes (in the model 

interpretation layer) are single level. This means that there is no way for a “OK/Cancel” 

form to call another “Ok/Cancel” based form, since the DomainWorld will only support 

cancelling on the first form (otherwise, cancellation on the second form would also 

cancel operations on the first form). This has led to the cautious use of edition modes in 

those forms particularly with the choice of “Ok/Cancel” and “Close” based forms. The 

latter provide operations that are directly committed when “Cancel” is not allowed. The 

final prototype editing architecture is presented in Figure 4.10. 
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Figure 4.10 - Prototype editing architecture 
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5 FV-RAD in Action 

5.1 Use Cases 

FV-RAD, on its current state, may be partially or fully applied, depending on usage 

goals. Three typical use cases have been identified: 

 Generic database applications 
These applications typically persist their data in a relational database. 

Referential integrity is directly supported on the database. Here the 

metadata interfaces and their base implementation components may be used 

together with the metadata based user interface component. Reporting, 

filtering, data import/export, and general user interface development will 

benefit from a higher level of abstraction to allow for faster implementation 

and run-time configuration. 

OPT is using these components for the development of the next version of 

the GIST system. 

 Document persisted applications 

These are the applications that benefit the most from this framework. Full 

model interpretation may be used to manage the entire domain’s data. Full 

user interface automation is used initially to provide working prototypes 

that progressively get refined with manual or metadata based user interface 

controls for a better user experience and for overcoming the framework’s 

limitations. 

OPT is using these components for the development of a flat-file light 

version of GIST, called GIST Light, and a pre-release more limited version 

called “Bus Planner” (see section 5.3). 

 Prototyping 

Prototyping, whether for design validation purposes or as a mean to rapidly 

provide initial working versions of an application to be tested near the 

stakeholders, fits neatly with the framework’s goals. Full use of the 

framework is applied for this purpose. 

The lack of a modelling file format (models still have to be defined in code) 

is currently the biggest limitation for this intent and is the next priority in 
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the framework’s development (by reusing its own data format). After this is 

done, sharing a prototype will be as easy as putting a Model file and its 

instance (a World file) in an email (an additional library with binary domain 

extensions may also be sent) and sending it to the stakeholder. The 

stakeholder only has to own a copy of the prototype execution environment. 

He can make run-time changes to the model and returns its suggestions also 

in the form of a running prototype. 

 

As the framework grows to support other types of application structure and 

persistence mechanisms, as well as new user interface paradigms, the spectrum of 

application may broaden to provide a general purpose model oriented run-time 

environment for the development of adaptive applications. 

 

5.2 Demonstration 

In this section, a brief demonstration of building a running prototype is provided 

based on a specific model definition (Company model). All the code for this 

demonstration is provided in Appendix C. The steps for building the prototype are the 

following: 

 Model definition 

 Model implementation 

 Extending the model 

 GUI invocation (prototype execution) 

 Testing (persistence in XML - “.FVX”) 

5.2.1 Model Definition 

The Company model is presented in Figure 2.1. A Company may have several 

departments and employees. Each Department has several Employees and an Employee 

may only work in a single Department. An Employee may be assigned for managing 

one or more Departments’ activities. Each Employee may have several Degrees of some 

type. The types allowed are “basic”, “high school”, “graduation”, “bachelor”, “post-

graduation”, “masters” and “Phd”. Degrees are contained in the structure of an 

Employee (composite). 
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Figure 5.1 -The "Company" model 

 

 

 

 

Composite associations are important indications in the model as they provide the 

means for managing the life-cycle of entities (removing an Employee implies removing 

its Degrees and a Degree is created directly in the Employee that contains it). 

The definition of this model may then be presented as a tabular description of all 

the entity types and their fields, like the one in Table 5.1. This data is the basis for the 

implementation of this model in FV-RAD. 

As we can see there is a clear distinction between basic fields and the fields 

responsible for describing the associations. The latter have additional columns for 

describing the association roles they are involved in. 

The Name field in the Employee should be the result of the concatenation of the 

firstName and lastName fields. As so it must be declared as a stateless field (IsStatefull 

= false). 
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Table 5.1 - "Company" model definition 
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5.2.2 Model Implementation 

Because a textual DSL has not still been devised for the definition of the models, 

the data definition presented previously in tabular format is not directly perceived by the 

framework. As so, it must be programmed in code with the help of the Model 

Interpretation component. Figure 5.2 presents the definition of the Employee type. 

There are additional elements for giving textual designations on entities and fields. 

These will be used in the UI automation process. The “IsHomeType” property for 

indicating a root type is described in section 4.4.4 (in IElementyType). Root types will 

be accessed from the initial window of the prototype. 

Fields only have to define the boolean classifiers that differ from the defaults. We 

can see that the Name field is classified as not persistent (“p-“) neither statefull (“s-“) 

nor writeable (“w-“) and that it is a key field (“k+”). The “c+” classification of the 

degrees field collection indicates that this is a composite reference containing all the 

child elements created within. 

 
 

// Company Model Definition 

 

// Element Types 

 

... 

 

ElementType employeeType 

    = new ElementType("employee", "Funcionário", "Funcionários"); 

employeeType.IsHomeType = true; 

model.AddElementType(employeeType); 

... 

 

// Employee 

 

// Fields 

elemType = employeeType; 

elemType.AddField(new Field("firstName", FT.String(20), "Primeiro Nome")); 

elemType.AddField(new Field("lastName", FT.String(20), "Ultimo Nome")); 

elemType.AddField(new Field("birthDate", FT.Date(), "", DateTime.Now, 

                            "Data Nascimento")); 

elemType.AddField(new Field("Name", FT.String(), "p- s- w- k+", "Nome")); 

elemType.AddField(new Field("degrees", FT.Collection(degreeType, "c+"), 

                            "Habilitações")); 

... 

 

Figure 5.2 - Defining the "Employee"entity type 

 

Enumerated field types like the one for enumerating the different types of degrees 

(don’t confuse with the Degree element type), may be defined as follows: 
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// Degree Type enumeration 

enumType = new FTEnum("degreeType"); 

enumType.AddItem("none", 0, "Nenhuma"); 

enumType.AddItem("basic", 1, "Básico"); 

enumType.AddItem("high school", 2, "Secundário"); 

enumType.AddItem("graduation", 3, "Licenciatura"); 

enumType.AddItem("post-graduation", 4, "Pós-graduação"); 

enumType.AddItem("masters", 5, "Mestrado"); 

enumType.AddItem("Phd", 6, "Doutoramento"); 

FT.AddEnum(enumType); 

 

Figure 5.3 - Defining the "degreeType" enumeration 

Subsequent references to this enumeration type may be accessed through the 

“enumType” variable or through “FT.Enum(“degreeType”)”. Remaining model 

definition is presented in Appendix C. 

5.2.3 Extending the Model 

Model code extensions will be explained through the implementation of the 

Employee’s Name field. FV-RAD does not have a modelling language for describing 

behaviour like for instance saying that “Name = firstName + „ „ + lastName”. As so this 

will have to be implemented in code. The implementation is provided by overriding the 

method used for accessing field values (“Get<T>(…)” method), in “employee” entities. 

To do that, one must ensure that there is a specific class for the entities where this 

method will be overridden. Since a DomainWorld only instantiates DomainElement 

generic objects one must force it to instantiate “Employee” classes whenever they are 

created, and that is done by overriding the “NewElement(…)” method of a sub-class of 

DomainWorld called “CompanyWorld” that manages all Company entity instances (see 

Figure 5.4). 

 
     

public class CompanyWorld : DomainWorld 

{ 

    public CompanyWorld() 

        : base(Company.Model) 

    { 

    } 

 

    public override IDomainElement NewElement( 

                                       IElementType elementType, string key) 

    { 

        switch (elementType.Name) 

        { 

            case "employee": 

                return new Employee(key); 

 

            default: 

                return base.NewElement(elementType, key); 

        } 

    } 

} 

Figure 5.4 - Extending a "DomainWorld" 
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We may now proceed to define a “Employee” class for overriding the “Get” 

method that accesses field values and imposing the calculation of the Name field (see 

Figure 5.5). 

 
     

public class Employee : DomainElement 

{ 

    public static int firstNameIndex; 

    public static int lastNameIndex; 

    public static int NameIndex; 

 

    static Employee() 

    { 

        firstNameIndex = Company.EmployeeType.GetIndex("firstName"); 

        lastNameIndex = Company.EmployeeType.GetIndex("lastName"); 

        NameIndex = Company.EmployeeType.GetIndex("Name"); 

    } 

 

    public Employee(string key) 

        : base(Company.EmployeeType, key) 

    { 

    } 

         

    public override T Get<T>(int fieldIndex) 

    { 

        object result; 

 

        if (fieldIndex == NameIndex) 

        { 

            // "Name" calculation 

            result = FirstName + " " + LastName; 

        } 

        else 

        { 

            return base.Get<T>(fieldIndex); 

        } 

 

        return (T)result; 

    } 

 

    public string Name 

    { 

        get { return this.Get<string>(NameIndex); } 

    } 

 

    public string FirstName 

    { 

        get { return this.Get<string>(firstNameIndex); } 

        set { this.Set<string>(firstNameIndex, value); } 

    } 

 

    public string LastName 

    { 

        get { return this.Get<string>(lastNameIndex); } 

        set { this.Set<string>(lastNameIndex, value); } 

    } 

} 

Figure 5.5  - The "Employee" extended entity type 
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5.2.4 Prototype Invocation 

After the model implementation is complete, it is time to invoke the prototype by 

executing the statements in Figure 5.6. 

 
 

    // GUI automation 

 

    FVPrototype proto = new FVPrototype(); 

    proto.Start(Company.Model); 

 

Figure 5.6 - Prototype invocation 

 

The initial window of the prototype is then launched with the home entity types 

available for editing (see Figure 5.7). In this window it’s also possible to open or save a 

document with the edited data. 

 

Figure 5.7 - Prototype main window 

 

Selecting an entity type like “Departamentos” and pressing “Edit” launches a 

window with all available Departments with the possibility of creating, editing or 

deleting Departments, and provides access to the Departments’ collection references 

(like its Employees). Figure 5.8 presents the window output after selecting the first 

element in the list for editing launching a new window for the edition of a single 

Department (Portuguese resource based windows). 
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Figure 5.8 - Running the "Company" prototype 

 

The prototype is able to generate a log of all object oriented transactions with the 

changes that occurred in the entities. For instance, when opening a new “.FVX” 

document for this domain, a load operation is executed for the creation of all data from 

the document within the DomainWorld in a single transaction. The output for this log is 

presented in Figure 5.9. As you can see there is also an indication of reference count 

changes on every entity. 

 

 

World changes BEGIN. 

['department:1' initialized] 

Created 'department:1' 

['department:2' initialized] 

Created 'department:2' 

['department:3' initialized] 

Created 'department:3' 

['employee:1' initialized] 

Created 'employee:1' 

['degree:1' initialized] 

Created 'degree:1' 

[Add 'degree:1' to 'employee:1'.degrees] 

['degree:1' ref 1] 

['degree:2' initialized] 

Created 'degree:2' 

[Add 'degree:2' to 'employee:1'.degrees] 

['degree:2' ref 1] 

['employee:2' initialized] 

Created 'employee:2' 

['degree:3' initialized] 
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Created 'degree:3' 

[Add 'degree:3' to 'employee:2'.degrees] 

['degree:3' ref 1] 

['degree:4' initialized] 

Created 'degree:4' 

[Add 'degree:4' to 'employee:2'.degrees] 

['degree:4' ref 1] 

['employee:3' initialized] 

Created 'employee:3' 

['employee:4' initialized] 

Created 'employee:4' 

['employee:5' initialized] 

Created 'employee:5' 

['employee:6' initialized] 

Created 'employee:6' 

['employee:7' initialized] 

Created 'employee:7' 

[Set 'department:1'.manager to 'employee:7'] 

['employee:7' ref 1] 

[Add 'employee:6' to 'department:1'.employees] 

['employee:6' ref 1] 

[Add 'employee:7' to 'department:1'.employees] 

['employee:7' ref 2] 

World changes CONFIRM. 

 

Figure 5.9 - FV-RAD's Domain Log 

5.2.5 Testing and Persistence 

Testing the prototype is an important task. Code tests may be implemented just as 

any other application by calling the model interpretation engine and experimenting with 

the entities. Other tests may be UI centred and the persistence mechanism plays an 

important role by providing an easy way to transport domain data across the 

stakeholders. The “.fvx” XML based files generated by FV-RAD are also very readable 

by direct edition in a text or XML editor allowing for direct manipulation of the data. 

Figure 5.10 presents the document contents for the domain data that generated the log in 

Figure 5.9. XML schema generation isn’t yet supported by FV-RAD. 

 
 

<?xml version="1.0" encoding="utf-8"?> 

<company version="1.0.0"> 

    <department key="department:1" name="Marketing" manager="employee:7"> 

        <notes>Relações públicas e gestão de campanhas.</notes> 

        <employees> 

            <ref key="employee:6" /> 

            <ref key="employee:7" /> 

        </employees> 

    </department> 

    <department key="department:2" name="Operações"> 

        <notes>Planeamento da actividade produtiva</notes> 

        <employees /> 

    </department> 

    <department key="department:3" name="Comercial"> 

        <notes>Planeamento da actividade de vendas</notes> 

        <employees /> 

    </department> 

    <employee key="employee:1" firstName="Luís" lastName="Ferreira" birthDate="1968-10-
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16"> 

        <degrees> 

            <degree key="degree:1" designation="Engenharia de Sistemas e Informática" 

degreeType="graduation" /> 

            <degree key="degree:2" designation="Informática" degreeType="post-

graduation" /> 

        </degrees> 

    </employee> 

    <employee key="employee:2" firstName="Fernando" lastName="Vieira" birthDate="1971-

03-28"> 

        <degrees> 

            <degree key="degree:3" designation="Matemática e Ciências da Computação" 

degreeType="graduation" /> 

            <degree key="degree:4" designation="Informática" degreeType="post-

graduation" /> 

        </degrees> 

    </employee> 

    <employee key="employee:3" firstName="Sara" lastName="Silva" birthDate="0001-01-

01"> 

        <degrees /> 

    </employee> 

    <employee key="employee:4" firstName="João" lastName="Castro" birthDate="0001-01-

01"> 

        <degrees /> 

    </employee> 

    <employee key="employee:5" firstName="Sara" lastName="Meireles" birthDate="0001-01-

01"> 

        <degrees /> 

    </employee> 

    <employee key="employee:6" firstName="Lurdes" lastName="Ribeiro" birthDate="0001-

01-01"> 

        <degrees /> 

    </employee> 

    <employee key="employee:7" firstName="Manuela Ribeiro" birthDate="0001-01-01"> 

        <degrees /> 

    </employee> 

</company> 

 

Figure 5.10 - FV-RAD's documents (".FVX") 

5.3 Applying FV-RAD to “Bus Planner” 

FV-RAD has been successfully applied to the “Bus Planner” project at OPT (see 

Figure 5.11). The discussion on this implementation will be centred on the model 

transformations that took part in the model definition process. The resulting model 

definition data is presented in tabular form in Appendix D. 

This is an application that allows a Bus Company to manage its resources, namely 

in terms of the trips offered to the public and the lines (routes) they are assigned to, the 

bus duties needed to fill those trips, and the driver duties needed for driving those buses. 

The full model is presented in Figure 5.12. It has been sectioned in two parts, one for 

modelling the transport network and another for trip and resource scheduling purposes, 

so the classes that join those two segments appear twice. 
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Figure 5.11 - BusPlanner application 

 

 

The model presented has some features that cannot be directly implemented with 

FV-RAD’s framework, which are the following (base knowledge of UML class 

diagrams is assumed): 

 Association Classes 

These are classes that characterize associations. In fact these classes are 

associations with modelled structure and behaviour. They are not directly 

supported by FV-RAD. Examples are the LinePath and PathNode 

association classes. 

 Shared Aggregation 

This is the general case of aggregation where several parent container 

objects may share the same contained child object. Only composite 

aggregation is supported in FV-RAD. Examples are the BusDuty and 

DriverDuty being able to share WorkBlock instances. 

 Binary Associations 

These are associations that are to be implemented both ways. FV-RAD is 

still not able to automatically synchronize references in both roles of the 

association. An example is the N-N Trip-WorkBlock association that needs 

Trip.WorkBlocks and WorkBlock.Trips role fields synchronized at all times. 
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Figure 5.12 - BusPlanner model diagram 
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The association classes are dealt by a simple transformation process by converting 

the N-N directed association class C in Figure 5.13. 

A B**

C

 

Figure 5.13 - FV-RAD and Association Classes 

 

Class C is then converted into a class whose elements are contained (composite) in 

the source class A and where those elements point to single B instances, although 

several Cs may point to the same B (see Figure 5.14). 

A C B* 1*

 

Figure 5.14 – Converting a N-N directed Association Class 

 

Shared aggregation may be transformed into composite aggregation by a 

transformation process that tries to find a compatible parent class for WorkBlock going 

up the composition hierarchy. In this case the most suitable class is Schedule. The next 

step is putting WorkBlocks contained in Schedules, instead of DriverDuty and BusDuty 

where the aggregation construct is transformed into regular references. 

Implemented binary associations must have the synchronization process managed 

with code extensions, so that when an element is added or removed in one side the 

opposite reference must be added or removed in the other side of the association. 

The transformation process has to be processed case by case taking FV-RAD’s 

limitations into consideration. The resulting transformed diagram for this model is 

presented in Figure 5.15 and its conversion to tabular data is presented in Appendix D. 

 

BusPlanner has benefited from FV-RAD with increased development speed and 

early deployment of initial prototypes that were progressively refined till final release. 

UI data manipulation was not the only benefit provided by FV-RAD. Automatic 

persistence of data and the ability to use data change events for controlling the update of 

the graphical representation presented in Figure 5.11 were also important gains that 

allowed for the rapid development of this application. 
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Figure 5.15 - BusPlanner transformed model adaptation 
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6 Conclusions 

Models are becoming the most important artefacts in software development. Their 

integration in the development process is a fundamental aspect of current software 

methodologies. It is the next step in raising the abstraction level on development tools 

and languages. 

There are currently several important trends in model oriented development from 

which the following two have been highlighted in this thesis: 

 

 One that uses design-time generative software methodologies to build the 

application or to generate reusable assets for building a family of domain 

related applications. This is based in highly abstract Domain Specific 

Languages that provide an ideal mean for domain experts to express a 

problem and for developers to build the infrastructure that generates the 

solution. 

 

 Other that uses adaptive methodologies for interpreting metadata based 

models at run-time and providing the means for rapid changes to a model 

aware application through its model definition. 

 

FV-RAD fits the latter with a general purpose approach for interpreting an 

adaptation of UML class based models. It has a broad scope by covering important 

aspects as domain logic, persistence and user interface. It also flavours several use 

cases, from a platform that allows for an increased level of UI automation and utilities 

based on metadata, to a complex full automation prototype provider for running models 

with optional code extension mechanisms. These mechanisms are used for overcoming 

its limitations and for refining an application till final release is reached. 



 65 

6.1 Goal Analysis 

Initial goals were ambitious and there were high expectations which have been 

more than partially fulfilled. Several accomplishments have been realized in this 

project: 

 Layered architecture 
A general layered architecture has been devised for metadata based 

applications, for the run-time interpretation of UML class based models, 

and for running fully automated prototypes. The architecture has been set 

upon abstract interfaces for making the API as general as possible and a 

base implementation has also been provided. 

 Metadata based applications 

By being able to support intermediate metadata based UI automation and 

metadata based utilities it has proven to be a valuable platform for general 

purpose applications. These may be client server applications based on a 

relational database that don’t need full model running capabilities, like the 

GIST system whose next version is being developed using this approach. 

 Document based applications 

Flat file persisted applications are a natural candidate for using this 

framework. They may start with a rough full prototype draft 

implementation, with automated user interface and persistence, and they get 

progressively refined with model changes and code extensions for 

achieving final results. The “BusPlanner” project at OPT has clearly 

benefited from this rapid approach. 

 Running prototypes 

Running model based prototypes is a good way of testing design options 

and concepts. FV-RAD provides the means for running these models 

without the need of a development environment or application setup, which 

is ideal for sharing these prototypes with the stakeholders. It also provides 

automatic persistence with a portable XML based format (“.FVX”) that 

may be easily edited or exchanged over email. 

 In House 

Although its commercial exploration is an option, the fact that this is a inner 

development gives OPT a firsthand knowledge of its benefits and 

limitations and the ability to make it fit for its own needs. 

 Model learning platform 

One important aspect of using this framework which has been noted at OPT 

it is its ability to be used as an academic tool for teaching about conceptual 

models in application design. By running a model based prototype the 

student is rapidly able to analyse the impact of his modelling decisions on 

the final application. 

 

Also there have been some problems and limitations, some of which have already 

been stated. These have somehow affected the ease of use and also have prevented a 

broader spectrum of appliance for this framework: 

 Modelling format and tools 

The lack of a modelling format for persisting models is one of the main 

drawbacks of this version. This is particularly harmful for prototyping 
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purposes, as it imposes the need to code the model definition using the 

framework which for a first-time user means learning the framework’s API. 

Also a tool for building these models or for importing a base model 

definition in a standard format (ex: XMI – XML Metadata Interchange) and 

adapting them for its use would also be of great value. Currently OPT 

defines models with StarUML (open source), then produces a transformed 

version with the same tool after which there is an Excel template where this 

definition is put in tabular format before being implemented in FV-RAD. 

 Complexity 

Learning to use the framework’s API, depending on the use scope, may 

take a while. The learning curve is particularly higher with respect to code 

extensions. This may be a problem, especially with a first time use team for 

a short time constrained project. This is however compensated with rapid 

development gains after the framework has been tackled. 

 Performance 

Performance is not a concern when using the basic layer for metadata based 

applications. However it is an important factor when using the full model 

interpretation engine to manage data. For instance, field values are stored as 

objects, their state is replicated for managing changes (ex: cancelling 

changes), and entity lifecycle is managed manually besides the regular 

garbage collection process of the implementation platform. For 

performance constrained applications this might be an important limitation. 

 Database persistence 

There is currently no support for database persistence, particularly multi-

user databases. These applications may only benefit from the basic 

metadata layer. In fact, although the model interpretation API tried not to 

compromise the future addition of this feature, it has never been intended 

for first releases. Model interpretation is currently directed toward in-

memory processing of domain data that is persisted in flat-files. 

 

Changes are already being made to overcome some o these and other limitations, 

these include a partial rewrite of the user interface layers for automation and 

prototyping (for WPF – Windows Presentation Foundation). 

 

It is also important to distinguish this framework from current object-relational 

technology (there’s been some confusion). Object relational tools (ex: Hibernate, 

OpenAccess, etc.) provide direct mapping of class instances (objects) to relational 

databases. Besides the obvious fact that FV-RAD does not currently support database 

persistence, the substantial fact still remains that ORM frameworks work at the 

implementation level by facilitating changes to data in objects, which get synchronized 

with the database. These objects follow an already determined class structure. FV-RAD 

works at a higher level of abstraction (the model), where the implementation platform is 

a secondary concern and higher semantic constructs like composition and field 

classification may be applied. Another example of this is the proliferation of label 

descriptions for supporting things like UI automation and reporting tools. Also, FV-

RAD is about run-time adaptation of applications to new requirements which in ORM 

tools may only be directed towards the mapping mechanism (a new field can’t be added 

by changing the mapping file unless it has also been added to the class in code and re-

compiled). 
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6.2 Future Work 

FV-RAD is still an evolving framework with several limitations and a growing 

prospect. It is already being used in some projects at OPT and there are several 

improvements being prepared for the next releases: 

 Explicit metamodel 

Explicitly defining FV-RAD’s metamodel using its own modelling schema 

is an almost finished task. It will allow for the execution of a prototype 

describing a model and for reusing the same persistence format for models 

and domain data. 

 Visual DSL 

A visual DSL for describing FV-RAD’s models would be an extremely 

helpful tool that would ease the learning curve for the execution of 

prototypes. 

 Schema generation 

Currently, data is saved to a XML file (“.FVX”) whose structure depends 

on the model. It would be nice to also generate a XML schema for the 

automatic validation of data for that model. 

 Multi-level changes 

Only single level transactions are currently supported. Multi-level 

transactions would be of great interest particularly for UI automation, as 

several levels of “OK/Cancel” data editors would be easily supported. 

 Undo / Redo 

Document based applications typically have an Undo/Redo feature. In FV-

RAD it should be based on the ability to undo or redo full transactions. 

 Binary associations 

Binary associations have to be managed through code extensions. A feature 

that would allow for automatic synchronization of references in both roles 

of these associations would be very welcome. 

 Shared aggregation support 

Only composite aggregation is currently supported. Shared aggregation 

native support would bypass the need for additional model transformations. 

 Unique fields and indexes 

These would provide for additional data validation and improve system 

performance in more complex operations. 

 Improved UI support 

The UI layers are already being improved. There is still no support for 

inheritance in the UI prototypes and WPF support is being implemented. 

Web based support would also be of great value. 

 Model conversion 

As prototypes evolve, all the domain data from previous model versions 

may be lost, unless the framework is prepared for learning the differences 

between consecutive versions for automatic data conversion. 

 Behavioural constructs 

As typical of AOM systems it would be of great value the support for 

behavioural constructs at the model level that would overcome the need for 

code extensions in some validation and operational procedures. 
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An interesting vision for the future is one where the developer only has to send two 

data files (model and domain data) to enable the stakeholder to test and validate or 

suggest changes to the prototype. Another way to do this would be loading the model in 

a web site that would be ready to provide an automatic web based UI for model 

execution and sharing between the stakeholders. 

 

In the long run more ambitious trends could be followed:  

 Multi-user database support 

The run-time automation of multi-user model based prototypes is a complex 

task. For that reason it has been excluded from the first release. Changes to 

the modelling structure would most surely have to occur to make this 

possible. The potential gains however are huge. Even more when those 

prototypes could be refined to become production releases. Combined with 

a web user interface, full web application support could be a reality not far 

from reach. 

 Cloud computing 

Running models in the cloud is a very ambitious plan that is far from being 

accomplished. Cloud computing is a new technology waiting to be explored 

and still limited in terms of data support. If this support could be provided 

through a higher level of abstraction through general purpose model based 

data support, then building a web service could be as easy as defining a 

model, implementing some extensions, and executing it in the cloud. These 

domain oriented data services could be provided together with an additional 

UI automated or partially automated layer for full application support. 

 

These are just some speculating ideas. The baseline is that by raising the level of 

abstraction through the use of model oriented technologies the possibilities are 

immense. The model-implementation gap gets shorter to a point where the 

implementation is merged with the model. This merging process may be directed by the 

implementation or by the model itself (model embedded or implementation embedded). 

Application development gets faster as things like data management, persistence and 

user interface get fully or partially automated, with the possibility of being further 

refined by using lower level implementation technology. Quality is improved as cross 

cutting concerns get implanted in this infrastructure, and a higher level of response to 

requirement changes is provided by the early deployment of working prototypes that 

may be validated and even changed by the stakeholders.
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Appendix A - Metadata Interfaces 

This is the code for FV-RAD’s metadata interfaces described in section 4.2. 

 
namespace Opt.FieldValues 

{ 

    /// <summary> 

    /// The set of fields that describe an element's typed interface. 

    /// </summary> 

    public interface IEntityType 

    { 

        int FieldCount { get; } 

 

        IField GetField(string fieldName); 

        IField GetField(int fieldIndex); 

 

        int GetIndex(string fieldName); 

 

        IEnumerable<IField> Fields { get; } 

 

        IEnumerable<string> GetView();  // Default view 

        IEnumerable<string> GetView(string viewName); 

    } 

 

    /// <summary> 

    /// An element's external or internal (statefull) data field. 

    /// </summary> 

    public interface IField 

    { 

        /// <summary> 

        /// Field name used to identify it in the element. 

        /// </summary> 

        string Name { get; } 

 

        /// <summary> 

        /// Field name used to label user interface elements. 

        /// </summary> 

        string Label { get; } 

 

        /// <summary> 

        /// Field data type. 

        /// </summary> 

        IFieldType FieldType { get; } 

 

        /// <summary> 

        /// Default value when a new element is created. 

        /// </summary> 

        object Default { get; } 
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        /// <summary> 

        /// External read permission. 

        /// </summary> 

        bool AllowRead { get; } 

 

        /// <summary> 

        /// External write permission 

        /// </summary> 

        bool AllowWrite { get; } 

 

        /// <summary> 

        /// Should this field be saved when persisting data in a file 

        /// or database. 

        /// </summary> 

        bool IsPersistent { get; } 

 

        /// <summary> 

        /// Is this field part of its element internal state. 

        /// </summary> 

        bool IsStatefull { get; } 

 

        /// <summary> 

        /// Is "null" an allowed value? 

        /// </summary> 

        bool AllowNull { get; } 

 

        bool IsKeyField { get; } 

 

        //bool IsUnique { get; } 

        //bool IsUniqueInParent { get; } 

        // 

        //int ReverseFieldIndex { get; }  // Binary associations. 

    } 

 

    public interface IFieldType 

    { 

        string Name { get; } 

        Type Type { get; } 

        object Default { get; } 

 

        /// <summary> 

        /// Is this field type a reference to one or several elements. 

        /// </summary> 

        bool IsReference { get; } 

 

        bool IsEnum { get; } 

 

        void Validate(object value);  // Throws exception on error. 

    } 

 

    /// <summary> 

    /// Describes a field type used to reference one or several 

    /// elements. 

    /// </summary> 

    /// <remarks> 

    /// A typical association between two element types. 

    /// </remarks> 

    public interface IReference 

    { 

        IEntityType RefType { get; } 

        bool IsChild { get; }   // Aggregation (composition) 

        //bool IsSharedChild { get; } // False => Composition, 

        //                            // True => Shared aggregation. 

 

        bool IsElement { get; } 

        bool IsCollection { get; } 

        bool IsList { get; } 

 

        IReferencePicker Picker { get; }  // Fetches elements that may be picked 

                                          // to be added. 

        //// Cardinality 

        //int MinCount { get; } 

        //int MaxCount { get; } 

    } 

 

    public interface IEnum 

    { 
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        IEnumerable<IEnumItem> EnumItems { get; } 

 

        IEnumItem GetItem(string name); 

        IEnumItem GetItem(int value); 

    } 

 

    public interface IEnumItem 

    { 

        string Name { get; } 

 

        int Value { get; } 

 

        string Label { get; } 

    } 

 

    /// <summary> 

    /// This is the interface that every element should implement to get or set its 

    /// field values. 

    /// </summary> 

    public interface IFieldValues 

    { 

        T Get<T>(string fieldName); 

        T Get<T>(int fieldIndex); 

        void Set<T>(string fieldName, T value); 

        void Set<T>(int fieldIndex, T value); 

    } 

 

    public interface IFilter 

    { 

        bool Verify(IFieldValues element); 

    } 

} 
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Appendix B - Model Interpretation 

Interfaces 

This is the code for the model interpretation interfaces described in section 4.4.4. 

 
namespace Opt.FieldValues.Changes 

{ 

    /// <summary> 

    /// Generic interface used to control and cancel changes to something. 

    /// </summary> 

    public interface IChangeable 

    { 

        bool IsChanged(); 

 

        /// <summary> 

        /// Verifies and confirms changes. 

        /// Throws an exception if confirmation is not possible. 

        /// </summary> 

        void ConfirmChanges(); 

 

        void CancelChanges(); 

 

        /// <summary> 

        /// Verifies if confirmation is possible. 

        /// </summary> 

        /// <returns> 

        /// Returns true if the changes made may be confirmed without 

        /// Error. 

        /// </returns> 

        bool VerifyChanges(); 

    } 

 

    public interface IState: IFieldValues, IChangeable 

    { 

        bool IsChanged(string fieldName); 

        bool IsChanged(int fieldIndex); 

 

        T GetOld<T>(string fieldName); 

        T GetOld<T>(int fieldIndex); 

 

        IList GetValues(); 

        IEnumerable<IStateChange> GetChanges(); 

        int CountChanges(); 

    } 

 

    /// <summary> 

    /// A Model defines the type of Elements (ElementType) and rules that associated 
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    /// Worlds may have. 

    /// </summary> 

    public interface IDomainModel 

    { 

        string Name { get; } 

        string Version { get; } 

        IElementType GetElementType(string typeName); 

        IEnumerable<IElementType> ElementTypes { get; } 

 

        IDomainWorld CreateWorld(); 

    } 

 

    /// <summary> 

    /// An ElementType is a repository of Fields. Some fields may be inherited 

    /// by a single base Element Type (multiple inheritance not supported yet. 

    /// </summary> 

    public interface IElementType: IEntityType 

    { 

        string Name { get; } 

        string Label { get; } 

        string PluralLabel { get; } 

        bool IsPersistent { get; } 

        int StateFieldCount { get; } 

        IElementType BaseType { get; } 

        bool IsHomeType { get; } 

 

        bool Inherits(IElementType superType); 

 

        IEnumerable<int> GetReferenceIndexes(); 

        IEnumerable<int> GetCollectionIndexes(); 

    } 

 

    /// <summary> 

    /// A World is a repository of Elements that follows a specific Model 

    /// </summary> 

    public interface IDomainWorld : IChangeable 

    { 

        IDomainModel Model { get; } 

 

        IEnumerable<IDomainElement> CreatedElements { get; } 

        IEnumerable<IDomainElement> DeletedElements { get; } 

        IEnumerable<IDomainElement> ChangedElements { get; } 

 

        IDomainElement GetElement(string key); 

        string GetNewKey(string typeName); 

        IEnumerable<IDomainElement> GetElements(string typeName); 

 

        IDomainElement CreateElement(IElementType elementType); 

        IDomainElement CreateElement(string key);   // Assumes the Key has type 

                                                    // information. Use carefully 

        IDomainElement CreateElement(IElementType elementType, string key); // Calls 

                                                                         // "NewElement" 

 

        // "NewElement" Requires "AddElement" after to accept the element. 

        IDomainElement NewElement(IElementType elementType);    // Generates the key. 

        IDomainElement NewElement(string key);      // Assumes the key has type  

                                                    // information. Use carefully 

        IDomainElement NewElement(IElementType elementType, string key);    //  

                                   // IMPORTANT: Override to instantiate to user classes 

 

        //// Can't override both, only one may be used to instantiate user classes 

        //IDomainElement NewElement(IElementType elementType, int id);        //  

        //                         // IMPORTANT: Override to instantiate to user classes 

                                                                                     

        // Operations (changes to world) 

        void AddElement(IDomainElement element); 

        bool RemoveElement(IDomainElement element); 

        void ChangeElement(IDomainElement element); 

 

        // EVENTS 

 

        event WorldEventHandler Changed; 

        event WorldEventHandler BeforeConfirm; 

        event WorldEventHandler BeforeCancel; 

 

        event ElementEventHandler ElementCreateConfirmed; 

        event ElementEventHandler ElementDeleteConfirmed; 
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        event ElementEventHandler ElementChangeConfirmed; 

 

        event ElementEventHandler ElementCreateCanceled; 

        event ElementEventHandler ElementDeleteCanceled; 

        event ElementEventHandler ElementChangeCanceled; 

 

        event ElementEventHandler ElementCreated; 

        event ElementEventHandler ElementDeleted; 

        event ElementEventHandler ElementChanged; 

    } 

 

    /// <summary> 

    /// An Element is a repository of Field Values that comply to a  

    /// specific Element Type. 

    /// </summary> 

    public interface IElement: IFieldValues, IChangeable 

    { 

        string GetKey(); 

        IElementType ElementType { get; } 

        IElement Parent { get; } 

 

        bool IsPersistent { get; } 

        IEnumerable<IStateChange> GetChanges(); 

        IEnumerable<ICollectionChange> GetCollectionChanges(); 

 

        bool IsChanged(string fieldName); 

        T GetOld<T>(string fieldName); 

        IElement GetElement(string fieldName, string key); 

        IElement GetElement(string fieldName, int listIndex); 

        IElement GetElement(string fieldName); 

        void AddElement(string fieldName, IElement element); 

        void AddElement(string fieldName, IElement element, int listIndex); 

        void MoveElement(string fieldName, int fromIndex, int toIndex); 

        bool RemoveElement(string fieldName, IElement element); 

        void RemoveElement(string fieldName, int listIndex); 

        void ClearElements(string fieldName); 

        IEnumerable<IElement> GetElements(string fieldName); 

        ICollection<IElement> GetCollection(string fieldName); 

        IEnumerable<ICollectionChange> GetCollectionChanges(string collFieldName); 

        IList<IElement> GetList(string fieldName); 

        int GetCount(string fieldName); 

        int GetCount(string fieldName, string key); 

        IElement CreateElement(string fieldName); 

 

        bool IsChanged(int fieldIndex); 

        T GetOld<T>(int fieldIndex); 

        IElement GetElement(int fieldIndex, string key); 

        IElement GetElement(int fieldIndex, int listIndex); 

        IElement GetElement(int fieldIndex); 

        void AddElement(int fieldIndex, IElement element); 

        void AddElement(int fieldIndex, IElement element, int listIndex); 

        void MoveElement(int fieldIndex, int fromIndex, int toIndex); 

        bool RemoveElement(int fieldIndex, IElement element); 

        void RemoveElement(int fieldIndex, int listIndex); 

        void ClearElements(int fieldIndex); 

        IEnumerable<IElement> GetElements(int fieldIndex); 

        ICollection<IElement> GetCollection(int fieldIndex); 

        IEnumerable<ICollectionChange> GetCollectionChanges(int collFieldIndex); 

        IList<IElement> GetList(int fieldIndex); 

        int GetCount(int fieldIndex); 

        int GetCount(int fieldIndex, string key); 

        IElement CreateElement(int fieldIndex); 

    } 

 

    /// <summary> 

    /// A DomainElement is an Element that belongs to a World (DomainWorld). 

    /// </summary> 

    public interface IDomainElement : IElement 

    { 

        IDomainWorld World { get; } 

 

        bool IsNew { get; } 

        bool IsDeleted { get; } 

        bool IsDetached { get; } 

 

        bool VerifyCreate(); 

        bool VerifyDelete(); 
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        bool Delete(); 

    } 

} 
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Appendix C - Prototype Demonstration 

This is the code for the Company demonstration example shown in section 5.2  

(Department-Employee). 

 
using Opt.FieldValues.Base; 

using Opt.FieldValues.Changes; 

using Opt.FieldValues.Gui; 

... 

 

namespace Opt.FieldValues.Demo 

{     

    public static class Company 

    { 

        public static IDomainModel Model; 

        public static IElementType DepartmentType; 

        public static IElementType EmployeeType; 

        public static IElementType DegreeType; 

 

        static Company() 

        { 

            Model = new CompanyModel(); 

            DepartmentType = Model.GetElementType("department"); 

            EmployeeType = Model.GetElementType("employee"); 

            DegreeType = Model.GetElementType("degree"); 

        } 

    } 

 

    public class CompanyModel : DomainModel 

    { 

        public CompanyModel() 

            : base("company") 

        { 

            // Company Model Definition 

 

            // Element Types 

 

            ElementType departmentType 

                = new ElementType("department", "Departamento", "Departamentos"); 

            departmentType.IsHomeType = true; 

            this.AddElementType(departmentType); 

 

            ElementType employeeType 

                = new ElementType("employee", "Funcionário", "Funcionários"); 

            employeeType.IsHomeType = true; 

            this.AddElementType(employeeType); 

 

            ElementType degreeType 

                = new ElementType("degree", "Habilitação", "Habilitações"); 
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            this.AddElementType(degreeType); 

 

            // Fields by Element Type 

 

            ElementType elemType; 

            FTEnum enumType; 

 

            // Department 

 

            // Fields 

            elemType = departmentType; 

            elemType.AddField(new Field("name", FT.String(40), "Nome")); 

            elemType.AddField(new Field("manager", FT.Element(employeeType), "n+", 

                                        "Responsável")); 

            elemType.AddField(new Field("notes", FT.String(), "Notas")); 

            elemType.AddField(new Field("employees", FT.Collection(employeeType), 

                                        "Funcionários")); 

 

            // Employee 

 

            // Fields 

            elemType = employeeType; 

            elemType.AddField(new Field("firstName", FT.String(20), "Primeiro Nome")); 

            elemType.AddField(new Field("lastName", FT.String(20), "Ultimo Nome")); 

            elemType.AddField(new Field("birthDate", FT.Date(), "", DateTime.Now, 

                                        "Data Nascimento")); 

            elemType.AddField(new Field("Name", FT.String(), "p- s- w- k+", "Nome")); 

            elemType.AddField(new Field("degrees", FT.Collection(degreeType, "c+"), 

                                        "Habilitações")); 

 

            // Degree 

 

            // Degree Type enumeration 

            enumType = new FTEnum("degreeType"); 

            enumType.AddItem("none", 0, "Nenhuma"); 

            enumType.AddItem("basic", 1, "Básico"); 

            enumType.AddItem("high school", 2, "Secundário"); 

            enumType.AddItem("graduation", 3, "Licenciatura"); 

            enumType.AddItem("post-graduation", 4, "Pós-graduação"); 

            enumType.AddItem("masters", 5, "Mestrado"); 

            enumType.AddItem("Phd", 6, "Doutoramento"); 

            FT.AddEnum(enumType); 

 

            // Fields 

            elemType = degreeType; 

            elemType.AddField(new Field("designation", FT.String(50), "Designação")); 

            elemType.AddField(new Field("degreeType", FT.Enum("degreeType"), 

                                        "Tipo de Habilitação")); 

        } 

 

        public override IDomainWorld  CreateWorld() 

        { 

            return new CompanyWorld(); 

        } 

    } 

 
    public class CompanyWorld : DomainWorld 

    { 

        public CompanyWorld() 

            : base(Company.Model) 

        { 

        } 

 

        public override IDomainElement NewElement(IElementType elementType, string key) 

        { 

            switch (elementType.Name) 

            { 

                case "employee": 

                    return new Employee(key); 

                default: 

                    return base.NewElement(elementType, key); 

            } 

        } 

    } 

 
    public class Employee : DomainElement 
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    { 

        public static int firstNameIndex; 

        public static int lastNameIndex; 

        public static int NameIndex; 

 

        static Employee() 

        { 

            firstNameIndex = Company.EmployeeType.GetIndex("firstName"); 

            lastNameIndex = Company.EmployeeType.GetIndex("lastName"); 

            NameIndex = Company.EmployeeType.GetIndex("Name"); 

        } 

 

        public Employee(string key) 

            : base(Company.EmployeeType, key) 

        { 

        } 

         

        public override T Get<T>(int fieldIndex) 

        { 

            object result; 

 

            if (fieldIndex == NameIndex) 

            { 

                // "Name" calculation 

                result = FirstName + " " + LastName; 

            } 

            else 

            { 

                return base.Get<T>(fieldIndex); 

            } 

 

            return (T)result; 

        } 

 

        public string Name 

        { 

            get { return this.Get<string>(NameIndex); } 

        } 

 

        public string FirstName 

        { 

            get { return this.Get<string>(firstNameIndex); } 

            set { this.Set<string>(firstNameIndex, value); } 

        } 

 

        public string LastName 

        { 

            get { return this.Get<string>(lastNameIndex); } 

            set { this.Set<string>(lastNameIndex, value); } 

        } 

    } 

 
    ... 

    static void Main() 

    { 

        // GUI automation 

 

        FVPrototype proto = new FVPrototype(); 

        proto.Start(Company.Model); 

    } 

    ... 

} 
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Appendix D – Bus Planner Model 

Definition 

Tabular definition of BusPlanner’s model from section 5.3. 
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