
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

FV-RAD

A Practical Framework for

Rapid Application Development

Luís Filipe Ferreira

FINAL VERSION

Project Report

Master in Informatics and Computer Engineering

Supervisor: Prof. Ademar Aguiar

July, 2009

FV-RAD

A Practical Framework for

Rapid Application Development

Luís Filipe Ferreira

Project Report

Master in Informatics and Computer Engineering

Approved in oral examination by the committee:

Chair: Prof. António C. Coelho

__

External Examiner: Prof. João Miguel Fernandes

Internal Examiner: Prof. Ademar Aguiar

16 July, 2009

i

Abstract

The way conceptual models are used today within application development

depends heavily on the level of detachment between model and implementation. This

model-implementation gap has an impact on model detail and its maintenance effort. In

an environment where new requirements tend to be added while a project is evolving it

is often very difficult to manage this gap.

Typical roundtrip based approaches were able to tighten this gap at the cost of

merging implementation detail in the model structure. They also imposed an additional

effort on keeping those changes synchronized with implementation changes. Recent

generative methodologies like Model-Driven Software Development (MDSD)

overcome this problem by a forward only generative process directed by highly abstract

Domain Specific Languages (DSLs), but they also have its drawbacks. They impose a

delay between model changes and application execution that could inhibit model

experimentation.

Other approaches like Adaptive Object Modelling (AOM) focus on reducing the

model-implementation gap by embedding the model within the implementation that is

responsible for its run-time interpretation. Changes occurring in the model are

immediately perceived by the application and have a direct impact on its behaviour.

This dissertation is about building an AOM based framework for model embedded

applications and applying it to specific domains. This framework (FV-RAD), based on a

subset of UML class models, should provide instant model based prototyping of

application requirements and its progressive refinement throughout the development

process. It should also allow additional code attachments, extending its global

functionality and "filling the holes" where the framework lacks in grasp.

Two practical examples, one of them in the field of public transportation, are also

provided as a demonstration of the framework's capabilities.

ii

Resumo

Actualmente, a forma como os modelos conceptuais são utilizados para o

desenvolvimento de aplicações depende largamente da ligação entre o modelo e a

implementação. Esta lacuna entre modelo e implementação tem um impacto sobre o

nível de detalhe e esforço de manutenção do modelo. Num ambiente de constante

mudança onde novos requisitos tendem a ser adicionados à medida que um projecto

evolui, torna-se muitas vezes difícil gerir esta lacuna.

Abordagens típicas como a engenharia roundtrip mostraram-se capazes de reduzir

esta lacuna mas ao custo da imposição de detalhes de implementação na estrutura do

modelo. Revelaram igualmente um esforço adicional na manutenção do sincronismo

entre as alterações no modelo e aquelas resultantes da implementação. As metodologias

generativas mais recentes como o Software Dirigido por Modelo (Model-Driven

Software Development) são capazes de ultrapassar estes problemas através de um

processo de geração de sentido único (forward only) dirigido por linguagens de

modelação orientadas ao domínio (Domain Specific Languages) de um grande grau de

abstracção, mas também têm as suas desvantagens. Elas impõem uma demora entre as

alterações no modelo e a execução da aplicação que pode ser inibidora relativamente à

modelação experimental.

Outras abordagens como a Modelação por Objectos Adaptativa (AOM – Adaptive

Object Modelling) incidem na redução da lacuna modelo-implementação pela

incorporação do modelo na implementação que é responsável pela sua interpretação em

tempo de execução. As alterações no modelo são imediatamente percebidas pela

aplicação onde exercem impacto comportamental directo.

Esta dissertação aposta na construção de um framework prático baseado em

técnicas adaptativas, para aplicações de modelo embebido, e na sua aplicação em

domínios específicos. Este framework, baseado num subconjunto dos modelos de

classes do UML, deverá permitir a prototipagem automática dos requisitos da aplicação

e o seu refinamento progressivo através do processo de desenvolvimento. Deverá

igualmente permitir a anexação de código à implementação, estendendo a sua

funcionalidade global e "tapando os buracos" onde o framework se revela mais

limitado.

Dois exemplos práticos, um deles no domínio dos transportes públicos, são também

fornecidos como forma de demonstrar o potencial deste framework.

iii

Acknowledgements

The implementation of this framework is a result of a deep interest in model

oriented development and its practical application and integration in software

development processes.

First I would like to thank OPT for giving me the opportunity to complete and

apply this framework to real projects of relevant importance to the company. Special

thanks to Sara Silva who has played an important contribute for the implementation of

the user interface layer and the persistence mechanism. My thanks also go to Prof.

Teresa Galvão who has been a source of encouragement to finally finish this

dissertation, and for taking the time to review its contents. I could not finish paying my

tributes to OPT without mentioning Fernando Vieira, my colleague in arms, without

whom life at OPT would be a lonely path, we’ve had similar ways at OPT and I really

hope he finishes his thesis soon, as I’m keeping an extra bottle of champagne closed.

I would like to thank Prof. Ademar Aguiar for the update in state of the art

technologies, for the help on organizing the contents of this thesis and for the deep

encouragement to proceed without goal deviations. I also would like to thank Prof.

Augusto Sousa for understanding a busy life in the software industry and for the help

with the burocratic aspects of completing this thesis.

At last, but not the least, my loving gratitude to my wife Olga and my son David,

for the weekends I haven’t been able to be a present husband and father, for Olga’s

support and patience in replacing my time near David, and for providing me with the

best part of my life…

Luís Filipe Ferreira

iv

Contents

1 Introduction .. 1

1.1 Methodologies and RAD .. 1

1.2 Development at OPT .. 2

1.3 Motivation and Goals ... 3

1.4 Thesis Statement ... 5

1.5 Thesis Outline ... 5

2 Modelling and Development ... 7

2.1 Modelling .. 7

2.1.1 The Need for Models .. 7

2.1.2 Metamodelling .. 8

2.2 Software Reuse ... 9

2.3 Development with Models .. 10

2.3.1 Detached Modelling .. 10

2.3.2 Executable Modelling ... 10

2.3.3 Design-Time Modelling .. 11

2.3.4 Run-Time Modelling ... 11

2.4 Generative Programming .. 12

2.5 Model-Driven Software Development ... 14

2.5.1 Domain Architecture ... 16

2.5.2 Application Development ... 16

2.5.3 Model Driven Architecture ... 17

2.5.4 Architecture Centric MDSD ... 18

2.6 Software Factories .. 18

2.6.1 Product Line Development ... 19

2.6.2 Product Development .. 21

2.7 Adaptive Object Modelling .. 22

2.7.1 AOM Design Patterns ... 22

2.7.2 Extended Architecture ... 24

2.7.3 Developing AOM applications ... 25

2.7.4 Advantages of AOM ... 26

2.7.5 Disadvantages of AOM ... 26

2.8 Comparison on Model Oriented Approaches ... 26

3 The FV-RAD Framework ... 28

3.1 Introduction .. 28

3.2 AOM versus FV-RAD .. 31

3.3 Modelling Artefacts .. 31

3.4 Technical Goals .. 32

4 FV-RAD Implementation .. 33

4.1 Architecture .. 33

4.2 Metadata Interfaces ... 34

4.3 Base Implementation and Data Types .. 37

4.4 Model Interpretation ... 39

4.4.1 Interpretation Goals ... 39

4.4.2 Models and Worlds ... 39

4.4.3 The Metamodel ... 40

4.4.4 Implementation ... 42

4.5 User Interface and Prototyping ... 45

5 FV-RAD in Action ... 49

5.1 Use Cases .. 49

5.2 Demonstration .. 50

5.2.1 Model Definition ... 50

5.2.2 Model Implementation .. 53

5.2.3 Extending the Model ... 54

5.2.4 Prototype Invocation ... 56

5.2.5 Testing and Persistence ... 58

5.3 Applying FV-RAD to “Bus Planner” ... 59

6 Conclusions ... 64

6.1 Goal Analysis ... 65

6.2 Future Work .. 67

References .. 69

Appendix A - Metadata Interfaces .. 72

Appendix B - Model Interpretation Interfaces .. 75

Appendix C - Prototype Demonstration ... 79

Appendix D – Bus Planner Model Definition ... 82

List of Figures

Figure 2.1 - The four metalevels of OMG .. 8

Figure 2.2 - Software reuse, from past to present ... 9

Figure 2.3 - Mapping between problem space and solution space (adapted from

[Czarnecki'04]).. 13

Figure 2.4 - Generative programming and related fields (extracted from

[Czarnecki'04]).. 14

Figure 2.5 - MDSD, from model to code (extracted from [WebVölter]) 15

Figure 2.6 - MDSD Core Concepts (extracted from [WebVölter]) 16

Figure 2.7 - A generative architecture (extracted from [WebVölter]) 17

Figure 2.8 - MDA specialization on MDSD (extracted from [WebVölter]) 18

Figure 2.9 - A layered grid with different viewpoints for categorizing models

(extracted from [GreenfieldShort'03]) .. 20

Figure 2.10 - A Software Schema (extracted from [GreenfieldShort'03]) 21

Figure 2.11 - Overview of a Software Factory (extracted from

[GreenfieldShort'03]) .. 22

Figure 2.12 - AOM Common Structure (extracted from [YBJ'01]) 23

Figure 2.13 - AOM Extended Architecture (adapted from [WebAOM]) 24

Figure 2.14 - AOM Application (extracted from [YBJ'01] 25

Figure 3.1 - Typical application structure ... 29

Figure 3.2 - The importance of models ... 29

Figure 4.1 - Architecture of the FV-RAD framework .. 33

Figure 4.2 - Metadata base interface definitions ... 35

Figure 4.3 - Base implementation of metadata Interfaces 38

Figure 4.4 - Base definition of data types ... 38

Figure 4.5 - Models and Worlds .. 40

Figure 4.6 - FV-RAD UML based Metamodel ... 41

Figure 4.7 - Model interpretation Interfaces ... 42

Figure 4.8 - Transaction based collections .. 44

Figure 4.9 - Concrete classes for model interpretation ... 45

Figure 4.10 - Prototype editing architecture .. 48

Figure 5.1 -The "Company" model ... 51

Figure 5.2 - Defining the "Employee"entity type.. 53

Figure 5.3 - Defining the "degreeType" enumeration ... 54

Figure 5.4 - Extending a "DomainWorld"... 54

Figure 5.5 - The "Employee" extended entity type .. 55

Figure 5.6 - Prototype invocation .. 56

Figure 5.7 - Prototype main window ... 56

Figure 5.8 - Running the "Company" prototype ... 57

Figure 5.9 - FV-RAD's Domain Log ... 58

Figure 5.10 - FV-RAD's documents (".FVX") .. 59

Figure 5.11 - BusPlanner application .. 60

Figure 5.12 - BusPlanner model diagram.. 61

Figure 5.13 - FV-RAD and Association Classes ... 62

Figure 5.14 – Converting a N-N directed Association Class 62

Figure 5.15 - BusPlanner transformed model adaptation .. 63

List of Tables

Table 2.1 - Comparing Model Oriented Approaches .. 27

Table 4.1 - FV-RAD components and assemblies .. 34

Table 4.2 – Field boolean classifiers ... 36

Table 5.1 - "Company" model definition .. 52

ix

Abbreviations

AOM Adaptive Object Modelling

AOSD Aspect Oriented Software Development

API Application Programming Interface

CASE Computer Aided Software Engineering

DSL Domain Specific Language

FV-RAD Field Values based Rapid Application Development

GIST Gestão Integrada de Sistemas de Transportes

GSD Generative Software Development

GP Generative Programming

GUI Graphical User Interface

J2EE Java 2 Enterprise Edition

MDA Model Driven Architecture

MDD Model Driven Development

MDE Model Driven Engineering

MDSD Model Driven Software Development

WWW World Wide Web

WPF Windows Presentation Foundation

MOF Meta-Object Facility

OCL Object Constraint Language

OMG Object Management Group

OO Object Oriented

OPT Optimização e Planeamento de Transportes, SA

ORM Object Relational Mapping

PDM Platform Dependent Model

PIM Platform Independent Model

PSM Platform Specific Model

RAD Rapid Application Development

RUP Rational Unified Process

SF Software Factories

SQL Structured Query Language

UI User Interface

x

UML Unified Modelling Language

VB Visual Basic

VS Visual Studio

XMI XML Metadata Interchange

XML Extended Markup Language

XP Extreme Programming

 1

1 Introduction

Software development is still a growing business with an increased history in

applying new methodologies for its production. It is however strange to notice that, after

all this time, it generally still comes down to the manual writing of thousands or

millions of lines of code. In an era where the human error factor has been largely

compensated through the use of automation based processes and redundant quality

systems, it is discouraging to observe how such archaic, low level, error prone processes

are still the most applied practices in IT. The price is still being paid and it is reflected

in software quality and in deadlines that keep meeting failure.

Software development is slowly raising its abstraction level, and releasing humans

from the tedious repetitive tasks of low level programming. It is now time to relax our

finger tips and embrace the next paradigm in software development by applying finger

toes, to our models…

1.1 Methodologies and RAD

Early application development methodologies were typically devised as a waterfall

like model [Royce'87], where a series of disciplined and well defined phases take place

from requirement analysis and application design to the final implementation stages.

These more rigorous approaches were intended to minimize the cost of possible future

changes by predicting all system requirements and translating those into a big well

thought design up front.

The problem is that, in more evolving environments, where requirements tend to be

added or changed more frequently, it may happen that by the time the “final” design has

reached its implementation phase, the system has lost its utility by failing to comply

with the latest requirements. This is especially true when customers are only able to

decide on their actual needs by interacting with some sort of early version of a system

prototype.

Although predictive methodologies are still in use, more recent approaches to

development have progressively become more adaptive to changing requirements.

Application development has evolved into a more iterative and incremental process (ex.

 2

RUP [JBR'99]). The idea was to minimize the time between gathering requirements and

producing the first or the next software release, being it an intermediate prototype or a

specific application component.

Some methodologies, like Rapid Application Development (RAD), presented by

James Martin in 1991 [Martin'91], have set changing requirements as their stepping

stone to development. RAD encouraged the rapid production of application prototypes

in short successive development cycles, supported by CASE tools, as a way for the

developer to validate and gain immediate feedback on customer’s requirements.

The formal methodology as described by James Martin is no longer practiced, but

its principles are still in use. Current Agile Software Development methodologies (ex.

SCRUM [SchwaberBeedle'02], XP [BeckAndres'05]) share a lot of those principles by

reducing the time between picking the next priority requirements and releasing the next

software version to a minimum, and thus bringing developers and stakeholders closer

together in the development process.

Although somehow lost in its original form RAD has now assumed a new broader

meaning. Whenever software automation tools or frameworks are in place, the RAD

acronym rises as the buzzword of choice which generally translates into speeding up the

time from requirement or design changes to implementation results.

1.2 Development at OPT

OPT (Optimização e Planeamento de Transportes, SA) is the company providing

the organizational context for this dissertation. Its mission is to provide excellence in

innovative and optimized systems for transport planning, management and public

information.

OPT is the joint result of two different sorts of expertise, one related to operational

research techniques in the field of transportation and optimization of resources, and

another dedicated to software development. The core product of the company is the

GIST system, a client-server modular system which allows for public transport

companies to plan their offer and manage their resources in an optimized way. Major

companies in Portugal use this system in a daily basis to manage their vehicle fleets and

drivers. There are other important products at OPT and the company is also very

committed to several projects related to public information.

Another important project OPT is involved with is the development of a light

version of the GIST system (GIST Light - Public Transport Planner). This version is

intended for smaller public transport companies and for research purposes within the

academic community. The idea is to provide a simple document based application that

provides a useful decision support system for the management of vehicle and driver

schedules.

Depending on the type of project OPT has different strategies for the development

process. Basically, there is a more strict documentation oriented process following

several standards that is applied to larger projects with several stakeholders, and there is

another more agile milestone oriented process that is used for instance in smaller

projects where requirements aren’t clearly defined upfront, or long projects whose

duration is an important factor for getting requirements outdated.

Although different development methodologies are used, there is a set of common

aspects that these share:

 Even in larger projects some agility is always in place, in the sense that

 3

requirements are rarely set up-front and development is always done in

several iterations and oriented towards the next highest priority

requirements.

 Extensive use of evolving prototypes for validating, finding new

requirements, and demonstrating progress.

 Modelling is detached from implementation; no software automation tools

are used.

 Resort to UML class diagrams in design phase as the top modelling artefact.

 Object oriented models like UML class diagrams are also used as the

preferred mean to discuss conceptual issues.

 A huge effort of the development process is spent either on programming

the same recurring patterns repeatedly or trying to put these patterns in a

generic library that is used extensively throughout the project. These

patterns extend from functional logic to user interface and persistence.

 The choice of which programming patterns to use, most of the times, could

be easily inferred by analysing the conceptual model, along with some

additional configuration detail.

1.3 Motivation and Goals

The aforementioned aspects of the development process at OPT have set the

prelude to the urging need of a tool that would easily and rapidly translate the modelling

effort involved in the conceptual design of applications into some form of usable

"material" like a functional library or a prototype. This "material" could be used for

testing or demonstration purposes and it would still play an important role as a design

proofing tool. However, the real impact in productivity should be achieved by using it

as the foundation backbone for the remaining development effort, by allowing it to

integrate smoothly with the implementation in an evolving way.

In a nutshell, for the modelling effort to become more profitable and provide added

value to each model, it should be able to answer some of the needs that arose from the

development process at OPT. These needs extend from requirements and design issues

to every aspect of the implementation process like functional logic, user interface and

persistence:

Requirements

 Validating and gathering requirements within stakeholders through the use

of rapid prototypes.

Design

 Testing the consistency of design models.

 Using models to discuss and verify the impact of design decisions.

 Base the implementation in design models.

Functional Logic

 Rapid transition from model to model-aware domain library.

 Attaching functionality to models by integration with implementation tools.

 4

 Overcoming model semantic limitations.

 Running a model for testing purposes.

User Interface

 Raise intelligence level on current UI frameworks by making them model-

aware.

 Automatic generation of model based user interface for prototyping.

Persistence

 Generating persistence schemas

 Automatic model based persistence.

The answer to these needs called upon the development of the framework in the

scope of this thesis. It should be able to at least tackle some of the challenges that were

being proposed. Being an inner development at OPT meant that, besides facilitating a

better knowledge of its workings and use, there was an additional advantage that it

could be tailored to fit company specific needs.

The "GIST Light" project described earlier, particularly a more limited pre-release

version called "Bus Planner", finally triggered the will for this framework. The fact that

it is a single user flat-file based application somehow limited the scope for the initial

aim of the intended framework, reducing the risk for project dispersion.

Being a RAD framework that would rely on the description of entity Fields and

allow the control of their changing Values, it was decided to name it "FV-RAD" (it

seems all RAD related acronyms had been used up). It could stand as well for "Flat-file

Version", "Fast Velocity", or “Framework Version", just take your pick.

Having decided on the needs and boundaries that would define the initial scope of

this thesis, it was now time to have a clear understanding of what would be its main

goals and constraints:

Goals

 To build a framework that allows for the integration of an application's

conceptual model within its implementation, thus becoming model-aware.

 To demonstrate and test design models by rapidly producing executable

prototypes.

 To allow for prototypes to evolve until a final release is reached, by

progressively refining its functionality with the implementation tools (ex:

code extensions).

 To spread the framework across all aspects of the implementation process:

functional logic, user interface, and persistence.

 To apply this framework to a real project.

Constraints

 Models are based on a subset of UML class diagrams.

 Only single user flat-file based persistence should be supported.

 5

1.4 Thesis Statement

Software conceptual models are currently used in various ways. They might be

totally detached from the implementation and used solely for design planning purposes,

or they might somehow integrate with the implementation throughout the development

process. This gap between model and implementation is also reflected on the structure

and level of detail provided by these models. In an environment with frequent evolving

requirements, a high level of detachment generally imposes a low level of detail so that

the effort on keeping these models up-to-date is reduced; highly detailed models would

tend to limit model usage to an initial design baseline.

The bottom line is that a low level of interaction between model and

implementation adds little value to each model. Shortening this gap and providing

model usage and integration through all the development process, is one of the

challenges we face today. Doing it in a way that smoothly integrates with the

technology and tools provided by the implementation process of a specific organization,

is another challenge that is faced in the scope of this thesis.

The statement of this thesis is that, by embedding the model in the implementation,

through the use of a framework inspired on Adaptive-Object-Modelling techniques and

supported by a simple configuration process, we are able not just to make the

implementation model-aware but also to adjust and close model semantics to a

particular implementation technology. The bridge is established between highly abstract

constructs provided by models and low level control provided by specific

implementation tools. The advantages are obvious; the model-implementation gap is

shortened in a way most suitable to developer needs. Models will have a direct impact

on application development results and the organization will benefit from their added

value and use.

Also, by providing an initial "raw" implementation of the model, through the

framework's interpretation of the model's domain, and by adding an intelligent User-

Interface library that is model-aware and some type of persistence mechanism (ex:

XML), all main aspects of an application spectrum should be covered, and the ability to

provide a fully working prototype should be acquired. The application core will be

centred on the execution of its domain model. Translating requirements into working

prototypes will be effortless, and final project outcome will be reached through the

progressive refinement of implementation details. This refinement process should

extend model semantics and provide additional functionality by "filling the holes"

where the framework lacks its grasp.

The framework hereby described is not intended to be a complete environment but

rather a simple practical tool, suited and familiar to a particular development process,

and inspired on premises that resemble the initial RAD goals established by James

Martin.

1.5 Thesis Outline

The first chapter gives an introduction on RAD, modelling, and how modelling

integrates the development process. It proceeds by putting these in the perspective of the

hosting company and identifying the needs that originated this work. Finally the

motivation and goals that led to this thesis are presented and concludes with the thesis

statement.

 6

Chapter 2 gives a state of the art analysis of modelling strategies and model

oriented development. Special emphasis is put in generative software development and

AOM. These approaches are finally classified and compared in the last section.

Chapters 3 and 4 present the framework (FV-RAD) developed by the author in the

scope of this thesis. After an initial contextualization, with specific technical goals and

limitations intended for the first release (chapter 3), main technical issues are described

in detail for the full understanding of the framework’s architecture.

Chapter 5 gives a practical approach to using the developed framework. Use case

considerations are explained initially. Examples are presented in the scope of a simple

demonstration and the “Bus Planner" project currently under development at OPT

(modelling issues).

Chapter 6 presents final results and conclusions, and discusses the next steps for

evolving the framework.

Finally, some references and appendixes are provided as support for the reader of

this thesis.

 7

2 Modelling and Development

Modelling is an integral part of almost every development process in use today. As

methodologies evolve, models are getting closer to the problem space rather than

imposing a specific solution. Future trends are becoming directed towards finding the

best modelling languages and architectures for solving general purpose or specific

domain oriented problems. It is thus important to situate models in the current

development context and analyse how current approaches deal with the gap between

highly abstract modelling languages and low level platform oriented implementation

assets.

2.1 Modelling

2.1.1 The Need for Models

Design models play an important role in software development. Whether of a

general purpose nature like UML based models [BRJ'05, RJB'05] or custom built to suit

a particular software domain like DSLs [DKVCzarneckiEisenecker'00, '00], they

capture system variability into design abstractions that are used as the baseline for the

implementation process. They also provide a way of formalizing requirements into

structural and behavioural constructs that define system concepts, functional logic, and

constraints. Other important characteristics of software models are presented next:

Models resume a reality or a solution to a problem.

Models are able to define a conceptual plan (master plan).

Models may translate design choices and direct the implementation of software.

Models define a common language for discussing and understanding problems

and solutions.

Models are succinct, they don't have to draw the whole picture but rather

synthesise the main structural and behavioural aspects of a system. Also, a small

set of related modelling constructs has the ability to pass a lot of information

 8

through their huge semantical power. In a rough way, models allow the

definition of very much with very little; this particularly applies to graphical

modelling.

Models are independent from implementation technology. A decrease in

abstraction implies an additional weight in complexity and detail as you get

closer to specific implementation technology.

Models for design purposes must be computational as they can be tested and

simulated; this also means they must be syntactically and semantically consistent

(unambiguous).

As methodologies evolved from more predictive to more adaptive, the importance

of models, as a way to rapidly translate design into prototypes or into implementation

was considerably more demanding. Stakeholders want to be able to see results from the

early stages of the development process in order to validate their compliance to

requirements, and developers want to continuously probe for costumer needs. The

highly synthetic and semantical power of models supported by the right set of tools

allows just for that to happen.

2.1.2 Metamodelling

Metamodels are models used for defining model structure. They are important in

the context of the specification of the UML standard for modelling, which uses MOF

(Meta Object Facility) as the meta-metamodel for the definition of the meta-models that

give support to the UML specification [OMG'09]. Metamodelling can be seen as a

multi-level structure where each level describes instances from the previous level. The

OMG (Object Management Group) has 4 metalevels, M0 for final instances (objects),

M1 for the models with classes describing the objects, M2 for the metamodels with

classifiers describing the models, and finally M3 for the meta-metamodels that describe

metamodels (see Figure 2.1) .

Figure 2.1 - The four metalevels of OMG

 9

Metamodels are also used for the construction of Domain Specific Languages

(DSLs), by describing the abstract syntax of such languages (graphical or textual). They

will be used as the basis for model-validation, model-to-model and model-to-code

transformations in the context of generative methodologies (see sections 2.4, 2.5 and

2.6). They are also used for the definition of tools and frameworks that are able to adapt

to the respective domain (see section 2.7).

2.2 Software Reuse

Software reuse is about increasing the level of productivity in software

development [ClementsNorthrop'02]. It’s been quite some time since subroutines were

the only way of software reuse. From then, successive evolutionary steps have raised

the level of software productivity and progressively reduced the need to write code (see

Figure 2.2), although still not enough to satisfy the market demand for more and higher

quality software.

Figure 2.2 - Software reuse, from past to present

Object oriented programming [Meyer'97], component based development

[SGM'03], object oriented frameworks [FayadSchmidt'97, Johnson'92, Lewis'95], and

the study and classification of important design patterns [GoFFowler'03, '95] have all

been important breakthroughs for software reuse. The combined use of these and other

emerging technologies like aspect-oriented programming [Laddad'03], at different

abstraction layers, and a clear shift towards a paradigm for design reuse, through

modelling and development of software production lines, has led to the current state of

the art in software reuse through generative software development methodologies

[Czarnecki'04] (also see sections 2.4, 2.5 and 2.6).

 10

Models have never been as important for software reuse as they are today. As the

level of abstraction for software development raises, modelling artefacts like Domain

Specific Languages (DSLs) provide the ideal mean of expressing these abstractions and

for translating these into a reusable architecture. The emphasis is no longer on

composing an architecture from general components and frameworks, but rather on

generating an architecture from DSL based configurations, isolating the developer from

the cross-cutting concerns that are part of the architecture’s infrastructure.

Adaptive Object Modelling (AOM) techniques [YBJ'01] have also been an

important part in software reuse by empowering the user/developer to make run-time

changes to the application by editing models based on general purpose DSLs. These

models are interpreted at run-time by specialized frameworks, allowing the application

to easily adapt to new requirement changes without the need for extra coding or

compilation (see section 2.7).

The market demand for more and higher quality software is still far from being

fulfilled, but recent generative, adaptive technology trends and others open a new

window for the future, where models and model oriented development will definitely

play an important role.

2.3 Development with Models

In this section, a comparison is made between different model oriented strategies in

development methodologies. This analysis is made from the perspective of dealing with

the model-implementation gap and its impact on model usage.

2.3.1 Detached Modelling

In this strategy models are totally detached from the implementation.

This is still one of the most used model based development strategies. Models are

particularly useful at the beginning of the development process in order to guide the

implementation process and they are used as a reference there upon. Unless it is a

critical system or a big project with few evolving requirements where a more detailed

specification is needed, these models should be kept simple in order to illustrate main

system functionality and to reduce the effort on keeping the models updated as

requirements evolve.

2.3.2 Executable Modelling

This strategy is based in executable models that embed the implementation.

Some tools allow the definition of models for every aspect of the development

process, from functional logic to user interface and persistence. These general purpose

tools may even include some kind of high level programming language like OCL

(Object Constraint Language) [RichtersGogolla'99] to detail model constraints or

operations. Although these tools are considerably powerful, the problem is that they

lack flexibility in low level control of technology. The conceptual and technological gap

between existing modelling and implementation technologies has prevented good

support for true integration between high level modelling and low level implementation

constructs. Combining the power of a high level modelling and low level

implementation technology into a single fully integrated development tool (no code

 11

generation) is still a challenge to be overcome. An interesting attempt has been done by

[RFBO'01] trying to devise an architecture for a UML virtual machine. There’s also a

trend on applying UML virtual machines for MDA [MellorBalcer'02].

Another important aspect is that these are general purpose one size fits all abstract

modelling languages (as opposed to DSLs), not oriented to a specific domain, which

means there will be a semantic gap between these models and the domain.

2.3.3 Design-Time Modelling

Roundtrip Engineering

This strategy tries to synchronize the models with the implementation.

This is typically achieved through code generation and reverse engineering

techniques (roundtrip engineering). Unless there is a deep integration of modelling tools

within the development environment and its libraries, the effort put on synchronizing

implementation code with modelling constructs, particularly after initial code generation

phases, may be discouraging. When the programmer starts adding additional code and

manually changes the implementation, it will be difficult to decide whether this code

should be reflected in the model or kept "hidden" within the implementation. Even

small things like changing the name of an attribute or adding a parameter may have to

be synchronized, adding an additional overhead to the development effort. Models may

end up being too much detailed and their abstraction level reduced in order to comply to

a specific development environment and programming language. CASE tools typically

explore this kind of modelling orientation [KSSSZ'02] (which is probably also why

their success has been quite disappointing).

Generative Development

This strategy generates the implementation from models. Manual written code is

added but no reverse-engineering is allowed [Czarnecki'04].

Generative software development generates all infrastructure code from DSL based

models. These are highly abstract modelling languages that try to match a particular

domain in the problem space (see sections 2.4, 2.5 and 2.6). By being domain oriented

and more focused on the problem rather than on the solution, they are isolated from the

specific platform where the implementation is due, thus ensuring better independence

from technology variation or evolution. This high degree of abstraction also means that

reverse engineering is practically impossible, as it would impose a level of

implementation based detail on models (from the solution space) that is contradictory to

its goals.

Some tools may focus on full code generation, but the aim is to provide code

generation for the entire domain architecture infrastructure and add code to fill the gaps

where the models or the generator are unable to cope with.

Generative methodologies are also directed toward the implementation of software

production lines for given software system families.

2.3.4 Run-Time Modelling

In this strategy the model is embedded in the implementation. The implementation

is model aware, and directed by the interpretation of the model.

 12

This scenario is a good trade-off between the high level abstraction of a model and

low level control of implementation technology. The abstraction level of the model is

not compromised because the model doesn't have to be aware of the implementation

technology but rather the opposite. By embedding the model, the decision on how the

implementation attaches to its structure and behaviour is left to the implementation

itself. As such it opens the possibility for the rising of tools and frameworks that

manage this integration process. These may go from simple user interface gadgets, to

more complex entity life-cycle management frameworks with prototyping capabilities

and full support for model semantics.

Adaptive Object Modelling [YBJ'01] (see section 2.7) provides an approach with

an architectural style for this kind of methodology and the framework developed within

this thesis follows some of its principles and inspiration.

2.4 Generative Programming

Generative Programming (GP) [Czarnecki'04], has been the inspiration behind

some of the most advanced approaches to modelling and development in use today like

Model-Driven Software Development and Software Factories which will be presented

later (sections 2.5 and 2.6).

It became popular mainly through Krzystztof Czarnecki’s and Ulrich Eisenecker’s

book on Generative Programming [CzarneckiEisenecker'00], who defined GP as

follows:

Generative Programming is a software engineering paradigm based on modeling

software system families such that, given a particular requirements specification, a

highly customized and optimized intermediate or end-product can be automatically

created on demand from elementary, reusable implementation components by means of

configuration knowledge.

The main focus in GP is software reuse. It advocates that traditional forms of reuse

like Object Oriented Programming, Frameworks, Components and even Design

Patterns, have been unable per se to deliver the promise of software reuse. A shift of

paradigm is needed towards modelling and developing software system families rather

than individual systems. GP is a system-family approach (also known as product-line

engineering) which exploits the commonalities among systems of a given problem

domain and manages its variabilities through a systematic approach. The creation of a

system-family member is automatically generated from system specifications that are

able to express those variabilities in one or more textual or graphical domain-specific

languages (DSLs). The emphasis is on the configuration of the problem space and its

automated transformation to the solution space through the use of domain-oriented

modelling languages, rather than developing and composing individual components into

a final application from the start (see Figure 2.3).

 13

Figure 2.3 - Mapping between problem space and solution space (adapted from

[Czarnecki'04])

Typical GP systems separate development into two processes, domain engineering

and application engineering. Domain engineers define the structure of the DSLs needed

to tackle a particular domain, and produce the necessary reusable assets (components,

generators, analysis and design models, user documentation, etc.) that will be used by

application engineers to transform their DSL specifications into implementation

abstractions like elementary components connected through some glue generated code.

The transformation in Figure 2.3 can be viewed recursively. Someone’s problem

space may be someone else’s solution space, thus several transformations may be

chained together to produce a final solution. At the same time several problem related

spaces may map into the same solution space (ex: different aspects of a problem

represented using different DSLs). Also the same problem space may produce results in

several solution spaces. These related spaces and transformations end up producing a

graph that corresponds to the idea of a network of domains [Neighbors'80] where the

solution space of a domain exposes a DSL that is implemented by transformations to

other DSLs in other domain implementations.

The mapping from problem to solution space may also benefit from an aspect-

oriented approach [Laddad'03] [WebAOSD] that will allow for the composition of

components in the solution space into well encapsulated aspect based modules. This

isolates the application developer from the cross-cutting concerns that will be part of the

domain infrastructure.

 14

Figure 2.4 - Generative programming and related fields (extracted from

[Czarnecki'04])

Figure 2.4 shows a perspective on how GP’s related fields intersect with the

problem-mapping-solution spaces. For the current status on GP you may consult

Krzystztof’s web site on [WebCzarneckiHelsen].

2.5 Model-Driven Software Development

Model-Driven Software Development (MDSD) [StahlVölter'06], also known as

Model-Driven Development (MDD) and Model-Driven Engineering (MDE), is a

horizontal approach to modelling based on Domain Specific Languages (DSLs), model

transformations and generative techniques. It has a strong orientation towards domain

related aspects of software development rather than programming or computational

ones. The emphasis is on the engineering principles that lead to the enhancement of

development efficiency, quality, maintainability and reusability. This is achieved

through the automation of all redundant artefacts that repeatedly populate and define an

application’s infrastructure. Redundancy is delegated to a generative software

architecture that knows all the construction principles and programming models from

the various layers and aspects of a specific domain and is able to compose and assemble

a domain related application from its building blocks. Infrastructure code is generated

from formal models using one or more transformation steps (model-to-model or model-

to-code, see Figure 2.5). Cross-cutting implementation aspects will be centred in one

place, for example in the transformation rules, just like infrastructure bugs. This

separation of concerns [Laddad'03] promises better software maintainability by

avoiding redundancy and by isolating technological changes. Additional application

domain specific code is then added through protected code areas or using well known

design patterns [Frankel'03].

 15

Figure 2.5 - MDSD, from model to code (extracted from [WebVölter])

Complexity is managed through highly abstract, problem oriented, modelling

languages (DSLs) for the programming and configuration of various system aspects.

This means that modelling artefacts will be focused more in the problem rather than the

solution and are isolated as possible from its platform implementation. This level of

abstraction imposes a forward only generative process, since the semantic gap between

models and implementation code is just too high to allow reverse engineering.

MDSD clearly separates the development of the domain architecture infrastructure

from the development of the domain related application. This separation defines the

assignment of team roles as domain architects and application developers within a

MDSD project.

Figure 2.6 presents a classified overview of the core concepts involved in MDSD.

These concepts are centred around three important aspects: the DSLs that define a

specific domain in the problem space for a given software family, the models built on

those DSLs by application developers, and the transformation between these models

and the target platform. These aspects will be further detailed in the next subsections.

 16

Figure 2.6 - MDSD Core Concepts (extracted from [WebVölter])

2.5.1 Domain Architecture

Building a domain architecture [Evans'04] demands a deep knowledge of a

particular domain and may be figured as a two step process. The first step should be the

domain analysis and manual generation (modelling and coding) of a reference

model/implementation where all best practices and development patterns have been put

to use, and where all required frameworks and supporting technologies (platform) have

been set. The second step should derive the domain architecture from this reference

model/implementation, not just in terms of the meta-models and domain specific

languages that define the abstract and concrete syntax and semantics of the reference

domain models, but also the transformation process and rules that will eventually result

in the static code that defines the domain infrastructure on which application developers

will build upon.

The resulting artefacts will be the meta-models and DSLs that will comprise the

domain related aspects of that software system family, the templates and model

transformations that will direct the generative process, and the support frameworks and

material that will be the base of the semantically rich platform on which applications are

built. These artefacts are not end pieces of a first phase waterfall based development

process but rather a continuous work in progress from domain architects that, just like

their application developer counter-parts, should have an iterative and incremental

approach to implementing and improving the architecture.

Once architectures, models, and transformations have been defined, they can be

used in the sense of a software production line for the production of diverse software

system families. This is the manufacturing orientation of MDSD. As we can see, the

focus is more directed towards finding the right development methodology for a given

domain related problem through a specific platform rather than implementing a generic

development environment as a one for all process.

2.5.2 Application Development

In MDSD, application developers are released from the tedious task of having to

program the same constructs over and over again whenever they build a new domain

 17

related application or whenever they incrementally add a new feature to it. The domain

architecture is devised by architects and it will formalize and support that domain.

Application developers may use the reference model/implementation as an orientation

guide, and may concentrate on what they do best, designing the application by

modelling it using the DSLs defined in the domain architecture, and coding the

remaining domain specific logic (business logic) that was left out of the static

generation process. Figure 2.7 shows a simple generative architecture used by

application developers to devise a solution starting from a model written in a particular

DSL and integrating manually written code to fill application specific aspects left out of

the infrastructure. The resulting artefacts will be the DSL models, generated static code,

and extended domain logic code that could not be expressed using the DSL.

Figure 2.7 - A generative architecture (extracted from [WebVölter])

2.5.3 Model Driven Architecture

Model-Driven Architecture (MDA) [Frankel'03] is a standardization initiative from

the OMG (Object Management Group) with respect to model-driven development. It

does not cover the entire MDSD spectrum but may be regarded as a specialization of

MDSD (see Figure 2.8). The primary motivations were interoperability (through

standardization) and portability (platform independence) of software system.

MDA uses MOF (Meta Object Facility) as the meta-metamodel, for the definition

of metamodels. As expected from the OMG, UML plays a central role in MDA which

recommends the use of UML profiles [FuentesValecillo'04] as a concrete syntax for a

DSL. OMG has even made some adaptations in the context of UML 2.0 to ensure it all

fits well. OCL expressions are used to specify static semantics.

A domain model in MDA can be independent from platform (PIM - Platform

Independent Model) or platform specific (PSM - Platform Specific Model).

Transformations may occur between models (recommended) or directly from PIM-to-

code. Platforms are also described via a metamodel. PDMs (Platform description

Models) are used in order to enable transformation to platform specific models. OMG’s

QVT (Query/View/Transformation) is expected to be the standard used for model-to-

model transformations by defining the conversion process between source and target

metamodels.

Another objective of many MDA representatives is to provide a foundation for

executable UML models [MellorBalcer'02], whether they are interpreted by a UML

virtual machine or completely compiled to a target platform through model

transformations. By using general purpose models to be directly executed on a lower-

 18

level platform we are in fact raising the abstraction level of a programming language

based on models, meaning there will be a semantic gap between this language and a

specific domain.

Basically, MDA instantiates MDSD with a set of standards that clearly define the

mapping of a model to an existing platform.

Figure 2.8 - MDA specialization on MDSD (extracted from [WebVölter])

2.5.4 Architecture Centric MDSD

Architecture centric MDSD (AC-MDSD) is a specialization of MDSD that

conceptually overlaps with MDA. The aim is to provide an architecture oriented domain

(ex: architecture for client-server business applications) by generating the architecture

infrastructure for that domain from specialized DSLs called design languages. These

languages are usually based on UML profiles and contain architectural concepts that are

as abstract as possible.

The generation process will typically create an implementation framework that

contains the architectural infrastructure code (the skeleton). This is usually achieved

through single-step model-to-code transformations based on templates. Manually

written code is then added to the implementation in protected areas or through suitable

design patterns to complete a finished product (application).

Design languages, templates and target platform will constitute the generative

architecture for supporting a given software system family.

2.6 Software Factories

The concept of “software factories” was introduced by Microsoft

[GreenfieldShort'03] [GreenfieldShort'04] to define a broad approach whose final intent

is the industrialization of software development. This intent should provide the means

through which application assembly becomes more cost effective through systematic

reuse of development assets and processes. Microsoft’s vision encompasses the

 19

establishment of software supply chains focusing on the mass customization of software

products.

By looking at the complete product-line engineering process, sometimes referred as

“doing product lines the Microsoft way”, software factories are much wider in scope

than MDSD. In fact, model-driven development is one of the main cornerstones on

which software factories rely and they share much of its concepts and techniques. The

convergence of software product lines, component-based development and model-

driven development, and the integration of these into a cohesive approach that supports

new IDE oriented tools and practices are the key ideas that thrive from the innovation

axis of software factories.

As in MDSD [StahlVölter'06], software factories have two essential roles in the

development process, one more directed towards the product line development that

culminates in the production of a software factory, and another that uses the software

factory for the development of a software product or product family.

2.6.1 Product Line Development

A software product line separates the commonalities and known forms of variation

of a specific product family in order to automate their development

[ClementsNorthrop'02, CzarneckiEisenecker'00, Parnas'76].

The product line developer will start by defining a set of DSLs for that product

family. A simple factory could be based on a framework that addresses a specific

domain, and the DSL would reflect the variability points in the framework to be filled

through code generation. However, it is not always possible to build a framework for

the implementation of a highly abstract DSL. In that case, progressive transformations

to less abstract models may be needed before producing the executables. When models

stack like this it becomes useful to categorize them as a layered grid. That is the next

step in the product line development.

The layered grid for categorizing models has columns to represent specific

concerns like presentation, business, persistence, deployment, etc. The rows represent

decreasing levels of abstraction like conceptual, logical and implementation layer. Each

cell will represent a viewpoint from which software can be specified (see Figure 2.9).

By positioning the DSLs within the grid and defining the mappings between the

cells where partial or full automation is supported, a graph of viewpoints is produced

that will describe the set of specifications and transformations needed to produce a

software product. This graph is called a “software schema”. Figure 2.10 presents a

simple software schema instantiating the viewpoints for the layered grid in Figure 2.9

for the production of web based business applications.

 20

Figure 2.9 - A layered grid with different viewpoints for categorizing models (extracted

from [GreenfieldShort'03])

After the software schema is defined, production assets must be built, like editing

tools and automation tools for transforming models, and processes used for describing

the use of implementation assets. All these assets will be used by product developers to

implement product family members, and will be collected into an artefact called a

“software template”.

A software factory is finally reached when a software template is plugged into an

existing IDE (like Visual Studio), all assets will be integrated as an automated product

line where software product customization and assembly may take its place.

Software factories may also be used to produce other software templates that will

integrate other software factories of more specialized family members. This opens the

way for the formation of automated supply chains for full customization of software

family members.

 21

Figure 2.10 - A Software Schema (extracted from [GreenfieldShort'03])

2.6.2 Product Development

By using a software factory (see Figure 2.11), product developers will be provided

with all the necessary editors, tools, and specifications to rapidly assemble family

members. After configuring the software factory appropriately, they will build DSL

based models for each viewpoint within the “software schema” and there will be tools

for translating those into lower abstraction models or into executables. Final results will

be reached through progressive refinement of the models and through framework

completion of specific member details, until all the software schema is fully populated

on every existent viewpoint. At times, a bottom up approach may be used, by generating

the necessary test components upfront that will be used for testing the various pieces of

the working product as development progresses.

 22

Figure 2.11 - Overview of a Software Factory (extracted from [GreenfieldShort'03])

2.7 Adaptive Object Modelling

Some problem domains are characterized by frequent changes in requirements or

by the constant need from users to configure and extend the resulting application. These

problems demand for a highly flexible system that is able to dynamically adapt to new

requirements, without the need for programmers to keep changing the code and building

new versions of the system. A recurring architectural style for dealing with this consists

of persisting the application domain as metadata outside the application code. This data

may be a description of classes, attributes and relationships, as well as business rules for

the validation of constraints and for performing operations. The application is then

responsible for reading and interpreting the metadata at runtime and for translating it

into the structural and behavioural logic that will drive its execution. This kind of

system has been called an Adaptive Object Model (AOM) architecture [YBJ'01], as it

allows for the domain model to be changed at runtime with immediate effect on the

application behaviour that will rapidly adapt to the new business requirements. AOM

also leads to the definition of a domain-specific language (DSL), this is the modelling

language to be used by domain experts for describing entities, which needs to be

interpreted by the system.

2.7.1 AOM Design Patterns

An Adaptive Object Model also defines a pattern for a recurrent object model

structure used by typical run-time modelling architectures for adapting the application

to domain changes in metadata (see Figure 2.12).

 23

Figure 2.12 - AOM Common Structure (extracted from [YBJ'01])

This meta-model is based on a set of smaller design patterns, and will be

responsible for loading the metadata, interpreting it, and changing the application

behaviour and integrity rules, accordingly.

The TypeObject pattern [JohnsonWoolf'97] is used to decouple instances (objects)

from their classes (types) so that those classes may be implemented as instances. It

allows for classes to be created dynamically at run-time without the need for

recompilation. This pattern is used in Figure 2.12 to separate an Entity from its

EntityType and a Property from its PropertyType .

Entities have attributes which are implemented through the Property pattern

[JosephYoder'98]. This pattern enables individual objects to augment their state by

providing mechanisms for accessing, altering, adding, and removing properties or

attributes at run-time. This can be done using a dictionary, vector or lookup table. Each

property within a given entity will refer to its type and hold a particular value for that

type.

Associating Properties to Entities at each abstraction level (instances and types) by

combining the TypeObject and Property patterns forms a square shaped pattern like the

one shown on the left side of the picture. This pattern, called TypeSquare, is a very

common theme in many AOM architectures. It shows that an EntityType defines a set

of Property Types, one for each Property of the Entities assigned to that EntityType.

The patterns presented till now are more directed towards a structural description

of the domain, but the behavioural aspect of AOM is also a very important issue. The

Strategy pattern [GoF'95] is used to define the behaviour of Entity Types. Basically, a

Strategy is an object that represents an algorithm. Strategies are represented in the

model as RuleObjects [Arsanjani'01]. These Rules may be used for validating purposes

by enforcing constraints or for implementing operations on Entity methods. This pattern

might also be used to validate Properties through their PropertyType. A Rule may be a

simple primitive rule (PrimRule) or may be a composition of other rules

(CompositeRule). Rules can be built up at run-time to represent a particular workflow

process or a validation procedure. Lookup tables, grammar-oriented approaches

[Arsanjani'01], workflow architectures [Manolescu'00], or other approaches may be

used for defining rules.

Relationships, also known as Associations or Accountabilities, are properties that

refer to other entities. These could be implemented by deriving the Property class into

Attribute and Association sub-classes. However, Entity-Relationship modelling in

 24

AOM usually separates attributes from relationships. A way to do this is to use the

Property pattern twice, one for simple attributes and other for associations. Associations

(AccountabilityType) would then refer to the Entity Types involved on the relationship.

Other important design patterns for building adaptable systems, used in conjunction

with the above, are Composer, Interpreter and Builder [GoF'95]. Composer is used for

building dynamic tree like structures for types and rules while Interpreter and Builder

are used for building the structures from the metadata and for their run-time

interpretation.

2.7.2 Extended Architecture

Figure 2.13 shows an extended version of the AOM architecture adapted from the

AOM site [WebAOM].

Figure 2.13 - AOM Extended Architecture (adapted from [WebAOM])

The right side, related to information that is persisted in the metadata store,

highlights the structural (classes, attributes and relationships) and behavioural aspects

that define the Knowledge level of the system with available Types and Rules. The

Operational level (at the left) represents all instances assigned to those Types and on

which the Rules are to be applied. This level is related to application data that is

typically persisted in a specific domain database.

The above architecture is still a general reference for an AOM architecture from

which new concepts may build upon. A new architecture could for instance be able to

support component modelling where each component would aggregate some classes

from a generic domain to be reused in similar applications [CDLM'05].

 25

2.7.3 Developing AOM applications

Developing AOM applications involves several activities:

 Defining the business entities, their properties, rules and relationships. This

is where the domain experts take an important role.

 Developing an engine for instantiating and manipulating those entities. This

activity typically implies building a framework for reading and interpreting

at run-time the metadata that was defined in the previous activity. This is

one of the more important and complex activities in this process. However

the difficult part is doing it for the first time. After that, the acquaintance

with the design patterns is established, and it is just about reusing the same

architecture. This framework may also include other aspects of the dynamic

adaptation to requirements like User Interface automation. An AOM always

involves the development of some kind of framework. The alternative is to

use an existing one, if it exists.

 Developing tools for creating, editing and storing the metadata descriptions

that will be loaded an interpreted in run-time.

Figure 2.14 presents a typical architecture for an AOM application. Metadata is

stored in XML files. These files are parsed and interpreted at run-time by using the

Interpreter and Builder patterns mentioned earlier. Metadata is then structured for a

specific component responsible for instantiating and manipulating the domain objects

through their type descriptions (entity types). These objects (entities) may then be

persisted to a database.

Figure 2.14 - AOM Application (extracted from [YBJ'01]

 26

2.7.4 Advantages of AOM

The main advantage of AOM is ease of change. Changes in business requirements

may be put to work immediately by editing the metadata, probably by domain experts,

without the need for programmers to change application code.

Also, AOM projects will be smaller in terms of the number of classes that experts

have to maintain. Classes that would normally be encoded in the application program

are now encoded in a database. General concerns for “running” these classes will be

embedded in the framework.

Another advantage is shortening the gap between domain experts and developers.

Domain experts can now take a more active role on the definition of the application

structure and may work closer to developers to ensure the application complies with the

requirements.

As a direct result from the above mentioned factors, the time to market an

application can also be reduced. Developers’ main concern is to ensure that the

framework is able to deal with the different meta-types, properties and rules for that

domain. After that, it is just a question of completing the domain structure.

2.7.5 Disadvantages of AOM

The main disadvantage of AOM systems is the complexity involved in their

conception. Building the metadata interpretation engine, and understanding the

metamodel and its inner workings is not an easy task. Programmers are not used to

having classes defined in the database, outside the application code. The initial start-up

cost, for setting up this framework, is higher than usual. Also, support tools and GUIs

are required for the definition of the DSL and for storing the metadata.

Another disadvantage is poor performance. Interpreting the metadata is not as fast

as embedding the classes in code for compilation and binary execution. The behavioural

aspect of AOM with more or less complex structures for representing constraints and

operations poses a considerable overhead on execution time. However, this lack of

speed is not considered as important by AOM’s authors as the lack of understanding

mentioned earlier.

2.8 Comparison on Model Oriented Approaches

After going through some of the current modelling strategies in several

development approaches it is now time for some general conclusions. Table 2.1 presents

an overview of the different approaches for model oriented development. Column

description is the following:

 Development approach: name of the model oriented approach for

development.

 Model Abstraction: the level of abstraction typically supported by models

through that approach.

 Model Integration: how models integrate with that development strategy.

 Developer Threads: which roles are imposed on the development process to

assemble a final product (application).

 Methodologies: methodologies that currently support that approach.

 27

Table 2.1 - Comparing Model Oriented Approaches

Development

Approach

Model

Abstraction

Model

Integration

Developer

Threads
Methodologies

Detached
Modelling

High -
Application
developer

Traditional
development

Executable
Modelling

High

(general
purpose)

Model aware
Application
developer

Executable
UML (MDA),

UML virtual
machines

Roundtrip
Engineering

Low

Model-to-code.

Code-to-model

(reverse eng.)

Application
developer

CASE tools

Generative
Development

Very High

(DSLs)

Model-to-
model,

Model-to-code

(reverse eng.)

Domain
architecture
developer

(product line),

Application
developer

GP,

MDSD,

Software
factories

Run-time
Modelling

High Model aware

Framework
developer,

Domain expert

AOM

 28

3 The FV-RAD Framework

After introducing the motivation and goals that led to this project (Chapter 1) and a

brief analysis on the current state of the art in model oriented development (Chapter 2),

it is now time to present and contextualize the framework that was developed in the

scope of this thesis.

3.1 Introduction

Application development is typically structured around three important issues (see

Figure 3.1):

 Application Logic. For executing the application domain in compliance

with the established UI and Persistence mechanism. This also defines the

platform environment on which the application is implemented. Currently

the main development platforms are “.Net” (with support for different

language flavours) or Java based (ex: J2EE). The logic will typically have a

separate component for the Domain, UI and Persistence aspects of the

application.

 User Interface (UI). For allowing the users to interact with the application,

enter input data and obtain required outputs. It might be a simple console

based interface, a desktop graphical interface, a complex web oriented

interface, or another type of user interface.

 Persistence mechanism. For keeping important data stored for use and

persisted through different application sessions. It might be a

relational/transactional database like ORACLE or SQL Server, an object-

relational framework like Hibernate or OpenAccess, a simple file based

“load/save” mechanism, or other.

 29

Figure 3.1 - Typical application structure

Models play an important role in the development process (see section 2.1). In a

way they act as the Master Plan that directs the implementation process (see Figure 3.2).

As so, if a model is complete enough, we should be able to obtain an implementation, or

at least a running prototype based on its definition.

Figure 3.2 - The importance of models

It would be interesting to have a tool that would be able, for a given model and

target platform, to produce an implementation or a skeleton that could be extended with

some additional logic (optional) to make it fully functional. We could call that tool from

an OO language with statements like the following:

 30

Implementation = UserTools.BuildApplication(

Model,

TargetPlatform {LogicType, UIType, PersistenceType}

) + [LogicExtensions];

Generative methodologies (see Chapter 2) try to accomplish that by generating all

the application code for a given software system family based on a highly abstract

domain oriented model, to which some manually written code (logic extensions) may be

added for producing the final application. Although the models should be platform

independent (based on DSLs), the domain architecture is typically generated with a

particular platform in mind:

Implementation = UserTools.BuildAppForDomainAndPlatform(

Model

) + [CodeExtensions];

In an environment where requirements are constantly changing and model

experimentation is considered an important asset (ex: interaction with stakeholders), it

would be interesting to be able to run the application directly from the model without

the need to setup a development environment or having to wait for final compilation.

Logic extensions would be supplied in binary format (libraries). The logic platform

would have to be established, as the tool itself would be built around it:

UserTools.RunApplication(

Model,

UIType, PersistenceType, [LibraryExtensions]

);

The run-time environment provided by the FV-RAD framework that was

implemented in the scope of this thesis is based on this approach. General goals were

described in section 1.3, and section 3.4 details the technical goals behind the

development of this framework.

In order to simplify the development of an initial version, the UI has been targeted

at Windows Forms while Persistence has been targeted at XML based files:

UserTools.RunWinFormsXMLBasedApplication(

Model,

[LibraryExtensions]

);

 31

3.2 AOM versus FV-RAD

FV-RAD is a run-time modelling framework that fits nicely with the AOM

approach described in section 2.7 which has also been a source of inspiration for its

development. They both have a metadata based infrastructure which defines a model

that is interpreted at run-time, and they both share some of the patterns used in the

design of their metamodels like the TypeObject, Property and TypeSquare patterns.

There are however some main differences or variations from AOM’s privileged

architecture:

 FV-RAD’s metadata is more oriented towards structure rather than

behaviour. This doesn’t mean that patterns like Strategy couldn’t be used

for rules on operations and constraints. But in this implementation,

behavioural aspects are delegated towards code extensions that define the

operations on entities and the constraints on values, entities and domain.

 FV-RAD shortens the distance between model and implementation (model-

implementation gap) by embedding associations in fields, rather than

having a general Accountability type to define the associations separately

from the properties that characterize the entities (which AOM privileges).

By sharing associations with fields, the semantic gap between the model

and the implementation technology (objects using fields to reference other

objects) is shortened which facilitates the interpretation process. However,

it is still possible to get the inverse field from the other side of the

association, although inverse field synchronization is not yet implemented.

 Fields in FV-RAD benefit from the extension mechanism which means that

there might not be a state for that field but, instead, its value is obtained

through a calculation process. Also, by setting a value to a field we might

be changing the state of several other fields through some procedure. This is

similar to Properties in “.Net”.

 FV-RAD is focused in modelling a “full domain”, not just a segment of a

domain. The concept of a DomainWorld, which is an instance of a

DomainModel, has been added to fill this premise. DomainWorlds manage

all their internal state, including the state of their entities. Any changes to a

World may be verified and cancelled (like an object oriented transaction).

Also, some mechanisms are provided for automatic entity life-cycle

management (reference counts).

3.3 Modelling Artefacts

There are currently several modelling artefacts available. These may go from

general purpose modelling languages like UML to domain specific languages (DSLs)

like the ones used in generative methodologies. FV-RAD has adapted a variation on

UML class-association diagrams as its modelling language. The reasons behind this

choice are the following:

 General purpose. Being general purpose oriented, the choice of a widely

used modelling standard like UML became obvious.

 32

 Wide acceptance. UML class diagrams are the most used modelling

artefact in the hosting company (OPT) and most probably in other

companies in the world.

 Added value. Although UML has several modelling artefacts for different

purposes (use case diagrams, sequence diagrams, activity diagrams, etc),

class diagrams end up being the conceptual design central models where

structure and behaviour are gathered in a cohesive scope with more added

value to the application designer.

 Prototyping. Focused on defining structural and behavioural elements,

UML class diagrams are easily prone to design prototyping and validation.

3.4 Technical Goals

We have already stated the main general goals that motivated this project. In this

section we present specific technical goals for the development of the FV-RAD

framework:

 Focused on run-time adaptation of UML class-association based diagrams.

 Providing an interface for the definition of general purpose metadata.

 Providing a base implementation for the metadata interfaces, including the

definition of base data types for the definition of entity fields.

 Providing an engine for the run-time interpretation of models based on the

metadata.

 Creating intelligent User Interfaces based on the knowledge of metadata.

 Creating User Interface automatisms for the execution of model based

prototypes.

 User Interfaces will be implemented for Windows desktop.

 Persistence will be implemented through XML based files.

 33

4 FV-RAD Implementation

The choice of target platform as “Microsoft .Net C#” is not only a technical based

choice. It reflects the hosting company’s development culture that is currently more

cantered in Microsoft’s tools and also the experience of the author of this thesis.

Microsoft, with Visual Studio, also has very good support for the development of user

interfaces, which eases the burden on the implementation of the user interface

infrastructure. Although several compromises have been made in order to fulfil project

deadlines, these were carefully planned so as to minimize the impact on the

framework’s evolution.

4.1 Architecture

The architecture of the FV-RAD framework presented in Figure 4.1, reflects the

pursue of the technical goals presented in section 3.4.

Components have been layered according to a bottom up approach that starts with

the definition of the metadata and ends up with the execution of UI automated model

based prototypes. Below each title is the name of the “.Net” assembly where each

component is located.

Figure 4.1 - Architecture of the FV-RAD framework

 34

The components that make up this architecture are described in Table 4.1, and will

be explained in greater detail in the following sections.

Table 4.1 - FV-RAD components and assemblies

METADATA INTERFACES

(Opt.FieldValues)

Definition of the abstract interfaces needed for

representing the metadata (ex: IEntityType,

IField, IFieldType).

METADATA BASE

IMPLEMENTATION

(Opt.FieldValues.Base)

Provides a base implementation of the

metadata interfaces including an initial set of

base data types for typifying fields (ex: FTInt,

FTString, FTEnum, FTReference).

MODEL INTERPRETATION

(Opt.FieldValues.Changes)

Extends the metadata interfaces with

additional interfaces needed to support the

interpretation of domain models (ex:

IDomainModel, IElementType,

IDomainWorld, IElement).

Grows on the base implementation of metadata

interfaces to provide an implementation of the

new interfaces.

Manages state changes to domain data. It also

provides an extension mechanism for

providing additional functionality with code.

METADATA BASED UI

(Opt.FieldValues.Gui.Base)

Provides an increased level of abstraction to

UI widgets by making them aware of the

metadata interfaces used for viewing and

editing meta-based data (ex: FieldTypeEditor,

FVListView).

UI PROTOTYPING

(Opt.FieldValues.Gui)

Uses metadata based widgets to provide full

UI automation for the execution of prototypes

that use the “model interpretation” component

for running models (ex: ElementEditor,

ElementsList, ElementEditorForm,

FVPrototype).

4.2 Metadata Interfaces

The Metadata Interfaces component is about providing a set of abstract interfaces

for the definition of metadata. The fact that these are not concrete implementations

ensures isolation from the specific implementation one might provide and allows for the

development of additional metadata based applications and tools not fully domain

oriented.

 35

Figure 4.2 shows a diagram with the main interfaces provided by this component.

A recurring feature in these interfaces and others that will be provided later is the use of

Label properties for textual descriptions of some elements; the purpose is to establish a

bridge with other UI oriented components without the need for additional resource

mapping utilities.

Figure 4.2 - Metadata base interface definitions

Here’s a description of the main interfaces:

 IEntityType
Used for describing an entity type. It has a list of fields which may be

fetched by field name or by a field index (“GetField”). Fetching with an

index allows for speeding up access to field values in case they are stored in

an array like data structure.

There’s also the possibility of creating named views on that entity. A view

is a list of field names (these might also be composed field names like

“Employee.Department”) used to access a subset of the entity’s data. Views

are fetched through “GetView(viewName)” and each entity type has a

default view that may be fetched when no arguments are used with

“GetView()”.

Entity operations are still not supported in this version, although an

IOperation interface has been assigned for that purpose.

 IField
Entity field descriptors. The field is identified by a short name “Name”

property and there’s a textual description of the field name in the “Label”

property. There may also be a default value assigned to that field (“Default”

 36

property). Each field has a specified data type (“FieldType” property).

There is also a set of additional boolean classifiers that are presented in

Table 4.2.

In the future, reference fields in binary associations will provide an inverse

reference to the field which presents the role on the other side of the

association (see IReference).

 IFieldType

Used for describing field data types. These are also very important for UI

automation purposes where there will typically be a mapping from a field

type to a specific UI widget for the edition of field values. Field types may

be primitive (ex: Int or String), references to one or several entity elements

(“IsReference == true”) or enumerations (“IsEnum == true”). There is also

a validation procedure for field values of this type (“Validate”).

 IReference

Used for describing reference field types, which are the associations in

UML class diagrams. References may be single (one element), unordered

(collection) or ordered (list).

A reference points to the EntityType of its elements (“RefType” property).

Although not represented in the diagram, a reference also has an optionally

assigned “IReferencePicker” which is used for returning elements that may

be added to the reference field (automation purposes).

The “IsChild” property is very important for the automated management of

the life cycle of entities. It allows the implementation of UML composition

qualifiers in associations (composite aggregation) and denotes a

containment relationship between father and child (referenced) types.

Shared aggregation is still not supported.

Association cardinality will be implemented in the next version.

 IEnum, IEnumItem

Allows the definition of enumerated data types.

 IFieldValues

This is an important interface used for getting and setting field values in

entity elements. In a way FV-RAD owes its name to this interface. Field

values may be fetched by field name or field index (performance) and

generics are used to typify input and output values.

 IFilter

This is a simple utility interface not present in the diagram that applies a

filter to an entity element and returns a boolean to assert that the element

verifies it or not.

Appendix A shows the code for the all the interfaces hereby described.

Table 4.2 – Field boolean classifiers

IsStatefull This indicates if this is a field with an assigned state value (true)

or if it should behave like a “.Net” inferred property, and have

an associated procedure for getting and setting a value (false).

 37

IsKeyField This isn’t quite the Key meaning we’re used to, as the field or

set of fields (might be used in more than one field for the same

entity type) that uniquely identifies an entity. Instead it is used

to define the default field(s) to be presented when referencing

this entity type (more UI oriented).

IsPersistent States if the value of this field is to be persisted in a database

(true) or session oriented (false).

AllowNull The field allows Null values.

AllowWrite Permission to set values on this field (true) as it could be

internally assigned (false).

AllowRead Permission to get values from this field (true) as these could be

only accessed internally (false).

IsUnique Not implemented. Could be used to ensure the uniqueness of

some fields for this entity type (no two entities with the same

values for these fields).

IsUniqueInParent Not implemented. In a composite association this could be used

to ensure the uniqueness of some fields for child entities with

the same parent container (no two entities with the same values

for these fields in the same parent container).

4.3 Base Implementation and Data Types

This component (Metadata Base Implementation) gives a base implementation for

the Metadata Interfaces described previously. Figure 4.3 shows the main classes for

this component including a base implementation for entity types (“EntityType”), fields

(“Field”) and the filtering utility (“Filter”).

As we can see, there is also a singleton static class (“FT”) for accessing the

implementation of the base data types used to define entity fields (ex: “FT.Date()”). It is

possible through this class to define general enumeration types and additional domain

types (like ORACLE domains). These data types are presented in more detail in Figure

4.4.

 38

Figure 4.3 - Base implementation of metadata Interfaces

Figure 4.4 - Base definition of data types

 39

4.4 Model Interpretation

The Model Interpretation component provides additional interfaces and

implementations that grow on the previous components and provide the foundation for

the interpretation of models. Interpretation here means applying the definition of a

model to create and make changes to data in a model based domain. This data that

makes-up an instance of a given domain model is designated a World or a

“DomainWorld”.

4.4.1 Interpretation Goals

The main goals devised for the interpretation engine were the following:

 Interpretation of a DSL based on UML class diagrams

 Single inheritance support

 Composite associations management

 Management of entities state and life-cycle

 Support for Object Oriented Transactions (only one level)

 Referential Integrity management (through reference counts)

 Creation of an event log with all changes to data

 Ability to define behaviour and constraints through code extensions

 Persistence of data in XML files

4.4.2 Models and Worlds

Figure 4.5 presents a general perspective of the interpretation engine. The

metamodel (model that defines the models which are instances of the metamodel) has

been implicitly defined in code through the classes (which for this purpose are the meta-

classes) that make the interpretation component (see section 4.4.3). An explicit

implementation (defining a model with the structure of the metamodel) has not been

completed yet, that would allow for loading and saving the models itself in the same

XML based format used to store model instances data (worlds).

Models are instances of the metamodel. They provide a base implementation of

entity types called ElementTypes (FV-RAD’s classes) for characterizing entity instances

in the real world. They have fields that define how entities are structured and related and

how they might behave (through code extensions). In a way models define how worlds

may transit from a given state to the next.

Worlds are instances of models and they must comply with their model definition

structural and behavioural constraints. Descriptions of real-world entities are provided

in the form of Elements which are instances of ElementTypes that have an instantiated

value for each of its fields. World data may be saved in a XML based file (“.fvx”).

 40

Figure 4.5 - Models and Worlds

4.4.3 The Metamodel

FV-RAD’s metamodel (see Figure 4.6) is a model that defines the structure of FV-

RAD’s models. The interpretation component has a class (or interface) for each of the

elements presented in this metamodel.

AOM’s TypeSquare pattern is used twice, once for DomainModel-ElementTypes vs

DomainWorld-DomainElements, and another for ElementType-Fields vs.

DomainElement-FieldValues. In other words, DomainWorld-DomainElement-

FieldValue are instances of DomainModel-ElementType-Field. Instances may be

changed through the abstract interface Changeable (“IChangeable” in code), and the

model elements control how these changes may occur.

ElementTypes may inherit and extend their definition from other types (BaseType

1-N association), Multiple inheritance (N-N) is not supported yet.

Fields have type definitions called FieldTypes. These types may describe a

relationship between ElementTypes through a Reference field type that points to the

referenced ElementType. This relationship may be a composite aggregation

(IsComposite, “IsChild” in code) which defines a containment association between

element types.

In the case of a binary association (which is maintained both ways), the Field used

for the reference may also indicate the inverse field in the ElementType of the other side

to allow for automatic management of synchronized references (not implemented).

Explicit operations although represented (Operation) have not yet been

implemented.

 41

Figure 4.6 - FV-RAD UML based Metamodel

 42

4.4.4 Implementation

The implementation process started by the definition of new abstract interfaces able

to comply with the intended metamodel that was previously shown. These interfaces

grow on the metadata interfaces to provide the needed structure for model interpretation

(see Figure 4.7).

Figure 4.7 - Model interpretation Interfaces

 43

Appendix B provides the code for the interfaces hereby provided. Here’s a general

description on each one of those interfaces:

 IChangeable

Provides the ability to make changes to domain data (meaning domain

worlds, elements, and field values). This is the base interface for object

oriented transaction processing.

 IState

Represents a changeable state of a set of field values. It also allows fetching

previous field values (prior to changes).

 IDomainModel

A domain model. It has a name, a version, and a set of element types. Also

enables the creation of new DomainWorlds.

 IElementType

Element types support inheritance through a BaseType, they have labels for

user interface purposes, and their instances may be persistent or not

(“IsPersistent”).

Another important property is the “IsHomeType” boolean classifier. If we

imagine a compositional data tree that holds all the elements of a domain

world, this property indicates that this is a home type, meaning that

instances of this type are located in the root of that composition tree. In

terms of user interface this means that access to those instances would be

provided in a root menu. In future versions this will be an inferred property

(by looking at the “IsChild” boolean classifier in associations).

 IDomainWorld

Holds all the data from a domain model instance. It allows for the creation,

changing, and deleting of domain element instances whose life cycle it

manages. It also has events for controlling all changes that occur in its data.

 IElement

An instance of an ElementType. It has operations for changing its state.

Collection based fields (associations) are changed by adding or removing

elements. The “Parent” is used for holding the parent element in a

composite association where the parent object fully manages the life-cycle

of its children (see the “IsChild” property).

 IDomainElement

A domain element is an instance of an ElementType that belongs to a

DomainWorld. There are properties for managing this entity’s life-cycle

within that World, like saying if it is a new element, or if it has been

changed or deleted within the current transaction.

In order to allow for object oriented transactions (verify, confirm or cancel

changes), a specific mechanism was devised to allow for a DomainWorld (and its

DomainElements) to get back to their previous state (when evoking

“CancelChanges()”). This mechanism implied that collection field values also had to

present a mechanism for recovering their previous state. This led to the implementation

of new collection types that were devised for that purpose whose associated set of

collection interfaces is presented in Figure 4.8. The last level of inheritance in these

interfaces is needed for creating collections of elements with concrete implementations

of the IElement interface.

 44

Figure 4.8 - Transaction based collections

Figure 4.9 presents the concrete implementation classes for some of the interfaces

discussed earlier that make up the interpretation engine. An important issue regarding

these classes is the implementation of a mechanism for life-cycle management of

domain elements (see “Parent” and “RefCount” properties in DomainElement). When

deleting a model element this basically works like this:

 A domain element is deleted by executing the statement

“world.RemoveElement(domElement);”

 Recursively, by looking at the “IsChild” property of all its reference fields

(associations), all its children are also removed (and their children’s

children, and so on).

 At some point the operation is confirmed by executing the statement

“world.ConfirmChanges()”.

 At this point all deleted instances (and other) are verified to check if there

are references from existing elements pointing to them. This referential

 45

integrity check is performed through the “RefCount” property that is

permanently updated by the system.

 If referential integrity is violated, then an exception is triggered and

changes are not committed; otherwise all the changes will be committed

through the domain’s data.

Figure 4.9 - Concrete classes for model interpretation

4.5 User Interface and Prototyping

The user interface components will not be discussed in detail since they are out of

the scope of this work. Although their development has been supervised by the author

of this thesis, their implementation has been achieved by a team member (also involved

in the persistence mechanism) to whom the author presents his deepest thanks.

As mentioned earlier, there are basically two UI related components, one that

provides basic UI controls based on the metadata interfaces, and another that grows on

the latter to provide full automation of windows desktop prototypes based on the model

interpretation interfaces.

 46

The textual descriptions used in the UI are obtained through the “Label” (and

“PluralLabel”) properties provided on these interfaces.

FieldTypes are used as a mean to associate a basic UI gadget to a data type.

Basically there is a mapping mechanism between FieldTypes and UI gadgets for the

visualization and edition of field instances of that data type.

Some of the existing controls are the following (a short image layout of each

control is also provided after each description):

 Field Editors

Used for editing field values. They are composed of a label and a FieldType

based control. This includes a Combo Box based control for enumerations

and for choosing single element references.

 Multi Field Editors

Used for editing several field values in a single panel.

 List Editors

Used for editing lists of domain elements. There will be buttons to access

every child (composite) and referenced collection fields on a selected

element. These are also available in the form of grids that allow for in-cell

edition of field values (each cell is a FieldType based control).

 Collection Selectors

Used for adding, removing, and ordering elements in a collection field. The

ReferencePicker mentioned earlier (section 4.2) is used to populate the

 47

“Available” elements list.

 DomainElement editors with Tabbed Panels

Used for editing the data of a domain element.

The first tab is a general purpose multi field editor for basic fields and there

is an additional tab for each collection field (composite or referenced).

All these controls are resizable and have properties for defining the geometrical

adaptation to their containers. For each of them there’s a possibility of choosing the

actual fields to be used in visualization or for editing. Composed fields are allowed, for

instance, we could say we want the “Department.Boss.Name” field presented in an

Employees list. All field properties of the IField interface are used to present data

accordingly either while editing a single element or an element list.

 The difference between composite and reference collection fields is that the first

allows the creation and removal of elements on the collection (see List Editors) and the

latter only allows for adding and removing existing elements from the collection (see

Collection Selectors).

These controls are also available within full working prototype oriented forms. One

of the basic problems on using these forms is that domain changes (in the model

interpretation layer) are single level. This means that there is no way for a “OK/Cancel”

form to call another “Ok/Cancel” based form, since the DomainWorld will only support

cancelling on the first form (otherwise, cancellation on the second form would also

cancel operations on the first form). This has led to the cautious use of edition modes in

those forms particularly with the choice of “Ok/Cancel” and “Close” based forms. The

latter provide operations that are directly committed when “Cancel” is not allowed. The

final prototype editing architecture is presented in Figure 4.10.

 48

Figure 4.10 - Prototype editing architecture

 49

5 FV-RAD in Action

5.1 Use Cases

FV-RAD, on its current state, may be partially or fully applied, depending on usage

goals. Three typical use cases have been identified:

 Generic database applications
These applications typically persist their data in a relational database.

Referential integrity is directly supported on the database. Here the

metadata interfaces and their base implementation components may be used

together with the metadata based user interface component. Reporting,

filtering, data import/export, and general user interface development will

benefit from a higher level of abstraction to allow for faster implementation

and run-time configuration.

OPT is using these components for the development of the next version of

the GIST system.

 Document persisted applications

These are the applications that benefit the most from this framework. Full

model interpretation may be used to manage the entire domain’s data. Full

user interface automation is used initially to provide working prototypes

that progressively get refined with manual or metadata based user interface

controls for a better user experience and for overcoming the framework’s

limitations.

OPT is using these components for the development of a flat-file light

version of GIST, called GIST Light, and a pre-release more limited version

called “Bus Planner” (see section 5.3).

 Prototyping

Prototyping, whether for design validation purposes or as a mean to rapidly

provide initial working versions of an application to be tested near the

stakeholders, fits neatly with the framework’s goals. Full use of the

framework is applied for this purpose.

The lack of a modelling file format (models still have to be defined in code)

is currently the biggest limitation for this intent and is the next priority in

 50

the framework’s development (by reusing its own data format). After this is

done, sharing a prototype will be as easy as putting a Model file and its

instance (a World file) in an email (an additional library with binary domain

extensions may also be sent) and sending it to the stakeholder. The

stakeholder only has to own a copy of the prototype execution environment.

He can make run-time changes to the model and returns its suggestions also

in the form of a running prototype.

As the framework grows to support other types of application structure and

persistence mechanisms, as well as new user interface paradigms, the spectrum of

application may broaden to provide a general purpose model oriented run-time

environment for the development of adaptive applications.

5.2 Demonstration

In this section, a brief demonstration of building a running prototype is provided

based on a specific model definition (Company model). All the code for this

demonstration is provided in Appendix C. The steps for building the prototype are the

following:

 Model definition

 Model implementation

 Extending the model

 GUI invocation (prototype execution)

 Testing (persistence in XML - “.FVX”)

5.2.1 Model Definition

The Company model is presented in Figure 2.1. A Company may have several

departments and employees. Each Department has several Employees and an Employee

may only work in a single Department. An Employee may be assigned for managing

one or more Departments’ activities. Each Employee may have several Degrees of some

type. The types allowed are “basic”, “high school”, “graduation”, “bachelor”, “post-

graduation”, “masters” and “Phd”. Degrees are contained in the structure of an

Employee (composite).

 51

Figure 5.1 -The "Company" model

Composite associations are important indications in the model as they provide the

means for managing the life-cycle of entities (removing an Employee implies removing

its Degrees and a Degree is created directly in the Employee that contains it).

The definition of this model may then be presented as a tabular description of all

the entity types and their fields, like the one in Table 5.1. This data is the basis for the

implementation of this model in FV-RAD.

As we can see there is a clear distinction between basic fields and the fields

responsible for describing the associations. The latter have additional columns for

describing the association roles they are involved in.

The Name field in the Employee should be the result of the concatenation of the

firstName and lastName fields. As so it must be declared as a stateless field (IsStatefull

= false).

 52

Table 5.1 - "Company" model definition

 53

5.2.2 Model Implementation

Because a textual DSL has not still been devised for the definition of the models,

the data definition presented previously in tabular format is not directly perceived by the

framework. As so, it must be programmed in code with the help of the Model

Interpretation component. Figure 5.2 presents the definition of the Employee type.

There are additional elements for giving textual designations on entities and fields.

These will be used in the UI automation process. The “IsHomeType” property for

indicating a root type is described in section 4.4.4 (in IElementyType). Root types will

be accessed from the initial window of the prototype.

Fields only have to define the boolean classifiers that differ from the defaults. We

can see that the Name field is classified as not persistent (“p-“) neither statefull (“s-“)

nor writeable (“w-“) and that it is a key field (“k+”). The “c+” classification of the

degrees field collection indicates that this is a composite reference containing all the

child elements created within.

// Company Model Definition

// Element Types

...

ElementType employeeType

 = new ElementType("employee", "Funcionário", "Funcionários");

employeeType.IsHomeType = true;

model.AddElementType(employeeType);

...

// Employee

// Fields

elemType = employeeType;

elemType.AddField(new Field("firstName", FT.String(20), "Primeiro Nome"));

elemType.AddField(new Field("lastName", FT.String(20), "Ultimo Nome"));

elemType.AddField(new Field("birthDate", FT.Date(), "", DateTime.Now,

 "Data Nascimento"));

elemType.AddField(new Field("Name", FT.String(), "p- s- w- k+", "Nome"));

elemType.AddField(new Field("degrees", FT.Collection(degreeType, "c+"),

 "Habilitações"));

...

Figure 5.2 - Defining the "Employee"entity type

Enumerated field types like the one for enumerating the different types of degrees

(don’t confuse with the Degree element type), may be defined as follows:

 54

// Degree Type enumeration

enumType = new FTEnum("degreeType");

enumType.AddItem("none", 0, "Nenhuma");

enumType.AddItem("basic", 1, "Básico");

enumType.AddItem("high school", 2, "Secundário");

enumType.AddItem("graduation", 3, "Licenciatura");

enumType.AddItem("post-graduation", 4, "Pós-graduação");

enumType.AddItem("masters", 5, "Mestrado");

enumType.AddItem("Phd", 6, "Doutoramento");

FT.AddEnum(enumType);

Figure 5.3 - Defining the "degreeType" enumeration

Subsequent references to this enumeration type may be accessed through the

“enumType” variable or through “FT.Enum(“degreeType”)”. Remaining model

definition is presented in Appendix C.

5.2.3 Extending the Model

Model code extensions will be explained through the implementation of the

Employee’s Name field. FV-RAD does not have a modelling language for describing

behaviour like for instance saying that “Name = firstName + „ „ + lastName”. As so this

will have to be implemented in code. The implementation is provided by overriding the

method used for accessing field values (“Get<T>(…)” method), in “employee” entities.

To do that, one must ensure that there is a specific class for the entities where this

method will be overridden. Since a DomainWorld only instantiates DomainElement

generic objects one must force it to instantiate “Employee” classes whenever they are

created, and that is done by overriding the “NewElement(…)” method of a sub-class of

DomainWorld called “CompanyWorld” that manages all Company entity instances (see

Figure 5.4).

public class CompanyWorld : DomainWorld

{

 public CompanyWorld()

 : base(Company.Model)

 {

 }

 public override IDomainElement NewElement(

 IElementType elementType, string key)

 {

 switch (elementType.Name)

 {

 case "employee":

 return new Employee(key);

 default:

 return base.NewElement(elementType, key);

 }

 }

}

Figure 5.4 - Extending a "DomainWorld"

 55

We may now proceed to define a “Employee” class for overriding the “Get”

method that accesses field values and imposing the calculation of the Name field (see

Figure 5.5).

public class Employee : DomainElement

{

 public static int firstNameIndex;

 public static int lastNameIndex;

 public static int NameIndex;

 static Employee()

 {

 firstNameIndex = Company.EmployeeType.GetIndex("firstName");

 lastNameIndex = Company.EmployeeType.GetIndex("lastName");

 NameIndex = Company.EmployeeType.GetIndex("Name");

 }

 public Employee(string key)

 : base(Company.EmployeeType, key)

 {

 }

 public override T Get<T>(int fieldIndex)

 {

 object result;

 if (fieldIndex == NameIndex)

 {

 // "Name" calculation

 result = FirstName + " " + LastName;

 }

 else

 {

 return base.Get<T>(fieldIndex);

 }

 return (T)result;

 }

 public string Name

 {

 get { return this.Get<string>(NameIndex); }

 }

 public string FirstName

 {

 get { return this.Get<string>(firstNameIndex); }

 set { this.Set<string>(firstNameIndex, value); }

 }

 public string LastName

 {

 get { return this.Get<string>(lastNameIndex); }

 set { this.Set<string>(lastNameIndex, value); }

 }

}

Figure 5.5 - The "Employee" extended entity type

 56

5.2.4 Prototype Invocation

After the model implementation is complete, it is time to invoke the prototype by

executing the statements in Figure 5.6.

 // GUI automation

 FVPrototype proto = new FVPrototype();

 proto.Start(Company.Model);

Figure 5.6 - Prototype invocation

The initial window of the prototype is then launched with the home entity types

available for editing (see Figure 5.7). In this window it’s also possible to open or save a

document with the edited data.

Figure 5.7 - Prototype main window

Selecting an entity type like “Departamentos” and pressing “Edit” launches a

window with all available Departments with the possibility of creating, editing or

deleting Departments, and provides access to the Departments’ collection references

(like its Employees). Figure 5.8 presents the window output after selecting the first

element in the list for editing launching a new window for the edition of a single

Department (Portuguese resource based windows).

 57

Figure 5.8 - Running the "Company" prototype

The prototype is able to generate a log of all object oriented transactions with the

changes that occurred in the entities. For instance, when opening a new “.FVX”

document for this domain, a load operation is executed for the creation of all data from

the document within the DomainWorld in a single transaction. The output for this log is

presented in Figure 5.9. As you can see there is also an indication of reference count

changes on every entity.

World changes BEGIN.

['department:1' initialized]

Created 'department:1'

['department:2' initialized]

Created 'department:2'

['department:3' initialized]

Created 'department:3'

['employee:1' initialized]

Created 'employee:1'

['degree:1' initialized]

Created 'degree:1'

[Add 'degree:1' to 'employee:1'.degrees]

['degree:1' ref 1]

['degree:2' initialized]

Created 'degree:2'

[Add 'degree:2' to 'employee:1'.degrees]

['degree:2' ref 1]

['employee:2' initialized]

Created 'employee:2'

['degree:3' initialized]

 58

Created 'degree:3'

[Add 'degree:3' to 'employee:2'.degrees]

['degree:3' ref 1]

['degree:4' initialized]

Created 'degree:4'

[Add 'degree:4' to 'employee:2'.degrees]

['degree:4' ref 1]

['employee:3' initialized]

Created 'employee:3'

['employee:4' initialized]

Created 'employee:4'

['employee:5' initialized]

Created 'employee:5'

['employee:6' initialized]

Created 'employee:6'

['employee:7' initialized]

Created 'employee:7'

[Set 'department:1'.manager to 'employee:7']

['employee:7' ref 1]

[Add 'employee:6' to 'department:1'.employees]

['employee:6' ref 1]

[Add 'employee:7' to 'department:1'.employees]

['employee:7' ref 2]

World changes CONFIRM.

Figure 5.9 - FV-RAD's Domain Log

5.2.5 Testing and Persistence

Testing the prototype is an important task. Code tests may be implemented just as

any other application by calling the model interpretation engine and experimenting with

the entities. Other tests may be UI centred and the persistence mechanism plays an

important role by providing an easy way to transport domain data across the

stakeholders. The “.fvx” XML based files generated by FV-RAD are also very readable

by direct edition in a text or XML editor allowing for direct manipulation of the data.

Figure 5.10 presents the document contents for the domain data that generated the log in

Figure 5.9. XML schema generation isn’t yet supported by FV-RAD.

<?xml version="1.0" encoding="utf-8"?>

<company version="1.0.0">

 <department key="department:1" name="Marketing" manager="employee:7">

 <notes>Relações públicas e gestão de campanhas.</notes>

 <employees>

 <ref key="employee:6" />

 <ref key="employee:7" />

 </employees>

 </department>

 <department key="department:2" name="Operações">

 <notes>Planeamento da actividade produtiva</notes>

 <employees />

 </department>

 <department key="department:3" name="Comercial">

 <notes>Planeamento da actividade de vendas</notes>

 <employees />

 </department>

 <employee key="employee:1" firstName="Luís" lastName="Ferreira" birthDate="1968-10-

 59

16">

 <degrees>

 <degree key="degree:1" designation="Engenharia de Sistemas e Informática"

degreeType="graduation" />

 <degree key="degree:2" designation="Informática" degreeType="post-

graduation" />

 </degrees>

 </employee>

 <employee key="employee:2" firstName="Fernando" lastName="Vieira" birthDate="1971-

03-28">

 <degrees>

 <degree key="degree:3" designation="Matemática e Ciências da Computação"

degreeType="graduation" />

 <degree key="degree:4" designation="Informática" degreeType="post-

graduation" />

 </degrees>

 </employee>

 <employee key="employee:3" firstName="Sara" lastName="Silva" birthDate="0001-01-

01">

 <degrees />

 </employee>

 <employee key="employee:4" firstName="João" lastName="Castro" birthDate="0001-01-

01">

 <degrees />

 </employee>

 <employee key="employee:5" firstName="Sara" lastName="Meireles" birthDate="0001-01-

01">

 <degrees />

 </employee>

 <employee key="employee:6" firstName="Lurdes" lastName="Ribeiro" birthDate="0001-

01-01">

 <degrees />

 </employee>

 <employee key="employee:7" firstName="Manuela Ribeiro" birthDate="0001-01-01">

 <degrees />

 </employee>

</company>

Figure 5.10 - FV-RAD's documents (".FVX")

5.3 Applying FV-RAD to “Bus Planner”

FV-RAD has been successfully applied to the “Bus Planner” project at OPT (see

Figure 5.11). The discussion on this implementation will be centred on the model

transformations that took part in the model definition process. The resulting model

definition data is presented in tabular form in Appendix D.

This is an application that allows a Bus Company to manage its resources, namely

in terms of the trips offered to the public and the lines (routes) they are assigned to, the

bus duties needed to fill those trips, and the driver duties needed for driving those buses.

The full model is presented in Figure 5.12. It has been sectioned in two parts, one for

modelling the transport network and another for trip and resource scheduling purposes,

so the classes that join those two segments appear twice.

 60

Figure 5.11 - BusPlanner application

The model presented has some features that cannot be directly implemented with

FV-RAD’s framework, which are the following (base knowledge of UML class

diagrams is assumed):

 Association Classes

These are classes that characterize associations. In fact these classes are

associations with modelled structure and behaviour. They are not directly

supported by FV-RAD. Examples are the LinePath and PathNode

association classes.

 Shared Aggregation

This is the general case of aggregation where several parent container

objects may share the same contained child object. Only composite

aggregation is supported in FV-RAD. Examples are the BusDuty and

DriverDuty being able to share WorkBlock instances.

 Binary Associations

These are associations that are to be implemented both ways. FV-RAD is

still not able to automatically synchronize references in both roles of the

association. An example is the N-N Trip-WorkBlock association that needs

Trip.WorkBlocks and WorkBlock.Trips role fields synchronized at all times.

 61

Figure 5.12 - BusPlanner model diagram

 62

The association classes are dealt by a simple transformation process by converting

the N-N directed association class C in Figure 5.13.

A B**

C

Figure 5.13 - FV-RAD and Association Classes

Class C is then converted into a class whose elements are contained (composite) in

the source class A and where those elements point to single B instances, although

several Cs may point to the same B (see Figure 5.14).

A C B* 1*

Figure 5.14 – Converting a N-N directed Association Class

Shared aggregation may be transformed into composite aggregation by a

transformation process that tries to find a compatible parent class for WorkBlock going

up the composition hierarchy. In this case the most suitable class is Schedule. The next

step is putting WorkBlocks contained in Schedules, instead of DriverDuty and BusDuty

where the aggregation construct is transformed into regular references.

Implemented binary associations must have the synchronization process managed

with code extensions, so that when an element is added or removed in one side the

opposite reference must be added or removed in the other side of the association.

The transformation process has to be processed case by case taking FV-RAD’s

limitations into consideration. The resulting transformed diagram for this model is

presented in Figure 5.15 and its conversion to tabular data is presented in Appendix D.

BusPlanner has benefited from FV-RAD with increased development speed and

early deployment of initial prototypes that were progressively refined till final release.

UI data manipulation was not the only benefit provided by FV-RAD. Automatic

persistence of data and the ability to use data change events for controlling the update of

the graphical representation presented in Figure 5.11 were also important gains that

allowed for the rapid development of this application.

 63

Figure 5.15 - BusPlanner transformed model adaptation

 64

6 Conclusions

Models are becoming the most important artefacts in software development. Their

integration in the development process is a fundamental aspect of current software

methodologies. It is the next step in raising the abstraction level on development tools

and languages.

There are currently several important trends in model oriented development from

which the following two have been highlighted in this thesis:

 One that uses design-time generative software methodologies to build the

application or to generate reusable assets for building a family of domain

related applications. This is based in highly abstract Domain Specific

Languages that provide an ideal mean for domain experts to express a

problem and for developers to build the infrastructure that generates the

solution.

 Other that uses adaptive methodologies for interpreting metadata based

models at run-time and providing the means for rapid changes to a model

aware application through its model definition.

FV-RAD fits the latter with a general purpose approach for interpreting an

adaptation of UML class based models. It has a broad scope by covering important

aspects as domain logic, persistence and user interface. It also flavours several use

cases, from a platform that allows for an increased level of UI automation and utilities

based on metadata, to a complex full automation prototype provider for running models

with optional code extension mechanisms. These mechanisms are used for overcoming

its limitations and for refining an application till final release is reached.

 65

6.1 Goal Analysis

Initial goals were ambitious and there were high expectations which have been

more than partially fulfilled. Several accomplishments have been realized in this

project:

 Layered architecture
A general layered architecture has been devised for metadata based

applications, for the run-time interpretation of UML class based models,

and for running fully automated prototypes. The architecture has been set

upon abstract interfaces for making the API as general as possible and a

base implementation has also been provided.

 Metadata based applications

By being able to support intermediate metadata based UI automation and

metadata based utilities it has proven to be a valuable platform for general

purpose applications. These may be client server applications based on a

relational database that don’t need full model running capabilities, like the

GIST system whose next version is being developed using this approach.

 Document based applications

Flat file persisted applications are a natural candidate for using this

framework. They may start with a rough full prototype draft

implementation, with automated user interface and persistence, and they get

progressively refined with model changes and code extensions for

achieving final results. The “BusPlanner” project at OPT has clearly

benefited from this rapid approach.

 Running prototypes

Running model based prototypes is a good way of testing design options

and concepts. FV-RAD provides the means for running these models

without the need of a development environment or application setup, which

is ideal for sharing these prototypes with the stakeholders. It also provides

automatic persistence with a portable XML based format (“.FVX”) that

may be easily edited or exchanged over email.

 In House

Although its commercial exploration is an option, the fact that this is a inner

development gives OPT a firsthand knowledge of its benefits and

limitations and the ability to make it fit for its own needs.

 Model learning platform

One important aspect of using this framework which has been noted at OPT

it is its ability to be used as an academic tool for teaching about conceptual

models in application design. By running a model based prototype the

student is rapidly able to analyse the impact of his modelling decisions on

the final application.

Also there have been some problems and limitations, some of which have already

been stated. These have somehow affected the ease of use and also have prevented a

broader spectrum of appliance for this framework:

 Modelling format and tools

The lack of a modelling format for persisting models is one of the main

drawbacks of this version. This is particularly harmful for prototyping

 66

purposes, as it imposes the need to code the model definition using the

framework which for a first-time user means learning the framework’s API.

Also a tool for building these models or for importing a base model

definition in a standard format (ex: XMI – XML Metadata Interchange) and

adapting them for its use would also be of great value. Currently OPT

defines models with StarUML (open source), then produces a transformed

version with the same tool after which there is an Excel template where this

definition is put in tabular format before being implemented in FV-RAD.

 Complexity

Learning to use the framework’s API, depending on the use scope, may

take a while. The learning curve is particularly higher with respect to code

extensions. This may be a problem, especially with a first time use team for

a short time constrained project. This is however compensated with rapid

development gains after the framework has been tackled.

 Performance

Performance is not a concern when using the basic layer for metadata based

applications. However it is an important factor when using the full model

interpretation engine to manage data. For instance, field values are stored as

objects, their state is replicated for managing changes (ex: cancelling

changes), and entity lifecycle is managed manually besides the regular

garbage collection process of the implementation platform. For

performance constrained applications this might be an important limitation.

 Database persistence

There is currently no support for database persistence, particularly multi-

user databases. These applications may only benefit from the basic

metadata layer. In fact, although the model interpretation API tried not to

compromise the future addition of this feature, it has never been intended

for first releases. Model interpretation is currently directed toward in-

memory processing of domain data that is persisted in flat-files.

Changes are already being made to overcome some o these and other limitations,

these include a partial rewrite of the user interface layers for automation and

prototyping (for WPF – Windows Presentation Foundation).

It is also important to distinguish this framework from current object-relational

technology (there’s been some confusion). Object relational tools (ex: Hibernate,

OpenAccess, etc.) provide direct mapping of class instances (objects) to relational

databases. Besides the obvious fact that FV-RAD does not currently support database

persistence, the substantial fact still remains that ORM frameworks work at the

implementation level by facilitating changes to data in objects, which get synchronized

with the database. These objects follow an already determined class structure. FV-RAD

works at a higher level of abstraction (the model), where the implementation platform is

a secondary concern and higher semantic constructs like composition and field

classification may be applied. Another example of this is the proliferation of label

descriptions for supporting things like UI automation and reporting tools. Also, FV-

RAD is about run-time adaptation of applications to new requirements which in ORM

tools may only be directed towards the mapping mechanism (a new field can’t be added

by changing the mapping file unless it has also been added to the class in code and re-

compiled).

 67

6.2 Future Work

FV-RAD is still an evolving framework with several limitations and a growing

prospect. It is already being used in some projects at OPT and there are several

improvements being prepared for the next releases:

 Explicit metamodel

Explicitly defining FV-RAD’s metamodel using its own modelling schema

is an almost finished task. It will allow for the execution of a prototype

describing a model and for reusing the same persistence format for models

and domain data.

 Visual DSL

A visual DSL for describing FV-RAD’s models would be an extremely

helpful tool that would ease the learning curve for the execution of

prototypes.

 Schema generation

Currently, data is saved to a XML file (“.FVX”) whose structure depends

on the model. It would be nice to also generate a XML schema for the

automatic validation of data for that model.

 Multi-level changes

Only single level transactions are currently supported. Multi-level

transactions would be of great interest particularly for UI automation, as

several levels of “OK/Cancel” data editors would be easily supported.

 Undo / Redo

Document based applications typically have an Undo/Redo feature. In FV-

RAD it should be based on the ability to undo or redo full transactions.

 Binary associations

Binary associations have to be managed through code extensions. A feature

that would allow for automatic synchronization of references in both roles

of these associations would be very welcome.

 Shared aggregation support

Only composite aggregation is currently supported. Shared aggregation

native support would bypass the need for additional model transformations.

 Unique fields and indexes

These would provide for additional data validation and improve system

performance in more complex operations.

 Improved UI support

The UI layers are already being improved. There is still no support for

inheritance in the UI prototypes and WPF support is being implemented.

Web based support would also be of great value.

 Model conversion

As prototypes evolve, all the domain data from previous model versions

may be lost, unless the framework is prepared for learning the differences

between consecutive versions for automatic data conversion.

 Behavioural constructs

As typical of AOM systems it would be of great value the support for

behavioural constructs at the model level that would overcome the need for

code extensions in some validation and operational procedures.

 68

An interesting vision for the future is one where the developer only has to send two

data files (model and domain data) to enable the stakeholder to test and validate or

suggest changes to the prototype. Another way to do this would be loading the model in

a web site that would be ready to provide an automatic web based UI for model

execution and sharing between the stakeholders.

In the long run more ambitious trends could be followed:

 Multi-user database support

The run-time automation of multi-user model based prototypes is a complex

task. For that reason it has been excluded from the first release. Changes to

the modelling structure would most surely have to occur to make this

possible. The potential gains however are huge. Even more when those

prototypes could be refined to become production releases. Combined with

a web user interface, full web application support could be a reality not far

from reach.

 Cloud computing

Running models in the cloud is a very ambitious plan that is far from being

accomplished. Cloud computing is a new technology waiting to be explored

and still limited in terms of data support. If this support could be provided

through a higher level of abstraction through general purpose model based

data support, then building a web service could be as easy as defining a

model, implementing some extensions, and executing it in the cloud. These

domain oriented data services could be provided together with an additional

UI automated or partially automated layer for full application support.

These are just some speculating ideas. The baseline is that by raising the level of

abstraction through the use of model oriented technologies the possibilities are

immense. The model-implementation gap gets shorter to a point where the

implementation is merged with the model. This merging process may be directed by the

implementation or by the model itself (model embedded or implementation embedded).

Application development gets faster as things like data management, persistence and

user interface get fully or partially automated, with the possibility of being further

refined by using lower level implementation technology. Quality is improved as cross

cutting concerns get implanted in this infrastructure, and a higher level of response to

requirement changes is provided by the early deployment of working prototypes that

may be validated and even changed by the stakeholders.

 69

References

[Arsanjani'01] Arsanjani, A., Grammar-Oriented Object Design: Creating Adaptive

Collaborations and Dynamic Configurations with Self-Describing Components

and Services, in Proceedings of the 39th International Conference and

Exhibition on Technology of Object-Oriented Languages and Systems

(TOOLS39). 2001, IEEE Computer Society.

[Arsanjani'01] Arsanjani, A., Rule Pattern Language 2001: A Pattern Language for

Adaptive Manners and Scalable Business Rule Design and Construction, in

Proceedings of the 39th International Conference and Exhibition on Technology

of Object-Oriented Languages and Systems (TOOLS39). 2001, IEEE Computer

Society.

[BeckAndres'05] Beck, K. and Andres, C., Extreme programming explained :

embrace change. 2nd ed. 2005, Boston, MA: Addison-Wesley. xxii, 189 p.

[BRJ'05] Booch, G., Rumbaugh, J., and Jacobson, I., The unified modeling

language user guide. 2nd ed. 2005, Upper Saddle River, NJ: Addison-Wesley.

xviii, 475 p.

[ClementsNorthrop'02] Clements, P. and Northrop, L., Software product lines :

practices and patterns. The SEI series in software engineering. 2002, Boston:

Addison-Wesley. xxx, 563 p.

[CDLM'05] Crous, T., Danzfuss, T., Liebenberg, A., and Moolman, A., Adaptive

object modelling using the .NET framework, in.NET Technologies 3rd

International Conference. 2005.

[CzarneckiEisenecker'00] Czarnecki, K. and Eisenecker, U., Generative

programming : methods, tools, and applications. 2000, Boston: Addison

Wesley. xxvi, 832 p.

[Czarnecki'04] Czarnecki, K., Overview of generative software development, in

In Proceedings of Unconventional Programming Paradigms (UPP) 2004, 15-17

September, Mont Saint-Michel, France, Revised Papers. 2004, Springer-Verlag.

p. 313-328.

[DKV'00] Deursen, A. v., Klint, P., and Visser, J., Domain-specific languages: an

annotated bibliography. SIGPLAN Not., 2000. 35(6): p. 26-36.

[Evans'04] Evans, E., Domain-driven design : tackling complexity in the heart of

software. 2004, Boston: Addison-Wesley. xxx, 529 p.

[FayadSchmidt'97] Fayad, M. and Schmidt, D. C., Object-oriented application

frameworks. Commun. ACM, 1997. 40(10): p. 32-38.

[Fowler'03] Fowler, M., Patterns of enterprise application architecture. The

Addison-Wesley signature series. 2003, Boston: Addison-Wesley. xxiv, 533 p.

[Frankel'03] Frankel, D., Model driven architecture : applying MDA to enterprise

computing. 2003, New York: Wiley. xxii, 328 p.

[FuentesValecillo'04] Fuentes, L. and Valecillo, A., An introduction to UML profiles.

The European journal for the Informatics Professional, 2004(April): p. 6-13.

[GoF'95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design patterns:

elements of reusable object-oriented software. Addison-Wesley Professional

Computing Series. 1995, Reading, MA [etc.]: Addison Wesley. XV, 395.

[GreenfieldShort'03] Greenfield, J. and Short, K., Software factories: assembling

applications with patterns, models, frameworks and tools, in Companion of the

18th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications. 2003, ACM: Anaheim, CA, USA.

[GreenfieldShort'04] Greenfield, J. and Short, K., Software factories : assembling

applications with patterns, models, frameworks, and tools. 2004, Indianapolis,

IN: Wiley Pub. xxix, 666 p.

[JBR'99] Jacobson, I., Booch, G., and Rumbaugh, J., The unified software

development process. The Addison-Wesley object technology series. 1999,

Reading, Mass: Addison-Wesley. xxix, 463 p.

[JohnsonWoolf'97] Johnson, R. and Woolf, B., Type object, in Pattern languages of

program design 3. 1997, Addison-Wesley Longman Publishing Co., Inc. p. 47-

65.

[Johnson'92] Johnson, R. E., Documenting frameworks using patterns, in OOPSLA

'92: conference proceedings on Object-oriented programming systems,

languages, and applications. 1992, ACM: Vancouver, British Columbia,

Canada. p. 63-76.

[JosephYoder'98] Joseph, B. F. and Yoder, J., Metadata and Active Object-Models,

in Dept. of Computer Science, Washington University Department of Computer

Science. 1998.

[KSSSZ'02] Kollman, R., Selonen, P., Stroulia, E., Systä, T., and Zundorf, A., A study

on the current state of the art in tool-supported UML-based static reverse

engineering, in Ninth Working Conference on Reverse Engineering. 2002. p.

0022.

[Laddad'03] Laddad, R., AspectJ in action : practical aspect-oriented programming.

2003, Greenwich, CT: Manning. xxx, 481 p.

[Lewis'95] Lewis, T. G., Object-oriented application frameworks. 1995, Greenwich:

Manning. viii, 344 p.

[Manolescu'00] Manolescu, D., Micro-Workflow: A Workflow Architecture

Supporting Compositional Object-Oriented Software Development. 2000,

University of Illinois at Urbana-Champaign.

[Martin'91] Martin, J., Rapid application development. 1991: Macmillan Publishing

Co., Inc. 788.

[MellorBalcer'02] Mellor, S. J. and Balcer, M. J., Executable UML : a foundation

for model-driven architecture. 2002, Boston ; San Francisco ; New York:

Addison-Wesley. xxxiv, 368 p.

[Meyer'97] Meyer, B., Object-oriented software construction. 2nd ed. 1997, Upper

Saddle River, N.J.: Prentice Hall PTR. xxvii, 1254 p.

[Neighbors'80] Neighbors, J. M., Software construction using components. 1980,

University of California, Irvine. p. 217.

[OMG'09] OMG, OMG Unified Modeling Language (OMG UML) - Infrastructure

and Superstructure specification. 2009, Version 2.2.

[Parnas'76] Parnas, D., On the design and development of program families. IEEE

Transactions on Software Engineering, 1976(March).

[RichtersGogolla'99] Richters, M. and Gogolla, M., Validating UML models and OCL

constraints. Lecture notes in computer science, 1999. 1939/2000: p. 265-277.

[RFBO'01] Riehle, D., Fraleigh, S., Bucka-Lassen, D., and Omorogbe, N., The

architecture of a UML virtual machine, in Proceedings of the 16th ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications. 2001, ACM: Tampa Bay, FL, USA.

[Royce'87] Royce, W. W., Managing the development of large software systems:

concepts and techniques, in Proceedings of the 9th international conference on

Software Engineering. 1987, IEEE Computer Society Press: Monterey,

California, United States.

[RJB'05] Rumbaugh, J., Jacobson, I., and Booch, G., The unified modeling

language reference manual. 2nd ed. The Addison-Wesley object technology

series. 2005, Boston: Addison-Wesley. xx, 721 p.

[SchwaberBeedle'02] Schwaber, K. and Beedle, M., Agile software development with

Scrum. Series in agile software development. 2002, Upper Saddle River, NJ:

Prentice Hall. xvi, 158 p.

[StahlVölter'06] Stahl, T. and Völter, M., Model-driven software development :

technology, engineering, management. 2006, Chichester, England ; Hoboken,

NJ: John Wiley. xvi, 428 p.

[SGM'03] Szyperski, C., Gruntz, D., and Murer, S., Component software : beyond

object-oriented programming. 2nd ed. Addison-Wesley component software

series. 2003, London ; Boston, MA: Addison-Wesley.

[WebAOM] Adaptive Object Models and Meta Modeling. Available from:

http://www.adaptiveobjectmodel.com

[WebAOSD] Aspect-Oriented Software Association, aosd.net. Available from:

http://aosd.net

[WebVölter] Web and Völter, M., Model-Driven Software Development Tutorial.

[WebCzarneckiHelsen] A Taxonomy and Categorization of Model Transformation

Approaches. Available from: http://www.swen.uwaterloo.ca/~kczarnec/

[YBJ'01] Yoder, J. W., Balaguer, F., and Johnson, R., Architecture and design of

adaptive object-models. SIGPLAN Not., 2001. 36(12): p. 50-60.

http://www.adaptiveobjectmodel.com/
http://aosd.net/
http://www.swen.uwaterloo.ca/~kczarnec/

 72

Appendix A - Metadata Interfaces

This is the code for FV-RAD’s metadata interfaces described in section 4.2.

namespace Opt.FieldValues

{

 /// <summary>

 /// The set of fields that describe an element's typed interface.

 /// </summary>

 public interface IEntityType

 {

 int FieldCount { get; }

 IField GetField(string fieldName);

 IField GetField(int fieldIndex);

 int GetIndex(string fieldName);

 IEnumerable<IField> Fields { get; }

 IEnumerable<string> GetView(); // Default view

 IEnumerable<string> GetView(string viewName);

 }

 /// <summary>

 /// An element's external or internal (statefull) data field.

 /// </summary>

 public interface IField

 {

 /// <summary>

 /// Field name used to identify it in the element.

 /// </summary>

 string Name { get; }

 /// <summary>

 /// Field name used to label user interface elements.

 /// </summary>

 string Label { get; }

 /// <summary>

 /// Field data type.

 /// </summary>

 IFieldType FieldType { get; }

 /// <summary>

 /// Default value when a new element is created.

 /// </summary>

 object Default { get; }

 73

 /// <summary>

 /// External read permission.

 /// </summary>

 bool AllowRead { get; }

 /// <summary>

 /// External write permission

 /// </summary>

 bool AllowWrite { get; }

 /// <summary>

 /// Should this field be saved when persisting data in a file

 /// or database.

 /// </summary>

 bool IsPersistent { get; }

 /// <summary>

 /// Is this field part of its element internal state.

 /// </summary>

 bool IsStatefull { get; }

 /// <summary>

 /// Is "null" an allowed value?

 /// </summary>

 bool AllowNull { get; }

 bool IsKeyField { get; }

 //bool IsUnique { get; }

 //bool IsUniqueInParent { get; }

 //

 //int ReverseFieldIndex { get; } // Binary associations.

 }

 public interface IFieldType

 {

 string Name { get; }

 Type Type { get; }

 object Default { get; }

 /// <summary>

 /// Is this field type a reference to one or several elements.

 /// </summary>

 bool IsReference { get; }

 bool IsEnum { get; }

 void Validate(object value); // Throws exception on error.

 }

 /// <summary>

 /// Describes a field type used to reference one or several

 /// elements.

 /// </summary>

 /// <remarks>

 /// A typical association between two element types.

 /// </remarks>

 public interface IReference

 {

 IEntityType RefType { get; }

 bool IsChild { get; } // Aggregation (composition)

 //bool IsSharedChild { get; } // False => Composition,

 // // True => Shared aggregation.

 bool IsElement { get; }

 bool IsCollection { get; }

 bool IsList { get; }

 IReferencePicker Picker { get; } // Fetches elements that may be picked

 // to be added.

 //// Cardinality

 //int MinCount { get; }

 //int MaxCount { get; }

 }

 public interface IEnum

 {

 74

 IEnumerable<IEnumItem> EnumItems { get; }

 IEnumItem GetItem(string name);

 IEnumItem GetItem(int value);

 }

 public interface IEnumItem

 {

 string Name { get; }

 int Value { get; }

 string Label { get; }

 }

 /// <summary>

 /// This is the interface that every element should implement to get or set its

 /// field values.

 /// </summary>

 public interface IFieldValues

 {

 T Get<T>(string fieldName);

 T Get<T>(int fieldIndex);

 void Set<T>(string fieldName, T value);

 void Set<T>(int fieldIndex, T value);

 }

 public interface IFilter

 {

 bool Verify(IFieldValues element);

 }

}

 75

Appendix B - Model Interpretation

Interfaces

This is the code for the model interpretation interfaces described in section 4.4.4.

namespace Opt.FieldValues.Changes

{

 /// <summary>

 /// Generic interface used to control and cancel changes to something.

 /// </summary>

 public interface IChangeable

 {

 bool IsChanged();

 /// <summary>

 /// Verifies and confirms changes.

 /// Throws an exception if confirmation is not possible.

 /// </summary>

 void ConfirmChanges();

 void CancelChanges();

 /// <summary>

 /// Verifies if confirmation is possible.

 /// </summary>

 /// <returns>

 /// Returns true if the changes made may be confirmed without

 /// Error.

 /// </returns>

 bool VerifyChanges();

 }

 public interface IState: IFieldValues, IChangeable

 {

 bool IsChanged(string fieldName);

 bool IsChanged(int fieldIndex);

 T GetOld<T>(string fieldName);

 T GetOld<T>(int fieldIndex);

 IList GetValues();

 IEnumerable<IStateChange> GetChanges();

 int CountChanges();

 }

 /// <summary>

 /// A Model defines the type of Elements (ElementType) and rules that associated

 76

 /// Worlds may have.

 /// </summary>

 public interface IDomainModel

 {

 string Name { get; }

 string Version { get; }

 IElementType GetElementType(string typeName);

 IEnumerable<IElementType> ElementTypes { get; }

 IDomainWorld CreateWorld();

 }

 /// <summary>

 /// An ElementType is a repository of Fields. Some fields may be inherited

 /// by a single base Element Type (multiple inheritance not supported yet.

 /// </summary>

 public interface IElementType: IEntityType

 {

 string Name { get; }

 string Label { get; }

 string PluralLabel { get; }

 bool IsPersistent { get; }

 int StateFieldCount { get; }

 IElementType BaseType { get; }

 bool IsHomeType { get; }

 bool Inherits(IElementType superType);

 IEnumerable<int> GetReferenceIndexes();

 IEnumerable<int> GetCollectionIndexes();

 }

 /// <summary>

 /// A World is a repository of Elements that follows a specific Model

 /// </summary>

 public interface IDomainWorld : IChangeable

 {

 IDomainModel Model { get; }

 IEnumerable<IDomainElement> CreatedElements { get; }

 IEnumerable<IDomainElement> DeletedElements { get; }

 IEnumerable<IDomainElement> ChangedElements { get; }

 IDomainElement GetElement(string key);

 string GetNewKey(string typeName);

 IEnumerable<IDomainElement> GetElements(string typeName);

 IDomainElement CreateElement(IElementType elementType);

 IDomainElement CreateElement(string key); // Assumes the Key has type

 // information. Use carefully

 IDomainElement CreateElement(IElementType elementType, string key); // Calls

 // "NewElement"

 // "NewElement" Requires "AddElement" after to accept the element.

 IDomainElement NewElement(IElementType elementType); // Generates the key.

 IDomainElement NewElement(string key); // Assumes the key has type

 // information. Use carefully

 IDomainElement NewElement(IElementType elementType, string key); //

 // IMPORTANT: Override to instantiate to user classes

 //// Can't override both, only one may be used to instantiate user classes

 //IDomainElement NewElement(IElementType elementType, int id); //

 // // IMPORTANT: Override to instantiate to user classes

 // Operations (changes to world)

 void AddElement(IDomainElement element);

 bool RemoveElement(IDomainElement element);

 void ChangeElement(IDomainElement element);

 // EVENTS

 event WorldEventHandler Changed;

 event WorldEventHandler BeforeConfirm;

 event WorldEventHandler BeforeCancel;

 event ElementEventHandler ElementCreateConfirmed;

 event ElementEventHandler ElementDeleteConfirmed;

 77

 event ElementEventHandler ElementChangeConfirmed;

 event ElementEventHandler ElementCreateCanceled;

 event ElementEventHandler ElementDeleteCanceled;

 event ElementEventHandler ElementChangeCanceled;

 event ElementEventHandler ElementCreated;

 event ElementEventHandler ElementDeleted;

 event ElementEventHandler ElementChanged;

 }

 /// <summary>

 /// An Element is a repository of Field Values that comply to a

 /// specific Element Type.

 /// </summary>

 public interface IElement: IFieldValues, IChangeable

 {

 string GetKey();

 IElementType ElementType { get; }

 IElement Parent { get; }

 bool IsPersistent { get; }

 IEnumerable<IStateChange> GetChanges();

 IEnumerable<ICollectionChange> GetCollectionChanges();

 bool IsChanged(string fieldName);

 T GetOld<T>(string fieldName);

 IElement GetElement(string fieldName, string key);

 IElement GetElement(string fieldName, int listIndex);

 IElement GetElement(string fieldName);

 void AddElement(string fieldName, IElement element);

 void AddElement(string fieldName, IElement element, int listIndex);

 void MoveElement(string fieldName, int fromIndex, int toIndex);

 bool RemoveElement(string fieldName, IElement element);

 void RemoveElement(string fieldName, int listIndex);

 void ClearElements(string fieldName);

 IEnumerable<IElement> GetElements(string fieldName);

 ICollection<IElement> GetCollection(string fieldName);

 IEnumerable<ICollectionChange> GetCollectionChanges(string collFieldName);

 IList<IElement> GetList(string fieldName);

 int GetCount(string fieldName);

 int GetCount(string fieldName, string key);

 IElement CreateElement(string fieldName);

 bool IsChanged(int fieldIndex);

 T GetOld<T>(int fieldIndex);

 IElement GetElement(int fieldIndex, string key);

 IElement GetElement(int fieldIndex, int listIndex);

 IElement GetElement(int fieldIndex);

 void AddElement(int fieldIndex, IElement element);

 void AddElement(int fieldIndex, IElement element, int listIndex);

 void MoveElement(int fieldIndex, int fromIndex, int toIndex);

 bool RemoveElement(int fieldIndex, IElement element);

 void RemoveElement(int fieldIndex, int listIndex);

 void ClearElements(int fieldIndex);

 IEnumerable<IElement> GetElements(int fieldIndex);

 ICollection<IElement> GetCollection(int fieldIndex);

 IEnumerable<ICollectionChange> GetCollectionChanges(int collFieldIndex);

 IList<IElement> GetList(int fieldIndex);

 int GetCount(int fieldIndex);

 int GetCount(int fieldIndex, string key);

 IElement CreateElement(int fieldIndex);

 }

 /// <summary>

 /// A DomainElement is an Element that belongs to a World (DomainWorld).

 /// </summary>

 public interface IDomainElement : IElement

 {

 IDomainWorld World { get; }

 bool IsNew { get; }

 bool IsDeleted { get; }

 bool IsDetached { get; }

 bool VerifyCreate();

 bool VerifyDelete();

 78

 bool Delete();

 }

}

 79

Appendix C - Prototype Demonstration

This is the code for the Company demonstration example shown in section 5.2

(Department-Employee).

using Opt.FieldValues.Base;

using Opt.FieldValues.Changes;

using Opt.FieldValues.Gui;

...

namespace Opt.FieldValues.Demo

{

 public static class Company

 {

 public static IDomainModel Model;

 public static IElementType DepartmentType;

 public static IElementType EmployeeType;

 public static IElementType DegreeType;

 static Company()

 {

 Model = new CompanyModel();

 DepartmentType = Model.GetElementType("department");

 EmployeeType = Model.GetElementType("employee");

 DegreeType = Model.GetElementType("degree");

 }

 }

 public class CompanyModel : DomainModel

 {

 public CompanyModel()

 : base("company")

 {

 // Company Model Definition

 // Element Types

 ElementType departmentType

 = new ElementType("department", "Departamento", "Departamentos");

 departmentType.IsHomeType = true;

 this.AddElementType(departmentType);

 ElementType employeeType

 = new ElementType("employee", "Funcionário", "Funcionários");

 employeeType.IsHomeType = true;

 this.AddElementType(employeeType);

 ElementType degreeType

 = new ElementType("degree", "Habilitação", "Habilitações");

 80

 this.AddElementType(degreeType);

 // Fields by Element Type

 ElementType elemType;

 FTEnum enumType;

 // Department

 // Fields

 elemType = departmentType;

 elemType.AddField(new Field("name", FT.String(40), "Nome"));

 elemType.AddField(new Field("manager", FT.Element(employeeType), "n+",

 "Responsável"));

 elemType.AddField(new Field("notes", FT.String(), "Notas"));

 elemType.AddField(new Field("employees", FT.Collection(employeeType),

 "Funcionários"));

 // Employee

 // Fields

 elemType = employeeType;

 elemType.AddField(new Field("firstName", FT.String(20), "Primeiro Nome"));

 elemType.AddField(new Field("lastName", FT.String(20), "Ultimo Nome"));

 elemType.AddField(new Field("birthDate", FT.Date(), "", DateTime.Now,

 "Data Nascimento"));

 elemType.AddField(new Field("Name", FT.String(), "p- s- w- k+", "Nome"));

 elemType.AddField(new Field("degrees", FT.Collection(degreeType, "c+"),

 "Habilitações"));

 // Degree

 // Degree Type enumeration

 enumType = new FTEnum("degreeType");

 enumType.AddItem("none", 0, "Nenhuma");

 enumType.AddItem("basic", 1, "Básico");

 enumType.AddItem("high school", 2, "Secundário");

 enumType.AddItem("graduation", 3, "Licenciatura");

 enumType.AddItem("post-graduation", 4, "Pós-graduação");

 enumType.AddItem("masters", 5, "Mestrado");

 enumType.AddItem("Phd", 6, "Doutoramento");

 FT.AddEnum(enumType);

 // Fields

 elemType = degreeType;

 elemType.AddField(new Field("designation", FT.String(50), "Designação"));

 elemType.AddField(new Field("degreeType", FT.Enum("degreeType"),

 "Tipo de Habilitação"));

 }

 public override IDomainWorld CreateWorld()

 {

 return new CompanyWorld();

 }

 }

 public class CompanyWorld : DomainWorld

 {

 public CompanyWorld()

 : base(Company.Model)

 {

 }

 public override IDomainElement NewElement(IElementType elementType, string key)

 {

 switch (elementType.Name)

 {

 case "employee":

 return new Employee(key);

 default:

 return base.NewElement(elementType, key);

 }

 }

 }

 public class Employee : DomainElement

 81

 {

 public static int firstNameIndex;

 public static int lastNameIndex;

 public static int NameIndex;

 static Employee()

 {

 firstNameIndex = Company.EmployeeType.GetIndex("firstName");

 lastNameIndex = Company.EmployeeType.GetIndex("lastName");

 NameIndex = Company.EmployeeType.GetIndex("Name");

 }

 public Employee(string key)

 : base(Company.EmployeeType, key)

 {

 }

 public override T Get<T>(int fieldIndex)

 {

 object result;

 if (fieldIndex == NameIndex)

 {

 // "Name" calculation

 result = FirstName + " " + LastName;

 }

 else

 {

 return base.Get<T>(fieldIndex);

 }

 return (T)result;

 }

 public string Name

 {

 get { return this.Get<string>(NameIndex); }

 }

 public string FirstName

 {

 get { return this.Get<string>(firstNameIndex); }

 set { this.Set<string>(firstNameIndex, value); }

 }

 public string LastName

 {

 get { return this.Get<string>(lastNameIndex); }

 set { this.Set<string>(lastNameIndex, value); }

 }

 }

 ...

 static void Main()

 {

 // GUI automation

 FVPrototype proto = new FVPrototype();

 proto.Start(Company.Model);

 }

 ...

}

 82

Appendix D – Bus Planner Model

Definition

Tabular definition of BusPlanner’s model from section 5.3.

 83

 84

