Faculdade de Engenharia da Universidade do Porto

Detecção Automática de Estruturas Anatómicas em Imagens Digitais da Retina

Filipe José Pinto de Lima Cardoso

Dissertação realizada no âmbito do Mestrado Integrado em Engenharia Electrotécnica e de Computadores Major Automação

> Orientador: Prof^a. Dr^a. Ana Maria Mendonça Co-orientador: Prof. Dr. António Varejão Sousa

Resumo

O disco óptico (DO) é uma das principais estruturas anatómicas que se destacam numa imagem colorida da retina humana e a sua detecção é um passo essencial no desenvolvimento de sistemas para o diagnóstico automático para várias patologias. Anatomicamente, é um local de convergência dos vasos sanguíneos na retina, o que dá origem à ocorrência de uma grande concentração de vasos em todas as direcções.

Nesta dissertação são apresentados dois métodos automáticos para detectar o DO com base na direcção dos vasos que constituem a estrutura vascular retiniana. Este tipo de abordagem diminui a importância da informação de cor e intensidade na imagem, pois existe semelhança entre as características cromáticas do DO e de algumas lesões provocadas por patologias da retina. Ambos os métodos têm em comum o recurso a uma segmentação da rede vascular retiniana usando um método baseado na detecção das linhas centrais dos vasos e reconstrução morfológica. É também criado um mapa das direcções vasculares através da filtragem com doze filtros direccionais. As etapas seguintes são distintas, sendo usada uma abordagem baseada em correspondência com padrão num dos métodos, e um novo conceito, designado por entropia das direcções vasculares, no outro.

No método baseado em correspondência com padrão avalia-se a semelhança entre um padrão contendo os valores de todas as direcções vasculares em torno de um ponto central e o mapa contendo as direcções vasculares contidas na imagem em estudo. A localização do DO é associada ao ponto onde é mínima a média das diferenças angulares entre o padrão e o mapa direccional criado. No cálculo desta média apenas são considerados os pontos de maior intensidade de uma imagem com a intensidade normalizada.

No outro método, baseado no conceito de entropia das direcções vasculares, assume-se que no DO a entropia é maior devido à elevada quantidade de vasos em várias direcções. A entropia é calculada com base no mapa de direcções vasculares. Para restringir a área de localização é segmentada uma imagem com a distância euclidiana das componentes vermelha e verde da imagem original à origem do sistema de cor, e, através de análise estatística dos valores máximos de intensidade dos segmentos assim obtidos, são seleccionados os candidatos

que podem pertencer ao DO. O ponto correspondente ao valor máximo da entropia nos segmentos seleccionados é considerado o centro do DO.

Os métodos foram testados em duas bases de dados públicas: DRIVE e STARE. O primeiro método localizou correctamente o DO em todas as 40 imagens do conjunto DRIVE (100%), e em 77 das 81 imagens do conjunto STARE (95,1%). O segundo método teve sucesso na totalidade das imagens na base de dados DRIVE (100%) e falhou a localização em 6 imagens da base de dados STARE (92,6%).

Abstract

The optic disc (OD) is a main landmark in a color image of a human retina, and the detection of the optic disc is an essential step in the development of computer-aided diagnosis systems for automated diagnosis of various retinal pathologies. The OD is the area where blood vessels enter the retina and a large concentration of vascular structures with all possible directions can be found in this image region.

This master thesis presents two methods to automatically detect the position of the optic disc. Both methods are based in the direction of the retinal blood vessels. This kind of approach decreases the importance of color and intensity information, as some lesions have identical chromatic characteristics. The two methods have in common the use of a segmented vascular structure which is calculated using a method that is based on the localization of vessel central lines and morphological reconstruction. A map of the vascular directions is first obtained using a set of twelve directional filters. The next phases of the two methods are distinct, as the localization of the DO is based on template matching in one method and on a new concept, the entropy of vascular directions, in the other.

The method based on template matching aims to measure the similarity between a template, with the expected blood vessels direction, and the map with the actual blood vessels directions. The OD is associated with the point where the calculated value of the measure is minimal. Only the brightest pixels of an intensity normalized image are considered as potential OD candidates.

The other method, based on the entropy of vascular directions, assumes that entropy is larger in the optic disc due to the high concentration of vessels in many directions. Entropy is calculated using the map of vascular directions, and to restrain the area where entropy is calculated, a new image obtained from the Euclidian distance of the red and green components to the center of color coordinates is segmented. The segments that are candidates to belong to the OD are selected based on a statistical analysis of segment maxima. Afterwards, the candidate point with the maximum entropy is considered the center of the optic disc.

Both methods were tested using two public datasets, DRIVE and STARE. In the first method the optic disc was correctly detected in all 40 images of DRIVE dataset (100%) and in 77 of the 81 images of STARE dataset (95,1%). The second method also succeeded in all images of DRIVE database (100%) and failed OD location in 6 images of the STARE database (92,6%).

Agradecimentos

Gostaria de expressar a minha profunda gratidão e reconhecimento a todos aqueles que, de formas diferentes, contribuíram para a realização do trabalho descrito nesta dissertação.

Em primeiro lugar, o meu sincero obrigado à minha orientadora, Professora Doutora Ana Maria Mendonça, que tornou possível este trabalho, não só pela sua orientação mas também pelo seu apoio incondicional, paciência e total disponibilidade durante o desenvolvimento deste trabalho.

Ao meu co-orientador, Professor Doutor António Sousa, pela sua disponibilidade e colaboração prestada ao longo deste trabalho.

Aos meus amigos pela ajuda ao longo de todo o curso que nunca será esquecida.

Finalmente, um obrigado especial aos meus pais e à minha namorada, pela ajuda, carinho, preocupação e incentivo demonstrados incessantemente. Sem eles, nada seria possível.

Página em branco

Índice

Resumo	i
Abstract	iii
Agradecimentos	v
Índice	vii
Lista de Figuras	ix
Lista de Tabelas	xii
Abreviaturas	xiii
Capítulo 1	1
ntrodução	1
1.1 - Motivação	1
1.2 - Objectivos	2
1.3 - Estrutura da Dissertação	2
Capítulo 2	5
A Retina Humana	5
2.1 - O Olho Humano	5
2.2 - Anatomia da Retina Humana	6
2.3 - Principais Patologias da Retina	7
2.4 - Exames à Retina	9
Capítulo 3	11
Revisão Bibliográfica	11
3.1 - Métodos Baseados em Intensidade	11
3.2 - Métodos Baseados na Rede Vascular	15
Capítulo 4	19
Método Baseado em Correspondência com Padrão da Direcção dos Vasos	19

4.1 - Resumo do Método	19
4.2 - Descrição do Método 4.2.1 - Segmentação da Rede Vascular 4.2.2 - Cálculo de Mapa Direccional da Rede Vascular 4.2.3 - Geração de Candidatos 4.2.4 - Determinação de Correspondências	20 21 22
4.3 - Segmentação Vascular Implementada Usando o Método de Youssif	27 27
4.4 - Resultados. 4.4.1 - Conjunto de Dados. 4.4.2 - Apresentação de Resultados. 4.4.3 - Exemplos de Resultados Correctos 4.4.4 - Resultados Errados. 4.4.5 - Discussão dos Resultados.	30 31 32 36
Capítulo 5	39
Método Baseado na Entropia da Direcção dos Vasos	39
5.1 - Resumo do Método	39
5.2 - Entropia das Direcções Vasculares	40
5.3 - Descrição do Método	
5.3.1 - Segmentação da Rede Vascular	41
5.3.2 - Cálculo da Direcção dos Vasos	
5.3.3 - Cálculo da Entropia	
5.4 - Resultados. 5.4.1 - Conjunto de Dados. 5.4.2 - Apresentação dos Resultados 5.4.3 - Exemplos de Resultados Correctos 5.4.4 - Resultados Errados. 5.4.5 - Discussão dos Resultados.	
Capítulo 6	59
Conclusão	
6.1 - Trabalho Futuro	
Anexo A - Resultados do Método Baseado em Correspondência com Portecção dos Vasos - DRIVE	
Anexo B - Resultados do Método Baseado em Correspondência com Portecção dos Vasos - STARE	
Anexo C - Resultados do Método Baseado em Entropia - DRIVE	67
Anexo D - Resultados do Método Baseado em Entropia - STARE	69
Anexo E - Casos de Sucessos - Correspondência com Padrão da Dire Vasos - STARE	
Anexo F - Exemplo de Casos de Sucessos - Método Baseado na Entr Vasos - STARE	•
Referências	77

Lista de Figuras

Figura 2.1 - Secção do olho humano [37]
Figura 2.2 - Esquema das células ganglionares, cones e bastonetes [1]
Figura 2.3 - Esquema da localização do ponto cego
Figura 2.4 - Componentes da retina humana. a) Diagrama da retina; b) Imagem da retina. 1. Vaso sanguíneo temporal superior; 2. Vaso sanguíneo nasal superior; 3. Fóvea; 4.DO; 5. Vaso sanguíneo temporal inferior; 6. Vaso sanguíneo nasal inferior [30]
Figura 2.5 - Imagem de uma retina com DMI [8]
Figura 2.6 - Esquema de zonas anómalas na retina [6]
Figura 2.7 - DO com glaucoma [11].
Figura 2.8 - Imagem da retina centradas na mácula. a) Olho esquerdo; b) Olho direito 9
Figura 2.9 - Imagem da retina centradas no DO. a) Olho esquerdo; b) Olho direito10
Figura 2.10 - Exemplo de imagem com iluminação não uniforme
Figura 2.11 - Exemplo de imagem com regiões patológicas
Figura 4.1 - Segmentação da rede vascular. a) Imagem original; b) Resultado da segmentação da rede vascular2
Figura 4.2 - Resultado da geração do mapa direccional
Figura 4.3 - Máscaras dos filtros direccionais. a) Filtro adaptado à direcção 45°; b) Filtro adaptado à direcção 90°
Figura 4.4 - Adelgaçamento da rede vascular. a) Rede vascular segmentada; b) Resultado do adelgaçamento
Figura 4.5 - Selecção dos pontos de maior luminosidade na imagem. a) Componente verde da imagem original; b) Resultado da selecção dos 2,5% pontos mais intensos na componente verde; c) Resultado da selecção dos 2,5% pontos mais intensos na componente verde normalizada.
Figura 4.6 - Exemplo de imagens intermédias do processo de normalização de intensidade aplicado à imagem da Figura 4.1-a. a) Componente verde da imagem original; b)

Resultado da aplicação de um filtro de média à componente verde; c) Resultado da normalização de intensidade; d) 2.5% dos pontos de maior intensidade sem ruído; e) Janela em torno dos pontos de maior intensidade; f) Pontos candidatos a DO 25
Figura 4.7 - Esquema da convergência dos vasos sanguíneos (adaptado de [37])
Figura 4.8 - Exemplo do padrão proposto
Figura 4.9 - Localização final do DO
Figura 4.10 - Resultado da equalização adaptativa do histograma aplicado à imagem original da Figura 4.1-a)
Figura 4.11 - Segmentação dos vasos sanguíneos através do método de Youssif aplicada à imagem da Figura 4.1-a)
Figura 4.12 - Imagem 13 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO
Figura 4.13 - Imagem 17 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO
Figura 4.14 - Imagem 20 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO
Figura 4.15 - Imagem 35 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO
Figura 4.16 - Imagem 190 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO
Figura 4.17 - Imagem 219 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO
Figura 4.18 - Imagem 50 - STARE. a) Localização do DO utilizando o método de segmentação vascular de Youssif; b) Segmentação vascular de Youssif; c) Localização do DO utilizando o método de segmentação vascular de Mendonça; d) Segmentação vascular de Mendonça
Figura 5.1 - Processo de contagem do número de pontos a 0°. a) Segmentação da rede vascular aplicada à imagem da Figura 4.1-a); b) Mapa direccional apenas com segmentos a 0°; c) Máscara considerada no cálculo de contagem (figura aumentada); d) Resultado da contagem
Figura 5.2 - a) Segmentação da rede vascular aplicada à imagem da Figura 4.1-a); b) Resultado da entropia da direcção dos vasos
Figura 5.3 - Cálculo da distância euclidiana aplicada à imagem da Figura 4.1-a). a) Componente vermelha original; b) Componente vermelha estendida; c) Componente verde original; d) Componente verde estendida; e) Componente azul original; f) Resultado da distância euclidiana
Figura 5.4 - Resultado das operações morfológicas. a) Fecho; b) Abertura
Figura 5.5- Resultado da normalização de intensidade da imagem resultante da operação de abertura
Figura 5.6 - Imagem contendo os possíveis candidatos a DO (10% dos pontos mais intensos da imagem normalizada)

Figura 5.7 - a) Segmentos com o respectivo valor de máximo de intensidade atribuído; b) Candidatos finais a DO; c) Valor da entropia nos pontos candidatos a DO; d) Localização final do DO usando o método baseado em entropia da direcção dos vasos
Figura 5.8 - Resultados referentes à imagem 17 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Entropia; d) Candidatos a DO50
Figura 5.9 - Resultados referentes à imagem 190 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO51
Figura 5.10 - Resultados referentes à imagem 12 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO52
Figura 5.11 - Resultados referentes à imagem 13 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO52
Figura 5.12 - Resultados referentes à imagem 20 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO53
Figura 5.13 - Resultados referentes à imagem 27 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO54
Figura 5.14 Resultados referentes à imagem 41 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO54
Figura 5.15 - Resultados referentes à imagem 219 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO55
Figura 5.16 - Resultados referentes à imagem 14 - DRIVE. a) Localização do DO sem o método de selecção de candidatos; b) Localização do DO com o método de selecção de candidatos; c) Segmentação vascular da imagem; d) Resultado da entropia; e) Candidatos a DO

Lista de Tabelas

Tabela 5.1 - Análise estatística do máximo dos segmentos	48
Tabela 6.1 - Resultados dos métodos apresentados neste trabalho e outros baseados na	
direcção dos vasos sanguíneos	59

Abreviaturas

Lista de abreviaturas (ordenadas por ordem alfabética)

DO Disco Óptico

Capítulo 1

Introdução

1.1 - Motivação

A visão é o mais usado dos cinco sentidos do corpo humano. O Homem depende dos olhos para receber a maior parte da informação do mundo que o rodeia, sendo que, uma grande porção do cérebro é dedicada, inteiramente, ao processamento visual. Por isso, qualquer patologia oftalmológica é nefasta para a vida do ser humano.

A retina é a camada mais interior do olho humano que forra o globo ocular e é a responsável pela formação das imagens posteriormente enviada para o cérebro. Numa imagem digital da retina humana destacam-se algumas estruturas que constituem marcos anatómicos importantes, nomeadamente o disco óptico (DO), a mácula e a rede vascular, e cuja identificação pode ser um passo essencial para o diagnóstico e caracterização de diversas patologias que afectam a retina.

Os exames à retina são a principal forma de diagnóstico de muitas doenças que afectam a visão. Destes exames resultam maioritariamente imagens que são analisadas por oftalmologistas, tarefa que consome muito tempo e o resultado pode ser subjectivo, dependendo da opinião do médico. Meios de diagnóstico automático aumentam a eficiência dessa tarefa, diminuem o tempo de análise das imagens, retornam informação quantitativa e possuem uma precisão muito maior que a avaliação humana. Com este trabalho pretende-se implementar um passo essencial na análise automática de imagens digitais de modo a auxiliar e a diminuir o encargo dos responsáveis médicos. Esse primeiro passo é a detecção do DO.

O DO é uma zona de convergência dos vasos sanguíneos e assume um papel importante nos sistemas de diagnóstico automático, nomeadamente para o diagnóstico de patologias do DO e como auxiliar para a localização da mácula. O DO tem características próprias que o distinguem do resto da imagem. Em condições normais, apresenta uma cor amarela brilhante e é circular. Porém, alguns tipos de lesões, tal como exsudados, apresentam as mesmas características cromáticas do DO. Este facto dificulta os processos de localização automática do DO se for apenas baseada na cor. Por isso, nos métodos desenvolvidos no âmbito desta dissertação optou-se por incluir informação obtida da rede vascular, pois não depende da cor e segue um padrão de convergência para o DO.

1.2 - Objectivos

O principal objectivo deste trabalho foi desenvolver um método automático e robusto de localização do DO usando como informação principal a direcção dos vasos sanguíneos. O trabalho foi dividido em três objectivos importantes.

Em primeiro lugar, optou-se por seleccionar um método para a localização do DO já apresentado por bibliografia especializada e que tivesse como base os vasos sanguíneos presentes na retina.

O segundo objectivo foi desenvolver um algoritmo que implementasse o método escolhido de forma sistemática e robusta.

O último objectivo foi implementar um algoritmo novo, baseado na entropia da direcção dos vasos sanguíneos.

1.3 - Estrutura da Dissertação

Esta dissertação é constituída por seis capítulos.

Neste 1º capítulo estão presentes uma introdução ao trabalho desenvolvido, a sua motivação e os objectivos propostos.

No capítulo 2 é efectuada uma breve introdução à anatomia da retina humana, incluindo as suas estruturas principais, patologias e exames médicos.

No capítulo 3 estão enunciados, de forma resumida, vários métodos de detecção do DO desenvolvidos por diversos autores.

No capítulo 4 é descrito o método desenvolvido baseado em correspondência com padrão. Nos subcapítulos são detalhados os passos do método, e é feita a apresentação e discussão dos seus resultados.

No capítulo 5 é detalhado o novo método elaborado, baseado na entropia da direcção dos vasos da retina. No fim do capítulo são apresentados os resultados e é efectuada a sua discussão.

Introdução 3

O capítulo 6 contém a conclusão do trabalho realizado e algumas considerações finais.

Nos anexos são apresentadas tabelas de resultados e imagens exemplificando casos de sucesso de ambos os métodos.

Por fim, estão enumeradas as referências bibliográficas do trabalho escrito.

Capítulo 2

A Retina Humana

Neste capítulo é apresentada uma breve descrição do olho humano e de alguns conceitos anatómicos que lhe são inerentes, com especial interesse pela retina.

2.1 - O Olho Humano

O olho é o órgão responsável pela visão. A sua complexa e fiável estrutura aliada à capacidade de interpretação visual do cérebro permite-nos interagir com o meio ambiente de forma natural. O olho humano é muitas vezes comparado a uma máquina fotográfica. Consegue interpretar imagens ou cenários em milésimos de segundos enquanto as máquinas levariam minutos ou mesmo horas a conseguir a realizar a mesma tarefa [1]. O sentido da visão é capaz de distinguir variações no espectro luminoso, num intervalo que vai de 380nm a 740nm [2].

O globo ocular de um adulto tem um diâmetro antero-posterior de aproximadamente 24 mm, diâmetros horizontal e vertical de aproximadamente 23 mm, pesa cerca de 7,5 gramas e tem um volume de cerca de 6,5 ml [3]. Na Figura 2.1 é apresentado um esquema onde se mostram as principais estruturas anatómicas constituintes do olho.

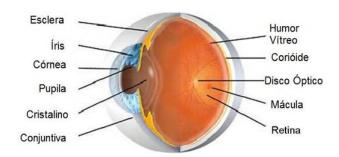


Figura 2.1 - Secção do olho humano [37].

2.2 - Anatomia da Retina Humana

A retina é camada mais interior do olho humano que forra o globo ocular e é a primeira estrutura anatómica responsável pela formação da imagem. A sua função é de captar a luz e converte-la em sinais que são enviados para o cérebro. A luz entra pela pupila, é focada pela córnea e pelo cristalino e projectada para a retina. A espessura da retina é de aproximadamente 0,25 milímetros e está ligada ao cérebro por um conjunto de fibras, o nervo óptico [4].

Na retina existem milhões de fotorreceptores que convertem os raios luminosos em impulsos eléctricos. Há dois tipos de fotorreceptores: os cones e os bastonetes (Figura 2.2). A retina contém mais de 6 milhões de cones e aproximadamente 125 milhões de bastonetes. Os bastonetes são mais receptivos à luz enquanto os cones distinguem as três diferentes componentes da luz. Durante o dia os cones estão mais activos, mas de noite estão activos ambos os tipos de receptores. As células que transmitem sinais para o cérebro são as células ganglionares.

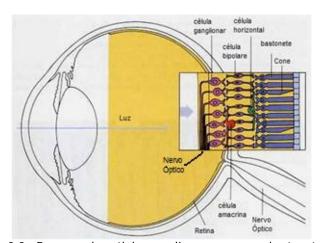


Figura 2.2 - Esquema das células ganglionares, cones e bastonetes [1].

O DO é uma zona circular pertencente ao nervo óptico situada na retina, por onde saem os axónios das células ganglionares da retina que formam o nervo óptico. Esta estrutura da retina mede cerca de 1,5 mm por 2,5 mm e não tem sensibilidade aos estímulos luminosos por não possuir cones nem bastonetes, originando uma zona cega dentro do campo visual, vulgarmente designada por ponto cego. Normalmente, a existência deste ponto cego não é perceptível ao ser humano pois o cérebro interpreta a informação de cada olho e cobre o ponto cego com informação do outro olho. A Figura 2.3 mostra um diagrama da posição do ponto cego (DO) na retina.

A Retina Humana 7

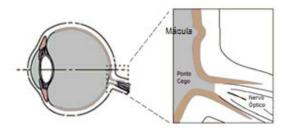


Figura 2.3 - Esquema da localização do ponto cego.

Os vasos sanguíneos da retina ramificam do DO para a periferia. Existem dois vasos sanguíneos principais, designados por arcadas, que circundam a mácula. A artéria central da retina tem um diâmetro muito pequeno (cerca de 0,1 mm) e penetra no globo ocular através do DO. As artérias da retina têm uma tonalidade vermelha brilhante enquanto as veias apresentam uma cor vermelha escura. Para além da cor, as artérias têm calibre menor do que as veias.

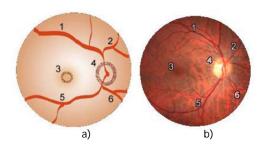


Figura 2.4 - Componentes da retina humana. a) Diagrama da retina; b) Imagem da retina. 1. Vaso sanguíneo temporal superior; 2. Vaso sanguíneo nasal superior; 3. Fóvea; 4.DO; 5. Vaso sanguíneo temporal inferior; 6. Vaso sanguíneo nasal inferior [30].

O centro da retina é designado por mácula, normalmente tem o mesmo tamanho do DO (cerca de 1,5 mm) e é a zona mais escura da retina. É a parte mais espessa da retina com aproximadamente 0,22 mm, com a excepção do seu centro, a fóvea, que é a parte mais fina tendo espessura de cerca de 0,1 mm. A fóvea tem forma circular de raio aproximadamente 0,3 mm e apenas pequenos vasos terminam nessa zona, sendo mesmo desprovida de vasos sanguíneos. Na mácula pode-se encontrar um elevado número de cones mas é na fóvea onde a densidade de cones e células ganglionares é maior. Por isso, é a zona mais importante da retina pois é onde a visão é mais nítida.

2.3 - Principais Patologias da Retina

Este trabalho não tem o objectivo de desenvolver métodos para a detecção de doenças na retina, mas a existência de patologias pode alterar o aspecto do DO e originar zonas anómalas na imagem das retinografias.

As doenças da retina são a principal causa de cegueira nas pessoas com idade avançada. A mais comum é a Degenerescência Macular da Idade que afecta cerca de 300 mil portugueses. Todos os anos aparecem perto de três mil casos novos [5]. Outras doenças que também afectam a retina têm como principal causa a diabetes, como é o caso da retinopatia diabética.

• Degenerescência Macular Associada à Idade

A Degenerescência Macular Associada à Idade (ou DMI) caracteriza-se pela deterioração progressiva da parte central da retina, a mácula, com a idade, podendo levar a uma perda grave e irreversível da visão central [7].

Figura 2.5 - Imagem de uma retina com DMI [8].

• Retinopatia [9]

Retinopatia é uma designação genérica para doenças degenerativas não inflamatórias da retina. Pode ter como causa a diabetes assumindo a designação de retinopatia diabética. A retinopatia diabética evolui em duas fases: não proliferativa (não existem vasos neoformados) e proliferativa (existe vasos neoformados). Estes vasos neoformados são anormais (fontes de hemorragias) e resultam de um estado de má nutrição da retina por alterações microvasculares. Esta doença pode originar várias zonas anómalas na retina, tal como esquematizado na Figura 2.6.

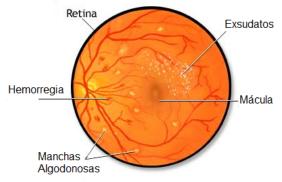


Figura 2.6 - Esquema de zonas anómalas na retina [6].

A Retina Humana 9

• Glaucoma [10]

Glaucoma é a designação genérica de um grupo de doenças que atingem o nervo óptico e envolvem a perda de células ganglionares da retina num padrão característico de neuropatia óptica. A principal causa é a elevada pressão no olho que irá comprimir as células e danificalas.

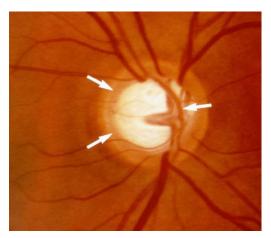
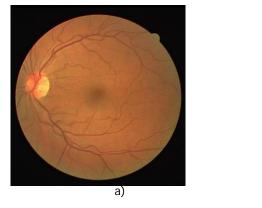



Figura 2.7 - DO com glaucoma [11].

2.4 - Exames à Retina

Os exames oftalmológicos são fundamentais para a detecção de patologias na retina. O principal exame é a retinografia. Normalmente, o oftalmologista foca e centra a imagem numa de duas estruturas, a mácula ou o DO:

• a mácula é a zona de maior sensibilidade luminosa, e qualquer estrutura anómala nesse local prejudica significativamente a visão. Nas duas imagens da Figura 2.8, são visíveis a mácula (no meio), o DO e os vasos sanguíneos.

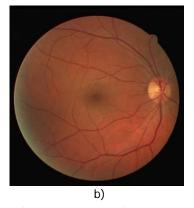


Figura 2.8 - Imagem da retina centradas na mácula. a) Olho esquerdo; b) Olho direito.

• o DO, pois também é uma região que necessita de ser analisada devido às patologias que afectam o nervo óptico. Na Figura 2.9, são apenas visíveis o DO (no meio) e os vasos sanguíneos.

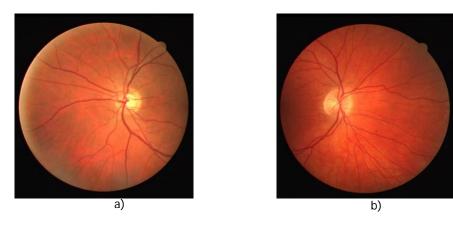


Figura 2.9 - Imagem da retina centradas no DO. a) Olho esquerdo; b) Olho direito.

Tal como numa fotografia, uma retinografia necessita ter iluminação uniforme em toda a imagem e estar focada. Em condições perfeitas, o DO apresenta uma cor amarela e brilhante, os vasos estão vermelhos escuros e a mácula apresenta uma cor escura.

A existência de patologias altera o aspecto normal das imagens e prejudica a análise das imagens para detecção das principais estruturas da retina.

Na figura 2.10 mostram-se dois exemplos de imagens com iluminação não uniforme e na Figura 2.11 estão presentes duas imagens de retinas com patologias.

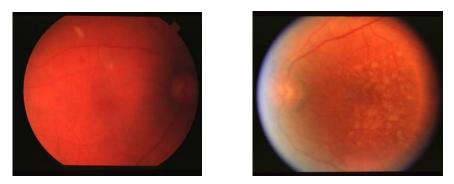


Figura 2.10 - Exemplo de imagem com iluminação não uniforme.

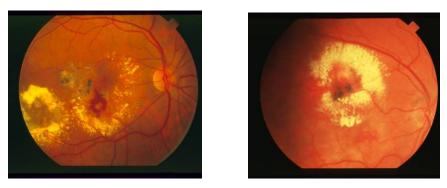


Figura 2.11 - Exemplo de imagem com regiões patológicas.

Capítulo 3

Revisão Bibliográfica

Neste capítulo, descrevem-se métodos para a detecção do DO apresentados por vários autores. A selecção destes métodos foi efectuada através da análise da bibliografia disponível sobre o tema e serviu para a escolha do primeiro algoritmo a ser implementado neste trabalho.

Os métodos foram divididos em dois grupos:

- Métodos baseados em intensidade: têm como ponto de partida a intensidade de uma ou várias componentes da imagem original.
- 2. Métodos baseados na rede vascular: usam principalmente o resultado da segmentação da rede vascular para localizar o DO.

3.1 - Métodos Baseados em Intensidade

Neste subcapítulo estão resumidos métodos que utilizam, principalmente, características de intensidade e cor da imagem.

Liu *et al.* [12] localizam o DO numa janela de 180x180 pixels nos 2% pontos de maior intensidade da componente vermelha da imagem. Seguidamente, nessas zonas, calculam o gradiente e detectam os pontos de orla com um operador de Sobel. Por fim, estimam a posição e o tamanho do DO através da transformada de Hough usando os pontos de orla detectados.

Sinthanayothin *et al.* [13] propôs detectar o DO através da variância. Este método assume que o DO ocupa um sétimo da imagem e que é a zona com maior variação de intensidade devido aos vasos contidos nessa zona. É realizado um aumento de contraste e um filtro gaussiano para eliminar ruído. De seguida, são calculadas, numa janela com o tamanho médio

do DO, a variância e a variância média. A zona com maior variância média corresponde ao DO. Os autores reportam uma sensibilidade de 99.1% para o método, contudo verifica-se que é um método pouco robusto guando a retina contém zonas patológicas.

Abdel-Ghafar *et al.* [14] utilizam a transformada de Hough circular. Antes dessa operação, eliminam os vasos sanguíneos da componente verde da imagem através de operações morfológicas. De seguida, identificam contornos com um operador de Sobel e aplicação de um limiar. Aos pontos resultantes aplicam a transformada de Hough circular e a maior circunferência detectada é considerada o contorno do DO.

Barrett *et al.* [15] desenvolveram um trabalho semelhante que localiza o DO através da transformada de Hough.

Li e Chutatape [16] [17] desenvolveram um método baseado num modelo. Seleccionam 1% dos pontos de maior intensidade da imagem de entrada para detectar a região do DO e lesões. Agruparam os pontos seleccionados e os grupos pequenos foram descartados. De seguida, procederam à análise das componentes principais dessas regiões num conjunto de 10 imagens de treino. É assim criado um espaço específico, "o espaço disco". Cada uma das imagens de entrada é projectada sobre esse espaço. Depois, calcularam a distância Euclidiana dos pontos pertencentes às regiões candidatas à sua projecção. Finalmente, o centro do DO foi considerado o ponto de distância mínima entre a imagem da retina e a sua projecção. Nos trabalhos seguintes dos mesmos autores, [17] e [18], é apresentado um procedimento que determina o contorno do DO à custa de um modelo deformável.

Walter *et al.* [19] propuseram um método que aplica uma operação de binarização para obter os pixels com maior intensidade, do qual resultam os pixels pertencentes ao DO e a zonas anómalas, tais como exsudados. O maior segmento conexo é seleccionado como DO. O centro dessa zona é o centro do DO.

Lalonde *et al.* [20] propuseram um método baseado em correspondência com padrão usando decomposição piramidal e a distância de Hausdorff. Em primeiro lugar, aplicaram processamento "multi-resolução" através de decomposição piramidal. Este método aumenta a eficiência da procura de objectos maiores (DO), uma vez que os objectos com menores dimensões, por exemplo lesões, desaparecem nas imagens de menor resolução, eliminando falsos candidatos. Para todas as regiões candidatas foi calculado um valor de confiança representando a razão entre a média da intensidade dentro da região candidata e a média da sua vizinhança. De seguida, foi construído um mapa de contornos binário, aplicando às regiões da componente verde da imagem correspondendo às regiões candidatas um detector

Revisão Bibliográfica 13

de contornos de Canny. Finalmente, usando a distância de Hausdorff, calcularam a correspondência entre esse mapa e um padrão circular com diferentes raios. Foi calculado outro nível de confiança para os resultados da correspondência (o número de pontos sobrepostos a dividir pelo número total de pontos do padrão). A região contendo o maior valor de confiança total foi considerado o DO.

O método de Chrástek *et al.* [21] baseia-se na aplicação de um filtro de média à componente verde da imagem para detectar uma região de interesse (RI). Nessa região é aplicado um filtro não linear para remoção de ruído e aumentar a eficiência da operação de detecção de contorno usando o método de Canny. Finalmente usaram a transformada de Hough para delinear o contorno do DO.

Osareh *et al.* [22] desenvolveram uma forma de detecção do DO baseada em correspondência com padrão. Inicialmente, a imagem é pré-processada realizando uma normalização da cor através da especificação do histograma ([23] páginas 94-102) em cada componente de cor (R, G e B). Para a criação do padrão foi seleccionada uma janela em torno do DO de 25 imagens normalizadas com várias posições possíveis do DO. Cada pixel do padrão contém a média da intensidade no respectivo pixel das 25 janelas seleccionadas. A localização do DO é a posição com o maior coeficiente de correlação normalizado entre a imagem a analisar e o padrão.

Lowell *et al.* [24] desenvolveram um método baseado em correspondência com padrão e segmentação com modelo de contorno deformável. Os autores criaram um padrão que corresponde a elementos chave da estrutura do DO, ou seja, uma região semi-circular de elevada intensidade contendo, no seu centro, uma zona de baixa intensidade pertencentes a vasos sanguíneos. O valor máximo da correlação corresponde ao ponto central do DO. De modo a delinear esta região usaram modelos que enquadram objectos deformáveis, por exemplo *snakes*, que são modelados com dois grupos de forças: um que contrai o objecto e outro que o expande.

Park *et al.* [25] iniciam o seu método aplicando um limiar para detectar a zonas de maior luminosidade. Seguidamente, é usando um algoritmo para aglomerar os pontos de modo a ser calculada a circularidade dos objectos. Finalmente, aplicam a transformada de Hough ao melhor candidato para delinear o DO.

Siddalingaswamy e Prabhu [26] também utilizam o método de binarização baseado em histograma, aplicando um limiar iterativo para detectar candidatos a DO. De seguida,

analisam essas regiões e a que possuir maior número de pontos é seleccionada como principal candidata a DO.

Thongnuch e Uyyanonvara [27] criaram um método usando segmentação com modelo de contorno deformável (ou *Snake*) com vector de gradiante como força externa.

Fleming *et al.* [28] utilizaram as componentes vermelha e verde, numa razão de 1:4. De seguida, foi calculada a imagem gradiente usando o operador de convolução Sobel. Finalmente, foi aplicada a transformada de Hough circular, sobre essa imagem gradiente. O DO foi identificado como correspondendo ao máximo no espaço de Hough.

Sekhar *et al.* [29] propuseram um método de detecção do DO baseado em operações morfológicas, seguido da localização da fóvea através da sua posição relativa ao DO e distribuição espacial da mácula. De acordo com os autores, a fóvea está a uma distância do DO 1,5 vezes maior que o diâmetro do mesmo e compreendido num sector circular com abertura de 60°.

Guerra [30] baseou o seu método em características do DO, nomeadamente, na sua posição, área, forma e intensidade.

Numa primeira fase, os candidatos a DO foram localizados a partir da extracção dos pontos do *foreground* da imagem resultante da distância euclidiana combinada das componentes vermelha e verde à origem do espaço RGB. De seguida, os candidatos a DO foram reduzidos para três, no máximo, a partir de critérios relacionados com as características específicas do DO referidas anteriormente. Na segunda fase, procedeu-se à segmentação usando *watersheds* com marcadores. Para isso, utilizou-se o gradiente da componente vermelha. Como marcador interno utilizou-se o centróide *c* de cada uma das regiões candidatas a DO, e como marcador externo o círculo com centro em *c* e raio correspondente ao raio máximo do DO. Assim, foi possível seleccionar o melhor candidato a DO, e ainda encontrar uma aproximação ao contorno do DO.

Finalmente, na terceira fase, procedeu-se à determinação do contorno do DO utilizando a transformada de Hough para circunferências.

Aquino *et al.* [31] usaram técnicas morfológicas e de detecção de contornos, seguido de transformada de Hough circular para obter o contorno do DO.

Revisão Bibliográfica 15

3.2 - Métodos Baseados na Rede Vascular

Estes métodos começam por segmentar os vasos sanguíneos da retina e utilizam as suas características para calcular a localização do DO. Essas características podem ser a convergência dos vasos, a forma dos vasos principais ou outras conjugadas com propriedades da retina. Podem também usar processos de análise e manipulação de cor referidos no grupo anterior.

Hoover *et al.* [32] desenvolveram um algoritmo de votação para determinar a origem da rede vascular e a esse ponto de convergência é atribuído o centro do DO. As entradas do algoritmo de convergência difusa são seis segmentações dos vasos sanguíneos, em diferentes escalas. Então, cada vaso é modelado com um segmento difuso, que contribui para uma imagem de acumulação de votos (imagem de convergência) onde cada pixel representa o número de segmentos difusos em que esse pixel se insere. A imagem de convergência é suavizada e é aplicado um limiar para determinar os pontos de maior convergência. Se mesmo assim o resultado final for inconclusivo, é aplicada uma operação de equalização de luminosidade à componente verde da imagem e é aplicado um método de análise discriminante linear de Fisher às regiões contendo os pixels de maior intensidade da referida imagem equalizada.

Nos dois trabalhos de Trucco *et al.* [33] e [34], os autores aproveitam o conhecimento *a priori* da anatomia da retina. Em vez de detectarem apenas um candidato a DO, mácula e arcadas, implementam detectores individuais que originam conjuntos de plausíveis candidatos para cada estrutura. Depois procuram no espaço dos possíveis conjuntos (DO/mácula/arcada) aqueles que satisfazem as restrições impostas pela anatomia da retina. As restrições utilizadas foram:

- a mácula tem de estar na proximidade do eixo de simetria da arcada;
- a arcada converge para o DO;
- a distância entre o DO e a mácula tem de estar dentro de um intervalo especificado;
- o contraste da arcada tem de ser elevado.

Foracchia *et al.* [35] criaram outro método baseado num modelo da rede vascular. O método parte do facto dos vasos sanguíneos terem origem no DO e seguirem um padrão. Os autores propuseram um modelo geométrico para os vasos principais através de duas parábolas. Essas parábolas convergem no DO. Para cada imagem a analisar, extraíram a rede vascular da imagem e calcularam a diferença entre as direcções desses vasos e do modelo, usando a soma ponderada do quadrado dos resíduos e um algoritmo de optimização *Simulated Annealing*.

O trabalho de Kavitha e Devi [36] pode ser descrito em três passos. Em primeiro lugar, segmentam os vasos sanguíneos usando filtros de mediana e operações morfológicas e depois detectam o ponto de convergência dos vasos usando um algoritmo de modelação com uma curva polinomial de mínimos quadrados. Em segundo lugar, identificam o DO como pertencendo às zonas de maior luminosidade usando limiar multinível. Por último, detectam o DO nessas regiões pois o ponto de convergência estará contido nesses locais de maior luminosidade.

Haar [37] apresentou vários métodos para a detecção do DO, mas o que obteve maior sucesso foi o método de adaptação a um modelo direccional. Depois da rede vascular segmentada, os vasos foram adelgaçados e com esses pontos centrais foi calculada a direcção das linhas. Este processo foi usado para obter o mapa direccional da rede vascular, sendo aplicado a um conjunto de 81 imagens. Estes mapas foram alinhados usando como referência um ponto do centro do DO manualmente escolhido. Seguidamente, foi criado o modelo direccional, aplicando uma função de média angular a cada ponto dos 81 mapas. Para localizar o DO automaticamente numa nova imagem, foi criado o respectivo mapa e calculada, para cada ponto, a distância angular entre o mapa em estudo e o modelo direccional.

Haar [37] criou outro método em que o DO se encontra na zona com maior número de pontos de cruzamento e bifurcação dos vasos sanguíneos. De acordo com o método é a zona da imagem em que o número de pontos é maior.

Tobin *et al.* [38] proposeram um método baseado nas características do DO. Os autores classificaram cada pixel como DO ou não-DO, usando um classificador Bayesiano, treinado com 50 imagens, usando características de luminosidade, densidade, espessura e orientação média da rede vascular.

Abràmoff e Niemeijer [39] usaram estas mesmas características num classificador k-NN.

Ying *et al.* [40] propuseram um método de localização e segmentação do DO baseado em análise fractal. Os candidatos são detectados pela sua maior luminosidade. Numa imagem binária da rede vascular é aplicada análise fractal à área dos candidatos. O candidato com maior dimensão fractal é considerado o DO. Esse método é justificado pelo facto do DO ser a região da imagem com mais vasos sanguíneos. Finalmente, a área é segmentada por uma análise local do histograma seguida de erosão morfológica.

Revisão Bibliográfica 17

D'Antoni e Giusti [41] utilizaram um modelo geométrico baseado na convergência dos vasos sanguíneos. Após a segmentação dos vasos foi gerado um mapa de densidades dos pontos de início e fim de cada vaso. Sabendo que cada vaso sanguíneo tem origem no DO, o local com valor máximo de densidade de pontos terminais foi escolhido como centro óptico.

Youssif et al. [42] apresentam um método que começa com a normalização de intensidade da componente verde da imagem original seguido da normalização do contraste. Um padrão com a direcção dos vasos, criado previamente, é usado num processo de correspondência com padrão (template-matching) aplicado a uma imagem com o mapa de direcções dos vasos sanguíneos da retina. Para criar este mapa, os vasos foram segmentados através da filtragem da imagem que resultou da equalização de contraste com um conjunto de 12 filtros adaptados ao perfil gaussiano assumido para os vasos, sendo guardado o valor máximo das respostas obtidas com esse conjunto de filtros. Os 12 filtros correspondem a 12 direcções possíveis (resolução de 15°) numa gama de 0° a 165°. A direcção do vaso em cada ponto é identificada pelo filtro do conjunto antes referido que dá origem à resposta máxima nesse ponto. Durante o processo de cálculo de correspondência é calculada a diferença entre um padrões com as direcções possíveis para os vasos e o mapa direccional em cada ponto da imagem, sendo o ponto com menor diferença acumulada considerada como centro do DO. Neste trabalho foram usados 4 padrões de direcções vasculares com dimensões diferentes dado que as imagens originais a processar podem ter dimensões diferentes.

Capítulo 4

Método Baseado em Correspondência com Padrão da Direcção dos Vasos

Após a análise dos métodos referidos anteriormente, foi escolhido o método baseado em correspondência com padrão da direcção dos vasos descrito no trabalho de Youssif *et al* [42] "Optic Disc Detection From Normalized Digital Fundus Images by Means of a Vessels' Direction Matched Filter". Tal como foi estabelecido no início deste trabalho, este método localiza o DO com base na rede vascular da retina e foi seleccionado pelo facto dos seus autores terem relatado a melhor taxa de sucesso presente na bibliografia analisada. Na implementação do método, o processo de segmentação vascular proposto por Youssif *et al* [42] foi substituído pelo método descrito em [43].

4.1 - Resumo do Método

O método implementado pode ser dividido em 4 fases principais:

- Segmentação dos vasos da retina utilizando um método baseado na detecção das linhas centrais dos vasos e reconstrução morfológica [43].
- Criação do mapa direccional dos vasos. A componente verde da imagem original é filtrada por um conjunto de 12 filtros adaptados direccionais, sendo atribuída a cada ponto a direcção associada ao filtro que produziu a resposta mais elevada.
- 3. Geração dos candidatos a DO, efectuando os seguintes passos:
 - 3.1. Adelgaçamento da imagem resultante da segmentação dos vasos sanguíneos para identificar apenas a linha central dos vasos.
 - 3.2. Normalização da iluminação da componente verde da imagem original.
 - 3.3. Identificação de uma percentagem de pontos de maior intensidade e definição da respectiva vizinhança usando uma janela 21x21 pixels. Assim apenas os pontos que

pertencem à intersecção deste conjunto com os pontos resultantes do adelgaçamento serão considerados como candidatos a DO.

4. Cálculo da correspondência entre a imagem obtida no passo anterior e um padrão de direcções com a possível distribuição de orientações vasculares em torno do seu ponto central. Neste cálculo é utilizada como medida de semelhança a média do módulo das diferenças entre as direcções definidas no padrão e as orientações dos vasos presentes no mapa direccional.

4.2 - Descrição do Método

Nesta secção são detalhadas as quatro fases que compõem o método proposto:

- 1. Segmentação da rede vascular;
- 2. Cálculo do mapa direccional;
- 3. Geração de candidatos;
- 4. Cálculo de correspondência com padrão.

4.2.1 - Segmentação da Rede Vascular

A segmentação utilizada neste trabalho foi obtida através do método de referido em [43], baseado na detecção das linhas centrais dos vasos e reconstrução morfológica.

Resumidamente, o algoritmo divide-se nas seguintes três etapas principais:

- Pré-processamento: normalização do fundo da imagem através da subtracção à componente verde de uma estimativa obtida com um filtro de média;
- 2. Detecção da linha central dos vasos:
 - 2.1. Selecção de candidatos a linha central usando informação fornecida por filtros de diferença de gaussianos;
 - 2.2. Ligação dos pontos obtidos na etapa anterior;
 - 2.3. Validação dos candidatos baseada num conjunto de características obtidas a partir do conjunto de segmentos conexos;
- 3. Segmentação dos vasos:
 - 3.1. Aplicação de um conjunto de filtros morfológicos para realce das regiões pertencentes aos vasos;
 - 3.2. Identificação de segmentos vasculares usando as imagens realçadas e reconstrução morfológica;
 - 3.3. Enchimento final dos vasos partindo da linha central e dos segmentos obtidos no ponto anterior usando um método de crescimento de regiões.

Na Figura 4.1-b) mostra-se o resultado da segmentação da rede vascular aplicada à imagem da Figura 4.1-a).

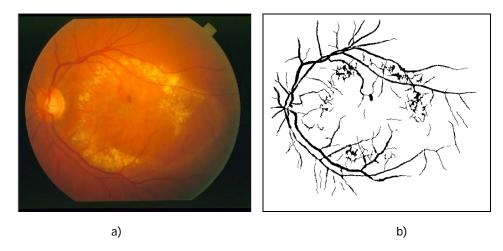


Figura 4.1 - Segmentação da rede vascular. a) Imagem original; b) Resultado da segmentação da rede vascular.

4.2.2 - Cálculo de Mapa Direccional da Rede Vascular

Uma vez que o algoritmo de segmentação dos vasos não permite a obtenção directa da respectiva direcção, foi utilizado o método proposto por Chaudhuri *et al.* [45], baseado em filtros adaptados direccionais. Foram utilizados doze filtros 2-D adaptados de gaussianos, cada um adequado a uma de doze direcções com 15° de resolução (de 0° a 165°). Na figura Figura 4.3 mostram-se os filtros adaptados às direcções 45° (a) e 90° (b). Os filtros são sensíveis a linhas com baixa intensidade, sendo aplicados directamente à componente verde da imagem. Para cada pixel, o filtro com resposta máxima determina a orientação do vaso a que esse pixel pertence.

Para obter os valores angulares basta converter o número do filtro que gerou resposta máxima num valor angular usando a equação (4-1) a seguir:

$$M_d(x, y) = (pos(x, y) - 1) \times 15 + vasos \times 14$$
 (4-1)

onde, M_d é a imagem final contendo o mapa direccional dos vasos, pos é a imagem com o número do filtro que obteve resposta máxima, vasos é a imagem com a segmentação dos vasos sanguíneos (com os vasos representados com 0 e os não-vasos a 1).

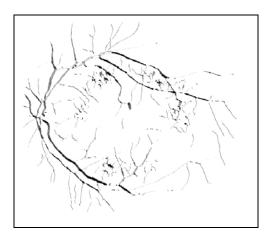


Figura 4.2 - Resultado da geração do mapa direccional.

Na Figura 4.2 mostra-se o resultado do mapa direccional gerado com o processo descrito anteriormente, em que a escala de cor representa o valor do ângulo.

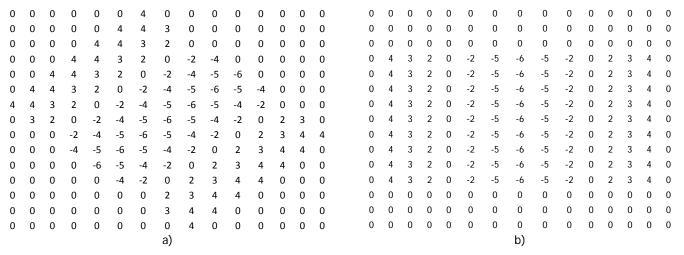


Figura 4.3 - Máscaras dos filtros direccionais. a) Filtro adaptado à direcção 45°; b) Filtro adaptado à direcção 90°.

4.2.3 - Geração de Candidatos

A terceira fase do método teve como objectivo a selecção de pontos que podem pertencer ao DO, tendo em vista a redução do peso computacional que resultaria da aplicação do processo de cálculo de correspondência a todos os pontos da imagem. Para tal, são inicialmente seleccionados 2,5% dos pontos mais intensos da imagem com intensidade normalizada, e é definida uma vizinhança com dimensão 21x21 pixels em torno de cada um desses pontos. Este processo é detalhado nos 3 passos seguintes:

1) Adelgaçamento da rede vascular

A rede vascular foi adelgaçada através da aplicação de um algoritmo que reduz todos os objectos na imagem binária à espessura de um pixel. Assim apenas os pontos centrais dos vasos são mantidos. Na Figura 4.4-b) observa-se o resultado deste processo aplicado à imagem da Figura 4.4-a).

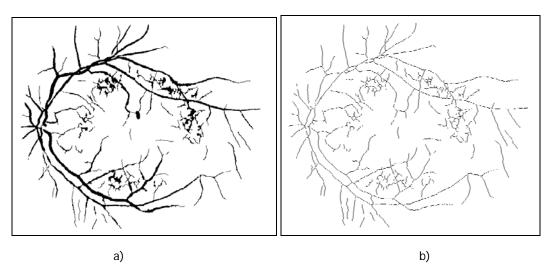


Figura 4.4 - Adelgaçamento da rede vascular. a) Rede vascular segmentada; b) Resultado do adelgaçamento.

2) Normalização de intensidade

O DO é, normalmente, numa zona de grande intensidade. Porém, se a imagem tiver uma iluminação não uniforme, seleccionar directamente os pontos de maior intensidade numa das componentes da imagem original pode não ser o processo mais conveniente para a identificação dos pontos potencialmente pertencentes ao DO. Então, o processo começa com a normalização da intensidade da componente verde da imagem original, usando o algoritmo proposto por Goldbaum *et al.* [32].

Na Figura 4.5 é possível observar a importância desta fase, comparando o resultado da segmentação dos 2,5% dos pontos mais intensos com e sem normalização, referente à imagem da Figura 4.5-a). Na Figura 4.5-b) constata-se que apenas foi seleccionada uma região onde a intensidade é muito intensa. Na Figura 4.5-c), já com a operação de normalização realizada, consegue-se identificar o DO, sendo mesmo a região com mais pontos seleccionados.

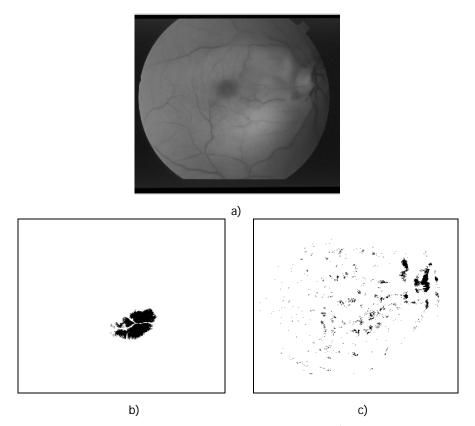


Figura 4.5 - Selecção dos pontos de maior luminosidade na imagem. a) Componente verde da imagem original; b) Resultado da selecção dos 2,5% pontos mais intensos na componente verde; c) Resultado da selecção dos 2,5% pontos mais intensos na componente verde normalizada.

A equação (4-2) permite realizar a referida operação de normalização de intensidade,

$$I_{eq}(x, y) = I(x, y) + m - \bar{I}(x, y)$$
 (4-2)

onde I(x,y) é o valor da intensidade no pixel de coordenadas (x,y); m é a intensidade média final pretendida para a imagem normalizada $I_{eq}(x,y)$ e $\bar{I}(x,y)$ é a média da intensidade no pixel calculada usando numa janela NxN.

Para obter a média (Figura 4.6 b)), foi utilizado um filtro de média aritmética de tamanho N, com N=41. O valor utilizado para m foi 0,5 (numa escala de 0-1).

Na Figura 4.6-c) pode ser observado o resultado da normalização de intensidade da imagem da Figura 4.6-a).

3) Selecção de candidatos

Seguidamente é gerada uma máscara com 2.5% dos pontos de maior intensidade (Figura 4.6-d)). Finalmente, como os pontos seleccionados normalmente não pertencem a vasos

sanguíneos, a região seleccionada é alargada usando uma janela de 21x21 em torno de cada ponto (Figura 4.6 e)).

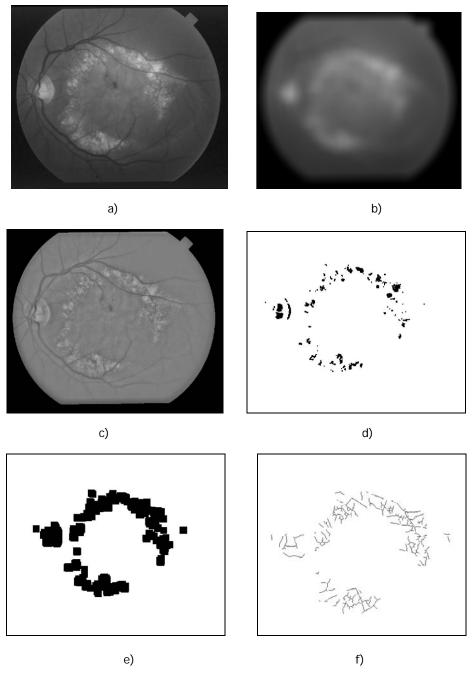


Figura 4.6 - Exemplo de imagens intermédias do processo de normalização de intensidade aplicado à imagem da Figura 4.1-a. a) Componente verde da imagem original; b) Resultado da aplicação de um filtro de média à componente verde; c) Resultado da normalização de intensidade; d) 2.5% dos pontos de maior intensidade sem ruído; e) Janela em torno dos pontos de maior intensidade; f) Pontos candidatos a DO.

Finalmente, é efectuada a intersecção dos pontos da imagem dos vasos adelgaçada (Figura 4.4-b)) com os pontos de maior intensidade da imagem normalizada seleccionados (Figura 4.6-e)). O resultado é o conjunto de candidatos a DO (Figura 4.6-f)).

4.2.4 - Determinação de Correspondências

Correspondência com padrão (*template matching*) é uma operação local que avalia a semelhança entre um padrão (*template*) e uma secção de uma imagem. Para tal, foi necessário criar um padrão específico e uma forma de avaliar a sua semelhança com a secção da imagem em análise.

1) Padrão

Sabendo que os vasos sanguíneos convergem no DO (Figura 4.7), pode ser criado um padrão com o mapa de direcções ideal, ou seja, um padrão com os valores dos ângulos em todas as direcções relativamente ao seu centro, tal como se mostra na Figura 4.8. Cada ponto no padrão vai assumir o valor do ângulo do vector que une esse ponto ao centro do padrão.

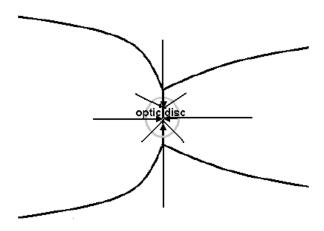


Figura 4.7 - Esquema da convergência dos vasos sanguíneos (adaptado de [37]).

135,0	128,7	121,0	111,8	101,3	90,0	78,7	68,2	59,0	51,3	45,0
141,3	135,0	126,9	116,6	104,0	90,0	76,0	63,4	53,1	45,0	38,7
149,0	143,1	135,0	123,7	108,4	90,0	71,6	56,3	45,0	36,9	31,0
158,2	153,4	146,3	135,0	116,6	90,0	63,4	45,0	33,7	26,6	21,8
168,7	166,0	161,6	153,4	135,0	90,0	45,0	26,6	18,4	14,0	11,3
0,0	0,0	0,0	0,0	0,0	90,0	0,0	0,0	0,0	0,0	0,0
11,3	14,0	18,4	26,6	45,0	90,0	135,0	153,4	161,6	166,0	168,7
21,8	26,6	33,7	45,0	63,4	90,0	116,6	135,0	146,3	153,4	158,2
31,0	36,9	45,0	56,3	71,6	90,0	108,4	123,7	135,0	143,1	149,0
38,7	45,0	53,1	63,4	76,0	90,0	104,0	116,6	126,9	135,0	141,3
45,0	51,3	59,0	68,2	78,7	90,0	101,3	111,8	121,0	128,7	135,0

Figura 4.8 - Exemplo do padrão proposto.

2) Cálculo do valor de correspondência

O último passo do algoritmo foi percorrer todos os pontos candidatos a DO, somando as diferenças, em módulo, entre o padrão e o mapa direccional gerado (o padrão centrada no pixel em cálculo) e dividindo pelo número de operações realizadas para obter a respectiva média de forma a normalizar o somatório. Apenas são considerados no cálculo os pontos que têm uma direcção definida (pontos pertencentes ao resultado da segmentação vascular).

O ponto correspondente ao menor valor calculado é considerado o centro do DO. Na Figura 4.9 ilustra-se o resultado da localização do DO para a imagem original da Figura 4.1-a.

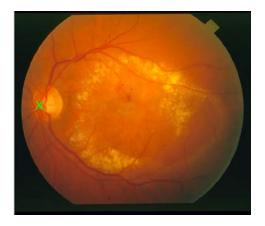


Figura 4.9 - Localização final do DO.

4.3 - Segmentação Vascular Implementada Usando o Método de Youssif

Como meio de comparação, foi implementado o método de segmentação da rede vascular usado por Youssif *et al.* [42]. Em suma, o algoritmo filtra a imagem original, após a equalização adaptativa de histograma, com um conjunto de doze filtros direccionais propostos por Chaudhuri [45], e em seguida usa um método de binarização baseado em histograma para segmentar apenas os pontos com maior resposta absoluta dos filtros.

4.3.1 - Equalização Adaptativa do Histograma

Tal como nos trabalhos de Wu *et al.* [46] e Youssif *et al.* [42] foi utilizada a equalização adaptativa de histograma para normalizar e aumentar o contraste. O contraste entre os vasos e o fundo é maior do que o que resulta de uma equalização de histograma normal, dado tratar-se de uma operação local que depende da vizinhança de cada pixel.

A intensidade em cada ponto é calculada segundo a equação (4-3) seguinte:

$$I_{AHE}(p) = \left(\sum_{p' \in R(p)} \frac{s(I'_{eq}(p) - I'_{eq}(p'))}{h^2}\right)^r \times M$$
(4-3)

onde

p é o pixel onde está a ser calculada a intensidade;

R(p) é a janela quadrada da vizinhança de p de tamanho h;

p' é um pixel da janela R(p);

s(d) é uma função que: se d > 0, s(d) = 1. Se d <= 0, s(d) = 0;

 $I'_{\it eq}(p)$ é a imagem invertida que resulta da normalização de intensidade da componente verde:

h é o tamanho da janela;

r é um factor de contraste;

M é um factor de escala.

O valores de r e h utilizados foram 8 e 81, respectivamente, valores que foram escolhidos empiricamente por Wu [46] e também utilizados por Youssif [46].

A função no interior do somatório representa uma contagem de todos os pontos na janela que têm menor intensidade que o ponto central da janela. Seguidamente, o valor assim obtido é normalizado dividindo pelo número total de pontos considerados (da janela). O contraste é conseguido pela função exponencial. Finalmente, o factor M é o valor máximo pretendido, ou seja, o valor máximo da escala de intensidade das imagens que está a ser utilizada. O valor de M utilizado no trabalho apresentado nesta dissertação foi 1, pois a escala utilizada é [0...1].

Segundo Youssif [42], obtêm-se melhores resultados ao aplicar este método à imagem com a intensidade normalizada, tal como foi referida na secção 4.2.3 - 2).

Na Figura 4.10 está representado o resultado da equalização adaptativa do histograma aplicado à imagem original da Figura 4.1-a).

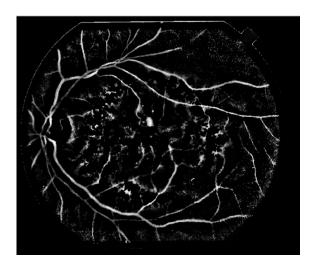


Figura 4.10 - Resultado da equalização adaptativa do histograma aplicado à imagem original da Figura 4.1-a).

4.3.2 - Segmentação dos Vasos

A segmentação da rede vascular de Youssif [42] foi obtida através da binarização das respostas máximas da filtragem. Ao contrário do processo anterior onde se fazia a filtragem usando os doze filtros direccionais directamente na componente verde da imagem, Youssif aplicou esse processo na imagem resultante da equalização adaptativa do histograma depois da sua inversão $(1-I_{AHE})$. Com o maior contraste, a sensibilidade e eficiência da segmentação aumenta. Para além da posição da resposta máxima dos filtros, também foi guardado o valor dessa resposta. Seguidamente é aplicado o algoritmo de binarização global de Otsu [44]. O resultado é a imagem binária dos vasos sanguíneos. A aplicação deste algoritmo à imagem original da Figura 4.1-a mostra-se na Figura 4.11.

Os processos seguintes do algoritmo são iguais aos referidos anteriormente nas secções 4.2.3 e 4.2.4.

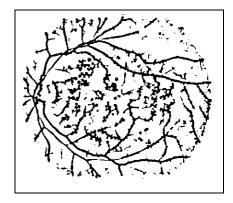


Figura 4.11 - Segmentação dos vasos sanguíneos através do método de Youssif aplicada à imagem da Figura 4.1-a).

4.4 - Resultados

4.4.1 - Conjunto de Dados

Neste trabalho foram utilizadas imagens de duas base de dados públicas contendo imagens coloridas da retina: STARE [53] e DRIVE [54]. Estes conjuntos são mundialmente utilizados por autores que se dedicam ao desenvolvimento de métodos de análise de imagens da retina.

O conjunto STARE contém 81 imagens, 31 representando retinas saudáveis e 50 apresentam apresentam patologias. Este conjunto foi intencionalmente criado para apresentar dificuldades pois a presença de patologias penaliza os resultados dos algoritmos e muitas das imagens têm iluminação não uniforme. As imagens têm uma resolução de 700 × 605 pontos.

Nas

Figura 2.10 e

Figura 2.11 são apresentados exemplos de imagens deste conjunto.

O conjunto DRIVE contém 40 imagens com um número reduzido de casos patológicos e boa distribuição de iluminação. Essas imagens têm uma resolução de 565 × 584 pixels.

4.4.2 - Apresentação de Resultados

O algoritmo foi desenvolvido usando o *software* MathWorks - MATLAB® R2009a e testado nos dois conjuntos de imagens já referidos. Para avaliar a eficiência do método, o disco óptico foi previamente localizado manualmente, através da observação directa das imagens, podendo conter imprecisão. Tal como em [42], a determinação da localização do DO é considerada correcta se essa posição se encontrar a uma distância menor que 60 pixels da sua localização manual. Porém, deve notar-se que a localização manual usada neste trabalho pode diferir da localização usada em [42] que não foi disponibilizada pelos autores.

No conjunto DRIVE, não foram detectados casos errados, tendo o algoritmo obtido 100% de sucesso. Em média, a localização automática ficou a uma distância de 15,4 pontos da localização manual e o desvio padrão foi de 9,1 pixels.

Na base de dados STARE, o método errou em 4 das 81 imagens, sendo a percentagem de acerto de 95,1%. Em média, a localização automática ficou a uma distância de 19,5 pixels da localização manual e o desvio padrão foi de 12,6 pixels.

A versão do algoritmo usando a segmentação da rede vascular proposta por Youssif [42], obteve 100% de sucesso no conjunto de dados DRIVE e 86,4% no conjunto STARE, equivalendo ao erro em 11 das 81 imagens. A distância média da localização manual foi de 21,2 pontos e desvio padrão 14,2 pixels.

Tabelas com todos os resultados obtidos são apresentados no anexo A e B.

A dimensão do padrão a usar no processo de correspondência depende do tamanho das imagens a utilizar, tendo sido escolhido seleccionando um conjunto de 20 imagens e, empiricamente, alterando o tamanho para obter os melhores resultados. Os tamanhos do padrão usados foram 551x91 para a base de dados DRIVE e 601x151 para a base de dados STARE.

4.4.3 - Exemplos de Resultados Correctos

A imagem da Figura 4.12 (13 - STARE) representa um caso de sucesso da localização do DO. Apesar da iluminação não uniforme e do reduzido número de vasos segmentados na região do DO, o método consegue determinar a localização do DO.

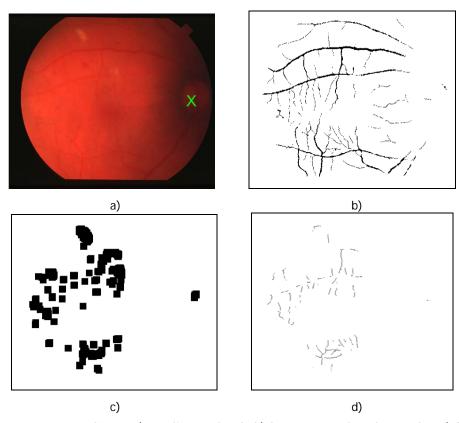


Figura 4.12 - Imagem 13 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO.

Na Figura 4.13 mostra-se o sucesso do método mesmo em imagens contendo um elevado número de zonas patológicas.

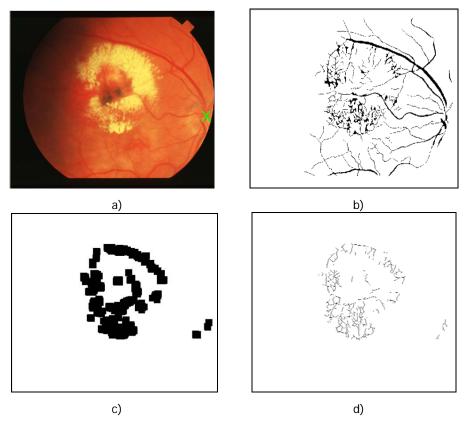


Figura 4.13 - Imagem 17 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO.

No anexo E são apresentados mais exemplo de casos em que o DO foi correctamente determinado usando o método implementado.

4.4.4 - Resultados Errados

Nas Figura 4.14 a 4.17 mostram-se os 4 resultados errados obtidos com o método de correspondência com padrão utilizando a segmentação da rede vascular proposta por Mendonça [43].

Na imagem da Figura 4.14 (imagem 20 - STARE), o método falhou pois a geração de candidatos não foi eficiente. Como se pode ver na (Figura 4.14-c)), o DO não foi segmentado na selecção dos pontos de maior intensidade e devido à anormal coloração do DO nesta imagem. Outro motivo para a ocorrência desse erro foi a inexistência de vasos na região do DO na imagem segmentada, tal como se constata na Figura 4.14-b).

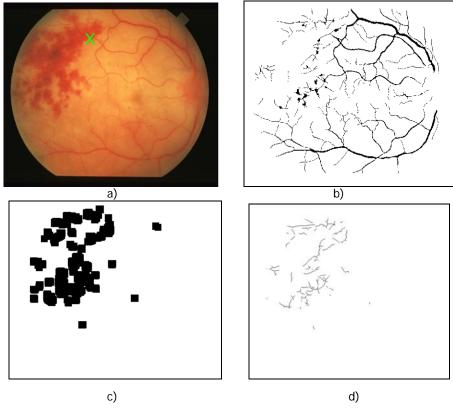


Figura 4.14 - Imagem 20 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO.

Na imagem da Figura 4.15 (35 - STARE), o algoritmo escolheu o ponto errado pois a segmentação dos vasos identificou um conjunto de regiões erradamente classificadas como vasos.

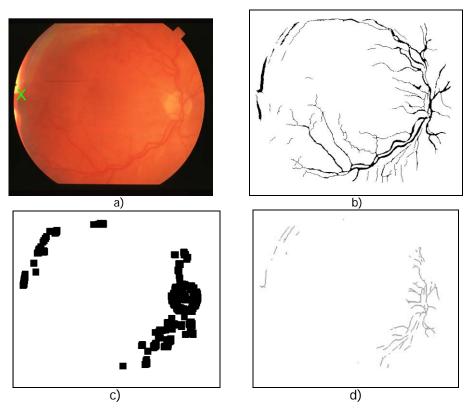


Figura 4.15 - Imagem 35 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO.

A imagem da Figura 4.16 (190 - STARE) apresenta um baixo número de vasos próximos do DO e um conjunto de vasos de elevado calibre noutra região.

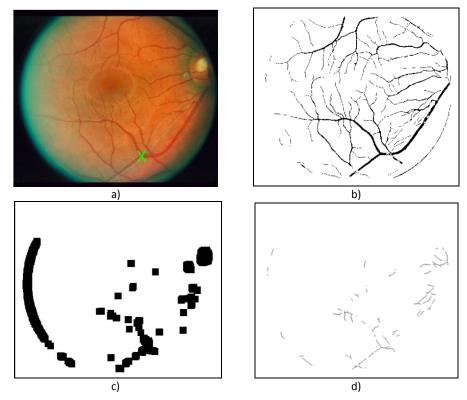


Figura 4.16 - Imagem 190 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO.

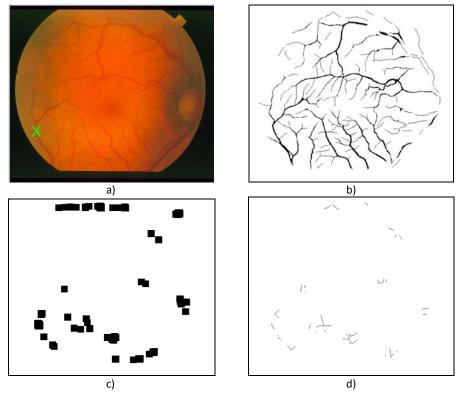


Figura 4.17 - Imagem 219 - STARE. a) Localização do DO; b) Segmentação da rede vascular; c) Candidatos do método de intensidade; d) Candidatos finais a DO.

A imagem da Figura 4.18-a representa um exemplo de detecção errada do DO usando o método de segmentação dos vasos sanguíneos de Youssif [42]. Como se nota na Figura 4.18-b), o método selecciona mais regiões erradamente classificadas como vasos comparando com o método de segmentação de Mendonça [43], mostrado na Figura 4.18-d).

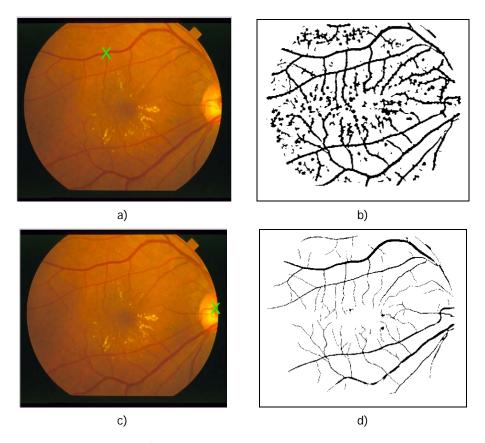


Figura 4.18 - Imagem 50 - STARE. a) Localização do DO utilizando o método de segmentação vascular de Youssif; b) Segmentação vascular de Youssif; c) Localização do DO utilizando o método de segmentação vascular de Mendonça; d) Segmentação vascular de Mendonça.

4.4.5 - Discussão dos Resultados

O tamanho do padrão a utilizar no processo de avaliação de correspondência depende da dimensão das imagens e revelou-se fundamental para o sucesso do método. Ao englobar vários tamanhos do padrão da direcção dos vasos no cálculo da correspondência, a eficiência do método poderia aumentar.

O processo de selecção de candidatos apenas não segmentou o DO em duas imagens que apresentam o DO com características cromáticas anormais, ou seja, não exibe uma cor amarela intensa.

O principal factor de sucesso do método foi a eficiente segmentação da rede vascular da retina, pois os algoritmos baseiam-se na correcta identificação das direcções vasculares. Quando a segmentação falha vasos próximos do DO o método tende a errar.

O método de segmentação da rede vascular proposto por Youssif [42] implementado não se mostrou tão eficiente como o método de Mendonça [43].

O processo de normalização de intensidade mostrou-se fundamental em vários passos dos algoritmos, pois a não uniformidade na iluminação deturpa a diferença de características entre o DO e o fundo.

Capítulo 5

Método Baseado na Entropia da Direcção dos Vasos

Neste novo método a localização do DO foi determinada com base no conceito de entropia da direcção dos vasos sanguíneos.

A entropia indica o grau de desordem num sistema. Conhecendo a anatomia da retina, os vasos sanguíneos convergem no DO, logo, nessa região a entropia das direcções vasculares é maior pelo facto de existirem vasos em quase todas as direcções.

5.1 - Resumo do Método

O algoritmo proposto para localizar o DO com base no cálculo de entropia divide-se em quatro fases:

- Segmentação dos vasos sanguíneos através de um método baseado na detecção das linhas centrais dos vasos e reconstrução morfológica [43] idêntico ao referido no Capítulo 4 (secção 4.2.1).
- Criação de um mapa direccional dos vasos através da filtragem da componente verde da imagem original por um conjunto de 12 filtros direccionais adaptados, segundo o processo referido no Capítulo 4 (secção 4.2.2).
- 3. Cálculo da entropia das direcções vasculares em cada ponto da imagem.
- 4. Geração de candidatos a DO. Esta fase subdivide-se em duas etapas:
 - 4.1 Segmentação de uma imagem gerada a partir da distância das componentes verde e vermelha à origem do sistema RGB através da consideração de 10% dos pontos mais intensos.
 - 4.2 Selecção dos candidatos através da análise estatística dos máximos de intensidade em cada segmento obtido no processo de segmentação anterior.

A localização do DO é associada ao ponto, pertencente aos segmentos candidatos, com maior valor de entropia.

5.2 - Entropia das Direcções Vasculares

Em termos gerais, entropia é uma grandeza física que avalia o "grau de desordem" num sistema.

O conceito de entropia foi aplicado inicialmente em termodinâmica pelo físico e matemático alemão Rudolph Clausius (1822-1888). Em termodinâmica, é uma medida da quantidade de energia que não pode ser transformada em trabalho em transformações termodinâmicas. Em 1877, Maxwell, Ludwig Boltzmann e Josiah Willard Gibbs estenderam as ideias da termodinâmica clássica para a nova teoria molecular dos gases, no domínio dos mecanismos estatísticos, onde engloba conceitos de probabilidades [50].

Em 1948, Claude E. Shannon apresenta o conceito de entropia na área de teoria da informação, no seu trabalho "A mathematical Theory of Communication" [51]. Relativamente a esta área, entropia é uma medida de incerteza associada a variáveis aleatórias [52]. O método de localização do DO implementado utilizou a definição de entropia proposta por Shannon.

Neste trabalho, a entropia vai representar a desordem na orientação dos vasos. Quanto mais vasos em direcções distintas convergirem para um ponto, maior a entropia associada a esse ponto. Como os vasos convergem no DO em quase todas as direcções, é espera-se que essa região contenha os pontos com os valores mais elevados de entropia.

A equação que define a entropia das direcções vasculares usada neste trabalho é:

$$H = -\sum_{i=1}^{n} p_i \log p_i \tag{5-1}$$

onde p_i é a frequência de pontos na direcção i e n é o número total de direcções consideradas.

5.3 - Descrição do Método

Nesta secção são detalhadas as quatro fases deste método:

- 1. Segmentação da rede vascular;
- 2. Cálculo do mapa direccional;
- 3. Cálculo da entropia;
- 4. Geração de candidatos e determinação da localização do DO;

5.3.1 - Segmentação da Rede Vascular

O método de segmentação dos vasos da retina é idêntico ao referido na secção 4.2.1.

5.3.2 - Cálculo da Direcção dos Vasos

Este processo é igual ao referido anteriormente na secção 4.2.2.

5.3.3 - Cálculo da Entropia

O cálculo da entropia dividiu-se em dois passos principais:

- Contagem de pontos do número de pontos da segmentação vascular em cada uma das direcções consideradas;
- 2. Cálculo da entropia.

1) Contagem do número de pontos da segmentação vascular em cada direcção

Para calcular a entropia das direcções vasculares em cada ponto da imagem é necessário definir uma vizinhança em torno do ponto em questão e, nessa vizinhança, contar o número de pixels pertencentes aos segmentos vasculares em cada uma das direcções. Neste cálculo foram consideradas 12 direcções distintas, na gama total de 0° a 165°. Desta forma estamos efectivamente a associar a cada ponto da imagem o respectivo histograma de direcções vasculares, na vizinhança considerada.

Foi implementado um processo eficiente para o cálculo dos histogramas de direcções consistindo na construção de um número de imagens igual ao número de direcções consideradas. Cada uma destas imagens contém, em cada ponto, apenas os pontos de vasos com essa direcção particular. Para obter cada uma dessas imagens, o mapa direccional foi inicialmente subdividido em 12 mapas distintos, cada um contendo apenas pontos numa direcção específica. Posteriormente, cada um destes mapas foi filtrado usando máscaras especificamente alinhadas com a direcção dos pontos neles contidos.

Para exemplificar este processo consideramos a imagem contendo apenas os segmentos vasculares com direcção 0° (Figura 5.1-b)). A máscara usada para filtrar esta imagem e obter a contagem do número de pontos dos vasos com direcção 0° é apresentada na Figura 5.1-c). Nesta máscara os pontos a preto têm o valor 0 e os pontos a branco têm o valor 1.

A dimensão escolhida para estas máscaras, que é idêntica à da vizinhança onde é calculado o histograma de direcções foi de 351x151 pixels. Esta janela é rectangular e mais

alargada na direcção vertical pelo facto dos vasos na região do DO terem direcção dominantemente vertical.

Na Figura 5.1-d) mostra-se o resultado do processo de filtragem, isto é, a imagem que em cada pixel contém o número de pontos dos vasos com a direcção 0° contida na vizinhança 351x151 definida.

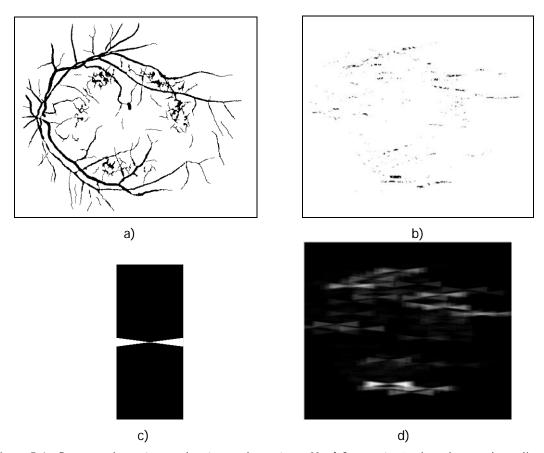


Figura 5.1 - Processo de contagem do número de pontos a 0°. a) Segmentação da rede vascular aplicada à imagem da Figura 4.1-a); b) Mapa direccional apenas com segmentos a 0°; c) Máscara considerada no cálculo de contagem (figura aumentada); d) Resultado da contagem.

2) Cálculo do valor da entropia da direcção dos vasos

Para o cálculo da entropia das direcções vasculares em cada ponto foram usados os valores de probabilidade de ocorrência de vasos em cada uma das 12 direcções definidas (p_i). O valor de probabilidade em cada direcção foi aproximado pela frequência de ocorrência calculada através do quociente do número de pontos pertencentes a vasos com uma determinada direcção vascular na vizinhança definida dividido pelo número total de pontos pertencentes à vizinhança.

A fórmula para o cálculo da entropia das direcções vasculares é apresentada na equação (5-2).

$$H = -\sum_{i=1}^{12} p_i \log p_i \tag{5-2}$$

Na Figura 5.2-b) mostra-se o resultado do cálculo da entropia da direcção dos vasos usando a segmentação da Figura 5.2-a), constatando-se que a entropia é elevada na região do DO e em regiões de grande confluência de vasos.

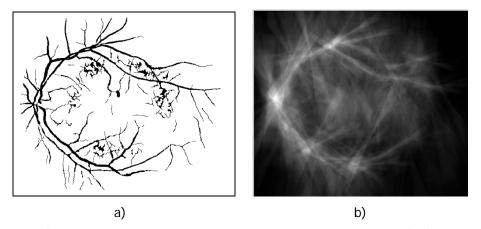


Figura 5.2 - a) Segmentação da rede vascular aplicada à imagem da Figura 4.1-a); b) Resultado da entropia da direcção dos vasos.

5.3.4 - Geração de Candidatos e Determinação da Localização do DO

No método de correspondência com padrão referido no capítulo anterior foi desenvolvido um procedimento para restringir as zonas de potencial localização do DO. Porém, o método selecciona várias regiões fora do DO próximas de vasos sanguíneos, e como a entropia é elevada nessas regiões, neste novo algoritmo foi implementado um procedimento diferente, numa tentativa de minimizar a selecção de regiões próximas de vasos.

Assim, optou-se por outra estratégia baseada na criação de uma imagem que realça as zonas mais intensas da imagem original. O algoritmo divide-se em duas fases:

- 1) Geração de Candidatos: identificação dos pontos de maior luminosidade da imagem normalizada da distância euclidiana das componentes vermelha e verde à origem do espaço RGB (cor preta).
- 2) Selecção de Candidatos: selecção dos candidatos gerados anteriormente, por análise estatística do máximo de intensidade em cada segmento.

1) Geração de candidatos

Esta fase subdivide-se em 5 passos:

- Extensão da componente vermelha e verde da imagem original. Este passo foi importante pois a execução de operações de filtragem pode afectar os valores de intensidade nas zonas extremas da região visível da imagem e dar origem a artefactos, podendo mesmo alterar a intensidade do DO quando ele se localiza nestas zonas.

 O resultado mostra-se na Figura 5.3-b) e Figura 5.3-d).
- 2 Cálculo da distância euclidiana das componentes vermelha e verde à origem do espaço RGB (cor preta), através da fórmula:

$$D = \sqrt{I_r^2 + I_g^2} {(5-3)}$$

onde I_{r} é a componente vermelha e I_{g} é a componente verde.

As zonas mais intensas em ambas as componentes serão as mais realçadas no resultado desta operação (Figura 5.3-f)). A cor normal do DO é amarelo intenso o que corresponde à ocorrência de valores elevados das componentes vermelha (Figura 5.3-a)) e verde (Figura 5.3-c)). A componente azul não é útil nesta operação pois oferece pouca informação, apresentando intensidades baixas e pouco contrastadas (Figura 5.3-e)).

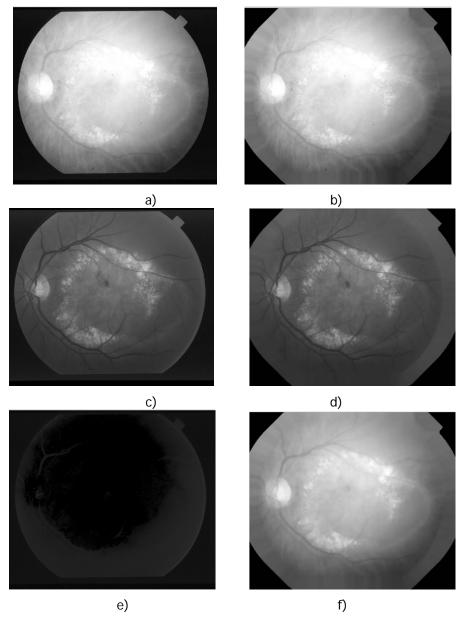


Figura 5.3 - Cálculo da distância euclidiana aplicada à imagem da Figura 4.1-a). a) Componente vermelha original; b) Componente vermelha estendida; c) Componente verde original; d) Componente verde estendida; e) Componente azul original; f) Resultado da distância euclidiana.

Realização de uma operação morfológica de fecho para eliminar os pontos mais escuros correspondentes aos vasos sanguíneos (Figura 5.4-a)), eliminando os vasos no interior do DO tornando-o mais uniforme na imagem resultante. Esta operação é seguida da realização de uma operação de abertura para eliminar os pontos de maior intensidade em volta dos vasos que resultaram da operação de fecho (Figura 5.4-b)), de modo a não serem incluídos no resultado de futuras operações de segmentação.

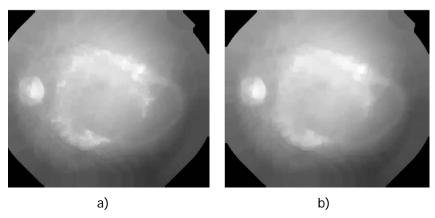


Figura 5.4 - Resultado das operações morfológicas. a) Fecho; b) Abertura.

A Normalização de intensidade da imagem resultante da operação de abertura referido no passo anterior. Este processo foi necessário pois algumas imagens não tinham a iluminação uniforme, o que ia prejudicar o passo seguinte de segmentação. Foi usado um processo idêntico ao descrito na secção 4.2.3.

Na Figura 5.5 mostra-se o resultado da normalização de intensidade aplicada à componente verde da imagem original.

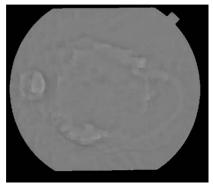


Figura 5.5- Resultado da normalização de intensidade da imagem resultante da operação de abertura.

Segmentação de uma percentagem dos pontos mais intensos da imagem resultante da normalizada de intensidade. O valor escolhido para esta percentagem foi 10%, determinado empiricamente para garantir que o DO de todas as imagens fosse incluído no resultado da segmentação.

Na Figura 5.6 mostra-se o resultado desta operação onde os pontos a preto são considerados possíveis candidatos a DO.

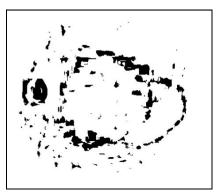


Figura 5.6 - Imagem contendo os possíveis candidatos a DO (10% dos pontos mais intensos da imagem normalizada).

2) Selecção de candidatos

Com a segmentação referida na secção anterior obtém-se um número excessivo de segmentos. Estes segmentos podem ser genericamente classificados em 3 classes:

- 1) DO;
- 2) lesões;
- 3) zonas próximas de vasos.

Como em geral o valor da entropia é elevado nos vasos sanguíneos de maior calibre mesmo fora do DO, mas é baixo em regiões com patologias, optou-se por tentar reduzir o número de segmentos identificados na proximidade de vasos. Para distinguir os vários tipos de segmentos usou-se a sua intensidade máxima, pois próximo dos vasos a intensidade na imagem original é menor do que nos outros dois tipos de segmentos.

Previamente foram analisados os valores da média e do desvio padrão dos valores máximos dos segmentos para um conjunto de imagens normais e patológicas, tendo sido constado que o desvio padrão nas imagens com lesões é maior, o que é justificado pela maior diferença entre os máximos dos segmentos. Imagens sem lesões têm um segmento com um máximo elevado (na região do DO) e os outros segmentos têm valores máximos relativamente uniformes e de menor valor, o que dá origem a valores de desvio padrão relativamente pequenos.

Os máximos de intensidade referem-se à componente verde da imagem original após a operação de normalização de iluminação (processo idêntico ao descrito na secção 4.2.3).

Na Tabela 5.1 mostram-se os valores calculados para 4 imagens de teste, que demonstram as conclusões antes apresentadas.

	Retina							
	Com L	_esões	Sem Lesões					
Imagem de Teste	1	2	3	4				
s (desvio padrão)	0,1132	0,1031	0,0385	0,0219				
M (média)	0,6057	0,5506	0,5517	0,5287				
s/M	0,1869	0,1873	0,0698	0,0414				

Tabela 5.1 - Análise estatística do máximo dos segmentos.

Assim, para distinguir as imagens com lesões e as imagens sem lesões, optou-se por calcular a relação entre os valores do desvio padrão (s) e da média (M) dos valores máximos dos segmentos. Quando esta relação é superior a 0,1 (o valor do desvio padrão é superior a 10% do valor da média) considera-se que está perante uma imagem com lesões. Nos outros casos, assume-se que se trata de uma imagem sem lesões onde o DO apresenta características de intensidade segundo o padrão normal. Os limiares (Limiar) usados para eliminar os segmentos correspondentes a zonas próximas dos vasos são distintos nas duas situações referidas.

Na selecção dos segmentos a manter usou-se um limiar calculado de acordo com as equações a seguir:

• se $\frac{s}{M} > 0.1$ a imagem é considerada com lesões sendo usado um limiar mais

baixo cuja expressão é:

$$Limiar = M + 0.25 \times s$$

• se $\frac{s}{M}$ <= 0,1 é assumido que a imagem não tem lesões e há a necessidade

de ser mais restrito na selecção aumentando o limiar de acordo com a fórmula a seguir:

$$Limiar = M + 2.5 \times s$$

O processo de selecção de candidatos a DO foi o seguinte:

Em primeiro lugar, atribuiu-se a cada região que resultou da segmentação o valor máximo da intensidade da componente verde normalizada (Figura 5.7-a)).

Depois são seleccionados apenas os segmentos com máximo superior ou igual ao limiar definido. Assim obtém-se a imagem com os candidatos a DO. Finalmente, esses segmentos são alargados por uma janela de 21x21 de modo a seleccionar uma região maior, pois o ponto de entropia máxima está muitas vezes associado a vasos que não são segmentados neste processo.

O resultado deste processo de selecção de candidatos está representado na Figura 5.7-b) onde se pode ver a preto os candidatos finais a DO.

Para cada um dos pontos candidatos a DO é determinado o valor da respectiva entropia (Figura 5.7-c)). O centro do DO é associado ao ponto com valor máximo de entropia (Figura 5.7-d)).

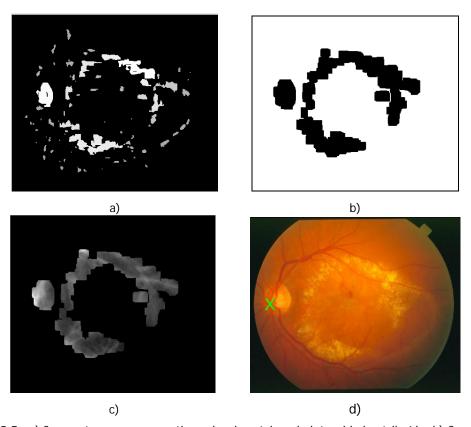


Figura 5.7 - a) Segmentos com o respectivo valor de máximo de intensidade atribuído; b) Candidatos finais a DO; c) Valor da entropia nos pontos candidatos a DO; d) Localização final do DO usando o método baseado em entropia da direcção dos vasos.

5.4 - Resultados

5.4.1 - Conjunto de Dados

O método foi avaliado usando as duas bases de dados públicas referidas na secção 4.4.1.

5.4.2 - Apresentação dos Resultados

O algoritmo foi desenvolvido usando o *software* MathWorks - MATLAB® R2009a e testado nos dois conjuntos de imagens já referidos.

A utilização directa do valor de entropia sem utilizar qualquer restrição de área de localização foi testada usando o conjunto DRIVE, obtendo 97,5% de sucesso (39 em 40 imagens).

Aplicando previamente o procedimento de selecção de candidatos, o método implementado não gerou casos errados na base de dados DRIVE, obtendo 100% de sucesso. Em média, a localização automática ficou a uma distância de 18,4 pontos da localização manual e o desvio padrão foi de 10,3 pixels. No conjunto STARE, o método errou em 6 das 81 imagens, correspondendo a uma percentagem de cerca de 92,6%. Em média, a localização automática ficou a uma distância de 21,4 pixels da localização manual e o desvio padrão foi de 13,8 pixels.

Tabelas com os resultados obtidos encontram-se nos anexos C e D.

5.4.3 - Exemplos de Resultados Correctos

Na Figura 5.8-a) mostra-se um exemplo onde o método determinou a localização do DO correctamente. Como se pode constatar na Figura 5.8-c), o valor da entropia é reduzido na zona de lesões.

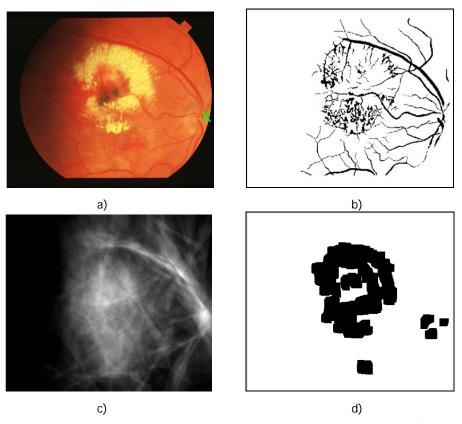


Figura 5.8 - Resultados referentes à imagem 17 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Entropia; d) Candidatos a DO.

Na Figura 5.9-d) mostra-se um exemplo de um resultado da selecção de candidatos que apenas seleccionou a região do DO.

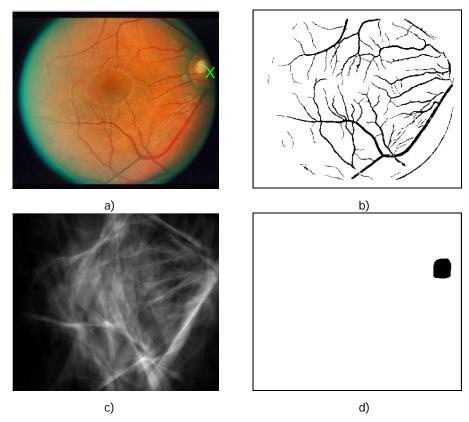
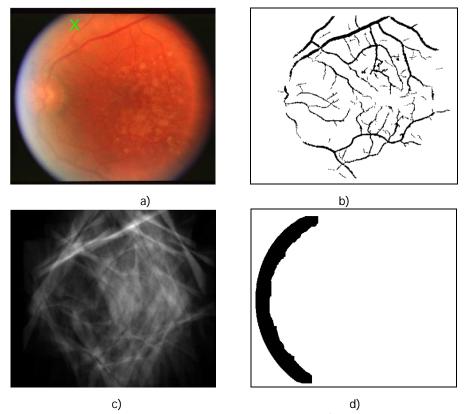



Figura 5.9 - Resultados referentes à imagem 190 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO.

No anexo F estão presente mais exemplo de casos em que o DO foi determinado correctamente.

5.4.4 - Resultados Errados

Nas imagens da Figura 5.10 aFigura 5.12 (12, 13 e 20 - STARE, respectivamente), a região do DO não foi seleccionada como candidata. Porém, mesmo que a região do DO fosse seleccionada, a localização do DO não seria conseguida dado que a segmentação não detectou vasos nestas regiões e portanto a entropia tem valores baixos.

c) d)
Figura 5.10 - Resultados referentes à imagem 12 - STARE. a) Localização final do DO; b)
Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO.

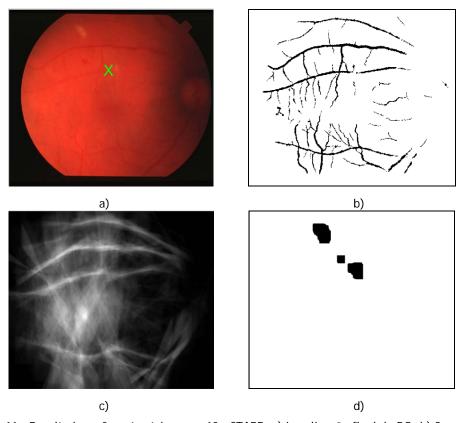


Figura 5.11 - Resultados referentes à imagem 13 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO.

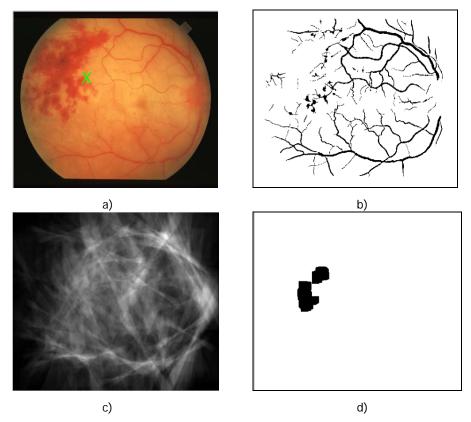


Figura 5.12 - Resultados referentes à imagem 20 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO.

Nas imagens das Figura 5.13 a Figura 5.15 o DO foi correctamente segmentado, mas o valor da entropia é menor que nos outros segmentos, pois a quantidade de vasos segmentados é reduzida na proximidade do DO.

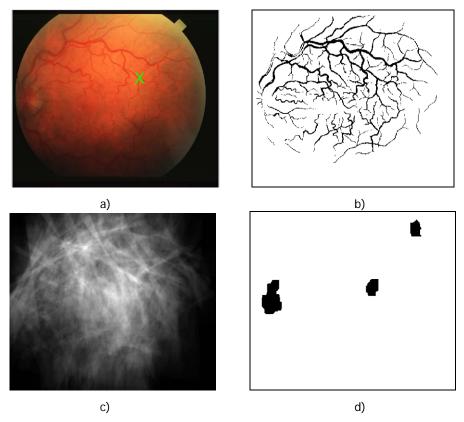


Figura 5.13 - Resultados referentes à imagem 27 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO.

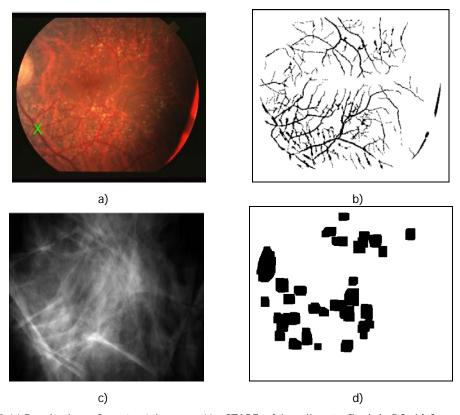


Figura 5.14 Resultados referentes à imagem 41 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO.

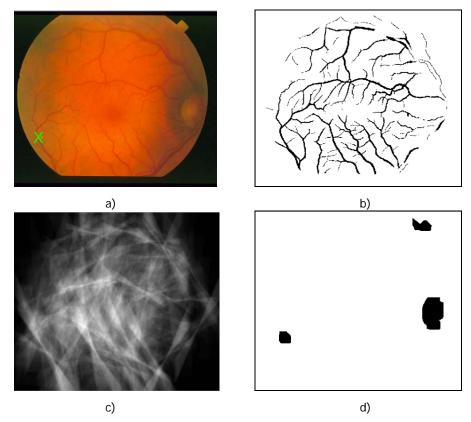


Figura 5.15 - Resultados referentes à imagem 219 - STARE. a) Localização final do DO; b) Segmentação vascular da imagem; c) Resultado da entropia; d) Candidatos a DO.

Na Figura 5.16-a) mostra-se o resultado da única imagem da base de dados DRIVE onde o cálculo directo da localização do DO através do máximo de entropia, sem determinação prévia de candidatos, falhou. Como se pode ver, a segmentação vascular origina duas zonas de elevado valor de entropia (Figura 5.16-d)). A selecção de candidatos elimina a região fora do DO, apenas mantendo a região correcta.

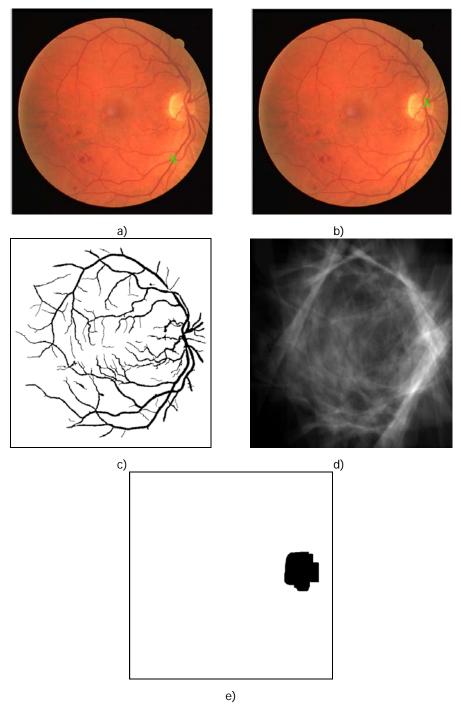


Figura 5.16 - Resultados referentes à imagem 14 - DRIVE. a) Localização do DO sem o método de selecção de candidatos; b) Localização do DO com o método de selecção de candidatos; c) Segmentação vascular da imagem; d) Resultado da entropia; e) Candidatos a DO.

5.4.5 - Discussão dos Resultados

O método proposto para a localização do DO baseado na entropia das direcções vasculares gera resultados que podem ser considerados bons, tendo sido obtida uma taxa de acerto de 100% nas 40 imagens da base de dados DRIVE e de 92,6% nas 81 imagens da base de dados STARE.

O método deu origem a algumas situações incorrectas em regiões próximas dos vasos de maior calibre, pois o valor calculado de entropia também é elevado nestes vasos.

O processo de selecção dos candidatos a DO revelou-se eficiente, não tendo seleccionado o DO apenas em 3 imagens.

O principal factor de sucesso do método foi a eficiente segmentação da rede vascular da retina, pois os algoritmos baseiam-se na direcção dos vasos. Quando a segmentação vascular falha em vasos próximos do DO, o método pode errar também.

O processo de normalização de intensidade mostrou-se fundamental em várias etapas do método, pois a não uniformidade da iluminação na imagem deturpa a diferença de características entre o DO e o fundo.

O método sem restrição de área de localização, ou seja, determinação do valor máximo de entropia em toda a imagem apenas falhou numa imagem das 40 do conjunto DRIVE, o que torna o método fiável quando a imagem apresenta características normais.

Capítulo 6

Conclusão

No trabalho apresentado nesta dissertação foram implementados dois métodos de localização automática do DO. Ambos os métodos obtiveram resultados satisfatórios nas duas bases de dados utilizadas para a validação, embora com erros, o que é normal neste tipo de estudo, pois o conjunto de dados STARE é composto por uma grande variedade de imagens. Na tabela seguinte são apresentados os resultados finais deste trabalho em comparação com outros três métodos referidos na bibliografia.

Tabela 6.1 - Resultados dos métodos apresentados neste trabalho e outros baseados na direcção dos vasos sanguíneos.

Método	DRIVE		STARE	
	Sucesso	Dist. Média	Sucesso	Dist. Média
Correspondência com padrão	100%	15,4	95,1%	19,5
Entropia	100%	18,4	92,6%	21,4
Youssif [42]	100%	17 ^a	98,8%	26 ^a
Foracchia [35]	_		97,5%	
Haar [37]	-		95,1%	

^aA localização manual do DO realizada no trabalho apresentado nesta dissertação foi diferente da localização manual de Youssif [42], por isso os valores de distância média referidos usam referências diferentes

Este trabalho mostrou-se importante pois foi desenvolvido um método novo numa área de investigação mundialmente estudada, sendo possível afirmar que o seu principal objectivo foi concluído com êxito.

Ambos os métodos geram resultados correctos com uma eficiente segmentação da rede vascular. Nos casos em que a segmentação vascular não foi completa, o processo de selecção prévia de candidatos foi também importante para alcançar resultados finais satisfatórios.

6.1 - Trabalho Futuro

O método baseado em entropia suscita mais interesse em trabalhos futuros por ser um método novo. Ambos os algoritmos podem ser melhorados no que respeita ao tempo de processamento, daspecto que não foi considerado neste trabalho.

Tendo a localização do DO, os próximos passos no desenvolvimento de sistemas de diagnóstico automático são a definição do respectivo contorno e localização da região da mácula. Como já foi referido, melhorar o algoritmo de escolha de candidatos será importante para o aumento da eficiência do método nas imagens com características patológicas.

Anexo A - Resultados do Método Baseado em Correspondência com Padrão da Direcção dos Vasos - DRIVE

Segmentação dos vasos de Mendonça			Segmentação dos vasos de Youssif			
Nº	Sucesso	Localização [x y]	Distância ao cento DO	Sucesso	Localização [x,y]	Distância ac cento DO
1	Sim	281 65	29,7	Sim	281 65	34
2	Sim	276 476	3,6	Sim	276 476	6,4
3	Sim	277 89	7,8	Sim	277 89	4
4	Sim	286 348	18,6	Sim	286 348	17,2
5	Sim	276 75	16,8	Sim	276 75	8,1
6	Sim	282 485	28,7	Sim	282 485	23,4
7	Sim	284 499	2,8	Sim	284 499	1
8	Sim	264 509	14	Sim	264 509	9,1
9	Sim	247 79	17	Sim	247 79	17,2
10	Sim	282 474	9,2	Sim	282 474	10,4
11	Sim	255 57	19,7	Sim	255 57	26,4
12	Sim	256 78	2,2	Sim	256 78	22,5
13	Sim	255 494	7	Sim	255 494	13,4
14	Sim	266 493	9,2	Sim	266 493	21,8
15	Sim	287 204	8,1	Sim	287 204	28,2
16	Sim	243 500	23,9	Sim	243 500	32,3
17	Sim	244 495	26,2	Sim	244 495	25
18	Sim	288 493	28,6	Sim	288 493	16,4
19	Sim	280 496	2,2	Sim	280 496	8,9
20	Sim	267 491	14,3	Sim	267 491	7,8
21	Sim	263 55	18,6	Sim	263 55	18,6
22	Sim	262 477	8,6	Sim	262 477	5,8
23	Sim	239 415	24,1	Sim	239 415	24

24	Sim	292 483	3,2	Sim	292 483	14,6
25	Sim	292 478	27,7	Sim	292 478	28,4
26	Sim	264 67	21,1	Sim	264 67	33,4
27	Sim	265 497	22,1	Sim	265 497	22,2
28	Sim	285 510	29,4	Sim	285 510	37,6
29	Sim	247 500	27,1	Sim	247 500	20,9
30	Sim	281 503	5,7	Sim	281 503	7
31	Sim	262 365	25,5	Sim	262 365	8,5
32	Sim	280 507	8,5	Sim	280 507	6,3
33	Sim	307 482	6,4	Sim	307 482	12
34	Sim	205 352	8	Sim	205 352	28,1
35	Sim	267 75	12,1	Sim	267 75	13,5
36	Sim	302 490	28,2	Sim	302 490	24,4
37	Sim	289 511	9,2	Sim	289 511	2,2
38	Sim	279 504	7,1	Sim	279 504	8,1
39	Sim	255 75	13,6	Sim	255 75	8,5
40	Sim	254 504	21,4	Sim	254 504	7,1
40	JIIII	234 304	۷1,4	31111	234 304	1,1

Sucesso	100%	(40 em 40)	100%	(40 em 40)
Distância Média	15,4		16,6	
Desvio Padrão	9,1		9,9	
Dist. Máx.	29,7		37,6	
Dist Mín.	2,2		1	

Anexo B - Resultados do Método Baseado em Correspondência com Padrão da Direcção dos Vasos - STARE

N° Imagem Sucesso Localização (x y) Distância ao cento DO Sucesso Localização (x y) Distância ao cento DO 1 SIM 253 55 17,5 SIM 253 55 5,8 2 SIM 278 74 7,2 SIM 278 74 7,8 3 SIM 280 50 5,4 SIM 280 50 3,2 4 SIM 188 612 38,0 SIM 188 612 41,0 5 SIM 313 467 14,9 SIM 313 467 19,4 6 SIM 214 632 3,2 NÃO 214 632 67,1 7 SIM 263 47 12,0 SIM 263 47 7,3 8 SIM 308 93 20,2 SIM 308 93 17,9 9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160	Segmentação dos vasos de Mendonça			Segmen	Segmentação dos vasos de Youssif		
2 SIM 278 74 7,2 SIM 278 74 7,8 3 SIM 280 50 5,4 SIM 280 50 3,2 4 SIM 188 612 38,0 SIM 188 612 41,0 5 SIM 313 467 14,9 SIM 313 467 19,4 6 SIM 214 632 3,2 NÃO 214 632 67,1 7 SIM 263 47 12,0 SIM 263 47 7,3 8 SIM 308 93 20,2 SIM 308 93 17,9 9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 264 241 47,1 NÃO 264 241 <th>N° Imagem</th> <th>Sucesso</th> <th>•</th> <th></th> <th>Sucesso</th> <th>•</th> <th>Distância ao cento DO</th>	N° Imagem	Sucesso	•		Sucesso	•	Distância ao cento DO
3 SIM 280 50 5,4 SIM 280 50 3,2 4 SIM 188 612 38,0 SIM 188 612 41,0 5 SIM 313 467 14,9 SIM 313 467 19,4 6 SIM 214 632 3,2 NÃO 214 632 67,1 7 SIM 263 47 12,0 SIM 263 47 7,3 8 SIM 308 93 20,2 SIM 308 93 17,9 9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 24	1	SIM	253 55	17,5	SIM	253 55	5,8
4 SIM 188 612 38,0 SIM 188 612 41,0 5 SIM 313 467 14,9 SIM 313 467 19,4 6 SIM 214 632 3,2 NÃO 214 632 67,1 7 SIM 263 47 12,0 SIM 263 47 7,3 8 SIM 308 93 20,2 SIM 308 93 17,9 9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 3	2	SIM	278 74	7,2	SIM	278 74	7,8
5 SIM 313 467 14,9 SIM 313 467 19,4 6 SIM 214 632 3,2 NÃO 214 632 67,1 7 SIM 263 47 12,0 SIM 263 47 7,3 8 SIM 308 93 20,2 SIM 308 93 17,9 9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM	3	SIM	280 50	5,4	SIM	280 50	3,2
6 SIM 214 632 3,2 NÃO 214 632 67,1 7 SIM 263 47 12,0 SIM 263 47 7,3 8 SIM 308 93 20,2 SIM 308 93 17,9 9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM	4	SIM	188 612	38,0	SIM	188 612	41,0
7 SIM 263 47 12,0 SIM 263 47 7,3 8 SIM 308 93 20,2 SIM 308 93 17,9 9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM <td< td=""><td>5</td><td>SIM</td><td>313 467</td><td>14,9</td><td>SIM</td><td>313 467</td><td>19,4</td></td<>	5	SIM	313 467	14,9	SIM	313 467	19,4
8 SIM 308 93 20,2 SIM 308 93 17,9 9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM	6	SIM	214 632	3,2	NÃO	214 632	67,1
9 SIM 242 118 16,5 SIM 242 118 45,3 10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO	7	SIM	263 47	12,0	SIM	263 47	7,3
10 SIM 305 496 50,4 SIM 305 496 47,9 11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM	8	SIM	308 93	20,2	SIM	308 93	17,9
11 SIM 272 160 13,0 SIM 272 160 23,3 12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM	9	SIM	242 118	16,5	SIM	242 118	45,3
12 SIM 300 125 23,8 NÃO 300 125 365,5 13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM	10	SIM	305 496	50,4	SIM	305 496	47,9
13 SIM 298 613 24,2 SIM 298 613 8,1 14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM	11	SIM	272 160	13,0	SIM	272 160	23,3
14 SIM 264 241 47,1 NÃO 264 241 71,1 15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM	12	SIM	300 125	23,8	NÃO	300 125	365,5
15 SIM 262 593 27,3 SIM 262 593 37,7 16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	13	SIM	298 613	24,2	SIM	298 613	8,1
16 SIM 339 626 19,2 SIM 339 626 17,9 17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	14	SIM	264 241	47,1	NÃO	264 241	71,1
17 SIM 359 663 6,1 SIM 359 663 5,1 18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	15	SIM	262 593	27,3	SIM	262 593	37,7
18 SIM 311 560 26,9 SIM 311 560 26,1 19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	16	SIM	339 626	19,2	SIM	339 626	17,9
19 SIM 267 146 13,4 SIM 267 146 13,9 20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	17	SIM	359 663	6,1	SIM	359 663	5,1
20 NÃO 120 265 397,9 NÃO 120 265 528,0 21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	18	SIM	311 560	26,9	SIM	311 560	26,1
21 SIM 271 287 16,4 SIM 271 287 5,8 22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	19	SIM	267 146	13,4	SIM	267 146	13,9
22 SIM 271 511 8,1 SIM 271 511 12,0 23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	20	NÃO	120 265	397,9	NÃO	120 265	528,0
23 SIM 254 314 13,9 SIM 254 314 40,5 24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	21	SIM	271 287	16,4	SIM	271 287	5,8
24 SIM 303 369 2,2 SIM 303 369 1,0 25 SIM 304 339 26,6 SIM 304 339 26,4	22	SIM	271 511	8,1	SIM	271 511	12,0
25 SIM 304 339 26,6 SIM 304 339 26,4	23	SIM	254 314	13,9	SIM	254 314	40,5
	24	SIM	303 369	2,2	SIM	303 369	1,0
26 SIM 315 245 38,1 SIM 315 245 41,0	25	SIM	304 339	26,6	SIM	304 339	26,4
	26	SIM	315 245	38,1	SIM	315 245	41,0

27	SIM	321 59	17,0	SIM	321 59	21,5
28	SIM	304 334	17,9	SIM	304 334	26,1
29	SIM	290 356	28,6	SIM	290 356	28,2
30	SIM	316 357	16,4	SIM	316 357	22,0
31	SIM	306 531	2,0	SIM	306 531	5,1
32	SIM	254 73	32,6	NÃO	254 73	61,9
33	SIM	289 598	20,6	SIM	289 598	27,1
34	SIM	279 626	43,4	NÃO	279 626	46,1
35	NÃO	259 39	554,3	NÃO	259 39	554,2
36	SIM	423 537	13,6	SIM	423 537	13,0
37	SIM	372 602	40,3	NÃO	372 602	73,8
38	SIM	246 430	6,1	SIM	246 430	5,8
39	SIM	325 600	22,0	SIM	325 600	40,7
40	SIM	291 377	2,8	SIM	291 377	4,1
41	SIM	264 28	59,1	NÃO	264 28	261,5
42	SIM	123 510	32,4	SIM	123 510	42,4
43	SIM	280 506	40,2	SIM	280 506	31,6
44	SIM	176 586	25,3	SIM	176 586	45,7
45	SIM	338 536	25,3	SIM	338 536	26,9
46	SIM	261 83	31,6	SIM	261 83	32,4
48	SIM	287 340	9,2	SIM	287 340	4,0
49	SIM	275 549	33,8	SIM	275 549	30,7
50	SIM	267 657	12,4	NÃO	267 657	406,1
76	SIM	303 616	3,6	NÃO	303 616	47,1
77	SIM	258 39	8,6	SIM	258 39	6,4
80	SIM	306 316	34,1	SIM	306 316	38,6
81	SIM	226 55	7,2	SIM	226 55	15,1
82	SIM	278 665	7,1	SIM	278 665	7,6
139	SIM	242 636	17,3	NÃO	242 636	20,4
162	SIM	292 137	13,9	SIM	292 137	7,3
163	SIM	331 297	17,9	SIM	331 297	14,4
164	SIM	254 397	25,3	SIM	254 397	13,0
170	SIM	300 606	6,3	NÃO	300 606	60,0
190	NÃO	497 432	387,2	NÃO	497 432	25,3
198	SIM	337 226	13,5	SIM	337 226	15,6
216	SIM	273 425	17,0	NÃO	273 425	18,0
219	NÃO	427 86	562,2	NÃO	427 86	562,2
231	SIM	257 315	27,8	SIM	257 315	19,2
235	SIM	260 114	8,2	SIM	260 114	7,6
236	SIM	210 82	10,3	SIM	210 82	23,3
237	SIM	371 567	18,4	SIM	371 567	22,2
238	SIM	281 476	23,1	SIM	281 476	23,1
239	SIM	308 37	4,0	SIM	308 37	13,9
240	SIM	325 625	22,1	SIM	325 625	20,1
241	SIM	258 480	12,6	SIM	258 480	29,2

Anexo B 65

 242	SIM	318 337	36,4	SIM	318 337	24,2
243	SIM	327 520	30,0	SIM	327 520	31,8
 245	SIM	329 566	31,3	SIM	329 566	35,8
249	SIM	315 315	4,1	SIM	315 315	4,1
252	SIM	283 542	8,1	SIM	283 542	1,0
 253	SIM	368 367	11,7	SIM	368 367	9,4
255	SIM	256 70	5,8	SIM	256 70	5,8
278	SIM	261 348	15,0	SIM	261 348	15,5
 291	SIM	299 55	7,8	SIM	299 55	3,2
319	SIM	239 36	30,7	NÃO	239 36	117,4

Sucesso	95,1%	(77 em 81)	Sucesso	86,4%	(70 em 81)
Dist. Média	19,5		Dist. Média	21,2	
Desvio	12,6		Desvio		
Padrão	12,0		Padrão	14,2	
Dist.	59,14		Dist.		
Máxima	39,14		Máxima	60,0	
Dist.	2		Dist.		
Mínima	2		Mínima	1	
<u> </u>					

Anexo C - Resultados do Método Baseado em Entropia - DRIVE

N°	Sucesso Localização	Distância ao cento DO	Localização [x y]	Entropia
1	SIM	17,1	[264,48]	0,054
2	SIM	22,2	[276,74]	0,075
3	SIM	11,2	[275,45]	0,049
4	SIM	20,2	[241,612]	0,053
5	SIM	13,5	[295,463]	0,088
6	SIM	20,5	[235,631]	0,072
7	SIM	13,0	[311,71]	0,060
8	SIM	16,8	[264,84]	0,084
9	SIM	16,3	[222,112]	0,096
10	SIM	6,4	[297,496]	0,095
11	SIM	14,1	[272,160]	0,108
12	SIM	6,0	[58,214]	0,064
13	SIM	16,1	[207,334]	0,049
14	SIM	10,6	[229,263]	0,103
15	SIM	43,1	[208,585]	0,093
16	SIM	22,8	[344,615]	0,097
17	SIM	28,3	[359,670]	0,067
18	SIM	28,6	[300,562]	0,107
19	SIM	9,0	[270,146]	0,099
20	SIM	7,8	[225,244]	0,054
21	SIM	20,9	[260,294]	0,096

22	SIM	9,1	[267,507]	0,112
23	SIM	37,6	[218,314]	0,106
24	SIM	13,4	[277,357]	0,124
25	SIM	36,1	[303,333]	0,096
26	SIM	26,1	[260,278]	0,110
27	SIM	26,0	[231,429]	0,055
28	SIM	44,9	[332,331]	0,106
29	SIM	13,3	[297,359]	0,131
30	SIM	12,4	[324,366]	0,116
31	SIM	23,6	[302,525]	0,124
32	SIM	7,2	[281,63]	0,083
33	SIM	9,5	[258,589]	0,053
34	SIM	6,7	[251,622]	0,079
35	SIM	17,0	[304,589]	0,083
36	SIM	12,2	[426,541]	0,066
37	SIM	22,0	[353,590]	0,087
38	SIM	34,5	[240,430]	0,128
39	SIM	7,1	[312,608]	0,098
40	SIM	11,0	[284,369]	0,144

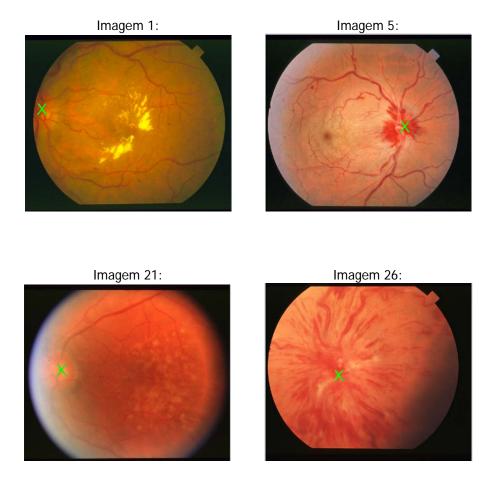
Análise estatística dos resultados

Sucesso	100% (40 em 40)
Dist. Média	18,4
Desvio padrão	10,3
Dist. Máx.	44,9
Dist. Mín.	6
Sucesso na Distinção de Olho E/D	36

Anexo D - Resultados do Método Baseado em Entropia - STARE

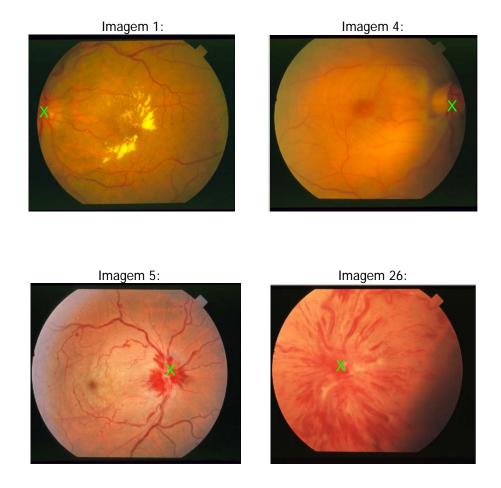
N°	Sucesso Localização	Distância	Localização [x y]	Ent. G.
1	SIM	ao cento DO 4,5	[264,48]	0,054
2	SIM	8,5	[276,74]	0,075
3	SIM	3,0	[275,45]	0,049
		·		•
4	SIM	15,0	[241,612]	0,053
5	SIM	16,4	[295,463]	0,088
6	SIM	24,0	[235,631]	0,072
	SIM	42,7	[311,71]	0,060
8	SIM	29,7	[264,84]	0,084
9	SIM	10,8	[222,112]	0,096
10	SIM	42,4	[297,496]	0,095
11	SIM	13,0	[272,160]	0,108
12	NÃO	258,1	[58,214]	0,064
13	NÃO	310,2	[207,334]	0,049
14	SIM	27,7	[229,263]	0,103
15	SIM	30,4	[208,585]	0,093
16	SIM	7,2	[344,615]	0,097
17	SIM	13,0	[359,670]	0,067
18	SIM	20,0	[300,562]	0,107
19	SIM	12,4	[270,146]	0,099
20	NÃO	390,3	[225,244]	0,054
21	SIM	20,0	[260,294]	0,096
22	SIM	3,0	[267,507]	0,112
23	SIM	31,4	[218,314]	0,106
24	SIM	30,9	[277,357]	0,124
25	SIM	31,3	[303,333]	0,096
26	SIM	39,8	[260,278]	0,110
27	NÃO	389,9	[231,429]	0,055
28	SIM	44,3	[332,331]	0,106

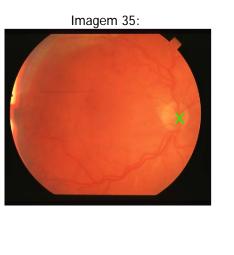
29	SIM	36,2	[297,359]	0,131
30	SIM	28,3	[324,366]	0,116
31	SIM	8,5	[302,525]	0,124
32	SIM	59,6	[281,63]	0,083
33	SIM	22,8	[258,589]	0,053
34	SIM	18,6	[251,622]	0,079
35	SIM	7,6	[304,589]	0,083
36	SIM	11,4	[426,541]	0,066
37	SIM	22,1	[353,590]	0,087
38	SIM	9,2	[240,430]	0,128
39	SIM	37,2	[312,608]	0,098
40	SIM	7,8	[284,369]	0,144
41	NÃO	214,6	[411,92]	0,058
42	SIM	27,5	[117,514]	0,065
43	SIM	30,4	[271,499]	0,105
44	SIM	20,2	[185,573]	0,070
45	SIM	28,0	[337,544]	0,102
46	SIM	27,2	[262,98]	0,056
48	SIM	49,0	[247,362]	0,097
49	SIM	13,0	[259,573]	0,093
50	SIM	59,8	[336,642]	0,050
76	SIM	10,8	[296,619]	0,068
77	SIM	10,4	[256,36]	0,060
80	SIM	36,9	[308,314]	0,117
81	SIM	6,1	[223,55]	0,054
82	SIM	10,3	[284,667]	0,080
139	SIM	4,1	[255,640]	0,059
162	SIM	21,2	[299,135]	0,109
163	SIM	25,6	[339,296]	0,113
164	SIM	26,9	[255,400]	0,150
170	SIM	11,4	[299,613]	0,072
190	SIM	23,5	[207,665]	0,062
198	SIM	13,5	[337,226]	0,098
216	SIM	13,6	[278,421]	0,110
219	NÃO	562,6	[430,86]	0,050
231	SIM	13,0	[281,326]	0,125
235	SIM	11,7	[256,112]	0,093
236	SIM	55,9	[150,101]	0,068
237	SIM	18,6	[370,568]	0,096
238	SIM	38,0	[243,476]	0,094
239	SIM	2,0	[308,39]	0,068
240	SIM	5,1	[342,626]	0,059
241	SIM	22,2	[259,490]	0,133
242	SIM	22,1	[262,340]	0,130
243	SIM	36,6	[331,526]	0,143


Anexo D 71

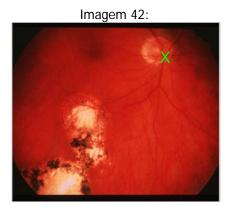
245	SIM	22,0	[284,566]	0,092
249	SIM	10,0	[321,314]	0,120
252	SIM	6,3	[285,543]	0,069
253	SIM	10,2	[367,365]	0,147
255	SIM	17,0	[262,56]	0,059
278	SIM	9,8	[272,358]	0,145
291	SIM	13,5	[295,59]	0,055
319	SIM	32,9	[299,37]	0,045

Análise estatística dos resultados

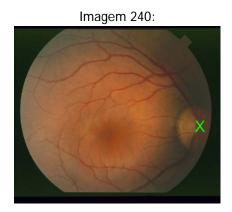

Sucesso	92,6% (75 em 81)	
Dist. Média	21,4	
Desvio Padrão	13,8	
Dist. Máx.	59,8	
Dist. Min	2	


Anexo E - Casos de Sucessos - Correspondência com Padrão da Direcção dos Vasos - STARE






Anexo F - Exemplo de Casos de Sucessos - Método Baseado na Entropia dos Vasos - STARE



Referências

- [1] David Hubel's. Eye, Brain, and Vision; Janeiro 2011. http://hubel.med.harvard.edu/book/b8.htm
- [2] Wikipedia. Color Vision, Janeiro 2011. http://en.wikipedia.org/wiki/Color_vision
- [3] Wikipedia. Olho, Janeiro 2011. http://pt.wikipedia.org/wiki/Olho
- [4] Wikipedia. Retina, Janeiro 2011. http://en.wikipedia.org/wiki/Retina
- [5] RTP, Setembro 2010. http://ww1.rtp.pt/noticias/?t=Doencas-de-retina-atingem-cerca-de-300-mil-portugueses.rtp&headline=20&visual=9&article=379118&tm=2
- [6] Discovery Health Hypertensive Retinopathy. Janeiro 1011. http://healthguide.howstuffworks.com/hypertensive-retinopathy-picture.htm
- [7] Rufino Silva Clínica Oftalmológica; Janeiro 2011. Lda; http://www.oftalmologia.co.pt/dmri.html
- [8] Centro de Oftalmologia do Algarve. Janeiro 2011. http://www.centrodeoftalmologia.com/cons_degeneracao.htm
- [9] A Merck Sharp & Dohme Portugal. Retinopatia diabética; Janeiro 2011 . http://www.manualmerck.net/?id=251&cn=2095
- [10] All About Vision. Glaucoma; Janeiro 2011. http://www.allaboutvision.com/conditions/glaucoma.htm
- [11] Clínica Naufal. Gloucoma. Janeiro 2011. http://clinicanaufal.com.br/servicos/glaucoma/
- [12] Z. Liu, C. Opas e S. Krishnan, "Automatic image analysis of fundus photograph", Proc. of 19th IEEE Int. Conf. on Eng. in Med. and Biol. Soc., pp. 524-525, 1997.
- [13] C. Sinthanayothin, J.F. Boyce, H.L. Cook, and T.H. Williamson. "Automated localization of the optic disc, fovea, and retinal blood vessels from digital colour fundus images". British Journal of Ophthalmology, 83:902-910, 1999.
- [14] R. A. Abdel-Ghafar, T. Morris, T. Ritchings, and I. Wood, "Detection and characterisation of the optic disk in glaucoma and diabetic retinopathy," presented at the Med. Image Understand. Anal. Conf., London, U.K., Sep. pp. 23-24, 2004.
- [15] S. F. Barrett, E. Naess, and T. Molvik, "Employing the Hough transform to locate the optic disk," in Biomed. Sci. Instrum., 2001, vol. 37, pp. 81-86
- [16] H. Li e O. Chutatape, "Automatic location of optic disk in retinal images", Proc. Int. Conf. Image Processing, vol. 2, pp. 837-840, Outubro de 2001.
- [17] H. Li e O. Chutatape, "Automated feature extraction in color retinal images by a model based approach", IEEE Trans. on Biom. Eng., vol.51, n°2, pp. 246-254, Fevereiro de 2004.

- [18] H. Li e O. Chutatape, "A model based approach for automated feature extraction in fundus images". Proc. of 9th IEEE Int. Conf. on Computer Vision, pp. 394-399, Outubro de 2006
- [19] T. Walter and J.C. Klein. "Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques". Proceedings of the 2nd International Symposium on Medical Data Analysis, pages 282-287, 2001.
- [20] L. Gagnon, M. Lalonde, M. Beaulieu, and M.-C. Boucher, "Procedure to detect anatomical structures in optical fundus images," in Proc. Conf. Med. Imag. 2001: Image Process., San Diego, CA, Feb. 19-22, 2001, pp. 1218-1225.
- [21] R. Chrástek, M. Wolf, K. Donath, G. Michelson, and H. Niemann, "Optic disc segmentation in retinal images," Bildverarbeitung für die Medizin 2002, pp. 263-266, 2002.
- [22] A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham. "Comparison of colour spaces for optic disc localisation in retinal images". Proceedings of the 16th International Conference on Pattern Recognition, pp. 743-746, 2002.
- [23] Gonzales R.C., Woods R.E. Digital Image Processing. 2ed., Prentice-Hall, 2001.
- [24] J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, E. Fletcher, and L. Kennedy, "Optic nerve head segmentation," IEEE Trans. Med. Imag., vol. 23, no. 2, pp. 256-264, 2004.
- [25] M. Park, J. S. Jin, S. Luo, "Locating the Optic Disc in Retinal Images", IEEE Proc. Int. CGIV, pp. 141-145, Julho de 2006.
- [26] P.C. Siddalingaswamy, G. K. Prabhu, "Automated detection of anatomical structures in retinal images", Int. Conf. on Comp. Int. and Mult. Applications, pp. 47-51, 2007.
- [27] V. Thongnuch and B. Uyyanonvara. "Automatic optic disk detection from low contrast retinal images of ROP infant using GVF snake", Suranaree J. Sci. Technol. 14(3):223-226, 2007.
- [28] A. D. Fleming, A. G. Keith, P. Sam, A. O. John, F. S. Peter, "Automatic detection of retinal anatomy to assist diabetic retinopathy screening", Phys. Med. Biol. 52, pp. 331-345, 2007.
- [29] S. Sekhar, W. Al-Nuaimy, A. K. Nandi, "Automated localization of optic disc and fovea in retinal fundus images", 16th. European Signal Processing Conference, Lausanne, Switzerland, 2008.
- [30] Raquel Guerra. "Identificação Automática do Disco Óptico Em Imagens Coloridas da Retina", Faculdade de Engenharia da Universidade do Porto, Fevereiro 2008.
- [31] A. Aquino, M. E. Gegúndez-Arias, D. Marín. "Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, Edge Detection and Feature Extraction Techniques", IEEE Transaction on Medical Imaging, 2010.
- [32] A. Hoover and M. Goldbaum. "Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels". IEEE Transactions on Medical Imaging, 22(8):951-958, 2003
- [33] E. Trucco e P. J. Kamat, "Locating the optic disk in retinal images via plausible detection and constraint satisfaction", Proc. Int. Conf. Image Processing, pp. 155-158, Outubro 2004.
- [34] A. Perez-Rovira; E. Trucco. "Robust optic disc location via combination of weak detectors". Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 3542 3545, 2008.

Referências 79

[35] M. Foracchia, E. Grisan, and A. Ruggeri, "Detection of optic disc in retinal images by means of a geometrical model of vessel structure," IEEE Trans. Med. Imag., vol. 23, no. 10, pp. 1189-1195, Oct. 2004.

- [36] D. Kavitha, S. Shenbaga Devi, "Automatic Detection of Optic Disc and exudates in retinal images", IEEE Proceedings ICISIP, pp. 501-506, 2005.
- [37] F. ter Haar, "Automatic localization of the optic disc in digital colourimages of the human retina", M.S. thesis, Utrecht University, Utrecht, The Netherlands, 2005.
- [38] K. W. Tobin, E. Chaum, V. P. Govindasamy, T. P. Karnowski, and O. Sezer, Reinhardt, M. Joseph, Pluim, and P. W. Josien, Eds., "Characterization of the optic disc in retinal imagery using a probabilistic approach," in Med. Imag. 2006: Image Process., 2006, vol. 6144, pp. 1088-1097.
- [39] M. D. Abràmoff and M. Niemeijer, "The automatic detection of the optic disc location in retinal images using optic disc location regression," in Proc. IEEE EMBC 2006, Aug. 2006, pp. 4432-4435.
- [40] H. Ying, M. Zhang, Liu. "Fractal-based Automatic Localization and Segmentation of Optic Disc in Retinal Images". Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pp. 4139 4141. 2007.
- [41] D' Antoni Roberto, De Gusti Andrea, "Model based retinal analysis for retinopathy detection", Proc. Of the 29th Annual International, Conf. of the IEEE EMBS, Cité Internationale, Lyon, France, pp. 6731-6734, 23-26 de Agosto de 2007.
- [42] A. A.H.A.R. Youssif, A. Z. Ghalwash, and A. R Ghoneim, "Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter," IEEE Trans. Med. Imag, vol. 27, pp. 11-18, 2008.
- [43] A. M. Mendonça, A. Campilho, "Segmentation of Retinal Blood Vessels by Combining the Detection of Centerlines and Morphological Reconstruction", IEEE Transactions on Medical Imaging, VOL. 25, NO. 9, pp. 1200-1213, Setembro 2006.
- [44] N. Otsu, "A threshold selection method from gray level histograms," IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62-66, Jan. 1979.
- [45] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, "Detection of blood vessels in retinal images using two-dimensional matched filters," IEEE Trans. Med. Imag., vol. 8, no. 3, pp. 263-269, Setembro 1989.
- [46] D. Wu, M. Zhang, J.-C. Liu, and W. Bauman, "On the adaptive detection of blood vessels in retinal images," IEEE Trans. Biomed. Eng., vol. 53, no. 2, pp. 341-343, Feb. 2006.
- [47] Wikipedia. Entropia, Dezembro 2010. http://pt.wikipedia.org/wiki/Entropia
- [48] Claude E. Shannon e Warren Weaver, "The Mathematical Theory of Communication", The University of Illinois Press, Urbana, 1964.
- [49] Planet Math. Shannon's entropy. Junho 2006. http://planetmath.org/encyclopedia/ShannonsTheoremEntropy.html
- [50] Tim Thompson's Home Page; Fevereiro 2002. http://www.tim-thompson.com/entropy1.html
- [51] C.E. Shannon. "A Mathematical Theory of Communication", Bell Syst. Tech. J., 1948.
- [52] I.J. Taneja. Generalized Information Measures and Their Applications, 2001, on-line book: www.mtm.ufsc.br/~taneja/book/book.html
- [53] Stare project website [online] 2004. available: http://www.ces.clemson.edu/~ahoover/stare.

[54] Download images section, MESSIDOR: Digital Retinal Images, MESSIDOR TECHNO-VISION Project, France [Online]. Disponível: http://messidor.crihan.fr/download-en.php.