FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Development of a Generic Fingerprint
Authentication Framework

Andre Filipe Tavares

Report of Project/Dissertation

Master in Informatics and Computing Engineering

Supervisor: Antonio Miguel Pontes Pimenta Monteiro (Professor)

37 March, 2009

(© Andre Tavares, 2009

Development of a Generic Fingerprint Authentication
Framework

Andre Filipe Tavares

Report of Project/Dissertation

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Jorge Alves da Silva (Auxiliary Professor from FEUP)

External Examiner: Jose Maria Amaral Fernandes (Invited Auxiliary Professor from
Aveiro’s University)

Internal Examiner: Antonio Miguel Pontes Pimenta Monteiro (Auxiliary Professor from
FEUP)

March, 2009

Confidencial

Nos termos do protocolo de estigio e do acordo de confidencialidade celebrado com a
ALERT Life Sciences Computing, S.A. (’ALERT”), o presente relatdrio é confidencial e
podera conter referéncias a invencdes, know-how, desenhos, programas de computador,
segredos comerciais, produtos, formulas, métodos, planos, especificagcdes, projectos, da-
dos ou obras abrangidos por direitos de propriedade industrial e/ou intelectual da ALERT.
Este relatorio s6 poderd ser utilizado para efeitos de investigacdo e de ensino. Qualquer
outro tipo de utilizacdo esta sujeita a autorizacao prévia e por escrito da ALERT.

In accordance with the terms of the internship protocol and the confidentiality agree-
ment executed with ALERT Life Sciences Computing, S.A. (“ALERT”), this report is
confidential and may contain references to inventions, know-how, drawings, computer
software, trade secrets, products, formulas, methods, plans, specifications, projects, data
or works protected by ALERT’s industrial and/or intellectual property rights. This report
may be used solely for research and educational purposes. Any other kind of use requires
prior written consent from ALERT.

Abstract

In any line of business it is impossible not to depend on third-party solutions and the obvi-
ous drawback is that we are then limited to the environments these support. It is precisely
the case of the ALERT(®) software suite, which relies on Digital Persona’s fingerprint
authentication technology. This project arose from the urgent need to eliminate this de-
pendency, enabling support for different environments and equipment incompatible with
the current solution.

Early on the research about the subject, fingerprint authentication, it was concluded
that it follows the exact same process as any other type of biometric authentication. Thus,
it makes perfect sense the approach of a generic biometric framework, where the finger-
print module will fit. This way, other types of biometric technology can be easily added to
the Framework. After evaluating available market solutions for both the biometric frame-
work and the fingerprint module, a decision was made of developing a generic biometric
authentication framework internally and using the current available fingerprint technol-
ogy, Digital Persona, as a module of the framework.

The biometric framework was then designed and implemented. An API was defined
in order to allow changes to its core without breaking the applications that depend on it
and to make it modular enough to support not only different biometric technologies but,
for each technology, different vendors. This way, the application now doesn’t depend on
a specific technology/vendor. Finally, the current available fingerprint technology was
fitted in the biometric framework.

Tests of this solution on the several environments it is expected to run were successful.

1

Resumo

Em qualquer ramo de negdcio é impossivel nao depender de solugdes de terceiros e, deste
modo, estar limitado aos ambientes que estas suportam. E precisamente o que se passa
com o software ALERT®), que depende de tecnologia de autenticagdo por impressao
digital da Digital Persona. Este projecto surge da necessidade urgente de eliminar esta
dependéncia, alargando o suporte a diversos ambientes e equipamentos que esta ndo su-
porta.

Cedo na pesquisa sobre a tematica de autenticacdo por impressdo digital se conclui
que esta segue 0 mesmo processo que qualquer outro tipo de autenticagdo por biome-
tria. Desta maneira, faz todo o sentido a abordagem de uma framework genérica de
autenticacao por biometria, onde o médulo de impressao digital serd inserido. Assim, out-
ros tipos de autenticacdo por biometria passardo a ser passiveis de ser suportados. Apds
avaliar as solugdes de mercado existentes quer para a framework de biometria, quer para o
modulo de impressdo digital, € tomada a decisao de desenvolver uma framework genérica
de autenticacgdo por biometria internamente e utilizar a tecnologia de autenticagdo por
impressao digital existente, da Digital Persona, como mddulo da mesma.

A framework €, entdo, desenhada e implementada. Uma API é definida por forma a
permitir que alteracdes na Framework ndo tenham impacto na aplica¢io que dela depende
e a tornem modular o suficiente para permitir ndo s6 o suporte de diferentes tipos de
tecnologias de autenticagdo por biometria mas igualmente de diferentes fornecedores para
cada uma. Desta maneira, a aplicacdo deixa de depender numa tecnologia / fornecedor
especifico. Por fim, a solu¢do actual de autenticacdo por impressao digital € adicionada a
framework de biometria.

Os testes a framework de biometria nos ambientes em que € esperado que esta corra
foram realizados com sucesso.

il

Contents

1 Introduction

3

1.1 Background
1.2 Context e e e
1.3 Project e
1.4 Goals e
1.5 Document Structure
State of the Art
2.1 Biometric Identification,
2.2 Fingerprint e e
23 Standards
2.3.1 Biometrics API o
2.3.2 Fingerprint Template Standards
2.4 Vendors
2.4.1 Biometric Middleware
2.4.2 Fingerprint Solutions
2.5 Fingerprint Vendor Analysis,
2.5.1 Fingerprint Reader Support.
252 Imagelnput.
2.5.3 Supported Standards Lo
2.5.4 APl Programming Languages
255 SupportedOSes.
2.5.6 Supported Browsers
2.5.7 Pricing and License Models
258 Feedback
2.6 Conclusions
Architecture Description
3.1 Architecturally Relevant Requirements
3.1.1 KeyUseCases
3.1.2 Non-Functional Requirements and Constraints
32 ConteXt VIEW o . o e e e e
33 Logical View
33.1 LogicalModel,
33.1.1 Client e
3.3.1.2 Client/ Server Communication
33.1.3 Server . .o ...

v

—

34
3.5

3.6
3.7

CONTENTS

Dependency Model
Behavioural Viewo

3.5.1
352

Scenario & Collaboration Models
State Models

Deployment View
Architectural Design Principles & Patterns

4 Software Design and Implementation

4.1 Technologies e
4.2 Biometric Framework Lo Lo
421 ClassDiagram,
422 Biometric Capture

4.2.3 Biometric Capture Factory
424 Biometric Processing oL
4.2.5 Biometric Processing Factory

4.2.6 Biometric Matching
4.27 Biometric Matching Factory

428 BiometricData oo

429 Biometric Data Serializer
4.2.10 Biometric Data Serializer Factory
4.2.11 Conventionso
4.2.12 Configurations e

4.3 FingerprintModule oo
4.3.1 Biometric Framework Integration

4.3.2 Fingerprint Extractor Digital Persona

4.3.3 Fingerprint Matcher Digital Persona

4.3.4 Fingerprint Sensor Digital Persona

4.3.5 Fingerprint Serializer Digital Persona
43.6 Runningin64bits

4.4 Integration with the Authentication Server
4.4.1 Directory SErverso e e
4.4.1.1 Directory Services

4.4.1.2 Extendingthe Schema

4413 ActiveDirectory oL

4414 OpenlLDAP

45 JavaApplet L

5 Testing

S JUnit. ..o L e e
5.2 Operating Systems
5.3 Browserand LDAP
54 Deployment

6 Conclusions

References

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Comparison of Biometric Technologies 5
Biometrical Identification Process 6
Source: Digital Persona L oo 7
Fingerprint Reader Support 12
Image Input and Quality Assessment Capabilities 12
Supported Standards 13
Supported API Programming Languages 14
Supported Operating Systems 14
Supported Web Browsers Lo Lo 15
UseCases e 17
Context View 18
Logical Model 19
Acquisition and Extraction Moduleso 20
MatchingModule Lo 20
Fingerprint Enrollment Process 22
Fingerprint Verification Process 22
Fingerprint Enrollment States 23
Fingerprint Verification States 23
Deployment Diagram of the ALERT Biometric Framework 24
Biometric Framework oL oL 26
Biometric Framework Core Classes 28
Biometric Data Structure L Lo 30
Biometric Data Serializer 31
Package Naming Conventions 32
Authentication Server Configurator Classes 34
Configuration Example for Digital Persona 34
Configuration Example for FARvalue 34
Digital Persona Modules 0oL 35
Digital Persona Extractor Module 35
Digital Persona Matcher Module 36
Digital Persona Sensor Module 37
Digital Persona Sensor Configuration 38
Digital Persona Template Serializer Module 38
Digital Persona 64-bit Architecture 39
Digital Persona 64-bit Configuration 40

vi

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29

5.1
5.2
53
54
55

LIST OF FIGURES

Biometric Credential and Authentication Modules 40
Biometric Schema Diagram 42
ALERT OID Structure 43
AD Schema Extension: BiometricInfo Object 44
AD Schema Extension: BiometricID Attribute 45
AD Schema Extension: BiometricTechnology Attribute 45
AD Schema Extension: BiometricFormat Attribute 45
AD Schema Extension: BiometricData Attribute 46
AD Schema Extension: Modifying UserClass 47
RFC 2252 -ObjectClass i 47
RFC 2252 - Attribute Class 48
OpenLDAP SchemaFile 48
Java Applet Diagram 49
JUnit Success Output - Eclipse 51
JUnit Success Output - Command Line 51
TestSetup e 52
Applet Testing - Firefox 53
Computer Running ALERT(r) Software 54

vii

Chapter 1

Introduction

1.1 Background

In any line of business it is impossible not to depend on others. The software industry is
no different. In the development of any product there are always dependencies of features
that aren’t directly related to it and it is unrealistic to believe that, while theoretically
possible, it is feasible to develop them internally.

Thus, most of the time, the most logical option is to adopt third-party solutions. It is
important, however, to isolate these dependencies as much as possible to make sure that
the final product is never put in jeopardy.

More than a mere financial matter, this is a strategic one. IT is rich in heterogeneous
environments and, in most cases, it is impossible to control where the software will run.

The adoption of solutions that comply with international standards is perhaps the best
way to achieve this goal. The problem arises when there are no specific standards or these
aren’t widely adopted.

That is precisely the case of biometric authentication technology.

1.2 Context

This project arose from an invitation by the ALERT Life Sciences Computing, S.A.
(ALERT(®)) to the student André Filipe Tavares, finalist of the Integrated Master in Infor-
matics and Computation Engineering from the Faculty of Engineering of the University
of Porto, under scope of the project/dissertation course.

The ALERT Group is dedicated to the development, distribution and implementation
of the healthcare software ALERT(®), conceived to enable paper free medical environ-
ments. With headquarters in Vila Nova de Gaia, Portugal, the parent company began
operations in December 1999 and the group has now a multidisciplinary team of over 600

Introduction

employees. In 2008, more than 50% of turnover resulted from contracts signed outside
the country [ALEOS].

1.3 Project

Fingerprint authentication is a vital component of the ALERT®) software suite. Together
with a Personal Identification Number (PIN), is the way users authenticate themselves in
the clinical environment.

The verification process starts with the acquisition of the user’s fingerprint by means
of specialized equipment, a fingerprint reader. Once captured, specialized algorithms
identify the points of interest which then will be used to generate a template. This is
a unique digital representation of the fingerprint and is, by law, the only information
that can be stored and transferred through the network. Then, the template is sent to
the server for comparison with the stored reference template for that same user. Complex
algorithms compare both fingerprints but, since the returned value is never 100% accurate,
a minimum acceptance value must be set. If the comparison is successful, the user is
authenticated on the application.

Implemented in 2002, the first adopted software/hardware solution was Digital Per-
sona’s. This is a proprietary and closed solution and only compatible with Windows 32
bits. Thus, the feature extraction algorithms only work with Digital Persona’s finger-
print readers and the generated templates are represented in a closed proprietary format.
Therefore, this solution isn’t compatible with other fingerprint readers nor can these tem-
plates be used by other algorithms than Digital Persona’s. This is a typical case of vendor
lock-in.

At the hardware level, the original choice for Digital Persona’s fingerprint readers is
maintained, mainly due to its high level of reliability and durability.

At the software level, it became necessary to run the application on Linux and 64-
bit Windows servers. To solve the compatibility with Linux, another third-party solution
that, albeit also proprietary, supported the readers used, was adopted. MegaMatcher was
the choice. Relatively to 64-bit Windows systems the adopted solution is to run a 32-bit
Windows server solely for fingerprint comparison.

The current client infrastructure is still limited to 32-bit Windows platforms and the
Internet Explorer (ActiveX) web browser.

This way, there are currently two distinct and incompatible fingerprint authentication
development environments that still do not cover a broad range of possible use case sce-
narios.

With the growing presence of ALERT®) in several distinct international markets, it
becomes increasingly difficult to control the environments in which the application will
run and the equipment used. It is therefore essential to eliminate the dependence on this

Introduction

solution that limits the use of the application with other fingerprint readers and restricts it
to the Windows platform (on the client side of the application).

It is the aim of this project to find a unique solution for this problem. A solution which,
ideally, is compatible with any operating system/architecture and any web browser, with-
out breaking compatibility with templates previously generated with Digital Persona and
compatible with its fingerprint readers, currently used in all implementations of ALERT(®)
around the world.

1.4 Goals

For this project were defined as goals the development of two documents:

e Market Solutions Analysis, including readers and supported environments, capital
gains and non attainable requirements;

e Architecture Description Document about the solution to implement;

As a result of the implementation of the solution, it is also expected a software library
with the following requirements:

e Support for a large number of fingerprint readers;

Creation of a standard API responsible for the interoperability with the ALERT®)
software;

Support for different operating systems: Windows (XP/Vista/others), Linux/Unix;

Support for the Macintosh platform (optional);

Compatibility with Single Sign On Kerberos mechanisms and SAML (optional).

1.5 Document Structure
This document is divided in six distinct chapters:

e Chapter 1: The general purpose of this project is explained, its context and objec-
tives.

e Chapter 2: This chapter describes the state of the art. Based on the background
and objectives described in Chapter 1, research was done to assess which solutions
already exist on the market and which will have to be developed. The result of that
research is exposed here.

Introduction

Chapter 3: Based on the conclusions taken from Chapter 2 and considering the
objectives stated on Chapter 1, this chapter proposes an architectural solution for
the problem.

Chapter 4: This chapter describes the design and implementation of the solution
devised on Chapter 3.

Chapter 5: Tests of the implemented solution are described in this chapter.

Chapter 6: This final chapter presents the overall conclusions that were taken in the
course of this project and proposes future improvements.

Chapter 2

State of the Art

2.1 Biometric Identification

All biometric identification systems are based in the same principle: each human being
is unique and, as such, has unique characteristics. These can be divided in two main
groups: physical and behavioral. The first are associated with specific parts of the human
body and, the second, derive from the person’s behavior. Typical examples of biometric
systems based on physical characteristics are fingerprint and iris recognition. Signature
and speech recognition are two widely used behavioral biometric data.

Unlike other types of identification, biometric data is less likely to be duplicated or
lost. Its usage has direct impact in reducing fraud and enhancing user convenience. The
figure 2.1 was extracted from “The 123 of Biometric Technology” [Yun03] and shows a
comparison amongst various biometric technologies.

Biometrics Univer- Unique- Perma- Collect- Perfor- Accept- Circum-
sality ness nence ability mance ability vention

Face H L M H L H L

Fingerprint M H H M H M H
“Hand Geometry M M M H M M M

Keystroke L L L M L M M

Dynamics

Hand vein M M M M M M H

Iris H H H M H L H
T e T g i > 5

Signature L L L H L H L
“Vaice M L L M L H L
“Facial H [L H M H 0

Thermogram

DNA H H H L H L L

H=High, M=Medium, L=Low

Figure 2.1: Comparison of Biometric Technologies

State of the Art

Thus, it is perceived why the preference in the adoption of such systems as a way of
improving the forms of authentication.

The biometrical identification process is the same for every type of biometric data and,
as seen in the figure 2.2, is summed up in three steps: Capture, Extraction and Matching
[Rob05]. This way, first, specific hardware sensors capture a biometric sample. Then, the
information is pre-processed and a specific algorithm extracts its features and generates
a template, which is a synthesis of all the characteristics extracted from the source, in
the optimal size to allow for adequate identifiability. Finally, it can either be stored as a
reference template or compared with another by means of a matching algorithm.

Pre- Template
Proce ssing Generation Database
Feature

Capture ——>»

Sensor

Figure 2.2: Biometrical Identification Process

Extractor

2.2 Fingerprint

Fingerprint analysis is used in criminal identification since 1986 and is commonly ac-
cepted as being the oldest method of biometric identification [Yun03]. Traditionally, fin-
gerprints were modeled in paper by means of the ink-and-roll procedure and comparisons
done manually. In the 60s, this process was automated with the valuable help of computer
systems. Even today, it is the preferred method used by police forces all over the world to
identify criminals.

Among the different biometrics, fingerprints have the right balance of qualities includ-
ing distinctiveness, persistence, accuracy, throughput, size and cost of readers, maturity
of technology and convenience of use, making it the dominant biometric technology in
commercial applications [Dig07].

To acquire a fingerprint image, a fingerprint scanner is needed. Although there are
several variants, the most commonly used are the optical and the capacitance ones. Both

State of the Art

return a digital image of the finger, despite acquiring it in distinct ways. Optical scanners
have a Charge Coupled Device (CCD), the same light sensor used by digital cameras.
Thus, the way they acquire the fingerprint image is analogous to how a digital camera
takes a picture. Capacitive scanners use electrical current to generate the images. Its
sensors are made up of one or more semiconductor chips containing an array of tiny cells,
each containing two conductor plates that act as capacitors. The surface of the finger acts
as a third capacitor plate, affecting the ability to store charge of each tiny capacitor and
the overall result can be translated into a picture of the finger [How08]. As with every
other technology, none of these approaches is perfect. Optical scanners might not be able
to distinguish between the finger itself and an image; Capacitive scanners might be fooled
by a mold of the finger. This way, it is common to combine biometric information with
conventional identification methods, such as a password. Improvements to the fingerprint
readers are also being made. There are readers that, in addition to acquiring the fingerprint
image, also check for a pulse.

When matching two fingerprints, there are two main technical approaches: minutiae
matching and pattern matching. Not only are the fingerprint templates from the second
approach 2-3 times larger than in the first, but also these can be used to reconstruct the
original fingerprint image [YunO3]. In general, the templates generated from the first
approach are not reversible and an original image cannot be generated or reverse engi-
neered. This is an important feature in the protection of privacy and the maintenance of
security [Rob05]. Thus, the minutiae approach is followed by most fingerprint extraction
and matching algorithms and is, inclusively, used in Automated Fingerprint Identification
Systems (AFIS) used by forensic applications around the world. It is also accepted as
valid evidence in a court of law. Minutiae are points of interest in a fingerprint. From
the fifty two types listed, seven are usually used by human experts and only two by auto-
mated systems, namely bifurcations (a ridge splitting in two) and ridge endings [Jai04].
A typical fingerprint image may produce between 15 and 50 minutiae points, depending
on the portion of the image captured [otSCPtSotFo05].

Image Capture Image Processing Template

Figure 2.3: Source: Digital Persona

To verify the identity of a user by automatically extracting minutiae from his or her
fingerprint image, a fingerprint recognition algorithm is required. The fingerprint recogni-

State of the Art

tion algorithm is composed of two main technologies: image processing technology that
captures the characteristics of the corresponding fingerprint by having the image under-
going several stages, and matching algorithm technology that authenticates the identity
by comparing feature data comprised of minutiae with reference templates stored in an
Identity Management System (IMS).

A major difference between traditional authentication systems and biometric ones re-
gards to how the credentials are validated. Given that a slight change in terms of finger
shape or angle is enough to produce templates that do not match 100%, a valid person
can be rejected and vice-versa. This way, ratios were developed to evaluate the proba-
bilities of the two cases: False Acceptance Rate (FAR) and False Rejection Rate (FRR)
[RFLO09]. It is up to the application that makes use of biometrics to decide which values
fit the purpose. For criminal investigations, for example, a lower value of FRR would be
desirable.

2.3 Standards

Since the two main goals of this project are to achieve a platform independent infrastruc-
ture and enable future integration of other kind of biometric authentication, it is important
to comply, if possible, with existing standards.

A standard Biometric API would allow seamless integration not only with other kind
of biometric systems but also with different providers within a specific type, in this case,
fingerprint.

Fingerprint template standards would ensure compatibility within different providers
of fingerprinting technology without the increased overhead of having to deal with legacy
issues when switching from one provider to another.

2.3.1 Biometrics API

BioAPI version 2.0 is specified in ISO/IEC 19784-1 and is a key part of the Interna-
tional Standards that support systems that perform biometric enrollment and verification
(or identification). It defines an Application Programming Interface (API) that brings
platform and device independence to application programmers and biometric service
providers [Bio0O8].

It is the defacto standard and a result of a combined effort towards an industry standard
biometric API. There are other generic biometric APIs that exist merged with BioAPI (or
are based on it) in this effort, such as:

e BAPI

e HA-API

State of the Art

e IBM AIS API

e Intel HRS

BAPI was developed by I/O Software in 1998 to be operating system and hardware
independent, while maintaining a consistent user interface. In December 1998, 1I/O Soft-
ware joined the BioAPI Consortium and the BAPI specification was integrated as the
lower level of BioAPI specification. In May 2002, Microsoft acquired BAPI technology
with a view to integrating BAPI into Windows operating systems and applications. As of
Windows 7, it is available in the form of Windows Biometric Framework (WBF).

HA-API was developed by NRI (National Registry Inc, later Saflink) in 1997 through
an US Department of Defense contract and sponsored by the NSA and the Biometric
Consortium. It was a simple high-level API focusing on the easy use and integration of
multiple biometrics and placed in the public domain. It merged with BioAPI in March
1999.

IBM’s AIS API was recently submitted to BioAPI and Intel HRS is heavily based on
BioAPL

Despite most of the biggest biometric service providers being members of the BioAPI
Consortium, its adoption is scarce and very few products support it.

2.3.2 Fingerprint Template Standards

As stated above, the minutiae approach is widely adopted by most of the feature extraction
and matching algorithms for fingerprints. However, since there are differences in how
each algorithm implements this method, detecting and analyzing the points of interest,
no two algorithms can be expected to yield the same template from a given fingerprint.
Thus, a template generated by one algorithm might not match with one generated by
another [otSCPtSotFo05].

To tackle this problem and facilitate the interoperability of different fingerprint identi-
fication systems, standards for the fingerprint minutiae templates were devised. Currently,
there are two: INCITS 378 and ISO/IEC 19794-2. There is even a program of the Amer-
ican National Institute of Standards and Technology (NIST) to coordinate efforts in order
to improve the performance and interoperability between implementations of these stan-
dards, the Minutiae Interoperability Exchange Test (MINEX) [NatO8b]. Thus, templates
generated by algorithms that have passed the MINEX tests have a high probability of
being compatible.

State of the Art

2.4 Vendors

In the search of already available market solutions for the Biometrics middleware and
the Fingerprinting layer we only took in consideration those who met our requirements:
BioAPI 2.0 compliance for the first and MINEX compliance for the latter.

In the comparison analysis we also considered Digital Persona because, despite not
meeting the above requirements, it is the current fingerprint reader and software provider
in ALERT(®) solutions and is necessary to support it for legacy issues.

2.4.1 Biometric Middleware

The three major BioAPI Middleware vendors are BioBex, BioFoundry and ImageWare.
All three support a variety of programming languages, such as Java, which indeed
allows for platform independence. BioBex is also referenced as a perfect candidate for
the biometrics layer of a Java Authentication Framework by Sun [Nag].
The drawback is the expensive and complex license models that all have. Even though
it eliminates the dependence of a specific Operating System, for example, it adds the
dependence on a license model, besides the added monetary costs.

2.4.2 Fingerprint Solutions

Although there are well defined standards to facilitate and promote interoperability be-
tween different providers of fingerprint identification technology, the reality is quite dif-
ferent. This is a very competitive market with distinct solutions for very specific scenarios
and niches, where each company seeks to maintain its hegemony through closed and pro-
prietary solutions (vendor lock-in). Many choose to implement proprietary formats and
not to support neither other vendor’s technology or international standards.

Since the goal is to achieve future interoperability between Extraction and Match-
ing algorithms, the only considered providers were those in the MINEX Compliant List
[NatO8a]. From the entire list, these are the ones with consumer available products:

e Aware

BIO-Key

Innovatrics

L-1 Identity Solutions

MegaMatcher

Sagem Morpho

SecuGen

10

State of the Art

e Sonda

e Suprema

Even though they might support template standards, a great deal of fingerprint providers
still enforce lock-in by limiting the use of their algorithms with their devices or even their
own software. That is the case of L-1 Identity Solutions, Sagem Morpho, SecuGen and
Sonda.

Due to the lack of a Java API, convenient for platform independence, nor some kind
of Linux support, Suprema was also eliminated

Aware was also eliminated, in this case due to the complex licensing scheme which
required an usb dongle per client that, in a web scenario for example, wouldn’t be viable.
Although MegaMatcher also has an undesirable licensing scheme, it has to be considered
since it is already being used and, as it happens with Digital Persona, has to be considered
for legacy issues.

2.5 Fingerprint Vendor Analysis

For the fingerprint module we then consider four vendors:

e BIO-Key
e Digital Persona
e Innovatrics

e MegaMatcher

2.5.1 Fingerprint Reader Support

Since practically every fingerprint reader deployed to date by ALERT(®) is Digital Per-
sona, it is imperative that our solution supports these. All four providers support Digital
Persona’s Fingerprint Readers out-of-the-box.

Only Digital Persona doesn’t offer support for other readers, as we can see in fig-
ure 2.4.

There is, however, the possibility of extracting the fingerprint image from a Digital
Persona reader using its SDK and then “feeding” it to the algorithms used for process-
ing/matching.

2.5.2 Image Input

Image input capability is crucial for fingerprint reader independence. As we can see in
figure 2.5, the only provider that doesn’t allow this is Digital Persona.

11

State of the Art

DIGITAL
PERSONA OTHERS

BIO-KEY | v v

DIGITAL PERSONA ’

INNOVATRICS | v v
MEGAMATCHER | v

Figure 2.4: Fingerprint Reader Support

Before inputting the image it would be interesting to access its quality, since it af-
fects directly the overall performance: better quality images mean better performance
(and lower False Acceptance Rate) and vice-versa. The NIST Fingerprint Image Qual-
ity (NFIQ) is practically the standard algorithm for doing just that, but any other kind of
quality assessment is good.

IMAGE IMAGE
INPUT QUALITY

BIO-KEY | o v

DIGITAL PERSONA ’

INNOVATRICS | v v
MEGAMATCHER | g v

Figure 2.5: Image Input and Quality Assessment Capabilities

Even if we could somehow provide an externally acquired image to the Digital Persona
SDK for feature extraction / template matching, the EULA doesn’t allow the SDK to be
used with other hardware besides Digital Persona’s.

12

State of the Art

2.5.3 Supported Standards

In order to assure future compatibility and interoperability of Fingerprint Templates it is
highly desirable that these comply with certain standards. Also, using standard templates
enables effortless future developments related with extracting/matching algorithms as it
removes the need to support legacy templates/algorithms.

The ANSI378 and ISO19794-2 are Fingerprint Minutiae Standards and MINEX is a
program of the National Institute of Standards and Technology (NIST) which coordinates
efforts aimed at improving the performance and interoperability of core implementations
of the INCITS 378 and ISO/IEC 19794-2 fingerprint minutiae standards.

The Biometric Application Programming Interface (BioAPI) is part of the Interna-
tional Standards and defines interfaces between modules that enable software from mul-
tiple vendors to be integrated together. Ideally, it would be interesting to support BioAPI.
In practice, its adoption is scarce.

In figure 2.6 we can which standards are supported by each vendor.

ANSI 150 MINEX BIOAPI

BIO-KEY v v ¥ 4

DIGITAL PERSONA

INNOVATRICS v 7 ¥ 4
MEGAMATCHER v 7 ¥ 4 7

Figure 2.6: Supported Standards

Again, Digital Persona doesn’t meet the requirement being that it doesn’t support any
fingerprint minutiae standard.

2.54 API Programming Languages

Since we are aiming at platform independence, the best way to achieve it is using Java.
However, it doesn’t mean that the algorithms themselves work in the same platforms the
Java SDK does.
The programming languages supported by each vendor are illustrated in figure 2.7.
BIO-Key and Innovatrics algorithms are coded with cross platform in mind, which
means that they are willing to provide the API in virtually any language desired.

13

State of the Art

c/C++ JAVA .NET OTHERS

sy | o |
picmaLPERsONA | o || o || @ |
mnovatrics | o | o || @ ||
vecamatcier | o || o | @ || P

Figure 2.7: Supported API Programming Languages

2.5.5 Supported OSes

The ultimate goal is to achieve platform independence, but at least Windows (32/64bits)
and Linux (32/64bits) must be supported. Possibly, in the worst case, Linux versions can
be used in other UNIX-certified OSes using binary compatibility tools, therefore enabling
its use in Mac OSX, for example, which is also a requirement.

The supported operating systems by each vendor are illustrated in figure 2.8.

WINDOWS WINDOWS LINUX LINUX MAC
32BITS 64 BITS 32 BITS 64 BITS 0sX OTHERS
BIO-KEY | g v v v v v
DIGITALFERSONA | g v

INNOVATRICS | W v v v v v’
MEGAMATCHER | g v v v v

Figure 2.8: Supported Operating Systems

The best solutions regarding platform independence of the algorithms are BIO-Key
and Innovatrics, whose algorithms are coded with cross platform in mind and are willing
to provide us with binaries for practically every platform we desire.

2.5.6 Supported Browsers

Again, with multiplatform in mind, Microsoft Internet Explorer and Mozilla Firefox sup-
port is required and only Digital Persona doesn’t offer it for both, as we can see in fig-
ure 2.9.

14

State of the Art

IE FIREFOX OTHERS

4 4

BIO-KEY

DIGITAL PERSONA

s’
s’

INNOVATRICS | v Y4 "4
s’

MEGAMATCHER

Figure 2.9: Supported Web Browsers

Again, being true cross platform, the BIO-Key and Innovatrics solutions will most
likely run in every scenario, being that BIO-Key has indeed guaranteed it to work not
only in IE and Firefox, but also Netscape and Safari.

2.5.7 Pricing and License Models

The desired licensing scheme is one that doesn’t require licensing servers, usb dongles
and such. An annual, royalty free, fee is the preferred choice.

BIO-Key and Innovatrics annual fee is around $100.000 USD, but is subject to nego-
tiation. BIO-Key licensing model doesn’t involve any kind of licenses, it’s based on trust,
and they already predict an annual, royalty free fee. Innovatrics didn’t give a final an-
swer on this matter. In the event of ending the agreement, with Innovatrics, it only affects
future deployments. No answer on this from BIO-Key.

Digital Persona’s SDK is free, but can only be used with Digital Persona Fingerprint
Readers.

MegaMatcher has an annual fee of $80.000 and a complex licensing software that has
revealed to be unstable in ALERT®)’s USA Datacenter.

2.5.8 Feedback

The best feedback came from Innovatrics and BIO-Key, who early in our talks offered
themselves to call us on the phone. Both promptly answered our questions and were
willing to partnership with us, being open to negotiating prices and licensing schemes
and making their solutions meet our needs (like compiling it for specific OSes).
BIO-Key has a great relationship with several Fingerprint Reader Manufacturers which
may reveal itself fruitful in achieving reader independence since it may enable us a priv-
ileged communication channel with them. This might mean easy access to drivers and

15

State of the Art

APIs to allow easy integration of readers with our biometrics framework and compatibil-
ity with specific platforms (Mac OS?).

Digital Persona’s core business is selling their readers and so isn’t very open to meet
our needs. Being that one main goal of this new infrastructure is reader independence it
doesn’t make sense for Digital Persona to help us in order to do so.

Communicating with MegaMatcher has revealed itself to be very difficult as they tend
to take very long to answer e-mails.

2.6 Conclusions

The main purpose of this project is to build a platform independent fingerprint authen-
tication framework that doesn’t break backwards compatibility and is scalable. When
talking about scalability, we cannot discard the fact that it makes sense to include it in a
biometrics framework.

All the considered biometric middleware solutions are expensive and add undesired
complexity to the authentication framework where it will be integrated. On top of that,
the BioAPI standard adoption is minimal and there is the issue of supporting legacy fin-
gerprinting technology. Therefore, it makes more sense to build a custom biometrics
middleware that tightly integrates with the existing authentication framework and with a
publicly available API in order to allow for vendors to develop ALERT-compatible bio-
metrics technology.

Developing this custom biometrics middleware will allow keeping legacy systems run-
ning and pave the way to easily and seamlessly integrate new fingerprinting technology
and even other kinds of biometrics with the product.

Adopting a MINEX compliant fingerprint technology is the way to eliminate future
dependence of specific vendor’s algorithms, but given the high costs of adopting this solu-
tion and the need to, first and foremost, support the current technology (Digital Persona)
and enable it to satisfy current needs, for now only this will be integrated in the biometric
framework.

16

Chapter 3

Architecture Description

3.1 Architecturally Relevant Requirements

3.1.1 Key Use Cases

In the end-user point of view, this framework will serve only two purposes: to register
its biometrical data for future reference and to authenticate itself using previously stored
biometric data.

wUuses»

ALSESR

-

Authentication
User

Figure 3.1: Use Cases

Therefore, as we can see in figure 3.1, these are the two use cases.

3.1.2 Non-Functional Requirements and Constraints

The purpose of this framework is to be platform independent, scalable and backwards
compatible. Therefore and foremost, it must support Digital Persona’s fingerprint readers
and templates.

A biometrics API must be defined to easily allow future integration of other forms of
biometric authentication and must enable not only the integration of different biometric
technologies but also multiple vendors from one such.

17

Architecture Description

Regarding Operating Systems, it must run in Windows and Linux (both 32 and 64 bits
versions of them) on the server side and Windows and Linux (32 bits only) in the client
side.

On the browser version, it must be able to run on Microsoft Internet Explorer, Mozilla
Firefox and Google Chrome.

Regarding the user databases, the framework must interface with Microsoft Active
Directory and OpenLDAP.

Fingerprint images must never be stored nor transferred through the network.

3.2 Context View

R
h""'ln_-ll""‘II

Alart CL
I'h"'lll-_-l""'#
Fingerprint SRY W

Figure 3.2: Context View

The client must be able to acquire a fingerprint image from the fingerprint reader
and extract its features in order to generate a fingerprint template. It must be able to
communicate with the authentication server for enrolment and verification.

The server’s role is to interface with the fingerprint database in order to store and
retrieve reference templates in order to enrol and verify users. To do so, it must be able to
communicate with the clients. The matching of two fingerprints is done by the server and
the result returned to the client.

The Client/Server communication must be done by TCP/IP and support encryption
protocols, such as MDS, SHA1, HTTPS and others, since it is desirable that the template
never travels the network unencrypted for security reasons. Data is exchanged between
the ALERT client application and the ALERT Java Gateway Server.

An illustration of this client/server paradigm is found on figure 3.2.

18

Architecture Description

3.3 Logical View

3.3.1 Logical Model

CLIENT SERVER
1 - 1
o g
<< ALERT % ALERT
|
TH "\\ o
I"\

|
|

b
| Javagw —{5 Auth

JAVA
|
.
N

Biometrics FP N ;
Client Template |tUsesn| Biomelrics

Matching <]— Server

JAVA

Image
Acquisition

Figure 3.3: Logical Model

3.3.1.1 Client

The fingerprinting logic is included in the biometrics module that is itself included in
the authentication module. Therefore, when the ALERT client wishes to perform user
enrolment or verification, it relies on the authentication module to do so.

The authentication module then calls the biometrics client that uses the image acquisi-
tion module to acquire the fingerprint and the extraction module to extract the fingerprint
features and generate a template.

Both the Image Acquisition and the Extraction modules implement an API in order to
support various sensor and algorithm drivers, as seen on figure 3.4.

This way we can support legacy systems and pave the way for seamless future updates
and developments without breaking the application.

19

Architecture Description

Fingerprinting

=
' 3

Image Acquisition

_¥| Template Extractor 1
-

Temglate Extractor 2
Fingsrprint Reader 1 | W

Fingerprint Readar 2 «

Tempiate Extractor N

¥

Fingerprint Reader N

¥

Figure 3.4: Acquisition and Extraction Modules

3.3.1.2 Client / Server Communication

The client communicates with the server through the ALERT Client and the Java Gateway,

respectively.

The acquired fingerprint sample is sent to the server to be stored, in the case of enrol-
ment, or matched with the reference template in order to perform user verification.

3.3.1.3 Server

On the server, the Java Gateway is responsible for handling the communication with the
client and forwarding fingerprint matching requests to the authentication server module.
The authentication module accesses the user database to retrieve the reference tem-

plate and passes it on to the biometrics server module for matching.

Like on the client, an API is defined for the Matching algorithm in order to support

several algorithm drivers, as we can see in figure 3.5.

This allows for multiple vendor support and, therefore, multiple template formats such

as legacy ones.

5 —
Fingerprinting Me—

> 4 Matcher 1
Matcher 2

N~

___,/

Matcher N

N~

Figure 3.5: Matching Module

20

Architecture Description

3.4 Dependency Model

The fingerprint authentication framework has external dependencies that have direct im-

pact in its workings. They are:

e Fingerprint Reader Device Drivers and SDK

e Template Extraction and Matching Algorithms
e Authentication Modules

e Java Gateway

e Fingerprint Database

Relatively to the fingerprint reader, first it has to have drivers for the operating system
where it is wanted to run and then an SDK that allows it to be integrated with the frame-
work by means of writing the necessary drivers to interface with its fingerprint acquisition
APL

It is unviable to write extraction and matching algorithms and, therefore, it is always
necessary to have at least one algorithms provider compatible with all deployed devices
for this framework to work. Like with the fingerprint reader, there is always the depen-
dency in the operating systems that these support which, in its turn, limits the operating
systems where the entire framework will be able to run in.

The entire framework’s client / server communications are handled by the authentica-
tion modules and the Java Gateway. The biometrics framework must be integrated in the
authentication module and the latter must be extended to support some specific needs of
the first.

3.5 Behavioural View

3.5.1 Scenario & Collaboration Models

When enrolling a user, the ALERT®) application makes a call to the Authentication Mod-
ule. It then relies on the Biometrics Client to handle the capturing of the biometric data
and generation of the reference template. After generating the template, it is returned by
the Biometrics Client to the Authentication Module that then sends it to the server via the
Java Gateway. Finally, after receiving the request for user enrollment and the respective
reference template, the Java Gateway sends it to the Authentication Module to handle its
storage.

This scenario is illustrated in figure 3.6, showing all the modules, layers and calls
involved.

21

Architecture Description

Client Server

ALERT ‘ ‘ Auth ‘ Biometrics CL Java GW ‘ ‘ th ‘ ‘ ALERT
T T T T T T
| Bl I I 1 I
| |Ac>qulre Flngerpnnt: : : :
I " I 1 I
I | Template I 1 I
[i | I 1 I
I I Template I 1 I
I r t bl 1 1
| | | | Template 1 1
I I I E— I
I I I I 1 Store I
I I I I —
I I | I ok I
I I I I
I I I I ok
I I L e
I I ok I
I
I

fr—————- Fo—————= 1
I
I
I
I

Figure 3.6: Fingerprint Enrollment Process

When authenticating a user, the ALERT®) application makes a call to the Authenti-
cation Module, this time with the purpose of verifying the user’s biometric data. Again,
the Authentication Module relies on the Biometrics Module to handle the biometric data
acquisition. It is then sent to the server, via de Java Gateway, to be matched against a
stored reference template for that same user. The Java Gateway forwards the request to
the Authentication Module that tries to match the received biometric data with the one it
has previously fetched from the database. The result of the matching is returned to the
Java Gateway that then relays it to the Authentication Module on the client. According to
the result, the Authentication Module then authenticates, or not, the user in the ALERT®)
application.

This scenario is illustrated in the sequence diagram on figure 3.7

Client Server

Biometrics CL Java GW ‘ ‘ Auth ‘ ‘ Biometrics SRY
Very | i

‘ ALERT

I
JAcquire Fingerprint

_—- e m————

! I
|

! I
! I
I | Templale) 1
! === | I
I | Template |
[| ' ‘
I | | Tamplate |
I | I — | I
I | I 1 | Get Stored Template |
| | | I } | »
I | I 1 | Siored Template |
I | I T e —— b —— = |
I | I 1 | ‘Compare | |
I | I] |
I | I 1 | ok [nok | |
I | I 1 e —— | I
[| [1 ok f nok I [I
! ! ! K 4 I |
| | ok [nok 1 | | |
[; | I I
1 ok [nok | | | |
Kk—————— 1 | | I
| | |

| | |

!

Figure 3.7: Fingerprint Verification Process

22

Architecture Description

3.5.2 State Models

When enrolling a user’s fingerprint, usually four captured samples are needed. This way,
it is expected that the user scans the finger being enrolled four times. After doing this, the
samples quality is assessed and, if satisfactory, a template with the purpose of enrollment
is generated using them. The states of this procedure are illustrated in figure 3.8.

Idle

[samples<d] Enfoll

Acquire Fingerprint
[ro)

Template Valid?

Figure 3.8: Fingerprint Enrollment States

When verifying a user’s fingerprint, first a sample is captured. It is then matched
against the stored reference template. If it doesn’t match, the user can scan the finger
again and repeat the process. The states needed in this procedure can be seen in figure 3.9.

[no]

Figure 3.9: Fingerprint Verification States

23

Architecture Description

3.6 Deployment View

In figure 3.10, it is shown how the biometric “functional entities” described in the logical
view are deployed onto implementation entities. This way, in the client side we find the
biometric data acquisition and feature extraction part of the framework and, in the server
side, all the matching logic.

ALERT Server

ALERT Client

1
Biometrics S TCF/P i
‘ometrics Server 1 1 Fingerprint Reader
. Biometrics Client
ALERT DB

Figure 3.10: Deployment Diagram of the ALERT Biometric Framework

A server can support several clients, communicating to each one by a TCP/IP channel.

3.7 Architectural Design Principles & Patterns

This project arose from the inability of the previous solution to evolve, satisfying the cur-
rent needs of the application that depends on it. Thus, the aim is to not only provide it
with the features needed in the immediate future, but rather make it scalable. Accord-
ingly, the demand is to develop a Framework in the true sense of the word, an abstraction
supported by a well defined API that allows easy inclusion and modification of modules
without breaking compatibility with the application that depends on it.

To support this abstraction, two software patterns should be used: interfaces and fac-
tories. This way, the vital components of the Biometrics Framework must be based on
interfaces that define the methods that the modules have to implement. Thus, this will be
the API the application will use, allowing the whole logic behind it to be changed with-
out impact. Similarly, it should be transparent to the application the instantiation of the
module to be used. Thus, for each interface, a factory must be defined and implement
a static method that the application will use. It will then dynamically and transparently
instantiate the specific module. As is the case with the interfaces, this allows changes to
the internal logic of factories without affecting the main application.

Besides the abstraction itself, it is important to produce code that is understandable,
simple and flexible. Only then can the application be truly scalable. Making changes is
generally easy when you know what needs changing and if learning what the code does
is time consuming per se, when the code is cluttered it not only takes even more time, but
accidentally breaking it is easy [Bec08].

24

Architecture Description

There isn’t a perfect style of development, but there are common principles that should
be always taken in consideration like structuring code so that it can be easily changed
without affecting the sum. In order to do so, code duplication should be avoided (Do
Not Repeat Yourself — DRY) [HT99]. Logic and data should be packaged together, since
changes in one most of the times imply changes in the other and keeping them together
increases chances that the consequences remain local.

To easily and rapidly assess the impact of changes in the code, automated tests should
be used. Not only do they eliminate human error when testing, but speed up development
and debugging and facilitate platform compatibility tests.

25

Chapter 4

Software Design and Implementation

p
Application

L

: Biometric Framework]

Figure 4.1: Biometric Framework

4.1 Technologies

The programming language used in implementing the core of the Biometric Framework
is Java. Not only it is the language in which the Authentication Framework is written,
which allows seamless integration with it, but being portability the main characteristic of
Java, it suits the premise of a platform agnostic framework.

26

Software Design and Implementation

Although the extraction and matching algorithms provided by Digital Persona are
written in C/C++, there is a SDK included with a Java API, so, there isn’t the need to im-
plement a Java Native Interface wrapper and the integration with the biometric framework
is trivial. There is, though, an issue with running them in a 64-bit Java VM. The libraries
are compiled in 32-bit and linking 64-bit executables with them cannot be done without
some sort of Inter Process Communication (IPC) scheme. This was done resorting to the
Java Remote Method Invocation (RMI), the Java equivalent of Remote Procedure Calls
(RPC).

For the integration of the biometric framework with directory servers, the necessary
modules were written for the authentication server using the Java Naming and Directory
Interface (JNDI) and schema extensions devised in order to allow biometric information
to be added to the user model of the two most popular directory servers: Active Directory
and OpenLDAP.

During the development of the framework, several tools were used. The main ones

were:

e Subversion (SVN) — Version Control System
e Eclipse — Java Integrated Development Environment

e Apache Directory Studio — LDAP Browser and Directory Client

4.2 Biometric Framework

As it was said before, fingerprint authentication follows the same procedure as any other
kind of biometric based authentication technology: capture, extraction and matching.
Therefore, these will be the core of the biometric framework and the API that the au-
thentication server will use. Then, modules for the biometric technology / vendor will
have to implement this API in order to interface with the framework. This way, it can
support virtually every kind of biometric technology and, in any given technology, an
unlimited number of providers. By configuration, we select which technologies will be
used, specifying the sensors and the algorithms for processing and matching, as illustrated
in figure 4.1.

4.2.1 Class Diagram

4.2.2 Biometric Capture

The Biometric Capture class is the interface that must be implemented by each biometric
sensor. It defines the method “capture” which must return a BiometricData instance with
the captured sample.

27

Software Design and Implementation

«interfaces

(© BiometricDataSerializerFactory € BiometricCapture

(& BiometricCaptureFactory

slmports

o createlnstancel) o copture() & createlnstancel)
| T
o -
| o B . <Gl ot e
| =~ el 4
almports N s
| O Cimort
| \\\ o eimports
o~ 4
IS
-l .
dntertaces (& BiometricData arterfaces
© BiometricDataSerializer | mpote - €% BiometricProcessing @ BiometricProcessingFactory
o _sCallimports | teta: Object o ot | clmports |
@ deserializel) 9 farmat Strlr\g @ createTemplater) & crestelnstancel)
@ =etialize) OP‘EChmID_gY String @ process()
@ type: String
©
S
. almports
A
~,
s
S

«interfaces

@ BiometricMatching {5 BiometricMatchingFactory

_smperts

Cls createlnstancel)

@ werity()

Figure 4.2: Biometric Framework Core Classes

Biometric sensors usually perform quality assessment of the captured sample. It is up
to each module implementing the capture interface to handle these specifics and throw an
exception if it is the case.

4.2.3 Biometric Capture Factory

The Biometric Capture Factory class is responsible for instantiating the biometric sen-
sor module. According to the values passed by configuration, the static method “cre-
atelnstance” returns the respective instance of the sensor’s module that implements the
Biometric Capture interface.

4.2.4 Biometric Processing

The Biometric Processing class is the interface that must be implemented by each biomet-
ric extraction algorithm and is responsible for the feature extraction of biometric samples.
Feature extraction can have two distinct purposes: enrollment and verification.

For the first scenario, the “createTemplate” method is defined and accepts an array of
captured BiometricData, since it takes several samples to generate a reference template
and this number varies for each specific technology / vendor, and returns a template for the
purpose of enrollment. In the second scenario, the method “process” is defined. It accepts
a single captured BiometricData and returns a template for matching with a reference
template.

Since the BiometricData that the methods receive by parameter is a generic container
that may contain data that the specific module can’t handle, it is each module’s responsi-
bility to verify it and throw an exception if it is the case. In the case of “createTemplate”,

28

Software Design and Implementation

which accepts an array of captured samples, it is also each module’s responsibility to
check if the number of samples is enough to generate a template.

Some algorithms provide tools to assess the quality of the generated template. This is
important since it affects the overall performance of the matching algorithms. Given that
this varies from provider to provider, it’s up to each module to handle the specifics of it.

4.2.5 Biometric Processing Factory

The Biometric Processing Factory class handles the instantiation of the biometric ex-
traction algorithm passed by configuration. It has a static method “createlnstance” that
returns the respective instance of the algorithm’s module that implements the Biometric
Processing interface.

4.2.6 Biometric Matching

The Biometric Matching class is the interface that must be implemented by each biometric
matching algorithm. It defines the method “match” that accepts two biometric templates
for comparison and returns true or false whether the matching was successful or not.

The first biometric data passed by parameter must be a processed template with the
purpose of comparison and, the second, one with the purpose of enrollment. Not only
must the modules check for this consistency, but also other kind of unexpected data that
might be passed as a parameter, since the BiometricData is a generic container that can
hold several kinds of data.

When comparing two fingerprints, usually there is a False Acceptance Rate (FAR)
and a False Rejection Rate (FRR) value associated which defines when it is accepted as a
match. Some algorithms allow it to be configured, hence it is up to each module to handle
these specifics.

4.2.7 Biometric Matching Factory

This Biometric Matching Factory class handles the instantiation of the biometric matching
algorithm passed by configuration. It has a static method “createlnstance” that returns the
respective instance of the algorithm’s module that implements the Biometric Matching
interface.

4.2.8 Biometric Data

The Biometric Data class defines the single, generic container for all biometric data and is
used by the three core classes of the framework. This way, it can hold not only biometric
data relative to the different steps of the biometric authentication process, but also from
different technologies and technology vendors. As it can be seen in figure 4.3, besides the

29

Software Design and Implementation

data object itself (data), it has additional information describing it (type, technology and
format).

Template
Processed Iris
—— - s
Type Technology
Data
IPEG
IS0

Figure 4.3: Biometric Data Structure

e Type: States the purpose of the biometric data and can assume one of three values,
according to it: acquired, processed or template. The first is relative to a captured
biometric sample and the other two are templates resulting of the feature extraction
of an acquired sample. The first template (processed) is used for verification and the
latter (template) is used for enrollment.

e Technology: This field refers to the biometric technology from which the data re-
sulted. Therefore, it might be fingerprint, iris, voice or any other kind of supported
biometric technology. This value must be one from a list of available technologies.

e Format: Information about the format in which the data is represented is hold here.
It can also be a variety of data types, ranging from plain jpeg images to proprietary
biometric formats. This value must be one from a list of supported data formats.

e Data: This field holds the biometric data object itself.

In order for this data to be interoperable with other pieces of software, transferable
through the network and stored in any given type of storage service, it must be possible to

30

Software Design and Implementation

parse it to several different formats. The adopted solution was to make the biometric data
class serializable since there are several available libraries that allow seamless parsing
of a serializable object to a variety of different formats, such as the popular Extensible
Markup Language (XML). Since only the templates can be stored and communicated
through the network, only biometric data holding these will be serializable. For each
biometric technology vendor, a module that implements the biometric data serialization
interface must be written for it.

A biometric data serializer defines the methods that the biometric data structure re-
quires when serializing objects. The issue with making the biometric data serializable is
with the biometric template data itself since all the other attributes are Java Strings and,
therefore, serializable by nature. The template data is a generic Java Object since it can
hold a variety of vendor specific objects and, therefore, there isn’t a guarantee that all are
serializable. This way, it isn’t enough for the biometric data class to implement the Java
Serializable Interface. It must override the writeObject and readObject methods and relies
on the biometric data serializer to do so.

4.2.9 Biometric Data Serializer

The Biometric Data Serializer interface must be implemented for each biometric technol-
ogy vendor since it defines the methods that the BiometricData requires when serializing
objects. This way, it defines the methods “serialize” and “deserialize”. The first accepts a
BiometricData as parameter and returns a byte array corresponding to the serialized “data”
field of the BiometricData and, the second, accepts a BiometricData with an empty “data”
field and a byte array corresponding to the serialized biometric data and returns the same
BiometricData but with the “data” field filled with the deserialized object.

Type
Technology
Format

Serealized/Deserealized Object

Serializer

Sereslize [Deserenlize

Figure 4.4: Biometric Data Serializer

31

Software Design and Implementation

4.2.10 Biometric Data Serializer Factory

The Biometric Data Serializer Factory class handles the instantiation of the biometric data
serializer. It defines a static method “createlnstance” that accepts a BiometricData as a
parameter and returns an instance of the module that implements the BiometricDataSeri-
alizer interface for it.

4.2.11 Conventions

The modules for the Capture, Processing, Matching and Biometric Data Serialization are
organized in packages by technology (fingerprint, iris, etc) and then, in each technology
package, one folder for each of the above holds the modules for each vendor, as seen on

figure 4.5.
a £ biometrics
a ff fingerprint
- extractors
- £ matchers

- £} sensors
- 1 serializers

Figure 4.5: Package Naming Conventions

The factories that dynamically instantiate the modules depend on this structure and
the naming convention of the classes that follows:

® <BiometricTechnology>Sensor<TechnologyVendor>. java
® <BiometricTechnology>Extractor<TechnologyVendor>. java
e <BiometricTechnology>Matcher<TechnologyVendor>. java

® <BiometricTechnology>Serializer<TechnologyVendor>. java

4.2.12 Configurations

Since the framework supports several biometric technologies and technology vendors, it is
necessary to configure it to load the specific modules for the sensor, extraction algorithm
and matching algorithm. The Capture, Processing and Matching factories then will use
this configuration to instantiate them.

This way, the configuration must include the following parameters:

e Biometric Technology

e Biometric Sensor

32

Software Design and Implementation

e Biometric Extraction Algorithm

e Biometric Matching Algorithm

The values that can be set are defined in a file with all available technologies, sen-
sors, extraction and matching algorithms since they must match the naming convention
of the packages and classes of the respective modules in order for these to be instantiated
dynamically at runtime by the factories.

It would be desirable to set values for the False Acceptance Rate (FAR) but some
vendors might not have this option, which is the case of Digital Persona. This way, it
is possible to add the desired value of the FAR in the configuration, but it’s up to each
Biometric Matching module to implement it according to its capabilities.

As with the FAR values, there might be a number of optional module specific param-
eters that can be configured. This way, it is important to document these so that, when
configuring the framework, these are correctly set.

These configurations are made using the Authentication Server’s Configurator. It is
an abstraction intended to provide a single, common configuration scheme for all the
components of it, as illustrated on figure 4.6.

This configuration scheme is independent of storage medium, therefore allowing for
the configurations to be loaded from different places. In this stage, only the ConfigMem-
ory was implemented, which means that the configurations had to be hard coded. An
example of a configuration in order to use Digital Persona’s fingerprint technology is
illustrated in figure 4.7.

As it was said, besides the required parameters (as seen above), there can be count-
less specific configurations for each module. An example of passing the FAR value is
illustrated in figure 4.8.

4.3 Fingerprint Module

Since on of the main goals of this project is to support fingerprint authentication using
Digital Persona’s technology, the necessary modules were written in order for it to be
supported by the biometrics framework. Since Digital Persona provides a Java SDK,
writing its modules was pretty straightforward.

4.3.1 Biometric Framework Integration

Following the conventions defined for the modules, first a “fingerprint” package with four
folders (sensors, extractors, matchers and serializers) was created. Then the necessary
modules for the framework to be able to use Digital Persona’s fingerprint reader and
extraction and matching algorithms were written and added using the naming convention

33

Software Design and Implementation

(& ConfigMemory
& Confighemory()
@ flush)
@ fromString() -
® load) <Derives & ConfigAhstract
@ toStingl) & configs: Hashtable«String Strings
& Confighbstract()
@ fush)
@ getConfial)
— i
@ getConfigurations()
O Configurator @ hasContigl)
<, configurations: Map«String String= <___¢lr|1;plm1_afﬂ:___‘ ¢ load()
e em—— """ @ setConfig)
@ flush() = @ setConfigurations()
@ fromString) @ toString()
@ getConfial)
@ hasConfig)
@ load()
@ satConfig)
@ toString()

Figure 4.6: Authentication Server Configurator Classes

Configurator config = new ConfigMemorwy():
config.zetConfig ("SECURITY AUTH BIOMETRIC Technology"™, "fingerprint"™):
config.zetConfig ("SECURITY AUTH BICMETRIC Sensor", "DigitalPersona®):
config.setConfig ("SECURITY AUTH BICHETRIC Extractor", "DigitalPerscona'):
config.zectConfig ("SECURITY AUTH BIOMETRIC Matcher", "DigitalPersona®):

Figure 4.7: Configuration Example for Digital Persona

config.setConfig ("SECURITY AUTH BIOMETRIC FAR Value", "HIGH SECURITY FAR™):

Figure 4.8: Configuration Example for FAR value

34

Software Design and Implementation

Fingerprint<Sensor/Extractor/Matcher>DigitalPersona.

Finally, the serializer was added (FingerprintSerializerDigitalPersona).

In figure 4.9 it is shown the modules in the respective packages.

The integration was seamless and Digital Persona’s fingerprint technology was now

4 {8 biometrics

4 £ fingerprint
4 {8 edractors

[J] FingerprintExtractorDigitalPersona.java

4 8 matchers

[J] FingerprintMatcherDigitalPersona.java

4 {8 sensors

[J] FingerprintSensorDigitalPersona.java

4 {8 senalizers

[J] FingerprintSenializerDigitalPersona.java

Figure 4.9: Digital Persona Modules

available to the biometric framework.

4.3.2 Fingerprint Extractor Digital Persona

sirterfaces

& DPFPFeatureExtraction
com digitalpersona onetouch processing

ainterfaces
& DPFPFeatureExtractionFactory

<dterfaces
€ DPEPFeatureSet com lgitalper sona.anstouch processing
com sigtalpersonz onetouch @ createrestureset()
@ creseFestureExraction
T T 0
~ 7
~ | /
- . | S
N | / @ DPFPGIobal
wenumerations . | / com digitalpersona onetolich
G DPFPDataPurpose . «imports |
oom digitalper sona onetouch N | ampart, Calls & getEnralimentFactory()
Y DaTA_PURPOSE_VERIFICATION ™~ - el & getFestureExdractionFactory()
¥ DATA_PURPOSE_EHROLLMENT [i | 7)
-~ ~ | -
-
~. . sAccesss ~ / -
s N -
- /
~— Yo/ P
~ | . -~
dinterfaces {9 FingerprintExtractorDigitalPersona | interface: .
€ DPFPEnrollmentFactery | -~ 1 € BiometricProcessing
com digislpersona oretouch processing | e | & Fraeinbast DaParonl) dmplemerte | comalertbusiness prosuet clinical common securty biometrics
@ cresteTemplate()
© cresteEnrolment() . 0 © cresteTemplste()
racessi
" @ process()
- S . elnstantiate, Import, Calls
- 2 ~_
~
e “emport, Calls - - | \\ R
<interfaces - P | .
© DPFPEnrollment - ~ —
com digitalpersona anetouch processing P | h © BiometricData
- .))
P | ol com alsit business product clinical. common securty biometrics
@ addFeatures) P imparts | aimport, calls @, datar Object
@ getTemplate() - | N o, formal: String
P - | . o, technology: String
- | N o, type: String
- | A \
-
2 | N
sinterfaces | \
& DPFPSample
com digtalpersona onetouch (& DPFPImageQualityException wenUmerations
com digitalper sona onetouch processing G DPFPCaptureFeedback
com.sigitalpersons onetouch

@ getCaptureFeedback()

Figure 4.10: Digital Persona Extractor Module

35

Software Design and Implementation

This is the implementation of the Biometric Processing interface using Digital Per-
sona’s Java SDK.

The “process” method accepts a BiometricData with a Digital Persona proprietary
captured sample object (DPFPSample) and returns a BiometricData with an again pro-
prietary template object (DPFPFeatureSet). To extract the features from the sample, the
“createFeatureSet” from the class DPFPFeatureExtraction was used with the parameter
DATA _PURPOSE_VERIFICATION in order to specify the type of template desired.

In the case of “createTemplate”, four BiometricData objects with captured samples
(DPFPSample) are needed in order to create a template with the purpose of enrollment.
The number of samples is specified by Digital Persona. Then, features will be extracted
from each one with the parameter DATA_PURPOSE_ENROLLMENT and added to the
template. Finally, a BiometricData with the generated template, in a Digital Persona
proprietary format (DPFPTemplate), is returned.

In both cases, when extracting the features from the fingerprint, an exception is thrown
if the image quality is poor and not sufficient to complete the task. Quality assessment is
done transparently by the Digital Persona’s SDK and isn’t configurable.

4.3.3 Fingerprint Matcher Digital Persona

«interfaces
& DPFPVerificationFactory
com digitelper sone anetouch verification
airterfaces
= ateverifica)
& DPFPVerification @ cresteveniicationt)
com digitalper sana.onetouch verification @ cresteverification()
Y HIGH_SECURITY_FAR: int T & DPFPGlobal
Y LOW_SECURITY _F&F: int | com.digalpersona.onetouch
W MEDIUM_SECURITY_FAR: int |
¥ PROBABILITY _ONE: it | & getverificationFactory)
g
@ selFARReguested() . | calls P
@ verity() L et Cal | -
. | -
T ~eCalls
~ | s
- |
n . — intertaces
FingerprintMatcherDigitalPersona . amert o
Sl graersonay — = @ BiometricMatching
77777 dmplemerts | com.alerthusiness product clinical .comman.security hiometrics
& FingerprintMatcherDigtalPersonal)
® verlfy() @ werity()
- —
-
- - ™ o~
- -
1 slimport, Calls "~ .. simport, Calls
<interfaces —
€ DPFPVerificationResult e

com.digitalpersona.onetouch verification —

@ isWerified() =

(9 BiometricData
com slert business product clinical common, security biometrics

o, dater Oject

<, format: String

p technology: String
p type: String

Figure 4.11: Digital Persona Matcher Module

This is the implementation of the Biometric Matching interface using Digital Per-
sona’s Java SDK. The “verify” method accepts two BiometricData objects with Digital
Persona proprietary fingerprint templates for comparison. The first must be one with the

36

Software Design and Implementation

purpose of verification (DPFPFeatureSet) and the latter a reference template (DPFPTem-
plate). Before matching them, a value for the FAR is set (setFARRequested). If none
is configured, a default value of HIGH_SECURITY _FAR is assumed. Finally, “true” is
returned if the matching is successful and “false” if not.

4.3.4 Fingerprint Sensor Digital Persona

ainterfaces
€ DPFPReadersCollectionFactory

ainterfaces

sinterfaces

€ DPFPReadersCollection
com digitalpersona.onetouch readers

€ DPFPSample

com digitalpersona.onetouch readers

@ oetReaders()

com igitalper sona.onetouch o ot

= T & DPFPGlobal
S - K N | com digitalpersona onetouch
.
= N l & uetCaptureFactary()
antertaces | &
€ DPFPCaptureFactory e eimports ™ lmpart, Calle | getReadersFactory()
com digitalpersona.onetouch.capture - ~ «alls T
. ~ | - ~
.
® crestecapturer) - ™~ \\ : e
—
R e | - el
— ~
e - N | -
snterfaces . - — dnterfaces
€ DPFPCapture Syl e [@ BiometricCapture
omaitaperscnaoncochoaptrs | snpot Cale_f— | emplements | comslertbusinessproduct clnicsl.comman, security biometrics
FingerprintSensorDighalPersonal)
@ addDatalistener() @ capture() @ capturs)
® sddmageCualtyListener() v T T - ___ +instantiate, mports
@ sddRescerstatusListenen) // | | | e
-
daisensorList -
g :Elpr:’::n:)‘ e L7 | «Send, Import, el -
o de M - | | | K © BiometricData
selReader Serialbumber ;
. Vinocesss dmports B com alsrt business product.cliical. common security biometrics
Pl | © InterruptedException | ,, datar Object
- Javalang o, format: String
i | o, technology: String
enumerations o tyne St
G DPFPCapturePriority il .

o digitalpersona.onstouch capture

|
|
"
© LinkedBlockingQueue <E>

& RuntimeException
Jawa lang

U CAPTURE_PRIORITY_LOW
W CAPTURE_PRIORITY_HIGH
¥ CAPTURE_PRIORITY _NORMAL

jawa.util.concurrent

@ putt)
® take()

{3 Node <E>

Figure 4.12: Digital Persona Sensor Module

This is the implementation of the Biometric Capture interface using Digital Persona’s
Java SDK and implements the method “capture” that returns a BiometricData with a cap-
tured fingerprint sample in a Digital Persona proprietary format (DPFPSample). First, it
checks for any available readers supported by Digital Persona (DPFPReadersCollection-
Factory) and, by default, chooses the first one to be used for capturing the fingerprint
sample and waits for user input. Then, when a fingerprint image is acquired, image qual-
ity is assessed and, if good, a BiometricData with the captured sample returned in the
Digital Persona proprietary format (DPFPSample). This is the default behaviour for the
Digital Persona module, but there is also the possibility to configure it to return an image
of the fingerprint instead of the Digital Persona proprietary sample object. This enables
the use of its readers with other algorithms that allow fingerprint image input. When con-
figuring the biometric framework to use the Digital Persona sensor module, the parameter
illustrated in figure 4.13 has to be passed.

37

Software Design and Implementation

config.setConfig ("SECURITY AUTH BICHETRIC Sensor Cutput"”, "Image™):

Figure 4.13: Digital Persona Sensor Configuration

This way, the method “capture” returns a biometric data with the image of the finger-

print. The image is obtained by converting the DPFPSample to an image using the Digital
Persona API’s DPFPSampleConversion class.

4.3.5 Fingerprint Serializer Digital Persona

anterfaces
€ DPFPFeatureSetFactory

com digitalpersana anetouch

(& DPFPGlobal

com sgitalpersona.onstouch

@ createFeatureSet()

& getFeatursSatFactory()
@ cresleFestureSel()

& getTemplateF actory()

T A
| 7
y
| <
sinterfaces | amport, ol P I
& DPFPFeatureSet | P
comdigtalersana anetouch P
e ___ lmport, Calls | P
— |
- OF SerializerD ™ winterfaces
T ingerprintSerializerDigitalPersona . . .
S il & BiometricDataSerializer
_____ T2 com et business product clincal common securky biometrics
& FingerprintSeriglizerDigtelPersona) | <mplements .
® deserialize() P——
o _dmooncan | @ serislize() P
<intertaces T =
£ DPFPTemplateFactory e
comdigitalpersana.anetouch | ~ \‘_'V"Fm- Call
| ~
-~
® createTemplate() | .
@ createTemplate() | cimpcrt, Calls ~ N
| (2 BiometricData
| com.alert business product clinical common securtty biometrics
| o, datax Olect
| o, format: String
\ pertaces @, technology: String
€ DPFPTemplate o, type: String
com disitalersona anetauch

Figure 4.14: Digital Persona Template Serializer Module

This class implements the Biometric Data Serializer using the Digital Persona’s SDK
and, this way, allows for BiometricData objects containing Digital Persona proprietary
templates to be serializable (DPFPFeatureSet and DPFPTemplate). Even though objects
from these classes have methods to serialize them, they aren’t serializable by nature.

When serializing or deserializing, first it is checked if the biometric data is a template
(either for verification or enrollment) since only biometric templates are allowed to be
stored or transferred through the network.

The “serialize” method accepts a BiometricData with a Digital Persona proprietary
template and returns a byte array with the serialized template. The “deserialize” method
takes a BiometricData with an empty “data” field and a byte array containing the serialized

template as parameters. It then returns the same BiometricData but with the deserialized
template in the “data” field.

38

Software Design and Implementation

4.3.6 Running in 64 bits

Unfortunately, the algorithm’s libraries aren’t written in Java and the only binaries pro-
vided are for Windows and Linux (both 32 bits) and supporting these environments in 64
bits is imperative. Linking of 64bit code with 32bit libraries is impossible without using
some kind of Inter Process Communication (IPC) [TNO6].

Since all x86_64 processors support native 32bit mode, running the Java Virtual Ma-
chine in 32 bit mode would allow the framework to link to the 32 bit libraries. Despite
this fact, it is intended for it to run in full 64 bit mode. Windows handles this issue trans-
parently and running the VM in 64 bit mode didn’t cause any hassles with the 32bit Dlls.
In Linux there is the possibility of installing compatibility libraries, but it varies from
distribution to distribution and it is not guaranteed it will work and other linux-binary-
compatible Unices might not have this layer.

Since it is desirable to have a simple and (possibly) universal approach, the IPC
workaround was chosen. The matching process is executed in a different VM, running in
32bit mode, and IPC communication is done by Java RMI. This way, the framework can
run in 64 bit mode.

A general architecture of this solution is illustrated in figure 4.15.

64-bit Operating System

w1

L Jr
oy Cf

i -

JAVA JAVA
64 Bits 32 Bits

' Dlgltal persone

== o

Figure 4.15: Digital Persona 64-bit Architecture

This solution is very simple and effective and didn’t require any changes to the frame-
work’s structure thanks to the interface approach. The application makes use of the same
exact methods that rely on the Digital Persona’s libraries and all the IPC logic is handled
transparently by the Digital Persona module. When on a 64bit platform, all methods that
use these libraries make a remote method call to the ones being run in the 32-bit Java VM.

39

Software Design and Implementation

The parameter illustrated in figure 4.16 must be set in the configuration in order for the
Digital Persona modules to use this approach.
config.setConfig ("SECURITY AUTH BICMETRIC CEPUArch", "6€4");

Figure 4.16: Digital Persona 64-bit Configuration

4.4 Integration with the Authentication Server

In order to use the biometric framework as an authentication method it had to be integrated
with the authentication server since it is responsible for the interface with the application,
client / server communication and the user database management.

girterface:
@ Authenticator
com.alert husiness product.clinical common.security . auth

«interfaces

© AuthBiometric

_ aberivey

@ validate() @ config()
[@ wvalidate()

| slmports

L
{9 BiometricCredential

com.alert business product clinical common security auth crederntials

& EBiometricCredertial()
& EBiometricCredertial()
@ getBiometricDatal)

© BiometricData

com.alert. business product.clinical common.security biometrics

almport, Calls @ dita: Object

@ format: String

@ technalogy: String

@ geTypel) @, type: String

@ toStringl)

slmplement:

«interfaces
@ Credential
com.alert business product clinical common security auth crederntials

@ oetTypel)

Figure 4.17: Biometric Credential and Authentication Modules

As illustrated in figure 4.17, AuthBiometric and BiometricCredential were created.
The first relies on the biometric framework API and contains the authentication logic:
fetches the stored reference template, matches it against the acquired sample and returns
“true” or “false”, according to the matching result. The second is a simple wrapper for the
biometric data that implements the authentication server’s credential interface in order for
it to be used as such.

Finally, for each Identity Management System (IMS), like LDAP, a module must be

written in order for the AuthBiometric to be able to fetch the user’s biometric data trans-
parently.

40

Software Design and Implementation

4.4.1 Directory Servers

One of the main goals of the project was to be able to perform biometric authentication
using popular directory servers based on the LDAP protocol, such as OpenLDAP and
Microsoft Active Directory. In order to do so, a schema extension had to be devised since
neither contemplate this kind of user data, nor is there a specific RFC (or any other kind of
commonly adopted standard) for storing user biometric information in a directory service.

4.4.1.1 Directory Services

Directory services store, organize and provide access to the information held in organiza-
tions directories and directories are public or private resource lists containing names, lo-
cations and other identifying information. Their main advantage in Identity Management
Systems (IMS) is the consolidation of existing services in a single directory, accessible
by various vendors. This way, data redundancy is reduced and therefore so is the ad-
ministrative overhead needed to maintain data [Car03]. Not only does this enable vendor
interoperability but also seamless scalability.

The defacto standard for directory services is X.500. Introduced in 1988 by the Inter-
national Organization for Standardization (ISO), it defines the protocols and the informa-
tion model for an application and network platform agnostic directory service. The LDAP
protocol was developed as a lightweight alternative to X.500 and was widely adopted in
the advent of the Internet thanks to the integration with the TCP/IP protocol and its simple
API. Today, the most popular directory servers are OpenLDAP, which is derived from the
original University of Michigan reference LDAP implementation, and Microsoft’s Ac-
tive Directory that, albeit being LDAP compliant [adl03], cannot be considered as a true
LDAP server.

Since it’s common to find LDAP deployed in organizations, such as hospitals, as the
central IMS, it is desirable for any application that requires authentication to integrate
with these.

4.4.1.2 Extending the Schema

In LDAP, information is represented in a very specific logical form. It is represented as
entries and these belong to one or more object classes. Each object class is defined by a
set of attributes which consist in a type and one or more values. Therefore, object class
and attribute type definitions make up the schema [Don03].

Since the whole purpose of using LDAP is interoperability, mapping the biometric
data in plain text (string) is preferable to storing Java Objects. Reference to the type
of biometric data (captured, processed, etc) is not necessary, since the only kind that
is stored is templates. Therefore, as illustrated in figure 4.18, an object is created to

41

Software Design and Implementation

hold the biometric information and four attributes to represent it: one for the biometric
characteristic, one for the biometric technology type, one for the biometric template data
format and one for the biometric template data itself. The biometric template data is
represented in Base64.

BiometricInfo

|
0. ¢

Biometric Biometric Biometric !i-’ Biometric
10 Technology Farmat Data

@

Figure 4.18: Biometric Schema Diagram

Given that the purpose of extending the schema is to allow the possibility of storing
user biometric data not only in new deployments but mainly in existing ones, integrating
seamlessly with them, it is desired that the biometric info class acts as an auxiliary for the
one that handles the user’s information.

Each schema element is identified by a globally unique Object Identifier (OID). The
most common OIDs usually belong to the private enterprise numbers allocated by the
Internet Assigned Numbers Authority (IANA) under the 1.3.6.1.4.1 namespace. The pre-
ferred way to obtain a root OID is to request one from an International Standards Orga-
nization (ISO) Name Registration Authority, which usually involves paying a fee but it’s
a one-time action that grants us the property of a unique root OID that we can adminis-
ter ourselves. An easier, faster and cheaper way of obtaining an OID is from Microsoft.
They provide a script that generates on-the-fly unique OID numbers assigned under the
Microsoft OID number space 1.2.840.113556.1.800x, where x is a unique number as-
signed to the organization. It is recommended to divide it in two categories and two only:
one for the classes and one for the attributes [Mic09d].

After acquiring an OID from Microsoft, it was divided following the previous guide-
lines as illustrated in figure 4.19.

Naming of the Attributes and Classes also follows an uniqueness principle and, there-
fore, either the company name should be registered with the IANA or prefixed with “x-*
to place in the “private use” namespace [OpeO8]. Microsoft inclusively suggests that

42

Software Design and Implementation

Microsoft Namespace

1.2.840.113556.1 800

W ALERT® Mamespace

1.2 840.113556.1 8000.2554.9 4397 14464 18576.37650.120532 32 1604804 5x

W
<pid>.1.% <oid>.2.%

Objects Attributes

Figure 4.19: ALERT OID Structure

the prefix should be followed by the company name, ensuring not only their uniqueness
company-wise but also facilitate browsing the schema, since all company objects are dis-
played consecutively [Mic09c]. This way the previously specified object and attributes
will be named in the following way:

e x-alert-Biometric-Info

e x-alert-Biometric-ID

e x-alert-Biometric-Technology

e x-alert-Biometric-Template-Format

e x-alert-Biometric-Template-Data

Writing schema extensions for Active Directory and OpenLDAP are very different
processes.

4.4.1.3 Active Directory

Adding, modifying and deleting Active Directory (AD) objects is a complex process and
once the schema has been extended with the new objects (classes and attributes), they
cannot be deleted. Therefore, any change to the production Active Directory schema
requires a lot of planning and must be done carefully [MalO8].

A common strategy for testing AD schema extensions before deploying in production
servers is using Microsoft’s Active Directory Lightweight Directory Service (ADLDS)
in Windows Server 2008 (or Active Directory Application Mode, ADAM, in Windows
Server 2003). ADLDS does not require the deployment of domains or domain controllers,

43

Software Design and Implementation

multiple instances can run concurrently on a single computer and provides the same func-
tionality as Active Directory. This way, while developing the schema, changes can be
“reverted” by simply deleting the ADLDS instance and creating a fresh new one.

Active Directory Domain Services support four mechanisms for extending the AD
Schema:

e LDAP Data Interchange Format (LDIF) Scripts
e Comma-Separated Value (CSV) Scripts
e Programmatically

e Using the User Interface

Microsoft suggests the use of the first [Mic09¢e], so, a LDIF file is written with the
schema extension specification following Microsoft’s principles for defining new Classes
and Attributes [Mic09b, Mic09a].

The class holding the biometric information is auxiliary (“objectClassCategory 3”)
and should only be instantiated in the “user” class making this its parent class (“system-
PossSuperiors” that, after added to the AD, cannot be changed). It is a subclass of “top”
(“subClassOf”) since it doesn’t inherit from any class and must contain all four biometric
attributes (id, technology, template format and data).

dn: CN=x-alert-Biometric-Info,CN=Schema,CN=Configuration, DC=X
changetype:]

objectClass: top

objectClass: classSchema

on: x-alerc-Biometric-Info

subClass0Of: top

governsID: 1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.12093232.16048043.1.1
adminDisplayName: x-alert-Biometric-Info

adminDescription: Biometrical Information of a Person
objectClassCategory: 3

1DAPDisplayName: alertBiomectricInfo

systemPossSuperiors: user

systemMustContain: x-alert-Biometric-ID

systemMustContain: xX-alert-Biometric-Technology
systemMustContain: x-alert-Biometric-Template-Format
systemMustContain: x-alerc-Biometric-Template-Data

Figure 4.20: AD Schema Extension: BiometricInfo Object

As stated before, all the four biometric attributes are strings (“attributeSyntax 2.5.5.12”
and “oMSyntax 64”). Each attribute must also have only one value (“isSingleValued
TRUE”). The 1dif code containing these four attributes is illustrated in figure 4.21, fig-
ure 4.22, figure 4.23 and figure 4.24.

Then, the “user” class has to be modified, as illustrated in figure 4.25 to be able to
instantiate the “biometric info” class.

44

Software Design and Implementation

dn: CN=x-alert-Biometric-ID,CHN=Schema,CH=Configunration,DC=X
changetype: add

objectlClass: top

ocbjectClass: attributeSchema

cn: X-alert-Bicmetric-ID

attributeID: 1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.12093232.16048043.2.1
attributeSyntax: 2.5.5.12

isSingleValuned: TRUE

adminDisplayName: x-alert-Biometric-ID

adminDescription: Biometrical Characteristic

oMSyntax: 64

searchFlags: 0

1DAPDisplayName: alertBiometricID

Figure 4.21: AD Schema Extension: BiometricID Attribute

dn: CH=x-alert-Biometric-Technology, CH=5Schema, CN=Configuration, DC=X
changetype: add

objectClass: top

objectClass: attributeSchema

cn: x-alert-Biometric-Technology

attributeID: 1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.12093232.16048043.2.2
attributeSyntax: 2.5.5.12

isSingleValued: TRUE

adminDisplayName: x-alertc-Biometric-Technology

adminDescription: Biometric Technology

oMSyntax: 64

searchFlags: 0

1DAPDisplayName: alertBiometricTechnology

Figure 4.22: AD Schema Extension: BiometricTechnology Attribute

dn: CH=x-alert-Biometric-Template-Format, CN=Schema, CH=Configuration,DC=X
changetype: add

objectClass: top

objectClass: attributeSchema

on: x-alert-Biometric-Template-Format

attribuoteID: 1.2.840.113556.1.8000.2554.9.,4397.14464.18576.37650.12053232.16048043.2.3
attributeSyntax: 2.5.5.12

isSingleValued: TRUE

adminDisplayName: x-alert-Biometric-Template-Format

adminDescription: Biometric Template Format

oMSyntax: &4

searchFlags: 0

1DAPDisplayName: alertBiometricTemplateFormat

Figure 4.23: AD Schema Extension: BiometricFormat Attribute

45

Software Design and Implementation

dn: CN=x-alert-Biometric-Template-Data,CH=Schema, CH=Configuration,DC=X
X ngectype:

objectlClass: top

objectClass: attributeSchema

on: x-alert-Biometric-Template-Data

attribunteID: 1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.,12093232.16048043.

attributeSyntax: 2.5.5.12

isSingleValued: TRUE

adminDisplayName: x-alert-Biometric-Template-Data
adminDescription: Base64 Representation of the Biometric Template
oMSyntax: 64

searchFlags: 0

1DAPDisplayName: alertBiometricTemplateData

Figure 4.24: AD Schema Extension: BiometricData Attribute

Finally, the schema is extended by importing the file with the LDIFDE Tool. Now,
biometric information about a user can be added in the Active Directory.

4.4.14 OpenLDAP

In OpenLDAP, extending the schema is pretty straightforward. The principles followed
before for creating the classes and attributes are also applied here. The difference is in the
way the server’s default schema is extended.

Unlike Active Directory, schemas are defined in files and not in the directory tree
itself. Therefore, our custom schema is contained in one file and it is then included in
the server’s configuration file to be loaded when it starts. The schema follows the LDAP
schema RFC 2252, section 4.4 (figure 4.26) for the classes and section 4.2 (figure 4.27)
for the attributes.

The resulting schema file, equivalent to the schema extension defined previously for
Active Directory, is specified for OpenLDAP as it is shown in figure 4.28.

4.5 Java Applet

Another goal of the project was for the biometric framework to support web browsers. In
theory, a Java application can be run as a Java Applet without any major modifications
to the code and have full access to the machine it is running (if the user agrees to), thus
having access to the fingerprint readers and local extraction/matching libraries if needed
(which is the case of the Digital Persona’s module). Since displaying the applet varies
from browser to browser and, again, we are looking at a single, scalable solution, a single
html file handles this issue using JavaScript, as illustrated on figure 4.29.

The only issue when using the biometric framework through the applet came with the
Digital Persona’s module since it relies on JNI. Only applications and signed applets can

46

-
-

4

Software Design and Implementation

dn: CH=User,CHN=Schema, CN=Configuration,DC=X
changetype:

add: anxiliaryClass

auxiliaryClass: x-alert-Biometric-Info

Figure 4.25: AD Schema Extension: Modifying User Class

invoke the JNI and, therefore, the applet and all the jars it depends on have to be digitally
signed in order for it to work. The Java SDK provides a tool to do this: jarsigner.

ObjectllassDescription = " (" whsp

numericoid whsp 7 ObjectClass identifier

["NAME" gdescrs]

["DESC™ gdstring]

[™"OBSOLETE"™ whsp]

["SUP™ gids] ; Supericr ObjectClasses

[{ "RBSTRACT"™ / "STRUCTURAL™ / "RUXILIARY") whap]
; default structural

["MOST" oids] ; AttributeTypes
["MAY"™ oids] ; AttributeTypes
whap ") "

Figure 4.26: RFC 2252 - Object Class

47

Software Design and Implementation

AttributeTypeDescription = "™ (™ whap

numericoid whsp ; Attributelype identifier
["HNAME"™ gdeacrs] ; name used in AttributeType
["DESC™ gdatring] ; description
[™"OBSOLETE"™ whsp]
["SUP™ woid] ¢ derived from this other
; AttributeType

"EQUALITY" woid
"CRDERING" woid

Syntax 0ID
"SINGLE-VALUE" whap]

: Matching Rule name
Matching Rule name

default multi-valued

"SUBSIR" woid] ; Matching Rule name

"COLLECTIVE" whsp]

default not collective

"NO-USER-MODIFICATION™ whap]; default user modifiable

[
[
[
["SYNTAX" whap noidlen whap]
[
[
[
[

"USAGE™ whap AttributelUsage]; default userippl
whap ") "

ications

Figure 4.27: RFC 2252 - Attribute Class

attributetype (1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.
NAME 'x-alert-Biometric-ID'
DESC 'Biometrical Characteristic (Right Middle Finger, Left
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

attributetype (1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.
NAME 'x-alert-Biometric-Technology'
DESC 'Biometric Technology (Fingerprint, Iris, ...)'
SYNTRX 1.3.6.1.4.1.1466.115.121.1.15)

attributetype (1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.
NAME 'z-alert-Biometric-Format'

DESC 'Biometric Template Format (Digital Persona, ISC 19794-

SYNTAX 1.3.6.1.4.1.1466.,115.121.1.15)

attributetype (1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.
NAME 'x-alert-Biometric-Data'
DESC 'Base64 Representation of the Biometric Template'
SYNTARX 1.3.6.1.4.1.1466.115.121.1.15)

objectclass (1.2.840.113556.1.8000.2554.9.4397.14464.18576.37650.12093232.16048043.1.

HAME 'x-alert-Biometric-Info'

DESC 'Biometrical Information of a Person'
5UF person

STRUCTURAL

12093232.16048043.

Eye, ...)'

12093232.16048043.

12093232.16048043.

2, !

12093232.16048043.

MUST (alertBiometriecID § alertBiometricTechnology $ alertBiometricFormat

£ alertBiometricData)

Figure 4.28: OpenLDAP Schema File

48

[X)

(¥}

%)

[X)

1

Software Design and Implementation

JavaScript

eee

html

&

—>
<=_ JavaApplet
Biometric Framework

Figure 4.29: Java Applet Diagram

49

Chapter 5

Testing

The main goal of this project was to design a biometric framework that, first and fore-
most, supported Digital Persona’s fingerprint authentication technology and ran, at least,
in Windows and Linux (and their 64bit counterparts) and in Internet Explorer and Mozilla
Firefox. Given the increased popularity of the Mac OSX operating system and the Safari
and Google Chrome web browsers, they were also tested for compatibility.

Since the core of the framework is built in Java, it is safe to assume that it will run
in every operating system and web browser that have a Java Virtual Machine. The same
cannot be said about the modules that depend on proprietary technology that might not be
able to run in the same environments.

5.1 JUnit

JUnit test cases were used to easily assess the compatibility of the biometric framework
and, in this case, the Digital Persona fingerprint modules with the various operating sys-
tems. If the tests pass, it is safe to assume that they are compatible.

Unit testing is a black box automated test scenario, so, there cannot be any input/output.
This way, we have to save previously captured fingerprints and accept them as valid. Not
only it isn’t possible to test the capture process, but also the feature extraction since only
the biometric templates are serializable and, therefore, can be saved. So, it is only possi-
ble to test the template serialization/deserialization and the matching of two fingerprints.
Regarding the serialization of the templates, two distinct scenarios are tested: using the
serializer module directly and by writing/reading a biometric data object (which relies on
the first to do so).

After capturing one fingerprint template for verification and other for enrollment from
two distinct fingers, three test cases were written:

50

Testing

o testDeserealizeMatch: The four templates are deserialized using the serializer mod-
ule directly and matched against each other. If the templates from the same finger
match and from different fingers do not match, the test is successful.

o testSerealizeDeserealizeMatch: This test is similar to the previous but the templates
are first deserialized and serialized again.

o testWriteReadObject: This test is similar to the second but, instead of using the
serializer module directly, it is the biometric data object that is serialized and then
deserialized.

An output of a successful test in Eclipse looks like figure 5.1 and, in the command
line, like figure 5.2.

g dunie 53 . & Ant =]
Finished after 0,654 seconds X7
g BE| @ E -

Runs: 3/3 B Errors: 0 B Failures: 0

4 D_J com.alert.business.product.clinical. common.:
eel testDeserealizeMatch
] testSerealizeDeserealizeMatch
el testWriteRead Object

Figure 5.1: JUnit Success Output - Eclipse

@ andre tavares@alertlab01:~/secu

Figure 5.2: JUnit Success Output - Command Line

When testing compatibility with an operating system it doesn’t suffice to run these
tests and see if they pass. Not passing the tests doesn’t directly imply that they aren’t
compatible. Some specific configurations, such as library paths, might be needed and
these tests also allow easy detection of common errors such as this.

51

Testing

5.2 Operating Systems
Regarding operating systems, tests were conducted in the following:
o Windows Vista (32 bits)
e Windows Server 2003 (64 bits)
e Ubuntu Linux 8.10 (32 bits)
e CentOS 5.2 (64 bits)
e Mac OSX 10.5 Leopard (64 bits)

The only OS where the tests weren’t successful was Mac OSX. Despite being UNIX
certified, its binaries aren’t in the ELF format but Mach-O. This makes it impossible for
the Digital Persona’s Linux libraries, which are precisely in ELF, to work with it.

5.3 Browser and LDAP

To test the browser applet, a real world scenario was devised. As illustrated in figure 5.3,
the applet is served by a production Apache web server and connects to an authentication
server running in a Windows Server 2003 (64bits) in order to perform fingerprint veri-
fication, which then connects to an OpenLDAP server running on a CentOS 5.2 64bits

machine.

A

Figure 5.3: Test Setup

A successful fingerprint verification in the Java Console looks like figure 5.4.

52

Testing

|1

@ Test Biometric Authentication Applet - Mozilla Firefox |M
File Edlt View History Bookmarks Tool; He\p
- C ﬁ ht‘tp ."!devwmﬂlfd a\relupm entf AndreTavares 'Teste html b

|£| Java Consale [E= RN

2009-02-26 14:38:45,660 DEBUG [sApplet-1] [.sensors.FingerprintSensorDigitalPersona] - U.are.U& 40008 Fingerprint Reader
2009-02-26 14:33:45,670 DEBUG [sApplet-1] [.sensors.FingerprintSensorDigitalPersona] - Start Capture

2009-02-26 14:38:45,672 DEBUG [DPFP INI] [.sensors.FingerprintSensorDigitalPersona] - Reader is connected

2009-02-26 14:38: 50,745 DEBUG [DPFF INI] [.sensors.FingerprintSensorDigitalPersona] - Finger touched

2009-02-26 14:38:50,935 DEBUG [DPFP NI] [.sensors.FingerprintSensorDigitalPersona] - Image acquired

2009-02-26 14:38:51,032 DEBUG [DPFP IMI] [.sensors.FingerprintSensorDigitalPersona] - Added sample to stack

2009-02-26 14:
2009-02-26 14
2009-02-26 14:38:51,122 DEBUG [sApplet-1] [cal.common. security.comm.clear. CommClear] - Created instance of CommClear
2009-02-26 14:38:51,122 DEBUG [sApplet-1] [linical.common. security.ldap.LDAPAdapter] - Binding

network: Connecting http://192.168. 1. 3:4402f with proxy=DIRECT

2009-02-26 14:38:51, 127 DEBUG [sApplet-1] [cal.common. security.comm.dlear. CommClear] - CommClear is now bound
2009-02-26 14:38:51,125 DEBUG [sApplet-1] [linical.common. security.|dap.LDAPAdapter] - Trying to validate

2009-02-26 14:38:51,128 DEBUG [sApplet-1] [cal.commaon. security.comm.clear. CommClear] - CommClear - writeObject{Object)
2009-02-26 14:38:51, 136 DEBUG [sApplet-1] [zers.FingerprintSerializerDigitalPersona] - Hello

L datat Ljavafang/Objectil formatt Ljavaflang/String;L

2009-02-26 14
2009-02-26 14:
2009-02-26 14:
2009-02-26 14
2009-02-26 14
2009-02-26 14:

151,139 DEBUG [sApplet-1] [cal.common.security.comm.clear. CommClear] - CommClear - write(byte[] data)
151,139 DEBUG [sApplet-1] [cal.common.security.comm.clear. CommClear] - === INTEGER; 1250
:51,139 DEBUG [sApplet-1] [cal.common.security.comm.dear. CommClear] - CommClear - exit readString()
:51,139 DEBUG [sApplet-1] [cal.common.security.comm.cear. CommClear] - CommClear - exit writeObject()
151,139 DEBUG [sApplet-1] [cal.common.security.comm.dear. CommClear] - CommClear - readObject()
151,139 DEBUG [sApplet-1] [cal.common.security.comm.dear. CommClear] - CommClear - readBytes()
2009-02-26 14:38:51,506 DEBUG [sApplet-1] [cal.common.security.comm.dear. CommClear] - << < INTEGER; 621
2009-02-26 14:38:51,509 DEBUG [sApplet-1] [cal.common.security.comm.dear. CommClear] - CommClear - exit readBytes()
2009-02-26 14:38:51,520 DEBUG [sApplet-1] [cal.common. security.comm.clear. CommClear] - Got a serialized abject
2009-02-26 14:38:51,523 DEBUG [sApplet-1] [cal.comman.security.comm.clear. CommClear] - CommClear - exit readObject()
2009-02-26 14:38:51,523 DEBUG [sApplet-1] [linical.common.security.ldap.LDAPAdapter] - Received response
Result=Subject:

Principal: UserPrincipal{Jacinto,null}

2009-02-26 14:38:51,533 DEBUG [sApplet-1] [urity.biometrics.applet. BiometricsApplet] - Validation is sucessful
< [e I

-

:51,118 DEBUG [sApplet-1] [l.common.security.comm. CommClientFactory] - Creating dass instance of com.alert.t
151,119 DEBUG [sApplet-1] [man.security.comm. dear. CommClearFactory] - Creating instance of CommClear with

2009-02-26 14:38:51, 139 DEBUG [sApplet-1] [cal.comman.security.comm.dear.CommClear] - Going to send serialized: -1 sr Pcom
sr Xcom.alert.business. product. dinical.common. security. auth. credentials. BiometricCredentialéAig— = L bioDatat NLcom{aleri

technologyq ~ L typeg ~ xpt processedt fingerprintt DigitalPersonaur [B-6 @ Ta xp > &F E)asthl Ti2.<vR
sr Tcom.alert.business. product. dinical. comman. security. auth. credentials, LoginCredential L loging ~ xpt Jacintopr

—pe—

[Clear] [Copy] [Close]

Done

Figure 5.4: Applet Testing - Firefox

The applet was tested in the following browsers:

e Apple Safari 4

e Google Chrome 1

e Microsoft Internet Explorer 7

e Modzilla Firefox 3

The tests were successful in all four. Not only can we conclude the browser compati-

for biometric information about a user.

5.4 Deployment

the fingerprint reader used for user authentication.

53

bility but also that the biometric framework was able to use a LDAP server as repository

In figure 5.5 is shown an example of a computer running the ALERT(r) application and

Testing

Figure 5.5: Computer Running ALERT(r) Software

54

Chapter 6

Conclusions

Before the development of this framework, not only was the ALERT(r) software depen-
dant on one specific biometric technology, fingerprint, but also one provider. As it was
said in Chapter 1, it is impossible not to depend on others, but the question here is how
deep one lets that dependence go. An application should be layered into logical compo-
nents that interact with each other to provide the overall functionality, eliminating direct
dependencies between them and, thus, enabling seamless changes to each one to be done
without breaking functionality.

Moving the biometric authentication logic out of the core of the application and defin-
ing a standard immutable API for these to communicate, allows for any desired develop-
ments at the biometrics level to be done without breaking the application. This way, it
stops being dependant on a specific provider. By taking this abstraction one step further
and isolating the biometric process logic, it then becomes possible to support different
biometric technologies and, for each one, different vendors.

This is what was achieved with the developed biometrics framework. The ALERT(r)
software now supports not only different fingerprint authentication technologies, but dif-
ferent biometric technologies.

Adopting a single vendor that complied with international standards would be the ideal
scenario, mainly because it would also eliminate the overhead of having to support differ-
ent incompatible technologies. Unfortunately, all the solutions that meet this requirement
are still very expensive.

Of the two fingerprint technology providers currently in use, only Digital Persona was
implemented, since it is represents more than 90% of the application deployments. It now
supports the required operating system (64-bit Windows and Linux) and browser (Internet
Explorer, Firefox and Chrome) environments. The obvious next step is to add support for
MegaMatcher.

55

Conclusions

The framework is still only a proof of concept and further developments have to be
done to put it in production, such as exception handling, the ability to store user biometric
information (only fetch was implemented) and its configuration internals. It would also
be interesting to test it in other Unices, such as OpenSolaris.

56

References

[adlO3]

[ALEOS]

[BecO8]

[Bi1008]

[Car03]
[Dig07]

[Don03]

[HowO8]

[HT99]

[Jai04]

[MalO8]

[Mic09a]

[Mic09b]

[Mic09c]

Active directory ldap compliance. Technical report, Microsoft Corpo-
ration, October 2003.

ALERT Life Sciences Computing, S.A. Company Presentation, 2008.
http://www.alert.pt/.

Kent Beck. Implementation Patterns. Addison-Wesley, First edition,
2008.

BioAPI Consortium. Bioapi 2.0 version description, 2008. http:
//www.biocapi.org/.

Gerald Carter. LDAP System Administration. O’Reilly, 2003.

Digital Persona, Inc. Guide to fingerprint recognition. Technical report,
July 2007.

Clayton Donley. LDAP Programming, Management and Integration.
Manning, 2003.

HowStuffWorks, Inc. How fingerprint scanners work, 2008. http://
computer.howstuffworks.com/fingerprint—-scannerl.
htm.

Andrew Hunt and David Thomas. The Pragmatic Programmer.
Addison-Wesley, 1999.

Anil K. Jain. Fingerprint recognition. Technical report, Michigan State
University, January 2004.

Vikas Malhotra. Extending the active directory schema. TechNet Mag-
azine, May 2008.

Microsoft Corporation. Defining a new attribute, 2009. http:
//msdn.microsoft.com/en-us/library/ms675883 (VS.
85) .aspx.

Microsoft Corporation. Defining a new class, 2009. http://msdn.
microsoft.com/en-us/library/ms675884.aspx.

Microsoft ~ Corporation. Naming attributes and classes,
2009. http://msdn.microsoft.com/en-us/library/
ms677603(VS.85) .aspx.

57

http://www.alert.pt/
http://www.bioapi.org/
http://www.bioapi.org/
http://computer.howstuffworks.com/fingerprint-scanner1.htm
http://computer.howstuffworks.com/fingerprint-scanner1.htm
http://computer.howstuffworks.com/fingerprint-scanner1.htm
http://msdn.microsoft.com/en-us/library/ms675883(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675883(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675883(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675884.aspx
http://msdn.microsoft.com/en-us/library/ms675884.aspx
http://msdn.microsoft.com/en-us/library/ms677603(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms677603(VS.85).aspx

[Mic09d]

[Mic09e¢]

[Nag]

[NatO8a]

[NatO8b]

[Ope08]

[otSCPtSotFo05]

[RFL0O9]

[Rob05]
[TNO6]

[YunO3]

REFERENCES

Microsoft Corporation. Obtaining an object identifier from microsoft,
2009. http://msdn.microsoft.com/en-us/library/
ms677620(VS.85) .aspx.

Microsoft = Corporation. Supported installation mechanisms,
20009. http://msdn.microsoft.com/en-us/library/
ms677966 (VS.85) .aspx.

Ramesh Nagappan. Stronger authentication with biometric sso
using opensso enterprise and biobextm. Technical report, Sun
Microsystems. http://www.coresecuritypatterns.
com/blogs/wp-content/uploads/2009/01/
egov-opensso—biobex-rameshnagappan.pdf.

National Institute of Standards and Technology. Minex compliant fea-
ture extractors, 2008. http://fingerprint.nist.gov/minex/
QPL.html.

National Institute of Standards and Technology. Minutiae interoper-
ability exchange test, 2008. http://fingerprint.nist.gov/
minex/.

OpenLDAP Foundation. Schema specification, 2008. http://www.
openldap.org/doc/admin24/schema.html.

Report on the Study Conducted Pursuant to Section 157 of the Fair and
Accurate Credit Transactions Act of 2003. The use of technology to
combat identity theft. Technical report, The Department of Treasury,
February 2005.

RFLOGICS. Overview of the biometrics system, 2009. http://
www.rflogicsinc.com/Technology/Biometrics.htm.

Chris Roberts. Biometrics. Technical report, November 2005.

C. Timossi and H. Nishimura. Epics sca clients on the .net x64 plat-
form. Technical report, 2006.

Yau Wei Yun. The ‘123’ of biometric technology, 2003. http:
//www.cp.su.ac.th/~rawitat/teaching/forensicit06/
coursefiles/files/biometric.pdf.

58

http://msdn.microsoft.com/en-us/library/ms677620(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms677620(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms677966(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms677966(VS.85).aspx
http://www.coresecuritypatterns.com/blogs/wp-content/uploads/2009/01/egov-opensso-biobex-rameshnagappan.pdf
http://www.coresecuritypatterns.com/blogs/wp-content/uploads/2009/01/egov-opensso-biobex-rameshnagappan.pdf
http://www.coresecuritypatterns.com/blogs/wp-content/uploads/2009/01/egov-opensso-biobex-rameshnagappan.pdf
http://fingerprint.nist.gov/minex/QPL.html
http://fingerprint.nist.gov/minex/QPL.html
http://fingerprint.nist.gov/minex/
http://fingerprint.nist.gov/minex/
http://www.openldap.org/doc/admin24/schema.html
http://www.openldap.org/doc/admin24/schema.html
http://www.rflogicsinc.com/Technology/Biometrics.htm
http://www.rflogicsinc.com/Technology/Biometrics.htm
http://www.cp.su.ac.th/~rawitat/teaching/forensicit06/coursefiles/files/biometric.pdf
http://www.cp.su.ac.th/~rawitat/teaching/forensicit06/coursefiles/files/biometric.pdf
http://www.cp.su.ac.th/~rawitat/teaching/forensicit06/coursefiles/files/biometric.pdf

